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RESUMO

SANTOS, P. L. B. Análise de incerteza e previsão de geração eólica para estudos de

margem de estabilidade de tensão. 2025. Monografia (Trabalho de Conclusão de Curso)

– Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

A crescente participação de fontes alternativas de energia limpa em substituição a fontes

poluentes na matriz energética, visando a diminuição de impactos ambientais, resultou no

crescimento de fontes de geração eólica no sistema elétrico brasileiro, as quais utilizam

de aerogeradores para realizar a conversão da energia cinética das massas de ar em

energia elétrica. No entanto, flutuações na velocidade dos ventos e a intermitência nesse

tipo de fonte dificultam a previsão do cenário operativo e podem culminar em problemas de

instabilidade de tensão. Nesse contexto, esta monografia tem como objetivo investigar e

desenvolver metodologias para parametrizar as dinâmicas de geração nesse modelo de

fonte, em termos de previsão de geração e potencial. Sob essa ótica, buscou-se entender,

modelar e prever a potência de saída de complexos eólicos com diferentes modelos, a fim de

avaliar a aderência destes modelos aos dados reais e, então, estudar como as variações de

geração eólica podem comprometer a estabilidade do sistema elétrico. Para isso, analisaram-

se dados de geração e diferentes métodos de análise são aplicados, com o intuito de criar

cenários de geração. Para isso, utilizaram-se dados históricos de velocidade do vento

para a aplicação da Distribuição de Weibull, com o objetivo de estimar a probabilidade de

ocorrência de diferentes faixas de velocidade na região de Curaçá/BA, em que o modelo

apresentou alta aderência aos dados observados, evidenciada pela elevada convergência

entre a curva ajustada e o histograma empírico. Além disso, foram empregados modelos de

séries temporais e redes neurais artificiais para a previsão da potência gerada por parques

eólicos, sendo que as redes neurais demonstraram desempenho superior, alcançando erros

de previsão frequentemente inferiores a 1%, o que evidencia sua maior capacidade de

modelar padrões de geração eólica. Destarte, o objetivo é avaliar modelos que auxiliem no

planejamento da operação elétrica e nas análises de segurança em sistemas elétricos de

potência com grande penetração de fontes de geração eólica.

Palavras-chave: Estabilidade de Tensão. Geração Eólica. Representação de Incertezas.

Sistemas Elétricos de Potência.





ABSTRACT

SANTOS, P. L. B. Uncertainty analysis and wind power generation forecast for voltage

stability margin studies. 2025. Monografia (Trabalho de Conclusão de Curso) – Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

The growing participation of alternative clean energy sources in replacement of polluting

sources in the energy matrix, aiming to reduce environmental impacts, has resulted in

the growth of wind power generation sources in the Brazilian electric system, which use

wind turbines to convert the kinetic energy of air masses into electrical energy. However,

fluctuations in wind speed and the intermittency of this type of source make it difficult

to predict the operational scenario and may lead to voltage instability problems. In this

context, this monograph aims to investigate and develop methodologies to parameterize the

generation dynamics of this type of source, in terms of generation forecasting and potential.

From this perspective, the goal was to understand, model, and forecast the output power of

wind farms using different models, in order to evaluate the adherence of these models to real

data and, then, study how variations in wind generation may compromise the stability of the

electric power system. For this purpose, generation data were analyzed and different analysis

methods were applied, with the aim of creating generation scenarios. For this, historical wind

speed data were used for the application of the Weibull Distribution, in order to estimate

the probability of occurrence of different wind speed ranges in the region of Curaçá/BA, in

which the model showed high adherence to the observed data, evidenced by the strong

convergence between the fitted curve and the empirical histogram. Furthermore, time series

models and artificial neural networks were employed to forecast the power generated by

wind farms, with neural networks demonstrating superior performance, achieving forecast

errors frequently below 1%, which highlights their greater capacity to model wind generation

patterns. Thus, the objective is to evaluate models that assist in the planning of power system

operation and in security analyses in electric power systems with high penetration of wind

generation sources.

Keywords: Power Systems. Uncertainty Representation. Voltage Stability. Wind Power Gen-

eration.
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1 INTRODUÇÃO

A transição para uma matriz energética sustentável tem impulsionado o crescimento da

geração de energia por fontes renováveis, como a eólica, que contribuem para a diminuição

da dependência de combustíveis fósseis e para a redução de impactos ambientais. No

entanto, a natureza intermitente da geração eólica, diretamente influenciada pela velocidade

dos ventos, introduz incertezas significativas no planejamento da operação de sistemas elé-

tricos de potência (SEP), podendo ocasionar instabilidades nos níveis de tensão (BICALHO,

2012). Em relação a isso, manter as tensões dentro de faixas adequadas é essencial para

garantir a qualidade do fornecimento de eletricidade e evitar eventos que comprometam a

segurança e confiabilidade da rede (KUNDUR, 2004).

Nesse sentido, destacam-se alguns dos principais fatores que levam à instabilidade de

tensão, incluindo a distância entre os centros de geração e consumo, que causa perdas

consideráveis nas linhas de transmissão, além da limitação na capacidade de transferir

potências reativas em grande quantidade (KUNDUR, 2004). Com vistas aos parques eólicos,

ao serem integrados de forma adequada, podem contribuir para a operação segura da rede

elétrica, desde que participem ativamente no controle e aumento da margem de estabilidade

de tensão (SOHN, 2014).

Com esse enfoque, o estudo da matriz elétrica e do potencial eólico no país são

fundamentais para o planejamento e a operação do setor energético, principalmente em se

tratando da transição para uma matriz energética renovável, o que auxilia compreensão da

participação e o impacto das diferentes fontes de geração no atendimento à demanda, além

de identificar oportunidades para diversificação e redução da dependência de combustíveis

fósseis (LIMA et al., 2018). Para isso, a análise de potencial eólico tem o papel de fornecer

subsídios técnicos para avaliar a viabilidade de projetos, contribuindo para o aproveitamento

estratégico dessa fonte renovável e otimizando o desempenho e a eficiência dos parques

eólicos (AMARANTE et al., 2001).

Entretanto, devido à sua dependência das variações de vento, os parques eólicos

apresentam oscilações na geração, tornando necessária a criação de metodologias que

prevejam seu comportamento e estimem margens de estabilidade adequadas para diversos

cenários de geração. A esse respeito, sabe-se que essas metodologias são fundamentais

para mitigar os riscos associados à intermitência da geração eólica, permitindo uma opera-

ção mais segura e confiável dos sistemas elétricos de potência. Além disso, ao incorporar

modelos preditivos precisos e ferramentas analíticas robustas, é possível otimizar o uso da

energia gerada, minimizar impactos na qualidade da energia e contribuir para a expansão

sustentável dessa fonte renovável na matriz energética (LIMA et al., 2024).

A análise operacional de complexos eólicos requer uma sólida análise de dados his-

tóricos, sejam eles no tocante ao potencial disponível ou geração, a fim de entender as

dinâmicas pelas quais complexos eólicos estão susceptíveis (SANTOS, 2022). Para isso,
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é necessário a avaliação de base de dados que permita uma compreensão detalhada do

comportamento dos ventos e das condições climáticas regionais, em que se destacam

as atuações de órgãos como o Operador Nacional do Sistema Elétrico (ONS), o Instituto

Nacional de Meteorologia (INMET) e o Centro de Referência para Energia Solar e Eólica

Sérgio de Salvo Brito (CRESESB), os quais oferecem informações indispensáveis para a

modelagem e avaliação da dinâmica em complexos eólicos.

Existe uma ampla gama de técnicas de análise para parques eólicos. Dentre as fer-

ramentas empregadas, destaca-se a Distribuição de Weibull, amplamente utilizada para

avaliar a viabilidade energética de uma região, considerando a variação da intensidade e

frequência dos ventos, a fim de entender qual é a probabilidade da velocidade dos ventos

estarem em uma faixa de operação, o que impacta na avaliação do potencial da área

estudada (SOUZA et al., 2019).

Neste contexto, tem-se o uso de funções de distribuição para a avaliação do planeja-

mento energético de longo prazo, que é essencial para garantir a segurança no fornecimento

de energia, tendo em vista as projeções de demanda e as tendências de crescimento popu-

lacional e industrial, focando em cenários que podem se estendem por décadas, o que exige

a consideração de variáveis econômicas, sociais e tecnológicas (CARVALHO, 2005). Para

que seja possível atender à crescente demanda de energia, as projeções devem incorporar

o desenvolvimento de novas fontes de energia, como as renováveis, além de inovações

tecnológicas que podem impactar tanto a geração quanto a distribuição de eletricidade,

em que a previsão é fundamental para a definição de políticas públicas, investimentos

em infraestrutura e formação de um portfólio energético diversificado, que permita não

apenas a sustentação da demanda, mas também a adaptação às mudanças climáticas e

aos avanços tecnológicos, garantindo um sistema energético robusto e resiliente a longo

prazo (MERCURE et al., 2014).

Em outra perspectiva, o estudo de séries temporais é comumente usado no processo

de previsão da potência de saída em complexos eólicos, uma vez que essa abordagem

possibilita a identificação de padrões sazonais e tendências de comportamento, fornecendo

recursos para ajustes mais precisos em modelos operacionais. Assim, ao integrar essas

análises ao processo de predição, é possível otimizar a gestão dos recursos energéticos,

aumentar a eficiência dos sistemas e promover uma maior confiabilidade no planejamento

energético. (FRANCA et al., 2019).

Ademais, a integração de técnicas avançadas com base em redes neurais artificiais

têm ampliado significativamente a capacidade de análise e previsão da geração eólica

(OLIVEIRA; SANTOS, 2023). Isso se deve ao fato de que essas redes, ao aprenderem

padrões complexos em dados históricos, podem fornecer estimativas mais acuradas sobre

o cenário de geração em complexos eólicos, ainda que estejam diante de cenários de alta

variabilidade (FUJISE, 2018). Assim, tal abordagem não apenas contribui para uma maior

eficiência no gerenciamento da geração e da estabilidade da rede, mas também para o
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planejamento estratégico de novos empreendimentos eólicos, consolidando a energia eólica

como um pilar na transição para uma matriz energética mais sustentável e resiliente.

Sob outra ótica, há análises de previsões de curto prazo para o planejamento elétrico,

visando atender à necessidade imediata e à operação diária do sistema elétrico. Essas

análises de previsão para o curto prazo, podendo ser de horas, dias ou semanas, comumente

se concentram na previsão da demanda de energia e no gerenciamento da operação das

usinas e redes de transmissão de forma eficiente (AQUILA et al., 2023). Nesse contexto,

fatores como condições climáticas, padrões de consumo sazonais e eventos imprevistos,

como falhas ou manutenções, precisam ser considerados para ajustar a geração e a

distribuição de eletricidade. Ao contrário das previsões de longo prazo, que focam na

expansão e sustentabilidade do sistema, as previsões de curto prazo estão diretamente

relacionadas à operacionalidade e ao equilíbrio em tempo real entre oferta e demanda,

evitando sobrecargas e minimizando o risco de apagões. Esse nível de previsão exige

modelos preditivos altamente precisos e atualizados, além de um sistema de monitoramento

contínuo que permita ajustes rápidos e eficazes (HONG; FAN, 2016).

Destarte, a integração entre as previsões de longo e curto prazo é crucial para o sucesso

do planejamento energético e elétrico. Embora cada uma dessas previsões atenda a neces-

sidades distintas, elas estão interligadas no objetivo comum de assegurar a continuidade

e a eficiência do fornecimento de energia (LAI et al., 2018). As previsões de longo prazo

orientam a construção de um sistema energético resiliente e preparado para o futuro, en-

quanto as previsões de curto prazo garantem a operação diária eficiente do sistema elétrico.

Dessa forma, a análise integrada dessas previsões possibilita uma abordagem holística

para o planejamento, permitindo que as decisões tomadas hoje, com base nas projeções de

curto prazo, estejam alinhadas com as metas estratégicas de longo prazo, contribuindo para

um desenvolvimento sustentável do setor energético. Assim, a capacidade de combinar

ambos os horizontes temporais proporciona uma maior estabilidade e confiabilidade no

fornecimento de energia, adaptando-se às exigências presentes e futuras da sociedade

(NAM et al., 2020).

1.1 Objetivo

Este projeto de conclusão de curso tem como objetivo modelar as variações de geração

de energia em parques eólicos de curto prazo, visando o estudo do problema de estabilidade

de tensão, que busca manter as tensões dentro de níveis operacionais seguros e contribuir

para a estabilidade dos sistemas elétricos de potência (SEPs). Para tanto, emprega-se uma

combinação de técnicas estatísticas avançadas, incluindo distribuições de probabilidade,

séries temporais e redes neurais artificiais, para analisar e prever a dinâmica da geração

eólica. Estas metodologias permitem não apenas estimar as variações de curto prazo, mas

também identificar padrões e tendências que impactam diretamente a operação e o planeja-
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mento do sistema elétrico. O desenvolvimento desses modelos busca fornecer subsídios

técnicos para a integração otimizada da geração eólica, promovendo uma operação mais

confiável e eficiente dos SEPs.

1.2 Justificativa

A principal justificativa deste trabalho reside na crescente participação da energia eólica

na matriz energética, o que demanda soluções inovadoras para mitigar as incertezas

associadas à sua natureza intermitente. A variabilidade dos ventos representa um desafio

significativo para a operação dos sistemas elétricos, especialmente no que diz respeito à

manutenção da qualidade e confiabilidade do fornecimento de eletricidade. Ao desenvolver

modelos preditivos robustos e estudos detalhados sobre o potencial de geração entre

parques eólicos, este projeto oferece ferramentas essenciais para o setor energético. Além

disso, o trabalho contribui diretamente para o avanço tecnológico necessário à transição

energética, ao apoiar uma integração mais segura e eficiente das fontes renováveis, alinhada

às demandas globais por sustentabilidade e resiliência na infraestrutura elétrica.
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2 REVISÃO BIBLIOGRÁFICA

2.1 Geração Eólica

Em função do aumento da demanda do SEP, somado a pressão econômica e ambiental

para a transição para uma matriz energética mais limpa, urge que seja feito um planejamento

mais criterioso na adoção de novas fontes de energia. Nesse cenário, as fontes renováveis

ganham relevância em escala global, com aplicações efetivas de fontes alternativas e

renováveis, como energia solar fotovoltaica, biomassa, hidrelétricas e energia eólica, com

importantes aspectos voltados à comercialização e integração da rede (LIMA et al., 2018).

Com vistas à geração sustentável de energia elétrica, aliada à necessidade de reduzir

os impactos ambientais das formas tradicionais de geração de energia, principalmente de

origem termoelétrica, tem-se o crescente uso de fontes eólicas, que utilizam aerogerado-

res para realizar a conversão da energia cinética das massas de ar em energia elétrica

(FERREIRA, 2008).

Em se tratando da matriz elétrica brasileira, observa-se que o país tem sua geração

de energia fortemente baseada em fontes renováveis, com destaque à geração hídrica,

que se beneficia da geografia favorável do país (RAMPINELLI; JUNIOR, 2012). A Figura 1

apresenta a matriz elétrica brasileira no ano de 2023, em que é possível ver a presença de

fontes renováveis de geração de energia e a predominância da geração por fontes hídricas.

Figura 1 – Matriz Elétrica Brasileira de 2023

Fonte: (EPE, 2024)

Entretanto, é importante destacar o papel crescente da energia eólica na matriz elétrica

brasileira, especialmente considerando as projeções futuras. Atualmente, tem-se cerca de
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1079 parques eólicos distribuídos em 12 estados do país, os quais contam com mais de

11400 aerogeradores em operação, o que resulta em cerca de 32 GW de potência instalada

(ABEEólica, 2024). A Figura 2 mostra a evolução da capacidade instalada no Brasil entre os

anos de 2005 e 2023, evidenciando a quantidade de novas instalações e o total acumulado

em MW.

Figura 2 – Evolução da capacidade instalada de fontes eólicas (MW)

Fonte: (ABEEólica, 2024)

Sob essa ótica, é notório que o investimento em fontes eólicas geram boa rentabilidade,

apresentando um retorno de 2,9 reais ao PIB a cada 1 real investido, além de gerar cerca de

11 postos de trabalho a cada MW instalado (ABEEólica, 2024). Por isso, os investimentos no

setor também demonstraram um crescimento significativo nos últimos anos, especialmente

entre os anos de 2012 e 2023. Por exemplo, teve-se um total de 6,2 bilhões de dólares

investidos em geração eólica só no ano de 2022, o que reflete em uma tendência de

crescimento na capacidade instalada acumulada do país (PACHECO et al., 2024).

No que diz respeito às projeções futuras, a tendência é a expansão eólica continuar

crescente nos próximos anos, justificada pelo alto potencial eólico do país. Estima-se que,

até 2028, o Brasil terá 44,78 GW de capacidade instalada de fontes de origem eólica, um

aumento de 38,21% do que há instalado em 2024, cuja participação na matriz nacional

atinge 13,2% (ABEEólica, 2024).
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2.2 Potencial Eólico Brasileiro

Tendo em vista o destaque da energia eólica por seu caráter não poluente, tem-se

uma alternativa estratégica para a mitigação das emissões de gases de efeito estufa por

fontes à combustão. Nesse sentido, é conveniente destacar que a geração de 1.7 GWh de

energia a partir dos aerogeradores, em substituição a fontes convencionais, poderia evitar

a emissão de, aproximadamente, 1, 3 × 106 toneladas de CO2 na atmosfera, reforçando

sua importância no combate às mudanças climáticas, também evidenciando a importância

da analisar o potencial eólico de uma região a fim de viabilizar sua exploração energética

(SILVA et al., 2002).

Contudo, o entendimento do potencial eólico de uma região exige estudos sistemáticos

sobre o regime de ventos, o que oferece uma estimativa inicial do potencial bruto ou teórico

de aproveitamento da energia eólica. Para que a energia eólica seja tecnicamente viável,

a densidade do vento na região estudada deve ser igual ou superior a 500 W/m² a uma

altura de 50 metros, o que corresponde a uma velocidade mínima do vento entre 7 e 8

m/s. No entanto, segundo a Organização Mundial de Meteorologia (OMM), apenas 13% da

superfície terrestre apresenta velocidade média de vento igual ou superior a 7 m/s nessa

altura. Ainda assim, estima-se que o potencial bruto mundial de energia eólica seja da

ordem de 500.000 TWh por ano, mas, devido a restrições socioambientais, apenas cerca

de 53.000 TWh, ou aproximadamente 10% desse total, são considerados tecnicamente

aproveitáveis(FILIPE et al., 2010). Ainda que não seja possível aproveitar todo o potencial

eólico mundial, o valor de 10% desse total ainda é 1,8 vezes maior do que a geração total

de energia no mundo em 2023 (ENERGY INSTITUTE, 2024).

Com vistas ao Brasil, tem-se que o potencial voltado à energia eólica é de cerca 143 GW

(ALVES, 2010), o que resulta em, aproximadamente, 1250 TWh de geração de energia por

ano, sendo que a geração no país em 2023 foi de 710 TWh (ENERGY INSTITUTE, 2024),

ou seja, o potencial eólico brasileiro é 1,76 vezes maior do que a geração atual presente

no país. Assim, o Brasil possui um vasto potencial para a geração de energia eólica, uma

vez que conta com condições climáticas favoráveis à implementação dessa fonte, somada

a uma extensa área territorial, fazendo com que o país apresente regiões particularmente

adequadas para a instalação de parques eólicos, especialmente no Nordeste e Sul do país

(SANTOS, 2022).

Para a avaliação do potencial eólico brasileiro, é fundamental considerar questões de

sazonalidade, que impactam diretamente a disponibilidade e a previsibilidade dos ventos.

Tais questões devem ser cuidadosamente analisadas na elaboração de cenários energéticos,

a fim de aumentar a precisão nas estimativas de geração e aprimorar as estratégias de

integração ao sistema elétrico, promovendo maior estabilidade sazonal na oferta de energia

e estabilidade em sistemas com alta penetração de fonte eólicas (AMARANTE et al., 2001).

A Figura 3 apresenta a média trimestral da velocidade dos ventos nas diferentes regiões
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do Brasil, sendo possível observar a variação dessa velocidade ao decorrer dos meses,

principalmente no Nordeste brasileiro.

Figura 3 – Média trimestral da velocidade dos ventos (m/s)

Fonte: Adaptado de (AMARANTE et al., 2001)

Destarte, o potencial eólico brasileiro apresenta características únicas devido à variabili-

dade climática e geográfica do país, oferecendo condições favoráveis para o aproveitamento

da energia dos ventos em várias regiões, podendo chegar a velocidades de até a 9 m/s.

Contudo, para explorar esse potencial, é essencial considerar fatores como sazonalidade,

variabilidade e integração ao sistema elétrico nacional, sendo necessária a modelagem

de cenários e o fortalecimento de políticas públicas voltadas para energias renováveis,

alavancando o uso sustentável e estratégico dessa fonte para a diversificação da matriz

energética brasileira, maximizando os benefícios econômicos e ambientais e posicionando

o país como referência global em energia limpa (ALVES, 2010).
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2.3 Aerogeradores

No que se refere à geração de energia por fontes eólicas, tem-se que os aerogeradores

são os dispositivos responsáveis por converter a energia cinética presente nas massas de

ar em energia elétrica, que fundamenta a geração de energia dessa fonte renovável. Nesse

sentido, esses sistemas realizam a conversão da energia cinética do vento em movimento

mecânico, que é transmitido para o gerador. Em sequência, essa energia é convertida em

eletricidade e distribuída para a rede elétrica (PICOLO et al., 2014). A Figura 4 apresenta o

funcionamento de um aerogerador.

Figura 4 – Processo de geração de energia em fontes eólicas

Fonte: (PICOLO et al., 2014)

Em termos de potência disponível para aerogeradores, a análise inicial se baseia na

energia cinética disponível, a qual é apresentada pela equação (2.1):

Ec =
1

2
mv2 (2.1)

Em que:

Ec = Energia cinética

m = Massa de ar (kg)

v = Velocidade do objeto (m/s)

Ao avaliar a geometria de um aerogerador, observa-se que o movimento do rotor resulta

em uma área varrida pelas pás, a qual corresponde à seção transversal por onde as massas

de ar fluem. A Figura 5 ilustra a geometria do problema em questão.
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Figura 5 – Geometria de um aerogerador

Fonte: (PICOLO et al., 2014)

Dessa forma, tem-se que a vazão mássica que atravessa as pás do aerogerador é

descrita como apresentado na equação (2.2):

m

t
= ρAv (2.2)

Em que:

m = Massa de ar (kg)

t = Tempo (s)

ρ = Densidade do ar (kg/m³ )

A = Área da seção transversal (m² )

v = Velocidade da massa de ar (m/s)

Isolando a massa em (2.2) e a substituindo em (2.1), temos a expressão apresentada

na equação (2.3):

Ec =
1

2
(ρAvt)v2 =

1

2
ρAtv3 (2.3)

Uma vez que a potência é a variação da energia no tempo (PINTO; SANTOS NETO,

2012), tem-se que a potência disponível Pdisp (W ) para aerogeradores é descrita pela

equação (2.4):

Pdisp =
dEc

dt
=

1

2
ρAv3 (2.4)

A equação (2.4) mostra que há uma dependência cúbica entre a potência disponível em

uma fonte de geração eólica e a velocidade dos ventos, explicitando o fato de que variações

na velocidade dos ventos podem causar grandes variações na potência disponível (SALLES,

2004).

Entretanto, a equação (2.4) apresenta a potência total disponível para um aerogerador,

mas apenas uma fração da potência pode ser realmente utilizada, uma vez que o fluxo de ar
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que passa pela turbina ainda tem energia cinética ao sair, limitando a quantidade de energia

que pode ser extraída pelo aerogerador (PINTO; SANTOS NETO, 2012). A Figura 6 ilustra

que a velocidade à jusante da turbina eólica não é nula, embora menor que à montante.

Figura 6 – Escoamento do vento em aerogeradores

Fonte: (BAZZO et al., 2014)

A fim de considerar esse fator de redução de potência, um coeficiente de potência Cp é

modelado e apresentado na equação (2.5) (PICOLO et al., 2014).

Cp =
1

2

[
1 +

Vj
Vm

][
1−

(
Vj
Vm

)2
]

(2.5)

Em que:

Vj = Velocidade à jusante (m/s)

Vm= Velocidade à montante (m/s)

Após os estudos sobre escoamento de fluidos realizados pelo físico Albert Betz (1885

- 1968), constatou-se que a máxima potência teórica que uma turbina eólica pode obter

ocorre quando a velocidade do vento à jusante é reduzida a um terço da velocidade à

montante, fazendo com que Cp na análise teórica seja igual a, aproximadamente, 59,259%

(PICOLO et al., 2014). Entretanto, em um cenário prático, o rendimento de um aerogerador

chega próximo aos 40% apenas (PINTO; SANTOS NETO, 2012).

Além disso, existem questões de eficiência que devem ser levadas em consideração,

englobando questões mecânicas e elétricas do sistemas como um todo, introduzindo um

coeficiente η no cálculo (SALLES, 2004). Assim, a expressão da potência utilizável é

apresentada na equação (2.6):

Pútil =
1

2
CpηρAv

3 (2.6)
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Sob essa ótica, a eficiência do processo de conversão de energia também depende de

fatores como a geometria das pás, dos multiplexadores de velocidade e da tecnologia do

gerador implementada na máquina elétrica em questão (PIRES, 2010). Em se tratando da

estrutura de um aerogerador, a Figura 7 apresenta seus principais componentes.

Figura 7 – Aspectos de um aerogerador moderno

Fonte: Adaptado de (VESTAS, 2010)

Em que:

1 Anemômetro – Mede a velocidade do vento.

2 Sistema de Comunicação – Envia dados e informações operacionais.

3 Conversor – Ajusta a frequência desejada.

4 Gerador – Produz energia elétrica a partir do movimento rotacional.

5 Cilindros de Rotação – Controlam a orientação da nacele.

6 Sistema de Resfriamento – Mantém o gerador em temperaturas adequadas.

7 Caixa de Engrenagens – Aumenta a velocidade de rotação para o gerador.

8 Eixo de Baixa Velocidade – Envia o movimento para a caixa de engrenagens.

9 Controle Pitch – Ajusta o ângulo das pás para otimizar a captação de vento.

10 Cubo do Rotor – Conecta as pás ao eixo principal.

11 Rolamento das Pás – Permite a rotação suave das pás.

12 Pás – Capturam a energia do vento e transmitem ao rotor.

13 Trava do Rotor – Impede a rotação do rotor em condições extremas.

14 Sistema Hidráulico – Atua em mecanismos de travamento e controle de pitch.
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15 Braço de Torque – Suporta cargas transmitidas pelo eixo.

16 Encaixe com a Torre – Conexão entre a nacela e a torre.

17 Freio Mecânico – Fornece frenagem adicional ao sistema.

18 Sistema de Giro – Permite que a nacela gire para se alinhar com o vento.

19 Luva de Acoplamento – Conecta partes móveis para transmissão de torque.

20 Nacele – Abriga e protege os componentes principais.

21 Torre – Suporta a nacele e o rotor, elevando-os a uma altura adequada.

É conveniente destacar que a maior parte dos componentes é instalada na nacele,

estrutura localizada no topo das torre das torres eólicas, em que também se encontra o

rotor que conecta as pás e dão forma ao sistema de geração eólica. Já em se tratando das

funções de controle e proteção do sistema, frequentemente são posicionadas no interior

da torre ou acessadas externamente por meio de um painel. Além disso, o transformador

elétrico, por sua vez, pode ser montado tanto na nacele, quanto na torre, a depender da

configuração do sistema (COLLIER, 2011).

Em relação à operação de aerogeradores, é possível identificar diferentes causas

associadas às características da geração de energia eólica que impactam diretamente a

rede elétrica. Nesse sentido, a Tabela 1 apresenta uma relação entre as principais causas

provenientes da operação de turbinas eólicas e os efeitos gerados na qualidade da energia

elétrica, análise essencial para compreender os desafios técnicos associados à integração

de fontes renováveis ao sistema elétrico e propor soluções para minimizar tais impactos.

Tabela 1 – Causa e Efeito das Turbinas Eólicas na Rede Elétrica

CAUSA EFEITOS

Aumento da produção média de energia • Variação do valor eficaz da tensão

Variação na velocidade dos ventos
dentro dos limites operacionais

• Flutuações dinâmicas da tensão e
potência

Variação da velocidade do vento acima
dos limites operacionais.

Regime transitório do conversor na rede.
Ligação ou desligamento de turbinas e

condensadores

• Picos no valor da tensão

• Flicker

Flutuações da potência produzida
• Flutuações dinâmicas da tensão

• Flicker
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Sistemas de retificação ou inversão.
Soft-starters.

Sistemas de compensação de potência
reativa.

• Geração de harmônicas

• Flicker

Fonte: (FONTES, 2023)

Dado o exposto sobre os princípios estruturais e funcionais dos aerogeradores, além

da análise detalhada de seus componentes principais e suas funções específicas, ainda é

necessário a análise de seus aspectos operacionais. Nesse contexto, é necessário analisar

a operação de aerogeradores em regimes com velocidade fixa e variável, além entender os

diferentes tipos de aerogeradores e suas particularidades, considerando suas aplicações no

contexto da geração de energia eólica e suas implicações para o desempenho do sistema.

2.3.1 Geradores de velocidade fixa e variável

No tocante à velocidade dos aerogeradores, observa-se o emprego de aerogeradores

de velocidade fixa e de velocidade variável, os quais apresentam diferentes tecnologias

de geração. Enquanto os aerogeradores de velocidade fixa operam com uma velocidade

constante do rotor, independentemente das variações no vento, os de velocidade variável

ajustam a velocidade do rotor de acordo com as mudanças nas condições de vento, bus-

cando otimizar a eficiência da geração de energia (BORGES, 2017). Nesse sentido, cada

tipo tem suas vantagens e limitações, influenciando o desempenho e a eficiência do sistema

de geração eólica, sendo escolhidos conforme as características do local de instalação e os

objetivos de operação (MARQUES, 2004).

Aerogeradores de velocidade fixa, abreviados pela sigla inglesa FSWT (Fixed Speed

Wind Turbines), são caracterizados pela independência das variações na velocidade do

vento, mantendo sua velocidade do rotor da turbina e do rotor do gerador constantes mesmo

em condições de variações da energia primária. Nesse cenário de operação, a velocidade

do rotor do gerador é definida pela frequência da rede elétrica e pela quantidade de polos

do gerador, mas devido à característica de escorregamento das máquinas assíncronas

utilizadas, a qual é influenciada pela frequência e tensão do estator, a velocidade de rotação

do sistema apresenta uma variação muito pequena em relação à velocidade síncrona, cerca

de 1 a 2% (MARQUES, 2004)

Segundo TARNOWSKI (2006), temos as seguintes vantagens e desvantagens para

aerogeradores de velocidade fixa:

Vantagens:

• Robustez na construção e operação.

• Simplicidade no projeto e operação, o que resulta em um custo reduzido.
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Desvantagens:

• Baixo desempenho aerodinâmico em um regime de ventos variável.

• Falta de controle eficiente sobre a potência gerada.

• O consumo inerente de potência reativa dos geradores assíncronos afeta a

estabilidade da tensão da rede local, que varia conforme a potência ativa gerada.

Isso exige o uso de bancos de capacitores chaveados para mitigar o impacto.

Em outra análise, tem-se o estudo de aerogeradores de velocidade variável, ou VSWT

(Variable Speed Wind Turbines), os quais são caracterizados pela capacidade de ajustar

a velocidade do rotor com base nas variações da velocidade do vento. Dessa forma, a

velocidade do rotor é alterada para otimizar a geração de energia, mantendo a relação

de velocidades constante para maximizar o coeficiente de potência, fazendo com que as

flutuações na potência de saída, originadas pela variação do vento, sejam parcialmente

absorvidas pela mudança de velocidade (BOTTERÓN et al., 2001)

Nesse cenário, a operação com VSWT é possível pelo uso de conversores eletrônicos

de potência, os quais realizam a conversão da tensão e frequência geradas para os padrões

exigidos pela rede elétrica, permitindo desacoplar a frequência do gerador da frequência da

rede, possibilitando a injeção da potência ativa gerada na rede elétrica (SOHN, 2014).

Em se tratando de aerogeradores de velocidade variável, segundo TARNOWSKI (2006),

temos as seguintes vantagens e desvantagens:

Vantagens:

• Possibilidade de ajustar a velocidade de rotação da turbina conforme a velocidade

do vento atual, visando melhorar o desempenho aerodinâmico.

• Amortecimento das oscilações mecânicas da instalação e das variações na

potência elétrica gerada causadas pelas rápidas variações da velocidade do

vento, através do ajuste da velocidade de rotação da turbina.

• Injeção de potência mais uniforme na rede ao longo do tempo.

• O impacto da geração eólica no sistema elétrico pode ser mitigado, utilizando

aerogeradores de velocidade variável.

Desvantagens:

• Necessidade de fabricar geradores síncronos especiais.

• Necessidade de utilizar conversores com capacidade para a máxima potência do

aerogerador, implicando em um elevado investimento inicial.
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• Aumento do custo de instalação, embora compensado pela ausência do multipli-

cador de velocidade, redução nos custos de manutenção e aumento da eficiência

mecânica do aerogerador.

Uma vez conhecidas as características de aerogeradores de velocidade fixa e variável,

é possível estudar seus diferentes tipos de controle e de modelos.

2.4 Controle de velocidade em aerogeradores

Sabe-se que é de extrema importância o controle aerodinâmico em aerogeradores, a fim

de limitar a potência mecânica gerada pela turbina ou controlar o torque aerodinâmico, para

evitar esforços mecânicos excessivos, o que pode culminar em danos potenciais à unidade

eólica (SOHN, 2014). Com isso, desenvolveram-se 3 métodos principais de controle: stall,

stall ativo e pitch,os quais serão abordados a seguir.

2.4.1 Controle Stall

Inicialmente, tem-se o controle stall, também conhecido como controle por perda aerodi-

nâmica, stall passivo ou controle de ângulo de passo fixo. Este método é o mais antigo em

sistemas de conversão de energia eólica, sendo considerado o mais simples de implementar,

sendo uma técnica utilizada para limitar a força do vento sobre as pás de aerogeradores,

aproveitando suas propriedades geométricas. No controle stall, as pás são rigidamente

fixadas ao rotor da turbina, mantendo constante o ângulo de passo, que é o ângulo de

inclinação das pás em relação ao plano de rotação. Com isso, a configuração aerodinâmica

das pás causa o fenômeno de turbulência na região posterior a elas em velocidades de

vento superiores à nominal, como apresentado na Figura 8, o que implica na redução de

sua velocidade (MONTEZANO, 2007).

Figura 8 – Perfil aerodinâmico do controle stall

Fonte: (TARNOWSKI, 2006)
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Nessa configuração, observa-se o aumento no ângulo de ataque, formado entre a

velocidade relativa do vento e o eixo do corpo, e da força de arrasto com a passagem

de vento na superfície das pás, resultando na redução da força de sustentação, a qual

é responsável pelo movimento da turbina, enquanto a força de arrasto atua como um

mecanismo de frenagem. Dessa forma, o torque resultante é diminuído, limitando a potência

gerada, a qual, idealmente, aumenta com a velocidade do vento até um valor máximo,

permanecendo constante para velocidades superiores ao valor nominal (TARNOWSKI,

2006). No entanto, na prática, essa relação não é verdadeira, apresentando flutuações da

potência gerada com o aumento da velocidade dos ventos, como apresentado na Figura 9.

Figura 9 – Curva de potência típica em aerogeradores com controle stall

Fonte: (CRESESB, 2024)

Segundo ACKERMANN 2012, destacam-se as seguintes vantagens e desvantagens do

controle stall :

Vantagens:

• Robusto e simples de implementar

• Menor custo de manutenção

• Controle por características geométricas

Desvantagens:

• Instabilidade da potência gerada em velocidades de vento superiores à nominal.

• Vibrações nas pás devido à impossibilidade de alterar o ângulo de passo, aumen-

tando o estresse mecânico.

• Oscilações mecânicas e aceleração da fadiga dos materiais das pás, exigindo

estruturas mais robustas e elevando os custos

• Dificuldades no momento de partida e parada do aerogerador no controle stall.
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2.4.2 Controle Stall Ativo

Como um avanço ao modelo de controle stall, tem-se a proposição do controle stall

ativo, o qual é caracterizado pela regulação de turbinas de maneira inversa ao visto no

controle de pitch (Ver Seção 2.4.3). Nesse método, à medida que a velocidade do vento

aumenta, o ângulo de passo é reduzido, elevando o ângulo de ataque, o que resulta na

turbulência na região posterior às pás, diminuindo a eficiência aerodinâmica da turbina.

Esse efeito possibilita o controle da potência mecânica gerada, limitando-a em condições de

ventos intensos para proteger a estrutura e otimizar o desempenho. Com isso, a operação

é dada em uma faixa de variação de ângulo de passo que vai de -90° até 0, ou poucos

graus positivos. Dessa forma, essa técnica proporciona uma regulação eficiente da potência,

garantindo estabilidade e segurança da turbina em condições adversas (SOHN, 2014).

2.4.3 Controle Pitch

Em outra perspectiva, tem-se o controle pitch, ou controle do ângulo de passo, sendo

caracterizado como um método ativo de controle utilizado tanto em aerogeradores de

velocidade variável, quanto de velocidade fixa, no qual as pás são rotacionadas em torno

de seu próprio eixo para alterar o ângulo de passo, limitando a energia extraída do vento.

Nessa configuração, o sistema de controle atua principalmente quando a velocidade do

vento excede a velocidade nominal, mantendo o ângulo de passo próximo a zero graus

em velocidades menores, permitindo a máxima eficiência aerodinâmica e fazendo com que

a potência elétrica de saída varie de acordo com as mudanças na velocidade do vento.

Entretanto, quando a velocidade dos ventos ultrapassa a nominal permitida no aerogerador,

o sistema ajusta o torque aerodinâmico das pás até alcançar um nível que assegure a

produção de potência nominal, sendo possível com o ajuste do ângulo de passo, reduzindo

o ângulo de ataque na turbina (MONTEZANO, 2007). A Figura 10 apresenta a curva típica

da potência de saída de aerogeradores com esse sistema de controle.

Figura 10 – Curva de potência típica em aerogeradores com controle pitch

Fonte: (CRESESB, 2024)
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A fim de garantir a segurança estrutural e evitar danos ao aerogerador, o controle de

pitch utiliza mecanismos hidráulicos ou eletromecânicos, como servomotores, para a rotação

das pás das turbinas. Para isso, esses componentes recebem uma referência angular do

sistema de controle e rotacionam as pás até o ângulo necessário, variando entre 0°, ou

poucos graus negativos, e +90°, com uma taxa de mudança geralmente inferior a 5° por

segundo, podendo atingir até 10° por segundo em situações de alta variação de vento. Com

esse intuito, comumente se utiliza um controlador do tipo P (Proporcional), o qual é utilizado

devido à sua simplicidade e baixa frequência de amostragem, geralmente entre 1 Hz e 3 Hz

(SOHN, 2014).

Por fim, destacam-se algumas vantagens e desvantagens do controle pitch (ACKER-

MANN, 2012):

Vantagens:

• Facilidade em controlar a potência gerada.

• Maximização da energia capturada do vento.

• Capacidade de atuação em situações de emergência.

• Não exige pás estruturalmente robustas, reduzindo custos com estrutura mecâ-

nica.

Desvantagens:

• Menor confiabilidade do sistema.

• Custos adicionais associados ao sistema de controle.

• Vulnerabilidade a variações bruscas da velocidade do vento.

Uma vez conhecidos os métodos de controle aerodinâmico em aerogeredores, pode-se

avaliar os diferentes tipos de modelos existentes.

2.5 Tipos de Aerogeradores

2.5.1 Aerogerador do tipo A

Inicialmente, o modelo de unidades eólicas do tipo A, apresentado na Figura 11, são

caracterizadas pelo uso de Geradores de Indução em Gaiola de Esquilo (GIGE), os quais

justificam sua utilização pela sua robustez e utilidade contínua nos sistemas de potência.

Nesse sentido, as principais características de GIGE são seu rotor ligado em curto-circuito

e o estator conectado diretamente à rede elétrica por um transformador (MARQUES, 2004).
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Figura 11 – Modelo de aerogeradores do Tipo A

Fonte: (MULJADI et al., 2016)

Sob essa ótica, aerogeradores do tipo A, também conhecido como modelo dinamarquês,

evidenciam-se por uma configuração clássica com três pás, eixo horizontal e estruturas de

controle do tipo stall, pitch e stall ativo para modelos denominados A0, A1 e A2, respectiva-

mente (SOHN, 2014).

Esses aerogeradores operam a velocidade fixa e são projetados para alcançar o má-

ximo rendimento em uma velocidade específica de vento. Por se tratarem de máquinas

assíncronas, a variação de velocidade do rotor é geralmente inferior a 1% da velocidade

síncrona da rede em que está ligado, diminuição causada pela relação de transmissão e

pelo escorregamento do gerador (MARQUES, 2004).

Como a velocidade do rotor da turbina é significativamente menor que a do rotor do

gerador, uma caixa de transmissão (Gear-box) é necessária para ajustar a relação de

velocidades. Além disso, também são utilizados banco de capacitores para a compensação

do fator de potência do GIGE, com a comutação dos capacitores sendo realizada conforme

a média da potência reativa medida. Ademais, o sistema é protegido por um sistema de

supervisão para prevenir danos à turbina em casos de falha na rede, também sendo comum

a utilização de soft-startes para diminuir a corrente de partida nessa configuração (DINIZ,

2019).

Um avanço sobre o conceito dinamarquês inclui a operação em duas velocidades. Nessa

configuração, turbinas de baixa potência (entre 30 e 450 kW) podem ser equipadas com

dois GIGE, em que o gerador de menor velocidade é projetado para cerca de 20% da

potência nominal da turbina, o que resulta em uma corrente de partida de aproximadamente

4 a 8 vezes a corrente nominal. Em outro cenário, para turbinas maiores (cerca de 2 MW),

é comum o uso de GIGE com troca de pólos, em que é necessária a implementação de

um circuito de partida suave para limitar a corrente durante a conexão e desconexão da

turbina com a rede, já que a potência não varia entre velocidades (MARQUES, 2004). É

apresentado abaixo o modo de operação no caso do uso de dois GIGE:



43

Gerador 1:

• Inicializa em modo motor, consumindo potência da rede.

• Ao aumentar a velocidade do vento e o rotor superar a velocidade síncrona, passa

ao modo gerador e começa a gerar energia.

• Se atingir sua capacidade máxima, é desligado e a energia excedente é conver-

tida em energia cinética e armazenada na inércia do rotor.

Gerador 2:

• Entra em operação quando a velocidade do rotor atinge a velocidade síncrona do

gerador de maior velocidade.

• Ao ser conectado à rede, retoma a geração de energia.

• Durante a transição entre os geradores, a turbina não fornece energia à rede.

A Figura 12 apresenta a curva Torque x Velocidade desses geradores, explicitando os

modos de operações supracitados.

Figura 12 – Curva Torque x Velocidade para máquinas de indução

Fonte: (MARQUES, 2004)

Segundo SOHN (2014), as principais vantagens e desvantagens de aerogeradores do

tipo A são:

Vantagens:

• Sistema robusto e confiável;
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• Manutenção reduzida;

• Baixos custos;

• modelagem mais simples.

Desvantagens:

• Velocidade e potência não são controláveis na partida;

• Necessidade de uma caixa de transmissão, que provoca ruídos e exige manuten-

ção;

• Flutuações do vento são diretamente transmitidas ao torque da turbina, o que

provoca variações do torque elétrico;

• Flutuações da rede elétrica causam oscilações e vibrações mecânicas;

• Necessidade de um soft-starter para suavizar a conexão com a rede;

• Necessidade de banco de capacitores para compensação de potência reativa.

2.5.2 Aerogerador do tipo B

Em outra perspectiva, tem-se o emprego de aerogeradores do tipo B, os quais são

equipados com Geradores de Indução com Rotor Bobinado (GIRB), em que o rotor é

conectado a uma resistência variável e o estator é ligado diretamente à rede elétrica via

transformador (SOUZA, 2015). A Figura 13 apresenta um modelo desse tipo de gerador.

Figura 13 – Modelo de aerogeradores do tipo B

Fonte: (MULJADI et al., 2016)

Nesse sentido, destaca-se que essas fontes são caracterizadas pelo uso de uma re-

sistência variável no circuito do rotor, diferenciando-as dos modelos do tipo A. Por conta

dessa montagem, aerogeradores do tipo B exigem um sistema de controle da resistência no

circuito do rotor, o que permite uma faixa de variação de velocidades de até 16%, resultando
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em maior flexibilidade no escorregamento do gerador: quanto maior a resistência, maior

o escorregamento, em que o controle do escorregamento é realizado pela variação da

resistência aplicada ao circuito, utilizando escovas e anéis coletores em alguns geradores

(ACKERMANN, 2012).

Ainda que a inserção da resistência variável amplie a faixa de operação do aerogerador,

essa faixa ainda é pequena, o que caracteriza os aerogeradores do tipo B como máquinas

de velocidade fixa, as quais utilizam do controle de pitch para limitar o torque da turbina.

Em termos operacionais, tem-se que as turbinas do tipo B são parecidas com as do tipo

A, tendo suas principais vantagens e desvantagens apresentadas abaixo (SOHN, 2014).

Vantagens:

• Sistema robusto e confiável;

• Melhor controle de velocidade quando comparado com o tipo A;

• Baixos custos;

• Modelagem simples.

Desvantagens:

• Perda de energia em forma de calor no circuito do rotor;

• Necessidade de uma caixa de transmissão, que provoca ruídos e exige manuten-

ção;

• Flutuações do vento são diretamente transmitidas ao torque da turbina, o que

provoca variações do torque elétrico;

• Flutuações da rede elétrica causam oscilações e vibrações mecânicas;

• Emprego de resistências, escovas e anéis coletores culminam manutenção e

custos associados;

• Necessidade de banco de capacitores para compensação de potência reativa.

2.5.3 Aerogerador do tipo C

Já para o modelo de aerogeradores do tipo C, apresentado na Figura 14, tem-se o

emprego de um Gerador de Indução Duplamente Alimentado (GIDA), o qual utiliza um

conversor eletrônico de potência que possibilita o desacoplamento das frequências do

vento e da rede elétrica, reduzindo o estresse mecânico e controlando adequadamente as

oscilações na energia entregue ao sistema elétrico (DINIZ, 2019).
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Figura 14 – Modelo de aerogeradores do tipo C

Fonte: (MULJADI et al., 2016)

Nessa perspectiva, o sistema emprega um conversor de frequência entre o rotor e o

estator, o qual controla as potências ativa e reativa e a frequência do rotor, fazendo isso com

o emprego de um conversor do lado do rotor e um conversor do lado da rede, interligados por

um link de corrente contínua em configuração back-to-back, permitindo o fluxo bidirecional

de potência, possibilitando a regulagem de tensão e o fluxo de potência da rede. Sob essa

ótica, destaca-se a independência de frequência entre a rede e o sistema de geração, o que

melhora a suportabilidade do aerogerador a quedas de tensão e reduz as necessidades de

compensação externa de reativos, tornando-se uma solução economicamente viável, pois

reduz custos de componentes e melhora a eficiência e a qualidade da energia entregue ao

sistema elétrico. Entretanto, ainda há custos de manutenção envolvidos ao uso de anéis

coletores nos conversores, exigindo manutenções regulares e tendos perdas envolvidas

(SOHN, 2019).

Além disso, essa configuração permite a operação em uma faixa de velocidades que

varia de aproximadamente 40% abaixo até 30% acima da velocidade síncrona, o que

maximiza a extração de energia dos ventos em uma ampla faixa de condições. Nesses

cenários, quando a velocidade está acima da síncrona, o rotor transfere potência para a

rede, quando está abaixo, absorve potência, já na velocidade síncrona, o escorregamento

da máquina de indução é nulo e não há fluxo de potência pelo circuito do rotor, já que torque

é nulo (Ver Figura 12) (BOLIK, 2004).

Para aerogeradores do tipo C, tem-se as seguintes vantagens e desvantagens (SOHN,

2014).

Vantagens:

• Controle de tensão e fluxo de potência;

• Maior faixa de velocidades de operação;

• Maior suportabilidade a afundamentos de tensão;

• Desacoplamento parcial entre as frequências provenientes da interação vento/turbina/rotor

e as da rede elétrica;
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• Redução do estresse mecânico e conexão mais suave com a rede elétrica.

Desvantagens:

• Custos adicionais devido à eletrônica de potência associada;

• Necessidade de um sistema de proteção mais robusto;

• Modelagem mais complexa em comparação às unidades A e B.

2.5.4 Aerogerador do tipo D

Finalmente, tem-se os aerogeradores do tipo D, apresentados na Figura 15, em que sua

configuração típica apresenta o uso de conversores de potência em escala total, os quais

são dimensionados para 100% da potência nominal do gerador e estabelecem a conexão

do estator à rede elétrica, além de poder incluir ou não a caixa de transmissão, a depender

do gerador elétrico adotado (SOHN, 2019).

Figura 15 – Modelo de aerogeradores do tipo D

Fonte: (MULJADI et al., 2016)

Com isso, unidades eólicas do tipo D utilizam máquinas de velocidade variável, fazendo

amplo uso do controle pitch para seu ajuste aerodinâmico. Além disso, o uso de conversores

eletrônicos e sistemas de controle garantem que o aerogerador forneça energia elétrica com

tensão e frequência compatíveis com a rede elétrica, independentemente da velocidade do

rotor do gerador, o que viabiliza uma ampla faixa de velocidades, permitindo variações de

até 2,5 vezes a velocidade nominal do gerador (SOHN, 2014).

Em se tratando dos aspectos construtivos de aerogeradores do tipo D, tem-se que o

estator do gerador é conectado ao conversor do lado da máquina, enquanto o conversor

do lado da rede é conectado diretamente à rede elétrica, permitindo o desacoplamento

total entre o gerador e a rede elétrica, fazendo com que a faixa de operação seja definida

pelos parâmetros do conversor eletrônico de potência, fazendo com que as oscilações

de velocidade do rotor não afetem a qualidade da energia elétrica gerada, devido à sua

capacidade de operar em uma faixa de velocidades de 0% a 100% da velocidade síncrona

(TARNOWSKI, 2006).
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Elencam-se algumas vantagens e desvantagens do aerogerador do tipo D, as quais são

apresentadas abaixo (SOHN, 2014):

Vantagens:

• Permite operação em faixa total de velocidades;

• Elimina o uso de escovas e anéis coletores;

• Pode dispensar a caixa de transmissão e circuito de excitação para o rotor;

• Melhor suporte à potência reativa e afundamentos de tensão;

• Desacoplamento total entre as frequências provenientes da interação entre vento,

turbina e rotor e as da rede elétrica;

• Podem ser construídos com diferentes máquinas elétricas

• Conexão mais suave com a rede.

Desvantagens:

• Elevado custo associado;

• Aerogeradores de maior porte.

Com os tipos de aerogeradores existentes devidamente apresentados, é importante en-

tender quais métodos estatísticos são utilizados para a avaliação da sua geração esperada.

2.6 Métodos estatísticos de previsão de ventos e geração eólica

Nesta seção, serão abordados métodos estatísticos utilizados na modelagem e previsão

da geração eólica, com ênfase em técnicas amplamente adotadas na literatura. Para isso,

serão apresentados as aplicações de técnicas como a Distribuição de Weibull, séries tempo-

rais e redes neurais artificiais, destacando suas vantagens, limitações e aplicabilidades no

contexto da análise da variabilidade e da previsão da potência gerada por parques eólicos.

Esses métodos constituem a base para a construção dos modelos utilizados nas etapas de

simulação e análise desenvolvidas ao longo deste trabalho.

2.6.1 Distribuição de Weibull

A Distribuição de Weibull é uma função de distribuição de probabilidade amplamente

utilizada na modelagem da variabilidade do vento em estudos relacionados à geração eólica,

fato que se deve à sua flexibilidade e capacidade de representar a natureza estocástica do

vento (LIMA et al., 2024). Diversos autores têm utilizado essa distribuição para modelar a
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velocidade do vento e, assim, estimar o potencial de geração de energia eólica, conside-

rando diferentes contextos e abordagens. A seguir, serão analisadas algumas aplicações

relevantes dessa distribuição, destacando a especificidade de cada estudo.

Um dos principais usos da Distribuição de Weibull na geração eólica é a avaliação

do potencial energético de uma região. Em seus estudos, SILVA et al. (2002) utilizou a

Distribuição de Weibull para modelar a distribuição de velocidade do vento no nordeste

brasileiro, destacando a importância dos ajustes dos parâmetros de forma (k) e escala (λ)

da distribuição para caracterizar a intensidade do vento e a frequência com que diferentes

velocidades são observadas. Esse tipo de análise é fundamental para o dimensionamento

de parques eólicos, permitindo estudar o potencial de geração de uma região antes da

implantação do parque.

De maneira semelhante, OLIVEIRA e COSTA (2011) empregaram a Distribuição de

Weibull para prever a produção de energia eólica no nordeste brasileiro, focando na caracte-

rização do vento em diferentes estações do ano. A distribuição foi ajustada para diferentes

períodos sazonais, evidenciando a variação da velocidade do vento e seu impacto na gera-

ção de energia. A especificidade deste estudo foi a inclusão de diferentes escalas temporais

na análise, permitindo uma previsão mais detalhada do potencial eólico de acordo com a

sazonalidade.

Outro estudo relevante foi conduzido por SOUZA et al. (2019), que analisaram a via-

bilidade de instalação de sistemas eólicos na região de Campo Grande/MS, utilizando a

Distribuição de Weibull para modelar a distribuição das velocidades do vento. Neste caso,

os autores focaram no ajuste da distribuição às condições locais, utilizando dados históricos

de vento para a parametrização do potencial de geração da região. A principal contribuição

deste estudo foi a adaptação da distribuição às especificidades geográficas e climáticas da

região, levando em consideração a topografia e os efeitos de sazonalidade, o que reflete a

importância de um ajuste preciso da distribuição para diferentes contextos locais.

Em um estudo mais recente, NEVES et al. (2020) explorou a aplicação da Distribuição

de Weibull para a avaliação do desempenho de turbinas eólicas de pequeno porte em

ambiente urbano. Os autores utilizaram a distribuição para modelar a velocidade do vento e

validar dados meteorológicos, oferecendo análises sobre a performance de sistemas eólicos

em contextos urbanos. O estudo também enfatizou a importância da variabilidade espacial

da distribuição de Weibull, destacando como a precisão nos parâmetros de ajuste pode

afetar a avaliação do desempenho do sistema eólico.

A Distribuição de Weibull também é empregada em estudos voltados para a avaliação de

riscos e impactos econômicos relacionados à geração eólica. GABRIEL FILHO et al. (2009)

utilizou a distribuição para analisar a caracterização estatística do regime eólico, buscando

prever os períodos de baixa produção eólica, o que é crucial para a análise financeira e a

implementação de estratégias de mitigação de riscos em projetos de grande escala.

Além disso, ARAUJO et al. (2021) propôs um modelo de aplicação da Distribuição de
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Weibull para a análise da viabilidade econômica da geração de energia eólica em diferentes

localidades, considerando as flutuações nas velocidades do vento e seus impactos na

viabilidade econômica do projeto. O estudo se destacou ao integrar a modelagem estatística

com técnicas de análise de risco, proporcionando uma visão holística do impacto da

variabilidade do vento na sustentabilidade financeira de projetos eólicos.

A Distribuição de Weibull tem se mostrado uma ferramenta essencial na análise do

potencial e da viabilidade de projetos de geração eólica. A flexibilidade da distribuição

permite ajustá-la às características específicas de cada região, o que é fundamental para

uma estimativa da produção de energia e a análise de riscos financeiros. O uso dos

parâmetros k e escala λ têm se mostrado eficaz na modelagem da intensidade do vento e

na previsão de variações sazonais e espaciais. Estudos como os de SOUZA et al. (2019),

NEVES et al. (2020), GABRIEL FILHO et al. (2009), ARAUJO et al. (2021) e OZAWA

(2017) são exemplos de como a Distribuição de Weibull pode ser utilizada para otimizar

a instalação de parques eólicos, avaliar a produção de energia e gerenciar os riscos

econômicos relacionados à variabilidade do vento.

2.6.2 Séries Temporais

A modelagem de séries temporais é uma ferramenta fundamental na análise de dados de

geração eólica, permitindo prever a produção de energia com base em variáveis históricas de

vento. Modelos autorregressivos (AR), de médias móveis (MA) e autorregressivos integrados

de médias móveis (ARIMA) têm sido utilizados para lidar com as complexidades dos dados

temporais, como a sazonalidade e as flutuações no comportamento do vento. A seguir,

apresentamos a aplicação desses modelos no contexto da geração eólica, destacando o

uso específico de cada abordagem e suas contribuições.

O modelo autorregressivo (AR) tem sido utilizado para capturar a relação entre valores

passados de uma série temporal e o seu comportamento futuro. OLIVEIRA et al. (2020a)

propõe um modelo AR para previsão da velocidade do vento em horizontes de curto prazo,

utilizando dados de cinco estações anemométricas na região metropolitana de Curitiba/PR.

O modelo incluiu diferentes ordens de regressão e entradas exógenas, como temperatura,

umidade e direção do vento, para aumentar a acurácia. Os resultados mostraram bom

desempenho para previsões de até trinta minutos, com baixo custo computacional, embora

tenha apresentado limitações para capturar variações mais complexas ou abruptas.

De forma complementar, o modelo de média móvel (MA) busca modelar a dependência

entre o valor atual da série e erros passados. Este modelo foi explorado por KAVASSERI e

SEETHARAMAN (2009), que analisaram séries de velocidade do vento utilizando um modelo

MA simples. O estudo indicou que, embora o modelo MA seja eficiente na suavização de

flutuações de curto prazo, ele apresentou desempenho inferior em cenários onde padrões

de longo prazo e tendências sazonais são predominantes.
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Em termos gerais, os modelos AR e MA têm limitações em termos de capacidade de

capturar tanto a dependência temporal quanto as tendências e sazonalidades de longo

prazo. Por isso, o modelo ARIMA, que combina as características de AR e MA com a

diferença integrada para lidar com séries temporais não estacionárias, tem se mostrado

uma escolha recorrente em estudos de previsão de geração eólica.

CAMELO et al. (2017) aplicaram o modelo ARIMA para prever a produção de energia

eólica no Nordeste do Brasil. Eles utilizaram a técnica de diferenciação integrada do ARIMA

para tornar as séries temporais de vento estacionárias, superando a tendência crescente

de dados de vento devido a fatores sazonais e climáticos.

Adicionalmente, FRANCA et al. (2019) realizou uma análise de séries temporais de

vento utilizando o modelo ARIMA, ajustando-o para diferentes locais no Brasil. A análise

envolveu a aplicação de ARIMA para prever tanto a velocidade do vento quanto a produção

de energia eólica, com o ajuste de modelos diferenciados para diferentes regiões do país. A

especificidade deste estudo foi a aplicação de ARIMA para lidar com a alta variabilidade

dos dados e com o impacto de eventos climáticos extremos, como frentes frias e sistemas

de baixa pressão, que afetam a geração de energia eólica.

Em uma abordagem mais prática, NUNES et al. (2023) utilizou o modelo ARIMA para

realizar previsões de curto e longo prazo da produção de energia eólica no Brasil, com foco

em otimizar a operação das turbinas eólicas e melhorar a integração da energia gerada ao

sistema elétrico nacional. A análise enfatizou a importância de integrar dados históricos de

vento, considerando as sazonalidades e ciclos de vida das turbinas, para obter previsões

mais acuradas. Os autores demonstraram como o modelo ARIMA pode ser utilizado para

prever tanto a intensidade do vento quanto a eficiência da turbina ao longo do tempo.

A modelagem de séries temporais com AR, MA e ARIMA tem se mostrado fundamental

na previsão da geração de energia eólica, permitindo otimizar a produção, melhorar a

previsão de capacidade e reduzir riscos associados à variabilidade do vento. Estudos como

os de CAMELO et al. (2017), NUNES et al. (2023) e FRANCA et al. (2019) são exemplos

claros da aplicação desses modelos na geração eólica, oferecendo insights valiosos sobre as

diferentes abordagens de modelagem e suas especificidades em relação ao comportamento

do vento em diferentes regiões.

2.6.3 Redes Neurais

As redes neurais têm se mostrado uma poderosa ferramenta para modelagem e previ-

são de dados de potencial eólico, incluindo a previsão de sua produção. Sua capacidade

de aprender padrões complexos em grandes volumes de dados faz delas uma escolha

recorrente na previsão de variáveis de vento e otimização da operação de parques eólicos.

Diversos estudos têm utilizado redes neurais para lidar com os desafios inerentes à variabi-

lidade do vento, com diferentes abordagens e especificidades. A seguir, será apresentada
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uma análise de como redes neurais foram aplicadas no contexto de geração eólica por

diferentes autores.

Em um estudo realizado por RIBEIRO et al. (2024), a aplicação de redes neurais

artificiais (RNA) foi explorada para prever a produção de energia eólica em regiões do

Ceará, Brasil. O autor utilizou diferentes arquiteturas de redes neurais, incluindo MLP, LSTM,

GRU e CNN, treinadas com dados históricos de vento, para estimar a geração de energia

em intervalos de tempo específicos. A especificidade deste estudo foi a comparação entre

essas arquiteturas, destacando a eficácia das redes GRU na previsão de curto prazo da

velocidade do vento.

Outro exemplo interessante é visto em BARCHI et al. (2022), em que se aplicaram redes

neurais artificiais e modelos de combinação para prever a velocidade do vento em diversas

regiões do Brasil. Os autores utilizaram uma abordagem que combinava diferentes modelos

preditivos, incluindo redes MLP, RBF, ELM e ESN, para capturar as interações complexas

entre variáveis climáticas e a velocidade do vento. O uso de modelos de combinação neste

estudo foi fundamental para melhorar a precisão das previsões, já que essas abordagens

são capazes de aprender representações de dados de alto nível, capturando melhor as

interações entre as variáveis e suas influências sobre a produção de energia eólica.

Adicionalmente, OLIVEIRA et al. (2020b) utilizaram redes neurais artificiais para prever

a intensidade do vento e a produção de energia eólica em tempo real. As redes, tradicio-

nalmente usadas para processamento de dados sequenciais, foram adaptadas para séries

temporais de vento, com o intuito de capturar padrões temporais nas séries de dados. A

inovação deste estudo foi o uso de diferentes arquiteturas de redes neurais para extrair

características relevantes dos dados de vento, antes de passá-los para camadas totalmente

conectadas, o que resultou em uma melhoria na previsão de curto prazo da produção de

energia.

Em um estudo focado na otimização de turbinas eólicas, MEMARZADEH e KEYNIA

(2020) aplicou redes neurais LSTM para ajustar os parâmetros operacionais das turbinas e

melhorar a eficiência da geração de energia. A pesquisa usou uma combinação de redes

neurais recorrentes e dados climáticos para modelar a produção de energia em função

das variáveis ambientais. O estudo destacou a importância das redes neurais recorrentes

para lidar com a dependência temporal dos dados de vento, permitindo que a previsão da

produção de energia se beneficiasse do histórico de dados e da memória das variáveis

climáticas ao longo do tempo.

Outro trabalho relevante foi realizado por FERNANDES et al. (2014), que utilizou redes

neurais artificiais para prever a produção de energia elétrica a partir do vento em Portugal. A

abordagem permitiu otimizar a estrutura da rede neural, ajustando o número de camadas e

neurônios de forma a melhorar a precisão da previsão da produção de energia. Este estudo

evidenciou a flexibilidade das redes neurais e a importância de técnicas de otimização para

melhorar a eficácia dos modelos em contextos reais de previsão eólica.
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MELO et al. (2020) propôs um modelo de rede neural para prever a velocidade do vento

a partir de dados históricos e outras variáveis meteorológicas. Usando uma rede neural trei-

nada com dados extraídos de uma estação meteorológica, os autores conseguiram modelar

com alta precisão a relação entre a velocidade do vento e as variáveis correlacionadas, com

particular foco em períodos de transição de estações, onde a variabilidade do vento pode

ser maior. A contribuição deste estudo foi o foco na melhoria da precisão das previsões

durante períodos críticos, como mudanças de estação, que são importantes para a gestão

de parques eólicos.

A aplicação de redes neurais no contexto de geração eólica continua a crescer, com

novos métodos sendo propostos para melhorar a previsão e otimizar o desempenho dos

sistemas eólicos. Estudo após estudo, as redes neurais têm se mostrado uma ferramenta

eficaz para modelar a complexa variabilidade do vento e ajudar na tomada de decisões em

tempo real, como a programação da operação das turbinas e a previsão da produção de

energia.
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3 METODOLOGIA E RESULTADOS

Neste capítulo, os métodos estatísticos apresentados na seção 2.6 serão aplicados

em determinadas bases de dados, de acordo com suas particularidades. Nestas análises,

será avaliado o potencial eólico da região estudada, em termos da velocidade dos ventos

e da potência de saída de complexos eólicos, que se apresentam como ferramentas

fundamentais para a modelagem da dinâmica do dados, desempenhando um papel central

na compreensão e no aproveitamento eficiente da energia eólica, contribuindo para a

expansão sustentável das fontes de energia renovável e para o planejamento confiável de

sistemas elétricos de potência.

Inicialmente, foi aplicada a distribuição de Weibull, uma função de densidade de proba-

bilidade (SOUZA et al., 2019) que teve como intuito o estudo do potencial de geração da

região analisada.

Posteriormente, com o intuito de introduzir dependência temporal na análise, séries

temporais foram estudadas e os modelos Autorregressivo (AR), Moving Average (MA)

e Autorregressivo Integrado de Médias Móveis (ARIMA) foram avaliados, apresentando

previsões de geração em curto prazo (JENKINS; BOX, 1976).

Como uma outra alternativa à avaliação do problema considerando o tempo, propõe-se

um método de Rede Neural Artificial, a qual foi avaliada de forma supervisionada e ajustada

para a previsão da potência de saída do complexo eólico (SILVA et al., 2010).

A fim de verificar os ajustes dos métodos de previsão de geração, as duas últimas

medidas de cada banco de dados, que são registradas em MWmed em períodos de uma

hora, foram retiradas, o modelo de previsão foi obtido com os dados remanescentes e,

posteriormente, foi utilizado para a previsão destes valores.

Assim, esta seção apresenta o estudo desses métodos tal como suas aplicações nos

complexos eólicos Lagoa dos Ventos e Campo Largo.

3.1 Banco de dados

A fim de entender o potencial eólico da região em que estão instalados os complexos

eólicos Lagoa dos Ventos e Campo Largo que se encontram a cerca de 230 KM um do

outro, a Distribuição de Weibull foi avaliada em duas situações: superfície e a 50 metros de

altura (Ver Seção 3.2).

Para a avaliação da função de distribuição para ventos a 50 metros de altura, os

parâmetros de forma e escala da distribuição disponíveis no CRESESB foram utilizados. O

CRESESB é um importante centro de referência para estudos do potencial eólico brasileiro,

o qual estima os parâmetros da distribuição pelo ajuste das curvas de distribuição geradas

pelo modelo MesoMap, que é um conjunto integrado de modelos de simulação atmosférica

desenvolvido pela New York State Energy Research and Development Authority (NYSERDA)
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e o Department of Energy (DoE - US) (AMARANTE et al., 2001). Em se tratando de

resultados, o CRESESB mostra, a uma altura de 50 metros, qual é a velocidade média

dos ventos, os parâmetros da distribuição e a densidade de potência de uma determinada

região, partindo da latitude e longitude do local.

Ainda com relação à distribuição de Weibull, é possível obter os parâmetros da distribui-

ção a partir de métodos estatísticos. Para isso, necessitam-se dos valores de velocidade dos

ventos, os quais podem ser obtidos no site INMET, que conta com uma série de Estações

Meteorológicas Automáticas implementadas no país, como pode ser visto na Figura 16.

Figura 16 – Mapa de estações

Fonte: (INMET, 2025)

As estações meteorológicas apresentam uma série de dados na superfície, a Tabela 2

apresenta os dados que podem ser visitados a partir do INMET.
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Tabela 2 – Descrição de resultados - INMET

Fonte: Adaptado de (INMET, 2025)

Convém destacar que o tratamento dos dados de velocidade dos ventos, para aplicação

da Distribuição de Weibull, consistiu na divisão do conjunto de dados conhecidos em quatro

espaços amostrais, com vistas ao potencial de geração em cada um deles, em consonância

com o apresentado na Seção 2.2, seguindo a divisão dos meses definida pela sazonalidade,

a qual reflete na variação da velocidade média dos ventos nas regiões, energia primária de

fontes eólicas.

Em outra perspectiva, para a avaliação da dinâmica de geração dos parques eólicos

avaliados, uma rede neural artificial e três modelos de séries temporais são aplicadas para

modelar e prever sua potência de saída do complexo eólico avaliado, a fim de identificar

tendências presentes nas amostras e melhorar a compreensão das dinâmicas analisadas,

para auxiliar na tomada perante a operação de parques eólicos. Para a avaliação desses

modelos, foram escolhidas as potências de saída dos complexos eólico Lagoa dos Ventos e

Campo Largo, dois dos maiores do país e que apresentam sólidos dados de geração no

site do ONS, o qual apresenta dados de acordo com o visto na Tabela 3

Tabela 3 – Descrição de resultado - ONS

Fonte: Adaptado de (ONS, 2025)

No caso da aplicação dos modelos de séries temporais e redes neurais, foram selecio-

nados aleatoriamente 10 pontos do conjunto de dados de geração dos complexos eólicos

Lagoa dos Ventos e Campo Largo. O objetivo desses métodos é prever os dois valores

subsequentes a cada ponto escolhido, simulando uma situação prática em que apenas a

última medida de geração é conhecida. Os pontos utilizados para análise em Lagoa dos

Ventos se encontram descritos na Tabela 4.

Tabela 4 – Dados iniciais para o complexo eólico Lagoa dos Ventos

Medida MWmed Horário Data
1 637,630 01:00:00 26/05/2024
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Medida MWmed Horário Data
2 534,221 09:00:00 04/06/2024
3 346,253 09:00:00 29/11/2023
4 339,050 14:00:00 16/06/2024
5 204,489 18:00:00 27/11/2023
6 320,014 14:00:00 18/07/2023
7 647,380 00:00:00 31/05/2023
8 40,737 15:00:00 09/12/2023
9 598,530 23:00:00 10/10/2023

10 28,034 01:00:00 22/02/2024

Fonte: Adaptado de (ONS, 2025)

Já para o caso em Campo Largo, tem-se a Tabela 5:

Tabela 5 – Dados iniciais para o complexo eólico Campo Largo

Medida MWmed Horário Data
1 281,276 23:00:00 24/06/2024
2 475,100 07:00:00 09/09/2023
3 573,022 04:00:00 09/11/2023
4 497,739 16:00:00 21/05/2024
5 362,552 17:00:00 25/11/2023
6 156,319 00:00:00 26/01/2024
7 460,586 13:00:00 09/06/2024
8 298,684 11:00:00 26/05/2024
9 597,727 06:00:00 31/07/2024
10 237,915 04:00:00 03/12/2023

Fonte: Adaptado de (ONS, 2025)

Além disso, destacam-se as diferenças entre os pontos analisados para a geração

dos valores futuros em cada método utilizado. Para séries temporais, consideram-se os

10 últimos valores da série para estimativa dos parâmetros, desconsiderando, portanto,

aspectos relacionados à sazonalidade. Por outro lado, na abordagem baseada em redes

neurais, são utilizados os 2160 valores anteriores ao ponto selecionado para o treinamento

da rede e definição dos pesos sinápticos. Essa quantidade foi escolhida de modo a abranger

um período de aproximadamente três meses, permitindo que a modelagem considere

adequadamente padrões sazonais presentes na série histórica.

3.2 Distribuição de Weibull

A fim de avaliar o potencial eólico da região onde estão situados os complexos eólicos

Lagoa dos Ventos e Campo Largo, estuda-se a Distribuição de Weibull, apresentada na

equação (3.1). Nessa linha, tem-se que esse tipo de Função de Distribuição de Probabilidade
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(PDF) descreve como os valores de uma variável aleatória estão distribuídos, indicando a

probabilidade associada a diferentes intervalos que a variável pode assumir, cuja integral

em um intervalo fornece a probabilidade associada a esse intervalo. Especificamente, a

Distribuição de Weibull é comumente utilizada quando a distribuição dos dados não é

gaussiana, ou seja, é assimétrica, já que sua flexibilidade em representar diferentes padrões

de comportamento permite a análise com esse tipo de dados (SOUZA et al., 2019).

f(x; k, λ) =
k

λ

(x
λ

)k−1

e−(
x
λ)

k

(3.1)

Em que:

x = Valor da variável aleatória

k = Parâmetro de forma

λ = Parâmetro de escala

Em particular, a Distribuição de Weibull é usualmente empregada na indústria de energia

eólica para analisar a frequência das velocidades do vento e, consequentemente, estimar a

produção de energia e avaliar o potencial dos locais em que serão instalados os parques

eólicos (LIMA et al., 2024).

A fim de aplicar o método supracitado, estudam-se as coordenadas geográficas da

cidade de Curaça-BA, a qual conta com uma base de dados a partir do CRESESB e

também tem instalada na cidade uma Estação Metereológica Automática (EMA). A cidade

em questão tem suas coordenadas geográficas apresentadas na Tabela 8.

Tabela 6 – Coordenadas geográficas de Curaça/BA

Coordenadas geográficas
Latitude 9,000640° S

Longitude 39,912191° O

Fonte: Google Maps

Com as coordenadas do parque conhecidas, utilizando os dados do CRESESB para a

avaliação dos parâmetros k e λ da distribuição, os quais são apresentados na Tabela 7.

Tabela 7 – Dados de vento a 50 m de altura

Grandeza Unidade Dez-Fev Mar-Mai Jun-Ago Set-Nov Anual
Velocidade média

dos ventos
m/s 4,58 4,03 5,92 5,88 5,1

Parâmetro λ - 5,17 4,55 6,59 6,59 5,76
Parâmetro k - 2,02 1,97 3,42 2,90 2,35

Densidade de
potência

W/m² 111 78 167 178 134

Fonte: (CRESESB, 2024)
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Com os dados da Tabela 7, aplica-se a equação (3.1) para diferentes períodos de tempo,

em que seu resultado é apresentado na Figura 17.

Figura 17 – PDF de Weibull - Dados de 50 metros de altura

Fonte: Autoria própria

As curvas presentes na Figura 17 representam as Funções de Densidade de Probabi-

lidade de Weibull para diferentes valores dos parâmetros de forma k e escala λ. A partir

dessas distribuições, é possível calcular a integral da PDF, resultando na Função de Distri-

buição Acumulada (CDF) de Weibull, conforme apresentada na equação (3.2). A CDF, nesse

contexto, tem como principal função determinar a probabilidade de a variável aleatória, que

neste caso é a velocidade dos ventos, ser menor ou igual a um valor específico. Em outras

palavras, a CDF permite quantificar a probabilidade acumulada até um determinado valor

de velocidade, proporcionando uma análise detalhada da distribuição das velocidades do

vento ao longo do tempo (SOUZA et al., 2019).

F (x; k, λ) =

0, x < 0,

1− e−(
x
λ)

k

, x ≥ 0,
(3.2)

Aplicando a equação (3.2) para os diferentes valores de k e λ apresentados na Tabela

7, obtém-se a Figura 18, que apresenta a Função de Distribuição Acumulada de Weibull

para diferentes períodos de tempo durante o ano.
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Figura 18 – CDF de Weibull - Dados de 50 metros de altura

Fonte: Autoria própria

Assim, é possível calcular a probabilidade da velocidade dos ventos serem maiores

do que 7 m/s, nível operacional mínimo para que a geração eólica seja viável (Ver Seção

2.2). Este resultado é obtido fazendo [F (+∞; k, λ) - F (7; k, λ)], que calcula a probabilidade

da velocidade dos ventos estarem entre 7 e +∞, e é apresentado na Tabela 8, em que é

possível observar distribuição percentual da ocorrência de ventos com velocidade superior

a 7 m/s ao longo do ano, evidenciando a sazonalidade do potencial eólico e sua variação

significativamente ao longo do ano, reforçando a importância de incorporar a sazonalidade

no planejamento energético.

Tabela 8 – Probabilidade da velocidade dos ventos ser maior do que 7 m/s

Intervalo de tempo Pvel,vento > 7m/s (%)
Dezembro - Fevereiro 15,81

Março - Maio 9,67
Junho - Agosto 29,25

Setembro - Novembro 30,38
Anual 20,57

Fonte: Autoria própria

Agora, será realizada a estimativa dos parâmetros de Weibull a partir dos dados de

velocidade do vento na superfície da cidade de Curaçá-BA. Através desse processo, será

possível determinar os parâmetros de forma k e escala λ da distribuição de Weibull que



62

melhor descrevem os dados de velocidade do vento da região, permitindo a caracterização

das condições eólicas locais. A Tabela 9 apresenta o ajuste dos parâmetros juntamente

com a velocidade média de cada conjunto estudado.

Tabela 9 – Dados de vento na superfície

Grandeza Unidade Dez-Fev Mar-Mai Jun-Ago Set-Nov Anual
Velocidade média

dos ventos
m/s 2,51 2,31 3,15 3,07 2,76

Parâmetro λ - 2,83 2,61 3,51 3,43 3,11
Parâmetro k - 2,33 2,32 3,22 3,20 2,60

Fonte: Autoria própria

É conveniente destacar que os parâmetros k e λ podem ser obtidos atráves de diversas

técnicas estatísticas, como Regressão Linear, Método dos Mínimos Quadrados, Método do

Fator Padrão de Energia e Método de Momentos (SOUZA et al., 2019). Para a obtenção dos

parâmetros apresentados na Tabela 9, foi utilizado o Método da Máxima Verossimilhança

(MANTOVANI; FRANCO, 2004).

Agora, a partir da Tabela 9, aplicando a equação (3.1), tem-se a Figura 19.

Figura 19 – PDF de Weibull - Dados da superfície

Fonte: Autoria própria

Analogamente ao feito para os dados a 50 metros de altura, para a aplicação da equação

(3.2), a Figura 20 ilustra a representação CDF de Weibull ajustada aos dados de superfície.



63

Figura 20 – CDF de Weibull - Dados da superfície

Fonte: Autoria própria

De maneira análoga ao procedimento adotado para os dados a 50 metros de altura,

realiza-se a determinação da probabilidade da velocidade do vento na superfície ser de 3

m/s, que é visto na Tabela 10. É importante destacar que, para velocidades superiores a

7 m/s, a probabilidade calculada tende a se aproximar de zero, devida a baixa ocorrência

desses valores na superfície, e, consequentemente, indica que as condições de vento

fortes são menos frequentes na superfície, sendo mais recorrentes à medida que a altura

aumenta.

Tabela 10 – Probabilidade da velocidade dos ventos ser maior do que 3 m/s

Intervalo de tempo Pvel,vento > 3m/s (%)
Dezembro - Fevereiro 31,80

Março - Maio 25,12
Junho - Agosto 54,71

Setembro - Novembro 52,13
Anual 40,23

Fonte: Autoria própria

Aplicando os princípios da teoria básica de probabilidade, podemos calcular a quanti-

dade de medidas em que a velocidade do vento excede os 3 m/s. Para isso, primeiramente

identificamos o número total de observações que apresentam velocidades superiores a 3
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m/s. Em seguida, dividimos esse valor pelo total de medições realizadas, o que resulta na

probabilidade de a velocidade do vento ser maior do que 3 m/s. Essa abordagem probabilís-

tica serve como base para ajustes nos modelos de previsão, pois ajusta a distribuição de

probabilidades às condições reais observadas, proporcionando uma previsão mais precisa

e condizente com as características específicas da área analisada.

Tabela 11 – Probabilidade da velocidade dos ventos ser maior do que 3 m/s - Ajuste

Intervalo de tempo Pvel,vento > 3m/s (%)
Dezembro - Fevereiro 31,14

Março - Maio 25,59
Junho - Agosto 53,79

Setembro - Novembro 49,46
Anual 39,91

Fonte: Autoria própria

Logo, é possível observar que a distribuição calculada se ajustou bem aos dados. A

Figura 21 apresenta um comparativo entre a curva de distribuição e o histograma de cada

período, reforçando a convergência do ajuste.

Figura 21 – Comparativo entre a curva de distribuição e o histograma de cada período

Fonte: Autoria própria
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Em se tratando da análise anual, observa-se, pela Figura 22, que também foi possível

obter uma alta convergência.

Figura 22 – Comparativo entre a curva de distribuição e o histograma - Anual

Fonte: Autoria própria

Entretanto, a distribuição de Weibull, como uma série de funções de densidade, não

leva em consideração a dependência temporal das amostras e não é adequada para prever

eventos de curto e médio prazo, fazendo com que outras técnicas devam ser avaliadas.

3.3 Séries Temporais

Uma série temporal é um conjunto de observações coletadas em intervalos sequenciais

e regulares ao longo do tempo, como ilustrado na Figura 23. A análise dessas séries busca

identificar padrões, tendências, sazonalidades e outras características que possam auxiliar

na previsão de valores futuros.

Figura 23 – Modelo de série temporal

Fonte: Autoria própria
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Tem-se que modelos de séries temporais são amplamente utilizados para modelar e

prever dados sequenciais em que os valores futuros dependem linearmente de valores

anteriores do espaço amostral, métodos que serão avaliados nas seções seguintes.

3.3.1 Modelo Autorregressivo (AR)

Inicialmente, introduz-se o modelo de um filtro linear, apresentado na equação (3.3). Esse

modelo sugere que uma série temporal observável zt, com valores sucessivos altamente

dependentes, pode ser gerada a partir de amostras aleatórias de uma distribuição fixa,

geralmente assumida como normal, com média zero e variância σ2
a, chamada de ruído

branco. Nesse contexto, o ruído branco é transformado na zt por meio do que se chama de

filtro linear, que realiza a operação de filtragem linear simples, que é uma soma ponderada

dos valores de at (JENKINS; BOX, 1976).

zt = µ+ at +

p∑
i=1

ψiat−i = µ+ ψ(B)at (3.3)

Em que:

zt = Série temporal

ψ(B) = Função de Transferência

µ = Média

at = Ruído branco

Nessa perspectiva, introduz-se o Modelo Autorregressivo (AR), em que o valor atual do

processo é expresso como uma soma linear finita dos valores anteriores do processo e um

ruído branco at. Para isso, define-se z̃t = zt − µ como a série de desvios em relação a µ.

Com isso, tem-se a Equação (3.4),

z̃t = at +

p∑
i=1

ϕiz̃t−i = ϕ(B)−1at (3.4)

Em que:

ϕ = Parâmetros do modelo AR

Sendo, por fim, equivalente dizer que:

z̃t = ϕ(B)−1at = ψ(B)at (3.5)

Em que a equação (3.5) é válida se existirem ϕi tais que os pesos ψi em ψ(B) = ϕ−1(B)

formem uma série convergente. Sendo assim, o requisito necessário para a estacionarie-

dade é que o operador autorregressivo ϕ(B) deve ter todas as raízes de ϕ(B) = 0 maiores

que 1 em valor absoluto, ou seja, todas as raízes devem estar fora do círculo unitário.
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Aplicando o modelo AR com o auxílio de ferramentas de simulação como MATLAB,

obtém-se os parâmetros ϕi do modelo, as quais são encontradas a partir das equações de

Yule-Walker, que são apresentadas na equação (3.6) (JENKINS; BOX, 1976).

ρk =
E [(zt − µ)(zt+k − µ)]

σ2
z

=

p∑
i=1

ϕiρi−k (3.6)

Em que:

ρk = Autocorrelação de atraso k

E = Esperança

A equação (3.6) pode ser reescrita como apresentado em (3.7):



1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3

...
...

... . . . ...

ρp−1 ρp−2 ρp−3 · · · 1





ϕ1

ϕ2

ϕ3

...

ϕp


=



ρ1

ρ2

ρ3
...

ρp


(3.7)

Por fim, tem-se uma maneira de relacionar a autocorrelação de atraso com os parâmetros

do modelo, em que, ao resolver o sistema de equações, obtém-se os parâmetros desejados.

Assim, é possível aplicar o modelo AR aos dados da potência de saída do Complexo

Eólico Lagoa dos Ventos, a fim de prever, em pontos aleatórios do espaço amostral, os dois

próximos valores da série. Os resultados desta aplicação são apresentados na Tabela 12,

que apresenta a simulação de 10 pontos dentro dos 14664 dados, entre março de 2023 e

outubro de 2024.

Tabela 12 – Resultados das simulações - Lagoa dos Ventos - Modelo AR

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
633,761 626,146 1,2016
608,518 609,419 0,1481

SEGUNDA
455,818 501,308 9,9798
410,783 476,943 16,1058

TERCEIRA
236,268 279,388 18,2503
185,822 240,908 29,6443

QUARTA
306,928 307,261 0,1084
334,4850 287,692 13,9897
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SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

QUINTA
248,634 237,448 4,4991
237,106 245,295 3,4539

SEXTA
251,706 270,868 7,6130
259,694 239,782 7,6675

SÉTIMA
639,804 624,815 2,3427
652,814 597,704 8,4419

OITAVA
80,056 48,386 39,5597
115,843 50,662 56,267

NONA
606,904 573,872 5,4427
665,703 549,140 17,5098

DÉCIMA
29,354 33,394 13,7624
37,517 34,687 7,5426

Fonte: Autoria própria

Com isso, os resultados apresentados na Tabela 12 evidenciam que o modelo AR

apresentou convergência razoável quando aplicado aos dados de geração do Complexo

Eólico Lagoa dos Ventos, apresentando erros menores à medida que a potência de saída

do complexo aumentava.

Já para o complexo eólico Campo Largo, os resultados da aplicação do modelo AR

podem ser vistos na Tabela 13.

Tabela 13 – Resultados das simulações - Campo Largo - Modelo AR

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
269.608 276.419 2.5262
337.686 271.501 19.5996

SEGUNDA
473.169 474.151 0.2075
456.888 469.272 2.7105

TERCEIRA
565.962 567.419 0.2574
564.783 555.982 1.5582

QUARTA
504.907 503.237 0.3308
501.357 495.004 1.2671

QUINTA
410.002 409.624 0.0921
450.279 421.869 6.3094

SEXTA
152.735 149.839 1.8963
114.355 143.997 25.9214

SÉTIMA
471.383 455.800 3.3058
480.187 446.935 6.9248

OITAVA
266.145 289.771 8.8771
250.398 281.340 12.3572
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SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

NONA
580.131 592.008 2.0473
564.037 583.716 3.4889

DÉCIMA
272.163 214.194 21.2995
276.646 201.199 27.2720

Fonte: Autoria própria

Por fim, observa-se que, para o complexo eólico Campo Largo, o modelo AR também

apresentou uma convergência razoável, apresentando erros menores com o aumento da

potência de saída do parque, análogo ao visto para Lagoa dos Ventos

3.3.2 Modelo Moving Average (MA)

Por outro lado, define-se outro tipo de modelo de análise de séries temporais: Moving

Average (MA). Nesse modelo, tem-se z̃t como uma variável linearmente dependente de

um número finito de a’s anteriores, em contra partida com do modelo AR, em que o

modelo expressa a variação z̃t do processo como uma soma ponderada finita das variações

anteriores do processo, adicionado de um ruído branco (JENKINS; BOX, 1976).

z̃t = at −
q∑

i=1

θiat−i = θ(B)at (3.8)

Em que:

θ = Parâmetros do modelo MA

θ(B) = Função de Transferência do modelo MA

at = Ruído branco

Note que o modelo MA apresenta diferenças sutis em relação ao modelo AR, temos o

sinal negativo na expressão e a forma com que o parâmetro é calculado é diferente. Nesse

sentido, os parâmetros do modelo MA são calculados pela função de autocorrelação, a qual

é apresentada na equação (3.9).

ρk =

−
∑q

i=k θiθi−k

1+
∑q

i=1 θ
2
i
, 0 < k ≤ q

0, k > q
(3.9)

É evidente a complexidade da equação (3.9) devido à presença de termos não-lineares,

sendo necessário o uso de métodos iterativos para sua resolução, como o Método de

Newton-Raphson.

Analogamente, aplica-se o modelo MA aos dados da potência de saída do Complexo

Eólico Lagoa dos Ventos, tendo seus resultados apresentados na Tabela 14.
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Tabela 14 – Resultados das simulações - Lagoa dos Ventos - Modelo MA

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
633,761 524,991 17,1626
608,518 379,011 37,7158

SEGUNDA
455,818 436,182 4,3079
410,783 373,495 9,0773

TERCEIRA
236,268 242,170 2,4981
185,822 277,407 49,2865

QUARTA
306,928 336,713 9,7042

334,4850 360,693 7,8353

QUINTA
248,634 353,725 42,2674
237,106 334,223 40,9591

SEXTA
251,706 325,445 29,2958
259,694 389,786 50,0942

SÉTIMA
639,804 517,395 19,1323
652,814 353,625 45,8306

OITAVA
80,056 139,945 74,8086
115,843 256,563 121,4745

NONA
606,904 553,446 8,8083
665,703 460,917 30,7624

DÉCIMA
29,354 101,704 246,4732
37,517 191.590 410,6744

Fonte: Autoria própria

Já para Campo Largo, tem-se os resultados apresentados na Tabela 15.

Tabela 15 – Resultados das simulações - Campo Largo - Modelo MA

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
269,608 343,088 27,2545
337,686 382,081 13,1469

SEGUNDA
473,169 442,479 6,4860
456,888 394,390 13,6791

TERCEIRA
565,962 485,195 14,2707
564,783 359,827 36,2894

QUARTA
504,907 480,163 4,9006
501,357 364,012 27,3947

QUINTA
410,002 352,720 13,9712
450,279 301,298 33,0864

SEXTA
152,735 173,703 13,7283
114,355 206.364 80,4591
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SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

SÉTIMA
471,383 407,026 13,6528
480,187 351,834 26,7298

OITAVA
266,145 288,482 8,3928
250,398 279,951 11,8025

NONA
580,131 540,289 6,8677
564,037 465,490 17,4717

DÉCIMA
272,163 165,400 39,2277
276,646 226,755 18,0341

Fonte: Autoria própria

Portanto, as Tabela 14 e 15 mostram que o modelo MA não se ajustou com grande

convergência aos dados de geração dos complexos eólicos, apresentando altos erros em

uma série de medidas medidas, o que implica na necessidade de avaliação de outros

modelos.

3.3.3 Modelo Autorregressivo Integrado de Médias Móveis (ARIMA)

Por último, tem-se o estudo e avaliação do Modelo Autorregressivo Integrado de Médias

Móveis (ARIMA). Nesta análise, assume-se que comportamentos não estacionários possam

ser representados por modelos estacionários, em que uma nova série pode ser modelada

por um modelo misto autorregressivo de médias móveis, em que a série original zt pode ser

recuperada pelo operador soma (∇−1).

ωt = ∇dzt (3.10)

Em que:

zt = Série temporal

∇ = Operador de Diferenciação

ωt= Nova série

Uma outra forma de escrever o modelo ARIMA é apresentado na equação (3.11).

ϕ(B)(1−B)dzt = θ(B)at (3.11)

Em que:

ϕ(B) = Operador Autorregressivo

θ(B) = Operador Moving Average

Finalmente, aplica-se o modelo ARIMA aos dados do Complexo Eólico Lagoa dos

Ventos, em que seu resultado é apresentado na Tabela 16.
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Tabela 16 – Resultados das simulações - Lagoa dos Ventos - Modelo ARIMA

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
633,761 622,647 1,7536
608,518 601,533 1,1478

SEGUNDA
455,818 506,655 11,1530
410,783 498,376 21,3235

TERCEIRA
236,268 288,844 22,2526
185,822 271,163 45,9264

QUARTA
306,928 332,162 8,2215

334,4850 355,057 6,1504

QUINTA
248,634 240,867 3,1244
237,106 248,412 4,769

SEXTA
251,706 279,674 11,1115
259,694 260,778 0,4175

SÉTIMA
639,804 641,279 0,2306
652,814 637,855 2,2915

OITAVA
80,056 48,059 39,9683
115,843 48,427 58,1957

NONA
606,904 586,016 3,4417
665,703 581,156 12,7004

DÉCIMA
29,354 32,226 9,7827
37,517 30,365 19,0629

Fonte: Autoria própria

Analogamente para Campo Largo, tem-se a Tabela 17

Tabela 17 – Resultados das simulações - Campo Largo - Modelo ARIMA

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
269,608 285,282 5,8137
337,686 284,918 15,626

SEGUNDA
473,169 479,505 1,3389
456,888 481,757 5,4432

TERCEIRA
565,962 573,711 1,3691
564,783 572,799 1,4192

QUARTA
504,907 499,529 1,0652
501,357 482,541 3,7529

QUINTA
410,002 403,556 1,5721
450,279 420,378 6,6407

SEXTA
152,735 153,763 0,6728
114,355 153,727 34,4299
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SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

SÉTIMA
471,383 471,378 0,0015
480,187 481,164 0,2035

OITAVA
266,145 294,907 10,8069
250,398 295,157 17,8752

NONA
580,131 600,829 3,5677
564,037 603,949 7,0761

DÉCIMA
272,163 218,623 19,6722
276,646 218,872 20,8838

Fonte: Autoria própria

Com isso, os resultados apresentados nas Tabela 16 e 17 evidenciam que o modelo

ARIMA foi o modelo de série temporal que melhor se ajustou aos dados, apresentando

menores erros, especialmente para o complexo eólico Campo Largo. O modelo ARIMA é o

mais amplo dos modelos estudados de série temporal, sendo os modelos AR e MA casos

particulares desse modelo (JENKINS; BOX, 1976).

3.4 Rede Neural Artificial

Em outra perspectiva, utiliza-se um modelo de Rede Neural Artificial (RNA) para a

previsão dos valores de geração do Complexo Eólica Lagoa dos Ventos. Esses modelos

computacionais são inspirados no funcionamento do cérebro humano para resolução proble-

mas complexos por meio de aprendizado, em que o intuito é calcular os pesos sinápticos da

rede a fim de conseguir reconhecer de padrões entre a saída e a entrada (RAUBER, 2005).

3.4.1 Perceptron Multicamadas

Em se tratando do estudo de redes neurais artificiais, tem-se que o Perceptron Mul-

ticamadas (PMC) é uma rede neural artificial composta por pelo menos uma camada

intermediária, além das camadas de entrada e saída, em que cada camada é formada por

neurônios, que processam as informações de forma sequencial. Em outras palavras, os

dados entram na rede, passam pelas camadas intermediárias e chegam à camada de saída

(SILVA et al., 2010).

No início da rede, para a primeira camada, os dados são ponderados antes de seguirem,

como mostrado na equação (3.12).

ILj =
n∑

i=0

WL
ji(t)xi (3.12)

Em que:
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ILj = Entrada ponderada do j-ésimo neurônio na camada L

WL
ji = Peso entre o neurônio j da camada L e o neurônio i da camada anterior

xi = Entradas de dados

Para as demais camadas após a primeira, temos a troca de xi por yi, que é a saída

do j-ésimo neurônio em relação à camada L. Essas saídas são obtidas por funções de

ativação, o que pode ser visto na equação (3.13).

Y L
j = g(ILj ) (3.13)

Em que:

g(·) = Função de ativação

As funções de ativação devem ser contínuas e diferenciáveis em todo domínio, como é

o caso da função sigmoide, declarada na equação (3.14).

sig(x) =
1

1 + e−x
(3.14)

Os pesos da primeira camada da rede neural, ou seja, L = 1, são calculados como

mostra a equação (3.15).

WL
ji(t+ 1) = WL

ji(t) + η · δLj · xi (3.15)

Em que:

η = Taxa de aprendizado

δLj = Gradiente local no neurônio j da camada L

Para as demais camadas, troca-se xi por Y L
i .

De maneira análoga com o feito para as séries temporais, desenvolveu-se também um

modelo de rede neural que prevê a potência de saída do complexo eólico Lagoa dos Ventos,

em que um elemento conhecido é retirado e o método deve prevê-lo. Para o vetor de entrada

do PMC, foi estabelecida uma matriz de entrada com os valores conhecidos de geração,

em que as linhas dessa matriz podem ser expressas como a equação 3.16.

Li = [ai, ai+1, . . . , an+i−1] (3.16)

Neste caso, o vetor de entrada tem 24 colunas, ou seja, fornece-se à rede 24 medidas

consecutivas, e a saída é a previsão da próxima medida no tempo subsequente (an+1).

Finalmente, é possível avaliar o modelo de RNA desenvolvido. Para a avaliação do

problema de previsão em questão, tem-se a análise dos 3 últimos valores conhecidos

do banco de dados: 642,099, 659,234 e 661,933 MWmed, respectivamente. Inicialmente,

retiram-se os 3 valores e o algoritmo é desenvolvido para a obtenção do antepenúltimo
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valor, 642,099 MWmed. A Tabela 18 apresenta o resultado de 20 execuções subsequentes

e independentes do PMC, juntamente com o erro absoluto em relação à medida conhecida.

Tabela 18 – Resultado do PMC - Previsão e erro

EXECUÇÃO RESULTADO (MWmed) ERRO ABSOLUTO (%)
1 649,04361 1,08155
2 646,95335 0,75601
3 595,24131 7,29758
4 618,25195 3,71392
5 659,39922 2,69432
6 673,25656 4,85245
7 628,09882 2,18038
8 642,27391 0,02724
9 580,92756 9,52679
10 622,29088 3,08490
11 642,99206 0,13908
12 646,88248 0,74498
13 626,81316 2,38060
14 627,65319 2,24978
15 643,33083 0,19184
16 637,18698 0,76499
17 609,93497 5,00920
18 639,98576 0,32911
19 643,43125 0,20748
20 621,37771 3,22712

Note que os resultados entre as execuções são diferentes, uma vez que os pesos

sinápticos da primeira camada são gerados de maneira aleatória, o que influencia no

processo de ajuste das demais camadas.

Para uma análise visual, a Figura 24 foi desenvolvida a fim de apresentar o gráfico dos

erros de medida, juntamente de uma média móvel com janela para quatro valores dos erros

anteriores, como apresentado na equação 3.17.

yi =
1

N

i+N−1
2∑

j=i−N−1
2

xj (3.17)

Em que:

yi = Saída da média móvel

xj= Valor do erro

N = Janela da média móvel

Destaca-se que, no extremo inferior do vetor, não há elementos suficientes para comple-

tar a janela, fazendo com que o método tenha que ser ajustado para o cálculo apenas com

os valores conhecidos, o que reduz a janela da média móvel.
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Por exemplo, para o primeiro ponto y1, apenas seria considerado o valor do erro x1, e a

janela é reduzida para N = 1 ao invés de N = 4, resultando em y1 = x1. Esse método é

seguido até que tenhamos medidas suficientes dentro da janela.

Figura 24 – Erro de previsão do PMC e média móvel

Fonte: Autoria própria

Assim, é possível observar que a média móvel dos valores das execuções se encontra

na faixa de 1 a 5 porcento, valores consideráveis para um processo de previsão.

Com a geração de diferentes redes, escolhe-se aquela que apresentou o menor erro

de previsão para a estimação dos valores restantes, 659,234 e 661,933 MWmed. A oitava

execução, destacada em vermelho, apresentou o menor erro absoluto no processo de

previsão, por isso, esta rede foi escolhida para a previsão dos valores seguintes. Assim,

tem-se os resultados da Tabela 19.

Tabela 19 – Valores previstos com o PMC

VALOR MEDIDO (MWmed) VALOR PREVISTO (MWmed) ERRO ABSOLUTO (%)
659,234 658,378 0,1299
661,933 652,744 1,3882

Fonte: Autoria própria
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É evidente na Tabela 19 que o método de adequou bem ao conjunto de dados que foi

analisado, com um erro na primeira previsão de apenas 0,1299 %, enquanto a segunda

mantém um erro de 1,3882%, o que se justifica pela escolha coerente da rede neural

avaliada, a qual apresentou menor erro na medida inicial.

Em termos práticos, em que não se conheceria as medidas da Tabela 19, gera-se uma

RNA para estimar a última medida conhecida e se escolhe a rede que apresentou menores

erros de geração para a avaliação dos valores subsequentes.

Para aprimorar a análise dos ajustes dos dados em um espaço amostral ampliado, a base

de dados foi atualizada conforme a metodologia mencionada anteriormente. Inicialmente,

os resultados apresentados na Tabela 19 foram obtidos a partir de dados coletados entre

os meses de março e maio de 2023. Na nova base de dados, esse período foi expandido,

abrangendo registros de março de 2023 a outubro de 2024.

Além disso, para a geração de novos valores, os intervalos considerados dentro da base

de dados atualizada abrangem períodos de 3 meses. Isso resulta em um total de 2160

medições, sendo cada uma registrada a cada hora, com unidade de MWmed.

Para o Complexo Eólico Lagoa dos Ventos, tem-se o resultado das simulações apresen-

tados na Tabela 20.

Tabela 20 – Resultados das simulações - Lagoa dos Ventos

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
633,761 633,481 0,0441
608,518 624,063 2,5545

SEGUNDA
455,818 454,122 0,3721
410,783 405,978 1,1697

TERCEIRA
236,268 238,5477 0,9649
185,822 176,8412 4,8330

QUARTA
306,928 310,902 1,2946
334,4850 301,739 9,7901

QUINTA
248,634 254,467 2,3459
237,106 270,141 13,9324

SEXTA
251,706 275,383 9,407
259,694 266,136 2,480

SÉTIMA
639,804 640,241 0,0683
652,814 647,217 0,8573

OITAVA
80,056 80,407 0,4388
115,843 114,275 1,3537

NONA
606,904 607,78 0,144
665,703 636,983 4,3143

DÉCIMA
29,354 29,2142 0,4761
37,517 45,762 21,977

Fonte: Autoria própria
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Já para o Complexo Eólico Campo Largo, os resultados das simulações são vistos na

Tabela 21.

Tabela 21 – Resultados das simulações - Campo Largo

SIMULAÇÃO
VALOR MEDIDO

(MWmed)
VALOR PREVISTO

(MWmed)
ERRO ABSOLUTO

(%)

PRIMEIRA
269,608 266,911 1,005
337,686 291,022 13,8188

SEGUNDA
473,169 473,235 0,0139
456,888 442,404 3,1702

TERCEIRA
565,962 565,564 0,070
564,783 582,085 3,0634

QUARTA
504,907 508,696 0,7504
501,357 523,971 4,5106

QUINTA
410,002 416,265 1,5274
450,279 393,363 12,6402

SEXTA
152,735 152,061 0,4416
114,355 121,335 6,1034

SÉTIMA
471,383 474,684 0,7003
480,187 462,6514 3,6518

OITAVA
266,145 263,385 1,0371
250,398 213,648 14,677

NONA
580,131 580,2764 0,0251
564,037 558,570 0,9693

DÉCIMA
272,163 271,666 0,1825
276,646 300,3735 8,5769

Fonte: Autoria própria

Portanto, observa-se que a rede proposta teve alta convergência nos dois cenários, com

erros médios de 1,55% e 0,58% para as primeiras medidas nas aplicações aos dados dos

complexos eólicos Lagoa dos Ventos e Campo Largo, respectivamente.

3.5 Comparativo entre métodos de previsão

Finalmente, com a aplicação dos modelos de previsão aos dados dos complexos eólicos

avaliados, torna-se possível realizar uma análise comparativa dos erros associados a cada

abordagem. Essa análise permite identificar qual método apresenta melhor desempenho em

termos de acurácia, além de avaliar sua robustez frente às variações nas características do

recurso eólico. A Figura 25 apresenta o comparativo dos erros absolutos para o Complexo

Eólico Lagoa dos Ventos, considerando todos os modelos avaliados.
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Figura 25 – Comparativo entre erros de previsão — Lagoa dos Ventos

Fonte: Autoria própria

Observa-se que o modelo MA apresentou os maiores erros entre os métodos testados,

demonstrando menor capacidade de adaptação às flutuações do recurso eólico. Visando

uma comparação mais clara entre os modelos com melhor desempenho, o MA foi retirado

da análise gráfica, resultando na Figura 26.

Figura 26 – Comparativo entre erros de previsão — Lagoa dos Ventos (sem MA)

Fonte: Autoria própria

Na Figura 26, é possível observar que os modelos AR e ARIMA apresentaram comporta-
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mentos semelhantes ao longo das simulações, enquanto a rede neural (RN) se destacou por

apresentar os menores valores de erro absoluto, indicando maior precisão nas previsões.

A mesma análise foi aplicada aos dados do Complexo Eólico Campo Largo. A Figura 27

mostra os resultados considerando todos os modelos.

Figura 27 – Comparativo entre erros de previsão — Campo Largo

Fonte: Autoria própria

De forma análoga ao caso anterior, o modelo MA também apresentou baixo desempenho

para Campo Largo. Assim, foi novamente removido para fins de comparação entre os

modelos que demonstraram melhor convergência, conforme ilustrado na Figura 28.

Figura 28 – Comparativo entre erros de previsão — Campo Largo (sem MA)

Fonte: Autoria própria
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Nota-se que, também para Campo Largo, os modelos AR e ARIMA exibiram tendências

semelhantes de erro ao longo das simulações, enquanto a RN novamente obteve os

melhores resultados, confirmando sua superioridade em termos de precisão na previsão do

recurso eólico para os dois complexos analisados.
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4 CONCLUSÃO

Este trabalho buscou analisar e modelar a geração de energia eólica de curto prazo,

com vistas a subsidiar estudos de estabilidade de tensão em sistemas elétricos de potência.

Ao longo do desenvolvimento, foi possível expressar de forma clara a diferença entre as

abordagens de previsão de longo prazo, voltadas ao planejamento energético estratégico,

e as de curto prazo, que atendem às demandas da operação elétrica diária. Enquanto as

previsões de longo prazo orientam decisões de expansão e sustentabilidade do sistema,

considerando horizontes que podem se estender por décadas, as previsões de curto prazo,

foco desta pesquisa, concentram-se na estimativa da geração e no equilíbrio operacional

em escalas temporais de horas a semanas. Essas previsões são essenciais para evitar

sobrecargas, minimizar o risco de apagões e garantir a segurança e a confiabilidade do

fornecimento de energia.

A aplicação da Distribuição de Weibull mostrou-se eficaz na caracterização do potencial

eólico da região estudada. A flexibilidade desta distribuição em representar padrões assimé-

tricos e sua adequação aos dados de velocidade do vento permitiram uma avaliação precisa

da frequência de ocorrência de ventos em faixas operacionais. Essa análise evidenciou

a sazonalidade do recurso eólico e forneceu subsídios importantes para estimativas de

produção de energia, reforçando o papel da Distribuição de Weibull como uma ferramenta

robusta para a avaliação do potencial energético de uma região. A capacidade de obter bons

ajustes tanto para dados de superfície quanto para dados a 50 metros de altura indica a apli-

cabilidade dessa distribuição em diferentes contextos e escalas de estudo, consolidando-a

como uma base sólida para etapas subsequentes de modelagem e previsão.

No que tange aos modelos de séries temporais, o Modelo Autorregressivo Integrado de

Médias Móveis (ARIMA) foi o que apresentou o melhor ajuste entre as abordagens testadas.

Com menores erros absolutos, especialmente nos dados do complexo eólico Campo Largo,

o ARIMA destacou-se por sua capacidade de lidar com séries não estacionárias e incorporar

tanto a dependência temporal quanto as tendências dos dados. Ademais, a predominância

de sua aplicação na literatura especializada confirma sua relevância e consistência para

previsões de curto prazo na geração eólica. A simplicidade relativa do modelo, aliada à sua

eficácia preditiva, torna o ARIMA uma alternativa interessante para estudos que demandem

baixo custo computacional e rápida implementação.

Por fim, a Rede Neural Artificial (RNA) do tipo Perceptron Multicamadas revelou-se a

metodologia que apresentou o melhor desempenho no conjunto de dados analisado. Com

erros percentuais inferiores a 1,5% nas melhores execuções, a RNA demonstrou elevada

capacidade de aprender e reproduzir padrões complexos, proporcionando estimativas

de geração com alto grau de precisão. A escolha criteriosa da arquitetura da rede e do

conjunto de treinamento contribuiu para a obtenção desses resultados, evidenciando o

potencial dessa técnica para aplicações práticas na previsão de geração eólica. Além
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disso, a flexibilidade da RNA em lidar com relações não lineares e sua capacidade de

generalização sugerem sua aplicabilidade em cenários mais complexos, inclusive com a

incorporação de múltiplas variáveis de entrada, como temperatura, umidade e pressão

atmosférica.

Dessa forma, os resultados obtidos ao longo deste trabalho comprovam que a combina-

ção de técnicas estatísticas clássicas com métodos de inteligência artificial oferece uma

abordagem promissora para enfrentar os desafios associados à variabilidade da geração

eólica. As metodologias desenvolvidas e avaliadas aqui podem servir como ferramentas

complementares para o aprimoramento do planejamento e da operação de sistemas elé-

tricos com alta penetração de fontes renováveis, contribuindo para a confiabilidade e a

sustentabilidade da matriz energética brasileira. Espera-se que as contribuições deste

estudo possam subsidiar futuras pesquisas e aplicações práticas voltadas ao uso otimizado

de recursos eólicos, fortalecendo a transição para um setor energético mais resiliente e

sustentável.
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