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RESUMO

A Relaxometria por Ressonancia Magnética (RM) busca caracterizar substancias pelos seus
tempos de relaxagdo caracteristicos. Algumas amostras possuem mais de um tempo de relaxacao,
resultando em uma distribui¢do poliexponencial de tempos caracteristicos. A decomposi¢ao destas
curvas ¢ um problema matematico mal-posto que pode ser abordado utilizando a Transformada
Inversa de Laplace (Inverse Laplace Transform, ou ILT, do inglé€s). Este trabalho apresenta uma
implementagao em Python da ILT, utilizando uma Decomposic¢ao de Valor Singular (singular value
decomposition, ou SVD, do inglés) para calcular a solu¢do da minimizag¢ao de Tikhonov. Também
foi implementado o método da curva-L, que auxilia na escolha do pardmetro de minimizacao do
algoritmo da ILT. Este trabalho tem como finalidade criar uma ferramenta da ILT que possa ser
acrescentada ao sistema do espectrometro digital DMRS, desenvolvido no CIERMag. Para testar os
métodos propostos, foram efetuados testes sobre dados sintéticos gerados computacionalmente em
Python. Além dos testes sintéticos, também foram testados dados reais de sequéncias Inverse
Recovery (IR) e Carr-Purcell-Meiboom-Gill (CPMG) sobre amostras de d4gua desmineralizada e
0leo mineral. Os testes sintéticos revelaram que a abordagem escolhida ¢ capaz de decompor sinais
exponenciais com sucesso, desde que os tempos de relaxacdo ndo sejam muito proximos, muito
curtos ou possuam amplitudes muito diferentes. Nos testes experimentais, foram encontrados os

valores das constantes de relaxagdo T1 = 3.5 +0.1se¢ T2 = 1.98 £+ 0.8s para a agua
desmineralizada e T1 =0.15 + 0.04s e T2 = 0.16 £ 0.3s para o Oleo mineral

Adicionalmente, foi verificado que a curva-L € capaz de fornecer uma estimativa consistente para o
pardmetro de minimizagdo, mas que o refinamento manual deste parametro ainda ¢ necessario na
maior parte dos casos. Como perspectiva futura, pretende-se verificar a eficiéncia da ILT para

amostras bidimensionais.

Palavras-chave: Ressonancia Magnética Nuclear, Inversa de Laplace, Python



1 INTRODUCAO

A Ressonancia Magnética Nuclear (RMN) ¢ uma ferramenta util em vérias areas de
pesquisa ¢ da medicina, que oferece métodos nao invasivos para a analise de diversos tipos de
amostra. Através de técnicas de RMN ¢ possivel estudar a estrutura molecular e o perfil bioquimico
de diferentes materiais, como sementes [1] € meios porosos [2]. Dentro de RMN, a relaxometria ¢
uma area que busca caracterizar substancias pelos seus tempos caracteristicos de relaxacao.
Diversas substancias apresentam apenas um destes tempos caracteristicos, podendo ser modeladas
por uma curva monoexponencial. No entanto, ¢ comum observar substancias que possuem mais de
um tempo de relaxagdo, cada um com sua respectiva contribui¢do exponencial para o sinal
experimental, resultando numa curva de carater poliexponencial. Com este sinal em maos, ¢ de
interesse do pesquisador decompor esta curva poliexponencial em suas varias curvas constituintes,
assim encontrando os diversos tempos de relaxacdo que compdem a amostra. No entanto, decompor
sinais poliexponenciais ¢ uma tarefa mal-posta [3,4], que admite infinitas solucdes distintas.
Partindo do principio que a realidade fisica da amostra ¢ idealmente modelada por apenas uma das
solugdes possiveis, é necessario introduzir uma ferramenta que ofereca meios para navegar entre as
diversas solucdes do problema. Tipicamente, esta decomposi¢do ¢ feita através da Transformada
Inversa de Laplace (Inverse Laplace Transform, ou ILT, do ingl€s).

Neste trabalho, foi feita uma implementacdo computacional da ILT em Python. A
implementagdo escolhida utiliza a Regularizacdo de Tikhonov [5], e visa ser implementada no
sistema do CIERMag, especificamente como parte do Digital Magnetic Resonance Spectrometer
(DMRS). Além da implementagao da ILT, também foi feita a implementagao da curva-L, uma
ferramenta numérica capaz de fornecer uma estimativa consistente para o pardmetro de
minimizagdo, para auxiliar a utilizagdo da ILT. Com o intuito de testar as ferramentas
implementadas foram feitos testes com dados sintéticos compostos por curvas exponenciais geradas
em Python, além de testes feitos sobre dados reais, obtidos de sequéncias IR ¢ CPMG de amostras
de 4gua desmineralizada e 6leo mineral.

Os testes sintéticos revelaram que a abordagem escolhida ¢ capaz de decompor sinais
exponenciais com sucesso, desde que os tempos de relaxacdo ndo sejam muito proximos, muito
curtos ou de amplitudes muito diferentes. Nos testes experimentais, foram encontrados os valores

das constantes de relaxacdo T1 = 3.5 +0.1s e T2 = 1.98 + 0.8s para a 4gua

desmineralizada e T1 =0.15 £ 0.04s ¢ T2 = 0.16 £ 0.3 s para o 6leo mineral. O que



revela que a atual versdo da ILT ¢ capaz de encontrar corretamente tempos de relaxacdo de amostras
monoexponenciais. Como objetivo futuro, buscamos melhorar a implementagdo da ILT para
amostras poliexponenciais além de implementar a ILT 2D capaz de gerar mapas de correlagdo entre

os tempos de relaxacgao.
2 FUNDAMENTACAO TEORICA

2.1 Precessiao de Larmor

-

Os fenomenos de RMN sdo observados em particulas que possuem momento magnético p e

- -

momento angular associado I = p/y, onde y ¢ a constante giromagnética caracteristica de cada

N

nucleo. Quando posicionamos o nicleo em uma regido com um campo magnético externo B o

N

N
interagcdo entre este campo € 0 momento W gera na particula um torque t que, aplicado ao momento
-

angular I, d4 origem a equacao (1):

‘t=yl><B0 (1)

- -
A resposta da particula ¢ o movimento de precessao do vetor u em torno do eixo de B o

como representado na figura (1). Este movimento ¢ chamado de precessdo de Larmor, que ocorre a

uma frequéncia especifica, dada pela expressao (2) denominada frequéncia de Larmor.

w, = VIB,| @)

<)

Figura 1: Representacdo do momento magnético de uma particula

precessionando em torno do eixo do de um campo magnético B0 =B oZ Fonte: adaptado de Marcolan, J. [6]



Quando submetido a um campo magnético externo, o momento magnético do nucleo ¢
forcado para um de dois autoestados possiveis, de acordo com o Hamiltoniano de Zeeman: com
alinhamento paralelo ou antiparalelo ao campo. O estado paralelo possui menor energia e ¢ mais
provavel. Nesta configuragdo, as particulas se tornam capazes de absorver energia, saltando para um
estado mais energético. Utilizando campos magnéticos de curta duragdo (pulsos) € possivel forcar
transicdes para o estado antiparalelo, desde que a energia fornecida pelo pulso seja exatamente a
energia de transicdo. Para tal, a frequéncia do pulso precisa ser exatamente a frequéncia de Larmor.
Essa frequéncia esta situada na faixa das radiofrequéncias (RF), sendo proporcional a intensidade
do campo e a constante giromagnética nacleo. Para para o caso do proton do Hidrogénio (‘H),a
constante giromagnética vale 42.57 MHz/T.

Quando submetidos a esse campo magnético externo, a maioria dos momentos magnéticos
A
da amostra ¢ forgada para o estado paralelo a z, como ilustrado na figura (2). Nesta configuragao,

surge um vetor de magnetizacao total M, dado pela soma de todos os momentos magnéticos da

amostra, como ilustrado em (3):

- N -
M=% 3)
i
a) Sem campo magnético b) Na presenga de campo
E — 0 B = B()?:’

@ ¢ 4 6
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Figura 2: a) Representac@o dos spins na auséncia de campo magnético, sem alinhamento definido. b) Representacéo dos

A -
submetidos a um campo magnético, alinhados a z e dando origem ao vetor M. Fonte: Elaborada pelo autor.

2.2 Relaxometria
A relaxometria por Ressonancia Magnética ¢ o estudo do retorno da magnetizacdo a

condi¢do de equilibrio apds a aplicacdo de um pulso de excitagdo. Substancias variadas apresentam



tempos de relaxacdo distintos, fazendo com que relaxometria possa ser usada para estudar a

concentracdo destas substancias em varias amostras.

N
A aplicacdo de um pulso de RF faz com que o vetor de magnetizagdo M saia da situagao de
equilibrio termodinamico, ou seja, alinhada com o campo magnético externo, e passe a precessionar

no plano transversal, ortogonal a direcdo do campo externo. O que observamos do referencial do
- A
laboratério € um tombamento do vetor M, que agora passa a descrever um angulo 6 com relagdo a z

, denominado flip angle, como visto na figura (3). Esta nova direcdo de M d4 origem a uma

componente transversal da magnetizagao.

Pulsos de RF

Wiy 2p

M M

(&3

Figura 3: Representacdo do vetor magnetizacdo total tombando por um flip angle 6. Fonte: Elaborada pelo autor

Apo6s o término do pulso de RF, a magnetizagdo tende a retornar a sua posi¢ao de equilibrio

termodindmico, paralela a ZA Durante este processo, ocorrem tanto a perda da componente
transversal quanto a recuperacdo da componente longitudinal da magnetizagdo. Estes processos
ocorrem por fendmenos fisicos distintos e sdo modelados por tempos caracteristicos distintos. O
estudo destes processos, sua medigdo e modelagem formam a base da area da relaxometria de
RMN.

A recuperacao longitudinal da amostra ¢ dada pela interacdo spin-rede, que dissipa a energia
ganha pelos nucleos, permitindo que o vetor retorne a posi¢ao relaxada. Este processo ¢ mapeado

por uma constante de tempo denominada T1’ que pode ser medida por experimentos de recuperagao

inversa (inverse recovery, IR). Neste caso, o sinal obtido possui o formato de uma curva de

recuperagdo exponencial, dado pela equacao (4) e exemplificado na figura (4b):

S(t) = 50[1 — exp(— t/Tl)] (4)



b)

Y Tempo

Figura 4: a) Representacdo do retorno da magnetizagdo M a diregdo z. b) Grafico ilustrativo da recuperagdo da
componente longitudinal MZ ao longo do tempo. ¢) Grafico ilustrativo da perda da componente transversal da

magnetizagdo M ao longo do tempo. Fonte: Elaborada pelo autor
g v g p p

Ja a perda da componente transversal se da pela interagdo spin-spin, que causa
inomogeneidades no campo magnético e acarreta em pequenas variagdes locais da frequéncia de
Larmor. Deste modo, pouco apds a aplicagdo do pulso de RF, a precessdo dos spins perde coeréncia

de fase, de modo que suas componentes transversais passam a apontar para direcdes aleatdrias.

Neste ponto, a componente transversal do vetor M foi completamente perdida. Este processo de

perda ¢ dado por uma constante de tempo denominada T ,» que pode ser medida por experimentos

de eco de spin, como a sequéncia Carr-Purcell-Meiboom-Gill (CPMG). Aqui, o sinal obtido ¢ uma

curva de decaimento exponencial, dado pela equacao (5) e exemplificado em (4c):

S(t) = S exp(~ t/T) 5)

2.3 A Transformada Inversa de Laplace
Diversos tipos de amostras como sementes [1] ou até mesmo o sistema nervoso [7],
possuem mais de um tempo de relaxacao, resultando em um sinal poliexponencial que ndo pode
mais ser decomposto por um fitting exponencial simples. A decomposi¢do destas curvas ¢ um
problema matematico mal-posto, pois existem infinitas maneiras diferentes de decompoé-las. Deste
modo, ¢ necessario desenvolver uma ferramenta de anélise que nao somente consiga decompor o
sinal poliexponencial, mas que também oferega algum recurso para tentar navegar entre as diversas

solucdes indesejadas do problema.



1.2.1 Integrais de Fredholm
A teoria por tras do uso da ILT é melhor explicada com o uso das Integrais de Fredholm do
primeiro tipo [3]. Elas sdo uma classe de equagdes integrais que busca reconstruir uma fungao f(x)

através da expressao exibida em (6):

flo) = { d(OK(x, t)dt (6)

Onde K(x,t) é a fung¢do de kernel, que confere o formato geral da fungdo f; e p(t) € o
mapa de amplitudes, que informa os valores relevantes do kernel para a integragdo em t.
Para um sinal de decaimento exponencial S(t) (como dado pela expressao (5)), o kernel

correspondente ¢ dado por (7):
Onde T 5 indica a constante caracteristica de decaimento.

E possivel entdo, reconstruir o sinal S através da acdo deste kernel sobre um mapa de

amplitudes d)(TZ):

S = [ o) exp(= ¢/T) dT, = LO(T,) ®)

Como evidenciado em (8), a integral de Fredholm para uma curva exponencial decrescente ¢
equivalente a transformada de Laplace do mapa de amplitudes. Em um cendrio experimental, S(t) ¢

conhecido, enquanto ¢(T 2) precisa ser descoberto.
Como nos interessamos especificamente no mapa c|>(T2), podemos isola-lo em (8) através da

Transformada Inversa de Laplace.

O(T) =L (51} 9)

1.2.2 Regularizacio de Tikhonov
Para este trabalho foi escolhida a Regularizacdo de Tikhonov como ferramenta de inversao,
segundo a abordagem proposta em [4].
Para que possa ser tratado computacionalmente, o problema deve ser discretizado. Da

discretizagdo de (8), surge a equagao matricial (10):



s = kf (10)

Onde s ¢ o vetor de magnitudes, obtido experimentalmente, k ¢ a versdo matricial do kernel
e f o mapa vetorial de amplitudes. Apenas s e k sdo conhecidos.

Para a resolu¢do do sistema (10), utilizamos a Regulariza¢ao de Tikhonov:
. 2 2
argmin ||[kf — slI” + olfll (11

Na regularizacdo (11) o primeiro termo ¢ o termo de residuo e equivale ao método dos
minimos quadrados. O segundo termo ¢ o termo da norma, que visa penalizar solu¢gdes com norma
grande. A regularizacdo de Tikhonov se baseia na hipotese de que a solucdo correta do problema ¢
suave e de norma pequena.

O parametro a introduzido na expressao (11) pode ser ajustado para se obter mais ou menos
atenuacao sobre a solugdo. Quando a ¢ pequeno, o termo de norma pouco atua na minimizagao e a
resposta obtida € ruidosa, similar a resposta dos minimos quadrados. Quando a ¢ grande, o termo da
norma ¢ supervalorizado em relacdo ao termo do residuo, resultando numa resposta excessivamente
atenuada, com perda de detalhamento. Este fenomeno ¢ conhecido como sobre-atenuacao.

Pela natureza mal-posta do problema, nao existe critério exato para se determinar o valor de
a, mas ainda é possivel utilizar métodos auxiliares, como a curva-L, para se estimar palpites

iniciais.

1.2.3 Decomposiciao do Valor Singular (SVD)
A regularizagdo de Tikhonov pode ser implementada através de uma Decomposi¢do de
Valor Singular (Singular Value Decomposition, ou SVD, do inglés) [4], que permite encontrar a
solucdo com uma quantidade reduzida de dados:

A SVD consiste em decompor uma matriz arbitraria, k, em trés outras: X, U e V, de acordo
com (12):

k=usv' (12)

A matriz U contém os vetores singulares a esquerda de k em suas colunas, enquanto a matriz
V contém os vetores singulares a direita de k em suas colunas. ¥ ¢é diagonal e contém os valores

singulares de k em ordem decrescente.



Utilizando a SVD para decompor a matriz de kernel k, é possivel descrever o vetor de

solugdes, f, como o somatdrio (13), que € andlogo a minimizagao (11):

posto(A) r
Y v sv)/o, (13)
im1 i~ i i

Em (13), uev sd0 os i-¢ésimos vetores singulares das matrizes U e V, o, ¢ 0 i-ésimo valor

singular de X e Y, ¢ um fator de filtro proporcional a a, com formato:

Yi=0i2/(0'i2 + o) (14)

1.3 O método da Curva-L
Como mencionado, ndo existe um método exato para se determinar o parametro a. Mesmo
assim, existem ferramentas que podem gerar palpites iniciais para este parametro, como € o caso do
método da curva-L [4,8]
O método da curva-L consiste em acompanhar individualmente o termo do residuo e o
termo de norma da expressdo (11) ao longo de varias transformadas sobre um mesmo conjunto de

dados, feitas com a variado. Denotamos p(a) e n(a) o residuo e a norma obtidos para um dado

valor de a.

Norma(a) || f ||
....... ® O 008N00 0 ¢ ¢ ¢ 000N

Residuola) || s — kf |2

Figura 5: Grafico de curva-L. Plot paramétrico da norma(ca) x residuo(a). Fonte: Elaborado pelo autor.
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Com estes vetores, ¢ feito um plot paramétrico, da forma (p(a), n(a)), que tipicamente

resulta em um grafico com uma curva em formato de “L”, como visto na figura (5).

O grafico evidencia que para o muito grande ou muito pequeno, um dos termos domina a
solucdo. O método se baseia na hipdtese de que a melhor solugdo seria balanceada, com norma e
residuo de igual importancia na minimizagdo. Assim, estimamos que o melhor valor de a se
encontra no ponto de maior curvatura do grafico, onde nenhum dos termos domina a solugdo. Deste
modo, apos feito o gréafico, ¢ possivel encontrar a com a féormula para a curvatura:
pm" —p"n"

15
() +m)H*? (1

k(a) =

Onde as linhas indicam derivadas em relagao a .

3 MATERIAIS E METODOS

2.1 Testes com dados sintéticos
A fim de compreender os limites da ILT em vdrias situagdes, foram feitos testes com dados
sintéticos, gerados numericamente em Python, através da implementagdo de classes customizadas
para criagdo de curvas exponenciais. Para a geracdo dos dados, foi utilizada a relacdo (10), onde
desta vez queremos realizar a multiplicacdo direta, kf, para se obter o sinal s desejado. Para todos
os testes, foi utilizado o kernel k descrito na relacdo (7), enquanto o vetor de amplitudes f foi

gerado individualmente para cada teste.

Para gerar os mapa de amplitudes, foi feita uma sobreposicao de distribui¢des log-normais,

dadas pela fungdo de densidade de probabilidade (16):

1 Inz — u )
o\ 2T 202
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Figura 6: Exemplo de sobreposicio de dois picos log-normais, centrados em 10~ e 10", Fonte: Elaborada pelo autor

A expressdo (16) descreve uma distribuicdo com um pico de desvio o, centrado em W e
simétrico em um espago logaritmico. Varias distribui¢cdes sdo sobrepostas para se criar um mapa de
amplitudes poliexponencial, que ¢ entdo multiplicado pelo kernel k, dando origem a um sinal s
poliexponencial.

Para entender o funcionamento da ILT em condi¢des mais realistas, todos os sinais gerados e
testados foram acrescidos de ruido gaussiano simétrico, de amplitude igual a 1% da amplitude do
sinal, simulando uma relagdo sinal-ruido de 1 para 100. Foram gerados dois grupos de dados
sintéticos: com 2 e com 3 tempos de relaxagdo. A fim de testar uma ampla gama de casos, cada um
dos grupos se subdivide em 4 familias distintas: Familia I: picos proximos com amplitudes
proximas; Familia II: picos proéximos com amplitudes distintas; Familia III: picos distantes com
amplitudes proximas e Familia IV: picos distantes com amplitudes distintas. Os parametros das
curvas do grupo bi-exponencial constam na tabela (1), enquanto os parametros das curvas do grupo

tri-exponencial constam na tabela (2):

Familia Tempos de decaimento Amplitudes Sigmas
I 8x10 2x107 0.5 0.5 0.30 0.15
II 2x107 9x107 0.3 1.0 0.30 0.30
111 2x10! 4x10™! 1.0 0.8 0.40 0.40
v 8x107 5x10™ 0.6 2.0 0.30 0.30

Tabela 1: Parametros das curvas bi-exponenciais sintéticas: valor médio, amplitude e desvio padrdo das distribui¢des

log-normais utilizadas para modelar as curvas das quatro familias utilizadas.
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Familia Tempos de Decaimento Amplitudes Sigmas
I 4x10° | 1x10?% | 6x107 1.2 1.0 0.8 0.30 0.30 0.30
II 9x10° | 2x107 | 5x107 0.2 0.5 1.4 0.20 0.20 0.20
I 1.4x10" [ 8x107% | 6x107 1.0 0.9 1.1 0.30 0.40 0.50
v 7.5x107 | 1.5x10° | 7x10™! 2.0 0.6 2.2 0.2 0.4 0.2

Tabela 2: Parametros das curvas tri-exponenciais sintéticas: valor médio, amplitude e desvio padrao das distribui¢des

log-normais utilizadas para modelar as curvas das quatro familias utilizadas.

2.1 Testes com dados reais
Além dos testes com dados sintéticos, também foram feitos testes com amostras reais.
Foram testadas amostras de dgua desmineralizada, 6leo mineral, além de uma amostra combinada
de agua e 6leo, numa concentracao de 4 partes de dgua para 1 de 6leo. Os dados foram coletados
com experimentos de IR e CPMG, feitos pela aluna Maria Vitoria Lima da Silva, aluna de iniciagdo
cientifica do CIERMag, como parte de seu trabalho de conclusdo de curso. A coleta de dados foi

efetuada inteiramente no espectrometro DMRS, com campo B 0" 0.54 T, operando na frequéncia de

23,25 MHz, para ntcleos de Hidrogénio ('H), mas com ajuste fino de frequéncia para cada uma das
amostras. Os pulsos de RF foram calibrados para a duragdao de 30 pus com amplitudes dos pulso de
180° e 90° devidamente ajustadas. Os pardmetros de aquisi¢do das sequéncias podem ser

encontrados nas tabelas (3), para CPMG, e (4) para IR.

CPMG
Agua Oleo Agua + Oleo
TR (ms) 60 000 50 000 35000
TE (ms) 15 5 14
Numero de Ecos 800 300 800
Numero de pontos 64 64 64
Médias 4 4 4

Tabela 3: Pardmetros de aquisi¢do das sequéncias CPMG da amostra de agua, de dleo e de agua e 6leo misturados.
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IR
Agua Oleo Agua + Oleo
T Min (ms) 1 1 1
T Max (ms) 25 000 70 000 23 000
TR (ms) 40 000 50 000 35000
Repeti¢oes 40 60 40
Numero de pontos 64 64 64
Médias 4 4 4

Tabela 4: Parametros de aquisi¢@o das sequéncias IR da amostra de agua, de 6leo e de agua e dleo misturados.

2.2 O DMRS

Existem diversas opgdes comerciais de espectrometros de RMN, fornecidos por empresas
como Bruker ou Siemens. Apesar destas maquinas serem confidveis, elas oferecem poucas opgdes
de sequéncias experimentais, além de ndo oferecerem quase nenhuma customizagdo destas
sequéncias. Para contornar essa falta de opgdes, o CIERMag desenvolveu o DMRS [9], um
espectrometro digital de design e producdo propria. Feito com hardware programavel (field
programmable gate arrays, ou FPGAs), o DMRS foi idealizado para permitir a aplicagdao de

quaisquer sequéncias de pulsos que o usuério desejar.

Para tal, foi desenvolvido o software PyMR [10], um framework que permite o
gerenciamento de experimentos e a criagdo de novas sequéncias de pulsos. Também foi
desenvolvida no CIERMag a “F language”, uma linguagem de programacao dedicada a criagdo de

novas sequéncias de pulsos.

4 RESULTADOS

3.1 Dados Sintéticos
As figuras (7) até (10) exibem as distribuicdes sintéticas descritas nas tabelas (1) e (2),
decompostas através da ILT. Em todas as figuras, a coluna da esquerda exibe a distribui¢do original,

a coluna do meio exibe a decomposicao obtida com a gerado pela curva-L (« L) e a coluna da direita

exibe a decomposi¢do com o 6timo (aM), encontrado manualmente.
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3.1.1 Familia I

A figura (7) demonstra que a ILT possui dificuldade em definir tempos de relaxacdo muito

proximos, isto ¢, dentro da mesma ordem de grandeza. Através da analise dos graficos € possivel

notar que mesmo quando a ILT falha em dividir picos proximos, a resposta obtida ¢ geralmente um

unico pico largo, que engloba os tempos de relaxacao dos dois picos individuais. Assim, mesmo que

a ferramenta ndo consiga diferenciar entre tempos proximos, ela ainda consegue apontar em qual

regido estdo os tempos de relaxagdo da amostra.
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Figura 7: ILTs sobre a Familia I: a) Distribui¢@o bi-exponencial original; b) Distribui¢do bi-exponencial obtida com o

¢) Distribuicao bi-exponencial obtida com L d) Distribuicao tri-exponencial original; e) Distribuigdo tri-exponencial

obtida com s f) Distribuicao tri-exponencial obtida com a,. Fonte: Elaborada pelo Autor

3.1.2 Familia II

Na figura (8) novamente observamos a tendéncia de ILT de agregar picos proximos em um

pico geral mais largo. Aqui, este efeito ¢ ainda mais pronunciado, pois 0s picos pequenos possuem

contribuicdes menores, que dificilmente sdo percebidas pela ferramenta. Nestes casos, a solugdo

tipicamente ¢ um pico Unico, com posicdo semelhante ao pico de maior amplitude da distribuicao

original. Mais uma vez, vemos que o ¢ um pouco acima do ideal, embora ainda proporcione uma

decomposicao similar a obtida com .
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Figura 8: ILTs sobre a Familia II: a) Distribui¢do bi-exponencial original; b) Distribui¢do bi-exponencial obtida com o

¢) Distribuigdo bi-exponencial obtida com aM;d) Distribuicao tri-exponencial original; ¢) Distribuigao tri-exponencial

obtida com s f) Distribuicao tri-exponencial obtida com a,. Fonte: Elaborada pelo Autor

3.1.3 Familia I1I

Esta familia, com distribui¢cdes espacadas e contribui¢des similares, se mostrou o caso mais

favoravel para a ILT. Como evidenciado pelas figuras (9¢) e (9f), € possivel recuperar os tempos de

relaxacdo com bastante confiabilidade, uma vez escolhido um valor de o apropriado. Novamente

vemos os efeitos de sobre-atenuagdo nas curvas da figura (9¢), causado pelo valor ligeiramente

elevado de Q.
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Figura 9: ILTs sobre a Familia III: a) Distribui¢do bi-exponencial original; b) Distribui¢do bi-exponencial obtida com;
c) Distribuicdo bi-exponencial obtida com o ” ;d) Distribuigdo tri-exponencial original; e) Distribuicao tri-exponencial

obtida com s f) Distribuicao tri-exponencial obtida com a,. Fonte: Elaborada pelo Autor
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A curva na figura (9¢) também exibe uma reta horizontal elevada em relagdo ao eixo x, na
regido de 10~ até 107°. Esta reta ndo possui significado fisico e pode ser entendido como um artefato
computacional indesejado, que aparece com relativa frequéncia no uso da ILT. Pela natureza
mal-posta do problema, ¢ dificil apontar exatamente qual sua causa, mas ele geralmente surge
quando decompomos curvas com tempos de relaxa¢do curtos (na casa de 107 s). Este artefato

costuma ser agravado por valores elevados de a, como visivel ao comparar as figuras (9¢) e (91).

3.1.4 Familia IV

A figura (10e) mostra novamente a reta horizontal sobre os tempos mais curtos, indicando
que a ILT enfrenta dificuldades na recuperagao de tempos de relaxacdo muito distantes ou muito
curtos. Esta familia apresenta problemas na sua decomposi¢do, pois como visto na analise da
familia II, os picos grandes tendem a dominar a solugdo, dificultando a defini¢do dos picos
menores. Vemos que as solucdes desta familia sdo ruidosas, com picos indesejados se misturando

aos picos de interesse, dificultando a identificagao da solugao.
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Figura 10: ILTs sobre a Familia I'V: a) Distribui¢ao bi-exponencial original; b) Distribui¢do bi-exponencial obtida com
s ¢) Distribuicao bi-exponencial obtida com O(M;d) Distribuicao tri-exponencial original; ) Distribui¢ao

tri-exponencial obtida com s f) Distribuig@o tri-exponencial obtida com o, -Fonte: Elaborada pelo Autor

3.2 Dados reais

A aplicacdo da ILT sobre os dados experimentais resultou na figura (11), onde cada coluna
possui as distribuigdes de uma das amostras. Para todos os fittings, o pardmetro a foi encontrado

utilizando o palpite inicial da curva-L, que foi entdo refinado manualmente. Para a &agua
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desmineralizada, foram encontradas distribuigdes monoexponenciais.com T1 = 3.5 +0.1se
T2 = 1.98 £ 0.8s, visiveis na figuras (11a) e (11d) e condizentes com valores encontrados na

literatura [6]. Analogamente, também foram encontradas distribuicdes monoexponenciais para o

6leo mineral, com T1 =0.15+0.04 s ¢ T2 = 0.16 *+ 0.3 s, visiveis nas figuras (11b) e

(1Te).

Para a amostra mista, a contribuicdo da 4gua foi muito maior do que a do 6leo, resultando
na distribuicdo final similar as distribui¢des da agua pura. Ainda assim, ¢ possivel observar
componentes de baixa amplitude na regido correspondente aos tempos de relaxacdo do 6leo, tanto
na distribuicdo de T: quanto na de T:, como mostrado nas figuras (11c) e (11f), respectivamente.
Apesar dessa coincidéncia, a interpretacdo desses picos ¢ dificultada pelo fato de apresentarem
intensidades da mesma ordem de grandeza que os artefatos caracteristicos da ILT. Neste caso,
entretanto, o problema pode estar relacionado a grande diferenga de amplitude entre os picos, uma

condi¢do que, como observado nos casos sintéticos, nao ¢ ideal.
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Figura 11: Distribui¢des de tempos de relaxacdo obtidas dos dados reais. a) Distribuigdo T, da agua desmineralizada; b)
Distribui¢do T, do 6leo mineral; ¢) Distribuicdo T, da amostra mista de agua e 6leo; d) Distribui¢do T, da dgua

desmineralizada; e) Distribui¢do T, do 6leo mineral; f) Distribui¢do T, da amostra mista de agua e dleo;
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5 CONCLUSOES E CONSIDERACOES FINAIS

Apesar de mal-posta, a Transformada Inversa de Laplace ¢ uma ferramenta util para a
decomposi¢do de sinais exponenciais. Embora ela demande conhecimento por parte do operador,
boa parte dos sinais adquiridos experimentalmente possuem um formato favoravel para sua
utilizag¢ao na ILT, permitindo uma decomposicao eficaz.

Os testes revelaram que a ILT apresenta dificuldade em resolver tempos de relaxagdo muito
curtos, muito proéximos e de amplitude muito distinta. Notavelmente, a aquisicdo de tempos de
relaxacdo muito curtos ou muito proximos também ¢ problematica do ponto de vista experimental,
pois demanda equipamentos muito precisos € com baixos niveis de ruido. Assim, conclui-se que a
ILT exibe mais falhas justamente com os casos experimentais mais desafiadores.

Ademais, foi visto que a curva-L frequentemente fornece palpites iniciais um tanto elevados
para o parametro o, mas que ainda assim eles se encontram préximos o bastante do valor inicial
para servir como um palpite inicial valido, mas que ainda precisa passar pela parcimonia do
operador.

De maneira geral, os testes feitos com a ILT se mostraram eficientes para recuperagdo dos
tempos de relaxacdo seguindo algumas limitagdes, agora conhecidas. Como perspectiva futura,
pretende-se investigar mais amostras poliexponenciais de diferentes familias para que seja possivel
garantir a validade da ILT diante destes dados. Além disso, pretende-se trabalhar numa versao 2D
da ILT que ¢ capaz de gerar um mapa de correlacdes entre os pares de tempo de relaxacao de cada

componente da amostra.
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