UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

PEDRO LUCAS BETARELO DOS SANTOS

Anadlise de incerteza e previsdao de geragao edlica para estudos
de margem de estabilidade de tensao

Sao Carlos
2025






PEDRO LUCAS BETARELO DOS SANTOS

Analise de incerteza e previsdo de geracao edlica para estudos
de margem de estabilidade de tensao

Monografia apresentada ao Curso de
Engenharia Elétrica com Enfase em
Sistemas de Energia e Automacao, da
Escola de Engenharia de Sdo Carlos da
Universidade de Sao Paulo, como parte
dos requisitos para obtencao do Titulo de
Engenheiro Eletricista

Orientador: Prof. Dr. Luis Fernando
Costa Alberto

Sao Carlos

2025



AUTORIZO A REPRODUGCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Santos , Pedro Lucas Betarel o dos

S237a Anal i se de incerteza e previsdo de geracéao
eblica para estudos de nargem de estabilidade de tensao
/ Pedro Lucas Betarelo dos Santos ; orientador Luis
Fernando Costa Al berto. Sado Carlos, 2025.

Monogr afi a (Graduagdo em Engenharia El étrica com

énfase em Si stemas de Energia e Automacdo) -- Escol a de
Engenhari a de Sao Carlos da Universi dade de Sdo Paul o,
2025.

1. Estabilidade de Tens&o. 2. Ceracdo EOGlica.
3. Representacdo de Incertezas. 4. Sistenmas El étricos
de Poténcia. |. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907




FOLHA DE APROVACAO

Nome: Pedro Lucas Betarelo dos Santos

Titulo: “Anélise de incerteza e previsdo de geracao edlica para
estudos de margem de estabilidade de tens&o”

Trabalho de Concluséo de Curso defendido e aprovado em
18/06/2025,

com NOTA Dez (10,0), pela Comissao Julgadora:

Prof. Titular Luis Fernando Costa Alberto - Orientador
SEL/EESC/USP
Profa. Titular Ahda Pionkoski Grilo Pavani - Universidade

Federal do ABC

Mestre Lucas Beordo - EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior






Aos meus pais, pelo amor e apoio incondicional;

a minha namorada, pelo carinho e incentivo constantes;

ao meu afilhado, por encher meus dias de alegria e dogura com seu sorriso;
e aos meus amigos, pela companhia e forga ao longo dessa jornada.

A todos vocés, dedico este trabalho com profunda gratidéo...






AGRADECIMENTOS

Agradeco primeiramente aos meus pais, Cosmo e Rosana, e ao meu irmao, Carlos
Eduardo, por todo o amor, apoio e orientagdo em cada passo desta jornada académica.
Sem o suporte e a confiangca de vocés, muitos dos desafios enfrentados teriam sido ainda
mais dificeis de superar.

A minha namorada, Livia Vitéria, por ser minha inspiragéo e por compartilhar comigo
cada momento deste caminho com carinho e compreensao. Sua presenca foi essencial
para que eu mantivesse o equilibrio e a motivagdo em todas as fases deste trabalho.

Ao meu afilhado, Ravi, cuja alegria inocente e sorriso contagiante trouxeram leveza aos
desafios desta caminhada.

Ao professor Luis Fernando, expresso minha gratidao pela orientacéo, paciéncia e
pelo conhecimento generosamente compartilhado. Sua orientacao foi fundamental para a
construgao deste projeto e do meu desenvolvimento profissional.

Agradeco também a Fundagao de Amparo a Pesquisa do Estado de Sao Paulo pelo
apoio financeiro e pela confianga em minha pesquisa, tornando possivel o desenvolvimento
deste trabalho.

Por fim, deixo meu profundo agradecimento aos amigos do grupo "Tudo quanto é
coisa...", que me acompanharam com alegria e parceria, ajudando a tornar essa caminhada
mais leve e divertida. Obrigado por estarem ao meu lado em cada etapa, trazendo risos e
fortalecendo nossa amizade.






RESUMO

SANTOS, P. L. B. Analise de incerteza e previsao de geracao edlica para estudos de
margem de estabilidade de tensao. 2025. Monografia (Trabalho de Concluséao de Curso)
— Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2025.

A crescente participagao de fontes alternativas de energia limpa em substituicdo a fontes
poluentes na matriz energética, visando a diminuigao de impactos ambientais, resultou no
crescimento de fontes de geracéo edlica no sistema elétrico brasileiro, as quais utilizam
de aerogeradores para realizar a conversao da energia cinética das massas de ar em
energia elétrica. No entanto, flutuagdes na velocidade dos ventos e a intermiténcia nesse
tipo de fonte dificultam a previsdo do cenario operativo € podem culminar em problemas de
instabilidade de tensdo. Nesse contexto, esta monografia tem como objetivo investigar e
desenvolver metodologias para parametrizar as dinamicas de geragao nesse modelo de
fonte, em termos de previsdo de geracao e potencial. Sob essa 6tica, buscou-se entender,
modelar e prever a poténcia de saida de complexos e6licos com diferentes modelos, a fim de
avaliar a aderéncia destes modelos aos dados reais e, entdo, estudar como as variacdes de
geracao eolica podem comprometer a estabilidade do sistema elétrico. Para isso, analisaram-
se dados de geracao e diferentes métodos de anadlise sdo aplicados, com o intuito de criar
cenarios de geragdo. Para isso, utilizaram-se dados histéricos de velocidade do vento
para a aplicagcdo da Distribuicdo de Weibull, com o objetivo de estimar a probabilidade de
ocorréncia de diferentes faixas de velocidade na regidao de Curaga/BA, em que o modelo
apresentou alta aderéncia aos dados observados, evidenciada pela elevada convergéncia
entre a curva ajustada e o histograma empirico. Além disso, foram empregados modelos de
séries temporais e redes neurais artificiais para a previsao da poténcia gerada por parques
edblicos, sendo que as redes neurais demonstraram desempenho superior, alcangando erros
de previsao frequentemente inferiores a 1%, o que evidencia sua maior capacidade de
modelar padroes de geragao edlica. Destarte, 0 objetivo € avaliar modelos que auxiliem no
planejamento da operagéao elétrica e nas analises de seguranca em sistemas elétricos de
poténcia com grande penetragao de fontes de geragao edlica.

Palavras-chave: Estabilidade de Tensdo. Geracao Eodlica. Representacao de Incertezas.
Sistemas Elétricos de Poténcia.






ABSTRACT

SANTOS, P. L. B. Uncertainty analysis and wind power generation forecast for voltage
stability margin studies. 2025. Monografia (Trabalho de Conclusdo de Curso) — Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2025.

The growing participation of alternative clean energy sources in replacement of polluting
sources in the energy matrix, aiming to reduce environmental impacts, has resulted in
the growth of wind power generation sources in the Brazilian electric system, which use
wind turbines to convert the kinetic energy of air masses into electrical energy. However,
fluctuations in wind speed and the intermittency of this type of source make it difficult
to predict the operational scenario and may lead to voltage instability problems. In this
context, this monograph aims to investigate and develop methodologies to parameterize the
generation dynamics of this type of source, in terms of generation forecasting and potential.
From this perspective, the goal was to understand, model, and forecast the output power of
wind farms using different models, in order to evaluate the adherence of these models to real
data and, then, study how variations in wind generation may compromise the stability of the
electric power system. For this purpose, generation data were analyzed and different analysis
methods were applied, with the aim of creating generation scenarios. For this, historical wind
speed data were used for the application of the Weibull Distribution, in order to estimate
the probability of occurrence of different wind speed ranges in the region of Curaca/BA, in
which the model showed high adherence to the observed data, evidenced by the strong
convergence between the fitted curve and the empirical histogram. Furthermore, time series
models and artificial neural networks were employed to forecast the power generated by
wind farms, with neural networks demonstrating superior performance, achieving forecast
errors frequently below 1%, which highlights their greater capacity to model wind generation
patterns. Thus, the objective is to evaluate models that assist in the planning of power system
operation and in security analyses in electric power systems with high penetration of wind
generation sources.

Keywords: Power Systems. Uncertainty Representation. Voltage Stability. Wind Power Gen-
eration.
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1 INTRODUGCAO

A transicdo para uma matriz energética sustentavel tem impulsionado o crescimento da
geracao de energia por fontes renovaveis, como a edlica, que contribuem para a diminuicao
da dependéncia de combustiveis fosseis e para a reducédo de impactos ambientais. No
entanto, a natureza intermitente da geragao edlica, diretamente influenciada pela velocidade
dos ventos, introduz incertezas significativas no planejamento da operacao de sistemas elé-
tricos de poténcia (SEP), podendo ocasionar instabilidades nos niveis de tensdo (BICALHO,
2012). Em relacao a isso, manter as tensdes dentro de faixas adequadas € essencial para
garantir a qualidade do fornecimento de eletricidade e evitar eventos que comprometam a
seguranca e confiabilidade da rede (KUNDUR, 2004).

Nesse sentido, destacam-se alguns dos principais fatores que levam a instabilidade de
tensdo, incluindo a distancia entre os centros de geragao e consumo, que causa perdas
consideraveis nas linhas de transmisséo, aléem da limitacdo na capacidade de transferir
poténcias reativas em grande quantidade (KUNDUR, 2004). Com vistas aos parques eolicos,
ao serem integrados de forma adequada, podem contribuir para a operagao segura da rede
elétrica, desde que participem ativamente no controle e aumento da margem de estabilidade
de tenséo (SOHN, 2014).

Com esse enfoque, o estudo da matriz elétrica e do potencial edlico no pais sao
fundamentais para o planejamento e a operacao do setor energético, principalmente em se
tratando da transicao para uma matriz energética renovavel, o que auxilia compreensao da
participagcao e o impacto das diferentes fontes de geragao no atendimento a demanda, além
de identificar oportunidades para diversificacao e reducao da dependéncia de combustiveis
fosseis (LIMA et al., 2018). Para isso, a analise de potencial edlico tem o papel de fornecer
subsidios técnicos para avaliar a viabilidade de projetos, contribuindo para o aproveitamento
estratégico dessa fonte renovavel e otimizando o desempenho e a eficiéncia dos parques
edlicos (AMARANTE et al., 2001).

Entretanto, devido a sua dependéncia das variagdes de vento, os parques edlicos
apresentam oscilacées na geracao, tornando necessaria a criagdo de metodologias que
prevejam seu comportamento e estimem margens de estabilidade adequadas para diversos
cenarios de geracao. A esse respeito, sabe-se que essas metodologias sao fundamentais
para mitigar os riscos associados a intermiténcia da geracao edlica, permitindo uma opera-
¢ao mais segura e confidvel dos sistemas elétricos de poténcia. Além disso, ao incorporar
modelos preditivos precisos e ferramentas analiticas robustas, € possivel otimizar o uso da
energia gerada, minimizar impactos na qualidade da energia e contribuir para a expansao
sustentavel dessa fonte renovavel na matriz energética (LIMA et al., 2024).

A andlise operacional de complexos edlicos requer uma soélida analise de dados his-
téricos, sejam eles no tocante ao potencial disponivel ou geracao, a fim de entender as
dindmicas pelas quais complexos edlicos estao susceptiveis (SANTOS, 2022). Para isso,
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€ necessario a avaliacao de base de dados que permita uma compreensao detalhada do
comportamento dos ventos e das condi¢cdes climaticas regionais, em que se destacam
as atuacodes de 6rgaos como o Operador Nacional do Sistema Elétrico (ONS), o Instituto
Nacional de Meteorologia (INMET) e o Centro de Referéncia para Energia Solar e Edlica
Sérgio de Salvo Brito (CRESESB), os quais oferecem informacdes indispensaveis para a
modelagem e avaliacdo da dindmica em complexos edlicos.

Existe uma ampla gama de técnicas de andlise para parques edlicos. Dentre as fer-
ramentas empregadas, destaca-se a Distribuicdo de Weibull, amplamente utilizada para
avaliar a viabilidade energética de uma regiao, considerando a variacao da intensidade e
frequéncia dos ventos, a fim de entender qual é a probabilidade da velocidade dos ventos
estarem em uma faixa de operacao, o que impacta na avaliacdo do potencial da area
estudada (SOUZA et al., 2019).

Neste contexto, tem-se 0 uso de fungdes de distribuicao para a avaliacao do planeja-
mento energético de longo prazo, que é essencial para garantir a seguranga no fornecimento
de energia, tendo em vista as projecoes de demanda e as tendéncias de crescimento popu-
lacional e industrial, focando em cenarios que podem se estendem por décadas, o0 que exige
a consideragao de variaveis econémicas, sociais e tecnolégicas (CARVALHO, 2005). Para
que seja possivel atender a crescente demanda de energia, as projecdes devem incorporar
o desenvolvimento de novas fontes de energia, como as renovaveis, além de inovagdes
tecnoldgicas que podem impactar tanto a geragdao quanto a distribuicdo de eletricidade,
em que a previsdo é fundamental para a definicdo de politicas publicas, investimentos
em infraestrutura e formacao de um portfélio energético diversificado, que permita nao
apenas a sustentacao da demanda, mas também a adaptacdo as mudancas climaticas e
aos avangos tecnoldgicos, garantindo um sistema energético robusto e resiliente a longo
prazo (MERCURE et al., 2014).

Em outra perspectiva, o estudo de séries temporais € comumente usado no processo
de previsdo da poténcia de saida em complexos edlicos, uma vez que essa abordagem
possibilita a identificacdo de padrdes sazonais e tendéncias de comportamento, fornecendo
recursos para ajustes mais precisos em modelos operacionais. Assim, ao integrar essas
analises ao processo de predicao, é possivel otimizar a gestdo dos recursos energéticos,
aumentar a eficiéncia dos sistemas e promover uma maior confiabilidade no planejamento
energeético. (FRANCA et al., 2019).

Ademais, a integragdo de técnicas avangadas com base em redes neurais artificiais
tém ampliado significativamente a capacidade de anadlise e previsdo da geracao edlica
(OLIVEIRA; SANTOS, 2023). Isso se deve ao fato de que essas redes, ao aprenderem
padrdes complexos em dados histéricos, podem fornecer estimativas mais acuradas sobre
0 cenario de geracao em complexos edlicos, ainda que estejam diante de cenarios de alta
variabilidade (FUJISE, 2018). Assim, tal abordagem nao apenas contribui para uma maior
eficiéncia no gerenciamento da geracéo e da estabilidade da rede, mas também para o



25

planejamento estratégico de novos empreendimentos eolicos, consolidando a energia edlica
como um pilar na transigdo para uma matriz energética mais sustentavel e resiliente.

Sob outra 6tica, ha analises de previsdes de curto prazo para o planejamento elétrico,
visando atender a necessidade imediata e a operacao diaria do sistema elétrico. Essas
andlises de previsao para o curto prazo, podendo ser de horas, dias ou semanas, comumente
se concentram na previsdo da demanda de energia e no gerenciamento da operacao das
usinas e redes de transmissao de forma eficiente (AQUILA et al., 2023). Nesse contexto,
fatores como condigdes climaticas, padroes de consumo sazonais e eventos imprevistos,
como falhas ou manutencdes, precisam ser considerados para ajustar a geracao e a
distribuicdo de eletricidade. Ao contrario das previsdes de longo prazo, que focam na
expanséo e sustentabilidade do sistema, as previsdes de curto prazo estédo diretamente
relacionadas a operacionalidade e ao equilibrio em tempo real entre oferta e demanda,
evitando sobrecargas e minimizando o risco de apagdes. Esse nivel de previsdo exige
modelos preditivos altamente precisos e atualizados, além de um sistema de monitoramento
continuo que permita ajustes rapidos e eficazes (HONG; FAN, 2016).

Destarte, a integracéo entre as previsdes de longo e curto prazo é crucial para o sucesso
do planejamento energético e elétrico. Embora cada uma dessas previsées atenda a neces-
sidades distintas, elas estéo interligadas no objetivo comum de assegurar a continuidade
e a eficiéncia do fornecimento de energia (LAl et al., 2018). As previsdes de longo prazo
orientam a construcao de um sistema energético resiliente e preparado para o futuro, en-
quanto as previsdes de curto prazo garantem a operagao diaria eficiente do sistema elétrico.
Dessa forma, a analise integrada dessas previsoes possibilita uma abordagem holistica
para o planejamento, permitindo que as decisdes tomadas hoje, com base nas projecoes de
curto prazo, estejam alinhadas com as metas estratégicas de longo prazo, contribuindo para
um desenvolvimento sustentavel do setor energético. Assim, a capacidade de combinar
ambos os horizontes temporais proporciona uma maior estabilidade e confiabilidade no
fornecimento de energia, adaptando-se as exigéncias presentes e futuras da sociedade
(NAM et al., 2020).

1.1 Objetivo

Este projeto de conclusdo de curso tem como objetivo modelar as variagées de geracao
de energia em parques eolicos de curto prazo, visando o estudo do problema de estabilidade
de tensdo, que busca manter as tensdes dentro de niveis operacionais seguros e contribuir
para a estabilidade dos sistemas elétricos de poténcia (SEPs). Para tanto, emprega-se uma
combinacgao de técnicas estatisticas avangadas, incluindo distribuicées de probabilidade,
séries temporais e redes neurais artificiais, para analisar e prever a dindmica da geracao
eodlica. Estas metodologias permitem ndo apenas estimar as variagées de curto prazo, mas
também identificar padroes e tendéncias que impactam diretamente a operagéo e o planeja-
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mento do sistema elétrico. O desenvolvimento desses modelos busca fornecer subsidios
técnicos para a integragao otimizada da geracao edlica, promovendo uma operagcao mais
confiavel e eficiente dos SEPs.

1.2 Justificativa

A principal justificativa deste trabalho reside na crescente participacao da energia edlica
na matriz energética, o que demanda solucdes inovadoras para mitigar as incertezas
associadas a sua natureza intermitente. A variabilidade dos ventos representa um desafio
significativo para a operacao dos sistemas elétricos, especialmente no que diz respeito a
manutencao da qualidade e confiabilidade do fornecimento de eletricidade. Ao desenvolver
modelos preditivos robustos e estudos detalhados sobre o potencial de geracao entre
parques eolicos, este projeto oferece ferramentas essenciais para o setor energético. Além
disso, o trabalho contribui diretamente para o avango tecnol6gico necessério a transicao
energética, ao apoiar uma integracao mais segura e eficiente das fontes renovaveis, alinhada
as demandas globais por sustentabilidade e resiliéncia na infraestrutura elétrica.
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2 REVISAO BIBLIOGRAFICA

2.1 Geracao Edlica

Em fungé@o do aumento da demanda do SEP, somado a pressao econémica e ambiental
para a transi¢cao para uma matriz energética mais limpa, urge que seja feito um planejamento
mais criterioso na adocao de novas fontes de energia. Nesse cenario, as fontes renovaveis
ganham relevancia em escala global, com aplicagdes efetivas de fontes alternativas e
renovaveis, como energia solar fotovoltaica, biomassa, hidrelétricas e energia edlica, com
importantes aspectos voltados a comercializagéo e integracao da rede (LIMA et al., 2018).

Com vistas a geracao sustentavel de energia elétrica, aliada a necessidade de reduzir
0s impactos ambientais das formas tradicionais de geragao de energia, principalmente de
origem termoelétrica, tem-se o crescente uso de fontes edlicas, que utilizam aerogerado-
res para realizar a conversao da energia cinética das massas de ar em energia elétrica
(FERREIRA, 2008).

Em se tratando da matriz elétrica brasileira, observa-se que o pais tem sua geracao
de energia fortemente baseada em fontes renovaveis, com destaque a geracao hidrica,
que se beneficia da geografia favoravel do pais (RAMPINELLI; JUNIOR, 2012). A Figura 1
apresenta a matriz elétrica brasileira no ano de 2023, em que € possivel ver a presenca de
fontes renovaveis de geragao de energia e a predominancia da geragao por fontes hidricas.

Figura 1 — Matriz Elétrica Brasileira de 2023

Outras ndo renovaveis**; Carvdo; 1,2%  Outrasrenovaveis*; 0,8%
1,6% Oleo diesel; 0,6%
Nuclear; 2,0%
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2,1%
Lixivia ou Licor negro;
2,1%

Bagaco de cana;
5,1%

Gas Natural ;

5,3%

Solar; 7,0% @

Hidraulica;
58,9%

Edlica; 13,2%
Fonte: (EPE, 2024)

Entretanto, é importante destacar o papel crescente da energia edlica na matriz elétrica
brasileira, especialmente considerando as projec¢oes futuras. Atualmente, tem-se cerca de
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1079 parques eolicos distribuidos em 12 estados do pais, os quais contam com mais de
11400 aerogeradores em operacao, o que resulta em cerca de 32 GW de poténcia instalada
(ABEEoOlica, 2024). A Figura 2 mostra a evolucdo da capacidade instalada no Brasil entre os
anos de 2005 e 2023, evidenciando a quantidade de novas instalagbes e o total acumulado
em MW.

Figura 2 — Evolugao da capacidade instalada de fontes edlicas (MW)
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Fonte: (ABEEJlica, 2024)

Sob essa o6tica, é notdrio que o investimento em fontes edlicas geram boa rentabilidade,
apresentando um retorno de 2,9 reais ao PIB a cada 1 real investido, além de gerar cerca de
11 postos de trabalho a cada MW instalado (ABEElica, 2024). Por isso, os investimentos no
setor também demonstraram um crescimento significativo nos ultimos anos, especialmente
entre os anos de 2012 e 2023. Por exemplo, teve-se um total de 6,2 bilhées de dolares
investidos em geracdo eodlica s6 no ano de 2022, o que reflete em uma tendéncia de
crescimento na capacidade instalada acumulada do pais (PACHECO et al., 2024).

No que diz respeito as projecdes futuras, a tendéncia é a expansao edlica continuar
crescente nos proximos anos, justificada pelo alto potencial edlico do pais. Estima-se que,
até 2028, o Brasil tera 44,78 GW de capacidade instalada de fontes de origem edlica, um
aumento de 38,21% do que ha instalado em 2024, cuja participacdo na matriz nacional
atinge 13,2% (ABEEOdlica, 2024).
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2.2 Potencial Edlico Brasileiro

Tendo em vista o destaque da energia edlica por seu carater nao poluente, tem-se
uma alternativa estratégica para a mitigagao das emissodes de gases de efeito estufa por
fontes a combustao. Nesse sentido, € conveniente destacar que a geracéo de 1.7 GWh de
energia a partir dos aerogeradores, em substituicao a fontes convencionais, poderia evitar
a emissao de, aproximadamente, 1,3 x 10° toneladas de CO, na atmosfera, reforgando
sua importancia no combate as mudancas climaticas, também evidenciando a importancia
da analisar o potencial edlico de uma regido a fim de viabilizar sua exploragdo energética
(SILVA et al., 2002).

Contudo, o entendimento do potencial edlico de uma regiao exige estudos sistematicos
sobre o regime de ventos, o que oferece uma estimativa inicial do potencial bruto ou teérico
de aproveitamento da energia edlica. Para que a energia edlica seja tecnicamente viavel,
a densidade do vento na regido estudada deve ser igual ou superior a 500 W/m? a uma
altura de 50 metros, o0 que corresponde a uma velocidade minima do vento entre 7 e 8
m/s. No entanto, segundo a Organizacdo Mundial de Meteorologia (OMM), apenas 13% da
superficie terrestre apresenta velocidade média de vento igual ou superior a 7 m/s nessa
altura. Ainda assim, estima-se que o potencial bruto mundial de energia edlica seja da
ordem de 500.000 TWh por ano, mas, devido a restricdes socioambientais, apenas cerca
de 53.000 TWh, ou aproximadamente 10% desse total, sdo considerados tecnicamente
aproveitaveis(FILIPE et al., 2010). Ainda que nao seja possivel aproveitar todo o potencial
eoblico mundial, o valor de 10% desse total ainda € 1,8 vezes maior do que a geragéo total
de energia no mundo em 2023 (ENERGY INSTITUTE, 2024).

Com vistas ao Brasil, tem-se que o potencial voltado a energia edlica é de cerca 143 GW
(ALVES, 2010), o que resulta em, aproximadamente, 1250 TWh de geracao de energia por
ano, sendo que a geracao no pais em 2023 foi de 710 TWh (ENERGY INSTITUTE, 2024),
ou seja, o potencial edlico brasileiro é 1,76 vezes maior do que a geracéo atual presente
no pais. Assim, o Brasil possui um vasto potencial para a geracao de energia edlica, uma
vez que conta com condigdes climaticas favoraveis a implementagao dessa fonte, somada
a uma extensa area territorial, fazendo com que o pais apresente regides particularmente
adequadas para a instalacédo de parques edlicos, especialmente no Nordeste e Sul do pais
(SANTOS, 2022).

Para a avaliagcao do potencial edlico brasileiro, € fundamental considerar questoes de
sazonalidade, que impactam diretamente a disponibilidade e a previsibilidade dos ventos.
Tais questdes devem ser cuidadosamente analisadas na elaboragao de cenarios energéticos,
a fim de aumentar a precisao nas estimativas de geragao e aprimorar as estratégias de
integracao ao sistema elétrico, promovendo maior estabilidade sazonal na oferta de energia
e estabilidade em sistemas com alta penetragéo de fonte edlicas (AMARANTE et al., 2001).
A Figura 3 apresenta a media trimestral da velocidade dos ventos nas diferentes regides
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do Brasil, sendo possivel observar a variagdo dessa velocidade ao decorrer dos meses,
principalmente no Nordeste brasileiro.

Figura 3 — Média trimestral da velocidade dos ventos (m/s)
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Fonte: Adaptado de (AMARANTE et al., 2001)

Destarte, o potencial edlico brasileiro apresenta caracteristicas Unicas devido a variabili-
dade climatica e geografica do pais, oferecendo condi¢des favoraveis para o aproveitamento
da energia dos ventos em varias regides, podendo chegar a velocidades de até a 9 m/s.
Contudo, para explorar esse potencial, € essencial considerar fatores como sazonalidade,
variabilidade e integracédo ao sistema elétrico nacional, sendo necessaria a modelagem
de cenérios e o fortalecimento de politicas publicas voltadas para energias renovaveis,
alavancando o uso sustentével e estratégico dessa fonte para a diversificagdo da matriz
energética brasileira, maximizando os beneficios econémicos e ambientais e posicionando
o0 pais como referéncia global em energia limpa (ALVES, 2010).
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2.3 Aerogeradores

No que se refere a geracao de energia por fontes edlicas, tem-se que os aerogeradores
sao os dispositivos responsaveis por converter a energia cinética presente nas massas de
ar em energia elétrica, que fundamenta a geracao de energia dessa fonte renovavel. Nesse
sentido, esses sistemas realizam a conversao da energia cinética do vento em movimento
mecanico, que é transmitido para o gerador. Em sequéncia, essa energia é convertida em
eletricidade e distribuida para a rede elétrica (PICOLO et al., 2014). A Figura 4 apresenta o
funcionamento de um aerogerador.

Figura 4 — Processo de geracao de energia em fontes edlicas
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Fonte: (PICOLO et al., 2014)

Em termos de poténcia disponivel para aerogeradores, a andlise inicial se baseia na
energia cinética disponivel, a qual € apresentada pela equagéo (2.1):

L5

E. = 5™ (2.1)

Em que:

E. = Energia cinética
m = Massa de ar (kg)
v = Velocidade do objeto (m/s)

Ao avaliar a geometria de um aerogerador, observa-se que o movimento do rotor resulta
em uma area varrida pelas pas, a qual corresponde a secao transversal por onde as massas
de ar fluem. A Figura 5 ilustra a geometria do problema em questéo.
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Figura 5 — Geometria de um aerogerador
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Fonte: (PICOLO et al., 2014)

Dessa forma, tem-se que a vazao massica que atravessa as pas do aerogerador €
descrita como apresentado na equagéao (2.2):

? = pAv (2.2)

Em que:

m = Massa de ar (kg)

t = Tempo (s)

p = Densidade do ar (kg/m?)

A = Area da secdo transversal (m?)
v = Velocidade da massa de ar (m/s)

Isolando a massa em (2.2) e a substituindo em (2.1), temos a expressao apresentada
na equacgao (2.3):
1 2 1 3
E(pAvt)v = épAtv (2.3)
Uma vez que a poténcia é a variagao da energia no tempo (PINTO; SANTOS NETO,

E.=

2012), tem-se que a poténcia disponivel Fygs, (W) para aerogeradores € descrita pela
equacao (2.4):
dE,

1
Pdisp = W = §pAU3 (24)

A equacdao (2.4) mostra que ha uma dependéncia cubica entre a poténcia disponivel em
uma fonte de geracéo edlica e a velocidade dos ventos, explicitando o fato de que variagdes
na velocidade dos ventos podem causar grandes variagdes na poténcia disponivel (SALLES,
2004).

Entretanto, a equacéao (2.4) apresenta a poténcia total disponivel para um aerogerador,
mas apenas uma fragcao da poténcia pode ser realmente utilizada, uma vez que o fluxo de ar
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que passa pela turbina ainda tem energia cinética ao sair, limitando a quantidade de energia
que pode ser extraida pelo aerogerador (PINTO; SANTOS NETO, 2012). A Figura 6 ilustra
gue a velocidade a jusante da turbina edlica ndao é nula, embora menor que a montante.

Figura 6 — Escoamento do vento em aerogeradores
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Fonte: (BAZZO et al., 2014)

A fim de considerar esse fator de reducdo de poténcia, um coeficiente de poténcia C), é
modelado e apresentado na equacao (2.5) (PICOLO et al., 2014).

1 v, AN
s ()

7 (2.5)

Em que:

V; = Velocidade a jusante (m/s)
V,»= Velocidade a montante (m/s)

Apés os estudos sobre escoamento de fluidos realizados pelo fisico Albert Betz (1885
- 1968), constatou-se que a maxima poténcia tedrica que uma turbina edlica pode obter
ocorre quando a velocidade do vento a jusante é reduzida a um terco da velocidade a
montante, fazendo com que C,, na analise tedrica seja igual a, aproximadamente, 59,259%
(PICOLO et al., 2014). Entretanto, em um cenario pratico, o rendimento de um aerogerador
chega proximo aos 40% apenas (PINTO; SANTOS NETO, 2012).

Além disso, existem questdes de eficiéncia que devem ser levadas em consideracao,
englobando questdes mecénicas e elétricas do sistemas como um todo, introduzindo um

coeficiente n no calculo (SALLES, 2004). Assim, a expressdo da poténcia utilizavel é
apresentada na equacgao (2.6):

1
Py = §Cp770147)3 (2.6)
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Sob essa 6tica, a eficiéncia do processo de conversao de energia também depende de
fatores como a geometria das pas, dos multiplexadores de velocidade e da tecnologia do
gerador implementada na maquina elétrica em questédo (PIRES, 2010). Em se tratando da
estrutura de um aerogerador, a Figura 7 apresenta seus principais componentes.

Figura 7 — Aspectos de um aerogerador moderno

Fonte: Adaptado de (VESTAS, 2010)

Em que:
(1) Anemédmetro — Mede a velocidade do vento.
(2) Sistema de Comunicagdo — Envia dados e informagées operacionais.
(8) Conversor — Ajusta a frequéncia desejada.
(4) Gerador — Produz energia elétrica a partir do movimento rotacional.
(5) Cilindros de Rotagé&o — Controlam a orientagéo da nacele.
(6) Sistema de Resfriamento — Mantém o gerador em temperaturas adequadas.
(7) Caixa de Engrenagens — Aumenta a velocidade de rotacéo para o gerador.
Eixo de Baixa Velocidade — Envia 0 movimento para a caixa de engrenagens.
(9) Controle Pitch — Ajusta o angulo das pas para otimizar a captagéo de vento.
Cubo do Rotor — Conecta as pas ao eixo principal.
Rolamento das Pas — Permite a rotacdo suave das pas.
Pas — Capturam a energia do vento e transmitem ao rotor.
Trava do Rotor — Impede a rotagao do rotor em condigdes extremas.

FEREE

Sistema Hidraulico — Atua em mecanismos de travamento e controle de pitch.
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Braco de Torque — Suporta cargas transmitidas pelo eixo.

Encaixe com a Torre — Conexao entre a nacela e a torre.

Freio Mecanico — Fornece frenagem adicional ao sistema.

Sistema de Giro — Permite que a nacela gire para se alinhar com o vento.
Luva de Acoplamento — Conecta partes méveis para transmissao de torque.

Nacele — Abriga e protege os componentes principais.

SIIBISISIOIE)

Torre — Suporta a nacele e o rotor, elevando-os a uma altura adequada.

E conveniente destacar que a maior parte dos componentes & instalada na nacele,
estrutura localizada no topo das torre das torres edlicas, em que também se encontra o
rotor que conecta as pas e dao forma ao sistema de geracao edlica. Ja em se tratando das
funcdes de controle e protecédo do sistema, frequentemente sdo posicionadas no interior
da torre ou acessadas externamente por meio de um painel. Além disso, o transformador
elétrico, por sua vez, pode ser montado tanto na nacele, quanto na torre, a depender da
configuracao do sistema (COLLIER, 2011).

Em relacdo a operacao de aerogeradores, € possivel identificar diferentes causas
associadas as caracteristicas da geracao de energia edlica que impactam diretamente a
rede elétrica. Nesse sentido, a Tabela 1 apresenta uma relagao entre as principais causas
provenientes da operacao de turbinas edlicas e os efeitos gerados na qualidade da energia
elétrica, analise essencial para compreender os desafios técnicos associados a integracao
de fontes renovaveis ao sistema elétrico e propor solugdes para minimizar tais impactos.

Tabela 1 — Causa e Efeito das Turbinas Eélicas na Rede Elétrica
CAUSA EFEITOS

Aumento da producdo média de energia Variagéo do valor eficaz da tensao

Variagdo na velocidade dos ventos Flutuagbes dindmicas da tenséo e
dentro dos limites operacionais potencia

Variagéo da velocidade do vento acima
dos limites operacionais.  Picos no valor da tenséo
Regime transitério do conversor na rede.
Ligacdo ou desligamento de turbinas e
condensadores

» Flicker

Flutuacdes dinamicas da tensao

Flutuacdes da poténcia produzida ]
* Flicker
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Sistemas de retificagdo ou inversao.
Soft-starters.

Sistemas de compensagéao de poténcia « Flicker

reativa.

» Geracao de harménicas

Fonte: (FONTES, 2023)

Dado o exposto sobre os principios estruturais e funcionais dos aerogeradores, além
da analise detalhada de seus componentes principais e suas fungdes especificas, ainda €
necessario a analise de seus aspectos operacionais. Nesse contexto, é necessario analisar
a operacao de aerogeradores em regimes com velocidade fixa e variavel, além entender os
diferentes tipos de aerogeradores e suas particularidades, considerando suas aplicagdes no
contexto da geracao de energia edlica e suas implicagcdes para o desempenho do sistema.

2.3.1 Geradores de velocidade fixa e variavel

No tocante a velocidade dos aerogeradores, observa-se o emprego de aerogeradores
de velocidade fixa e de velocidade variavel, os quais apresentam diferentes tecnologias
de geracdo. Enquanto os aerogeradores de velocidade fixa operam com uma velocidade
constante do rotor, independentemente das variagdes no vento, os de velocidade variavel
ajustam a velocidade do rotor de acordo com as mudancgas nas condi¢des de vento, bus-
cando otimizar a eficiéncia da geracao de energia (BORGES, 2017). Nesse sentido, cada
tipo tem suas vantagens e limitagdes, influenciando o desempenho e a eficiéncia do sistema
de geracao edlica, sendo escolhidos conforme as caracteristicas do local de instalagao e os
objetivos de operacdo (MARQUES, 2004).

Aerogeradores de velocidade fixa, abreviados pela sigla inglesa FSWT (Fixed Speed
Wind Turbines), sao caracterizados pela independéncia das variacbes na velocidade do
vento, mantendo sua velocidade do rotor da turbina e do rotor do gerador constantes mesmo
em condicdes de variacdes da energia primaria. Nesse cenario de operacao, a velocidade
do rotor do gerador € definida pela frequéncia da rede elétrica e pela quantidade de polos
do gerador, mas devido a caracteristica de escorregamento das maquinas assincronas
utilizadas, a qual é influenciada pela frequéncia e tenséao do estator, a velocidade de rotacao
do sistema apresenta uma variagcdo muito pequena em relagédo a velocidade sincrona, cerca
de 1 a 2% (MARQUES, 2004)

Segundo TARNOWSKI (2006), temos as seguintes vantagens e desvantagens para
aerogeradores de velocidade fixa:

Vantagens:

» Robustez na construgéo e operacao.

+ Simplicidade no projeto e operagao, o que resulta em um custo reduzido.
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Desvantagens:

 Baixo desempenho aerodinamico em um regime de ventos variavel.
« Falta de controle eficiente sobre a poténcia gerada.

» O consumo inerente de poténcia reativa dos geradores assincronos afeta a
estabilidade da tenséo da rede local, que varia conforme a poténcia ativa gerada.
Isso exige o uso de bancos de capacitores chaveados para mitigar o impacto.

Em outra analise, tem-se o0 estudo de aerogeradores de velocidade variavel, ou VSWT
(Variable Speed Wind Turbines), os quais sao caracterizados pela capacidade de ajustar
a velocidade do rotor com base nas variacdes da velocidade do vento. Dessa forma, a
velocidade do rotor € alterada para otimizar a geracdo de energia, mantendo a relagéao
de velocidades constante para maximizar o coeficiente de poténcia, fazendo com que as
flutuacdes na poténcia de saida, originadas pela variacdo do vento, sejam parcialmente
absorvidas pela mudanca de velocidade (BOTTERON et al., 2001)

Nesse cenario, a operacdo com VSWT é possivel pelo uso de conversores eletronicos
de poténcia, os quais realizam a conversao da tensao e frequéncia geradas para os padrées
exigidos pela rede elétrica, permitindo desacoplar a frequéncia do gerador da frequéncia da
rede, possibilitando a inje¢do da poténcia ativa gerada na rede elétrica (SOHN, 2014).

Em se tratando de aerogeradores de velocidade variavel, sesgundo TARNOWSKI (2006),
temos as seguintes vantagens e desvantagens:

Vantagens:

Possibilidade de ajustar a velocidade de rotagao da turbina conforme a velocidade
do vento atual, visando melhorar o desempenho aerodinamico.

» Amortecimento das oscilagbes mecanicas da instalacao e das variagdes na
poténcia elétrica gerada causadas pelas rapidas variagdes da velocidade do
vento, através do ajuste da velocidade de rotagédo da turbina.

* Injecao de poténcia mais uniforme na rede ao longo do tempo.

O impacto da geracao edlica no sistema elétrico pode ser mitigado, utilizando
aerogeradores de velocidade variavel.

Desvantagens:
* Necessidade de fabricar geradores sincronos especiais.

» Necessidade de utilizar conversores com capacidade para a maxima poténcia do
aerogerador, implicando em um elevado investimento inicial.
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« Aumento do custo de instalacdo, embora compensado pela auséncia do multipli-
cador de velocidade, reducao nos custos de manutencéo e aumento da eficiéncia
mecanica do aerogerador.

Uma vez conhecidas as caracteristicas de aerogeradores de velocidade fixa e variavel,
€ possivel estudar seus diferentes tipos de controle e de modelos.

2.4 Controle de velocidade em aerogeradores

Sabe-se que é de extrema importancia o controle aerodinamico em aerogeradores, a fim
de limitar a poténcia mecanica gerada pela turbina ou controlar o torque aerodinamico, para
evitar esforcos mecéanicos excessivos, o que pode culminar em danos potenciais a unidade
eodlica (SOHN, 2014). Com isso, desenvolveram-se 3 métodos principais de controle: stall,
stall ativo e pitch,0s quais serdo abordados a seguir.

2.4.1 Controle Stall

Inicialmente, tem-se o controle stall, também conhecido como controle por perda aerodi-
namica, stall passivo ou controle de angulo de passo fixo. Este método é o mais antigo em
sistemas de conversao de energia eodlica, sendo considerado o mais simples de implementar,
sendo uma técnica utilizada para limitar a forca do vento sobre as pas de aerogeradores,
aproveitando suas propriedades geométricas. No controle stall, as pas sao rigidamente
fixadas ao rotor da turbina, mantendo constante o &ngulo de passo, que € o angulo de
inclinagao das pas em relagédo ao plano de rotacdo. Com isso, a configuragdo aerodinamica
das pas causa o fenémeno de turbuléncia na regido posterior a elas em velocidades de
vento superiores a nominal, como apresentado na Figura 8, o que implica na reducgao de
sua velocidade (MONTEZANO, 2007).

Figura 8 — Perfil aerodindmico do controle stall
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Nessa configuragdo, observa-se o aumento no angulo de ataque, formado entre a
velocidade relativa do vento e o eixo do corpo, e da forca de arrasto com a passagem
de vento na superficie das pas, resultando na reducao da forga de sustentagao, a qual
€ responsavel pelo movimento da turbina, enquanto a for¢ca de arrasto atua como um
mecanismo de frenagem. Dessa forma, o torque resultante é diminuido, limitando a poténcia
gerada, a qual, idealmente, aumenta com a velocidade do vento até um valor maximo,
permanecendo constante para velocidades superiores ao valor nominal (TARNOWSKI,
2006). No entanto, na pratica, essa relacao nao é verdadeira, apresentando flutuagdes da
poténcia gerada com o aumento da velocidade dos ventos, como apresentado na Figura 9.

Figura 9 — Curva de poténcia tipica em aerogeradores com controle stall
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Fonte: (CRESESB, 2024)

Segundo ACKERMANN 2012, destacam-se as seguintes vantagens e desvantagens do
controle stall:
Vantagens:

* Robusto e simples de implementar
* Menor custo de manutengao
 Controle por caracteristicas geométricas

Desvantagens:

* Instabilidade da poténcia gerada em velocidades de vento superiores a nominal.

+ Vibragbes nas pas devido a impossibilidade de alterar o angulo de passo, aumen-
tando o estresse mecanico.

» Oscilagoes mecanicas e aceleracado da fadiga dos materiais das pas, exigindo
estruturas mais robustas e elevando os custos

« Dificuldades no momento de partida e parada do aerogerador no controle stall.
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2.4.2 Controle Stall Ativo

Como um avango ao modelo de controle stall, tem-se a proposi¢édo do controle stall
ativo, o qual é caracterizado pela regulacédo de turbinas de maneira inversa ao visto no
controle de pitch (Ver Secao 2.4.3). Nesse método, a medida que a velocidade do vento
aumenta, o angulo de passo € reduzido, elevando o angulo de ataque, o que resulta na
turbuléncia na regiao posterior as pas, diminuindo a eficiéncia aerodindmica da turbina.
Esse efeito possibilita o controle da poténcia mecanica gerada, limitando-a em condi¢bes de
ventos intensos para proteger a estrutura e otimizar o desempenho. Com isso, a operagéao
€ dada em uma faixa de variagdo de angulo de passo que vai de -90° até 0, ou poucos
graus positivos. Dessa forma, essa técnica proporciona uma regulacao eficiente da poténcia,
garantindo estabilidade e seguranca da turbina em condi¢des adversas (SOHN, 2014).

2.4.3 Controle Pitch

Em outra perspectiva, tem-se o controle pitch, ou controle do angulo de passo, sendo
caracterizado como um método ativo de controle utilizado tanto em aerogeradores de
velocidade variavel, quanto de velocidade fixa, no qual as pas séo rotacionadas em torno
de seu proprio eixo para alterar o angulo de passo, limitando a energia extraida do vento.
Nessa configuracao, o sistema de controle atua principalmente quando a velocidade do
vento excede a velocidade nominal, mantendo o angulo de passo préximo a zero graus
em velocidades menores, permitindo a maxima eficiéncia aerodindmica e fazendo com que
a poténcia elétrica de saida varie de acordo com as mudangas na velocidade do vento.
Entretanto, quando a velocidade dos ventos ultrapassa a nominal permitida no aerogerador,
o sistema ajusta o torque aerodindmico das pas até alcancar um nivel que assegure a
producao de poténcia nominal, sendo possivel com o ajuste do angulo de passo, reduzindo
o angulo de ataque na turbina (MONTEZANO, 2007). A Figura 10 apresenta a curva tipica
da poténcia de saida de aerogeradores com esse sistema de controle.

Figura 10 — Curva de poténcia tipica em aerogeradores com controle pitch
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A fim de garantir a seguranca estrutural e evitar danos ao aerogerador, o controle de
pitch utiliza mecanismos hidraulicos ou eletromecanicos, como servomotores, para a rotacao
das pas das turbinas. Para isso, esses componentes recebem uma referéncia angular do
sistema de controle e rotacionam as pas até o angulo necessario, variando entre 0°, ou
poucos graus negativos, e +90°, com uma taxa de mudanga geralmente inferior a 5° por
segundo, podendo atingir até 10° por segundo em situagdes de alta variagdo de vento. Com
esse intuito, comumente se utiliza um controlador do tipo P (Proporcional), o qual é utilizado
devido a sua simplicidade e baixa frequéncia de amostragem, geralmente entre 1 Hz e 3 Hz
(SOHN, 2014).

Por fim, destacam-se algumas vantagens e desvantagens do controle pitch (ACKER-
MANN, 2012):

Vantagens:

Facilidade em controlar a poténcia gerada.
» Maximizagao da energia capturada do vento.
» Capacidade de atuacao em situacoes de emergéncia.

» N&o exige pas estruturalmente robustas, reduzindo custos com estrutura meca-
nica.

Desvantagens:
» Menor confiabilidade do sistema.
» Custos adicionais associados ao sistema de controle.
» Vulnerabilidade a variacdes bruscas da velocidade do vento.

Uma vez conhecidos os métodos de controle aerodindmico em aerogeredores, pode-se
avaliar os diferentes tipos de modelos existentes.

2.5 Tipos de Aerogeradores

2.5.1 Aerogerador do tipo A

Inicialmente, 0 modelo de unidades edlicas do tipo A, apresentado na Figura 11, sdo
caracterizadas pelo uso de Geradores de Inducdo em Gaiola de Esquilo (GIGE), os quais
justificam sua utilizagao pela sua robustez e utilidade continua nos sistemas de poténcia.
Nesse sentido, as principais caracteristicas de GIGE séo seu rotor ligado em curto-circuito
e o estator conectado diretamente a rede elétrica por um transformador (MARQUES, 2004).
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Figura 11 — Modelo de aerogeradores do Tipo A
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Fonte: (MULJADI et al., 2016)

Sob essa 6tica, aerogeradores do tipo A, também conhecido como modelo dinamarqués,
evidenciam-se por uma configuragao classica com trés pas, eixo horizontal e estruturas de
controle do tipo stall, pitch e stall ativo para modelos denominados A0, A1 e A2, respectiva-
mente (SOHN, 2014).

Esses aerogeradores operam a velocidade fixa e sao projetados para alcangar o ma-
ximo rendimento em uma velocidade especifica de vento. Por se tratarem de maquinas
assincronas, a variacao de velocidade do rotor é geralmente inferior a 1% da velocidade
sincrona da rede em que esta ligado, diminui¢cdo causada pela relagdo de transmissao e
pelo escorregamento do gerador (MARQUES, 2004).

Como a velocidade do rotor da turbina € significativamente menor que a do rotor do
gerador, uma caixa de transmissao (Gear-box) é necessaria para ajustar a relacao de
velocidades. Além disso, também sao utilizados banco de capacitores para a compensacao
do fator de poténcia do GIGE, com a comutacdo dos capacitores sendo realizada conforme
a média da poténcia reativa medida. Ademais, o sistema € protegido por um sistema de
supervisao para prevenir danos a turbina em casos de falha na rede, também sendo comum
a utilizacao de soft-startes para diminuir a corrente de partida nessa configuragéo (DINIZ,
2019).

Um avanco sobre o conceito dinamarqués inclui a operagdao em duas velocidades. Nessa
configuracao, turbinas de baixa poténcia (entre 30 e 450 kW) podem ser equipadas com
dois GIGE, em que o gerador de menor velocidade é projetado para cerca de 20% da
poténcia nominal da turbina, o que resulta em uma corrente de partida de aproximadamente
4 a 8 vezes a corrente nominal. Em outro cenério, para turbinas maiores (cerca de 2 MW),
€ comum o uso de GIGE com troca de pdlos, em que é necessaria a implementagao de
um circuito de partida suave para limitar a corrente durante a conexao e desconexao da

turbina com a rede, ja que a poténcia nao varia entre velocidades (MARQUES, 2004). E
apresentado abaixo o0 modo de operacao no caso do uso de dois GIGE:
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Gerador 1:
* Inicializa em modo motor, consumindo poténcia da rede.

» Ao aumentar a velocidade do vento e o rotor superar a velocidade sincrona, passa
ao modo gerador e comega a gerar energia.

 Se atingir sua capacidade maxima, € desligado e a energia excedente é conver-
tida em energia cinética e armazenada na inércia do rotor.

Gerador 2:

+ Entra em operagdo quando a velocidade do rotor atinge a velocidade sincrona do
gerador de maior velocidade.

» Ao ser conectado a rede, retoma a geragao de energia.
» Durante a transicao entre os geradores, a turbina ndo fornece energia a rede.

A Figura 12 apresenta a curva Torque x Velocidade desses geradores, explicitando os
modos de operagdes supracitados.

Figura 12 — Curva Torque x Velocidade para maquinas de indugéao
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Fonte: (MARQUES, 2004)

Segundo SOHN (2014), as principais vantagens e desvantagens de aerogeradores do
tipo A sao:
Vantagens:

» Sistema robusto e confiavel;
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* Manutencéo reduzida;
+ Baixos custos;
* modelagem mais simples.
Desvantagens:
» Velocidade e poténcia ndo sdo controlaveis na partida;

» Necessidade de uma caixa de transmissao, que provoca ruidos e exige manuten-
cao;

Flutuacdes do vento sao diretamente transmitidas ao torque da turbina, o que
provoca variagdes do torque elétrico;

 Flutuacdes da rede elétrica causam oscilagdes e vibracdbes mecanicas;

Necessidade de um soft-starter para suavizar a conexao com a rede;

Necessidade de banco de capacitores para compensacao de poténcia reativa.

2.5.2 Aerogerador do tipo B

Em outra perspectiva, tem-se o emprego de aerogeradores do tipo B, os quais séao
equipados com Geradores de Inducdo com Rotor Bobinado (GIRB), em que o rotor é
conectado a uma resisténcia variavel e o estator é ligado diretamente a rede elétrica via
transformador (SOUZA, 2015). A Figura 13 apresenta um modelo desse tipo de gerador.

Figura 13 — Modelo de aerogeradores do tipo B
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Fonte: (MULJADI et al., 2016)

Nesse sentido, destaca-se que essas fontes sao caracterizadas pelo uso de uma re-
sisténcia variavel no circuito do rotor, diferenciando-as dos modelos do tipo A. Por conta
dessa montagem, aerogeradores do tipo B exigem um sistema de controle da resisténcia no
circuito do rotor, 0 que permite uma faixa de variagéo de velocidades de até 16%, resultando



45

em maior flexibilidade no escorregamento do gerador: quanto maior a resisténcia, maior
0 escorregamento, em que o controle do escorregamento € realizado pela variagdo da
resisténcia aplicada ao circuito, utilizando escovas e anéis coletores em alguns geradores
(ACKERMANN, 2012).

Ainda que a insercao da resisténcia variavel amplie a faixa de operag¢éao do aerogerador,
essa faixa ainda é pequena, o que caracteriza os aerogeradores do tipo B como maquinas
de velocidade fixa, as quais utilizam do controle de pitch para limitar o torque da turbina.

Em termos operacionais, tem-se que as turbinas do tipo B sdo parecidas com as do tipo
A, tendo suas principais vantagens e desvantagens apresentadas abaixo (SOHN, 2014).

Vantagens:

Sistema robusto e confidvel,
» Melhor controle de velocidade quando comparado com o tipo A;
+ Baixos custos;
» Modelagem simples.
Desvantagens:
» Perda de energia em forma de calor no circuito do rotor;

» Necessidade de uma caixa de transmisséo, que provoca ruidos e exige manuten-
cao;

» Flutuagoes do vento sdo diretamente transmitidas ao torque da turbina, o que
provoca variagdes do torque elétrico;

 Flutuagbes da rede elétrica causam oscilagdes e vibracbes mecanicas;

» Emprego de resisténcias, escovas e anéis coletores culminam manutengéo e
custos associados;

» Necessidade de banco de capacitores para compensagao de poténcia reativa.

2.5.3 Aerogerador do tipo C

Ja para o modelo de aerogeradores do tipo C, apresentado na Figura 14, tem-se o
emprego de um Gerador de Indugdo Duplamente Alimentado (GIDA), o qual utiliza um
conversor eletrénico de poténcia que possibilita o desacoplamento das frequéncias do
vento e da rede elétrica, reduzindo o estresse mecanico e controlando adequadamente as
oscilagdes na energia entregue ao sistema elétrico (DINIZ, 2019).
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Figura 14 — Modelo de aerogeradores do tipo C
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Nessa perspectiva, o sistema emprega um conversor de frequéncia entre o rotor € o
estator, o qual controla as poténcias ativa e reativa e a frequéncia do rotor, fazendo isso com
0 emprego de um conversor do lado do rotor e um conversor do lado da rede, interligados por
um link de corrente continua em configuracao back-to-back, permitindo o fluxo bidirecional
de poténcia, possibilitando a regulagem de tensao e o fluxo de poténcia da rede. Sob essa
Otica, destaca-se a independéncia de frequéncia entre a rede e o sistema de geragao, o que
melhora a suportabilidade do aerogerador a quedas de tensdo e reduz as necessidades de
compensacao externa de reativos, tornando-se uma solugdo economicamente viavel, pois
reduz custos de componentes e melhora a eficiéncia e a qualidade da energia entregue ao
sistema elétrico. Entretanto, ainda ha custos de manutencao envolvidos ao uso de anéis
coletores nos conversores, exigindo manutengdes regulares e tendos perdas envolvidas
(SOHN, 2019).

Além disso, essa configuracao permite a operagao em uma faixa de velocidades que
varia de aproximadamente 40% abaixo até 30% acima da velocidade sincrona, o que
maximiza a extracdo de energia dos ventos em uma ampla faixa de condi¢des. Nesses
cenarios, quando a velocidade esta acima da sincrona, o rotor transfere poténcia para a
rede, quando esta abaixo, absorve poténcia, ja na velocidade sincrona, o escorregamento
da méaquina de indugéo é nulo e ndo hé fluxo de poténcia pelo circuito do rotor, ja que torque
€ nulo (Ver Figura 12) (BOLIK, 2004).

Para aerogeradores do tipo C, tem-se as seguintes vantagens e desvantagens (SOHN,
2014).

Vantagens:

Controle de tensao e fluxo de poténcia;

Maior faixa de velocidades de operacéo;
» Maior suportabilidade a afundamentos de tens&o;

» Desacoplamento parcial entre as frequéncias provenientes da interagao vento/turbina/rotor
e as da rede elétrica;
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* Reducao do estresse mecanico e conexao mais suave com a rede elétrica.
Desvantagens:

» Custos adicionais devido a eletronica de poténcia associada;

* Necessidade de um sistema de protecdo mais robusto;

* Modelagem mais complexa em comparacao as unidades A e B.

2.5.4 Aerogerador do tipo D

Finalmente, tem-se os aerogeradores do tipo D, apresentados na Figura 15, em que sua
configuracgao tipica apresenta o uso de conversores de poténcia em escala total, os quais
sado dimensionados para 100% da poténcia nominal do gerador e estabelecem a conexao
do estator a rede elétrica, além de poder incluir ou ndo a caixa de transmissao, a depender
do gerador elétrico adotado (SOHN, 2019).

Figura 15 — Modelo de aerogeradores do tipo D
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Com isso, unidades edlicas do tipo D utilizam maquinas de velocidade variavel, fazendo
amplo uso do controle pitch para seu ajuste aerodinamico. Além disso, 0 uso de conversores
eletrénicos e sistemas de controle garantem que o aerogerador forneca energia elétrica com
tensao e frequéncia compativeis com a rede elétrica, independentemente da velocidade do
rotor do gerador, 0 que viabiliza uma ampla faixa de velocidades, permitindo variagdes de
até 2,5 vezes a velocidade nominal do gerador (SOHN, 2014).

Em se tratando dos aspectos construtivos de aerogeradores do tipo D, tem-se que o
estator do gerador é conectado ao conversor do lado da maquina, enquanto o conversor
do lado da rede é conectado diretamente a rede elétrica, permitindo o desacoplamento
total entre o gerador e a rede elétrica, fazendo com que a faixa de operacao seja definida
pelos parametros do conversor eletrénico de poténcia, fazendo com que as oscilacbes
de velocidade do rotor ndo afetem a qualidade da energia elétrica gerada, devido a sua
capacidade de operar em uma faixa de velocidades de 0% a 100% da velocidade sincrona
(TARNOWSKI, 2006).
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Elencam-se algumas vantagens e desvantagens do aerogerador do tipo D, as quais sao
apresentadas abaixo (SOHN, 2014):
Vantagens:

» Permite operagéo em faixa total de velocidades;

+ Elimina o uso de escovas e anéis coletores;

» Pode dispensar a caixa de transmissao e circuito de excitacao para o rotor;
» Melhor suporte a poténcia reativa e afundamentos de tensao;

» Desacoplamento total entre as frequéncias provenientes da interagdo entre vento,
turbina e rotor e as da rede elétrica;

» Podem ser construidos com diferentes maquinas elétricas
» Conexao mais suave com a rede.
Desvantagens:
+ Elevado custo associado;
» Aerogeradores de maior porte.

Com os tipos de aerogeradores existentes devidamente apresentados, € importante en-
tender quais métodos estatisticos sdo utilizados para a avaliagdo da sua geracao esperada.

2.6 Meétodos estatisticos de previsao de ventos e geracao edlica

Nesta se¢ao, serdao abordados métodos estatisticos utilizados na modelagem e previsao
da geragéo eolica, com énfase em técnicas amplamente adotadas na literatura. Para isso,
serdo apresentados as aplicagdes de técnicas como a Distribuicdo de Weibull, séries tempo-
rais e redes neurais artificiais, destacando suas vantagens, limitagdes e aplicabilidades no
contexto da analise da variabilidade e da previsdo da poténcia gerada por parques eélicos.
Esses métodos constituem a base para a construgdo dos modelos utilizados nas etapas de
simulacdo e analise desenvolvidas ao longo deste trabalho.

2.6.1 Distribuicdo de Weibull

A Distribuicao de Weibull € uma fungao de distribuicdo de probabilidade amplamente
utilizada na modelagem da variabilidade do vento em estudos relacionados a geragao edlica,
fato que se deve a sua flexibilidade e capacidade de representar a natureza estocastica do
vento (LIMA et al., 2024). Diversos autores tém utilizado essa distribuicdo para modelar a
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velocidade do vento e, assim, estimar o potencial de geracao de energia edlica, conside-
rando diferentes contextos e abordagens. A seguir, serdo analisadas algumas aplicacoes
relevantes dessa distribuicao, destacando a especificidade de cada estudo.

Um dos principais usos da Distribuicdo de Weibull na geracao edlica é a avaliacao
do potencial energético de uma regido. Em seus estudos, SILVA et al. (2002) utilizou a
Distribuicdo de Weibull para modelar a distribuicdo de velocidade do vento no nordeste
brasileiro, destacando a importancia dos ajustes dos parametros de forma (k) e escala (\)
da distribuicao para caracterizar a intensidade do vento e a frequéncia com que diferentes
velocidades sao observadas. Esse tipo de analise € fundamental para o dimensionamento
de parques edlicos, permitindo estudar o potencial de geracdo de uma regido antes da
implantagéao do parque.

De maneira semelhante, OLIVEIRA e COSTA (2011) empregaram a Distribuicdo de
Weibull para prever a producdo de energia edlica no nordeste brasileiro, focando na caracte-
rizacdo do vento em diferentes estacdes do ano. A distribuicéo foi ajustada para diferentes
periodos sazonais, evidenciando a variagao da velocidade do vento e seu impacto na gera-
cao de energia. A especificidade deste estudo foi a inclusao de diferentes escalas temporais
na analise, permitindo uma previsao mais detalhada do potencial edlico de acordo com a
sazonalidade.

Outro estudo relevante foi conduzido por SOUZA et al. (2019), que analisaram a via-
bilidade de instalacao de sistemas edlicos na regiao de Campo Grande/MS, utilizando a
Distribuicdo de Weibull para modelar a distribuicdo das velocidades do vento. Neste caso,
os autores focaram no ajuste da distribuicao as condi¢des locais, utilizando dados histéricos
de vento para a parametrizagdo do potencial de geragao da regido. A principal contribuicao
deste estudo foi a adaptacao da distribuicdo as especificidades geograficas e climaticas da
regido, levando em consideragéo a topografia e os efeitos de sazonalidade, o que reflete a
importancia de um ajuste preciso da distribuicdo para diferentes contextos locais.

Em um estudo mais recente, NEVES et al. (2020) explorou a aplicagao da Distribui¢cao
de Weibull para a avaliagdo do desempenho de turbinas edlicas de pequeno porte em
ambiente urbano. Os autores utilizaram a distribuicdo para modelar a velocidade do vento e
validar dados meteorolégicos, oferecendo analises sobre a performance de sistemas eolicos
em contextos urbanos. O estudo também enfatizou a importancia da variabilidade espacial
da distribuicdo de Weibull, destacando como a precisdo nos parametros de ajuste pode
afetar a avaliacdo do desempenho do sistema edlico.

A Distribuicao de Weibull também é empregada em estudos voltados para a avaliagao de
riscos e impactos econdémicos relacionados a geracao edlica. GABRIEL FILHO et al. (2009)
utilizou a distribuigéo para analisar a caracterizacao estatistica do regime edlico, buscando
prever os periodos de baixa produgao edlica, o que é crucial para a andlise financeira e a
implementacao de estratégias de mitigacao de riscos em projetos de grande escala.

Além disso, ARAUJO et al. (2021) propds um modelo de aplicagao da Distribuicdo de
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Weibull para a andlise da viabilidade econémica da geracao de energia edlica em diferentes
localidades, considerando as flutuagdes nas velocidades do vento e seus impactos na
viabilidade econdémica do projeto. O estudo se destacou ao integrar a modelagem estatistica
com técnicas de andlise de risco, proporcionando uma visdo holistica do impacto da
variabilidade do vento na sustentabilidade financeira de projetos edlicos.

A Distribuicao de Weibull tem se mostrado uma ferramenta essencial na analise do
potencial e da viabilidade de projetos de geracao edlica. A flexibilidade da distribui¢cao
permite ajusta-la as caracteristicas especificas de cada regido, o que é fundamental para
uma estimativa da producao de energia e a analise de riscos financeiros. O uso dos
parametros k e escala A tém se mostrado eficaz na modelagem da intensidade do vento e
na previsao de variagdes sazonais e espaciais. Estudos como os de SOUZA et al. (2019),
NEVES et al. (2020), GABRIEL FILHO et al. (2009), ARAUJO et al. (2021) e OZAWA
(2017) sao exemplos de como a Distribuicdo de Weibull pode ser utilizada para otimizar
a instalacdo de parques edlicos, avaliar a producdo de energia e gerenciar 0s riscos
econdmicos relacionados a variabilidade do vento.

2.6.2 Séries Temporais

A modelagem de séries temporais é uma ferramenta fundamental na andlise de dados de
geracao eolica, permitindo prever a produgéo de energia com base em variaveis histéricas de
vento. Modelos autorregressivos (AR), de médias méveis (MA) e autorregressivos integrados
de médias méveis (ARIMA) tém sido utilizados para lidar com as complexidades dos dados
temporais, como a sazonalidade e as flutuacbes no comportamento do vento. A seguir,
apresentamos a aplicacao desses modelos no contexto da geracao eolica, destacando o
uso especifico de cada abordagem e suas contribuigées.

O modelo autorregressivo (AR) tem sido utilizado para capturar a relagao entre valores
passados de uma série temporal e 0 seu comportamento futuro. OLIVEIRA et al. (2020a)
propde um modelo AR para previsdo da velocidade do vento em horizontes de curto prazo,
utilizando dados de cinco estacbes anemomeétricas na regido metropolitana de Curitiba/PR.
O modelo incluiu diferentes ordens de regressao e entradas exdgenas, como temperatura,
umidade e dire¢ao do vento, para aumentar a acuracia. Os resultados mostraram bom
desempenho para previsdes de até trinta minutos, com baixo custo computacional, embora
tenha apresentado limitagcdes para capturar variagées mais complexas ou abruptas.

De forma complementar, 0 modelo de média mével (MA) busca modelar a dependéncia
entre o valor atual da série e erros passados. Este modelo foi explorado por KAVASSERI e
SEETHARAMAN (2009), que analisaram séries de velocidade do vento utilizando um modelo
MA simples. O estudo indicou que, embora o modelo MA seja eficiente na suavizagao de
flutuacdes de curto prazo, ele apresentou desempenho inferior em cenarios onde padrdes
de longo prazo e tendéncias sazonais sao predominantes.
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Em termos gerais, os modelos AR e MA tém limitagcbes em termos de capacidade de
capturar tanto a dependéncia temporal quanto as tendéncias e sazonalidades de longo
prazo. Por isso, o modelo ARIMA, que combina as caracteristicas de AR e MA com a
diferenca integrada para lidar com séries temporais n&o estaciondrias, tem se mostrado
uma escolha recorrente em estudos de previsdo de geracéao edlica.

CAMELDO et al. (2017) aplicaram o modelo ARIMA para prever a producao de energia
edlica no Nordeste do Brasil. Eles utilizaram a técnica de diferenciacdo integrada do ARIMA
para tornar as séries temporais de vento estacionarias, superando a tendéncia crescente
de dados de vento devido a fatores sazonais e climaticos.

Adicionalmente, FRANCA et al. (2019) realizou uma analise de séries temporais de
vento utilizando o modelo ARIMA, ajustando-o para diferentes locais no Brasil. A analise
envolveu a aplicacao de ARIMA para prever tanto a velocidade do vento quanto a produgao
de energia edlica, com o ajuste de modelos diferenciados para diferentes regides do pais. A
especificidade deste estudo foi a aplicagcdo de ARIMA para lidar com a alta variabilidade
dos dados e com o impacto de eventos climaticos extremos, como frentes frias e sistemas
de baixa presséao, que afetam a geragao de energia edlica.

Em uma abordagem mais pratica, NUNES et al. (2023) utilizou o modelo ARIMA para
realizar previsdes de curto e longo prazo da producao de energia edlica no Brasil, com foco
em otimizar a operagao das turbinas edlicas e melhorar a integracao da energia gerada ao
sistema elétrico nacional. A analise enfatizou a importancia de integrar dados histéricos de
vento, considerando as sazonalidades e ciclos de vida das turbinas, para obter previsdes
mais acuradas. Os autores demonstraram como o modelo ARIMA pode ser utilizado para
prever tanto a intensidade do vento quanto a eficiéncia da turbina ao longo do tempo.

A modelagem de séries temporais com AR, MA e ARIMA tem se mostrado fundamental
na previsao da geracao de energia eodlica, permitindo otimizar a producao, melhorar a
previsdo de capacidade e reduzir riscos associados a variabilidade do vento. Estudos como
os de CAMELO et al. (2017), NUNES et al. (2023) e FRANCA et al. (2019) sao exemplos
claros da aplicacao desses modelos na geracao edlica, oferecendo insights valiosos sobre as
diferentes abordagens de modelagem e suas especificidades em relacdo ao comportamento
do vento em diferentes regides.

2.6.3 Redes Neurais

As redes neurais tém se mostrado uma poderosa ferramenta para modelagem e previ-
sdo de dados de potencial edlico, incluindo a previsao de sua produc¢ao. Sua capacidade
de aprender padrbes complexos em grandes volumes de dados faz delas uma escolha
recorrente na previsao de variaveis de vento e otimizagao da operagao de parques eolicos.
Diversos estudos tém utilizado redes neurais para lidar com os desafios inerentes a variabi-
lidade do vento, com diferentes abordagens e especificidades. A seguir, sera apresentada
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uma analise de como redes neurais foram aplicadas no contexto de geracao edlica por
diferentes autores.

Em um estudo realizado por RIBEIRO et al. (2024), a aplicagao de redes neurais
artificiais (RNA) foi explorada para prever a producdo de energia edlica em regides do
Cear4, Brasil. O autor utilizou diferentes arquiteturas de redes neurais, incluindo MLP, LSTM,
GRU e CNN, treinadas com dados histéricos de vento, para estimar a geragao de energia
em intervalos de tempo especificos. A especificidade deste estudo foi a comparagao entre
essas arquiteturas, destacando a eficacia das redes GRU na previsao de curto prazo da
velocidade do vento.

Outro exemplo interessante é visto em BARCHI et al. (2022), em que se aplicaram redes
neurais artificiais e modelos de combinacao para prever a velocidade do vento em diversas
regides do Brasil. Os autores utilizaram uma abordagem que combinava diferentes modelos
preditivos, incluindo redes MLP, RBF, ELM e ESN, para capturar as interacées complexas
entre variaveis climaticas e a velocidade do vento. O uso de modelos de combinacao neste
estudo foi fundamental para melhorar a precisao das previsoes, ja que essas abordagens
sao capazes de aprender representacées de dados de alto nivel, capturando melhor as
interacdes entre as variaveis e suas influéncias sobre a producéo de energia edlica.

Adicionalmente, OLIVEIRA et al. (2020b) utilizaram redes neurais artificiais para prever
a intensidade do vento e a producao de energia edlica em tempo real. As redes, tradicio-
nalmente usadas para processamento de dados sequenciais, foram adaptadas para séries
temporais de vento, com o intuito de capturar padrées temporais nas séries de dados. A
inovacao deste estudo foi o uso de diferentes arquiteturas de redes neurais para extrair
caracteristicas relevantes dos dados de vento, antes de passéa-los para camadas totalmente
conectadas, 0 que resultou em uma melhoria na previsao de curto prazo da producéo de
energia.

Em um estudo focado na otimizacao de turbinas edlicas, MEMARZADEH e KEYNIA
(2020) aplicou redes neurais LSTM para ajustar os parametros operacionais das turbinas e
melhorar a eficiéncia da geragado de energia. A pesquisa usou uma combinacao de redes
neurais recorrentes e dados climaticos para modelar a producao de energia em funcao
das variaveis ambientais. O estudo destacou a importancia das redes neurais recorrentes
para lidar com a dependéncia temporal dos dados de vento, permitindo que a previséo da
producdo de energia se beneficiasse do histérico de dados e da memoria das variaveis
climaticas ao longo do tempo.

Outro trabalho relevante foi realizado por FERNANDES et al. (2014), que utilizou redes
neurais artificiais para prever a producao de energia elétrica a partir do vento em Portugal. A
abordagem permitiu otimizar a estrutura da rede neural, ajustando o nimero de camadas e
neurénios de forma a melhorar a precisao da previsdao da producao de energia. Este estudo
evidenciou a flexibilidade das redes neurais e a importancia de técnicas de otimizacao para
melhorar a eficacia dos modelos em contextos reais de previsao edlica.
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MELO et al. (2020) propés um modelo de rede neural para prever a velocidade do vento
a partir de dados historicos e outras variaveis meteorolégicas. Usando uma rede neural trei-
nada com dados extraidos de uma estagao meteoroldgica, os autores conseguiram modelar
com alta precisao a relagao entre a velocidade do vento e as variaveis correlacionadas, com
particular foco em periodos de transigao de estacdes, onde a variabilidade do vento pode
ser maior. A contribuicdo deste estudo foi o foco na melhoria da precisao das previsoes
durante periodos criticos, como mudancgas de estagao, que sao importantes para a gestao
de parques edlicos.

A aplicacao de redes neurais no contexto de geracao edlica continua a crescer, com
novos métodos sendo propostos para melhorar a previsao e otimizar o desempenho dos
sistemas edlicos. Estudo apds estudo, as redes neurais tém se mostrado uma ferramenta
eficaz para modelar a complexa variabilidade do vento e ajudar na tomada de decisées em
tempo real, como a programagao da operacao das turbinas e a previsdo da produgao de
energia.
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3 METODOLOGIA E RESULTADOS

Neste capitulo, os métodos estatisticos apresentados na secao 2.6 serdo aplicados
em determinadas bases de dados, de acordo com suas particularidades. Nestas analises,
serd avaliado o potencial edlico da regido estudada, em termos da velocidade dos ventos
e da poténcia de saida de complexos eolicos, que se apresentam como ferramentas
fundamentais para a modelagem da dinamica do dados, desempenhando um papel central
na compreensao e no aproveitamento eficiente da energia edlica, contribuindo para a
expansao sustentavel das fontes de energia renovavel e para o planejamento confiavel de
sistemas elétricos de poténcia.

Inicialmente, foi aplicada a distribuicdo de Weibull, uma fungéo de densidade de proba-
bilidade (SOUZA et al., 2019) que teve como intuito o estudo do potencial de geracéo da
regido analisada.

Posteriormente, com o intuito de introduzir dependéncia temporal na andlise, séries
temporais foram estudadas e os modelos Autorregressivo (AR), Moving Average (MA)
e Autorregressivo Integrado de Médias Méveis (ARIMA) foram avaliados, apresentando
previsoes de geracao em curto prazo (JENKINS; BOX, 1976).

Como uma outra alternativa a avaliagdo do problema considerando o tempo, propde-se
um método de Rede Neural Artificial, a qual foi avaliada de forma supervisionada e ajustada
para a previsao da poténcia de saida do complexo edlico (SILVA et al., 2010).

A fim de verificar os ajustes dos métodos de previsdo de geragao, as duas Ultimas
medidas de cada banco de dados, que sao registradas em MWmed em periodos de uma
hora, foram retiradas, o modelo de previsédo foi obtido com os dados remanescentes e,
posteriormente, foi utilizado para a previsdo destes valores.

Assim, esta secao apresenta o estudo desses métodos tal como suas aplicagdes nos
complexos edlicos Lagoa dos Ventos e Campo Largo.

3.1 Banco de dados

A fim de entender o potencial edlico da regido em que estao instalados os complexos
eolicos Lagoa dos Ventos e Campo Largo que se encontram a cerca de 230 KM um do
outro, a Distribuicdo de Weibull foi avaliada em duas situacdes: superficie e a 50 metros de
altura (Ver Segéo 3.2).

Para a avaliagdo da funcao de distribuicao para ventos a 50 metros de altura, os
parametros de forma e escala da distribuicao disponiveis no CRESESB foram utilizados. O
CRESESB ¢é um importante centro de referéncia para estudos do potencial edlico brasileiro,
o qual estima os parametros da distribuicao pelo ajuste das curvas de distribuicdo geradas
pelo modelo MesoMap, que é um conjunto integrado de modelos de simulacao atmosférica
desenvolvido pela New York State Energy Research and Development Authority (NYSERDA)
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e 0 Department of Energy (DoE - US) (AMARANTE et al., 2001). Em se tratando de
resultados, o CRESESB mostra, a uma altura de 50 metros, qual é a velocidade média
dos ventos, os parametros da distribuicdo e a densidade de poténcia de uma determinada
regido, partindo da latitude e longitude do local.

Ainda com relagao a distribuicdo de Weibull, € possivel obter os parametros da distribui-
¢ao a partir de métodos estatisticos. Para isso, necessitam-se dos valores de velocidade dos
ventos, os quais podem ser obtidos no site INMET, que conta com uma série de Estagbes
Meteorolégicas Automaticas implementadas no pais, como pode ser visto na Figura 16.

Figura 16 — Mapa de estagdes
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Fonte: (INMET, 2025)

As estacdes meteoroldgicas apresentam uma série de dados na superficie, a Tabela 2
apresenta os dados que podem ser visitados a partir do INMET.
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Tabela 2 — Descricao de resultados - INMET

Data Hora Temperatura (°C) Umidade (%)
dd/mm/aa | UTC Instanténea| Maxima | Minima Instanténea ||\/Iéxima| Minima
Presséo (hPA) Ventos Radiagéo
Instantanea| Maxima| Minima | Velocidade (m/s)| Direggo (°) | Rajadas (m/s) Kj/m?

Fonte: Adaptado de (INMET, 2025)

Convém destacar que o tratamento dos dados de velocidade dos ventos, para aplicacao
da Distribuicao de Weibull, consistiu na divisdo do conjunto de dados conhecidos em quatro
espacos amostrais, com vistas ao potencial de geragdo em cada um deles, em consonancia
com o apresentado na Secao 2.2, seguindo a divisdo dos meses definida pela sazonalidade,
a qual reflete na variagao da velocidade média dos ventos nas regides, energia primaria de
fontes edlicas.

Em outra perspectiva, para a avaliagdo da dindmica de geragao dos parques edlicos
avaliados, uma rede neural artificial e trés modelos de séries temporais sao aplicadas para
modelar e prever sua poténcia de saida do complexo edlico avaliado, a fim de identificar
tendéncias presentes nas amostras e melhorar a compreenséo das dinamicas analisadas,
para auxiliar na tomada perante a operacao de parques edlicos. Para a avaliagao desses
modelos, foram escolhidas as poténcias de saida dos complexos edlico Lagoa dos Ventos e
Campo Largo, dois dos maiores do pais e que apresentam sélidos dados de geracédo no
site do ONS, o qual apresenta dados de acordo com o visto na Tabela 3

Tabela 3 — Descri¢ao de resultado - ONS

I Data e hora | ID do subsistema I Nome do subsistema | Sigla do estado | Nome do Estadol Modalidade |

| Tipo de usina | Tipo de combustivel | Nome da usina | Identificador ONS | CEG - ANEEL | Geragdo MWmed |

Fonte: Adaptado de (ONS, 2025)

No caso da aplicacdo dos modelos de séries temporais e redes neurais, foram selecio-
nados aleatoriamente 10 pontos do conjunto de dados de geragdo dos complexos edlicos
Lagoa dos Ventos e Campo Largo. O objetivo desses métodos é prever os dois valores
subsequentes a cada ponto escolhido, simulando uma situagéo pratica em que apenas a
ultima medida de geracao é conhecida. Os pontos utilizados para andlise em Lagoa dos
Ventos se encontram descritos na Tabela 4.

Tabela 4 — Dados iniciais para o complexo edlico Lagoa dos Ventos

Medida | MWmed | Horario Data
1 637,630 | 01:00:00 | 26/05/2024
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Medida | MWmed | Horario Data

2 534,221 | 09:00:00 | 04/06/2024
346,253 | 09:00:00 | 29/11/2023
339,050 | 14:00:00 | 16/06/2024
204,489 | 18:00:00 | 27/11/2023
320,014 | 14:00:00 | 18/07/2023
647,380 | 00:00:00 | 31/05/2023
40,737 | 15:00:00 | 09/12/2023
598,530 | 23:00:00 | 10/10/2023
28,034 | 01:00:00 | 22/02/2024

Fonte: Adaptado de (ONS, 2025)
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Ja para o caso em Campo Largo, tem-se a Tabela 5:

Tabela 5 — Dados iniciais para o complexo eélico Campo Largo

Medida | MWmed | Horario Data

1 281,276 | 23:00:00 | 24/06/2024
475,100 | 07:00:00 | 09/09/2023
573,022 | 04:00:00 | 09/11/2023
497,739 | 16:00:00 | 21/05/2024
362,552 | 17:00:00 | 25/11/2023
156,319 | 00:00:00 | 26/01/2024
460,586 | 13:00:00 | 09/06/2024
298,684 | 11:00:00 | 26/05/2024
597,727 | 06:00:00 | 31/07/2024
237,915 | 04:00:00 | 03/12/2023

Fonte: Adaptado de (ONS, 2025)
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Além disso, destacam-se as diferengas entre os pontos analisados para a geragao
dos valores futuros em cada método utilizado. Para séries temporais, consideram-se 0s
10 ultimos valores da série para estimativa dos parametros, desconsiderando, portanto,
aspectos relacionados a sazonalidade. Por outro lado, na abordagem baseada em redes
neurais, sao utilizados os 2160 valores anteriores ao ponto selecionado para o treinamento
da rede e definicao dos pesos sinapticos. Essa quantidade foi escolhida de modo a abranger
um periodo de aproximadamente trés meses, permitindo que a modelagem considere
adequadamente padrdes sazonais presentes na série historica.

3.2 Distribuicao de Weibull

A fim de avaliar o potencial edlico da regiao onde estao situados os complexos eolicos
Lagoa dos Ventos e Campo Largo, estuda-se a Distribuicdo de Weibull, apresentada na
equacao (3.1). Nessa linha, tem-se que esse tipo de Fun¢éo de Distribuicdo de Probabilidade



59

(PDF) descreve como os valores de uma variavel aleatdria estao distribuidos, indicando a
probabilidade associada a diferentes intervalos que a variavel pode assumir, cuja integral
em um intervalo fornece a probabilidade associada a esse intervalo. Especificamente, a
Distribuicao de Weibull é comumente utilizada quando a distribuicdo dos dados nao é
gaussiana, ou seja, é assimétrica, ja que sua flexibilidade em representar diferentes padrdes
de comportamento permite a andlise com esse tipo de dados (SOUZA et al., 2019).

Flaik,\) = ; (%)“ e (3) (3.1)

Em que:

x = Valor da variavel aleatéria
k = Parametro de forma
A = Paradmetro de escala

Em particular, a Distribuicdo de Weibull € usualmente empregada na industria de energia
edlica para analisar a frequéncia das velocidades do vento e, consequentemente, estimar a
producao de energia e avaliar o potencial dos locais em que serdo instalados os parques
edlicos (LIMA et al., 2024).

A fim de aplicar o método supracitado, estudam-se as coordenadas geograficas da
cidade de Curaca-BA, a qual conta com uma base de dados a partir do CRESESB e
também tem instalada na cidade uma Estacdo Metereoldgica Automatica (EMA). A cidade
em questao tem suas coordenadas geograficas apresentadas na Tabela 8.

Tabela 6 — Coordenadas geograficas de Curaga/BA

Coordenadas geograficas
Latitude | 9,000640°S
Longitude | 39,912191°0

Fonte: Google Maps

Com as coordenadas do parque conhecidas, utilizando os dados do CRESESB para a
avaliacao dos parametros k e \ da distribuicdo, os quais sao apresentados na Tabela 7.

Tabela 7 — Dados de vento a 50 m de altura

Grandeza Unidade | Dez-Fev | Mar-Mai | Jun-Ago | Set-Nov | Anual
Velocidade media | -, 4,58 4,03 5,92 588 | 5,1
dos ventos
Parametro \ - 517 4,55 6,59 6,59 5,76
Parametro k - 2,02 1,97 3,42 2,90 2,35
Densidade de | o 111 78 167 178 | 134
poténcia

Fonte: (CRESESB, 2024)
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Com os dados da Tabela 7, aplica-se a equacgao (3.1) para diferentes periodos de tempo,
em que seu resultado € apresentado na Figura 17.

Figura 17 — PDF de Weibull - Dados de 50 metros de altura
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Fonte: Autoria prépria

As curvas presentes na Figura 17 representam as Fun¢des de Densidade de Probabi-
lidade de Weibull para diferentes valores dos parametros de forma k e escala \. A partir
dessas distribuicbes, é possivel calcular a integral da PDF, resultando na Funcao de Distri-
buicdo Acumulada (CDF) de Weibull, conforme apresentada na equacao (3.2). A CDF, nesse
contexto, tem como principal funcao determinar a probabilidade de a variavel aleatéria, que
neste caso € a velocidade dos ventos, ser menor ou igual a um valor especifico. Em outras
palavras, a CDF permite quantificar a probabilidade acumulada até um determinado valor
de velocidade, proporcionando uma analise detalhada da distribuicdo das velocidades do
vento ao longo do tempo (SOUZA et al., 2019).

0, x <0,

ey (3.2)
— e A

F(x;k,\) = -
‘I'— )

Y

Aplicando a equagao (3.2) para os diferentes valores de k£ e )\ apresentados na Tabela
7, obtém-se a Figura 18, que apresenta a Funcao de Distribuicido Acumulada de Weibull
para diferentes periodos de tempo durante o ano.
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Figura 18 — CDF de Weibull - Dados de 50 metros de altura
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Fonte: Autoria prépria

Assim, € possivel calcular a probabilidade da velocidade dos ventos serem maiores
do que 7 m/s, nivel operacional minimo para que a geracao edlica seja viavel (Ver Secao
2.2). Este resultado é obtido fazendo [F'(+o0; k, \) - F/(7; k, )], que calcula a probabilidade
da velocidade dos ventos estarem entre 7 e +oo, e é apresentado na Tabela 8, em que €
possivel observar distribuicdo percentual da ocorréncia de ventos com velocidade superior
a 7 m/s ao longo do ano, evidenciando a sazonalidade do potencial edlico e sua variagao
significativamente ao longo do ano, reforcando a importancia de incorporar a sazonalidade
no planejamento energético.

Tabela 8 — Probabilidade da velocidade dos ventos ser maior do que 7 m/s

Intervalo de tempo Pielvento > 7m/s (%)
Dezembro - Fevereiro 15,81
Marco - Maio 9,67
Junho - Agosto 29,25
Setembro - Novembro 30,38
Anual 20,57

Fonte: Autoria prépria

Agora, sera realizada a estimativa dos parametros de Weibull a partir dos dados de
velocidade do vento na superficie da cidade de Curaca-BA. Através desse processo, sera
possivel determinar os parametros de forma £ e escala A da distribuicdo de Weibull que
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melhor descrevem os dados de velocidade do vento da regido, permitindo a caracteriza¢ao
das condi¢des edlicas locais. A Tabela 9 apresenta o ajuste dos parametros juntamente
com a velocidade média de cada conjunto estudado.

Tabela 9 — Dados de vento na superficie

Grandeza Unidade | Dez-Fev | Mar-Mai | Jun-Ago | Set-Nov | Anual
Velocidade media | o 2 51 2 31 3,15 307 | 2,76
dos ventos
Parametro A\ - 2,83 2,61 3,51 3,43 3,11
Parametro k - 2,33 2,32 3,22 3,20 2,60

Fonte: Autoria propria

E conveniente destacar que os parametros k e A podem ser obtidos atraves de diversas
técnicas estatisticas, como Regressao Linear, Método dos Minimos Quadrados, Método do
Fator Padrao de Energia e Método de Momentos (SOUZA et al., 2019). Para a obtencao dos
parametros apresentados na Tabela 9, foi utilizado o Método da Maxima Verossimilhanca
(MANTOVANI; FRANCO, 2004).

Agora, a partir da Tabela 9, aplicando a equagéao (3.1), tem-se a Figura 19.

Figura 19 — PDF de Weibull - Dados da superficie

Fungao de Distribuicao de Probabilidade (PDF)

—Dezembro - Fevereiro
—Margo - Maio
Junho - Agosto
—— Setembro - Novembro
Anual

PDF

| | | | ; |
0 1 2 3 4 5 6 7 8
Velocidade dos ventos (m/s)

Fonte: Autoria prépria

Analogamente ao feito para os dados a 50 metros de altura, para a aplicacao da equacao
(3.2), a Figura 20 ilustra a representacao CDF de Weibull ajustada aos dados de superficie.
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Figura 20 — CDF de Weibull - Dados da superficie

Fungéo de Distribuigdo Acumulada (CDF)

09|~
08
07|~
0.6 —Dezembro - Fevereiro
w —Margo - Maio
505 Junho - Agosto
— Setembro - Novembro
041~ Anual
03}
02
0.1
0 b— | | | | | | |
0 1 2 3 4 5 6 7 8

Velocidade dos ventos (m/s)

Fonte: Autoria prépria

De maneira analoga ao procedimento adotado para os dados a 50 metros de altura,
realiza-se a determinacao da probabilidade da velocidade do vento na superficie ser de 3
m/s, que é visto na Tabela 10. E importante destacar que, para velocidades superiores a
7 m/s, a probabilidade calculada tende a se aproximar de zero, devida a baixa ocorréncia
desses valores na superficie, e, consequentemente, indica que as condi¢cdes de vento
fortes sdo menos frequentes na superficie, sendo mais recorrentes a medida que a altura
aumenta.

Tabela 10 — Probabilidade da velocidade dos ventos ser maior do que 3 m/s

Intervalo de tempo Pietvento > 3 m/s (%)
Dezembro - Fevereiro 31,80
Marco - Maio 25,12
Junho - Agosto 54,71
Setembro - Novembro 52,13
Anual 40,23

Fonte: Autoria propria

Aplicando os principios da teoria basica de probabilidade, podemos calcular a quanti-
dade de medidas em que a velocidade do vento excede os 3 m/s. Para isso, primeiramente
identificamos o numero total de observacgdes que apresentam velocidades superiores a 3
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m/s. Em seguida, dividimos esse valor pelo total de medi¢oes realizadas, o que resulta na

probabilidade de a velocidade do vento ser maior do que 3 m/s. Essa abordagem probabilis-

tica serve como base para ajustes nos modelos de previséo, pois ajusta a distribuicao de

probabilidades as condi¢des reais observadas, proporcionando uma previsao mais precisa

e condizente com as caracteristicas especificas da area analisada.

Tabela 11 — Probabilidade da velocidade dos ventos ser maior do que 3 m/s - Ajuste

Intervalo de tempo

Plelvento > 3 M/s (%)

Dezembro - Fevereiro

31,14

Marco - Maio

25,59

Junho - Agosto

53,79

Setembro - Novembro

49,46

Anual

39,91

Fonte: Autoria propria

Logo, € possivel observar que a distribuicdo calculada se ajustou bem aos dados. A

Figura 21 apresenta um comparativo entre a curva de distribuicdo e o histograma de cada

periodo, reforcando a convergéncia do ajuste.

Figura 21 — Comparativo entre a curva de distribuicéo e o histograma de cada periodo
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Fonte: Autoria propria
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Em se tratando da andlise anual, observa-se, pela Figura 22, que também foi possivel
obter uma alta convergéncia.

Figura 22 — Comparativo entre a curva de distribuicdo e o histograma - Anual

Distribuicdo Weibull - Anual
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Fonte: Autoria propria

Entretanto, a distribuicdo de Weibull, como uma série de fun¢gdes de densidade, ndo
leva em consideragao a dependéncia temporal das amostras e ndo € adequada para prever
eventos de curto e médio prazo, fazendo com que outras técnicas devam ser avaliadas.

3.3 Séries Temporais

Uma série temporal € um conjunto de observagdes coletadas em intervalos sequenciais
e regulares ao longo do tempo, como ilustrado na Figura 23. A andlise dessas séries busca
identificar padrdes, tendéncias, sazonalidades e outras caracteristicas que possam auxiliar
na previsao de valores futuros.

Figura 23 — Modelo de série temporal

N Amostras » Previsao

]

> Tempo

Conjunto de dados

Fonte: Autoria propria
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Tem-se que modelos de séries temporais sdo amplamente utilizados para modelar e
prever dados sequenciais em que os valores futuros dependem linearmente de valores
anteriores do espago amostral, métodos que serdo avaliados nas segdes seguintes.

3.3.1  Modelo Autorregressivo (AR)

Inicialmente, introduz-se 0 modelo de um filtro linear, apresentado na equacao (3.3). Esse
modelo sugere que uma série temporal observavel z;, com valores sucessivos altamente
dependentes, pode ser gerada a partir de amostras aleatorias de uma distribuigao fixa,
geralmente assumida como normal, com média zero e variancia o2, chamada de ruido
branco. Nesse contexto, o ruido branco é transformado na z; por meio do que se chama de
filtro linear, que realiza a operacao de filtragem linear simples, que € uma soma ponderada
dos valores de a; (JENKINS; BOX, 1976).

p
2= [+ a + Z Vi = p+P(B)ay (3.3)
i=1
Em que:

2y = Série temporal

Y(B) = Funcéo de Transferéncia
1 = Média

a; = Ruido branco

Nessa perspectiva, introduz-se o Modelo Autorregressivo (AR), em que o valor atual do
processo € expresso como uma soma linear finita dos valores anteriores do processo e um
ruido branco a,. Para isso, define-se z; = z; — ;. como a série de desvios em relagéo a .
Com isso, tem-se a Equacgao (3.4),

Z=ap+ i ¢izi—i = ¢(B) 'y (3.4)
=1
Em que:
¢ = Parametros do modelo AR
Sendo, por fim, equivalente dizer que:
Z = ¢(B)"'a, = ¥(B)a, (3.5)

Em que a equagéo (3.5) é valida se existirem ¢; tais que os pesos 1; em ¢(B) = ¢~1(B)
formem uma série convergente. Sendo assim, o requisito necessario para a estacionarie-
dade é que o operador autorregressivo ¢(B) deve ter todas as raizes de ¢(B) = 0 maiores
que 1 em valor absoluto, ou seja, todas as raizes devem estar fora do circulo unitario.
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Aplicando o modelo AR com o auxilio de ferramentas de simulagdo como MATLAB,
obtém-se os parametros ¢; do modelo, as quais sao encontradas a partir das equacgdes de
Yule-Walker, que sao apresentadas na equacao (3.6) (JENKINS; BOX, 1976).

p
=1

2
0

Em que:

pr = Autocorrelagao de atraso k
E = Esperanga

A equacéo (3.6) pode ser reescrita como apresentado em (3.7):

1 P1 P2 Pp-1 o1 P1

P1 1 P11  Pp—2 ®2 P2

P2 p1 L - pps o3| =|ps (3.7)
Pp—1 Pp—-2 Pp-3 1 ¢p Pp

Por fim, tem-se uma maneira de relacionar a autocorrelagao de atraso com os parametros
do modelo, em que, ao resolver o sistema de equagdes, obtém-se os parametros desejados.
Assim, é possivel aplicar o modelo AR aos dados da poténcia de saida do Complexo
Edlico Lagoa dos Ventos, a fim de prever, em pontos aleatérios do espaco amostral, os dois
préximos valores da série. Os resultados desta aplicagao sado apresentados na Tabela 12,

que apresenta a simulacédo de 10 pontos dentro dos 14664 dados, entre marco de 2023 e
outubro de 2024.

Tabela 12 — Resultados das simulagdes - Lagoa dos Ventos - Modelo AR

~ | VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULACAO (MW,00) (MW eq) (%)
e . 5
SEGUNDA o 176.945 16,1060
- L B
QUARTA 333046?,4982580 gg;:gg; 103, ,1 9088947
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= VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULAGRO | (MW o) (MW ) (%)
T R
SEXTA | et 245,762 Fos
T ——
T
T
T ———

Com isso, os resultados apresentados na Tabela 12 evidenciam que o modelo AR
apresentou convergéncia razoavel quando aplicado aos dados de geracdao do Complexo
Edlico Lagoa dos Ventos, apresentando erros menores a medida que a poténcia de saida

Fonte: Autoria propria

do complexo aumentava.

Ja para o complexo edlico Campo Largo, os resultados da aplicagdo do modelo AR

podem ser vistos na Tabela 13.

Tabela 13 — Resultados das simulagdes - Campo Largo - Modelo AR

~ | VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUT
SIMULAGAO | - L ™3 (MW ) © (%?O oo
PRIMEIRA . elbaad 6,500
SEGUNDA | 472169 et 27105
TERCEIRA o bt Toe62
QUARTA |57 195 004 2671
QUINTA |57 121 569 6 3004
SEXTA {145 145997 25 9214
SETMA 50 167 w5955 s 5248
OITAVA ggg:;gg 22?:;712) 182'?3757712
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~ VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULACAO
¢ (MWineo) (MWineg) (%)
580.131 592.008 2.0473
NONA 564.037 583.716 3.4889
P 272.163 214.194 21.2995
DECIMA 276.646 201.199 27.2720

Fonte: Autoria propria

Por fim, observa-se que, para o complexo edlico Campo Largo, o modelo AR também
apresentou uma convergéncia razoavel, apresentando erros menores com o aumento da
poténcia de saida do parque, analogo ao visto para Lagoa dos Ventos

3.3.2 Modelo Moving Average (MA)

Por outro lado, define-se outro tipo de modelo de analise de séries temporais: Moving
Average (MA). Nesse modelo, tem-se z; como uma variavel linearmente dependente de
um numero finito de a’, anteriores, em contra partida com do modelo AR, em que o
modelo expressa a variagao z; do processo como uma soma ponderada finita das variagoes
anteriores do processo, adicionado de um ruido branco (JENKINS; BOX, 1976).

q
2= ay — Z Osa;—; = 0(B)ay (3.8)
i=1
Em que:

f# = Parametros do modelo MA
0(B) = Funcéo de Transferéncia do modelo MA
a. = Ruido branco

Note que o modelo MA apresenta diferencas sutis em relacdo ao modelo AR, temos o
sinal negativo na expressao e a forma com que o parametro € calculado é diferente. Nesse
sentido, os parametros do modelo MA sao calculados pela fungao de autocorrelacao, a qual
€ apresentada na equagéo (3.9).

q 0.
o = ~TRE, 0<k<g (3.9)
0, k>q
E evidente a complexidade da equacao (3.9) devido a presenca de termos nao-lineares,
sendo necessario o uso de métodos iterativos para sua resolucdo, como o Método de
Newton-Raphson.
Analogamente, aplica-se o modelo MA aos dados da poténcia de saida do Complexo
Edlico Lagoa dos Ventos, tendo seus resultados apresentados na Tabela 14.
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Tabela 14 — Resultados das simulagdes - Lagoa dos Ventos - Modelo MA

—— [ VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULACAO (MW (MW (%)
PRIMEIRA ggg:g?; 2?3;3?1 ;;;?22
SEGUNDA j?g:%g gigjﬁﬁ 3:33;2
TERCEIRA ?gg:ggg 2;‘3;133 429,,42988615
QUARTA 333046,21982580 ggg:é;g %ggg
QUINTA S Bz 16,5501
SEXTA |2 o #9758 50,0042
SETMA it e 55308
OITAVA 18105’?85463 2221232 17241’ ?4078465
T ——
DECIMA |7 191,590 Hocaa

Fonte: Autoria prépria

Ja para Campo Largo, tem-se os resultados apresentados na Tabela 15.

Tabela 15 — Resultados das simulagdes - Campo Largo - Modelo MA

~ VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULAGAO | (\W ) (MW o) (%)
T —— ——
T — s —
TERCEIRA gy So0557 362894
ST —
QUINTA |28 301208 330864
R s m—
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= VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULAGRO | (MW o) (MW ) (%)
T E—
T —
T ——
DECIMA 5 7'5as 226755 180541

Fonte: Autoria prépria

Portanto, as Tabela 14 e 15 mostram que o modelo MA nao se ajustou com grande
convergéncia aos dados de geragao dos complexos edlicos, apresentando altos erros em
uma série de medidas medidas, o que implica na necessidade de avaliacdo de outros
modelos.

3.3.3 Modelo Autorregressivo Integrado de Médias Méveis (ARIMA)

Por ultimo, tem-se o estudo e avaliagdo do Modelo Autorregressivo Integrado de Médias
Moveis (ARIMA). Nesta andlise, assume-se que comportamentos ndo estacionarios possam
ser representados por modelos estacionarios, em que uma nova série pode ser modelada
por um modelo misto autorregressivo de médias moveis, em que a série original z; pode ser
recuperada pelo operador soma (V).

wy = Viz (3.10)

Em que:

2z, = Série temporal
V = Operador de Diferenciagao
w; = Nova série

Uma outra forma de escrever o modelo ARIMA é apresentado na equagéo (3.11).

$(B)(1 — B)’z = 6(B)a, (3.11)
Em que:

¢(B) = Operador Autorregressivo
6(B) = Operador Moving Average

Finalmente, aplica-se o0 modelo ARIMA aos dados do Complexo Eélico Lagoa dos
Ventos, em que seu resultado é apresentado na Tabela 16.
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Tabela 16 — Resultados das simulagdes - Lagoa dos Ventos - Modelo ARIMA

| VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUT
SIMULAGAO | - L ™3 (MW o) STO | ERRO (%?o oTe
=
SEGUNDA | 1588 20655 513238
TERCEIRA fgg:ggg 23?;?2@ féﬁgii
QUARTA 333046,21982580 gggég? 2:?282
QUINTA 557 10g 245412 70
SEXTA oo 250778 0TS
ST m— —
OITAVA 18105’?85463 22:223 22:3823
O N —
DECIMA ;2332?71 ggggg 1995,70862279

Fonte: Autoria prépria

Analogamente para Campo Largo, tem-se a Tabela 17

Tabela 17 — Resultados das simulagdes - Campo Largo - Modelo ARIMA

[ VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUT.
SIMULACAO (MW (MW..o0) ° (%?0 e
S —
SEGUNDA j;g:;gg j;?f;g? ;:iigz
TERCEIRA ggijggg 2;2;;; 1 :i?g;
Tl E——
QUINTA e 7s 0T 8407
R
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= VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULAGRO | (MW o) (MW ) (%)
R —
T e ———
TR R ——
DECIMA ez 218872 20,3638

Fonte: Autoria prépria

Com isso, os resultados apresentados nas Tabela 16 e 17 evidenciam que o modelo
ARIMA foi o modelo de série temporal que melhor se ajustou aos dados, apresentando
menores erros, especialmente para o complexo edlico Campo Largo. O modelo ARIMA é o
mais amplo dos modelos estudados de série temporal, sendo os modelos AR e MA casos
particulares desse modelo (JENKINS; BOX, 1976).

3.4 Rede Neural Artificial

Em outra perspectiva, utiliza-se um modelo de Rede Neural Artificial (RNA) para a
previsao dos valores de geracao do Complexo Edlica Lagoa dos Ventos. Esses modelos
computacionais sao inspirados no funcionamento do cérebro humano para resolugéo proble-
mas complexos por meio de aprendizado, em que o intuito é calcular os pesos sinapticos da
rede a fim de conseguir reconhecer de padrdes entre a saida e a entrada (RAUBER, 2005).

3.4.1 Perceptron Multicamadas

Em se tratando do estudo de redes neurais artificiais, tem-se que o Perceptron Mul-
ticamadas (PMC) é uma rede neural artificial composta por pelo menos uma camada
intermediaria, além das camadas de entrada e saida, em que cada camada é formada por
neurénios, que processam as informacdes de forma sequencial. Em outras palavras, os
dados entram na rede, passam pelas camadas intermediarias e chegam a camada de saida
(SILVA et al., 2010).

No inicio da rede, para a primeira camada, os dados séo ponderados antes de seguirem,
como mostrado na equagao (3.12).

I = Z LEAGES (3.12)

Em que:
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IJ-L = Entrada ponderada do j-ésimo neurdnio na camada L
Wﬁ = Peso entre o neurbnio j da camada L e o neurénio 7 da camada anterior
x; = Entradas de dados

Para as demais camadas apds a primeira, temos a troca de z; por y;, que € a saida
do j-ésimo neurdnio em relacdo a camada L. Essas saidas sao obtidas por fungdes de
ativacdo, o que pode ser visto na equacgéo (3.13).

yvL— g([.L) (3.13)

J J

Em que:
g(+) = Fungao de ativagao
As fungles de ativagdo devem ser continuas e diferenciaveis em todo dominio, como €

o caso da fungao sigmoide, declarada na equacéo (3.14).

4 1
sig(z) = e (3.14)

Os pesos da primeira camada da rede neural, ou seja, L = 1, sdo calculados como
mostra a equagéo (3.15).

L L L
Em que:

n = Taxa de aprendizado

6jL = Gradiente local no neurénio j da camada L

Para as demais camadas, troca-se z; por Y;%.

De maneira analoga com o feito para as séries temporais, desenvolveu-se também um
modelo de rede neural que prevé a poténcia de saida do complexo edlico Lagoa dos Ventos,
em que um elemento conhecido € retirado e 0 método deve prevé-lo. Para o vetor de entrada
do PMC, foi estabelecida uma matriz de entrada com os valores conhecidos de geracao,
em que as linhas dessa matriz podem ser expressas como a equacao 3.16.

L;= [ai, Qit1y - - - 7@n+i71] (3.16)

Neste caso, o vetor de entrada tem 24 colunas, ou seja, fornece-se a rede 24 medidas
consecutivas, e a saida € a previsdo da proxima medida no tempo subsequente (a,,11).

Finalmente, é possivel avaliar o modelo de RNA desenvolvido. Para a avaliagdo do
problema de previsdo em questao, tem-se a andlise dos 3 ultimos valores conhecidos
do banco de dados: 642,099, 659,234 e 661,933 MWmed, respectivamente. Inicialmente,
retiram-se os 3 valores e o algoritmo é desenvolvido para a obtenc&o do antepenultimo
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valor, 642,099 MWmed. A Tabela 18 apresenta o resultado de 20 execugdes subsequentes
e independentes do PMC, juntamente com o erro absoluto em relagdo a medida conhecida.

Tabela 18 — Resultado do PMC - Previsao e erro

EXECUCAO | RESULTADO (MWmed) | ERRO ABSOLUTO (%)
1 649,04361 1,08155
2 646,95335 0,75601
3 595,24131 7,29758
4 618,25195 3,71392
5 659,39922 2,69432
6 673,25656 4,85245
7 628,09882 2,18038
8 642,27391 0,02724
9 580,92756 9,52679
10 622,29088 3,08490
11 642,99206 0,13908
12 646,88248 0,74498
13 626,81316 2,38060
14 627,65319 2,24978
15 643,33083 0,19184
16 637,18698 0,76499
17 609,93497 5,00920
18 639,98576 0,32911
19 643,43125 0,20748

20 621,37771 3,22712

Note que os resultados entre as execugdes sao diferentes, uma vez que 0s pesos
sinapticos da primeira camada sao gerados de maneira aleatéria, o que influencia no
processo de ajuste das demais camadas.

Para uma analise visual, a Figura 24 foi desenvolvida a fim de apresentar o grafico dos
erros de medida, juntamente de uma média moével com janela para quatro valores dos erros
anteriores, como apresentado na equacgao 3.17.

— x; (3.17)
N N—-1

.j:if 2

Yi =

Em que:

y; = Saida da média movel
x;= Valor do erro
N = Janela da média movel

Destaca-se que, no extremo inferior do vetor, ndo h& elementos suficientes para comple-
tar a janela, fazendo com que o método tenha que ser ajustado para o célculo apenas com
os valores conhecidos, 0 que reduz a janela da média mével.
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Por exemplo, para o primeiro ponto ¥, apenas seria considerado o valor do erro z;, e a
janela é reduzida para N = 1 ao invés de N = 4, resultando em y; = x;. Esse método é
seguido até que tenhamos medidas suficientes dentro da janela.

Figura 24 — Erro de previsdo do PMC e média movel

Erro Percentual das Previsdes e Média Movel

1[} T T T T T T T T T
=& Erro Percentual
- — B -Média Mével |
B - -
? - -

Erro Percentual (%)
o

4+
3_
2_
1—9\4, - X8
| Y 0.0272408
D | L \!} |
0 2 4 6 8 10 12 14 16 18 20

Execugao

Fonte: Autoria propria

Assim, é possivel observar que a média mével dos valores das execugdes se encontra
na faixa de 1 a 5 porcento, valores consideraveis para um processo de previsao.

Com a geracéao de diferentes redes, escolhe-se aquela que apresentou 0 menor erro
de previsao para a estimacgao dos valores restantes, 659,234 e 661,933 MWmed. A oitava
execucao, destacada em vermelho, apresentou o menor erro absoluto no processo de
previsao, por isso, esta rede foi escolhida para a previsdo dos valores seguintes. Assim,
tem-se os resultados da Tabela 19.

Tabela 19 — Valores previstos com o PMC

VALOR MEDIDO (MW,,¢q) | VALOR PREVISTO (MW,,.4) | ERRO ABSOLUTO (%)
659,234 658,378 0,1299
661,933 652,744 1,3882

Fonte: Autoria propria
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E evidente na Tabela 19 que o método de adequou bem ao conjunto de dados que foi
analisado, com um erro na primeira previsao de apenas 0,1299 %, enquanto a segunda
mantém um erro de 1,3882%, o que se justifica pela escolha coerente da rede neural
avaliada, a qual apresentou menor erro na medida inicial.

Em termos praticos, em que nao se conheceria as medidas da Tabela 19, gera-se uma
RNA para estimar a ultima medida conhecida e se escolhe a rede que apresentou menores
erros de geracao para a avaliacao dos valores subsequentes.

Para aprimorar a andlise dos ajustes dos dados em um espago amostral ampliado, a base
de dados foi atualizada conforme a metodologia mencionada anteriormente. Inicialmente,
os resultados apresentados na Tabela 19 foram obtidos a partir de dados coletados entre
0s meses de marco e maio de 2023. Na nova base de dados, esse periodo foi expandido,
abrangendo registros de marco de 2023 a outubro de 2024.

Além disso, para a geragao de novos valores, os intervalos considerados dentro da base
de dados atualizada abrangem periodos de 3 meses. Isso resulta em um total de 2160
medicdes, sendo cada uma registrada a cada hora, com unidade de MWmed.

Para o Complexo Edlico Lagoa dos Ventos, tem-se o resultado das simulag¢des apresen-
tados na Tabela 20.

Tabela 20 — Resultados das simulagdes - Lagoa dos Ventos

[ VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULAGAO | "~ (1 (MWo) (%)

S R — ]
SEGUNDA j?g:g;g jﬁ;‘;;?i ?j?ég;
TERCEIRA | g o0 76412 15550
QUARTA 333046,’4982580 2:)(1):325 ;;333?
QUNTA 557 i0s 270141 15,9024
SEXTA | es0s 266,195 5 400
SETWA |——or 64 a7 217 05573
OITAVA b gt 13537
NONA 85705 63,663 3148
DECIMA 232515‘71 2495,,2716422 2’14,;%

Fonte: Autoria propria
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Jé para o Complexo E6lico Campo Largo, os resultados das simulagdes sao vistos na

Tabela 21.
Tabela 21 — Resultados das simula¢des - Campo Largo
~ | VALOR MEDIDO | VALOR PREVISTO | ERRO ABSOLUTO
SIMULACAO (MW o) (MW o) (%)

PRIMEIRA gg?:ggg 22?;3;; 1:13:2(1)28
SEGUNDA j;g:;gg jﬁ:igi g:?;gg
renorn | g mes oo
S o
QUNTA 55576 393,363 i3 6402
SEXTA | e 121338 61034
SETIMA j;;:?g; 4467;6658144 3222?3
S -
NONA 222:82; 558508,,2577604 gigégé
DECIMA gg:éig 320701,5676365 g:ggg

Fonte: Autoria prépria

Portanto, observa-se que a rede proposta teve alta convergéncia nos dois cenarios, com
erros médios de 1,55% e 0,58% para as primeiras medidas nas aplicacdes aos dados dos
complexos edlicos Lagoa dos Ventos e Campo Largo, respectivamente.

3.5 Comparativo entre métodos de previsao

Finalmente, com a aplicagdao dos modelos de previsdo aos dados dos complexos edlicos
avaliados, torna-se possivel realizar uma analise comparativa dos erros associados a cada
abordagem. Essa andlise permite identificar qual método apresenta melhor desempenho em
termos de acuracia, além de avaliar sua robustez frente as variagdes nas caracteristicas do
recurso edlico. A Figura 25 apresenta o comparativo dos erros absolutos para o Complexo
Edlico Lagoa dos Ventos, considerando todos os modelos avaliados.
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Figura 25 — Comparativo entre erros de previsdo — Lagoa dos Ventos
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Observa-se que o modelo MA apresentou os maiores erros entre os métodos testados,
demonstrando menor capacidade de adaptacéao as flutuagdes do recurso edlico. Visando

uma comparagao mais clara entre os modelos com melhor desempenho, o MA foi retirado
da andlise grafica, resultando na Figura 26.

Figura 26 — Comparativo entre erros de previsao — Lagoa dos Ventos (sem MA)
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Na Figura 26, é possivel observar que os modelos AR e ARIMA apresentaram comporta-
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mentos semelhantes ao longo das simulagbes, enquanto a rede neural (RN) se destacou por
apresentar os menores valores de erro absoluto, indicando maior precisdo nas previsoes.

A mesma analise foi aplicada aos dados do Complexo Eélico Campo Largo. A Figura 27
mostra os resultados considerando todos os modelos.

Figura 27 — Comparativo entre erros de previsao — Campo Largo
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De forma analoga ao caso anterior, 0 modelo MA também apresentou baixo desempenho
para Campo Largo. Assim, foi novamente removido para fins de comparacao entre os
modelos que demonstraram melhor convergéncia, conforme ilustrado na Figura 28.

Figura 28 — Comparativo entre erros de previsdo — Campo Largo (sem MA)
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Nota-se que, também para Campo Largo, os modelos AR e ARIMA exibiram tendéncias
semelhantes de erro ao longo das simulagdes, enquanto a RN novamente obteve os

melhores resultados, confirmando sua superioridade em termos de precisdo na previsao do
recurso edlico para os dois complexos analisados.
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4 CONCLUSAO

Este trabalho buscou analisar e modelar a geracédo de energia edlica de curto prazo,
com vistas a subsidiar estudos de estabilidade de tensdo em sistemas elétricos de poténcia.
Ao longo do desenvolvimento, foi possivel expressar de forma clara a diferenca entre as
abordagens de previsdo de longo prazo, voltadas ao planejamento energético estratégico,
e as de curto prazo, que atendem as demandas da operacgao elétrica diaria. Enquanto as
previsdes de longo prazo orientam decisdes de expansao e sustentabilidade do sistema,
considerando horizontes que podem se estender por décadas, as previsdes de curto prazo,
foco desta pesquisa, concentram-se na estimativa da geragao e no equilibrio operacional
em escalas temporais de horas a semanas. Essas previsdes sdo essenciais para evitar
sobrecargas, minimizar o risco de apagdes e garantir a seguranca e a confiabilidade do
fornecimento de energia.

A aplicacao da Distribuicdo de Weibull mostrou-se eficaz na caracterizagéo do potencial
edlico da regido estudada. A flexibilidade desta distribuicdo em representar padroes assimé-
tricos e sua adequacao aos dados de velocidade do vento permitiram uma avaliagao precisa
da frequéncia de ocorréncia de ventos em faixas operacionais. Essa andlise evidenciou
a sazonalidade do recurso eolico e forneceu subsidios importantes para estimativas de
producgao de energia, reforcando o papel da Distribuicdo de Weibull como uma ferramenta
robusta para a avaliagao do potencial energético de uma regido. A capacidade de obter bons
ajustes tanto para dados de superficie quanto para dados a 50 metros de altura indica a apli-
cabilidade dessa distribuicao em diferentes contextos e escalas de estudo, consolidando-a
como uma base sélida para etapas subsequentes de modelagem e previséao.

No que tange aos modelos de séries temporais, 0 Modelo Autorregressivo Integrado de
Médias Moveis (ARIMA) foi o que apresentou o melhor ajuste entre as abordagens testadas.
Com menores erros absolutos, especialmente nos dados do complexo eélico Campo Largo,
o ARIMA destacou-se por sua capacidade de lidar com séries ndo estacionarias e incorporar
tanto a dependéncia temporal quanto as tendéncias dos dados. Ademais, a predominancia
de sua aplicagao na literatura especializada confirma sua relevancia e consisténcia para
previsdes de curto prazo na geragao edlica. A simplicidade relativa do modelo, aliada a sua
eficacia preditiva, torna o ARIMA uma alternativa interessante para estudos que demandem
baixo custo computacional e rapida implementacao.

Por fim, a Rede Neural Artificial (RNA) do tipo Perceptron Multicamadas revelou-se a
metodologia que apresentou o melhor desempenho no conjunto de dados analisado. Com
erros percentuais inferiores a 1,5% nas melhores execucdes, a RNA demonstrou elevada
capacidade de aprender e reproduzir padrdées complexos, proporcionando estimativas
de geracao com alto grau de precisédo. A escolha criteriosa da arquitetura da rede e do
conjunto de treinamento contribuiu para a obtencédo desses resultados, evidenciando o
potencial dessa técnica para aplicagdes praticas na previsdo de geracao eolica. Além
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disso, a flexibilidade da RNA em lidar com relagdes nao lineares e sua capacidade de
generalizagdo sugerem sua aplicabilidade em cenarios mais complexos, inclusive com a
incorporacao de multiplas variaveis de entrada, como temperatura, umidade e pressao
atmosférica.

Dessa forma, os resultados obtidos ao longo deste trabalho comprovam que a combina-
cao de técnicas estatisticas classicas com métodos de inteligéncia artificial oferece uma
abordagem promissora para enfrentar os desafios associados a variabilidade da geracao
ellica. As metodologias desenvolvidas e avaliadas aqui podem servir como ferramentas
complementares para o aprimoramento do planejamento e da operacao de sistemas elé-
tricos com alta penetracédo de fontes renovaveis, contribuindo para a confiabilidade e a
sustentabilidade da matriz energética brasileira. Espera-se que as contribuicbes deste
estudo possam subsidiar futuras pesquisas e aplicagbes praticas voltadas ao uso otimizado
de recursos eolicos, fortalecendo a transicdo para um setor energético mais resiliente e
sustentavel.
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