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RESUMO

O presente trabalho discute 2 aplicagio de um modelo estatistico - a Regressao

Logistica - no auxilio da tomada de decisdo.

Inicialmente, sio discutidos os trés tipos de sifuagio de decisio existentes:
programadas, parcialmente programadas e ndo-programadas. Este ultimo tipo
corresponde 2 situagSes das quais se tem informaciio limitada. Para o auxilio da tomada
de decisio nestas situacbes, sio apresentados oS principais critérios de decisdo
utilizados (Critérios do Maximin, Minimax e Valor Monetirio Esperado) e sugerida a

utilizacio de diagramas de decisdo e modelos estatisticos.

Posteriormente, é feita uma anilise generalizada dos modelos estatisticos: seus
conceitos, formas e exemplos de utilizagio. Para a adequada compreensio de seu
funcionamento, ¢ feito um resumo sobre a andlise de crédito que é um campo onde se
observou um grande desenvolvimento da aplicagio destes modelos em situagbes de
decisio.

Segue-se a introdugdo dos principais modelos utilizados em problemas na rea de
wrédito e semelhantes: Anilise Discriminante, Regressio Logistica e Métodos de
Programacio Matemdtica. ApSs a comparagao dos mesmos em termos de principios
de funcionamento e adequagio 2 resolugdo de problemas de tomada de decisio,

escolhe-se o modelo de Regressdo Logistica como tema central do trabalho.

Apbs uma detalhada observagio de suas caracteristicas, o modelo ¢ aplicado a um
problema real: a determinagio de potenciais compradores do seguro de vida fornecido
pot uma empresa administradora de cartdes de crédito. E feita uma andlise descritiva
do conjunto de dados fornecido pela empresa e, com base nesta analise e em

estratégias especificas de construgio do modelo, chega-se a um modelo final.
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Por dltimo, os resultados obtidos com o modelo s3o interpretados a luz da analise

de decisdo e é discutida 2 relevancia do tema na Engenharia de Producio da atualidade.



UsSO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAO 10

1. ANALISE DE DECISAO

1.1 INTRODUGAO

Diariamente, as 01ganizag0es modernas se deparam com uma variedade de
situacdes onde necessita-se de uma tomada de decisio. Lidar com estas decisoes
consome grande parte do trabalho dos individuos em qualquer nivel de uma
OrganizaGao. Algumas situagdes de decisio encontradas ocotrem Ccom grande
freqiiéncia e exatamente da mesma forma em cada ocasiio. Estas decisdes podem ser
tomadas - eficientemente, estabelecendo-se previamente regras ¢ padrdes de

compottamento para solucions-las baseados principalmente em experiéncias passadas.

Entretanto, um problema pode apresentar uma caracteristica em particular que
pode torné-lo diferente em algum ponto importante. Dependendo da situaco, Outros
problemas podemn ser Iovos ou diferentes em todos Os aSpectos. Neste caso, 2 Intuigao
e o julgamento das pessoas da organizagio que ja tiveram experiéncias passadas com

problemas similares é o recurso mais eficaz para aborda-los.

Segundo Radford (1981), a esséncia de uma tomada de decisio ests na formulagio
de alternativas de agdo para atender i situacio considerada e na escolha de uma
alternativa ap6s uma avaliagio de sua eficiéncia no alcance dos objetivos. Um dos
componentes mais importanites em um Processo decisério é a coleta de informagoes,
de onde pode ser feita uma avaliacio da situagio de decisio. Se existe informagao
suficiente para se obter especificacoes completas de todas as alternativas possiveis e sua

eficiéncia na situagio considerada, 0 processo decisério é relativamente simples.
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Por outro lado, muitas Vezes 2 obtencdo de toda a informacio necessaria torna-se
impossivel nia pratica, devido 2 limitacGes de tempo Ou TeCursos para tal. Além disso,
muitas vezes pode set impossivel se determinar o que constitui toda 2 informagao
selevante a0 problema, mesmo com tempo € recursos disponiveis para coleta-la. Em
conseqiiéncia, o elemento da incerteza fara parte da tomada de decisio - devido 2 falta
de informacio completa - levando o individuo a ter davidas em relagio a qual

alternativa escother e 3 eficiéncia da mesmna.

Neste trabalho serio apresentados alguns modelos estatisticos empregados 10

auxilio da tomada de decisao, dando maior énfase 20 modelo de Regressio Logfstica.

Neste capitulo, discutiremos 0S diversos tipos de situacio de decisio existentes:
situacBes programadas, parcialmente programadas € nio-programadas. Atengio
especial é dada 4 ultima, onde ndo se dispde de rotinas para sua solugao. Serdo vistos
os diversos critérios de decisio utilizados neste tipo de situagio, entre cles as arvores

de decisio e 08 modelos estatisticos.

Uma das 4reas onde se desenvolveram modelos estatisticos em situaces de decisdo
& 2 analise de crédito. No Capitulo 2, sera feita uma revisio sobre mesma. Isto serd
necessirio para que se compreenda 08 métodos utilizados ao longo do trabalho.
Veremos como ¢é feita a concessao de crédito a pessoas fisicas, 2 evolucio dos métodos
de dassificacio de candidato 2 empréstimo em alto e baixo risco e os métodos mais

utilizados.

No Capitulo 3, estdo desctitos os modelos estatisticos existentes em situacdes de
decisiio e suas principais caracteristicas. Setdo feitas comparagoes de desempenho e
adequagio as situagoes praticas, justificando 2 escolha do modelo de Regressao
Logistica.

No Capitulo 4, veremos O modelo de Regressio Logistica em detalhes: seus

conceitos, evolugio, como ¢ aplicado e sua formulacio. Primeiramente, veremos O
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modelo com uma tinica varidvel e, posteriormente, COm diversas varidveis. Veremos

também os critérios de escolba de variAveis para a construcao do modelo.

No Capitulo 5, estd apresentado um exemplo de aplicagio de Regressao Logistica: a
dassificacio dos chientes de uma empresa administradora de cartdes de crédito em
potenciais compradores ou nio compradores de seu Seguro de Vida. Faremos uma
anilise descritiva do conjunto de dados fornecido pela empresa, visando uma maior

fmiliaridade com o conjunto.

No Capitulo 6, procederemos 3 construgio do modelo final empregando Regressao
Logistica, descrevendo as estratégias utilizadas. O modelo serd testado para 2

verificaciio de sua eficiéncia na resolucio do problema proposto.

Por iltimo, no Capitulo 7, estao as conclusdes sobre 0 modelo e sua utilidade em

situagoes de tomada de decisdo.

1.2 SITUACOES DE DECISAO: PROGRAMADAS E NAO-
PROGRAMADAS

Radford (1981) propde uma distincio entre dois Hpos distintos de situagdes de

decisio: as situacbes programadas € as njo-programadas.

As decisdes programadas s30 aquelas que si0 tomadas freqilentemente e se tornam
rotineiras. Bstas decisdes s30 “programaveis” porque é possivel se estabelecer um
procedimento especifico para sbordi-las. Elas geralmente ocorrem &M atividades
operacionais € administrativas, principalmente 00s niveis mais baixos de uma
organizagio. NoS Gltimos anos, desenvolveram-se rotinas computadorizadas nestes
niveis capazes de tommar decisdes quanto, pOr exemplo, 20 uso de tecursos, a

distribuicio de produtos, a0 controle de estoques, entre outras situages.
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Em contrapartida, as decisdes nio-programadas nao sd0 repetitivas, apresentando
sempre um aspecto Novo € diferente. Deste modo, ndo se CONSEZUe estabelecer uma
rotina de abordagem. Em comparagio cotn as decisdes programadas, 2 informacaio
disponivel é normalmente incompleta ou indefinida. Este tipo de situagio é encontrada
principalmente nos niveis mais altos de uma organizagao e geralmente sZ0 relacionados

3s atividades de planejamento estratégico.

Unm exerplo de situagdo de decisdio nio-programada: D Pont ¢ clorofluorcarbonos

Clemen (1990) ilustra uma situacio real de decisdo nio-programada com um exemplo
ocomrido na empresa fabricante de produtos quimicos Du Pont Chemical Corporation:
Clorofluorcarbonos (CFCs) sio substincias quimicas utilizadas como gases refrigerantes em
aparelhos de ar condicionado, gases propelentes em “sprays’ 2erossOis € iNUmeros Outros
produtos. A partir da década de 70, evidéncias cientificas tém apontado que O CFC langado na
atmosfera pode destruir moléculas de ozbnio na camada de 0z6nio que se encontra a cerca de
20 km da superficie terrestre cuja fungdo é proteger 2 terra da radiagéio ultravioleta do sol.
Encontrou-se um grande buraco na camada de ozdnio sobre a Antirtida e um estudo
realizado em 1988 concluiu que 2 camada de ozdnio sobte 0 Hemisfério Norte diminuiu 3%
desde 1969 - cujas causas foram atribuidas aos CFCs. Além disso, provou-se que 2 camada de
ozdnio, uma vez destruida, nio se recompde € a continuagao da destruicio poderd levar 2
problemas na agricultura, afetar 2 ecologia marinha e possivelmente mudar radicalmente 0S
padrBes ambientais do globo. Os ecologistas estimam que aproximadamente 30% do CFC
lancado na atmosfera provém de 2erossdis. Em 1978, o govemo norte-americano baniu seu
uso como propelente, mas muitos paises ainda toleram sua utilizacio. O mercado mundial de
CFC ¢ de cerca de U$ 25 bilhGes 20 ano, sendo 2 Du Pont Chemical Corporation responsavel
por 25% do total. No inicio de 1988, a empresa anunciou que irta cessar gradativamente sua

produgdo de CEC e que irla investir no desenvolvimento de produtos substitutivos.
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Atualmente, afirma que ja tem um substituto para aparethos de ar condicionado para

automéveis, embora a nova substincia seja muito cara.

A diregio da Du Pont encarregada de tomar 2 decisio sobte a continuagio da produgio de

CFC enfrentou as seguintes dividas:

» Que fatores levar em contana decisio?

» Quais sdo as principais fontes de incertezas que serao encontradas?
» Quais os objetivos corporativos a serem considerados?

» UL possivel que os objetivos corporativos da empresa ¢ a maneira pela qual ela vé o
problema tenham evoluido desde a metade da década de 70 quando os CFCs comegaram 2 s¢

tomar uma preocupagio?

Apesar da distingao entre 08 dois tipos de situagio de decisio, na realidade estes 530
apenas OS extremos de um espectro continuo de situacdes, onde existem situagoes
parcialmente programadas. Nestas situacdes, apenas patte pode ser bem estruturada ou
completamente especificada. Normalmente, uma grande parte da informagio ou um
grande namero de decisdes complementares podem ser abordadas por uma rotina bem
programada. Entretanto, 2 escolha final entre as alternativas nio ¢ bem estruturada,
sendo tomada, geralmente, pot algum individuo encarregado para a tarefa. Isto pode
ser ilustrado no seguinte exemplo: e Processos seletivos de admissio de novos
funcionarios em ofganizacoes, as decisdes de escolha de candidatos para futuras
entrevistas geralmente S0 feitas por funcionarios do Departamento de Recursos
Humanos. Estas decisbes si0 baseadas nas especificagdes do cargo disponivel e nas
caracteristicas desejadas do candidato. Os candidatos $30 selecionados por outro

funcionario de um nivel mais alto na organizagio, geralmente um administrador, que
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fica livre da tarefa rotineira de verificacio de todos

far4 a decisdo final sobre a escolha do candidato.

os curriculos recebidos mas que

O espectro das situagoes de decisio e suas caracteristicas estd resumido na Tabela

1.1;

Tabela 1.1: Abrangéncias das situagdes de decisdo em uma organigagdo. Fonte: Radford (1981)

DECISOES

PROGRAMADAS

PARCIALMENTE
PROGRAMADAS

NAO-PROGRAMADAS

1. Bspecificagdes do
procedimento de decisio
sio decididas antes da
tomada de decisdo

2. Pequena intervengio
administrativa durante a
decisdo

3. Resolugdes repetidas

com a mesma informa-

¢io produzem 08 mes-
mos resultados

1. Apenas parte do pro-

cesso decisério pode ser

completamente especifi-
cada ¢ programada

2. O administrador toma
a decisdo final se base-
ando em decisdes ja
tomadas e em seu julga-
mento pessoal

3. Dois administradores po-
dem concordar em alguns
pontos importantes, mas
discordar da solugdo fi-
nal

1. O processo decisrio

njio pode ser completa-

mente estruturado antes
da tomada de decisio

2. Cada individuo resolve
a situagio de acordo com
sua experiéncia ¢ julga-
mento pessoal

3. Dois administradores
diferentes podem chegar
a diferentes conclusdes

diferentes situaches. Nas segdes 1.2 ¢ 1.3 estdo descritos os procedimento

situacoes pro adas e nio
cocs p

-programadas respectivamente.

15

Radford (1981) e Clemen (1990) apresentam procedimentos para 2 abordagem das

s referentes a
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1.21 ABORDAGEM DE SITUACOES PROGRAMADAS

Segundo Radford (1981), as etapas a serem adotadas na abordagem de uma situacao

de decisdo “programavel” seriam:

Inteligéncia: procura das condicdes dos ambientes externo e interno a0 Processo

decisério e coleta das informagdes relativas a estas condicoes:
a) Percepgio ¢ formulagio da situagde. identificacio da situacio de decisio e 2
definicio de suas caracteristicas principais;
b) Construgdo de um modelo da situagio. o modelo é um instrumento para S€

estimar os possiveis resultados de uma situacio de decisio sobre uma

variedade de condicdes possiveis;

&) Determinagdo de tantas medidas de custos ¢ beneficios forem necessdrias para a sitnagio
considerada: sistemas uniformes de medida facilitam comparacdes entre as

diferentes alternativas de resolugio do problema;

Modelagem: as alternativas de agdo disponiveis sio determinadas € analisadas como
solucdes possiveis para o problema decisorio detectado:
a) Espeaficagio de alternativas disponiveis. identificacio € formulacio clara dos

possiveis caminhos a serem seguidos;

Escotha: uma das alternativas de agio ¢ escolhida para ser implementada com base na

avaliacio de sua eficiéncia relativa a0 alcance dos objetivos:
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a) Avabiagio dos custos e beneficios da alternativa de agdo disponivel medicio do efeito
da implementagio de cada alternativa de acio em termos de custos €

beneficios;

b) Determinagio de um critério de escolba entre as diversas alternalivas de agdo

especificagio de regras cujos resultados sio relativos 2 escolha desejada;

) Resolupio da sitwagio de decisdo. a escolha é feita entre as diversas alternativas de

acio disponiveis com base em um critério aceitivel.

Estes passos ndo precisam ser seguidos na ordem discutida. Além disso, na pratica,
o procedimento podera consistit de uma série de repetigdes de todos ou alguns destes

passos até que a situagio seja resolvida.

E possivel se criar um roteiro de resolucio que serd aplicivel a todas as situagoes
possiveis do problema, uma vez que estas sio conhecidas. Deste modo, o modelo

estara livre de incertezas, nio necessitando de intervengao.

1.2.2 ABORDAGEM DE SITUACOES NAO-PROGRAMADAS

Segundo Radford (1981), as situacdes “nio-programaveis” sao aquelas onde se

encontra pelo menos uma das seguintes caracteristicas:

Falta de informagdes completas sobre a situagdo de decisdo e seu ambiente

A falta de informacées completas leva a incerteza entre OS individuos envolvidos na

sua resolucio quanto s suas caracteristicas.
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Neste caso, é impossivel construir um modelo compreensivel da situagio que inclua
todos os fatores relevantes e as relagbes entre eles com informagio mcompleta. Com
um modelo incompleto da situagio, pode-se crer que alguns dos aspectos mais
importantes da situagao estejam acima da compreensio imediata. Neste caso, necessita-

se de esforco e tempo razodveis para se identificar a natureza da situagfio considerada.

Quando se tem informagio limitada, os diversos individuos envolvidos na
resolucio do problema podem formar opinides pessoais divergentes quanto as
caractetisticas do mesmo. A percepgio de cada individuo sobre a situacio é baseada na
informacio disponivel vista sob a Otica de experiéncias passadas e aspectos

relacionados 2 competéncia, motivacio e julgamento destes.

E a total falta de informacio leva 4 incerteza sobre as condi¢Ses exatas do ambiente
da situagio de decisio. Neste caso, geralmente existe um petiodo de tempo
relativamente longo entre 2 escolha e a implantagao de uma alternativa de agio,
possibilitando que as condicbes do ambiente da decisdo sofram alteracdes significativas
tornando-o diferente do que previsto anteriormente. Portanto, quanto maior O tempo
de implantagio, maior é o risco de que © resultado de uma determinada alternativa de

acio seja diferente do que o estimado durante o processo decis6rio.

Falta de medidas quantitativas para descrever claramente os custos e

beneficios das alternativas disponiveis

A escolha entre diversas alternativas de agdo é consideravelmente mais ficil quando
a comparagio entre elas pode ser feita em termos de custos e beneficios bem
compreendidos. Esta condi¢ao permite que sejam comparadas em termos compativels
entre si. Entretanto, em muitas situagbes € muito dificil a criacgio de medidas
puramente quantitativas para se medir os custos e beneficios das diversas alternativas.

Por exemplo, existem problemas para se criar uma medida da imagem de uma empresa
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no mercado através das diversas maneiras pelas quais ela participa em programas
sociais.

Apesar disso, segundo Radford (1981), nestes casos, freqiientemente os individuos
se sentem tentados a criar medidas quantitativas dos custos e beneficios, mesmo que
estes nio reflitam claramente a relacio entre os fatores envolvidos e os objetivos da
situacio de decisdo. Isto pode causar distor¢des significativas na situagio de decisio,
uma vez que as conclusdes tiradas de uma anlise distorcida da situacio muitas vezes
nio correspondem 3 realidade. Infelizmente, estas conclusGes em geral tém um aspecto

de validade, j4 que s3o produtos de umn pensamento apareptemente légico.

Quando diversos individuos tém diferentes opinides sobre uma situacio de dectsdo
e suas caracteristicas, cles também podem ter diferentes medidas pessoais sobre custos

e beneficios de uma determinada alternativa de agdo dificilmente compariveis.

Existéncia de objetivos mnltiplos como parte da organizagio, grupo ou
individuo em questio
Muitas organizages, grupos ou individuos tém mais do que um objetivo.
Nestas situacdes, a escolha de uma determinada alternativa de agao pode satisfazer
plenamente um objetivo mas nio ser tdo eficaz no alcance de outros objetivos. Muitas
vezes é impossivel a escolha de uma alternativa que seja a melhor para todos os
objetivos. Nestas situac3es, a escolha entre alternativas ¢ facilitada pela adogio de uma
{nica e bem compreendida medida de custo e beneficio (como 2 unidade monetaria) de
modo que a prioridade entre os objetivos possa ser expressa em termos de unidades

numéricas.

Existéncia de um ou mais participantes na tomada de decisdo, todos com

poder de influéncia no resultado
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Em muitas situacdes de decisio nio-programadas o poder de decisio ndo se
encontra nas mios de um Unico individuo. Muitas vezes, dois ou mais individuos sdo
encarregados da tarefa e tém interesses € intengoes conflitantes, embora nenhum tenha
autoridade para tomar a decisdo individualmente. Neste caso, uma solucio satisfatoria
s6 poderi ser encontrada apds um acordo entre OS MesMOs, resultado de quantas

negociagdes forem necessarias.

Dentre estes fatores, Radford (1981) considera a falta de informacoes completas
como o mais importante e o mais dificil de ser contornado. Em uma situagio nao-
programada, é pouco provivel que a escolha de uma alternativa satisfaga todos os
individuos e objetivos de uma organizacio. Nestas circunstancias, 2 tomada de decisio

sempre terd um cariter individual.

Apesar dos problemas citados, Clemen (1990) propde que se siga sempre uma

seqiiéncia 16gica de passos para uma decisio plausivel, conforme a Figura 1.1:
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Figura 1.1: Proposta de abordagem de situagbes de decisdo néio-programadas. Fonte: Clemen (1990)
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O procedimento é relativamente parecido a0 proposto pot Radford (1981) para
abordagem de situagoes de decisio programadas, exceto o terceito passo que € 2

decomposicio e modelagem do problema.

Segundo Clemen (1990), este passo é o mais importante da tomada de decisdo em

situacoes deste tipo-

A ptimeira parte da estruturacio de uma abordagem de decisio ndo-programada
seria 2 decomposigio do problema em subproblemas menores e que sio mais faceis de
manuseat. O proximo passo seria 2 modelagem do problema, que, segundo Clemen

(1990), pode ser dividido em:

1. Modelagem da estrutura do problema: propoe a utilizacio de diagramas o

drvores de decisdo para representar ou modelar o problema;

2. Modelagem a incerteza inerente ao problema: propde O usO da
probabilidade na construcio de modelos probabilisticos (ou estatisticos), O que

permitiria a observagio de fatores que ndo sio apatentes no problema ¢

3. Modelagem das preferéncias relacionadas 2o problema: acredita que 2
representagio matemética do problema poderd facilitar a escolha de uma

alternativa preferida.

Deste modo, visto que nao se pode construir rotinas de decisio, O que s€
propde é a utilizagao de determinadas ferramentas que possam auxiliar a tomada de
decisio - ndo se esquecendo do julgamento pessoal dos individuos envolvidos que,

segundo Clemen (1 990), sempre serd indispensavel neste tipo de situagao.
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A seguir, serao discutidos os critérios de decisdo referentes a decisdes nao-

programadas.

1.3 CRITERIOS DE DECISAO

Segundo Gregory (1988), em situagOes de decisio nio-programadas existem
diversas maneiras pelas quais um problema pode ser solucionado. Embora estas
maneiras sejam diferentes em suas consideracbes e nas agoes resultantes, existem
algumas propriedades - baseadas em niveis de plausibilidade aceitiveis - que deverdo
possuir. Gregory (1988) propde trés propriedades aparentemente simples e triviais, mas
que poderio fornecer uma l6gica muito tll em determinados momentos do processo

decisorio:

a) “Qualquer alternativa que sgja dominada deverd ser desconsiderada pelo tomador de decisdo™
a idéia de dominio é utilizada no sentido de que o individuo deverz escolher 2
melhor alternativa independentemente da acio que seja tomada pela natureza.
Gregory (1988) apresenta O seguinte exemplo ficticio: suponhamos que uma
empresa estefa planejando sua campanha publicitiria para 0 proximo semestre.
Ela poderi escolher seu meio de divulgagio entre televisio, jornais e “out-
doots”, tendo recursos suficientes para apenas um dos trés meios. O retorno do
investimento da campanha é medido pela estimativa da exposigio da campanha,
ou seja, o namero de clientes em potencial que teriam 2 oportunidade de ter
contato com um dos trés meios. Além disso, verificou-se que 0 namero real de
exposicdes depende das condicBes do tempo, onde um tempo ruim favorece a

divulgagio pot jornais € 2 televisio e um tempo melhor favorece 2 divulgacio
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por “out-doors”. Estimou-se o ntimero de exposi¢des (em milhares de clhientes

potenciais), cujos valores s30 apresentados na Tabela (B2

Tabela 1.2: Estimativas do nimero de exposiges em campanba publicitiria (em milhares de

clientes potenciais). Fonte: Gregory (1 988)

CONDICAO DO TEMPO
Meio Ruim  Moderado Bom Excelente
Televisio 200 190 170 (130)
Jomais 180 160 150  ( 130)
Out-doors (110, 140 140 190

Baseando-se nestes dados, observamos que Os NUMEros de exposicbes da
televisio é sempre maior ou igual 20 do jornal, independentemente da condi¢io do

tempo, de modo que este iltimo n3o deveri ser levado em consideragio.

Entretanto, suponhamos que a empresa adote 2 estratégia de maximizar O
menor retorno. Neste caso, o menor retomo da campanha em televisio seria 130
(tempo excelente), igual a0 da campanha de jornais, e © TENOT LELOINO dos “out-
doots” seria 110 (tempo ruim). Segundo este critério, seria indiferente a escolha da
campanha através de jornais ou televisio, ja que, na pior das hipoteses (tempo
excelente) o retorno seria O MeESMO (130). Porém, a propriedade da alternativa
dominada diz que, independentemente de qualquer critério de decisdo adotado, a
divulgagio por jomais nunca serd 2 melhor alternativa neste caso especifico. Ou
seja, a agio de escolha de divulgagio por jornais € uma agao dominada e portanto

devers ser desconsiderada.



USO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAO

b) ‘Se, sob gualquer critério de decisiio, prefere-se a aliernaliva A do que a alternativa Be

prefere-se a aliernaiiva B do que a alternativa C, ent@o deverd se prefertr a alternativa A do
que a aliernativa C* esta propriedade nio necessita de maiores explicagdes. Um
procedimento decisério cujos resuitados 530 «Prefere-se A do que B, prefere-se
B do que C e, no entanto, prefere-se C do que A” é um procedimento

incongruente.

“A preferéncia entre duas alternativas quaisquer nio deverd depender da presenca ou ausénea
de uma terceira aliernativa’ O seguinte exemplo mostra 2 violacio desta
propriedade: um diretor de uma empresa fabricante de automoveis vai até a0
fornecedor de autopegas € € informado de que este no momento s tem eixos €
espelhos retrovisores em Scu estoque. Sendo assim, encomenda apenas €ixos.
Momentos mais tarde, o fornecedor o informa de que encontrou também
escapamentos em seu estoque. O diretor diz: “Neste caso, encomendarei

espelhos retrovisores” -

Segundo Gregory (1988), estas consideraces embora simples sio basicas para

qualquer tomada de decisio e em certas situagoes podem ser muito ateis. Deve-se

sempte estar atento para que niio sejam violadas.

Sob estas consideragdes, existem diversos critérios que geraimente 30 utilizados na

tomada de decisio. Os mais conhecidos sio:

v Critério do Maximin

v Critério do Menor Arrependimento

v Critério do Maximax
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v Critério de Hurwicz
v Critério do Valor Monetirio Esperado (VME)
v Critério de Laplace

v Critério do Custo de Oportunidade Esperado

Estes critérios, como veremos adiante, s30 apenas parte do processo de decisio que
envolve também fatores subjetivos € dificilmente quantificiveis. Segundo Gregory
(1988), apenas 0S critérios do Maximin, Menor Arrependimento e do Valor Monetirio
Esperado sio utllizados com maior freqiéneia. Estes serdo descritos nos proximos

itens, omitindo a descticdo dos demais.

1.3.1 CRITERIO DO MAXIMIN

Suponhamos que um individuo tenha que escolher entre as alternativas possiveis

A, A,,.. A, ; que a natureza apresente condicdes possiveis B,,B,,...,B, e que o tetomno

de uma acio 4; tomada sob B, sefaRy. Quando uma alternativa A, é escolhida, pode-

se ter os valores de retorno Ry, R, R, Considera-se que:

Rio = mm (Rﬂ:Rizr“’Rin) (11)
c

R,y = MaK 1, [Ri> Rags--sRmo] (1.2)
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O individuo deveri escolher a agio 4, tal que propotcione sempre um fetomo R,
que é maior ou igual a0 valor R,. Pode-se, entdo, ter a vantagem de saber qual é o
retorno minimo garantido.

Retomando o exemplo da secio anterior onde uma empresa necessita decidir sobre

como ird planejat sua campanha publicitiria, suponhamos que a empresa tenha

reavaliado seu retorno segundo a Tabela 1.53:

Tabela 1.3: Critério do Maximin: valores minimos de retorno R, no mimero de exposigies em

campanha publicitdria (em milbares de clientes potenciais). Fonte: Gregoty (1988)

CONDICAO DO TEMPO
Meio Ruim Moderado Bom Excelente
Televisio 220 210 190 C 140)
Jornais 180 170 160

Gtaloots Tl 180D 160 160 160

Neste caso, terfiamos os valores minimos de retormno para cada alternativa como
140, 150 e 130 para a televisdo, jornais e “out-doors” respectivamente. Segundo o

critério do Maximin, a alternativa a se escolher devera ser a divulgacio por jornais.

Este critério geralmente resulta de wm pensamento muito pessimista ou
conservador por parte do individuo que tomars a decisio. Este pensamento assume
que 2 natureza terd maior probabilidade de tomar a agao mais indesejada possivel e que

portanto o individuo deverd se precaver 20 MAXIMO.

27
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1.3.2 CRITERTO DO MENOR ARREPENDIMENTO

O segundo critério € similar a0 apresentado anteriormente. Propde que uma
alternativa de acio deve ser medida pela quantia em que O retorno de um individuo

seria aumentado caso ele soubesse qual seria 2 agao tomada pela natureza.

Suponhamos que um individuo tenha que escolher entre as alternativas possiveis
A,,4,,..A,; 2 natureza apresente condicdes possivels B,,B,.....B, e o retorno de uma
acio A, tomada sob B, sejaR; . Define-se 0 arrependimento p; da alternativa i sob a

acgio da natureza j COMO:

p; =Ry —R; (1.3)

onde R, = MAX 1y Ry > Rajor s B 1-

Seja p,, = MAX 4l Pin- PiyrerPim], O critério do Menor Arrependimento requer que

o individuo tome uma determinada acio 4, tal que A, = miN e P -

O critério visa a seguranga sob 2 piof a¢ao possivel tomada pela natureza, de modo
a escolher o menor arrependimento de cada acio que este tomar. Ha, portanto, uma
matriz de termos de arrependimento, onde cada coluna contém pelo menos um valot
aulo. No exemplo antertior da campanha publicitiria, 2 matriz de arrependimento esta na

Tabela 1.4
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Tabels 1.4: Critério do Menor Arrependimento: valores de arvependimento p; no nimero de

expusicies em campanha publicitiria (em milhares de clientes potenciais). Fonte: Gregory (1988)

CONDICAO DO TEMPO
Meio Ruim Moderado Bom Excelente
Televisio ( 0 0 C 20 b,
Jomtier s @y D D 30 10
Out-doots (90 ) 50 30 0

Os arrependimentos méximos séo 20, 40 e 90 para os meios televisio, jornais €

“out-doors” respectivamente € O MeNOr atrependimento é o meio televisdo (i = 1).

O critério do Menor Attependimento tem algumas desvantagens em relagio a0
critério do Maximin. Se, por exemplo, uma agio extrema da natureza é uniformemente
ruim para todas as agbes do individuo, entio este nio serd um fator de nfluéncia em
sua decisio. Para ambos os critérios, apenas os valores relativos de cada retorno deve
ser considerado. Entretanto, para o critétio do Menor Arrependimento, 2 relatividade
entre os valotes ocorre apenas dentro de uma mesma coluna, de modo que tornando
irrelevante o quio ruim estes valores geralmente sio quando comparados com outras

acOes da natureza.
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1.3.3 CRITERIO DO VALOR MONETARIO ESPERADO

Os dois critétios anteriores si0 €XPressos em termos de retorno, sem nenhuma
consideracio sobre a probabilidade de ocorréncia das agdes da natureza. Algumas
decisBes sio baseadas em resultados que, muitas vezes, sio muito pouco Provaveis.

Em vista deste problema, utiliza-se 0 critétio do Valor Monetsrio Esperado (VME).

Sejam as probabilidades g1, gz associadas a cada acgio da natureza, tal que

> q,=1. Estas probabilidades podem ser subjetivas ou baseadas em algum

i=1

fundamento (como pesquisa de mercado ou dados histéricos). O retomo médio da

alternativa 7 é obtido como sendo:

Ai = quil + qZRil +...+ an'in (1'4)

O critério do VME requer que a agio 4, seja tomada tal que 4, =max; 4;.

Para o exemplo anterior, suponhamos que as probabilidades de ocorréncia de cada

condigio do tempo sejam conhecidas, conforme 2 Tabela 1.5:
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Tabela 1.5: Probabilidades de ocorréncia de condighes do tempo. Fonte: Gregory (1988)

CONDICAO DO TEMPO PROBABILIDADE DE OCORRENCIA

Ruim 20%
Moderado 40%
Bom 30%
Excelente 10%

Neste caso, os Valores Médios Esperados para cada alternativa s3o:

Televisio:  (0.2)220+(0.4)210 +(0.3)190+ (0. 1)14

Jotnais: (0.2)180 + (0.4)170 +(0.3)160+ (0.1)150 = 167

«Out-doors™ (0.2)130+(0.4)160+(0.3)160 +(0.D150 =154

Assim, segundo o critério do VME, o meio televisio seria o meio recomendado,

dado que apresenta o retorno MAXIMO.

Observa-se que, € 2 mesma decisio é tomada em utn grande nimero de vezes, O
critério do VME. ird determinar a alternativa que, quando utilizada repetidamente, ira
resultar em um maior retorno. Porém, muitos problemas decisorios a0 problemas que
ocortem uma Ginica vez ou que tém um ntmero limitado de repetigdes. Nestes €asos,
embora uma decisio ocorra uma dnica vez, € possivel que outras decisSes de mesma
importincia em termos de retormno necessitern de serem tomadas regularmente por

outros individuos na organizagao.

Além disso, segundo Gregory (1988), “um individuo tomador de decisio sabe que

nem sempre ele estard certo, porém sabe que, se analisar suas opgOes € suas
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conseqiiéncias 2 fundo, seus esforcos mais cedo ou mais tarde se refletirdio 10S

resultados da organizagio”.

O critério do Valor Monetatio Esperado ainda € 0 critério tnais utilizado em
problemas decisérios. Entretanto, COMO citado anteriormente, 0S critérios de decisio
apenas servem de base para a escolha de nma determinada alternativa na tomada de
decisdo. Outros fatores mais subjetivos também podem influenciar o processo. Para

termos umna idéia de como isto Ocorte, veremos a seguir o que é a fungio utilidade.

1.4 FUNGCAO UTILIDADE

No exemplo anterior da campanha publicitiria, utilizou-se o critério do Valor
Monetario esperado para a escolha de uma alternativa de 2gio. Para se aplicar este
critério, precisamos conhecer nio apenas as probabilidades dos possiveis resultados
mas também os retornos cotrespondentes. Observa-se que estes retornos sio medidos
exclusivamente em fermos financeiros. Entretanto, em muitas sttuacdes, as
conseqiiéncias de um determinado resultado ndo podem ser medidas exclusivamente
através do retorno financeiro. Por exemplo, suponhamos que uma empresa decida
investit em programas socials para Seus funcionarios. A motivagio para uma decisdo
deste tipo pode ser O desejo por parte dos Jdministradores da empresa de ter
funcionatios motivados, o que se Presuimie que irA retornar sob a forma de maior
eficiéncia no trabalho. E possivel que o retorno financeiro real nao corresponda com O
que foi investido, mas isto ndo significa necessariamente que o investimento nio deva
ser feito. De fato, existem outros beneficios que dificimente s30 quantificiveis, como 2
possibilidade de se trabalhar em um ambiente mais agradivel, maior lealdade dos

funcionarios com a empresa, melhoria da qualidade de vida dos mesmos, entre Outros.
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O segundo exemplo refere-se a0 seguro de instalacbes de uma fibrica contra

incéndio descrito em Gregory (1988): Suponhamos que:

1) O ativo total da fibrica seja um total de A4 unidades monetatias, sendo que a

maior parte consiste de suas instalagbes;

2) Para que a fabrica faca o seguro de suas instalagbes durante um ano, ela deveri

pagar uma taxa anual de ; unidades monetatias;

3) Caso haja algum incéndio ou outro dano nas instalagdes €2 fibrica tenha feito o

seguro, ela serd inteiramente recompensada pelos prejuizos;

4) Caso nio faga o seguro e ocora algum dano, ela tenha uma redugio em seu

ativo de B unidades monetarias.

Existem duas alternativas possiveis: fazer ou n3o o seguro. A natureza também tem
duas acbes possiveis: ocorréncia ou ndo de fogo nas instalagdes. Em termos de

resultados obtidos durante o ano, teriamos:

Tabela 1.6: Resultados obtidos por ocorréncia ou ndo de incéndio. Fonte: Gregory (1988)

ACAO RESULTADO
Com incéndio Sem incéndio
Fazer o seguro A-1 A-1
Niio fazer o seguro A-B A

Caso ocorra ou nio um incéndio e o seguro tenba sido feito, o ativo total da

empresa permanecerd 4. Caso o seguro nio tenha sido feito e ocorra um incéndio,
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o resultado sefd O ativo menos a reducio do mesmo, ou seja, A—B; caso 0 incéndio

10 OCOTTa, O ativo Permanecera 0 Mesmo.

Suponhamos agora que s€ tenha determinado que 2 probabilidade real de
ocorréneia de um incéndio seja a. Se utilizarmos o critério do Valor Monetario

Esperado para as duas agdes € OS valotes da Tabela 1.6, deveriamos fazer o Seguro

apenas se:
A—iz(l—a)A+a(A—B)=A—aB (1.5
ou seja,
a>ilB (1.6)

Segundo Gregory (1988), geralmente isto nio é o que ocorre na pratica: a

probabilidade real de tisco @ normalmente é muito menor do que i/B. Entretanto,

existe um fator que leva as empresas a fazerem O seguro: a fun¢do utilidade u,(x). A
funcio u,(x )expressa O valor que 2 utilidade de um determinado elemento x tem
para o individuo i.

Aplicando esta fungio em nosso exemplo, teriamos que oS resultados de se perder

grande parte do ativo total da empresa, que se criou durante um longo periodo,

superam a perda monetiria do pagamento da tarifa anual do seguro, logo:

w(A—i)= (1 - ayu(4) + ou(A—B) .7
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Ou seja, a funcao atilidade mostra que, para a empresa, 4 utilidade de seu ativo A
subtraida a taxa anual 7 é mator do que 2 média ponderada entre 2 utilidade de seu ativo
A e a utilidade do mesmo ativo subtraida da perda B de um eventual incéndio.
Observa-se que a fungio utilidade ¢ um critério subjetivo, porém estd presente em
grande parte das tomadas de decisio do cotidiano, j4 que muitas decisoes tém um
cariter subjetivo € nio apenas monetatio. Portanto, os critérios citados anteriormente,
bem como 2 utilizagio de modelos matemiticos e arvores de decisdo sugerida por
Clemen (1990), servem apenas de base para uma analise completa da situacio de
decisio. Apesar disso, quando ndo se tem nenhuma informacio sobre uma situagio de
decisio nova - por exemplo, quando se desconhece as probabilidades de ocorréncia de
determinadas alternativas ou mesmo O risco envolvido em cada uma - 2 utilizacio de

modelos matemiticos e Arvores de decisio poderd ser muito atil

Esta abordagem matematica de um problema decisotio chama-se andlise de
decisio. Segundo Gregory (1988), qualquer modelo matematico é uma aproximacao da
realidade e, portanto, 0 mesmo ocorre com 2 anglise de decisio. O resultado do
modelo matematico serd apenas uma evidéncia utilizada pelo individuo para format sua
opiniio, € 0 peso que ele dard para esta evidéncia dependera de seu conhecrmento

sobre a confiabilidade do modelo que criou.

Veremos agora as arvores de decisio e os modelos matematicos em maiores

detalhes.
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1.5 ARVORES DE DECISAO

Asvores de decisdo sdo representacoes graficas utilizadas para se estimar o Valor
Monetario Esperado das diversas alternativas de risco disponiveis em um problema. As
possiveis alternativas de uma decisio, representada por um pomnto (ou nd), sio
representadas pot fracos (ou ramos) de modo que 2 representagao se assemelha 2 uma
jrvore. A cada ramo associa-se um Custo de decisio e uma probabilidade de
ocorréncia. O objetivo da representagio € ponderar 0s Custos de cada n6 para se

escolher ofs) ramof(s) associado(s) a0 maior Valor Monetirio Esperado.

Para melhor compreensio, consideremos O seguinte exemplo extraido de Clemen

(1990):

Texaco versus Pennzoil

No inicio de 1984, as empresas norte-americanas fabricantes de derivados de
pettoleo Pennzoil e Geity Oil decidiram se fundir. Porém, antes que se assinassem 0
documentos formalizando a transacao, outra empresa do ramo, a Texaco, propds a
compra da Getty Oil por um prego melhor. Pennzoil julgou que a Texaco havia agido
de mi fé e processou 2 mesma pOT ter intetferido ilegalmente na transacio da
Pennzoil-Getty. Ganhou o processo € a corte determinou que a Texaco deveria pagar
uma indenizacio de 11 bilhGes de délares, 2 maior da historia norte-americana até o
momento. Texaco apelou para a corte € conseguiu uma reducio para 2 bilhdes de
dolares, porém os juros € outras carifas clevaram o total de novo para 10.3 bilhoes. O
presidente da Texaco, James Kinnear, alegou que iria batalhar na Justica até o final e
que o acordo Pennzoil-Getty desobedecia a algumas normas legais. Entretanto,

oferecen 3 Pennzoil uma indenizagao de 2 bilhdes de ddlares para encerrar O Caso.
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Hugh Liedtke, presidente da Pennzoil, foi aconselhado por seus assesSOTes de que
apenas um acordo entre 3 e 5 bilhes de dblares setia justo. Seus asseSSOTES também
estimaram as probabilidades de vitoria caso fosse a julgamento. A Figura 1.2

demonstra Arvore de decisio de Hugh Liedtke:

Figura 1.2: Valor Monetdrio Esperado das possiveis alternativas de decisdo de Hugh Liedtke no
caso Pennzoil-Getty. Fonte: Clemen (1 990)
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Segundo método proposto por Clemen (1990) para se calcular o maior Valor
Monetirio Esperado das possiveis alternativas, comega-se pelos ramos da arvore e
caminha-se em direcdo 4 origem, da seguinte forma:

1) Calculando os valores esperados (definidos momentaneamente) de cada ramo

da drvore quando se encontra um né e

2) Escolhendo o ramo com maior valor esperado quando se encontrar um n6 da

arvore.

Obsetrvemos a figura: caso Liedtke faga uma contra-oferta para a Texaco de US$ 5
bilhdes, existem trés situagoes possivers (letras azuis): 1) Texaco aceitar esta quantia
(probabilidade de ocorréncia de 17%), 2) Texaco recusd-la (probabilidade de 50%) e 3)
Texaco fazer contra-oferta de US$ 3 bilhdes (probabilidade de 33%).

Caso ocorra a situacio 3), Liedtke tem duas opgdes (letras verdes): 3.1) recusar a
contra-oferta, sitagio que ird 2 julgamento, com ptobabilidade de éxito de apenas 20%

e 3.2) aceita-la.

Observemos o cilculo do Valor Monetario Esperado (VME) para a 0pcao 3.1):

a) Caso ganhe, VME = 0.2%10.3=2.06

b) Caso perca, VME = 08*0=0

Como este valor é menor do que 0 obtido pela opgio 3.2) - US$ 3 bilhdes - , 0 n6
3) tera VME =3 bilhoes.
Seguindo o mesmo raciocinio para a situagio 2), 0 IME deste n6 sera de US$ 2.06

bilhdes. Multiplicando os valores obtidos nos noés 2), 3) e a situagio 1) pelas suas

respectivas probabilidades, temos:
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VME = 0.17%5 = 0.85 bilhao
VME = 0.5%2.06 = 1.03 bilho

VME = 0.33%3 = 0.99 bilbdo

Comparando 0s 1/ME;s dos nos 1), 2) e 3), temos que O n6 terd VME =1.03.

Finalmente, procede-se desta maneira até o inicio da atvore obtendo-se o VME do
igual 2 US$ 2 bilhdes. Em seguida, observa-se as alternativas referentes a este valor

encontrado e considera-se esta alternativa como a melhor.

Deste modo, segundo este critério 2 methor alternativa para a Pennzoil seria de

aceitar a proposta inicial de US$ 2 bilhes de dolares da Texaco para encerrat 0 €aso.

E, portanto, uma ferramenta simples e util Entretanto, carece de mecanismos mais
apurados na determinagao das probabilidades de ocorréncia de cada alternativa, O que
pode ser solucionado com © uso de modelos estatisticos. Na Secdo 1.6 estdo descritas

as principais caracteristicas destes modelos.

1.6 MODELOS BESTATISTICOS

A atividade de modelagem de problemas cotidianos com modelos matemAticos ji
existe desde o inicio do século, quando eram utilizados na 4rea de Imunologia para a
determinaciio de fatores de risco (Hair, 1979). Porém, foi a partir da década de 40 que
se impulsionou sua aplicagio, quando 2 indastria de crédito passou a utilizar 0s

modelos como base para a deciso de se conceder ou nd0 um empréstimo.
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Segundo Hand e Henley (1997), os métodos decis6rios tradicionais de concessio de
crédito para pessoas fisicas utilizavam o julgamento subjetivo do cedente do
empréstimo, baseado em experiéncias anteriores € 1OS dados do candidato 2o
empréstimo. Entretanto, 3 medida em que 2 inddstra de crédito expandiu-se, 0s
métodos tradicionais jA ndo eram mais eficazes quando aplicados a0 fornecimento de
crédito em massa, o que implicava em lentidio e um grande nimero de omissdes de
pagamento. A obtencao de disparidades nos resultados de anlise feitos pelos analistas
de crédito de maneira subjetiva era freqiiente. O mesmo acontecia com a analise para
crédito a grandes empresas, que necessitava de um nimero de informagdes da empresa

candidata suficientemente grande.

Como solucio para este problema, desenvolveram-se modelos estatisticos que
agilizam o processo, tornando-o mais eficiente e principalmente servindo de base para
decisio, substituindo o julgamento subjetivo. Deste modo, diversos modelos foram
utilizados e se desenvolveram em fungao desta atividade. Atualmente, existem diversos
modelos disponivess e seu uso é muito abrangente, embora a drea de crédito ainda seja

onde sio mais difundidos

Problemas decisérios semelhantes a0 da concessio de crédito sio encontrados no
cotidiano. O julgamento subjetivo é, em muitos casos, lento e pouco confiavel, o que
pode ser altamente custoso em determinadas situacées. Por este motivo, 0S modelos
tam sido utilizados nas mais diversas areas, como Medicina, Economia, Marketing,

Producio, Transportes, entre Outras.
Alguns exemplos de utilizacio sdo:
> Estimacio da chance de sucesso de um novo produto no mercado
> Classificacio de fornecedores de uma indéistria por ordem de desempenho
> Determinacio da probabilidade de omissio de pagamento de um emptéstimo
» Identificacio dos consumidores potenciais de um produto

> Identificacio das alteragoes demogrificas em uma populacio
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s> Fistimagio da probabilidade de ocorréncia de infarto em pacientes
> Elaboracio de rotas de 6nibus no sistema de transportes urbano
> Tdentificacio das causas de faléncia de um grupo de empresas

Uma das maneiras de se solucionar problemas como OS €XpOStos acima §é
classificando elementos de um conjunto de dados em grupos ou categorias. Por
exemplo, para se determinar as Causas de faléncia de um grupo de empresas, pode-se
tomat um conjunto de dados de empresas que faliram no passado e averiguar possiveis
causas em comum. Depois, pode-se gerar um modelo estatistico que possa set aplicado
2 um conjunto de dados de empresas atuais, para se prever a probabilidade de faléncia.
Neste caso, de acordo com 2 probabilidade estimada, pode-se classificar uma empresa
em um grupo determinado - como pot exemplo Alto, Médio ou Baixo Risco de
Faléncia.

Em analise de decisio, 0$ modelos estatisticos funcionam de modo similar a este
exemplo. Primeiramente, estima-se a probabilidade de um elemento pertencer a um
determinado grupo (através da formulacio matematica do problema) e depois
compara-se O valor obtido com valores de probabilidade pré-estabelecidos para cada
grupo. Com esta compz;,ragﬁo, classifica-se o elemento em um grupo determinado de
acordo com uma probabilidade e esta dassificacio serviri de base para 2 tomada de

decisio.

Basicamente, segundo Mizutani (1982), o processo de modelagem matematica de

um problema decisOrio resume-Se a:

1) Utilizar uma amostra de dados para gerar um modelo matematico, comumente

conhecido como fungio discriminante;

2) Utilizar a equagio em um conjunto de dados de elementos reais para tentar

prever o comportamento destes elementos;

3) A partir dos resultados da equagio, tomar uma decisao.
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A idéia é tomar uma amostra de um conjunto de dados para produzir um modelo
matematico que possa Ser aplicado a0 conjunto de dados inteiro. Isto € feito em
situacdes onde é impossivel avaliar todos os dados existentes - geralmente quando se
tem conjuntos de dados mMuito €Xtensos. Portanto, espera-se que o modelo consiga

avaliar satisfatoriamente o comportamento do conjunto.
Na pritica, o item 2) anteriormente é dividido em duas etapas:

a) O conjunto de dados ¢ dividido em duas pattes em proporgdes que variam de
50%-50% a 70%-30%, dependendo da situacao. A primeira parte € utilizada
para a formulagio do modelo e é normalmente chamada de “conjunto de
treinamento” (“training set”);

b) A segunda parte € utilizada para o teste ou validagao do modelo, normalmente
chamada de “conjunto de validagio” (“validation set”), e tem O objetivo de

verificar a eficiéncia do modelo criado.

No caso dos modelos estatisticos utilizados em anilise de decisio, que visam a
classificacio de elementos em grupos, esta eficiéncia ¢ medida pela porcentagem de

acertos/erros ou previsoes corretas/incorretas dos elementos em um determinado
grupo.

Graficamente, podemos trepresentar de modo simplificado o problema de

dassificacio de elementos em dois grupos distintos através da Figura 1.3 :
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Figura 1.3: Classificagio de elementos em dois grupos distintos. Fonte: Hair et alli (1979)
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No eixo da Figura 1.3, tem-se a probabilidade de ocorréncia da caractetistica em
questio no problema € 2 distribuicio dos elementos em fungio da mesma, que €
determinada por um ponto de corte Ze¢ (ou critétio de corte). Os elementos a esquerda
do ponto de corte s30 classificados como pertencentes a0 Grupo A e 0s elementos a
direita, como pertencentes a0 Grupo B. Observa-se a concentracio dos elementos da
amostra em dois grupos claramente distintos, cujas curvas de distribuigio tém médias
claramente distintas th, Ms. Entretanto, observa-se também que hi uma area de
intersecio das curvas. Esta drea corresponde 20s elementos que foram classificados de

modo incorreto, conhecidos como etros do tipo 1 e 2:

Erro tipo 1: elementos que na realidade pertencem ao Grupo A mas que foram

dassificados como pertencentes a0 Grupo B;
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Erro tipo 2: elementos que na realidade pertencem 20 Grupo B mas que foram

classificados como pertencentes 20 Grupo A.

A seguir, temos um exemplo de situacio onde pode-se utlizar um modelo
estatistico para auxilio no Processo decisorio, citado em Hair, Anderson, Tatham

(1979).

Exemplo: Suponhamos que uma empresa tenha decidido avaliar se seu ROVO
produto terd ou ndo sucesso no mercado. Apés ter definido como isto seria feito, a
empresa decidiu identificar, se possivel, quais consumidores comprariam O Novo
produto € quais N2o comprariam. Para auxiliar O processo de identificagio de
compradores potenciais, a empresa desenvolveu trés escalas de avaliagio a serem
utilizadas pelos consumidores na avaliagio do produto. Os fatores escolhidos foram
durabilidade (X1), desempenho (X2) e aparéncia (X3), e os resultados possiveis
variavam em uma escala de valor minimo 0 (muito ruim) e maximo 10 (excelente). Para
a empresa, uma combinagio ponderada dos trés fatores seria mais precisa na avaliagio

de um potencial comprador do que cada fator considerado isoladamente.

A Tabela 1.7 mostra os resultados obtidos para os trés fatores considerados na
avaliacio de dez donas-de-casa entrevistadas que seriam potenciais compradoras. Apbs
a avaliacio do produto sob os trés fatores perguntou-se a cada dona-de-casa se
compraria ou nio o produto. Cinco donas-de-casa responderam que compratiam €

cinco responderam que nao comprariam o produto.




USO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAQ £

Tabelz 1.7: Resultados de pesquisa para avaliagdo de um novo consumidor. Fonte: Hatr et alli

(1979)

Avaliagdo do Novo Produto
Intengdo de Numero do X1 X2 X3
Compra Entrevistado | Durabilidade | Performance | Aparéncia
Grupo 1
Compraria o produto 1 8 9 6
2 6 7 5
3 10 6 3
4 9 4 4
5 4 8 2
Média do Grupo 7.4 6,8 4,0
Grupo 2
Nio compratia o produto 6 5 4 7
7 3 7 2
8 4 5 5
9 2 4 3
10 2 2 2
Média do Grupo 32 44 3,8
Diferenca entre as Médias 42 2,4 0,2

Observando-se a Tabela 1.7, temos que no fator durabilidade (X1) ha uma
diferenca de 4,2 entre as médias dos compradores (Grupo 1) e nido compradores
(Grupo 2). Isto pode ser um sinal de que a durabilidade pode ser um fator
discriminante entre os grupos, sendo uma caracteristica importante para OS

compradores (Grupo 1). As diferengas entre a3 médias no fator apaténcia (X3) é de




USO DE REGRESSAO 1L.OGISTICA COMO FERRAMENTA DE DECISAO

0,2, indicando que este fator possa setr Menos discriminante em termos de identificar 08
compradores.

Apesar de a quantidade de informacio ser relativamente pequena, 2 titulo de
ilustracio vamos observat O comportamento  dos padrdes de resposta dos

entrevistados na Figura 1.4:
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Figura 1.4: Andlise de de3; potenciais compradores de um novo produto. Fonte: Huair et alli (1970)
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Observa-se uma maior concentragio de célula de mesma cor 1o fator durabilidade
(X1), enquanto que no fator desempenho (X2) a concentragio nio é tio grande e no

fator aparéncia (X3) as células coloridas se misturam a0 longo da escala.
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Considerando-se apenas o fator durabilidade (X1), observa-se uma discriminagao
quase perfeita nos dois grupos, entre os valores 5 e 6 da escala. Se utilizissemos um
valor de corte entre estes valores, por exemplo 5.5, para separarmos 0S entrevistados
em dois grupos distintos (potenciais compradores ou nio) para o fator considerado,
conforme indicado na figura, observaremos que praticamente todos oS elementos
estatiam classificados no grupo cotreto, com excecio do entrevistado niimero 5, que

seria erroneamente classificado no grupo de nio compradores.

Observando-se o fator desempenho (X2), nota-se que existe uma diferenciagio
entre 0s grupos, embora nao seja tio grande. Se fosse utilizado 0 mesmo valor de corte
_ 55 - o entrevistado numero 5 estarm cotretamente classificado no grupo de
potenciais compradores, enquanto oS entrevistados nimero 4 e 7 estariam
erroneamente classificados. Entretanto, 0S entrevistados que seriam classificados 1o

grupo errado atilizando-se X2 estariam cotretamente separados no fator X1.

E, finalmente, observando-se O fator apaténcia (X3), nota-se que ha pouca
diferenciacio entre os grupos. Portanto, X1, X2 e X3 podem ser utilizados ew
combinagio pata se prever O grupo em que um entrevistado se enquadra, criando-se uma
funcio discriminante, atribuindo X1 e X2 em maior peso e X3 em menor peso, tal que

maximize a separa¢io dos grupos em uma determinada amostra.

Os modelos estatisticos procedem de modo similat 2 este exemplo hipotético,
identificando as varidveis com maior poder de discriminagio entre OS grupos e
atribuindo pesos para cada varidvel que reflita estas diferencas, para em seguida utiliza-
los na formacio de uma fungao matemitica que separe Os entrevistados em cada
grupo. Deste modo, a empresa poderd utilizar a funcio para prever S¢, em um

determinado mercado consumidor, seu produto terd sucesso ou nao.

A Figura 1.5 representa O problema anteriormente discutido:
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A Figura 1.5 representa o problema antedormente discutido:

Fignra 1.5: Funedo discriminante de elementos em dois grupos distintos. Fonte: Hair et alli (1979)

Para que possamos entender a necessidade dos modelos estatisticos na tomada de
decisio, veremos a seguir o que € a analise de crédito e como os modelos estatisticos
sio utilizados na concessio de crédito. Entretanto, o motivo principal é conhecer O
sistena de "escoragem” de crédito utilizado para 2 modelagem de problemas de analise
de crédito cujos procedimentos sio semelhantes 3 maioria dos sistemas utilizados na

modelagem estatistica de problemas cotidianos relacionados 2 andlise de decisao.
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2 CONCESSAO DE CREDITO

O termo crédito utilizado neste trabatho refere-se 3 quantia que é emprestada 2 um
devedor, geralmente por uma instituicio financeira. Esta quantidade deve ser reposta,

com juros, sob a forma de parcelas, normalmente em mtervalos regulates.

A necessidade por parte do candidato 20 empréstimo em fazé-lo demonstra sua
necessidade de recursos dos quais ndo dispde no momento, Mas que espera dispor em
um futuro proximo. Entretanto, devido 3 impossibilidade de se prever a situagio futura
do devedor ¢ de que maneira esta itd mfluir na sua capacidade de cumprir com as
obrigagdes financeiras que assumiu junto 20 credor, existe um risco para o credor na

concessio do empréstimo.

Frente a este tisco, o credor deverd estimar a futura situagdo de seu cliente para
avaliar as possibilidades deste saldar seus compromissos com 2 instituigao financeira. A
probabilidade de reposigio do empréstimo pelo credor (ou 2 probabilidade de omissio
do pagamento) é estimada através de informacSes fornecidas pelo credor a instituigao
Gnanceira. Esta estimativa servird de base para uma decisio da instituicio de fornecer
ou nio o empréstimo. Uma estimativa precisa serd vantajosa para a mesma, A que

diminuiri o fsco do empréstimo. Este processo chama-se analise de crédito.

O processo tem COMO objetivo a classificagio de um credor em duas classes
distintas: aqueles com probabilidade satisfatoria de reposigio do empréstimo feito ¢
que portanto receberdo o empréstimo e aqueles com probabilidade abaixo da desejada
e que portanto nio receberdo o empréstimo. Por este Motivo também é chamado de

classificacio de crédito (“credit scoring”).
O processo de classificagio de crédito apresenta as seguintes dificuldades:

> Grande quantidade de informagoes envolvida - no caso de um grande numero

de candidatos a empréstimo;
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> Diversidade de aspectos a serem considerados nas varias mformagoes;
> Importincia celativa a ser dada a cada informagao;

> Multiplicidade de enfoques envolvida na decisio de concessao;

> Necessidade de um processo ripido e confiavel

Existe, portanto, 2 pecessidade de um sistema que auxilie o processo de decisio em

anslise de crédito, procurando diminuir o risco envolvido.

Neste caso, os modelos estatisticos tém cOmo objetivo a classificacio de um
candidato a empréstimo em duas categorias - alto € baixo fisco de empréstimo. Esta
classificacio servira de base para o credor decidir pela concessao de emptéstimo Ou
nao.

Sua utilizagdo traz OS seguintes beneficios:

» Aumento da confiabilidade dos resultados;

» Reducio do tempo de avaliacao;

> Concentragio das informacoes do cliente, tornando a avaliagio mais global;

> Possibilidade de utilizagdo de um sistema de informagdes, que possibilita uma
série de outros recursos como confeccio de graficos, histoticos e simulagio de

dados dos clientes.

21 CLASSIFICAGAO DE CREDITO

A dlassificacio de crédito € uma atividade altamente difundida na sociedade
brasileira, visto que ¢ necessaria para a concessio de empréstimo pard nQmeras

atividades, como a compra de automoveis, IMoveis Ou MESMO para empteendimentos
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de pessoas fisicas a cmpresas de grande porte. Nos 4ltimos anos, tem sido muito
utilizada para a concessao de crédito para empresas, principalmente as microempresas,

que geralmente iniciam suas atividades apos a realizacio de um emptéstimo.

Segundo a empresa norte-ameticana de concessao de crédito Freddie Mac (URL:
www.freddiemac.com/ function/fm-homby/ creditsc.htm), 2 classificagio de crédito
bem feita traz beneficios tanto para quem concede, quanto para quem requisita O
empréstimo.

Para quem concede (no caso, 2as instituicoes financeiras privadas ou
governamentais), isto significa uma diminuicio na porcentagem de empréstimos que
ndo sio pagos. Geralmente, eStas despesas com empréstimos que n3o sio pagos s30
compensadas com um 2umento 008 juros aplicados as parcelas de pagamento do
empréstimo. Com 2 diminuicio nesta porcentagem, oS juros cobrados 520 MENOLES, ja
que o tisco de empréstimo é menor. Isto, 2 médio e longo prazo, significa um aumento
de lucro gerado por dois fatores: 1) diminuigio dos custos diretos: 0s empréstimos que
njio sio pagos € 2) aumento na demanda pela diminuigao dos juros cobrados.
Consequentemente, quem requisita O empréstimo pode obté-lo a juros mais baixos, O

que no caso de uma empresa podera significar uma economia consideravel.

55 SISTEMAS DE CLASSIFICACAO DE CREDITO

Com o aumento da competigio entre 25 empresas, aumentou-se também 2
demanda de crédito. Isto levou 3 utilizacio de diversos modelos estatisticos para
auxiliarem O Processo decisério de fornecimento do crédito, o que foi facilitado pelo

desenvolvimento da indistria eletrdnica como um todo. Estes modelos sao chamados
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de sistemas estatisticos de classificacio de crédito. Discutitemos a seguir seu

funcionamento e desempenho.

2.2.1 FUNCIONAMENTO

Os sistemas de classificagio de crédito utilizam dados pessoais do candidato 2
emptéstimo para © ausflio na decisio de se conceder ou nio O empréstmo.
Geralmente, o resultado obiido é um indice que reflete 2 probabilidade de o candidato

tepor O empréstmo.
Segundo Mizutani (1982), estes sistemas sio compostos pelos seguintes elementos:
1) Expressao para 0 caleulo da escoragem de crédito, uma combinagio de:

a) Conjunto de fatores considerados: composto pelos dados do candidato,
por exemplo, 0 ntimero de dependentes Ou posse de casa propria (sim ou
nio);

b) Pesos relativos dos fatores: a cada varidvel é associada uma constante que
denota o peso relativo de cada vatiavel considerada, ou seja, coeficientes

de ponderagio;

2) Pontos de corte, associados a uma probabilidade (ou critério de corte):
candidatos com “escoragem” maior que O critério de corte sio considerados

“aceitos”, caso contrario, € recusada 2 proposta;

3) Rotina operacional: sistema computadorizado, capaz de realizar a rotina de

atribuicio do indice.

A Figura 2.1 representa o modelo de decisio de crédito:
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Fiigura 2.1: Modelo de decisdo. Fonte: Migutani (1982)

Preenchimento

Solicitagio

do Formulario

A

‘Atribuicio do
Indice

Alto /\ Baixo
rtério de Rl

Decisao

.+ Aceitar -

Quanto a0 tipo de informacio utilizada, 0s diversos sistemas de classificacao de
crédito disponiveis no mercado podem ser divididos em dois grapos (Hand e Henley,
1997):

1) Sistemas genéricos: sio baseados exclusivamente na declaracio de renda do

candidato;
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2) Sistemas personalizados: §30 baseados, além da declaragio de renda do

candidato, no histérico de empréstimos do mesmo.

Na maioria dos sistemas, o principal dado observado no candidato é o seu historico
de pagamento de dividas. Outros fatotes também sio importantes: segundo Mizutani
(1982), é pratica comum 2 utilizagio de dados como idade de contas bancarias,

rendimentos, profissio, tempo de servico e valor dos bens, entre Outros.

Uma aplicagdio muito comum dos sistemas de escoragem de crédito estd no
financiamento de crédito a0 consumidor na compra, por exemplo, de um

eletrodoméstico, como ilustra o fluxograma da Figura 2.2:
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Fiignra 2.2: Processo de concessao de crédito para o consumidor em ¥ma loja de departamentos.

Elaborado pelo antor
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—— By >
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M — 82 ) v_8a }:
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Cao— —
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com juros

222 DESEMPENHO

Com relacio ao desempenho destes sistemas, Rosenberg e Gleit (1994) apud Hand
e Henley (1997) demonstraram que os modelos estatisticos produzem estimativas mais
precisas do que as baseadas no julgamento subjetivo. Também demonstraram due
apenas os modelos estatisticos conseguem lidar com um grande nimero de transagoes,

devido 4 quantidade de informagoes envolvida.
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Entretanto, os sistemas de analise de crédito podem apresentat problemas.
Treinamento inadequado de pessoal e sistemas informatizados deficientes podem
impedir 0 acompanhamento € monitoramento do desempenho dos modelos,

prejudicando seu funcionamento.

Além disso, embora se utilize um sistema com desempenho satisfatorio, O
julgamento subjetivo ainda é necessario em Certas circunstincias. Por exemplo,
algumas excegoes podem ser feitas para um candidato 2 um empréstimo que, embora
tenha um histdrico de pagamentos favoravel, nio foi capaz de arcar com Suas
obrigacdes financeiras devido a problemas de saude ou perda do emprego, Ou MESMo
para um candidato que o tenha um histético de pagamento de dividas ou que tenha

um histérico tecente e que nao forneca informacoes suficientes.

Outra situacio possivel é a de um candidato que tenha no passado ido a falénoa e,
mesmo assim, tenha uma pontuagio alta, enquanto outro, Sem nenhuma OmMIssa0
anterior de divida, tenha uma pontuagao imais baixa. Conforme dito anteriormente,

estes seriam erros do tipo 1 e Z:

Etro tipo 1: candidato de baixo risco que tem scu pedido de empréstimo negado

Exrro tipo 2: candidato de alto risco que tem seu pedido aceto

Isto decorre do fato de que as pontuagdes refletem uma combinacio de fatores de
risco, explicitadas nas informacdes fornecidas pelo candidato. Estes fatores de fisco
sio numerosos porém sutis, de modo que nenhum fator atua individualmente.
Coletivamente, sio capazes de demonstrar um sisco alto de empréstimo, resultado de

uma pontuagio baixa.

Uma outra necessidade de auxilio do julgamento subjetivo pode surgir quando se

obtém pontuagdes muito proximas do limite minimo estabelecido para a decisao, O que
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demanda uma revisio de todos 0s dados do candidato - o que ndo pode ser feito pelo

sistema.

Mesmo assim, o julgamento subjetivo nunca € t20 rapido e confidvel quanto 08
sistemas de classificagio de crédito e, para instituicoes de porte que fornecem

empréstimos em massa, também é uma opgao mais econdmica.

2.3 EVOLUCAO DOS METODOS DE  ESCORAGEM DE
CREDITO

O primeiro estudo publicado sobre um sistema de classificagio de crédito foi
realizado por Durand (1941). Centenas de empréstimos “bons” e “maus” (ou seja,
saldados e nio saldados), retirados de arquivos de bancos COmercials, empresas de
financiamento 4 pessoa fisica, empresas de financiamento para a compra de
automoveis ¢ eetrodomésticos € Cmpresas de financiamento i inddstria, foram
anatisados utilizando-se 2 Andlise Discriminante. Os resultados mostraram uma boa
predicio de pagamento dos empréstimos feitos em 20 bancos de varejo e em 9

empresas de financiamento 2 indastria.

Um posterior estudo feito por Wolbets (1949) em uma rede de lojas de
departamentos internacional. Desenvolveu um modelo de andlise formado por um
conjunto de fatores multiplicados por seus respectivos coeficientes de ponderagdo ¢
aplicou-o 2 um determinado conjunto de dados. Postetiormente, aplicou 0 MESMO
modelo em outro conjunto de dados e checou os resultados, conseguindo demonstrat
que o nimero de perdas com empréstimos Nao saldados poderia ser reduzido em 7%,

ou melhor, seu método conseguiu classificar negbcios saldados ¢ nao saldados com
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uma precisao de 7% 2 mais do que a obtida com o julgamento subjetivo utilizado na

empresa até entio.

Na década seguinte, Myers ¢ Cordner (1957) realizaram um estudo em uma
empresa de empréstimos a pessoas fisicas em Los Angeles (EUA), demonstrando uma
possivel redugio de perdas de 24% com empréstimos ndo saldados. Qutro estudo,

realizado por McGrath (1960) apontou uma possivel redugio de 20% nas perdas.

Entretanto, Myers (1963) apontou algumas dificuldades de aceitagio destes

modelos no mercado da época:

1) Uma relutincia natural por parte dos analistas de crédito mais experientes 2

abandonar o julgamento pessoal por testes relativamente novos;

2) A incapacidade inicial dos computadores de executarem 0OS modelos com uma
precisio de acertos suficientemente grande que resultasse em uma redugio

substancial nas perdas;

Nos anos posteriores €stas dificuldades foram superadas, principalmente pelo
desenvolvimento dos modelos estatisticos vinculado ao advento de computadores de

maior desempenho (nota do autot).

Atualmente, seu uso é muito difundido. O nfimero de varidveis consideradas &
muito maiot e o tamanho das amostras utilizadas chegam a 100.000 unidades. Segundo
Eisenbeis (1996), existem  empresas norte-americanas  especializadas  no
desenvolvimento de modelos para produtos especificos € também na venda de
“escoragens” de crédito padronizadas para © mercado. Além de servirem para uma
decisio de fornecer ou nao o empréstimo, os modelos vém sido utilizados para O
estabelecimento do valot e juros do empréstimo de acordo com seu risco € para se

prever o faturamento proveniente da utilizacao de cartdes de crédito.
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A difusio da utilizacio de escoragens de crédito também é resultado de um esforgo
de automag¢io do processo decisério de concessio de crédito, impulsionado por

diversos fatores, entre eles:

1) A diminuicio das margens de lucro tem forcado as mstituigoes 2 diminuir seus
custos e aumentar sua eficiéncia, resultando em um tratamento mais sistematico

do processo;

2) A existéncia de grandes bancos de dados tem possibilitado os pesquisadores
investigar padrdes de omissio e nio omissdo de pagamento, aumentando a

eficiéncia dos modelos;

3) Uma tendéncia de se estabelecer programas de crédito para pequenas empresas,
o “microcrédito”. Segundo Eisenbeis (1996), esta € a tendéncia atual do
mercado. Uma particularidade do desenvolvimento de escoragens de crédito
para esta finalidade ¢ uma maior precisio obtida com dados dos altos executivos
destas pequenas empresas, principalmente dados referentes 4 utilizagdo de seus

cartoes de crédito.

A seguir, veremos quais 30 OS modelos estatisticos mais utitizados na analise de

crédito.
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3. MODELOS ESTATISTICOS

Como visto anteriormente, os modelos estatisticos aplicados 4 anilise de crédito
utilizam vatiiveis de predigdo ptovenientes de questiondrios preenchidos pelos

candidatos a0 empréstimo para estimar as probabilidades de omisso do pagamento.

No Anexo A, encontra-se um tipico exemplar de ficha cadastral utilizada neste
processo. A decisdo de concessio ou nio do empréstimo é tomada através da

comparagio da probabilidade estimada com uma probabilidade limite preestabelecida.

Dentre os diversos modelos existentes, apenas 08 seguintes serio descritos aqui:
Analise Discriminante, Regressao Logistica € Métodos de Programagao Matematica,
visto que sd0 0s mais utilizados. Faremos uma descri¢io superficial dos modelos, de
modo 2 possibilitar a comparagao entre as caracteristicas basicas de cada um, o que
serd feito na Segdo 3.6. A descrigio detalbada do modelo de Regressio Logistica sera
feita no Capitulo 4.

Antes que se prossiga, € conveniente que se faga uma descricio dos termos que
serio utilizados tanto na Anilise Discriminante como na Regressio Logistica, em

especial as varidveis de predicio e “dummy”.

31 VARIAVEIS DE PREDIGAO

Dada uma funcio da seguinte forma:

Y = F(X Xy Xgren X ) (3.1)
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A variavel Y é chamada de vanavel resposta ¢ é funcio das varidvels X1, Xz, X5, ey
Xy, Estas sio chamadas de varidveis de predigdo porque iric determinar o valor da
variavel resposta Y. Considera-se que o resultado de uma variavel seja independente do

cesultado de outra, de modo sdo chamadas de “varidveis independentes”.

De um modo geral, as varidveis independentes sio divididas em dois grupos

distintos:

1) Varidveis métricas: mensuriveis de algum modo. Podem ser de dois t1pos:

a) Continuas: obedecem 2 valores continuos, sem interrupedes. Exemplos:

pressio sangiiinea, idade, altura de um individuo, 4rea de seu domicilio;

b) Discretas: obedecem 2 valores pontuais, geralmente resultados de
contagens. Exemplos: namero de cobmodos e niimero de filhos de uma
familia;

2) Varidveis pio-métricas: nio podem ser quantificadas, portanto, nio sdo

mensuriveis. Podem ser de dois tipos:

a) Ordinais: embora nao mensurdveis, é possivel colocar os possivets
resultados em uma ordem determinada, crescente ou decrescente.
Entretanto, a distAncia entre dois resultados possiveis ¢ subjetiva.
Exemplos: grau de satisfacio do cliente (muito satisfeito, satisfeito,

pouco satisfeito, insatisfeito), grau de escolaridade (alto, médio, baixo);

b) Nominais ou categoricas: nio é possivel se estabelecer uma ordem entre
os possiveis resultados. Exemplos: estado civil (casado, solteiro, outro),

cor dos olhos (azul, verde, castanho, negro).
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3.2 VARIAVEIS “DUMMY”

As varidveis nio-métricas podem assumir k > 2 resultados possiveis. E interessante
transformar a vatidvel nio-métrica com & > 2 resultados possiveis em k —1 varidveis
“dummy”, porém todas elas com apenas 2 resultados possiveis de modo a facilitar 2
interpretagio dos coeficientes (ou pesos) na Analise Discriminante e Regtressio

Logistica. Geralmente, utiliza-se resultados possiveis 0 ou 1.

Considere o seguinte exemplo onde uma varidvel nominal assume 4 resultados

possiveis: A, B, C ou D. A transformagio procederia do seguinte modo:

Tabela 3.1: Codificagio através de varidveis “dummy”. Fonte: Hosmer e Lemeshow (1989).

Adaptado pelo auntor
VARIAVEIS "DUMMY" (K- 1 =3)
CATEGORIAS (k =4) DI D2 D3
A 0 0 0
B 1 0 0
@ 0 1 0
D 0 0 1

Obsetva-se que a categoria A eqiiivale as varidveis D1, D2 e D3 iguais a Zero;
categotia B eqiiivale & varidvel D1 = 1 e as demais iguais a zero € 2 categotia C equivale
3 varidvel D2 = 1 e as demais iguais a zero. Deste modo, o nimero minimo de

varidveis “dummy” para £ categorias é sempre & —1.

Procederemos agora i descrigio do modelo de Andlise Discriminante.
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33 ANALISE DISCRIMINANTE

O valor da funcio discriminante, Y, ¢ estimado através das informacdes de um
conjunto de variaveis de predigio X1, Xoy X5, vy X2t segundo a expressao (3.1). A

funcio F(X,,X,,X;,..,X,)pode ser uma funcio lineat, isto &

f(X13X29X39'"=X;1)=ﬁ0 +ﬁ1X1 +ﬁ2X2 +"'+ﬁan (3'2)

onde f,,B,,Bss--» B, 530 constantes ou pesos.

Ou seja, a varidvel resposta Y ¢ fungao das varidveis do problema multiplicadas por
seus respectivos coeficientes de ponderagio. Poderi assumir apenas dois valores
distintos: 0, caso a caracteristica de interesse no problema esteja ausente ou 1, caso tal

caracteristica esteja presente.

Segundo Johmnson e Wichern (1982), existem varios modelos de fungbes
discriminantes. A mais comum é a fungio discriminante de Fischer (ou Regra de
Fischer):

Dadas duas populagbes 7, € 7, tespectivamente representadas pelos vetores
X, =%, Xy -] € % =X ¥ .. %,,]' onde ¥Xij é média da j-ésima caracteristica da
populagio 7 (exemplo: idade, altura, renda). Consideremos também que as matrizes de

varidncia-covaridncia amostral S22 e S22 sejam as estimativas das varidncias e

covariincias das caracteristicas dos desvios-padrio de cada populagio.
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Sob a suposicio de que possuem a mesma estrutura de varidncia-covaridncia, sera
construida uma matriz combinada S?, a matriy varidnia-covaridncia ponderada (vide

Johnson e Wichern, 1982).

Segundo a Regra de Fischer, devese alocar um determinado elemento

Xy = [Xgy Xy - Xo,] €M 7T, SE

e o il  hewah o=
y, = (%, -%,) S, 2m=5(x1-x2)‘S (X +X,) (3.3)
ou
y,—m=z0

B t A
Deve-se alocar elemento x, =[x, Xg, ... X,,] pata m,se:

Yo <t (34
ou
V,—m <0

Além deste modelo, existem outras que envolvem os custos de classificagio

(Johnson e Wichern, 1982) que ndo serdo descritas aqui

Devido 2 relacio de dependéncia da vartidvel resposta Y com as demais vatiaveis de

prediciio, esta varidvel é chamada de “varidvel dependente”.

Pelo fato de que assume apenas dois valores possiveis, esta variavel é uma varidvel
categbrica bindria ou dicotomica. Em conseqiiéncia, a Anglise Discriminante &

amplamente utilizada como ferramenta de decisdo - que em muitos casos resume-se a
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escolher uma alternativa dentre duas alternativas possiveis. Também é freqiientemente
aplicada a situagoes onde o objetivo principal é identificar um grupo ao qual um objeto
(uma pessoa, um produto ou uma empresa) pertence. Pode ser utilizada, por exemplo,
para prever se uma empresa terd sucesso ou nio em determinado empteendimento,
cassificar funciondrios de uma empresa em areas de interesse profissional ou até
mesmo prever O Sucesso ou fracasso de um produto novo a set Jlangado no mercado.
Seu uso ¢é altamente difundido e esta presente nos principais softwares estatisticos

disponiveis no mercado.
A seguir, veremos ufll exemplo citado em Johnson e Wichern, 1982:

Consideremos duas populagdes em uma determinada cidade — Populagio 1:
habitantes que possuem cortador de grama, € Populagio 2: habitantes que N0
possuem cortador de grama. Um fabricante de cortadores de grama deseja classificar as
familias da cidade em dois grupos distintos: potenciais compradores € N0
compradores de cortador de grama, de modo 2 direcionar sua campanha publicitaria.
Utilizou-se o seguinite conjunto aleatério de dados de renda anual (X1) e tamanho do

terreno da residéncia dos habitantes (X2):
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Tabela 3.2: Dadors de renda anual ¢ tamanho do lote dos habitantes de uma determinada cidade.

Fonte: Jobnson e Wichern (1982)

e —

Populaciiv 1: habitantes i pOSSie?’0 produto

X1 (renda amual X2 (tanmanho do tereno
em milhares de dolares) em moilhares de pés quadrados)
600 184
85,5 16,8
64,8 21,6
61,5 2038
87,0 23,6
1101 192
1080 176
828 24
0 200
930 208
51,0 20
81,0 200

e ————

Popudagiio 2: habitantes g€ i possuer 0 prodido

X1 (renda amual X2 (tanmanho do tereno
Bais em milhases de dolares) emn milbares de pés quadados)
750 19,6
52.8 2038
A8 172
52 N4
840 17,6
492 176
594 160
660 184
474 164
30 188
510 140

630 14,3
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Estes valotes estio ilustrados na Figara 3.1. Observa-s¢ que compradores do
produto tendem a ter cenda anual e tamanho do terreno maiores do que D0

compradores.

Figura 3.1: Renda anual ¢ tamanho do terreno de compradores ¢ ndo compradores de cortador de

grama. Fonte: Johnson e Wichern (1982)

@ Populagio 1 @ Populagio 2

26
24
22
20
18
16
14
12
10

30 40 50 60 70 80 90 100 110 120

Através da Regra de Fischer, é possivel se estabelecer limites que, nO €aso de duas
dimensdes (renda e tamanho do terreno), é uma reta. De acordo com a Figura 3.1, 2

reta separa Os elementos da amostra em nao compradores € compradores do produto
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a classificagdo de elementos pode set feita,
e Rade

e). Deste modo,
§ mesmos Nas regides Ri

Rie Ro, tespectivament
além pela localizagio grafica do
rdo com 2s rendas anuais € tamanhos dos tetrenos.

da Regra de Fischer,

aco

3.4 REGRESSAO LOGISTICA

probabilidade z de ocorréncia de um

Na Regressao Logistica, considera-se que 2
certo evento pode set escrita como fungio das yariaveis de predigao X, Xa, X5, ewer Xn
dada por:

ﬁo"‘ﬂxxﬁ‘ﬁzxz“‘---’fﬂnxn
(3.5)

(X, X x,)= L
1? 2,".’ n 1+eﬁ0+ﬂlxl+ﬁ2x2+"'+ﬁnxn

Para maior facilidade no manuseio de n(xl,xz,...,x,,), utiliza-se 2 transformagao

logaritmo da funcao (X, X250-5%n

_ﬂmﬁ&ﬁﬂ)_—}_: ﬁo + ﬁ1x1 + ﬁzxz + ..t ﬁnxn (3'6)

g(xl,xz,x”...,xn)-_:ln
1= (X, X5 X35-2%n

Para esta fungao, associa-se uma vagavel resposta Y, dependente € categorica

binaria, determinada do seguinte modo:
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Y =1,se n(X,, X, X3,...X,) 2@ (3.7
Y=0,se (X, X5 XX )@

dado 0<a <l

Atualmente é muito utilizada em modelos econométricos, predicdes de crescimento
de economias e modelos de desempenho de uma empresa 0o mercado de acordo com
diversas estratégias possivels de serem adotadas. Esta disponivel nos principais softwares

estatisticos disponiveis no mercado.

A seguir, veremos uim exemplo de sua aplicagio na irea da Medicina. Apesar de a
area desta aplicagio nao ser diretamente relacionada 2 Engenhama de Produgio, 0
exemplo a seguir mostra O tratamento estatistico de varidveis de predicio, o que € feito
de modo semelhante em aplicagdes do método na Fngenharia em geral, além de

fustrar a ampla gama de aplicagSes do método.

Esxemplo: (Hosmer e Lemeshow, 1989) Realizou-se um estudo para se identificar
fatores de risco associados 4 gestagio de bebés de baixo peso (pesando menos do que
2.500 gramas). O estudo fo1 realizado em 189 mulheres, das quais 59 deram luz 4 bebés
de baixo peso e 130 deram luz 2 bebds normais. Considerou-se quatro varidvels que se
poderiam ser sigpificativos: idade (varidvel IDA), peso da mae apds seu dltimo periodo
menstrual (varidvel PESO), raca (vatidveis “dummy” D1 e D2) e nimeros de visitas 20
ginecologista durante o primeito trimestre de gravidez (varidvel VPT). O nimero de
elementos na amostra é significativamente grande e, em conseqjiiéncia, 0 conjunto de

dados ndo sera colocado aqui.

Como visto antetiormente, as Variiveis “dummy” ctiadas para a varidvel RACA sao

as seguintes:
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ortamento da varidvel RACA.

Tabela 3.3: Varidveis “Jummy” utilizadas para descrever o comp

Fonte: Hosmer ¢ Lemeshow (1989)

Vasivel "Dumny” |
[ raca D D2
Branca 0 0
Negra 1 0
Qutra 0 10wl

A Regressio Logistica utiliza métodos que medem O aivel de significincia de cada

vatiavel no modelo formulado. No caso especifico,

dos fatores efetivamente sio determinantes para a gestagio de b

isto teria o objetivo de determinar

ebés de baixo

quais

peso.
O procedimento de estimagio dos parimetros (coeficientes) da Regressio Logistica
imilhanga’, que permite que

é feito através de um método chamado de Méixima Veross
se chegue 2 segumnte equagio para O presente modelo (no momento, 2 descrigio do

processo sers omitida, visando 2 simplificagdo do exemplo):

g(ID4, PESO, DL D2,VPT) =

1.295-0.024 % IDA —~0.014x PESO +1.004x D, + 0.43

3xD, ~0049xVPT (38

e —
1 Hstimadores de mixima verossimilhanga sdo estimadores que geram valoges para parametros des
da Regressiio Logjstica e que madmizam a probabilid.ade de se obter valores §




USO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAO TE

A fungio probabilidade em funcio da idade, peso, raga e nimero de visitas s tormna

¢ dada por:

7(IDA,PESO,D1,D2,VPT) =

e 1.295—0.024xIDA-0.014x PESO+1.004x Dy +0.433x D, —0.049xVPT

1+ e1.295—0.024><IDA—0.014xPESO+1.OO4xD1+0_433xD2—0.O49xVPT (3.9)

Observa-se que todas as variaveis examinadas no problema tém influéncia na
gestagio de bebés de baixo peso, em mMaiOr Ou menor grau. Quando aplicadas a
equagao, fornecem um determinado resultado que demonstra 2 probabilidade de que ©
bebé va nascer com baixo peso. Segundo a mesma, quanto maiores forem a idade e 0
peso antes do dJtimo periodo menstrual das mulheres, menor é a chance de que estas
déem luz a bebés considerados de baixo peso € mulheres da raca negra ¢ outras tém

mais chances de darem luz i bebés de baixo peso do que mulheres da raga branca.

3.5 METODOS DE PROGRAMAGCAO MATEMATICA

Métodos de programacio matematica podem ser utilizados quando sc¢ tem uma

funcio objetivo a se maximizar ou minimizar.

No caso da analise de crédito, deseja-se minimizar O risco de empréstimo. Segundo
modelo proposto por Kolesar ¢ Showers (1985), consideram-se dois fatores que

representam a capacidade de pagamento do candidato no futuro:



USO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAO i3

1) Risco @ associado 3 concessio de crédito ao candidato a0 empréstimo:

b b baixo risco
§=: »,onde , (3.10)
a a: alto risco

2) Decisdo da ser tomada em relagio a cada candidato:

c ¢ | CONCessao
d:{ }, onde . (3.11)
r t : refeicdo

Considere a fungio perda, 1(8,d), que representa 2 conseqiiéncia da tomada de

decisio d quando o verdadeiro estado do candidato € 8:

y>0se@=bed=r
L(B,d)= S>0se@=aed=c (3.12)
0, caso contrario

onde 7,6 sio respectivamente as perdas de se rejeitar crédito 2 um candidato de
baixo risco e se conceder crédito a um candidato de alto risco.

Considera-se agora uma regra de decisiio d(x)a ser tomada quando o perfil x do

candidato ¢ observado. O desempenho desta regra € quantificado por uma Jungiio risco

R(6,d) que reflete o custo esperado da tomada de decisio d(x) quando o verdadeiro

estado do candidato é 0.

Considere 7, a probabilidade de um candidato de baixo risco de empréstimo.
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Se denotarmos por M, (dye M, (d)as probabilidades de classificacio incorreta de
um candidato sob a regra de decisdo d(x), e utilizando 2 fungo perda (3.12), o tisco

esperado é dado por:

R(6,d) = y-M,(d), parad =t (3.13)
: 8-M (d),parad=c

Portanto, a primeira fungio objetivo a ser minimizada é min f(d):

fdy=y-m, -My(d)+8 -7, M (d) (3.14)

onde m,=1-7,

As probabilidades M, (d)<ae M ()<p, wal que @,f [0.1], geram a segunda e

a terceira funcio objetivo:

min M, (d), sujeitoa M, <a (3.15)

min M ,(d), sujeito a 7, M, (d)+n,-[1 -M_ ()< B (3.16)

A seguir, veremos um exemplo de sua aplicagdo, proposto pot Kolesar e Showers
(1985).

Exemplo: Showers € Chacrin (1981) apud Kolesar e Showers (1985) realizaram um
extenso estudo sobre a empresa norte-americana AT&T, considerando a concessdo de
linha telefénica a consumidores, utiizando trés diferentes métodos (Analise
Discriminante ¢ mais outros dois métodos desenvolvidos especificamente para O

problema; omitiremos a descricio dos mesmos pois fogem do escopo deste trabalho).
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Neste estudo, analisou-se uma amostra de 87.000 consumidores que requisitaram 2
empresa uma linha telefonica. As vardveis do problema foram fornecidas pelos

candidatos (exemplo: posse ou nao de cartio de crédito, renda anual, nimero de anos

na residéncia atual).

Posteriormente, Kolesar e Showers (1983), utilizando a4 mesma amostra deste
estudo, realizaram outro estudo atilizando método de programagio matematica.
Utilizando as funcdes objetivo (3.14), (3.15) e (3.16), gerou-se uma escoragem de
crédito apropriada. Algumas varidveis da amostra que haviam sido consideradas no
esiudo anterior nio foram consideradas; outras vatidveis que ndo haviam sido
consideradas anteriormente foram incluidas. Apesar desta modificacio, o resultado
obtido - em termos de porcentagem de candidatos classificados de modo mncorreto -

foi muito parecido com o cbtido no estudo antertot.

Agora, iremos discutir e comparar oS trés modelos ora apresentados.

3.6 COMPARACAO ENTRE OS METODOS

Segundo Hand e Henley (1997), em geral, ndo existe um método ideal. O meihor
método para um determinado problema depende de seus detathes, como caracteristicas
utilizadas, estrutura da informaces disponiveis ou até que ponto se consegue formar
categorias de classificagdo utilizando as informacdes disponiveis. Além disso, precisio
da classificagio ndo é o Umnico aspecto relevante na escotha de um método a ser
atilizado. Outros fatores também sdo importantes, como a velocidade de classificagio,
velocidade pela qual o processo pode ser revisto, a facilidade de se compreender O

método e porque, através dele, se chegou a determinada conclusdo.
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3.6.1 METODOS DE PROGRAMAGAO MATEMATICA

A aplicagdo dos métodos de Programagio Matematica em problemas de tomada de
decisio é relativamente recente. Alguns trabalhos, como 0 de Hand (1981), descrevem
como utilizat estes métodos para maximizar um fator critico - no caso, uma fungao
linear da soma dos fatores correspondentes a0s candidatos classificados corretamente.
Entretanto, segundo Kolesar ¢ Showers (1985), devido a0 fato de este métodos
gerarem solugdes deterministicas, geralmente chega-se 2 sistemas de equacdes de dificil
resolugdo. Outro problema ¢ o grande volume de dados, o que pode tornar O sistema
de equagdes invidvel, Este modelo ndo estd disponivel nos softwares estatisticos

existentes N0 mercado.

Por outro lado, a Regressao Logistica e a Anilise Discriminante sio muito
utilizados pela celativa facilidade de estruturagio do modelo e, consequentemente, OS

mais desenvolvidos. Compararemos a seguir estes dois métodos.

3.6.2 ANALISE DISCRIMINANTE X REGRESSAO LOGISTICA

Qs primeiros trabalhos sobre Analise Discriminante datam da década de 40,
quando Durand (1941) demonstrou que este método produz boas predigbes de
pagamento de empréstimos. Entretanto, Eisenbeis (1996) apresentou 2 primeira critica

3 aplicacio econbmica da mesma: “Uma das principais suposigdes na Analise
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Discriminante € que 28 variaveis independentes que descrevem os elementos dos

grupos que estio sendo medidos 530 multivariadas ¢ normalmente distribuidas” .

Na realidade, considera-se que as variaveis de predigio tenham uma distribuicao
normal (como, por esemplo, uma vatiavel do tipo “expectativa média de vida de um
determinado equipamento (anos)”). Porém, muitas vezes isto ndo ocorre (por exemplo,
» distribuicio de renda da populagio da Grande Sio Paulo). Observa-se também que 2
utilizagio de variaveis a3o-métricas - que evidentemente njo obedecem 2 uma
distribuicio normal - viola esta condigio. Este é um problema muito comun, uma vez
que mMuitos fendmenos presentes na natureza € que sio utilizados cm modelos
estatisticos sdo categOricos e njio obedecem a uma distribuicio normal, como 1O €aso
de um produto ter sido comprado ou ndo, uma Pessoa ter boa saude ou ndo, uma

empresa ter falido ou nao.

Quando ocorre esta utilizacio indevida, 0s estimadores da Anilise Discriminante
tornam-se inconsistentes, perdendo-se 2 eficiéncia de predicio, até mesmo em grandes
amostras. LLogo, apesat de amplamente atilizada e estar presente nOS principais sgftwares

estatisticos disponiveis no mercado, existem objegdes quanto a sua aplicagao.

O modelo de Regressao Logjstica tem sido utilizado durante anos; porém apenas
Truett, Cornfield e Kannel (1967) apud Press e Wilson (1978) conseguiram demonstrat
uma aphcagio de todo seu potencial, em um estudo sobre doencas cardiacas. A partir
desta publicagio - considerada um marco na utilizacio da Regressao Logistica - 2
literatura sobre O método cresceu rapidamente, paralelamente 3 diversidade de sua

aplicagdo.

Na Regressio Logistica, nio h4 restrices quanto 2 distribuicio das variveis,
inexistindo impecilhos quanto 20 WSO de variiveis nio-métricas através de varidveis de
substituicio MELricas. Considera-se que: 1) as vatidveis independentes sejam
dicotdmicas ou 2) que algumas sejam dicotdmicas € outfas obedecam 2 uma
distribuicio normal. Portanto, uma de suas vantagens € que O modelo é relativamente

flexivel: consideragoes diferentes geram uma mesma formulacio logistica.
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Press ¢ Wilson (1978), em estudo realizado em problemas classificatérios de dois
grupos  envolvendo varidveis mistas (varidveis métricas bmarias ¢ continuas)
demonstrou empiricamente que OS estimadores de maxima verossimilhanca utilizados
na Regressio Logistica si0 mais eficientes do que os estimadoses da Anilise
Discriminante, ou seja, 2 Regressao Logistica produz uma classificagzo mais precisa do

que a Analise Dis ctiminante.

O estudo mostra ainda que os tempos de compilagio e execugio computadorizada
dos modelos de Regressio Logistica sdo entre 1 e 2 vezes maiores do que os modelos
de Anglise Discriminante. Entretanto, o estudo foi realizado na década de 70 quando
ndo existiam os computadores de alto desempenho atuais. Portanto, é possivel que este

argumento nfo Seja Mais aplicivel aos dias atuais.

A seguir, veremos Outros dois estudos comparativos entre OS métodos, também
apresentados por Press e Wilson (1978). O primeiro exemplo é uma aplicagio dos
métodos na 4rea da Medicina, e o segundo, na 4rea Social. Apesar das aplicagbes em
jreas distintas da Engenharia, 0S exemplos sio muito valiosos 20 comparar
diretamente os dois métodos, além de também ilustrarem a ampla gama de aplicagOes

dos modelos estatisticos.

Estudo 1: Realizou-se um estudo no Brtish Columbia Cancer Institute, Canada,

entre 1955 e 1963, com o objetivo de classificar pacientes com cancer de mama a partit
de evidéncias clinicas e historicas dos mesmos. A dassificacdo tinha o objetivo de
medir 2 extensio de metistases nodais na formacio do cincer de mama. As variaveis
do estudo eram mistas, ambas continuas ou discretas, sendo que algumas eram
binksias. Utilizou-se a Regressdo Logistica e 2 Andlise Discriminante para 2 modelagem

do problema.

Observaram-se 173 pacientes com cincer de mama - cujas metdstases nodais foram

determinadas cirurgicamente - € com um histérico clinico completo. Os pacientes
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foram divididos aleatoriamente em dois grupos: o primeiro, com 115 pacientes fo1
utilizado para os procedimentos de dassificacio (conjunto de treinamento?) , € O
segundo, com 58 pacientes foi utlizado para validar as fungdes de estimagio do

primeiro grupo (conjunto de validagio).

A varidvel dependente de cada modelo foi definida como 0, caso os nddulos
linfaticos nio estivessem associados com a metistase, e 1, caso estivessem. As vatiivels
independentes utilizadas foram: atmero de filhos, histético de histerectomia (0 ou 1),
histérico de doencas de mama benignas durante © periodo de lactagio (0 ou e
duracio dos sintomas em meses. Portanto, trés variiveis independentes eram binarias,

uma categbrica e uma continua. Os resultados obtidos foram:

Tabela 3.4 Resumo das classificagbes de pacientes com cancer de mama por Regressdo Laogistica ¢

_Andlise Discriminante. Fonte: Press ¢ Wilson (1978)

Andlise Discriminante Regressio Logistica
Dados GrupoReal| 0 1 % de Classificagio 1  %de Classificagio

Conjunto de 0 15 6 1

Tremamento 1 33 6 67 2 17 71
Total 104 1 87 28
Conjunto de 0 31 0 25 6

Validagio 1 24 3 59 16 11 62
Total 5 3 41 17

2 Ver Segdo 1.7.1
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A Regressio Logistica dassificou corretamente 82 pacientes (65+17) dos 115
pacientes do conjunto de treinamento o que equivale a uma porcentagem de
classificacio de 71.3%. De modo andlogo, a Anilise Discriminante teve uma
porcentagem de classificacdo 10 conjunto de treinamento de 62.07%, inferior 2

logistica, 0 que também ocorreu 1o conjunto de validagao.

O estudo também forneceu dados que petmitiram 2 conclusio de qué 2 auséncia de
metistases nodais estava associada com um grande nimero de filhos e também com O
historico de histerectomia. Uma duragdo dos sintomas tmais longa estava levemente
associada i auséncia de metistases. A presenga de metastases nodais estava associada
com um histérico de doengas de mama benignas durante a lactagio € mudanc¢as no

mamilo como primeiro sintoma da doenga.

Estudo 2: Um estudo demografico realizado nos Estados Unidos na década de 70

coletou informacdes procurando explicagdes sobre mudancas populacionais. As
informacdes foram obtidas de um censo de 1973. A mudanca percentual da populagio
entre o censo de 1960 ¢ o de 1973 para cada estado foi codificada como 0 ou 1, se a
mudanca foi abaixo ou acima da mudanca média para todos os estados. As varidveis
independentes utilizadas para 0 ano de 1973 foram: renda per capita (em milhates de
dolares americanos), taxa de natalidade (percentual), taxa de mortalidade (percentual),
urbanizacio da populagio (0 ou 1 se 2 populagdo ¢ menor ou maior do que 70%
urbanizada) e auséncia ou presenca de linha costeira (0 ou 1). As variaveis
independentes eram, portanto, continuas (trés primeiras) e bindrias (duas ultimas,
respectivamente). O conjunto de dados ndo seri mostrado aqui, devido 2 grande

quantidade de elementos.

Dividiram-se os 50 estados em 5 grupos de 10 estados cada. Dividiu-se os grupos
em dois grupos distintos: O primeiro, com 4 grupos, para set O conjunto de
treinamento; o segundo, com o grupo restante, para ser O conjunto de validagdo. Os

resultados obtidos foram:
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Tabela 3.5: Porcentagem de classificacdo correta de Regressdo Logistica e de Andlise Discriminanie.
Fonte: Press ¢ Wilson (1978)

%de dassificacao correta
Método Conjunto de Tremamento Conjunto de Vahidagio
Regressio Logjstica 80 70
Anglise Discriminante 60 68

Demonstrou-se que 2 os estados com populagio em crescimento tinham taxas de
aatalidade mais baixas e taxas de mortalidade mais baixas do que os estados com
populagio em decrescimento. Também demonstrou-se que O crescimento
populacional estava associado a uma maior renda per capita € 3 presenca de linha
costeira, 0 que levou os pesquisadores 4 conclusio que oS norte-americanos, na época,

estavam procurando um bom aivel de vida - maiores salirios e um ambiente agradavel.

3.6.3 ESCOLHA DO METODO MAIS APROPRIADO

Tendo em vista as seguintes caracteristicas do modelos apresentadas nos itens

anteriores quanto a
1) eficiéncia;
2) violagio de preceitos basicos;

3) possibilidade de utilizacio do modelo no problema;
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4) caracteristicas do problema - problema decisorio do tipo “sim ou ndo” (ser ou

nio comprador potencial do produto), com variiveis mistas,

considerou-se neste trabalho a Regressao Logistica um modelo mais apropriado €

adequado para problemas envolvendo anilise de decisio.

Veremos agora o modelo de Regressao Logistica em maiores detalhes do que visto

até o momento, explicando seu funciopamento e, em seguida, aplicando-o em um

problema real.
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4. REGRESSAO LOGISTICA

Métodos de Regressio tem sido parte de praticamente todos os trabalhos
publicados que descrevem a relagio entre uma variavel de resposta e uma ou mais
varidveis explicativas. O objetivo do método é encontrar o modelo mais apropriado
para se descrever a relagio entre uma variavel de resposta (variavel dependente) e um

conjunto de varidveis explicativas (varidveis independentes).

Veremos com mais detalhes, inicialmente, 2 Regressio Logistica para um modelo
com apenas uma varidvel independente ¢, na Segdo 4.3, para um modelo com varias

varidveis mdependentes.

41 REGRESSAO LOGISTICA COM UMA VARIAVEL
INDEPENDENTE

Conforme dito anteriormente, na Regressio Logistica considera-se que a

probabilidade 7(x)de ocorréncia de uma variivel independente xem relagio a um

determinado vetor de coeficientes 8 = (B,, 5, ) seja expressa por:

A(X) =1 Ahe @
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Além disso, para maior facilidade no manuseio de #(x), utiliza-se a funcio

logaritmo de modo 2 tornar a fungio linear em funcio de x:

z(x)
1—7m(x)

g(x)= ln[ } =Pt Bix “2)

A importincia desta transformacio é que g(x) tem propriedades lineares desejaveis,
que podem ser continuas e variar de vatiar de - até +00, dependendo do valor de x.
Suponhamos agora que, no exemplo da empresa AT&T da Secdo 3.5, se tenha o
banco de dados utilizado na elaboracio do modelo para o problema. Este banco de
dados conteria os diversos elementos da amostra (no caso, os candidatos 2 linha

telefdnica) e que chamaremos de x,, e também outro dado - que chamaremos de y,-

associado a cada varidvelx, e que indica se o individuo adquiriu ou néo a linha telefonica.

Portanto, a varidvel y,é uma variivel bindria e consideramos que ela assume apenas
os valores 0 (caso o candidato x, tenha adquirido a linha telef6nica) e 1 (caso o

candidato x, ndo tenha adquirido).

Seja  7(x,)a probabilidade de o candidato 7 adquirir 2 linha telefonica. Segundo
uma distribuicio de Bernoulli, pode-se enunciar o problema do seguinte modo:
a) Se y,é igual a 1, a probabilidade de o candidato x, adquirir o produto serd
m(x,);
b) Se y,é igual a 0, a probabilidade de o candidato x; nio adquirir o produto sera

1-7(x,).
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Uma maneira conveniente de se expressar estas probabilidades para um

determinado par (x,,y,)é através do termo {(x;) abaixo, chamado de funpio de

verassimilbanca:

$(x)=m(x)" -[1-7z(x)]™ 4.3

Assim, em um determinado conjunto de dados, tém-se uma determmada
probabilidade de ocorréncia dos n diversos pares (x;,¥;), que denotaremos como
P(x,, Y13 %5, Yasr3 X5 Y,). Como cada par (x;,y;)é um evento probabilistico

independente, temos que:
P(X,,315%5, YaseennsXns Vo) = P 0 P(3, 3, ) - P(X,, 9,) (4.4)

A expressio (4.4) pode serx rescrita do seguinte modo:

1B =T1¢e) @3

A expressio (4.5) é conhecida como fungdo de verossimilbanga. E o estimador de
verossimilhanga é um determinado vetor de coeficientes 8 =(f,,8,)" tal que maximiza

(4.5). Maximizar (4.5) equivale 2 maximizar L(f) = In[/(5)], como:
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L(B) =M = 3. Ay, Il ()] + (L= y, ) Inl1 2, )} “6

Esta expressio chama-se fungdo de log-verossimilbanga (‘log-likelkhood”). Para se

determinar o vetor 8 =(f,,,)' que 2 maximiza, diferencia-se L(8)em relagio a fy ¢

B e iguala-se a 0, resultando nas seguintes equagdes:

S0y -7()]=0 | @)
€
>5[, — ()] = 0 48)

=]

Bstas equacBes sio chamadas de equagdes de verossimilbanga e as solucOes das mesmas
é o estimador de maxima verossimilhan¢a. Na Regressio Logistica, estas equagOes nio
sio lineares, de modo que as equagdes (4.7) e (4.8) necessitam de métodos especiais
para sua resolugio. Geralmente, estes métodos sio iterativos e, portanto, necessitam
de softwares para sua resolucio - que comumente utilizam o método de Newton-

Raphson, cujos detalhes de funcionamento serdo omitidos.

Retomando o vetor B=(§,,5) que da equacio (4.6), denota-se por

B =(B,,B,) o vetor que 2 maximiza e, consequentemente, o simbolo ~ & utilizado para

denotar o estimador de maxima verossimilhanga.
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4.1.1 TESTE DE SIGNIFICANCIA DOS COEFICIENTES

Apés a obtengdo da estmativa dos coeficientes associados as  varidveis
independentes, segundo Hosmer ¢ Lemeshow (1989), é interessante testar a sua
significancia no modelo. Isto pode set feito de duas maneiras. A primeira € comparar
os valotes da fungio de log-verossimilhanga do modelo (Equagio 4.6) com e sem 2
presenca da variavel independente. A segunda é através do Teste de Wald, que consiste

em testar Ho:p, =0. Como 03 estimadores de maxima verossimilhanca sao

assintoticamente nOTMais, 2 estatistica do teste é dada por:

By
Z = are 4.9
o(f,) ( )

Rejeita-se Ho: p, =0 s¢ médulo de Z for menor que Z 20 nivel de at/2 .

Neste presente trabalho, o Teste de Wald serd utilizado para identificar 2

significAncia das variaveis independentes.
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4.2 REGRESSAO LOGISTICA COM DIVERSAS VARIAVEIS
INDEPENDENTES

Generalizando a Regressdo Logistica com uma {inica varidvel independente para

diversas varidveis independentes, considera-se que a probabilidade 7(Xy, Xg 5 n X, ) AE

ocorréncia de um conjunto de varidveis x'= (%,,%,,.-,X, ) em relagio a um determinado

vetor de coeficientes B8'= (B, Bio---» B,)seja expressa por:

g(xlaxi',e-v-’xn)

e €
ﬂ(xpxza"'s xn) - 1+eg(xl,»2,...,x,,) (4-10)
onde
7(%Xy, X550 5% ,)
g(xlvxZ')"':xu):ﬂU +ﬁ1x1 +ﬂ2x2 +"'+ﬁpxp =1n[1_’r(]xl’2xz,”.,xn)] (4'11)

Caso se utilize k, —1 varidveis “dummy”? para a j-ésima varidvel independente,

denotadas por D, , 2 equagio (4.11) se torna:

3 Ver Segiio 3.2
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k-1
g(xnxzs---,xn) = B, +Bix + f,%; +---+Zﬂquju +ﬁpxp @412

u=l

onde 8,,,u= 1,2,....k; —1 sdo os coeficientes das varidveis “dummy” D, .

A estimacio dos parimetros também ¢ feita através da maxima verossimilhanga,
assim como o teste de significAncia dos coeficientes também ¢é feito pelo Teste de

Wald.

Segundo Hosmer e Lemeshow (1989), uma atengao especial deve ser dada a0 caso
de regressio com varias variaveis independentes. Semelhantemente i Regressdo Linear,

deve-se tracar estratégias para escolha do modelo 6timo segundo algam critério.

No Capitulo 5, iremos apresentar um exemplo pratico do modelo de Regressdo
Logistica e no Capitulo 6 estd detalhada a estratégia utilizada para escolher o modelo

otmo.
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5. APLICACAO DO MODELO

O presente trabalho apresenta 2 aplicagio do modelo de Regressio Logistica em
um problema encontrado em uma empresa % de cartdes de crédito. Ela € uma
dministradora de cartdes de crédito multinacional e de grande porte, com mais de um
milbdo de clientes em todo 0O Brasil. Dentre os produtos que oferece, destaca-se O
Seguro de Vida, que ja existe ha alguns anos € é divulgado a todos os clientes que
utilizam o cartio de crédito. Como 2 empresa fem uin niimero muito grande de
dientes, a divulgagio do produto parma todos eles é muito custosa e lenta. Assim,
necessita-se saber quais clientes s30 potenciais compradores do Seguro de Vida para
que entdo seja feito um programa de Marketing direcionado, como por exemplo o

envio de mala-direta.

A empresa possul 08 dados pessoais de cada cliente que adquiriu o Seguro de Vida,
provenientes das fichas cadastrais preenchidas por cada um ao adquitir seu cartio de
crédito. Iremos utilizar 2 Regressio Logistica para criar um modelo que possa set
atilizado no conjunto total de clientes da empresa no Brasil procurando identificar

potenciais compradores do Seguro de Vida.

O modelo matematico ird estimat comM Uma determinada probabilidade quais 30 0S
potenciais compradores do produto, direcionando o investimento de Marketing para
estes individuos. Apesar de ndo dispormos de dados 2 respeito do total a ser mvestido,
faremos a seguir uma wustragao da situacio através de um diagrama de 4rvore de

decisio.

Apbs a divulgacao do Seguro de Vida, existe 2 possibilidade de o individuo comprar
o produto ou nao. Deste modo, segundo o critério do Valor Monetirio Esperado da

Secio 1.4.2, teremos O seguinte modelo:
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Figura 5.1: Arvore de decisdo do problema da empresa X. Elaborado pelo antor

VALOR MONETARIO
ESPERADOQ

M*X*1*C
RETORNO

X
Cliente compra

INVESTIMENTO o Seguro do Vida

TOTAL EM MARKETING

DIRECIONADO RETORNO

NULO
Cliente ndio compra
o Seguro de Vida

Probabilidade de acerto do modelo Prohabilidade de compra do Seguro de Vida

onde
M : Probabilidade de acerto do modelo, ou seja, confiabilidade
C : Probabilidade de que 08 individuos comprem o produto

I : Investimento total do Marketing direcionado

Sendo X-I 2 estimativa de retorno do investimento total (ou seja, 0 quanto 2
empresa estima que ters de retorno investindo uma determinada quantia I, onde X é
um valor maior do que 1 para que O investimento valha a pena, e C 2 probabilidade de
que um individuo tendo recebido a divulgagao do produto v4 compti-lo, © retomo
esperado serd C- X - 1. Entretanto, existe 2 probabilidade de acertos M do modelo, e

portanto espera-se¢ queé © Valor Monetario Esperado do investimento I seja
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M-C-X-I,como mostra a Figura 5.1. Observa-se que quanto maior € M, maior sera

o Valor Monetario Esperado para 2 empresa.

O problema da Empresa X, portanto, resume-se 2 classificar clientes em
compradores potenciais ou 3o - 0 que & semelhante a um problema de crédito ja que
seu objetivo é classificar clientes alto ou baixo tisco de empréstimo. Ou seja, O objetivo
dos dois problemas € o de classificar elementos em dois grupos distintos, para servir de
base para uma decisdo de Juas alternativas, mutuamente exclusivas (no caso do Seguro

de Vida, divulgar ou nio o produto).

5.1 CONJUNTO DE DADOS

A empresa X fornecen um conjunto de dados reais provenientes dos
formularios que sio preenchidos quando os clientes adquitem o cartio de crédito. O
conjunto de dados foi coletado aleatoriamente entre os clientes da empresa, contendo
assim individuos que comptraram € individuos que ndo compraram O Seguro de Vida.

Os dados encontram-se no Anexo A.

O conjunto de dados tem 2134 elementos dos quais coletou-se as segumtes

informagdes:

1) Sexo

2) Renda

3) Idade

4) Profissio

5) Codigo de Enderecamento Postal (CEP)

6) Compra do produto
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Veremos cada item anterior em detalhes na Secio 5.2. As tabelas utilizadas na
confeccio dos grificos, bem como 2 andlise estatistica completa de cada item,

encontram-se nos Anexos A e B respectivamente.

5.2 ANALISE DESCRITIVA DOS DADOS

Antes de utilizarmos o modelo de Regressio Logistica proptiamente dito, é
indispensivel que observemos o comportamento dos dados do conjunto, através de
graficos e tabelas (como, por exemplo, uma correlagio entre idade e compra ou nio do

produto). Isto permitiri uma maior familiaridade com o conjunto.

Postetiormente, apos realizado o modelo de Regressdo Logistica, deve-se verificar

se os dados obtidos no modelo sao compativeis com os dados observados

graficamente neste estudo prévio.

Primeiramente, o dado de compra informa se o individuo comprou ou nio 0 Seguro
de Vida: 1 — comprou e (0 — nao comprou. Observa-se na Figura 5.2 que 43,35% dos

elementos do conjunto de dados comprou o produto:



USO DE REGRESSAO LOGisTICA COMO FERRAMENTA DE DECISAO P

Figura.5.2: Porcentagenm de compra dos elementos do conjunio de dados. Elaborads pelo autor

Porcentagem de Compra: Qualificagio da Profissao

100,00% 1 —
90,00% -
80,00% 4|
70,00%
60,00% |
50,00%
40,00%
30,00%

J

]
20,00% ~|

1

10,00%
0.00%

Alta Meédia Qutros

A Comprou [ Nio comprou

Obsetva-se que a porcentagem de elementos do conjunto de dados que compraram
o Seguro de Vida é menor do que a potcentagem de elementos que ndo O compraram.

Entretanto, a diferenga entre as porcentagens nio é muito grande.

Quando a0 sexo, observa-se na Figura 5.3 que 71,32% dos elementos da amostra
pertence a0 $€x0 masculino. Além disso, observa-se nas Figuras 5.4 e 5.5 que 59,66%
dos elementos do sexo masculino comprou o produto, enquanto que entre as mutheres

apenas 50,65% comprou.
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Figura 5.3: Porcentagem dos elementos do conjunto entre o5 sexos. Elaborado pelo antor

Porcentagem de Compra: Faixa Etiria

100,00% 1
80,00% -
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Figura 5.4: Porcentagem de compra dos elementos do confunto de dados de sexo masculino.

Elaborado pelo autor
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Figura 5.5: Porcentagem de compra dos elementos do conjunto de dados do sexo feminino. Elaborado

pelo antor

Distribuigdo Percentual: Regides do Brasil

100% ] — I

0%

80% -
T0%
60% -
50% -
40% -
30% A
20% —“

10%
0% +——1—— — — - —
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0% de Compra 0% de Niio Compra

Quanto 4 renda, pode-se obsetvar pela Figura 5.6 que grande parte dos elementos
do conjunto de dados esta situada na faixa de até R$10.000,00:
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Figura 5.6: Histograma de Renda dos individnos do conjunto de dados. Elaborado pelo antor

[<}]

©

o

[

Qo

e | B
3 ;
1= 1000 —

g

(4]

L&)

c ]
@ 50— 2
s |

(=2

[1})

L=

(1

I
0000 100000 150000

Renda (R$)

No Anexo A2 (“Confeccio dos Graficos™), pode-se obsetvar que

aproximadamente 95% da amostra esta situada na faixa de até R$ 10.000,00.

Observemos agora o comportamento do conjunto quanto a compra do produto

por faixas de renda:
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Figura 5.7: Porcentager de compra dos individuos do conunto de dados por faixa de renda.
Elaborado pelo antor
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Observa-se pela Figura 5.7 que a porcentagem de elementos que comprou o
produto é maior a partit da faixa de renda de R§ 4.000,00.

Vejamos agota o comportamento do conjunto de dados dos elementos com renda
até R$10.000,00 para que possamos obsetvat apenas os elementos mais representativos

do conjunto:
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Figura 5.8: Histograma de renda dos individuos do comjunto de dados com renda até RE10. 000,00.

Elaborado pelo antor
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Observa-se pela Figura 5.8 que na faixa de renda até R$ 10.000,00 hi uma concentragio
em tomo de RS 2.000,00. Pela Figura 5.9, pode-se observar também que nesta faixa de renda

h4 uma tendéncia de crescimento na porcentagem de compra:
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Figura 5.9: Porcentagem de compra dos individuos do conjunto de com renda até R§10.000,00.
Elaborado pelo antor
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A profissio dos individuos foi codificada segundo critério utilizado pelo Instituto
Brasileito de Geografia e Estatistica (IBGE). No presente trabatho, as profissdes
foram agrupadas segundo o critério:

a) Alta qualificagio. profissdes que exigem um alto nivel de especmlizacio para
serem exercidas. Exemplos: arquiteto, médico, jornalista, psicélogo, piloto de

2eronaves;

b) Média qualificacie: profissGes que exigem um nivel menor de especializagio para

serem exercidas. Exemplos: trabalhador florestal, motorista, jornaleiro, barbeiro;
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¢) Outros. nesta categoria estio incluidos os individuos de baixa qualificagio
(exemplos: manobrista, trabalhador de construcio civil, auxiliar de enfermagem,
doméstica), inativos (exemplos: pensionista, militar reformado, profissional do
lar) e diversos (exemplos: empresirio, proprietirio de estabelecimento de
servicos, bolsista/estagiario, capitalista recebendo rendimento de aplicagdes

financeiras, sacerdote ou membro de ordem ou seita religiosa, autonomo).

Pela Figura 5.10, obsetva-se que 49,30% dos elementos do conjunto de dados
pertence a0 grupo de profissGes de alta qualificagio:

Figura 5.10: Porcentagem dos elementos do conjunto por qualificagdio da profissdo. Elaborado pelo

antor

Porcentagem de Qualificagio da Profissao

) 49,30%

O Alta @ Média

O Qutros

Dentre os grupos de profissdes, a porcentagem de compra é maior entre Os

elementos de alta qualificagio profissional, conforme 2 Figura 5.11:
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Figura 5.11: Porcentagent de compra dos elementos do conjunto por qualificagdo da prafissdo.

Elaborado pelo autor
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A idade do individuo se refere a sua idade na época em que adquiriu 0 cartio de
crédito, expressa em anos. Podemos observar pela Figura 5.11 que a média de idade

dos elementos é em tormo de 40 anos:
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Figura 5.11: Histograma de idade dos individuos do conjunto de dados. Elaborado pelo autor
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Também observamos pela Figura 5.12 que a porcentagem de compra é crescente

até os 60 anos, sendo maior na faixa dos 36 a 60 anos ¢ decaindo na faixa etara

seguinte:
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Figura 5.12: Porcentagem de compra dos elementos do corjunto por faixa etdria. Elaborado pelo

antor
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A localizagio da residéncia de um elemento do conjunto de dados ¢ expressa 0o
conjunto de dados pelos dois primeiros digitos de seu Codigo de Enderegamento
Postal (CEP). No presente trabatho, os digitos foram agrupados segundo as seis
regides do pais, conforme tabela no Anexo A (“Tabelas utilizadas na confecgdo dos
graficos”).

Pela Figura 5.13, observa-se qu¢ 65,84% dos elementos da amostra pertencem 2

regiio Sudeste e, da parte restante, 2 maiotia pertence as regioes Sul e Nordeste:
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Figura 5.13: Diagrama de localizagio regional dos individnos do conjunto de dados. Elaborado pelo

antor
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Além disso, as regioes Nordeste e Sudeste apresentam 2s maiores porcentagens de

compra do produto, conforme ilustra a Figura 5.14:

105
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Fignra 5.14: Porcentagenm de compra dos elementos do conjunto por localigagdo regional. Elaborado

pelo antor
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Em posse do conjunto de dados e conhecendo suas principais caracteristicas, iremos

retomar 2 discussdo sobre as estratégias para obtencao do modelo.
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6. ESTRATEGIAS PARA OBTENCAO DO MODELO

Conforme exposto anteriormente, iremos tracar estratégias para 2 obtengio do

modelo 4timo de Regressdo Logistica.

Segundo Hosmer e Lemeshow (1989), estas estratégias devem possuit: 1) plano
para 2 selecao das varidveis do modelo e 2) método para averiguacao do modelo em
termos das varidveis independentes individuais e das varidveis em conjunto. Devem
também procurar obter O modelo com o menor nimero de variaveis possivel, desde
que nio percam a eficiéncia. Isto fard com que O modelo fique numericamente mais
esthvel e que possa ser mais generalizado. Quanto (mais varidveis sdo incluidas em um

modelo, mais dependente se torma o modelo do conjunto de dados.

Hosmer e Lemeshow (1989) propGem as seguintes etapas para 2 selecio de

vatiaveis independentes para O modelo de Regressio Logistica:
1) Anilise minuciosa de cada varidvel independente,
2) Selegio das variaveis independentes para uma analise conjunta €
3) Verificagio da importincia de cada varigvel incluida no modelo.

Quanto a0 método de averiguagio do modelo, propdem a utilizagdo de um dos
seguintes métodos: Método “Best Subsets” ou Método “Stepwise”. Segundo estes
autores, o segundo método € © mais utilizado, de modo que serd O escolhido para a
construgio do modelo deste trabalho. Veremos este método 2 seguir em maiores

detalhes, conforme proposto pelos autores.
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6.1 METODO “STEPWISE”

A disponibilidade da metodologia para este método na Regressio Logistica é
recente (Hosmet, Wang, Lin e Lemeshow, 1978 apud Hosmer ¢ Lemeshow, 1989). O
procedimento fornece uma maneira ripida e eficiente de se verificar um grande
atmero de varidveis independentes e simultaneamente resolver uma grande quantidade

de equagdes da Regressio Logistica.

O método é baseado em um algoritmo  estatistico que checa a significancia
estatistica de cada variivel independente no modelo. Uma das formas de se proceder
neste método é a inclusdo gradativa (em passos) de variaveis independentes no modelo,
segnida da verificagao do comportamento em conjunto de todas as Variaveis

independentes ja incluidas, do seguinte modo:

A inclusio ou exclusdo de uma variavel independente no modelo é feita com base
em um critério de decisio, que € o teste de seu valor p (“p-value”). Este valor denota a
probabilidade de o valot da varidvel ser maior do que o valor observado da variavel no
modelo. Deste modo, quanto menor O valor p, mais estatisticamente significante € 2
varidvel no modelo. O critério de decisio utilizado neste trabalho para O valot p € 5%,

acima do qual rejeita-se Ho: varidvel ¢ significante e exclui-se variavel do modelo.

Postetior 1 anilise do valor p, checa-se o valor da fungao de 1og—verossimi1hanga
(“log-likelihood™) do modelo. Quanto menor € 0 médulo deste valor (ou quanto mais
proximo de zero ¢le estiver), melhor € 0 modelo. Além disso, checa-se O modulo da
diferenca entre o valores de log-verossimilhanga ¢ graus de liberdade entre dois
modelos (sem e com 2 variavel independente que se deseja incluir) com base nos
valores tabelados da distribuicao quadrada para © nivel de significincia do critério de

decisio (no presente trabatho, 5%). Caso 0 médulo da diferenca seja maior do que ©
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valor tabelado da distribuicdo qui-quadrada para O modulo da diferenca nos valores de
graus de libetdade, isto significa que 2 inclusio da variavel ndo produziu um modelo

melhor. Deste modo, tem-se O seguinte algoritmo:

Passo 1 verificagio de todos os modelos contendo apenas uma varidvel
independente. Escolha do modelo com menor valor de log-verossimilhanca €
averiguagio do valor p da variavel sob um determinado nivel de significincia. Caso 2

varivel tenha valor p abaixo do limite desejado, procede-se para o passo seguinte;

Passo 2. verificagio de todos os modelos possivels combinando a variavel j
escolhida e as restantes. Escolha do modelo com menor valor de 1og—verossimilhang:a €
averiguagio do valor p de cada varidvel sob o mesmo nivel de significincia.
Comparacio do modulo da vatiagio do valor de log-verossimilhanga com © valor
tabelado da distribui¢ao qui-quadrada para O nivel de significancia adotado e o modulo
da variacio do valor de graus de liberdade. Caso ambas as varidveis tenham valor p
abaixo do limite desejado € © médulo da vatiagio do valor de log-verossimithanca seja
abaixo do tabelado, procede-se para O passo segwinte € assim sucessivamente, parando

quando uma das duas condicoes forem violadas.

No presente trabatho, temos as seguintes variaveis independentes: sexo, renda,
idade, profissao € localizacio. A varidvel resposta ¢ compra. As variaveis independentes
sexo, profissao € localizacio, necessitam de codificagao em vatiaveis “dummy” para

serem incluidas no modelo. Procedeu-se da seguinte maneira:

109
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1) Sexo: esta vatidvel foi codificada em varidveis “qummy” da segumnte maneira:

Tabela 6.1: Codificagio da varidvel sexo em saridvel "dummy’". Elaborado pelo autor

QUALIFICACAO DA PRO FISSAO D1
Masculino 0
Feminino 1

A vatiavel D1 serd chamada de DMSEXO.

2) Localizagao: utilizou-se a seguinte codificagio segundo a localizagao regional:

Tabela 6.2: Codificagiio da varidvel localizagio em varidveis ' "dummy". Elaborado pelo antor

LOCALIZA(;AO REGIONAL DIGITOS DO CEP DI D2 D3 D4
Norte 66269 o 0 O O
Nordeste 402 65 1 0 0 O
Sudeste 1239 o 1 0 0
Centro-Oeste 70279 ooy 1.0
Sul 802 99 i doc o al
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As varidveis D1, D2, D3 e D4 serdo chamadas de DMLOC1, DMLOCZ,
DMLOC3 e DMLOCA, respectivamente.

3) Profissdo: utilizou-se 2 seguinte codificagio segundo agrupamento proposto:

Tabela 6.3: Codificagiio da varidvel profissdo em varidveis "dummy"’. Elaborado pelo autor

QUALIFICAGCAO DA PRO FISSAO cODIGO D1 D2
Alta 101 2 388 0 0
Média 391 a 599 1 0
Outros 601 2 999 0 1

As varidveis D1 e D2 serio chamadas de DMPRO1 e DMPRQO2, respectivamente.

Quando s variaveis renda e idade, apesar de nio necessitarem de codificagio
obtigatéria em variAveis “qummy”, decidiu-se verificar se elas produzem modelos

melhores quando expressas em categorias. Deste modo, tem-se:

4) Renda: dividiu-se 0 espectro de renda em cinco categorias. Isto poderd set util
visto que 2 distribui¢do & muito concentrada na faixa de R$ 2.000,00, embora existam

elementos no conjunto de dados com renda até R$ 150.000,00.
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Tabela 6.4: Codificagio da varidvel renda em yarideis "dummy". Elaborado pelo antor

RENDA (RS ot 2 B D4
Até 1.000 0 0 0 0
1.001 22500 1 0 0 0
2501 2 5.000 0 1 0 0
5.001 2 10.000 0 0 1 0
10.001 2 150.000 0 0 0 1

As varidveis D1, D2, D3 e D4 serio chamadas de DMIREN, DM2REN,
DM3REN e DM4REN, respectivamente. A vatidvel renda continua seri chamada de
REN.

5) Idade: apesar de a distribuicio ser aparentemnente normal, codificou-se da

seguinte maneira:

Tabela 6.5: Codificagdo da varsdvel idade em varidveis "dummy". Elaborado pelo antor

IDADE (Anos) D1 D2 D3 D4
Até 25 0 0 0 0
26235 1 0 0 0
36245 0 1 0 0
46260 0 0 1 0
61 em diante 0 0 0 1
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As vanriaveis D1, D2, D3 e D4 serio chamadas de DM1IDA, DM2IDA, DM3IDA
e DMA4IDA, respectivamente. A variavel idade continua serd chamada de TDA. No

Anexo B, estd apresentada uma parte do conjunto de dados codificado.

Em posse das variaveis devidamente codificadas, procederemos 20 primeiro Passo
do método “Stepwise”. Utilizou-se 0 pacote estatistico Minitab para se obtet 0 modelo

de Regressio Logistica. As saidas do Minitab estio no Anexo B.

O conjunto de dados foi dividido aleatoriamente em duas partes, cada qual com
1067 elementos, formando o conjunto de treinamento e de validagio respectivamente.
Utilizando o Minitab no conjunto de treinamento, procedeu-se a0 primeiro passo do

método:

PASSO 1: avaliou-se o resultado dos sete modelos possiveis contendo apenas uma
varidvel independente. O modelo com 2 melhor log-verossimithanca foi obtido com 2

variavel renda, conforme a Tabela 6.6:
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Tabelz 6.6: Primeiro passo do método "Stepwise”. Elaborado pelo astor

124LORES DE LOG-VEROSSIMILHANCA

SEXO 720,655 1
LOCALIZACAO 698,549 4
RENDA DUMMY 631,325 4
IDADE 723280 1
TDADE IDUMMY 679,181 4
PROFISSAQ DUMMY E 2
RENDA % 1
\..______/

COEFIDOMEIHORA@DELD =

CONSTANTE T 01168 " 0,000 OK.
RENDA 0,000 0,0004465 0,000 OK.

Observa-se que os valores p obtidos sdo adequados.

PASSO 2: avaliou-se o resultado de todos os modelos possiveis combinando a
varidvel renda. Por motivos dbvios, se excluiu a combinac¢ao com variaveis referentes a
renda categorizada (DMIREN, DM2REN, DM3REN e DMAREN). O melhor
médulo de log-verossimilhanga obtido foi no modelo com a variivel idade

categorizada, segundo a Tabela 6.7:
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Tabela 6.7: Segundo passo do método "Stepuise”. Elaborado pelo antor

TITE

DMVBIDA 03312 NAO Ok
TVIDA -1,1311 01703 0,000 O

Nota-se que houve uma variacio de log-verossimilhanga de 36,981 indicando set
significativa a inclusio da idade no modelo. Entretanto, observa-se que 2 varivel

DM3IDA nio é significativa.

PASSO 3: Este modelo se inicia com 2 exclusio da varidvel DM3IDA, por tes sido
rejeitada no teste do valot p. Além disso, desconsiderou-se a possivel combinagio com
a varidvel idade continua (IDA), por termos considerado a escolba da varidvel idade
categorizada. Prosseguindo com 2 anilise, temos que o melhor modelo com trés

vatidveis é dado pox:
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Tabela 6.8: Terceiro passo do método "Stepwise”. Elaborado pelo antor

17241 ORES DE LOGVEROSSIMILHANGCA

[ At e,

RENDA X IDADE DUMMY X SEXO

RENDA X IDADE DUMMY X PROFISSAO 6
RENDA.X [DADE DUMMY X LOCALIZACAO 8

CONSTANTE 0,1566 0,1711 0,360
RENDA 000043582 0,00004731 0,000
DMITDA 11221 0,2580 0,000
DM2IDA 0,6539 02067 0,028
DM4IDA 41,3118 0,1686 0,000
DMIPRO 20,1510 02047 0461
DMZPRO 03240 0,1616 0,045

Note que a variagdo da log-verossimilhanca foi de apenas 1,377 indicando nao set
significativa a inclusio da vatiivel no modelo (valor Qui-quadrado a 5% e 1 grau de
tiberdade é 3,841). Portanto, o modelo escolhido é dado por:

2(REN, DM1IDA, DM 21D4, DM3IDA) = ~0,3739 + 0,005 * REN ~ 11319 * DM1IDA

— 00,6498 * DM 2IDA - 1,2964 * DM 4IDA 6.1)
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6.2 INTERPRETAGCAO DOS DADOS

O modelo obtido considera a renda do individuo (varidvel REN), bem como se
este est4 situado na faixa de idade de 26 a 35 anos (varidvel DM1IDA), na faixa de 36a
45 (vatidvel DM2IDA) ou na faixa acima de 61 anos (vatidvel DMAIDA). Deste modo,
nio considera aqueles individuos com idade abaixo de 25 anos ou na faixa de 46 a 60

anos.

Segundo os coeficientes da equacio obtida, a renda contribui positivamente para 2
chance de compra do seguro de vida e 2 idade, negativamente. A faixa de idade que

menos diminui a chance esta na faixa de 36 a 45 anos.

Para os individuos com idades até 25 anos ou na faixa dos 46 20s 60 anos, observa-

se que o fator determinante é 2 renda . Observemos a Tabela 6.9:

Tabela 6.9: Dados de renda ¢ faixa etdria do conjunto de dados. Elaborado pelo antor

ELEMENTOS FAIXAETARIA  AE2S 26235 36a45 46260 61 e acima
QUE GOMPRARAM 1848 3012 4131 5316 6007
QUENAO COMPRARAM RENDAMEDIA 1080 1402 180 1946 2185

Os valotes de renda média de cada grupo de elementos (aqueles que compraram €
aqueles que nfio compraram) para as faixas etirias de até 25 e de 46 a 60 anos, quando
aplicados 2 equagio (6.1), fornecem chances de compra muito proximas s expostas na

Figura 5.12.
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Outra observacio importante € o fato de que as médias de renda dos elementos
que compraram O produto sao mais altas do que as dos elementos que nio compraram,

mais uma vez comprovando determinacio da renda nas chances de compra.

Entretanto, as evidéncias do modelo de que a faixa etina de 36 a 45 anos
diminuem menos as chances de compra nio foram comprovadas nem na analise
descritiva, nem na Tabela 6.9, Seria necessiria uma anélise mais profunda do modelo
para que fosse estabelecido o motivo. Uma sugestio ¢ a divisdo do conjunto de dados

em faixas etarias mais estreitas.

Segundo cilculo feito pelo Minitab (cuja saida se encontra no Anexo B), utilizando-
se 0 modelo obtido no conjunto de treinamento, seria alcangado um indice de acertos
de 73,8%. Ou seja, © modelo conseguiu prever com esta precisio quais 530 OS

potenciais compradores do Seguro de Vida.

Para verificarmos a eficiéncia do modelo, o aplicamos no conjunto de validacao,
obtendo um indice de acertos de 64,4%. Um valor mais baixo j4 era esperado, uma vez

que o modelo nao dispde de nenhuma informacio sobre o conjunto.
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7. CONCLUSAO

Segundo o método de Regressio Logistica desenvolvido, obteve-se um modelo que
utiliza dados de renda e idade do individuo para se prever 2 probabilidade que este tem
de adquitir o Seguro de Vida da empresa X. Segundo este modelo, serd possivel prever
com uma exatidio de 64,4% se um individuo ¢ um potencial comprador ou p3o do
produto. £ uma porcentagem razoavel e certamente serd muito 4t no direcionamento
dos investimentos de Marketing da empresa. Entretanto, em situagdes do cotidiano
geralmente os indices de acerto obtidos com a Regressio Logistica sio maiores.

Diversos fatores podem ter influido no resulitado:

1) Na prética, utiliza-se conjunto de dados muito maiores, da ordem de 100.000

elementos - 0 que aumenta o poder de predigio do modelo.

2) Arranjaram-se OS elementos em trés conjuntos de acordo com 2 qualificacio da
profissio: alta, média e outros. Observa-se que 2 terceira categoria ¢ muito
diversificada, contendo profissdes tio diversas quanto sacerdotes e empresarios.
Na pratica, utiliza-se uma divisao mais apurada, com categorias mais especificas.

Para tal, necessita-se de um conjunto de dados maior.

3) A divisio dos elementos entre cinco regides do pais, apesar de atil, também
njio é Otima uma vez que dentro de um MESMO bloco regional existem grandes

disparidades sociais. Na pratica, utiliza-se uma divisio também mais apurada.

Além disso, os fatores determinantes na cOmpra do produto (idade e renda),
segundo o modelo, 520 conceitualmente coerentes com 2 Situacao de compra: é
razoavel que a renda do individuo determine seu comportamento de compra, O MESMO

acontecendo com sua idade. Ambos fatos podem ser observados na andlise descritiva.

Uma outra consideragio é a falta de dados a respeiio do montante do investimento
da empresa direcionado 20 Marketing, impossibilitando a estimacio de economias

provenientes da utilizacio do método.
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O trabalho demonstrou como um modelo matemitico pode ser utilizado no auxilio
de situagdes de decisdo, o que é uma ferramenta muito Gtil nas mais diversas areas. A
utilizacio do modelo é cada vez mais explorada, bem como a diversidade de sua
aplicagio. Entretanto, deve-se sempre ptocurar interprefar O modelo obtido e
estabelecer ligagdes com observagoes graficas ou estatisticas do conjunto de dados. Um
bom entendimento das evidéncias fornecidas pelo modelo é fundamental no processo
de tomada de decisio. Mesmo assim, € importante relembrar que o processo decisotio
tem um carater subjetivo, de modo que oS modelos nio devem substituir o julgamento

pessoal e sim auxilia-lo.

O modelo de Regressio Logistica, como demonstrado 20 longo deste trabalho, é
um instrumento eficaz e com uma gama infinita de aplicagdes. Os beneficios de sua
utilizacio na Engenharia de Producio sio inumeros, dada as diversas situa¢des de
decisio encontradas no cotidiano - muitas delas de grande importincia. Trata-se,

pottanto, de um assunto de extrema relevincia para o futuro da drea.
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9. ANEXOA

9.1 CONJUNTO DE DADOS



Idade  Sexo Renda Codigo da Profissiio Digitos do CEP Compra

66 M 5471 922 22 1
61 M 2196 301 13 1
46 M 900 904 4 1
34 M 2488 205 70 1
60 M 1480 131 11 1
70 M 2558 923 22 1
45 M 1427 904 13 1
51 M 3440 101 11 1
67 M 7952 117 70 1
53 M 14677 904 11 1
55 M 532 101 4 1
55 M 1817 902 1 1
48 M 1082 172 41 1
46 M 3809 101 59 1
46 M 3142 131 22 1
40 M 5091 101 21 1
68 M 2045 111 25 1
53 M 1544 923 26 1
57 M 2763 125 5 1
43 M 1959 125 5 1
46 M 1997 999 5 1
51 F 1072 131 58 1
50 F 2605 111 24 1
29 M 11231 902 22 1
44 F 1214 131 4 1
68 F 3103 922 20 1
52 M 6812 101 5 1
54 F 4030 102 3 1
49 M 12226 115 23 1
40 F 4392 111 22 1
45 M 4030 395 13 1
56 M 1818 295 21 1
36 M 1308 117 13 1
50 M 12776 301 88 1
39 M 3930 101 82 1
41 M 5121 101 1 1
50 M 2681 124 57 1
49 M 4323 111 30 1
43 M 3069 202 9 1
42 M 3717 101 5 1
37 M 5144 296 79 1
45 M 1330 125 88 1
36 F 1400 395 7 1
41 M 4236 101 4 1
68 F 983 143 22 1
31 M 2098 902 4 1
39 M 891 902 30 1
58 M 5175 131 1 1
52 M 3350 142 4 1
59 F 1682 143 40 1
38 M 6834 101 4 1
39 M 4320 903 4 1
41 F 3146 902 2 1
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33 F Tz 902 76 0
32 M 613 204 75 o
41 M 1117 155 22 0
61 M 1686 544 13 O
37 F 2200 144 39 0
64 3 2092 922 82 0
34 F 1154 905 78 0
26 M 1164 158 98 0
45 M 1364 394 16 0
45 F 2003 906 30 0
43 F 1960 922 38 0
30 M 1080 902 85 0
41 M 2258 293 29 0
37 j 1045 296 26 0
30 M 1243 905 38 0
37 F 1922 113 20 0
30 Bl 1388 391 59 0
59 ¥ 806 923 31 0
52 F 1825 143 18 0
46 M 1933 103 13 0
40 M 725 901 19 0
33 M 1000 541 22 0
44 M 1068 509 1 0
+1 M 4529 391 4 0
41 M 1489 710 13 0
47 F 1765 292 9 0
47 M 1675 403 9 0
44 F 957 115 3 0
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9.2 CONFECGCAO DOS GRAFICOS

125



TABELA UTILIZADA NA CONFECCAO DO

GRAFICO DE COMPRA TOTAL
Nimero de Porcentagem
Elementos dos Elementos
Comprou 925 43,35%
Nio comprou 1209 56,65%
TOTAL 2134 100,00%

TABEILA UTILIZADA NA CONFECCAO

DOS GRAFICOS DE SEXO
Nuamero de Porcentagem
Flementos dos Elementos
Sexo Feminino 612 28,68%
Sexo Masculino 1522 71,32%
TOTAL 2134 100,00%
Sexo Feminino
Comprou 310 50,65%
Nio comprou 302 49,35%
TOTAL 612 100,00%
Sexo Masculino
Comprou 908 59,66%
N30 comprou 614 40,34%
TOTAL 1522 100,00%




TABELA UTILIZADA NA CONFECGAO DOS GRAFICOS DE RENDA

FAIXA (RS) Niimero de| Porcentagem Individuos Individuos que %o % de

Elementos | dos Elementos | que Nio Compraram Compraram de Compra Nio Compra
0 a 5000 1774 83,13% 892 882 49,72% 50,28%
5001 a 10000 258 12,09% 27 231 89,53% 10,47%
10001 s 13000 58 2,72% 4 54 93,10% 6,90%
15001 a 20000 24 1,12% 1 23 95,83% 4,17%
20001 a 25000 7 0,33% 0 7 100,00% 0,00%
25001 = 30000 5 0,14% ¢ 3 100,00% 0,00%
30001 a 35000 4 0,19% 0 4 100,00% 0,00%
35001 a 40000 1 0,05% 0 1 100,06% 6,007
40001 2 45000 0 0,00% 0 0 0,00% 100,00%
45001 a 50000 1 0,05% 0 1 100,009 0,00%
50001 a 55000 0 0,00% 0 0 0,00% 100,00%
55001 a 60600 0 0,00% 0 0 0,00% 100,00%
60001 a 65000 0 0,00% 0 0 0,00% 100,00%
65001 a 70000 0 0,00% 0 0 0,00% 100,00%
70001 5 75000 0 0,00% 0 0 0,00% 100,60%
75001 2 80000 1 0,05% 0 1 100,00% 0,00%
80001 a 85000 0 0,00% 0 0 0,00% 100,00%
85001 a 90000 0 0,00% 0 1] 0,00% 100,00%
90001 a 95000 0 0,00% 0 0 0,00% 100,00%
95001 a 10000 0 0,00% 0 0 0,00% 100,00%
100001 a 105000 0 0,00% o 0 0,00% 100,00%
105001 a 110000 1 0,05% 0 1 100,00% 0,00%
110001 a 115000 2 0,09% 0 2 100,00% 0,00%
TOTAL 2134 100,00%

TABELA4 UTILIZADA NA CONFECCAO DOS GRAFICOS DE LOCALIZAGAO

REGIAO Nimero de| Porcentagem Individuos Yo Individuos que Yo

Elementos | dos Elementos que Compratam de Compra | Niio Compraram| de Nao Compra
Norte 2,20% 21 44,68% 2 55,32%
Nordeste 47 11,25% 149 62,08% 91 37,92%
Swdeste 240 65,84% 880 62,63% 525 37.37%
Centro-Oeste 1405 5,95% 52 40,94% 75 59,06%
Sul 127 14,76% 110 34,92% 205 65,08%
TOTAL 315 100,00% 1212 922




TABEL.AS UTILIZADAS NA CONFECCAQ DOS GRAFICOS DE LOCALIZACAO REGIONAL.

REGIAO ESTADOS COBERTOS PELA EMPRESA lo. E 20. DIGITOS DO CEP FAIXA
Norte Para 66 a 68 66 2 69
Amazonas 69
Nordeste Maranbic 65 40 a 63

Bahia 40a 48
Ceari 60 a 63
Rio Grande do Noste 59
Paraiba 58
Pemambuco 50 a 56
Alagoas 57
Sergipe 4
Piaut 64
Sundeste Minas Gerais 30a39 1239
Sio Paulo 1219
Rio de Janeiro 20a28
Espirito Santo 29
Centro-Oeste Mato Grosso 78 a7
Goiis T4aT7
Mato Grosso do Sul 79
Distrito Federal 70a73
Sul Parana 80a 87 80a99
Santa Catarina 88489

Rio Grande do Sul 90299
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542
543
544
54
391
502
593
594
595
596
597
598
599
601
602
603
604
605

701
702
703
704
705
706
707
708
709
710
711
712
13
Ti4
715
T16
7
719
740
750
739
760
761
762
764
769
77l
L]
801

203
305

807
811
901
902
903
904
905

907
208

910
919
021

Eletricista de Magutencas

MEDLA QUALIFICA AQ

Piotor Lanterneico de Veiculos 54 MEDIA UALIFICACAC
Bombeiro, Tastalador de Agua, Luz, Esgoto € Assemelbados 54 MEDIA QUALlFICA(;AO
Outros (T rabathadores de Servicos de Wanutencao} 54 MEDIA UALIFICACAO
Alfaiate 59 MEDIA QUALIFICA(;AO
Protético 59 MEDILA QUALIFICA(_:,AO
Despachante 59 MEDIA QUALIFICACAO
Apente de Viagem/ Guia Turistico 59 MEDIA QUALIFICAGAD
Agente Funeririo 39 MEDIA QUALIFICA(;AO
Auailiar de Laboratorio 59 MEDIA QUALIF[CACAO
Estivador, Carre Jor; Embalador 59 MEDIA QUALIFICACAO
Empregado Doméstico 59 MEDILA QUALIFICA(;AO
Outros (L rabalhadores de Servigos € Assemethados 59 MEDIA UALIFICACAO
Trabalhadot A icola 60 QOUTROS
Trabalhador da Pecuaria 60 QUTROS
Trabalhador Florestal 60 QUTROS
Trabalhador da Desca 60 QUTROS
Ganmpeire 60 OUTROS
Outros (T ~halhador Agricola/ Pecuina, Flogestal Pesca/ Extragio 60 OUTROS
Mestre ¢ Contramestre 0 OUTROS
Mecanico, Moatador/ Pre arador/ Qperados {Industriz) 7 QUTROS
Eletricista Assemelhados da Indistria 0 OUTROS
Trabalhador de Tastalacio de Processo Quimico -0 QUTROS
Trabaihador de Fabricacio de Roupas 0 OUTROS
Trabathador de Tratamento & Fabricacao de Fumo "0 QUTROS
Trabalhador Metalirgico. Sidenirgico "0 OUTROS
Trabalhador de Usipagem de Metais 0 OUTROS
Trabalhador de Construgad Cuwvil 7 QUTROS
Trabalhador de Fabricagao ¢ Preparacad de Alimentos € Bebidas 7l OUTROS
Trabalhados de Artes Graticas 71 QUTROS
Trabalbador de Trodutos 1éxteis (Exceto Roupa) 71 QUTROS
Trabalhador de Artefatos de Madeira "1 OUTROS
Trabalhador de Fabricacac de Paj ¢l e Papelio al OUTRO3
Trabalhador de Fabricacao de Calcados € Irtefatos de Couro 1 QUTROS
T rabalbador 3¢ Drodutos de Borracha e Plastico 71 QUTROS
Joalheiro € Qurives 71 OUTROS
Outros Lrabalhadores da Producio Tadustrial D QUTROS
Costuretra 74 QUTROS
Opemdor Producao 75 QUTROS
Tmpressor ~5 OUTROS
Taspetor Mecianico TG QUTROS
Tnstommnentista ~6 QUTROS
“Mecanico Industrial i) QUTROS
Maquinistz 6 QUTROS
Dperador’ Fo jador 6 OUTROS
Bombeiro il OUTROS
NMarceneio i QUTROS
Auxaliar de Escritono 30 OUTROS
Auxibiar de Enferm 20 QUTROS
Fommeiro Montador; Assistente de Produgio 80 OUTROS
Consertadog/ Serveate 80 OUTROS
Manobrista 80 QUTROS
Apente de Seguranga & OUTROS
Doméstica 31 OUTROS
Proprietaric de Estabelecimento icola, Pecudrid, Flozestal 90 OUTROS
Proprictdrio de Estabelecunento Comercial 20 QUTROS
Proprictario de Estabelecimento Tadustrial 90 OUTROS
Proprictanio de Esmabelecimento de Secvigos 90 OUTROS
Proprietirio de Microempiesd 290 OUTROS
Proprictisio de Tmével Recebendo Rendimeato de Alugmel 90 OUTROS

‘aksta Recebendo Rendimeato de A licacocs Finagceiras 90 OUTROS
Empresinio 90 QUTROS
Chutros Pro, etirios ¢ Ca iralistas 90 OUTROS
Sacerdote ou Membro de Qrdem ou Geita Religiosa 91 OQUTROS
Outros Trabathadores Religiosos 91 OUTROS
Militac Reformado 92 QUTROS



Funcionino Publico Civil ‘Aposeatado
Anosentado (Exceto Funcionario Publico)

Autbnomo
Omtras (Jcupacoes
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9.3 EXEMPLAR DE FICHA CADASTRAL
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10. ANEXOB |

//

10.1 ANALISE ESTATISTICA DO CONJUNTO DE DADOS



Descriptive Statistics for IDADE

Variable: C3
Anderson-Darfing Normmlity Test
A-Squared: 9043
R\ ake: 0.000
Mean 46,8673
StDev 11.8027
Variance 139,305
Skewness 0592428
Kurtosis 0509285
N 2933
Minium 18.0000
1st Quartie 38,0000
Median 460000
3rd Quartie 54,0000
5% Corfidence nterval for Mu Mesximut 97.0000
ST v e
: > ' 46.3662 47.3685
4;-‘* 4? 4|7 a5% Confidence Intervalfor Sigma
11.4589 121680
g5 Corfidence T ©5% Confidence Interval for Median
Inerval for Medan 45,0000 46,0000
Descriptive Statistics for Renda
Variable: C1
Anderson-Dorfing Normekty Test
A-Squared: 315945
Rvale:
Mean 342085
StDav 066,00
arance 38797482
Skaw/ness 13.1503
Kurtests 252,001
N 2133
Minirum 507
15t Quartie 1432
Median 1968
3rd Quartie 3867
Macirum 148703
96% Confidence jnterval for Mu
3163 3678
85% Corfidence Interval for Sigma
l 5889 6254
65% Confidence Interval for Median

a5% Confidence Interval for Median

1872 2063



Descriptive Statistics for RENDA ATE R$ 10.000,00

variable: C2
Anderson-Darkng Normrality Test
A-Squared: 112724
PValue: 0.000
Mean 260909
SiDev 2047 49
Variance 4192205
Skewness 1.503%96
Kurtosis 177794
N 2032
Nnirum 507.00
4st Quartiie 111750
Median 188350
2rd Cuartie 343850
Naxivum 9952 .00
o5% Corfidence Interval for Nu
25201 2608.16

1986.42

o5% Confiience Interval for Sigma

2112.46

g5% Corfidence Interval for Median

05% Confidence rterval for Median 176167

1948.33




USO DE REGRESSAO LOGIsTICA COMO

FERRAMENTA DE DECISAQ

10.2 PARTE DO CONJUNTO D

£ DADOS JA CODIFICADA

128



0 0 0 0 0 0 1 0 (] 0 3 0 0 0 0 1 5 szl o (W | 5 |
0 0 0 1 ] 0 [} 1 0 0 1 0 1 0 0 1 9% 26 wel | W | €S
0 o 0 0 0 0 0 T 0 0 1 ] 0 0 0 1 T i1 Shoz | W | 89
0 0 0 [ [ 1 0 0 0 0 1 0 0 0 0 1 1z 101 T605 | W | oF
[0 0 0 0 ] 0 T 0 0 0 T 0 0 0 0 1 Frd €1 Zvig | W | 9
0 1 (] 0 0 0 1 0 0 0 0 1 0 0 [ 1 68 101 608 | W | oF
0 0 T 0 0 0 0 1 0 0 [ 1 0 0 0 i " ZLl Z808 | N | B
0 0 0 0 0 0 0 1 0 0 1 ] 1 0 0 1 1 706 L8t | W | ss
0 [] 0 ] 0 [ 0 o 0 0 i 0 0 0 0 i ¥ 101 7S W | SS
0 0 0 0 T 0 0 ] 0 0 1 0 1 0 0 T 11 Y06 Lovt | W[ sS
1 i 0 0 0 1 0 0 0 T 0 0 0 0 0 i oL AT ZoeL | N | O
] 0 0 0 0 0 1 0 0 [ 1 0 0 ] 0 1 i 101 ovke | A | 1S
0 0 0 ] [ 0 0 1 o 0 T 0 1 0 ] i £l 06 vl | W | sv
0 0 0 0 0 0 1 [ 0 0 T 0 1 0 ] 1 13 26 gesz | N | OL
0 0 0 0 0 0 0 1 [} 0 T 0 ] [ 0 1 n 1€l osvl | N | 09
1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 oL 506 sz | W | bE
0 0 0 0 0 [} 0 1] 0 0 1 0 1 0 0 1 ¥ ¥06 W6 | W | oF
0 0 ] 0 0 0 0 T 0 ] 1 [] ] 0 0 1 1 108 o1z | W | 19
0 0 0 0 0 1 0 0 [} 0 1 0 1 0 0 T w 76 TS | W | 99
i ; OudING op axag [9pPI |




USO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAO 129

10.3 REGRESSAO LOGISTICA: PASSO 1



Worksheet size: 100000 cells

Retrieving worksheet from file:
TW

Worksheet was saved on 1/ 5/19%6

Binary Logistic Regression

Link Function: Logit

Response Information

C:\GUILHERME\POLI\TF

\ CONJUNTQ DE DADOS\TREINAMENTO.M

variable Value Count
Compra 1 624
442
Total 1066
Logistic Regression Table
odds 95% CI
Predictor coef S5thev z P Ratio Lower Upper
Cconstant 0.3621 6.2563 1.41 0.158
Idade -0.000366 0.005285 -0.07 0.945 1.00 0.99 1.01
Log—Likelihocd = -723.280
Test that all slopes are zero: G = 0.005, DF = 1, p-value = 0.945
Goodness—of-Fit Tests
Method Chi-Sqguare DF P |
Pearson 83.178 64 0.0534
Deviance 93.691 64 0.009
Hosmer-Lemeshow 132.698 g8 0.090
Table of Observed and Expected Freguencies:
(See Hosmer-Lemeshow mest for the Pearson chi-Sguare statistic)
Group
value 1 2 3 4 5 6 7 8 9 10 Total
1
Obs 56 63 76 87 72 66 63 69 64 8 624
Exp 63.0 68.4 9.6 76.1 67.9 66.2 62.7 72.7 4.5 12.9
0
Obs 52 54 43 43 44 47 44 55 46 14 442
Exp 45.0 48.6 49.4 53.9 48.1 46.8 44.3 51.3 45.3 9.1
Total 108 117 119 130 116 113 107 124 110 22 1066
Measures of Asscciation:
(Between the ResSponse variable and Predicted Probapilities)
Pairs Number Percent summary Measures
Concordant 71818 26.0% Somers D 0.01
Discordant 68457 24.8° coodman-Kruskal Gamma 0.02
Ties 135533 49.1% Kendalls Tau-a 0.01
Total 275808 100. 0"

Binary Logistic Regression

Link Function: Logit



Response Information

variable Vvalue Count
Compra 1 624
0 442
Total 1066

Logistic Regression Table

predictor Coetf stDhev
constant -0.8253 0.1168
Renda 0.00045695 0.00004446

Log—Likelihood = ~-627.544

Test that all slopes are Zero! G =

Goodness—of—Fit Tests

Method chi-sSquare
Pearson 1404.059
Deviance 1059.173
Hosmer-Lemeshow 11.933

Tahle of chserved and
(See Hosmer—Lemeshow

Value 1 Z 3 4
1
Obs 35 44 3% 47
Exp 39.8 43.1 44.9 48.3
0
Obs 71 63 70 60
Exp 66.2 63.9 61.1 58.7
Total 106 107 106 107

Measures of pssoclation:

odds 95% CI

Z P Ratio Lower Upper
-7.07 0.000
10.28 0.000 1.00 1.00 1.00
191.475, DF = 1, p-value = 0.000
DF P
922 0.000
gzz 0.001

g8 0.154

Expected Frequencies:
Test for the Pearscn Chi-

Group

5 6 T 8
50 &7 13 80
53.2 58.0 6.5 76.5
38 3¢9 33 26
54.8 48.0 39.3 29.5
108 106 106 10

{Between the Respcnse variable and Predicted Probabilitie

Pairs Number Percent
concordant 203128 73.6%
pisccocrdant 71287 25.8%
Ties 1393 0.5%
Total 275808 100.0%

Binary Logistic Regression

Link Function: Logit

Regponse Information

variable Value Count
Compra 1 624
442

Total 1066

Logistic Regression Table

predictor Coef gstDev

Summary Measures
Somers D
Goodman—Kruskal Gamma
Kendalls Tau—-a

Odds
Ratio

square statistic)

9 10 Total
91 101 624
90.2 103.6
16 ) 442
16.8 3.4

107 107 1066
5)
0.48
0.48
0.23
$5% CI
Lower Upper



constant 0.43358 0.07363 5.89 0.000
DMSEXO -0.3174 0.1383 -2.30 0.022 0.73 0.5¢ 0.95

Log—Likelihood = -720.655
Test that all slopes are 2ero: G = 5.253, DF = 1, P-Valiue = 0.022

* NOTE * No goodness of fit tests performed.
* The model uses all degrees of freedom.

Measures of IAssociation:
(Between the Response variable and predicted propabilities)

Pairs Number Percent summary Measures

Concordant 64722 23.5% Somers D 0.006
Discordant 47120 17.1% coodman-Kruskal Garama 0.16
Ties 163966 59.4% Kendalls Tau—a 0.03
Total 275808 100.0%

Binary Logistic Regression

Link Function: Logit

Response Information

variable Value Count
Compra i, 624
442

Total 1066

Logistic Regraession Table
odds g5% CI

Predictor coef Sthev Z P Ratio Lower Upper
Constant 0.74222 0.09346 7.94 0.000
DM1PRO -0.5134 0.1854 -2.77 0.006 0.60 0.42 0.86
DMZFRO -0.8569 0.1385 ~6.19 0.000 0.42 0.32 0.56
Log-Likelihood = -703.495

Test that all slopes are Zero! G = 39.575, DF = 2, P-vValue = 0.000

+ NOTE * No goodness of fit tests performed.
* The model uses all degrees ot freedom.

Measures of Association:
(Between the Response variable and predicted probabilities)

Pairs Number Percent sSummary Measures

Cencordant 114779 41.6% Somers D 0.21
Discordant 58131 21.1% Goodman-Kruskal Gamma 0.33
Ties 102898 37.3% Kendalls Tau-a 0.10
Total 275808 100.0%

Binary Logistic Regression

1ink Function: Logit
Regponse Information

variable Value Count
Compra il 624



0

442

Total 1066

Logistic Regression Table

predictor Coef
Cceonstant -0.5108
DM1LOC 0.8726
DM2LOC 1.1376
DM3LOC 0.1431
DM4LOC 0.0953
Log-Likelihocd = -698.54

Test that all slopes are

* NOTE * No goodness of

* The model uses a

Measures of Association:

(Between the Response variable and Predicted

Pairs Number
Cconcordant 102657
Discordant 47145
Ties 126006
Total 275808

StDev
0.4216
0.4704
0.4289
0.4904
0.4505

9

zero: & = 49.463, DF

fit tests performed.

percent
37.2%
17.1%
45.7%
100.0%

Binary Logistic Regression

Link Function: Logit

Response Information

variable Value Count
Compra 1 624
442

Total 1066

Logistic Regression Table

Predictor Ccoef
Constant -0.5053
DM1REN 0.3421
DM2REN 1.5306
DM3REN 2.7111%
DMA4REN 3.2354

StDev
0.1482
0.1763
0.20863
0.3277
0.6140

Log—Likelihood = -631.325
Test that all slopes are Zero:

+ NOTE * No goodness of fit tests performed.

%+ The model uses all degre

Measures of Association:

(Between the Response variable an

Pairs Number
Concordant 161265
Discordant 43377
Ties 71166

Total 275808

Percent
58.5%
15.7%
25.8%

100.0%

odds 95% CI
Z P Ratio Lower Upper
-1.21 ©.226 !
1.86 0.064 2.39 0.85 6.02 |
2.65 ©0.008 3.12 1.35 7.23
0.29 0.770 1.15 0.44 3.02
0.21 0.832 1.10 0.45 2.66
= p-value = 0.000 |
11 degrees cf freedom.
Probabilities)
Summary Measures
somers D 0.20
coodman—-Kruskal Gamma 0.37
Kendalls Tau-& 0.10
Odds 95% CI
Z P Ratio Lower Upper
~-3.41 0.001
1.94 0.052 1.41 1.00 1.99%9
7.42 0.000 4.62 3.08 6.92
£.27 0.000 15.05 7.92 28.60
5.27 0.000 25.42 7.63 84,68
183.914, DF = 4, p—value = 0.000
es of freedom.
d Predicted Probabilities)
summary Measures
Somers P 0.43
Goodman—~Kruskal Gamma 0.58
Kendalls Tau-a 0.21



Binary Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
Compra 1 624

0 442

Total 1066
Logistic Regression Table

Odds 95% CI

Predictor Coef StDev 2 P Ratio Lower Upper
Constant 0.85847 0.089%944 9.60 0.000
DM1IDA -1.2441 0.23%6 -5.1% 0.000 0.29 0.18 0.46
DMZ2IDA -0.8936 0.2796 -3.20 0.001 0.41 0.24 0.71
DM3IDA -0.3989 0.2756 -1.45 0.148 0.6&7 0.39 1.15
DM4IDR -1.2955 0.1544 -g.329% 0.000 0.27 0.20 G.37
Log-Likelihood = -679.181

Test that all slcpes are zZero: G = 88.202, DF = 4, p-vValue = 0.000

* NOTE * No goodness of fit tests performed.
* The model uses all degrees of freedom.

Measures of Association:
(Between the Response variable and Predicted Probabilities)

Pairs Number Percent summary Measures

Concordant 131382 47.6% Somers D 0.30
Disccrdant 49498 17.9 Goodman-Kruskal Gamma 0.45
Ties 94828 34.4 Kendalls Tau-a .14

Total 275808 100.0%
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10.4 REGRESSAO LOGISTICA: PASSO 2



worksheet size: 100000 cells

Retrieving worksheet from file: ¢:\GUILHERME\ POLI\TF\CONJUNTO DE DADOS\TREINAMENTO.M

T
Worksheet was saved on L1/ 5/1996

Binary Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
Compra 1 624

0 442

Total 1066
Logistic Regression Table

odds 95% CI

Predictor Coef StDhev Z P Ratio Lower Upper
Constant -0.4663 0.2882 -1.62 0.106
Renda 0.00045924 0.00004442 10.24 0.000 1.00 1.00 1.00
Idade -0.007815 0.005762 -1.36 0.173 0.99 0.98 1.00

Log-Likelihood = -626.622
Test that all slopes are Zero: G = 193.320, DF = 2, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 1513.977 1059 0.000
Deviance 1253.244 1059 0.000
Hosmer-Lemeshow 8.376 8 0.398

Table of Observed and Expected Frequenc¢ies:
(See Hosmer-LemeshowW Test for the Pearson Chi-Square Statistic)

Group
Value 1 2 3 4 5 6 7 8 S 10 Total
1
Obs 38 35 43 46 52 63 74 79 a3 101 624
EXp 3g.6 42.9 45.0 48.5 53.2 58.2 &7.1 76.7 %0.3 103.5
o]
Qs &8 72 63 61 55 43 33 27 14 ) 442
EXp 67.4 64.1 61.0 58.5 53.8 47.8 39.9 29.3 16.7 3.5
Total 106 107 106 107 107 106 107 106 107 107 1066

Measures of Association:
(Between the Response variable and Predicted Frobabilities)

Pairs Number Percent summary Measures

Concordant 203349 73.7% Somers D 0.48
Discordant 71258 25.8% Goodman-Kruskal Gamma 0.48
Ties 1201 0.4% Kendalls Tau-a 0.23
Total 275808 100.0%

Binary Logistic Regression



Link Function: Logit

Response Information

Variable Value Count
Compra 1 624
442

Total 1066

Logistic Regression Table
cdds 85% CI

Predictor Coef Sthev Z P Ratic Lower Upber
Constant -0.7861 0.1268 -6.20 0.000
Renda 0.00045468 0.00004456 10.20 0.000 1.00 1.00 1.00
DMSEXO -0.11867 0.1484 ~0.79 0.432 0.89 0.867 1.19
Log-Likelihood = -627.235

Test that all slopes are Zero: G = 192.094, DF = 2, p-value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 1439.205 96 0.000
beviance 1106.145 966 0.001
Hosmer-Lemeshow 12.173 g8 0.144

Table of Cbserved and Expected Frequencies:
{See Hosmer-Lemeshow Test for the Pearson chi-Sdguare Statistic)

Group
value 1 2 3 4 5 6 7 8 9 10 Total
1
Obs 33 a4 38 49 51 62 79 76 91 101 624
EXp 39.5 43.0 45.1 48.3 go.7 s58.0 67.2 176.5 90.2 103.6
0
Obs 73 63 68 58 56 44 28 30 16 6 442
EXp 66.5 4.0 60.9 5.7 54.3 48.0 39.8 29.5 16.8 3.4
Total 106 1067 106 107 107 106 107 106 107 107 1066

Measures of Association:
(Between the Response vVariable and Predicted Probabilities)

Pairs Number Percent Summary Measures

Concordant 203649 73.8% Somers D 0.48
Discordant 70845 25.7% Goodman-Kruskal Gamma 0.48
Ties 1314 0.5% Kendalls Tau-a 0.23
Total 275808 100.0%

Binary Logistic Regression

Link Function: Logit

Response Information

variable Value Count
Compra 1 624
442

Total 1066

Logistic Regression Table



Cdds 95% CI

Predictor Coel StDev Z P Ratio Lower Upper
Constant -0.6317 0.1562 -4.04 0.000

Renda 0.00043238 0.00004583 .43 0.000 1.00 1.00 1.00
DM1PRO ~0.1893 0.1974 -0.96 0.338 0.83 0.56 1.22
DMZ2 PRO -0.2800 0.1544 -1.81 0.070 0.76 0.56 1.02
Log-Likelihood = -625.852

i94.860, DF = 3, P-Value = 0.000

Test that alli slopes are zZero: G

Goodness-of-Fit Tests

Method Chi-Sguare DF P
Pearson 1324.121 g95 (0.000
Deviance 1165.110 995 (0.000
Hosmer-Lemeshow 6.274 8 0.616

Taple of Observed and Expected Frequencies:
(See Hosmer-Lemeshow Test for the Pearsen Chi-Square Statistic)

Group
Value 1 2 3 4 5 2] i 8 9 10 Total
1
Obs 39 35 42 45 58 &0 74 76 93 102 624
EXp 2.0 41.2 45.0 45.4 53.4 58.8 67.7 77.0 90.1 103.4
0]
Obs 68 71 o4 62 49 46 33 30 14 5 442
Exp 69.0 64.8 61.0 57.6 53.6 47.2 39.3 29.0 16.9 3.6
Total 107 106 106 107 107 106 107 106 107 107 1066

Measures of Association:
(Between the Response variable and Predicted probabilities)

Pairs Number Percent Summary Measures

Concordant 203068 73.46 Somers D Q.48
Discordant 71592 26.0 Goodman—-Kruskal Gamma 0.48
Ties 1148 0.4% Kendalls Tau-a 0.23
Total 275808 100.0%

Binary Logistic Regression

Link Function: Logit

Response Information

variable Value Count
Compra 1 624

0 442

Total 1066
Logistic Regression Table

Odds 85% CI

Predictor Coef StDev Z P Ratio Lower Upper
Constant -1.8560 0.4862 ~-3.82 0.000
Renda 0.00047039 0.00004570 10.29 0.000 1.00 1.00 1.00
DM1LOC 1.0899% 0.5211 2.09 0.036 2.97 1.07 8.26
DM2LOC 1.2894 0.4793 2.69 0.007 3.63 1.42 5.29
DM3LCC -0.0028 0.5495 -0.01 0.996 1.00 0.34 2.93

DMALOC 0.2978 0.5030 0.59 0.554 1.35 0.50 3.61



Log-Likelihood = -604.231
Tast that all slopes are Zero: ¢ = 238.102, DF = 5, P-value = 0.000

Goodness-of-Fit Tests

Method chi-Sguare DFE P
Pearson 1716.384 973 0.000
Deviance 1096.512 573 ©0.003
Hosmer-Lemeshow 15,364 8 0.052

Table of Observed and Expected Frequencies:
{See Hesmer-Lemeshow Test for the Pearson Chi-Square statistic)

Group
Value 1 2 3 4 S [2) 7 8 9 10 Total
i
Obs 21 a0 50 44 50 68 77 81 93 100 624
EXp 24.9 38.7 49.4 51.9 S54.9 60.7 68.8 79.5 91.0 104.1
0
Obs 85 67 59 63 56 38 29 25 13 7 442
Exp g1.1 &8.3 59.6 55.1 51.1 45.32 37.2 26.5 15.0 2.9
Total 106 107 109 107 106 106 106 106 106 107 1066

Measures of Association:
(Between the Response variable and Predicted Probabilities)

Pairs Number Percent Summary Measures

Concordant 210861 76.5% Somers D 0.53
Discordant 63932 23.2% Goodman-Kruskal Gamma 0.53
Ties 1015 0.4% Kendalls Tau-a 0.26
Total 275808 100.0%

Binary Logistic Regression

Link Function: Logit

Response Information

variable Value Count
compra 1 624

0 442

Total 1066
Logistic Regression Table

odds 95% CI

Predictor Coef Sthev A P Ratio Lowex Upper
Constant -0.3394 0.1340 -2.53 0.011
Renda 0.00046456 0.00004602 10.10 0.000 1.00 1.00 1.00
DML1IDA ~1.1665 0.2583 -4,50 0.000 0.31 0.12 0.52
DMZIDA -0.6844 0.2970 -2.30 0.021 0.50 0.28 0.%0
DM3IDA -0.3312 0.2930 -1.13 0.258 0.72 0.40 1.28
DM4IDA -1.3311 0.1708 -7.79 0.000 0.26 0.19 0.37
Log—Likelihood = -590.563

Test that all slopes are zero: G = 265.438, DF = 5, P-Value = 0.000
Goodness-of-Fit Tests

Method Chi-Sguare DF P
Pearson 1827.401 987 0.000



Deviance
Hosmer-Lemeshow

1085.673
17.685

287

0.015
8 (.024

Table of Cbserved and Expected Fregquencies:
{See Hosmer-LemeshoW Test for the Pearson Chi-square statistic)

value 1 z 3
1
Chs 22 27 46
Exp 23.9 31.6 43
0
Obs 84 80 60
EXp g2.1 75.4 82
Total 106 107 106

Measures of nssociation:

4

85

.9 56.0

55

.1 54.0

110

58.0

48.0

Group
6 7 8 9
6% 82 82 94 100
63.0 70.2 80.7 ©92.3 104.4

40 24 24 12
43,0 35.8 25.3 13.7
106

106 106

(Between the Response variable and predicted Probabilities)

Pairs Numbex
Concordant 215855
Discordant 59116
Ties 837
Total 275808

Percent
78.3%
21.4%

0.3%
100.0%

summary Measures

Someks D Q.57
coodman-Kruskal Gamma 0.57
Kendalls Tau—-a 0.28

106 107



Worksheet size: 100000 cells

Retrieving worksheet from file: C:\GUILHERME\POLI\TF\CONJUNTO DE DADOS\TREINAMENTOC.M

™
Worksheet was saved on 1/ 9/1%96

Binary Logistic Regression

Step Log-Likelihocod
-723.282
-651.136
-606.0353
-592.347
-581.203
-5981.123
-591.193
-591.193

[T W B STV e

Link Functien: Logit

Response Information

variable Value Count
Compra i 624

0 442

Total 1066
Logistic Regression Table

oOdds 85% CI

Predictor Coef StDev z P Ratio Lower Upper
Constant -0.3739 0.1303 -2.87 0.004
Renda 0.00046450 0.00004593 10.11 0.000 1.00 1.00 1.00
DM1IDA -1.1319 0.2573 -4.49 0.000 0.32 0.19 0.53
DM2IDA -0.64%8 0.2953 -2.20 0.028 0.52 0.2% 0.93
DM4IDA . ~1.2964 0.1678 -7.72 0.000 0.27 0.20 0.38
Log-Likelihood = -591.193

Test that all slopes are zero: @ = 264.177, DF = 4, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square OF P
Pearson 1852.765 978 0.000
Deviance 1072.071 978 0.018
Hosmer-Lemeshow 22.348 g8 0.004
Brown:

General Alternative 30.320 2z 0.000
symmetric Alternative 27.854 1 0.000

Table of Observed and Expected Freguencies:
(See Hosmer-Lemeshow Test for the Pearson Chi-Square statistic)

Group
Value 1 2 £} 4 5 6 7 8 9 10 Total
1
Cbs 22 27 48 54 48 64 85 82 94 100 624
Exp 23.9 31.6 44.3 54.4 58.3 64.2 70.3 80.6 92.1 104.3
o]
Obs 84 80 58 53 59 44 21 24 12 7 442

Exp g2.1 75.4 61.7 52.6 48.7 43.8 35.7 25.4 13.9 2.7



Total 106 107 iQe 107 107 108 106 106 106 107

Measures of Association:
(Between the Resgponse variable and Predicted Probabilities)

Pairs Number Percent Summary Measures

Concordant 215751 78.2% Somers D 0.57
Discordant 55201 21.5% Goodman-Kruskal Gamma 0.57
Ties 856 0.3% Kendalls Tau-a 0.28

Total 275808 100.0%

1066
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10.5 REGRESSAO LOGISTICA: PASSO 3



Worksheet size: 100000 cells

Retrieving worksheet from file: C:\GUILHERME\POLI\TF\CONJUNTO DE DADGS\TREINAMENTC .M

W
Worksheet was saved on 1L/ 9/19%6

Binary Logistic Regression

Link Function: Leogit

Response Information

Variable Value Count
Compra 1 624

0 442

Total 1066
Logistic Regression Table

Odds 95% CI

Predictor Coef Sthev Z P Ratio Lower Upper
Constant -0.3332 0.1407 -2.27 0.018
Renda 0.00046212 0.00004606 10.03 0.000 1.00 1.00 1.00
DM1IDA -1.1341 0.2573 -4.41 0.000 0.32 0.19 0.53
DMZIDA -0.6638 0.2859 -2.24 0.025 0.51 0.29 0.92
DM4IDA -1.2954 0.1679 -7.71 0.000 c.27 0.20 0.38
DMSEXO -Q.1188 0.1549 -0.77 0.443 0.89 0.66 1.20

Log-Likelihoed = -590.500
Test that all slopes are zero: G = 264.765, DF = 5, P=Value = 0.000

Goodness-of-Fit Tests

Method Chi-Sgquare DF P
Pearson 1878.591 1008 ©.000
Deviance 1105.5%26 1008 0.017
Hosmer—-Lemeshow 20.320 g8 0.009

Table of Observed and Expected Frequencies:
{See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)

Group
Value 1 2 3 4 5 6 7 8 9 10 Total
1
Obs 23 27 a7 47 50 €69 8l 84 96 100 624
Exp 23.8 31.7 44.4 54.3 58.3 62.9 70.8 B0.5 93.0 104.3
0
Obs 83 80O 58 60 57 37 26 22 11 7 442
BExp g2.2 175.3 61.6 B52.7 48.7 43.1 36.2 25.5 14.0 2.7
Total 106 107 106 107 107 106 107 106 107 107 1066

Measures of Association:
{Between the Response Variable and Predicted Probabilities)

Pairs Number Percent Summary Measures

Concordant 216151 78.4% Somers D 0.57
Discordant 58804 21.3% Goodman-Kruskal Gamma 0.57
Ties 853 0.3% Kendalls Tau-a 0.28

Total 275808 100.0%



Binary Logistic Regression

Link Function: Logit

Response Information

variable value Count
Compxa 1 624
0 442
Total 1066

Logistic Regression Table

Predictor Coef stbev
constant -0.1566 0.1711
Renda 0.00043582 0.00004731
DM1IDA -1.1221 0.2580
DM2IDA -0.6539 0.2967
DMAIDA -1.3118 0.1686
DM1ERO -0.1510 0.2047
DMZPRO -0.3240 0.1616
Log—Likelihood = -589.186

Test that all slopes are Zero: G

Goodness—of—?it Tests

Method Chi-Sguare
Pearsoil 1608.168
Deviance 1124.645
Hosmer-Lemeshow 12.423

odds
Z P Ratio
-0.92 0.360
.21 0.000 1.00
-4.35 0.000 0.33
-2.20 0.028 0.52
-7.78 0.000 0.27
-0.74 0.4861 0.86
-2.01 0.045 0.72

= 268.1%3, DF = 6,

BFE P
1019 o©.c00
1019 0.011

g 0.133

Table of Observed and Expected Frequencies:
(See Hosmer-Lemeshow Test for the Pearson Chi-squa

value 1 2 3 4
1
obs 21 34 39 51
EXD 22.9 31.7 a4.4 52.9
0
Obs 85 73 &7 56
EXp 83.1 75.3 1.6 54.1

Tctal 106 107 106 107

Measures of Association:

{(Between the Response variable and Predicted Probabilit

Pairs Number percent
concordant 216036 78.3%
Disceordant 58989 21.4
Ties 783 0.3%
Total 275808 100.90%

Binary Logistic Regression

Link Function: Logit

Response Information

Group
5) <) 7

58 61 81
58.5 63.8 71.8

49 45 26
sg.5 42.2 35.2

107 106 107

§5% CI
Lower Upper
1.00 1.00
0.20 0.54
0.29 0.93
0.18% 0.37
0.58 1.28
0.53 0.99

p-value = 0.000

8

84
81.0

22
25.9

106

surmary Measures

Somers D

Goodman—Kruskal Garma

Kendalls Tau-a

re Statistic)

9 10

95 100
92.9 104.

12 7
14.1 2.

107 167

ies)

0.57
0.57
0.28

Total

624

442

1066



variable value Coul
Compra 1 13
0 4
Total 10

Logistic Regression Table

nt
24
42
66

odds $5% CI
Predictor coef stDev Z P Ratic Lower Upper
constant 0.0331 0.9940 0.03 0.973
Renda 0.00046822 0.00004638 10.10 0.000 1.00 1.00 1.00
DM1IDR -1.1370 0.2590 ~4.39% 0.000 0.32 0.19 0.53
DMZIDA -0.6363 0.3067 -2.07 0.038 0.53 0.29 0.97
DM4IDA -1.8834 0.8688% -2.17 0.030 0.153 0.03 0.84
DML1LOC -0.4525% 0.9548 -p.47 0.8636 0.64 0.10 4.13
DM2LOC -0.4103 0.9908 -0.41 0.679 0.66 0.10 4.63
DM3LOC -0.0022 0.5492 -0.00 0.997 1.00 0.34 2.93
DMALOC 0.2969 0.5027 0.59 0.5535 1.35 0.50 3.60
Log—Likelihood = -590.364
Test that all slopes are zero: G = 265.837, DF = g, P-value = 0.000
Goodness—of~Fit Tests
Method ¢hi-Sgquare DF P
Pearson 1920.721 gg2 0.000
Deviance 1103.636 g92 0.007
Hosmer—Lemeshow 23.206 g 0.003
Table of observed and Expected Frequenclies:
(See Hosmer-Lemeshow Test for the Pearson chi-sguare statistic)
Group

value 1 2 3 4 3 6 7 8 S 10 Total
1

Obs 23 28 48 51 46 67 84 82 95 100 624

EXp 23.9 31.8 az.8 54.4 58.2 63.0 70.8 80.7 3.1 104.4
0

Cbs 83 79 58 56 61 39 23 24 i2 7 442

EXp gz.1 7%.2 62.Z2 52.6 48.8 43.0 36.2 25.3 13.9 2.6

Total 106 107 106 107 107 106 107 106 107 107 1066
Measures of Associaticn:
(Between the RespClnse variable and Predicted probabilities)
rairs Number Percent gummary Measures
concordant 216213 78.4% Somers D 0.57
Discordant 58800 21.3% Goodman-Kruskal Gamma 0.57
Ties 795 0.3% Kendalls Tau-a 0.28
Total 275808 100.0%
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Worksheet size: 100000 cells

retrieving worksheet from file: C:\GUILHERME\POLI\TF\CONJUNTO DE DADOS\TREINAMENTOC.M

™
Worksheet was saved on 1/ 8/1996

Binary Logistic Regression

Link Function: Logit

Response Information

variable Value Count
Compra 1 624

0 442

Tetal 1066
Logistic Regressicn Table

cdds 95% CI

Predictor coef StDev Z P Ratio Lower Upper
Constant -0.3739 0.1303 -2.87 0.004
Renda 0.00046450 0.00004393 10.11 0.000 1.00 1.00 1.00
DM1IDA -1.1319 0.2573 -4.40 0.000 0.32 0.19 0.53
DM2IDA -0.6498 0.2953 -2.20 0.028 0.52 0.29 0.93
DM4IDA -1.2964 0.1678 -7.72 0.000 0.27 0.20 0.38
Log-Likelihood = -591.183

Test that all slopes are zero: G = 264.177, DE = 4, F-Value = 0.000

Goodness-of-Fit Tests

Method chi-Square DF P
Fearson 1852.765 978 0.000
Deviance 1073.071 978 0.018
Hosmer-lemeshow 22.348 8 0.004

Table of Cbserved and Expected Frequencies:
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistie)

Group
vValue 1 2 3 4 5 6 7 8 9 10 Total
1
Obs 22 27 48 54 48 64 85 82 24 100 624
ExXp 23.9 21.6 44.3 54,4 58.3 64.2 70.3 80.6 92.1 104,32
o
Obs 84 80 58 53 59 44 21 24 12 7 442
Exp g2.1 75.4 61.7 52.6 48.7 43.8 35.7 25.4 13.9 2.7
Total 106 107 106 107 107 108 106 106 106 107 1066

Measures of Association:
{Between the Response variable and Predicted Probabilities)

Pairs Number Percent Summary Measures

concordant 215751 78.2% Scmers D 0.57
Discordant 59201 21.5% Goodman-Kruskal Gamma 0.57
Ties 856 0.3% Kendalils Tau-a Q.28

Total 275808 100.0%



USO DE REGRESSAO LOGISTICA COMO FERRAMENTA DE DECISAO =

10.7 CONJUNTO DE VALIDACAO



PL(X)

Compra Esperada

Compra Real

Acertos

0,208268287
0,219353729
0,220800333
0224417535
0,226352119
0231612224
0,234923302
0,235269467
0,237689546
0,24159505
0244402384
0,245949706
0,246122038
0,250469285
0,2510676
0.251692102
0,252918874
0,255207636
0,255560959
0,255724989
0,256800118
0,258844396
0,259736509
0,260899236
0,260899236
0261885708
0,272328629
0277340934
0,279955168
0,28455249
0,288649937
0,290944351
0,291040184
0,297794488
0,301009779
0,305425933
0,306609687
0,306792979
0,306792979
0,309268147
0,31435491
0,315958978
0,318989508
0,319292302
0,319685172
0,321720127
0,324361179
0,326298286
0,328021763
0,332969917
0,333474611
0,333485946

0

0
0
0
)
0
0
0
0
0
0
0
0
0
v
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
&
0
G
0
0
0
0
0
0
0
0
&
0

1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0
o
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
&
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(
0
0
0
0




0.370423366
0,370748403
0,371073556
0371181967
0,371724214
0,371941204
0372701073
0,374331479
0,374549083
0,375420006
0,375528928
0,376400758
0,376946059
0,378037595
0,379786623
0,380552808
0381429178
0,381538778
0,381648391
0384169004
0,385712449
0,386152774
0,386935889
1,38824305
0.388683238
0,390025626
0,390897901
0,390910044
0,393112048
0,393678449
0,394220771
0,395108546
0,398666491
0400226487
0,400895679
0,403029485
0,403128976
0,403687932
0,406038264
0,408280685
0,408505139
0,409852661
0,413002116
0,413452626
0,4177396
0,418304616
0,4198878
0,420223371
0421246129
0,425101143
0.428750231
0429648109
0430331199
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0,322125707
0,322216005
0.32241543
0325572722
£,326082892
0,328241342
0328742401
0,32884491
0,329867366
0,332130241
0,33254251
0,334301074
0,334714688
0,334818131
0,335025065
0,337420751
0,337513203
0,338356011
0,340114614
0.343664432
0,344296952
0,345136348
0,345871612
0,345871612
0,346292095
0,346712818
0347765672
0,348187231
0,348289027
0,34955894
0,351991907
0352627866
0,352946042
0,353052129
0,354751493
0,356028428
0,356785959
0,358172928
0,359122793
0,359443575
0,36062085
0,360727958
0,36083508
0.,360942216
0,362332544
0,364593017
0,364915903
0,365346607
0,365666065
0,366328317
0,366963661
0,368583716
0),368799948
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0,265027401
0,265130943
0263402537
0,26557063
0,265764938
0,267841722
0,268128227
0.2687536
0,269955177
027004673
0,270229895
0,271055105
027168477
0,272157844
0272433967
0,273171152
0273355642
0,274834362
0,274926946
0,275853858
0,276132308
0,27799308
0,278166128
0,278552813
0,279019786
0,279019786
0279767938
0,280142474
0.280329857
0,283244053
0,28362141
0,289222531
0.291697698
0,291711541
0,292864553
0,294695605
0,295178567
0,2962427
0,297018009
0,297115005
0,297503172
0,300326097
0,301596497
0.306609687
0,306807228
0,307682768
0,309878154
0,313051417
0,313165727
0,313265646
0,315970001
0,316260231
0,317765338
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0,226363852
0,226526583
0,226689397
0,2277497
0,22807665
0,228473992
0,228567695
0,229469874
0,231446932
0231517647
0231931117
0,234935345
0,235938699
0,236022446
0.236513257
0236777088
0,237100899
0.238026367
0,2381949
0.241680169
0,243032526
(,243288977
0,243301312
(,243386839
0,243386839
0,243386839
0,243802429
0,245175221
0,245777456
(,246035862
0,247330634
(,247330034
0,249424309
0,250382092
0,250456707
0,251329714
0,252042205
0,252042205
0,252042205
0,252042205
0,254489242
0,255106624
0,256445671
0,256610073
0,257053367
0,257154884
0,257154884
0,258577152
0.260899236
0,261078416
0.263041649
0,263505117
(,264317229
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0,475068319
0477260821
0.477501453
0477861858
0479115283
0,479368721
0479578991
047970378+
0481571726
0,482834748
0,48364671
0485266891
0,485842161
0,485851029
0,485967061
0,487836525
0,493860184
0,495709165
0,495730729
0497240278
0,497937012
0,499425
0,499433875
0,5000145
0.50012175
0,50024675
0,500479
0,50406991
0,504423135
0,505356045
0,505579393
0,506168812
0,506740467
0,50732985
0,195547202
0,196059197
0,196425528
0,198634372
0,199152449
0,201982575
0,205069703
0,205676135
0,211426033
0.216424952
0216661362
0,218004548
0,220309701
0,220960207
0,222070069
0,223921175
0,22498398
0225227052
0,226352119
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0,385052313
0,38506-4389
0,390897901
0,392791807
£,398443801
0,398666491
0,400127233
0,400561037
0,400684821
0,401242666
0401465876
0404694683
0,411426481
0411551318
0,412214074
0,412564111
0,412664329
0,413127095
0414241367
0414466802
0,41570345

0415707336
0,41898292

0,42022727

0,423751938
0424533646
0,429534287
0.429888275
0431124548
0,435234287
0,435348467
0437747814
0,443128184
0,445651326
0,447028775
0,448407038
0,448879253
0,450705895
0,45312196

0,453940453
0,454964261
0457512087
0,461998924
0463380686
0466157821
0,467194321
0,470659747
0470900048
0471028488
0,471594494
0471722955
0472533304
0,474489171
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0,336682815
0,337305512
0,337617072
0,337928773
€,339798342
0,340844749
(,342516463
0,343249072
0,344413338
0,346923269
0,350933142
0,351368096
0,351885965
0,353052129
0,353052129
0,353052129
0,35359444

0,355602554
0,355815463
0,356561091
0,358267991
0,35902763

0,361811578
0,361918839
0,362443569
0,363302694
0.363732584
0,364593017
(.36847562

0,370098447
037020674

0370315047
0,370419635
0,373147496
0,373678972
0,375964743
0,376291735
0376618841
0,377067136
0,377382524
0,377819189
0,377819189
0,378037595
0,378802407
0,379677216
0,379896041
0,381100448
0,382745179
0,383074449
(,383403826
0,383623471
0,383965089
0,384059117
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0565127995
0.565242147
0,565356291
0,568212402
0569697238
0,570376396
0,570485438
0.57197312
0,572532931
0,573690514
0579008618
0,579452803
0,580928345
(.582054003
0,582392957
0,582623625
0.582639917
0.582966337
0585101761
0586454247
0,58791797
0,588264131
0,588388984
0,589042855
0,589380139
0,590512397
0.590728434
0,592420456
£.592869009
0,597895864
(1,59890904
0599012089
0,599235211
0.599792836
0600350203
0,602910724
0,602919223
0,604363984
0,605687516
0.607797982
0608244615
0608900055
0,611891016
0.613535947
0,614311244
0,614526712
0.618488593
0,619255523
0620122922
0,620143299
0,62089317
0621762881
0621762881




0,621892453
0,622317261
0,624163114
0,624933875
0,626348177
0,626348177
0,626665943
0,631867316
0,631887436
0,635318019
0636509227
0,637153796
0,637797873
0,638004256
0,640254059
0,644522322
0647186519
0,650459363
0,651628233
0.651733671
0,633515802
0,654154632
0,656664358
0,656986463
0.658442464
0,65867081

0,659807165
0,663335163
0,664889381
0,668612769
0,671787653
0672511991
0,672606467
0675878964
0.676379768
0,678316314
0,68154335

0,68214794

0,68325476

0,688658045
0,689063882
0,690348592
0,692338533
0,69263527T
0,694601963
0,696470895
0,696765399
0,698724626
0,699017888
0.699603925
0,699708994
0,699817298
0.700889569




0,701170939
0701570779
0701041544
0704075137
0,706103466
0708322963
0709473221
0,71032685

0.71032685

0,711281683
0,711765681
0712900599
0,714703545
071527148

0,718382927
0.718382927
0719235075
.719321698
0.719790367
0.721006667
072241318

0726762727
0.727964062
0.728970877
0729986188
0730169261
0.731897577
0733551925
07353720372
0736527291
0737697417
0.739841998
0739931393
0740751663
(741632912
0,743756494
0744729063
0749031856
0,750171938
0.751212136
0753286149
0753717523
0754751317
0755695293
0755781039
0761148326
0761907517
0762665048
0.763346227
0764091405
0,765342151
0767417771
0767749237




0432610066
0,434321095
0435805256
0436490643
0437061984
0.440035619
0, 440150077
0440379012
0,446450783
0448177272
0,450016012
0452891761
0459225251
0460729176
0460960002
0461203518
0463571069
0467313931
0467326627
0468007766
0468924231
0,469039909
0469271276
0.470196871
0.470428303
0470428303
0471710246
0472743298
047367848
0474257531
0474827799
0 AT4836652
0476690284
0.478303883
0.480042734
0,480047601
0483173856
048364671
0.483869849
0.489323748
049118104
0.492695145
0492922473
0493270781
0494664078
0495012415
0.496298568
0497567019
0,499076620
0,49955
0.49965725
0,500005625
0.50012175




0,500354
0,503257079
0503263954
0,504194902
0504302144
0.504630491
0506284919
0,506508257
0507901467
0508133657
0509767757
0509991045
0510128739
0,511035707
0513494472
0,514986135
0515106151
051603425
0.516382259
0516953374
0,517765269
0518122058
0,519745476
0,52078002+
0521127787
0522634519
0528657059
0531549653
0.532243567
0532243567
0,533284204
0533408648
0,534217805
0536173315
0537674706
0,541828758
0,541944068
0,542986493
0544023706
0.544594934
0547128185
0549658997
0550127658
0551391868
0,552302099
0,552655413
0,553012500
055402428
0554033051
0554942249
05582667

0560793979
0.562619739




0,770306911
0,772028263
0772600023
0773659176
0,776332095
0779142369
0782170824
0782323019
0787582174
0,789595596
0,790052351
0790129387
0,799669898
08007153
0,800857838
0,803511328
0,805562184
0.807657897
0,807946366
(,812304683
0,813435179
0,814420053
0,8180459%01
0819838988
0,820792282
0,821343435
0.822018824
0823171176
(,824183085
0824720905
0825056384
0,827393363
0828124126
0,828452172
0,828713301
0,828979643
0,829765679
0,830224476
0830616947
0,832314266
0836930221
0.841438581
0,850455935
0,850633075
0,852278046
0,853036678
0,857407391
0.858148387
0861392134
0862056306
0865341292
0865985365
0,867276117




0,868604895
0873922401
0874178076
0.877561481
0,877856815
0.878009956
0878356082
0.880768779
0885890213
0887847556
0,888949315
0889407034
0889772019
0891760622
089394624

0,895513086
0,895690127
0.898854945
0002674413
0,903000388
0,0032:44229
0.904294559
0,.004495374
0.008278522
0,009241368
0910763003
0911477689
0916621718
0.917082059
0,918068389
0,918417103
0.91962435

0919898592
0.92027571

0923027016
0,925369787
0.926388743
0.926955553
0,028420032
0,928943032
0,92934059

933522313
0933579942
(,935316662
0935679855
0,935765803
0037284427
0.940687867
0,041641494
0041996953
0.042627143
0.943599032
0,047449524




0947566802
0,048366948
0950223418
0953457856
£,95490119

0956221134
0,956627667
0956706162
0956781587
0957316209
0,957316209
0957806981
0.959536674
0.959949442
0.960657705
0,962090508
0962224516
(0.962877502
0,963010795
0.968795765
0970329675
0.972384645
0,072435861
0.972927774
0973122331
0,74173203
0.976106937
0976150232
0976225813
0,.977486492
0.9786803

0.97946071

0979757614
0980077541
0980464191
0,980807808
0081059739
0081316944
0981762992
0.982352577
0.984292557
0985111049
0987258714
098738662

0088455477
0988836075
0,990283059
0.991157839
0,093450087
0993640717
0.993719476
0994681448
0,995761028




0.995977333
0996612077
0996783158
0996856837
0.997385929
0.997675138
0,.097838328
0,998022333
0098297395
0,998309256
0008401458
0,998561866
0998882649
0,998912297
0999050568
0,999148666
0999329384
0.999373037
0,09943046
0.099587723
0099736986
0999822272
0,099917022
0999945803
0.999979969
0,099988043
0.999994066
0.999998014
£,999998823
1000000
1,000000
0510107123
0511035707
0511383907
0.511616034
0511964216
0512080274
0512892642
0,513008689
0513481731
0514061916
0514865243
0515106151
0515329319
0518113195
051823803
0,519397635
0521359617
0.521475529
0522634519
0523802121
0,524024985
0,524256693




0,52.46042.37
0,52484477?.
0,525067591
0,526697834
,5271521 38
0,527 504352
0,52785164
0,5281 94061
0,529582908
0,530170303
05 30508553
0,532243567
0,532359208
0,53217 14943
0,534208972
0,5353640
0537097328
0,537221637
0 ,53836’.’427
0539983196
0,54067541 3
0,5409149 32
054125214
0,541828758
0,5421746'."4
0,544018868
0,544018868
0,546782882
0.547367157
0,547473442
0.547703588
0547933714
0,54793371 4
0 ,548623968
0,549084033
0,54989 3772
0,551153278
0,35 1497982
0.55241695
0,552761472
0,552876301
0,552885076
0,553105942
0556671187
0 ,556785817
0,556900441
0,557027643
0,559204207
0.560098667
0 ,56193'1‘736
0,564223266
0 ,564908397
0,56501 1837




0566962295
0,56730439
0.568570696
0569355599
0.57037t617
0.570599252
0571290671
0.572419246
0.5T4464396
0574485541
0,577980595
0578215837
0579792343
0582054003
0584312217
0588255532
0588817952
0590616128
0591065296
0.591186144
0591626542
0.596443256
0597225641
0598900513
0.599681332
0,604244423
0605132697
0609452997
0 609674095
0611682487
0615186696
0616285726
0617273839
0,618260084
0,621544379
0,622753863
0624925554
0.628077601
0628077601
0629708273
063294713
0.633702208
0,634672058
0635318019
0,637901475
0,640468006
0,648344229
0,648450125
0649089635
0,649931131
0,659173337
0659694925
0,661473378




0662089237
0,669016456
0.67373062
0675667639
0,678815142
0681950707
0,683560479
0683857608
0,685662441
0,690547147
0693121946
0,694700488
0,700091791
0,712995661
0.715082244
0715845956
0717724653
0718202129
0721473612
0,722406062
0,727039359
0,734988961
0,736610532
0,736790733
0738767704
0,742788281
074296573
0746497863
0,752508397
0757491674
0770306911
0779142369
0781848037
0,783900898
0784843641
0788197257
0,796300377
0,803217819
0816104388
0,810833744
0820245035
0821201861
0,822499215
0836801208
0837431906
0,84530401
0,855695199
0871493285
0876857201
087893039
0.880671186
0,.897410058
£,.924723203




0,94540071
0,970463113
0,98197797
0983346358
0,994276108
0,998100549
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