
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Otávio Mignoso e Silva

Estudo da variação de cor em fitas adesivas holográficas e
estimativa do ângulo de observação por meio de redes

neurais convolucionais

São Carlos

2025

Otávio Mignoso e Silva

Estudo da variação de cor em fitas adesivas holográficas e
estimativa do ângulo de observação por meio de redes

neurais convolucionais

Monografia apresentada ao Curso de
Engenharia Mecânica, da Escola de
Engenharia de São Carlos da Universidade
de São Paulo, como parte dos requisitos para
obtenção do título de Engenheiro Mecânico.

Orientador: Prof. Dr. Rodrigo Nicoletti

São Carlos
2025

FOLHA DE AVALIAÇÃO

Candidato: Otávio Mignoso e Silva

Título: Estudo da variação de cor em fitas adesivas holográficas e estimativa

do ângulo de observação por meio de redes neurais convolucionais

Trabalho de Conclusão de Curso apresentado à

Escola de Engenharia de São Carlos da
Universidade de São Paulo

Curso de Engenharia Mecânica

BANCA EXAMINADORA

Professor Dr. Rodrigo Nicoletti
(orientador)

Nota atribuída: 10,0 (dez) _________________________

(assinatura)

Professor Dr. Leopoldo Pisanelli Rodrigues de Oliveira

Nota atribuída: 10,0 (dez) _________________________

 (assinatura)

Eng. Ms. Aline de Almeida Soares

Nota atribuída: 10,0 (dez) _________________________
 (assinatura)

Média: 10,0 (dez)

Resultado: APROVADO

Data: 14/11/2025.

Este trabalho tem condições de ser hospedado no Portal Digital da Biblioteca da EESC

SIM  NÃO □ Visto do orientador _________________________

Dedico este trabalho à minha família, pelo apoio incondicional, aos amigos, pela parceria
durante essa jornada, aos professores, pelos ensinamentos valiosos, e a todas as pessoas

que, de alguma forma, ajudaram-me a chegar até aqui.

RESUMO

SILVA, O. Estudo da variação de cor em fitas adesivas holográficas e estimativa
do ângulo de observação por meio de redes neurais convolucionais. 2025. 63 p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2025.

Este trabalho avaliou a viabilidade da utilização de fitas adesivas holográficas como
ferramenta para estimativa do ângulo de superfícies, explorando o fenômeno da iridescência.
Para isso, conduziu-se um primeiro experimento para identificar padrões na variação de
cor da fita em função do ângulo de observação, através de técnicas de processamento
digital de imagens. Em seguida, desenvolveu-se um modelo de rede neural convolucional
que foi treinado com imagens da fita observada de diferentes posições, para estimar o
ângulo de observação através de novas imagens. Diante disso, demonstrou-se uma forte
correlação entre os dados reais e os previstos, com erro absoluto médio de 1.11 (± 0.30)
e coeficiente de determinação (R2) de 0.9947, evidenciando a eficácia da abordagem.
Portanto, concluiu-se que a fita adesiva holográfica apresenta potencial como sensor de
baixo custo para aplicações em engenharia, com a possibilidade de estender seu uso para
medições em múltiplos eixos através de aperfeiçoamentos experimentais.

Palavras-chave: Fita adesiva holográfica; Variação angular; Processamento de imagens;
Redes Neurais Convolucionais.

ABSTRACT

SILVA, O. Study of color variation in holographic adhesive tapes and
estimation of the observation angle using convolutional neural networks. 2025.
63 p. Monograph (Conclusion Course Paper) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2025.

This study evaluated the feasibility of using holographic adhesive tapes as a tool for esti-
mating surface angles by exploring the phenomenon of iridescence. Initially, an experiment
was conducted to identify patterns in the color variation of the tape as a function of the
observation angle, using digital image processing techniques. Subsequently, a convolutional
neural network model was developed and trained with images of the tape observed from
different positions, enabling the estimation of the observation angle from new images. The
results showed a strong correlation between the actual and predicted values, with a mean
absolute error of 1.11 (± 0.30) and a coefficient of determination (R2) of 0.9947, demon-
strating the effectiveness of the approach. Therefore, it was concluded that holographic
adhesive tape has potential as a low-cost sensor for engineering applications, with the
possibility of extending its use to multi-axis measurements through further experimental
improvements.

Keywords: Holographic adhesive tape; Angular variation; Image processing; Convolutional
Neural Networks.

LISTA DE FIGURAS

Figura 1 – Fotografias da fita adesiva holográfica em ângulos distintos. 21
Figura 2 – Fotografias da alteração da cor com a variação da orientação da superfície

e iluminação em penas. 23
Figura 3 – Representações do modelo de cores RGB. 24
Figura 4 – Conversão de imagem do modelo RGB para o modelo Grayscale. 25
Figura 5 – Dilatação de A por B . 26
Figura 6 – Contextualização das CNNs no campo da inteligência artificial. 27
Figura 7 – Representação do processo de convolução. 27
Figura 8 – Representação do processo de pooling. 28
Figura 9 – Representação da camada totalmente conectada. 28
Figura 10 – Montagem real. 30
Figura 11 – Vista superior da montagem. 30
Figura 12 – Vista lateral da montagem. 30
Figura 13 – Vistas superiores da montagem após alterar o ângulo em ±25 graus. . . 31
Figura 14 – Imagem original. 32
Figura 15 – Imagem no modelo Grayscale. 32
Figura 16 – Imagem binarizada. 33
Figura 17 – Imagem após detecção de bordas. 33
Figura 18 – Imagem após dilatação. 34
Figura 19 – Imagem após erosão. 34
Figura 20 – Imagem original com o contorno destacado. 35
Figura 21 – Imagem original com o contorno e o ponto central destacados. 35
Figura 22 – Separação do dataset. 36
Figura 23 – Arquitetura do modelo. 37
Figura 24 – Valores de R, G e B obtidos no centro da fita pela variação do ângulo. 38
Figura 25 – Imagem original com ângulo alterado em 10 graus negativos. 39
Figura 26 – Imagem original com ângulo alterado em 5 graus positivos. 39
Figura 27 – Zoom na área de interesse (intervalo negativo). 40
Figura 28 – Zoom na área de interesse (intervalo positivo). 40
Figura 29 – Curva de aprendizado do modelo treinado com o split 4. 42
Figura 30 – Gráfico comparando ângulos reais com os estimados pelo modelo. . . . 43

LISTA DE TABELAS

Tabela 1 – Resultado do treinamento em cada um dos 5 splits 41

LISTA DE ABREVIATURAS E SIGLAS

CNN Rede Neural Convolucional (Convolutional Neural Network)

RGB Red-Green-Blue

DIP Processamento Digital de Imagens (Digital Image Processing)

ReLU Rectified Linear Unit

API Interface de Programação de Aplicações (Application Programming
Interface)

MSE Erro Quadrático Médio (Mean Squared Error)

MAE Erro Absoluto Médio (Mean Absolute Error)

LISTA DE SÍMBOLOS

f Função

R Componente vermelha do modelo de cor RGB

G Componente verde do modelo de cor RGB

B Componente azul do modelo de cor RGB

n Número de amostras

Yi Valor real na amostra i

Ŷi Valor médio na amostra i

σ Desvio padrão

R2 Coeficiente de determinação

SUMÁRIO

1 INTRODUÇÃO . 21
1.1 Apresentação do problema . 22
1.2 Objetivo . 22

2 DESENVOLVIMENTO . 23
2.1 Revisão bibliográfica . 23
2.1.1 Iridescência . 23
2.1.2 Modelo de cores RGB . 24
2.1.3 Modelo Grayscale . 24
2.1.4 Processamento digital de imagens . 25
2.1.5 Redes neurais convolucionais (CNNs) . 26
2.2 Materiais e métodos . 29
2.2.1 Materiais utilizados . 29
2.2.2 Método de montagem . 29
2.3 Técnicas utilizadas . 31
2.3.1 Software . 31
2.3.2 Processamento das imagens . 32
2.3.3 Criação e treinamento do modelo de CNN 35
2.4 Resultados e discussões . 38
2.4.1 Análise do padrão de mudança de cores da fita 38
2.4.2 Análise dos resultados previstos pelo modelo 41

3 CONCLUSÃO . 45

REFERÊNCIAS . 47

APÊNDICES 49

APÊNDICE A – CÓDIGO PARA PROCESSAMENTO DA IMAGEM. 51

APÊNDICE B – CÓDIGO PARA ANÁLISE DAS IMAGENS. . . . 55

APÊNDICE C – CÓDIGO PARA CRIAÇÃO DO MODELO DA CNN. 57

APÊNDICE D – CÓDIGO PARA ANÁLISE DO MODELO. 61

21

1 INTRODUÇÃO

A fita adesiva holográfica é um item frequentemente utilizado em artesanatos,
decorações, artigos de festas e acabamentos em geral. Ela apresenta como principal
característica a iridescência, ou seja, a mudança de coloração quando observada a partir
de diferentes perspectivas, como explicitado nas Figuras 1a e 1b.

Figura 1 – Fotografias da fita adesiva holográfica em ângulos distintos.

(a) Fotografia da fita adesiva holográfica ob-
servada de cima.

(b) Fotografia da fita adesiva holográfica ob-
servada de baixo.

Fonte: Elaborada pelo autor.

Ainda que essa caraterística seja majoritariamente aplicada para fins de decoração,
essa relação entre o ângulo de observação e a cor da fita possibilita a sua utilização em
aplicações tecnológicas. Nesse sentido, como é constatado uma variação com comportamento
estável e previsível, essa característica se torna potencialmente explorável como indicador
de posição, de maneira semelhante a alguns sistemas de sensoriamento existentes.

De acordo com WANG (2024), o estado da arte já contempla maneiras de realizar
a medição de ângulo de maneira visual, baseando-se na diferença de informação presente
em uma imagem antes e depois dessa mudança. Além disso, ressalta-se a existência de
aplicações que utilizam técnicas de inteligência artificial para esse fim, como modelos
baseados em redes neurais convolucionais, do inglês convolutional neural network (CNN).

Tendo em vista esse cenário, a fita adesiva holográfica aparece como uma alternativa
para investigações que combinam o fenômeno óptico de iridescência com ferramentas de
visão computacional e inteligência artificial, viabilizando uma solução inovadora para esse
tipo de medição.

22

1.1 Apresentação do problema

Diante da demanda por sistemas de medições que apresentem alta precisão, amplo
intervalo operacional e capacidade de medição em múltiplos graus de liberdade, observa-se
um contínuo aperfeiçoamento dos sistemas existentes e a criação de novos sensores baseados
em diferentes princípios de funcionamento. Dessa forma, a partir da característica de
irisdescência apresentada pela fita adesiva holográfica, levanta-se a possibilidade de explorar
essa propriedade óptica como ferramenta em projetos de engenharia para a identificação
de ângulos de superfícies através do ângulo de incidência da luz.

1.2 Objetivo

O objetivo deste trabalho é avaliar a viabilidade da medição do ângulo de observação
de uma superfície através da variação de cores apresentada em uma fita adesiva holográfica.
Para isso, será conduzido um experimento voltado à identificação da presença de padrões
na mudança de cores da fita em função da variação do ângulo de observação. Em seguida,
será desenvolvida uma CNN, treinada com imagens da fita em diferentes posições, de
forma a tornar possível a estimativa desse ângulo.

23

2 DESENVOLVIMENTO

2.1 Revisão bibliográfica

2.1.1 Iridescência

A mudança de coloração que ocorre quando a fita adesiva holográfica é observada a
partir de diferentes perspectivas é causada devido ao fenômeno chamado de irisdescência.
Um material iridescente é caracterizado pela capacidade de brilhar ou piscar com cores que
variam de acordo com a posição em que é vista (SIMPSON; WEINER, 1989). Esse fenômeno
pode ser observado tanto em criações artificiais, como em fitas adesivas holográficas e
óleos, quanto em materiais naturais, como em plantas e animais, conforme explicitado na
Figura 2.

Figura 2 – Fotografias da alteração da cor com a variação da orientação da superfície e
iluminação em penas.

Fonte: OSORIO D.; HAM (2002)

24

É importante destacar que a cor gerada nesse processo é conhecida como cor
estrutural, um tipo de cor que surge quando determinados comprimentos de onda da luz
são refletidos de forma específica. Além disso, ressalta-se que apenas as cores estruturais
possuem a caraceterística de apresentar diferentes padrões de cor conforme a mudança de
posição do observador (BEVERLEY J. G.; HEATHER, 2010).

2.1.2 Modelo de cores RGB

O modelo de cores RGB deriva das três cores primárias: vermelho (red), verde
(green) e azul (blue), que podem ser combinadas para produzir uma nova gama de cores,
conforme explicitado na Figura 3a. Esse espaço de cores RGB pode ser representado como
um cubo normalizado, onde os eixos representam às intesidades das cores vermelho, verde
e azul, com valores variando de 0 até 1 (IBRAHEEM, 2012). Dentro dessa representação,
o preto está situado na origem do sistema de coordenadas (0,0,0) e o branco no vértice
oposto (1,1,1), como é destacado na Figura 3b.

Figura 3 – Representações do modelo de cores RGB.

(a) Representação das cores primárias. (b) Cubo que representa o espaço de cores
RGB normalizado.

Fonte: IBRAHEEM (2012)

É importante ressaltar que esse modelo serve como base para a maior parte das
aplicações de imagem digitais, como os formatos JPEG e MPEJ, onde os píxeis armazenados
geralmente são representados por 8 bits e cada um dos canais apresenta valores entre 0 e
255 (Plataniotis; Venetsanopoulos, 2000).

2.1.3 Modelo Grayscale

As imagens capturadas, baseadas no modelo RGB, em alguns casos podem ser
convertidas para um modelo de cores que utiliza apenas uma componente, a fim de otimizar
o pré-processamento. No modelo Grayscale, a imagem é monocromática e cada pixel contém

25

apenas a informação referente à quantidade de luz presente (Padmavathi; Thangadurai,
2016). Embora existam diversos métodos de conversão, o procedimento usual consiste em
obter os valores das três cores primárias do modelo RGB e realizar uma soma ponderada
dessas componentes, como exemplificado pela Equação 1.

f(R, G, B) = 0.2989 · R + 0.5870 · G + 0.1140 · B (1)

Assim como no modelo RGB, o modelo mais comum de armazenamento é o de 8 bits,
ou seja, a intensidade de cada pixel pode ter valores entre 0 e 255, sendo 0 referente a cor
preta e 255 a branca (Kumar; Verma, 2010). Para melhor compreender essa transformação,
observe as Figuras 4a e 4b.

Figura 4 – Conversão de imagem do modelo RGB para o modelo Grayscale.

(a) Imagem original no modelo RGB. (b) Imagem convertida para Grayscale.

Fonte: Padmavathi e Thangadurai (2016)

2.1.4 Processamento digital de imagens

A tecnologia de processamento digital de imagem, do inglês digital image processing
(DIP), é responsável pela transformação de imagens em sinais digitais, possibilitando a
utilização de algoritmos de computadores para realizar modificações, como aprimoramentos
de qualidade, análises e até mesmo reconstruções de imagens. (HUANG, 2022).

Segundo DONGUR (2022), essa tecnologia começou a ser bastante desenvolvida
por volta de 1960 em lugares como o Massachusetts Institute Of Technology, University of
Maryland e outros centros de pesquisas, sendo um pouco restringida devido aos altos custos
dos equipamentos naquele momento. Entretanto, com o rápido avanço da computação,
que permitiu a construção de hardwares mais poderosos e baratos, as tecnologias de DIP
apresentaram grande desenvolvimento e assumiram um papel importante em aplicações
reais.

A utilização de filtros morfológicos, que são baseados em formas geométricas de
uma maneira matemática, é uma das aplicações mais conhecidas para realização desse tipo
de processamento de forma não linear. Dessa maneira, as operações tendem a simplificar

26

os dados da imagem, preservando as caraterísticas essênciais de suas formas e eliminando
apenas os ruídos (HARALICK Robert M.; STERNBERG, 1987). Para melhor exemplificar,
uma operação de dilatação está representada na Figura 5, onde são apresentadas todas as
possíveis somas vetoriais considerando um elemento vindo de A e um de B

Figura 5 – Dilatação de A por B

Fonte: HARALICK Robert M.; STERNBERG (1987)

Vale destacar que a utilização de modelos de aprendizado profundo está trazendo
resultados animadores no campo de DIP, principalmente na área de classificação de
imagens. Estudos recentes evidenciaram que abordagens desse tipo, principalmente quando
combinadas com a utilização de CNNs, trouxeram melhorias significativas de performance,
quando comparado aos métodos convencionais (MAHMOOD, 2024).

2.1.5 Redes neurais convolucionais (CNNs)

Devido à notável capacidade de identificação de padrões visuais, as CNNs se
tornaram amplamente empregadas em atividades com foco em processamento de imagens
(Taye, 2023). Esse tipo de redes neurais têm desempenhado papel central no avanço da
visão computacional, sendo fundamentais em aplicações práticas, como no campo da
radiologia, onde são aplicadas para tarefas de classificação, segmentação e até detecção de
lesões (YAMASHITA, 2018), o que demonstra sua eficácia em diversos contextos.

Vale ainda ressaltar que as CNNs são um subgrupo dos modelos de aprendizado
profundo, que por sua vez representam um subgrupo dos modelos de aprendizado de
máquina, que fazem parte do grande campo da inteligência artificial, como evidenciado no
diagrama apresentado na Figura 6.

27

Figura 6 – Contextualização das CNNs no campo da inteligência artificial.

Fonte: Elaborada pelo autor.

Segundo Keiron e Ryan (2015), a estrutura das CNNs é tipicamente composta por
3 tipos de camadas:

• Camada de convolução: responsável por extrair características e padrões através
de um conjunto de filtros, ou kernels, que podem ter diferentes dimensões e que são
utilizados em conjunto com o dado de entrada, produzindo uma nova imagem, como
demonstrado na Figura 7.

Figura 7 – Representação do processo de convolução.

Fonte: ZHAO (2024)

• Camada de pooling: responsável por reduzir a dimensão das saídas da camada
de convolução, enquanto mantém os dados mais importantes, realizando um agru-
pamento através de filtros que consideram a média, mínimo ou máximo, como
demonstrado na Figura 8.

28

Figura 8 – Representação do processo de pooling.

Fonte: ZHAO (2024)

• Camada totalmente conectada: responsável por combinar cada uma das in-
formações extraídas nas camadas anteriores e aprender como elas se relacionam,
armazenando os padrões específicos no que são chamados de neurônios. Por isso,
é comumente empregado no final da rede, para produzir as previsões finais, como
mostrado na Figura 9.

Figura 9 – Representação da camada totalmente conectada.

Fonte: ZHAO (2024)

Além disso, a existência de funções de ativação, como a Rectified Linear Unit
(ReLU), é bastante comum nesse tipo de arquitetura, sendo empregadas para alterar ou
até mesmo excluir as saídas, de forma a introduzir não linearidade nas camadas e melhorar
a capacidade de aprendizado e representativdade dos resultados (ZHAO, 2024).

Por fim, vale destacar que, apesar da capacidade de extração de características sem
que seja necessária a supervisão humana, o que contribuiu para a ampla aplicabilidade
das CNNs, a utilização desse tipo de modelo ainda apresenta desafios significativos, como
a necessidade de conjuntos de dados extensos e devidamente rotulados para treinamento
adequado. Além disso, problemas como overfitting são comuns, devido à grande quantidade
de parâmetros envolvidos que se correlacionam de maneiras complexas, o que pode reduzir
a perfomance do modelo com os dados de teste (ALZUBAIDI, 2021).

29

2.2 Materiais e métodos

2.2.1 Materiais utilizados

Para identificar possíveis padrões na mudança de cor da fita adesiva holográfica
durante a alteração do ângulo de observação, torna-se necessário realizar um experimento,
no qual são utilizados os seguintes materiais:

• Fita adesiva holográfica: item central do experimento, cujo comportamento de
mudança de cor será analisado;

• Papel sulfite branco: utilizado como fundo para fixação da fita adesiva holográfica,
a fim de facilitar o pré-processamento das imagens;

• Luminária genérica com lâmpada 12W 6500K: utilizada para garantir o correto
posicionamento da iluminação no experimento;

• Celular Galaxy S23: utilizado como câmera para captação das imagens, com um
zoom de 3x;

• Transferidor 360 graus: utilizado para controlar a variação do ângulo da fita
adesiva holográfica e o posicionamento dela em relação à luz e câmera;

• Tripés: utilizados para garantir o correto posicionamento da câmera e da fita adesiva
holográfica;

• Esquadros de acrílico: utilizados para garantir o correto posicionamento da câmera,
fita adesiva holográfica e luminária;

• Trena métrica de aço: utilizada para realizar medições de distâncias entre os
objetos;

• Fita crepe: utilizada para marcações e fixações, a fim de garantir que o posiciona-
mento dos objetos seja mantido durante a condução do experimento;

• Computador: utilizado para o processamento das imagens.

2.2.2 Método de montagem

A montagem do experimento, apresentada na Figura 10, foi executada de maneira
a garantir que o posicionamento dos materiais seguisse os esquemas representados nas
Figuras 11 e 12.

30

Figura 10 – Montagem real.

Fonte: Elaborada pelo autor.

Figura 11 – Vista superior da montagem.

Fonte: Elaborada pelo autor.

Figura 12 – Vista lateral da montagem.

Fonte: Elaborada pelo autor.

É importante destacar que, para observar o comportamento de mudança de cores
durante o experimento, foi necessário alterar a configuração da montagem, variando o
ângulo referente à fita adesiva holográfica em passos de 1 grau, até atingir 25 graus de
variação para cada um dos lados. Portanto, estabeleceu-se que, quando a fita está a 25

31

graus negativos ela se encontra na posição ilustrada na Figura 13a, e quando está a 25
graus positivos se encontra na posição ilustrada na Figura 13b.

Figura 13 – Vistas superiores da montagem após alterar o ângulo em ±25 graus.

(a) Vista superior da montagem após alterar
o ângulo em 25 graus negativos.

(b) Vista superior da montagem após alterar
o ângulo em 25 graus positivos.

Fonte: Elaborada pelo autor.

2.3 Técnicas utilizadas

2.3.1 Software

A linguagem de programação escolhida para a análise das imagens capturadas foi
Python, devido a sua sintaxe simples e ampla disponibilidade de bibliotecas especializadas.
Além disso, sua grande comunidade de desenvolvedores facilita a busca por soluções
semelhantes já disponíveis e contribui na implementação de recursos adicionais.

Para realizar o processamento das imagens, a principal biblioteca utilizada foi a
OpenCV, que conta com mais de 2500 algoritmos otimizados e é amplamente empregada
no processamento de imagens (Bradski, 2000), possibilitando a identificação da cor no
ponto central das fitas. Além disso, utilizou-se a biblioteca matplotlib, que permite a
visualização de imagens e gráficos de maneira simples (Hunter, 2007), e a numpy, que
permite estabelecer parâmetros numéricos utilizados em algumas funções (Harris et al.,
2020).

Para a implementação da CNN, o principal framework utilizado foi o TensorFlow,
que permite a implementação e treinamento de algoritmos de aprendizado de máquina,
sendo amplamente utilizado para conduzir pesquisas relacionadas com modelos de redes
profundas em áreas como visão computacional (Abadi et al., 2015). Além disso, utilizou-se
a interface de programação de aplicações, do inglês application programming interface
(API), Keras para estrutução do modelo (Chollet et al., 2015), e a biblioteca scikit-learn
para separar e estruturar o conjunto de dados utilizado (Pedregosa et al., 2011).

32

2.3.2 Processamento das imagens

Inicialmente, captura-se a imagem original (8160x4592), que, neste exemplo, cor-
responde à configuração em que o ângulo da fita adesiva holográfica está alterado em dois
graus no sentido positivo. A imagem da fita nessa condição está apresentada na Figura 14
e servirá como base para os próximos passos do processamento.

Figura 14 – Imagem original.

Fonte: Elaborada pelo autor.

Em seguida, para prosseguir com as manipulações, torna-se conveniente converter
a imagem para o modelo Grayscale. A conversão do modelo de cor da imagem é realizada
utilizando a função cvtColor, que transforma, neste caso, o modelo de cores RGB em
Grayscale. A imagem resultante dessa conversão pode ser observada na Figura 15.

Figura 15 – Imagem no modelo Grayscale.

Fonte: Elaborada pelo autor.

Posteriormente, para diferenciar o fundo branco do papel da fita adesiva holográfica,
é necessário binarizar a imagem previamente convertida para o modelo Grayscale. Para
isso, é utilizada a função threshold, que aplica um limite de intensidade aos píxeis da
imagem, onde os que apresentam intensidade superior ao valor de limiar são convertidos

33

para branco, enquanto os demais são convertidos para preto. O resultado da binarização
está apresentado na Figura 16.

Figura 16 – Imagem binarizada.

Fonte: Elaborada pelo autor.

Após a binarização, torna-se possível detectar as bordas da fita com maior precisão
e eficiência. Para isso, é utilizada a função Canny, que aplica um algoritmo de detecção de
bordas baseado em gradientes de intesidade. Esse algoritmo destaca as transições entre
áreas claras e escuras da imagem, permitindo a identificação de contornos e detalhes. O
resultado após a detecção de bordas pode ser observado na Figura 17.

Figura 17 – Imagem após detecção de bordas.

Fonte: Elaborada pelo autor.

Em seguida, para aprimorar a detecção das bordas, utiliza-se a função dilate.
Essa operação expande as regiões claras da imagem binarizada, realçando as bordas
previamente detectadas e facilitando a identificação de contornos. A imagem resultante
desse procedimento está mostrada na Figura 18.

34

Figura 18 – Imagem após dilatação.

Fonte: Elaborada pelo autor.

Para reduzir os ruídos presentes na detecção das bordas após a utilização do dilate,
aplica-se a função erosion. Essa função atua diminuindo as regiões claras na imagem,
suavizando as bordas e eliminando pequenas imperfeições causadas por ruídos, como
observado na Figura 19.

Figura 19 – Imagem após erosão.

Fonte: Elaborada pelo autor.

Após o aprimoramento da detecção das bordas e redução de ruídos, é possível
detectar o contorno que corresponde ao da fita com maior precisão. Para isso, utiliza-se a
função findContours, que identifica os contornos da imagem através da análise de transições
de intensidade, localizando as regiões fechadas onde acontecem mudanças significativas de
cor e agrupando como contornos. Dessa forma, é possível selecionar o maior contorno, que
corresponde ao da fita, conforme ilustrado na Figura 20.

35

Figura 20 – Imagem original com o contorno destacado.

Fonte: Elaborada pelo autor.

Por fim, é possível determinar as coordenadas do ponto central da fita através da
análise do seu contorno. Para isso, utiliza-se a função boundingRect, que calcula o retângulo
referente ao contorno da fita e retorna suas dimensões, além das coordenadas do canto
superior esquerdo. Com essas informações, é possível calcular as coordenadas do centro do
retângulo, que correspondem à localização do ponto central da fita, conforme apresentado
na Figura 21.

Figura 21 – Imagem original com o contorno e o ponto central destacados.

Fonte: Elaborada pelo autor.

Após o processamento da imagem e definição das coordenadas correspondentes
ao ponto central da fita adesiva holográfica, torna-se possível obter os valores das cores
primárias do modelo RGB da imagem original nesse ponto, que neste exemplo é: Red =
20, Green = 46 e Blue = 255.

2.3.3 Criação e treinamento do modelo de CNN

Primeiramente, organizou-se o conjunto de dados contendo as imagens da fita
posicionada entre 25 graus negativos e 25 graus positivos, com a devida rotulação em

36

cada uma das imagens e mantendo uma resolução de 128x128 píxeis, para que o modelo
pudesse ser treinado de forma adequada.

Posteriormente, através da função train_test_split, da biblioteca scikit-learn,
separou-se uma parcela contendo 80 por cento do conjunto de dados para o treinamento
dos modelos, entitulada de train data, e o outra contendo 20 por cento para validação final
do modelo, entitulada de test data.

Ainda a cerca da separação, a fim de evitar o overfitting e entender as variações
que o modelo poderia sofrer com diferentes separações randômicas do conjunto de dados,
utilizou-se a abordagem de K-fold cross-validation, implementada através da função KFold,
da biblioteca scikit-learn, que separou o conjunto de treinamento em 5 conjuntos menores,
chamados de folds.

Através dessa abordagem, o modelo pôde ser treinado 5 vezes, variando os folds
utilizados para treinamento e para validação em cada um dos momentos. Vale ressaltar que,
após cada um desses treinamentos, os dados de teste foram utilizados para avaliação final
do modelo. Toda essa divisão pode ser melhor observada através do esquema mostrado na
Figura 22.

Figura 22 – Separação do dataset.

Fonte: Elaborada pelo autor.

Posteriormente, definiu-se que o modelo utilizado para essa aplicação seria o
Sequential, da API Keras, que apresenta uma arquitetura simples e permite empilhar
camadas de forma linear, tornando-se ideal para esse cenário, onde o fluxo de dados segue
uma única direção. Dessa forma, garante-se que o modelo retorne um único valor final,
correspondente à estimativa do ângulo de observação da fita na imagem.

Para definir a arquitetura do modelo, optou-se por iniciar com uma primeira camada
de convolução 2D com 16 filtros e dimensão de kernel 3x3, com a função de ativação ReLU
introduzindo uma não linearidade na rede, e um input shape com as dimensões da imagem

37

(128x128) e 3 canais, referentes ao modelo de cor RGB.

Posteriormente, adicionou-se uma camada de polling 2D considerando o valor
máximo, e com pool size de 2x2. Em seguida, uma nova camada de convolução 2D com
32 filtros com as demais caraterísticas iguais à primeira camada. Logo após, uma nova
camada de pooling com caraterísticas iguais à segunda camada.

Prosseguindo para o fim, acrescentou-se uma camada Flatten, para transformar a
saída das camadas convolucionais e de pooling, que têm formato multidimensional, em um
vetor unidimensional. Em seguida, adicionou-se uma camada totalmente conectada, com 64
unidades, também com função de ativação ReLU, e com regularização L2, conhecida como
weight decay, para evitar overfitting e melhorar a generalização do modelo, adicionando
um termo extra à função de perda durante o treinamento.

Para finalizar, uma nova camada totalmente conectada, com 1 unidade, para
retornar o resultado final. A estrutura pode ser melhor compreendida através da Figura
23.

Figura 23 – Arquitetura do modelo.

Fonte: Elaborada pelo autor.

Para a compilação desse modelo, utilizou-se como função de perda para a otimização
o erro quadrático médio, do inglês mean squared error (MSE), uma função comumente
utilizada nesses tipos de aplicações, pois minimiza grandes desvios e garante um gradiente
suave para a otimização, uma vez que penaliza os grandes desvios, elevando os erros ao
quadrado, como observado na Equação 2.

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (2)

Além disso, utilizou-se como métrica para avaliação do modelo o erro absoluto
médio, do inglês mean absolute error (MAE). Isso, pois ela apresenta características
complementares ao MSE, uma vez que mede o erro real médio, sem pesos extras aos
grandes desvios, sendo mais robusta aos outliers, como evidente na Equação 3.

MAE = 1
n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (3)

Vale apontar que, para o treinamento desse modelo, estabeleceu-se como limite
máximo de 200 épocas, um batch size de 128, além de uma estratégia de redução da taxa

38

de aprendizado através da função ReduceLROnPlateau, e outra de parada antecipada
através da função EarlyStopping.

Dessa forma, faz-se com que o aprendizado diminua pela metade quando a função
de perda (MSE) não diminui durante 10 épocas consecutivas, e também que o treinamento
termine caso a função de perda (MSE) não diminua por 20 épocas consecutivas. Isso, para
garantir um melhor comportamento durante o aprendizado e evitar overfitting.

2.4 Resultados e discussões

2.4.1 Análise do padrão de mudança de cores da fita

Conforme descrito na Seção 2.2.2, intitulada Método de montagem, foi realizado o
experimento inicial com o objetivo de identificar um padrão na mudança de cor da fita
adesiva holográfica. Vale salientar que, nesse experimento, a configuração foi alterada
variando o ângulo referente à fita em passos de 1 grau, até atingir 25 graus de variação para
cada um dos lados. Posteriormente, conforme o procedimento detalhado na Seção 2.3.2,
intitulada Processamento das imagens, foram obtidos os dados referentes aos valores das
cores primárias do modelo RGB no ponto central da fita em cada uma das 51 posições
analisadas. Os resultados estão compilados no gráfico apresentado na Figura 24.

Figura 24 – Valores de R, G e B obtidos no centro da fita pela variação do ângulo.

Fonte: Elaborada pelo autor.

Diante do exposto, torna-se evidente que os valores das componentes R (Red), G
(Green) e B (Blue) variam conforme o ângulo da fita adesiva holográfica é alterado, ou
seja, ela realmente apresenta a propriedade de iridescência.

Além disso, o comportamento geral evidencia uma relação não linear entre a
variação angular e os valores de cada uma das componentes, que apresentam picos e
quedas abruptas em intervalos angulares pequenos, principalmente quando a variação

39

do ângulo é negativa. Destaca-se que essa variação está intimamente relacionada com as
variações das cores principais, conforme apresentado na Figura 3a e descrito na Seção 2.1.2,
intitulada Modelo de cores RGB. Nesse contexto, observa-se uma transição sequencial de
cores, iniciando pela cor azul e seguindo para o ciano, verde, amarelo, vermelho e magenta,
como ilustrado na Figura 25.

Figura 25 – Imagem original com ângulo alterado em 10 graus negativos.

Fonte: Elaborada pelo autor.

Vale ressaltar que o padrão de comportamento se repete quando acontece a variação
positiva do ângulo. Entretanto, a transição sequencial de cores acontece em um intervalo
angular maior, indicando uma distribuição mais espaçada das cores nesse cenário. Essa
caraterística pode ser observada através da Figura 26.

Figura 26 – Imagem original com ângulo alterado em 5 graus positivos.

Fonte: Elaborada pelo autor.

De maneira geral, o padrão identificado na mudança de cor da fita adesiva holográfica
em função da variação angular apresenta características que podem ser relevantes para a
determinação de posição. Em particular, destaca-se o comportamento de queda abrupta
na intensidade da coloração azul, acompanhada do aumento de intensidade da coloração
verde, que ocorre nos intervalos de -11 a -8 graus e de +5 a +11 graus, como evidenciado
nas Figuras 27 e 28, respectivamente.

40

Figura 27 – Zoom na área de interesse (intervalo negativo).

Fonte: Elaborada pelo autor.

Figura 28 – Zoom na área de interesse (intervalo positivo).

Fonte: Elaborada pelo autor.

No intervalo negativo, a variação ocorre em um espaço angular menor, de apenas
4 graus, o que torna esse intervalo especialmente útil para cenários de maior precisão,
uma vez que a resposta é sensível a pequenos deslocamentos. Nessa perspectiva, por
exemplo, torna-se possível identificar com precisão o início, meio e fim de um período de
vibração utilizando como parâmetros as intensidades das cores primárias. Dessa forma,
possibilitando o cálculo da frequência de vibração de uma estrutura.

41

2.4.2 Análise dos resultados previstos pelo modelo

Conforme o procedimento detalhado na Seção 2.3.3, intitulada Criação e treinamento
do modelo de CNN, realizou-se o treinamento do modelo com cada um dos splits e foram
obtidos os resultados compilados na Tabela 1.

Tabela 1 – Resultado do treinamento em cada um dos 5 splits

Separação (Split) Perda (MSE) Métrica (MAE)
1 1.1974 0.8504
2 1.9082 1.1827
3 2.0700 1.2008
4 1.2844 0.7991
5 5.4511 1.5350

Média (σ) 2.38 (± 1.75) 1.11 (± 0.30)

Os resultados das diferentes divisões de treino e teste indicam, de maneira geral,
um desempenho satisfatório do modelo. Os valores médios e desvios padrões do MSE
e MAE evidenciam que o modelo foi capaz de aprender de forma adequada os padrões
presentes no conjunto de dados. Além disso, esse comportamento sugere que a abordagem
adotada apresenta boa capacidade de generalização, uma vez que, em grande parte das
divisões realizadas, os resultados permaneceram próximos entre si.

Entretanto, observa-se um certo aumento tanto no MSE quanto no MAE durante o
split 5, o que pode ser atribuído à forma como a divisão do conjunto de dados foi realizada.
Como o dataset utilizado não apresenta grande quantidade de amostras, é possível que a
parcela de dados utilizada para o treinamento nesse cenário específico contenha imagens
menos representativas, ou ainda uma concentração dentro de determinado intervalo,
ocasionando o aumento dos erros.

Apesar disso, como os demais resultados apresentaram estabilidade e desempenho
satisfatório, conclui-se que o impacto da divisão dos dados, embora existente, não com-
promete de maneira relevante a qualidade global do modelo. Diante do exposto, adota-se
como referência para analises posteriores o modelo treinado com o split 4, que apresentou
o melhor resultado quanto à métrica (MAE). A sua curva de aprendizado está apresentada
na Figura 29.

42

Figura 29 – Curva de aprendizado do modelo treinado com o split 4.

Fonte: Elaborada pelo autor.

A curva exposta indica um comportamento satisfatório, evidenciando o rápido
aprendizado do modelo e a ausência de sinais claros de overfitting. Ressalta-se ainda a
semelhança na convergência entre a curva de treino e de validação, indicando uma boa
generalização do modelo.

Observa-se, contudo, a presença de pequenas oscilações na curva de validação ao
longo do treinamento, o que é de certa forma esperado, uma vez que pequenas variações
no conjunto de dados podem causar flutuações na função de perda a cada época. Entre-
tanto, alguns mecanismos utilizados, como a redução automática da taxa de aprendizado,
ReduceLROnPlateau, contribuem para amortecer essas oscilações ao longo das épocas,
favorecendo uma convergência mais estável. Assim, embora as flutuações sejam visíveis, o
comportamento médio das curvas indica estabilidade e boa capacidade de generalização
do modelo, sem fortes sinais de overfitting.

Vale ainda pontuar que, por ter sido adotada uma estratégia de parada antecipada,
o critério estabelecido permitiu que o treinamento se estendesse até aproximadamente
120 épocas. Dessa forma, o mecanismo se apresentou útil, pois interrompeu o processo
antes do limite de 200 épocas, diminuindo o gasto computacional e ainda assim garantindo
eficácia no treinamento e convergência do modelo.

Por fim, realizou-se uma comparação entre os ângulos estimados pelo modelo de
referência e os ângulos reais das imagens contidas no conjunto de teste, cujo modelo não
foi exposto durante o treinamento e validação. O resultado está apresentado na Figura 30.

43

Figura 30 – Gráfico comparando ângulos reais com os estimados pelo modelo.

Fonte: Elaborada pelo autor.

Como observado através do gráfico, os pontos se distribuem bastante próximos
à reta ideal, indicando elevada correlação entre os ângulos reais e os estimados, o que
evidencia as boas estimativas do modelo. Esse comportamento é confirmado pelo coeficiente
de determinação R2 = 0,9947, apontando que praticamente toda a variabilidade dos dados
reais foi explicada pelo modelo.

Diante dessa perspectiva de um elevado R2 combinado com um MAE reduzido,
assegura-se que o modelo foi capaz de generalizar adequadamente esse tipo de problema
e fornecer previsões consistentes e precisas, demonstrando sua qualidade através das
verificações utilizando o conjunto de teste.

45

3 CONCLUSÃO

O trabalho demonstrou a viabilidade de realizar uma análise da variação de cor de
uma fita adesiva holográfica em função do ângulo de observação, através do monitoramento
dos canais RGB. Os resultados indicaram uma relação forte entre a variação angular e o
comportamento óptico da fita, evidenciando o seu potencial como um sensor simples e de
baixo custo.

Embora tenham sido identificadas oscilações e dispersões nos resultados experimen-
tais, grande parte dessas variações está associada a fatores práticos, como o sistema de
fixação, iluminação e o controle da variação angular. Dessa forma, fica evidente que, com
maior refinamento experimental, torna-se plausível alcançar uma precisão significativa-
mente superior.

A partir dessas melhorias, abre-se inclusive a perspectiva de ampliar a aplicação
do método para além da determinação de ângulos em um único eixo. Dada a natureza da
reflexão holográfica, é possível que com ajustes adequados no aparato experimental seja
possível extrair informações relativas a diferentes eixos de variação angular. Isso ampliaria
de maneira considerável o potencial de uso da técnica, fazendo com que ela se aproxime de
soluções mais sofisticadas de sensoriamento óptico, mas ainda preservando sua simplicidade
e acessibilidade.

Em síntese, o estudo confirmou a viabilidade da abordagem proposta e indicou
caminhos promissores para sua evolução, tanto em investigações acadêmicas quanto em
possíveis aplicações..

47

REFERÊNCIAS

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Software available from tensorflow.org.

ALZUBAIDI, L. e. a. Review of deep learning: concepts, cnn architectures, challenges,
applications, future directions. Journal of Big Data, v. 8, n. 1, 2021.

BEVERLEY J. G.; HEATHER, M. W. Structural colour and iridescence in plants: the
poorly studied relations of pigment colour. Annals of Botany, 2010.

BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

CHOLLET, F. et al. Keras. 2015. https://keras.io.

DONGUR, K. e. a. Digital image processing: Its history and application. International
Journal of Advanced Research in Computer and Communication Engineering,
v.11, n. 6, 2022.

HARALICK ROBERT M.; STERNBERG, S. R. Z. X. Image analysis using mathematical
morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. PAMI-9, n. 4, 1987.

HARRIS, C. R. et al. Array programming with NumPy. Nature, Springer Science and
Business Media LLC, 2020.

HUANG, Y. Overview of research progress of digital image processing technology.
Journal of Physics: Conference Series, v. 2386, n. 1, 2022.

HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, IEEE COMPUTER SOC, 2007.

IBRAHEEM, N. A. e. a. Understanding color models: A review. ARPN Journal of
Science and Technology, 2012.

KEIRON, O.; RYAN, N. An introduction to convolutional neural networks.
arXiv:1511.08458, 2015.

KUMAR, T.; VERMA, K. A theory based on conversion of RGB image to gray image.
Int. J. Comput. Appl., Foundation of Computer Science, 2010.

MAHMOOD, Z. Digital image processing: Advanced technologies and applications.
Applied Sciences, v. 14(14), n. 6051, 2024.

OSORIO D.; HAM, A. Spectral reflectance and directional properties of structural
coloration in bird plumage. J Exp Biol, 2002.

PADMAVATHI, K.; THANGADURAI, K. Implementation of RGB and grayscale images
in plant leaves disease detection – comparative study. Indian J. Sci. Technol., Indian
Society for Education and Environment, 2016.

PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.

https://keras.io

48

PLATANIOTIS, K. N.; VENETSANOPOULOS, A. N. Color Image Processing and
Applications. Berlin, Germany: Springer Berlin Heidelberg, 2000.

SIMPSON, J. A.; WEINER, E. S. C. The Oxford English dictionary. 2. ed. New
York: Oxford University Press, 1989.

TAYE, M. Theoretical understanding of convolutional neural network: Concepts,
architectures, applications, future directions. Computation, v. 11, n. 3, 2023.

WANG, S. e. a. A review: High-precision angle measurement technologies. Sensors, v.
24(6), n. 1755, 2024.

YAMASHITA, R. e. a. Convolutional neural networks: an overview and application in
radiology. Insights into Imaging, v. 9, n. 4, 2018.

ZHAO, X. e. a. A review of convolutional neural networks in computer vision. Artificial
Intelligence Review, v. 57, n. 99, 2024.

APÊNDICES

51

APÊNDICE A – CÓDIGO PARA PROCESSAMENTO DA IMAGEM.

#Importando bibliotecas

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

#Definindo tamanho padrão das figuras

figsize_default = (10,5)

#Carregando a imagem utilizada durante o processamento

caminhoImagem = "C:\\Users\\Otavio\\Desktop\\FotosTCC\\182.jpg"
img_bgr_original = cv.imread(caminhoImagem)
#Convertendo imagem para diferentes formatos utilizados

img_rgb = cv.cvtColor(img_bgr_original, cv.COLOR_BGR2RGB)
img_gray = cv.cvtColor(img_bgr_original, cv.COLOR_BGR2GRAY)

#Plotando imagem original no modelo RGB

plt.figure(figsize=figsize_default)
plt.title("Imagem original")
plt.imshow(img_rgb)
plt.show()

#Plotando imagem no modelo GrayScale

plt.figure(figsize=figsize_default)
plt.title("Imagem grayscale")
plt.imshow(img_gray,cmap="gray", vmin=0, vmax=255)
plt.show()

#Processando imagem

#Binarizando imagem

_, thresh = cv.threshold(img_gray, 150, 255, cv.THRESH_BINARY)
#Plotando imagem binarizada

plt.figure(figsize=figsize_default)
plt.title("Imagem binarizada")
plt.imshow(thresh,cmap="gray", vmin=0, vmax=255)
plt.show()

52

#Detectando bordas

img_canny = cv.Canny(thresh, 0, 0)
#Plotando imagem com a deteccao de bordas

plt.figure(figsize=figsize_default)
plt.title("Imagem com deteccao de bordas")
plt.imshow(img_canny,cmap="gray", vmin=0, vmax=255)
plt.show()

#Aplicando dilate para melhorar a detecção de contornos

kernel = np.ones((5, 5))
img_dilate = cv.dilate(img_canny, kernel, iterations=1)
#Plotando imagem após dilate

plt.figure(figsize=figsize_default)
plt.title("Imagem após dilate")
plt.imshow(img_dilate,cmap="gray", vmin=0, vmax=255)
plt.show()

#Aplicando erode para diminiur o ruído

img = cv.erode(img_dilate, kernel, iterations=1)
#Plotando imagem após erode

plt.figure(figsize=figsize_default)
plt.title("Imagem após erode")
plt.imshow(img,cmap="gray", vmin=0, vmax=255)
plt.show()

#Detectando maior contorno após a manipulação da imagem

contornos, _ = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
maior_contorno = max(contornos, key=cv.contourArea)

#Criando uma cópia da imagem para visualização

imagem_com_contorno = img_rgb.copy()

#Desenhando o maior contorno na cópia da imagem

cv.drawContours(imagem_com_contorno, [maior_contorno], -1, (0, 255, 0), 2)

#Plotando a imagem com o contorno da fita

plt.figure(figsize=figsize_default)
plt.title("Imagem com o contorno destacado")

53

plt.imshow(imagem_com_contorno)
plt.show()

#Encontrando coordenadas centrais do maior contorno

x, y, w, h = cv.boundingRect(maior_contorno)
x_centro = int(x+(w/2))
y_centro = int(y+(h/2))
print(x_centro)
print(y_centro)

#Plotando imagem com o contorno da fita e centro

plt.figure(figsize=figsize_default)
plt.title("Imagem com o contorno e centro destacados")
plt.imshow(imagem_com_contorno)
plt.plot(x_centro, y_centro, "+")
plt.text(x_centro, y_centro, "({},{})".format(x_centro,y_centro))
plt.show()

#Encontrando e exibindo valores de R,G e B do ponto central da fita

(r,g,b) = img_rgb[y_centro, x_centro]
print("Red: "+str(r)+"\nGreen: "+str(g)+"\nBlue: "+str(b))

55

APÊNDICE B – CÓDIGO PARA ANÁLISE DAS IMAGENS.

#Importando bibliotecas

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

#Definindo tamanho padrão das figuras

figsize_default = (10,5)

#Iniciando variáveis onde os dados serão armazenados

redList = []
greenList = []
blueList = []

#Garantindo que as variáveis anteriores estão limpas

redList.clear()
blueList.clear()
greenList.clear()

#Repetição para processar todas as imagens e armazenar dados

for i in range(155, 206):
#Carregando a imagem utilizada durante o processamento

caminhoImagem = "C:\\Users\\Otavio\\Desktop\\FotosTCC\\"+str(i)+ ".jpg"
img_bgr_original = cv.imread(caminhoImagem)
#Convertendo imagem para diferentes formatos utilizados

img_rgb = cv.cvtColor(img_bgr_original, cv.COLOR_BGR2RGB)
img_gray = cv.cvtColor(img_bgr_original, cv.COLOR_BGR2GRAY)
#Processando imagem

#Binarizando imagem

if i < 180:
_, thresh = cv.threshold(img_gray, 90, 255, cv.THRESH_BINARY)

else:
_, thresh = cv.threshold(img_gray, 150, 255, cv.THRESH_BINARY)

#Detectando bordas

img_canny = cv.Canny(thresh, 0, 0)
#Dilate e erode para melhorar a detecção de contornos e reduzir ruídos

56

kernel = np.ones((5, 5))
img_dilate = cv.dilate(img_canny, kernel, iterations=1)
img = cv.erode(img_dilate, kernel, iterations=1)
#Detectando maior contorno após a manipulação da imagem

contornos, _ = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
maior_contorno = max(contornos, key=cv.contourArea)
#Encontrando coordenadas centrais do maior contorno

x, y, w, h = cv.boundingRect(maior_contorno)
x_centro = int(x+(w/2))
y_centro = int(y+(h/2))
#Armazenando valores de R,G e B do ponto central da fita

(r,g,b) = img_rgb[y_centro, x_centro]
redList.append(r)
greenList.append(g)
blueList.append(b)

#Plotando o grafico com o resultado final

eixoXgraf = np.arange(-25,26,1)

plt.figure(figsize=figsize_default)
plt.title("Valores de R, G e B para diferentes ângulos")
plt.plot(eixoXgraf,redList,color="red",label="Red")
plt.plot(eixoXgraf,greenList,color="green",label="Green")
plt.plot(eixoXgraf,blueList,color="blue",label="Blue")
plt.xlabel("Posição (°)")
plt.ylabel("Intensidade (-)")
plt.legend(loc="upper left")
plt.show()

57

APÊNDICE C – CÓDIGO PARA CRIAÇÃO DO MODELO DA CNN.

#Importando bibliotecas

import os
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn.model_selection import KFold
from keras.callbacks import ReduceLROnPlateau, EarlyStopping
from keras import regularizers
from sklearn.model_selection import train_test_split

#Carregando imagens e rotulando

IMG_SIZE = 128
CAMINHO_IMAGENS = 'C:\\Users\\37108839\\Documents\\Documentos\\0 - TCC\\FotosTCC\\'
dados = []
for nome_arquivo in os.listdir(CAMINHO_IMAGENS):

if nome_arquivo.endswith('.jpg') or nome_arquivo.endswith('.png'):
angulo_original = int(nome_arquivo.split('.')[0])
angulo_convertido = angulo_original - 180
dados.append({'nome': nome_arquivo, 'angulo': angulo_convertido})

df = pd.DataFrame(dados)

#Separando imagens e rotulos

X = []
y = []
for index, row in df.iterrows():

img_path = os.path.join(CAMINHO_IMAGENS, row['nome'])
img = cv2.imread(img_path)
if img is None:

continue
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
img = img / 255.0
X.append(img)
y.append(row['angulo'])

58

#Separando em conjunto de treino e teste

X = np.array(X)
y = np.array(y)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=44
)

#Definindo folds

K = 5
kf = KFold(n_splits=K, shuffle=False)
maes = []
best_mae = float('inf')
melhor_modelo = None
melhor_history = None
fold = 1

#Repetição para cada fold

for train_idx, val_idx in kf.split(X_train):
print(f"\nTreinando fold {fold}")

X_train_kf, X_val_kf = X_train[train_idx], X_train[val_idx]
y_train_kf, y_val_kf = y_train[train_idx], y_train[val_idx]

#Definindo modelo

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(16, (3,3), activation='relu', =(IMG_SIZE, IMG_SIZE, 3)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.001)),
tf.keras.layers.Dense(1)

])

#Definindo Learning Rate

optimizerLR = tf.keras.optimizers.Adam(learning_rate=0.001)

#Compilando Modelo

model.compile(optimizer=optimizerLR, loss='mse', metrics=['mae'])

59

#Definindo ReduceLrONPlateau e EarlyStopping

reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10,
min_lr=1e-6, verbose=0)
early_stop = EarlyStopping(monitor='val_loss', patience=20,
restore_best_weights=True, verbose=0)

#Treinando o modelo

history = model.fit(
X_train_kf, y_train_kf,
validation_data=(X_val_kf, y_val_kf),
epochs=200,
batch_size=128,
callbacks=[reduce_lr, early_stop],
verbose=0

)

#Avaliando modelo

loss, mae = model.evaluate(X_test, y_test, verbose=1)
print(f"Fold {fold} - MAE: {mae}")
maes.append(mae)

#Salvando melhor modelo

if mae < best_mae:
best_mae = mae
melhor_modelo = model
melhor_history = history

fold += 1

#Reportando resultado final

print(f"\nMAE médio após {K} folds: {np.mean(maes)} (±{np.std(maes)})")
print(f"Melhor MAE obtido: {best_mae}")

#Salvando melhor modelo

melhor_modelo.save('modelo_kfold_final.h5')
print("\nMelhor modelo salvo como 'modelo_kfold_final.h5'")

#Plotando curva de aprendizado com melhor fold

60

plt.plot(melhor_history.history['loss'], label='Loss (treino)')
plt.plot(melhor_history.history['val_loss'], label='Loss (validação)')
plt.xlabel('Época')
plt.ylabel('Loss (MSE)')
plt.title('Curva de aprendizado (melhor fold)')
plt.legend()
plt.grid()
plt.show()

61

APÊNDICE D – CÓDIGO PARA ANÁLISE DO MODELO.

#Importando bibliotecas

import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold, train_test_split
from tensorflow.keras.models import load_model
from tensorflow.keras.metrics import mse
from sklearn.metrics import r2_score

#Carregando imagens e modelo

CAMINHO_TESTE = 'C:\\Users\\37108839\\Documents\\Documentos\\0 - TCC\\FotosTCC\\'
CAMINHO_MODELO = 'C:\\Users\\37108839\\Documents\\Documentos\\0 - TCC\\ResultadoFinal3\\modelo_kfold_final.h5'
IMG_SIZE = 128
modelo = load_model(CAMINHO_MODELO, custom_objects={'mse': mse})
X = []
y = []
for nome_arquivo in os.listdir(CAMINHO_TESTE):

if nome_arquivo.endswith('.jpg') or nome_arquivo.endswith('.png'):
angulo_original = int(nome_arquivo.split('.')[0])
angulo_convertido = angulo_original - 180
caminho_img = os.path.join(CAMINHO_TESTE, nome_arquivo)
img = cv2.imread(caminho_img)
if img is None:

continue
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
img = img / 255.0
X.append(img)
y.append(angulo_convertido)

#Separando em conjunto de treino e teste

X = np.array(X)
y = np.array(y)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=44
)

62

#Definindo folds

K=5
kf = KFold(n_splits=K, shuffle=False)
maes = []
best_mae = float('inf')
fold = 1
X_train_kf=[]
X_val_kf=[]
y_train_kf=[]
y_val_kf=[]

#Repetição para cada fold

for train_idx, val_idx in kf.split(X_train):
print(f"\nTreinando fold {fold}")
X_train_kf, X_val_kf = X_train[train_idx], X_train[val_idx]
y_train_kf, y_val_kf = y_train[train_idx], y_train[val_idx]
#Definindo melhor fold (4)

if fold == 4:
X_train_quero = X_train_kf
X_val_quero = X_val_kf
y_train_quero = y_train_kf
y_val_quero = y_val_kf

fold+=1
print(y_val_quero)

#Realizando estimativas

y_pred = modelo.predict(X).flatten()
y_pred_train_quero = modelo.predict(X_train_quero).flatten()
y_pred_val_quero = modelo.predict(X_val_quero).flatten()
y_pred_test = modelo.predict(X_test).flatten()

#Calculando R2

print(y_test)
print(y_pred_test)
r2 = r2_score(y_test, y_pred_test)
print(f"R2: {r2:.4f}")

#Plotando grafico da dispersão

63

plt.figure(figsize=(8,6))
plt.scatter(y_test, y_pred_test, color='green', edgecolors='black',

label='Modelo (test data)')
plt.plot([min(y), max(y)], [min(y), max(y)], 'k--', label="Ideal")
plt.xlim(-25,25)
plt.ylim(-25,25)
plt.xlabel('Ângulo real (°)', fontsize=12)
plt.ylabel('Ângulo previsto (°)', fontsize=12)
plt.title(f'Dispersão: Ângulo Real vs Modelo\nR2 = {r2:.4f}', fontsize=14)
plt.legend()
plt.grid(True)
plt.show()

	Folha de rosto
	Dedicatória
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Apresentação do problema
	Objetivo

	Desenvolvimento
	Revisão bibliográfica
	Iridescência
	Modelo de cores RGB
	Modelo Grayscale
	Processamento digital de imagens
	Redes neurais convolucionais (CNNs)

	Materiais e métodos
	Materiais utilizados
	Método de montagem

	Técnicas utilizadas
	Software
	Processamento das imagens
	Criação e treinamento do modelo de CNN

	Resultados e discussões
	Análise do padrão de mudança de cores da fita
	Análise dos resultados previstos pelo modelo

	Conclusão
	Referências
	APÊNDICES
	Código para processamento da imagem.
	Código para análise das imagens.
	Código para criação do modelo da CNN.
	Código para análise do modelo.

