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RESUMO 

 

A Relaxometria por Ressonância Magnética (RM) busca caracterizar substâncias pelos seus 

tempos de relaxação característicos. Algumas amostras possuem mais de um tempo de relaxação, 

resultando em uma distribuição poliexponencial de tempos característicos. A decomposição destas 

curvas é um problema matemático mal-posto que pode ser abordado utilizando a Transformada 

Inversa de Laplace (Inverse Laplace Transform, ou ILT, do inglês). Este trabalho apresenta uma 

implementação em Python da ILT, utilizando uma Decomposição de Valor Singular (singular value 

decomposition, ou SVD, do inglês) para calcular a solução da minimização de Tikhonov. Também 

foi implementado o método da curva-L, que auxilia na escolha do parâmetro de minimização do 

algoritmo da ILT. Este trabalho tem como finalidade criar uma ferramenta da ILT que possa ser 

acrescentada ao sistema do espectrômetro digital DMRS, desenvolvido no CIERMag. Para testar os 

métodos propostos, foram efetuados testes sobre dados sintéticos gerados computacionalmente em 

Python. Além dos testes sintéticos, também foram testados dados reais de sequências Inverse 

Recovery (IR) e Carr-Purcell-Meiboom-Gill (CPMG) sobre amostras de água desmineralizada e 

óleo mineral. Os testes sintéticos revelaram que a abordagem escolhida é capaz de decompor sinais 

exponenciais com sucesso, desde que os tempos de relaxação não sejam muito próximos, muito 

curtos ou possuam amplitudes muito diferentes. Nos testes experimentais, foram encontrados os 

valores das constantes de relaxação  e  para a água 𝑇
1
 =  3. 5 ± 0. 1 𝑠 𝑇

2
 =  1. 98 ± 0. 8 𝑠

desmineralizada e  e  para o óleo mineral. 𝑇
1
 = 0. 15 ± 0. 04 𝑠 𝑇

2
 =  0. 16 ± 0. 3 𝑠

Adicionalmente, foi verificado que a curva-L é capaz de fornecer uma estimativa consistente para o 

parâmetro de minimização, mas que o refinamento manual deste parâmetro ainda é necessário na 

maior parte dos casos. Como perspectiva futura, pretende-se verificar a eficiência da ILT para 

amostras bidimensionais.  

 

Palavras-chave: Ressonância Magnética Nuclear, Inversa de Laplace, Python 
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1​ INTRODUÇÃO 

 

A Ressonância Magnética Nuclear (RMN) é uma ferramenta útil em várias áreas de 

pesquisa e da medicina, que oferece métodos não invasivos para a análise de diversos tipos de 

amostra. Através de técnicas de RMN é possível estudar a estrutura molecular e o perfil bioquímico 

de diferentes materiais, como sementes [1] e meios porosos [2]. Dentro de RMN, a relaxometria é 

uma área que busca caracterizar substâncias pelos seus tempos característicos de relaxação. 

Diversas substâncias apresentam apenas um destes tempos característicos, podendo ser modeladas 

por uma curva monoexponencial. No entanto, é comum observar substâncias que possuem mais de 

um tempo de relaxação, cada um com sua respectiva contribuição exponencial para o sinal 

experimental, resultando numa curva de caráter poliexponencial. Com este sinal em mãos, é de 

interesse do pesquisador decompor esta curva poliexponencial em suas várias curvas constituintes, 

assim encontrando os diversos tempos de relaxação que compõem a amostra. No entanto, decompor 

sinais poliexponenciais é uma tarefa mal-posta [3,4], que admite infinitas soluções distintas. 

Partindo do princípio que a realidade física da amostra é idealmente modelada por apenas uma das 

soluções possíveis, é necessário introduzir uma ferramenta que ofereça meios para navegar entre as 

diversas soluções do problema. Tipicamente, esta decomposição é feita através da Transformada 

Inversa de Laplace (Inverse Laplace Transform, ou ILT, do inglês). 

Neste trabalho, foi feita uma implementação computacional da ILT em Python. A 

implementação escolhida utiliza a Regularização de Tikhonov [5], e visa ser implementada no 

sistema do CIERMag, especificamente como parte do Digital Magnetic Resonance Spectrometer 

(DMRS). Além da implementação da ILT, também foi feita a implementação da curva-L, uma 

ferramenta numérica capaz de fornecer uma estimativa consistente para o parâmetro de 

minimização, para auxiliar a utilização da ILT. Com o intuito de testar as ferramentas 

implementadas foram feitos testes com dados sintéticos compostos por curvas exponenciais geradas 

em Python, além de testes feitos sobre dados reais, obtidos de sequências IR e CPMG de amostras 

de água desmineralizada e óleo mineral. 

Os testes sintéticos revelaram que a abordagem escolhida é capaz de decompor sinais 

exponenciais com sucesso, desde que os tempos de relaxação não sejam muito próximos, muito 

curtos ou de amplitudes muito diferentes. Nos testes experimentais, foram encontrados os valores 

das constantes de relaxação  e  para a água 𝑇
1
 =  3. 5 ± 0. 1 𝑠 𝑇

2
 =  1. 98 ± 0. 8 𝑠

desmineralizada e  e  para o óleo mineral. O que 𝑇
1
 = 0. 15 ± 0. 04 𝑠 𝑇

2
 =  0. 16 ± 0. 3 𝑠

3 
 



revela que a atual versão da ILT é capaz de encontrar corretamente tempos de relaxação de amostras 

monoexponenciais. Como objetivo futuro, buscamos melhorar a implementação da ILT para 

amostras poliexponenciais além de implementar a ILT 2D capaz de gerar mapas de correlação entre 

os tempos de relaxação.  

 

2​ FUNDAMENTAÇÃO TEÓRICA 
 

 2.1 Precessão de Larmor 

Os fenômenos de RMN são observados em partículas que possuem momento magnético  e µ
→

momento angular associado , onde  é a constante giromagnética característica de cada 𝐼
→

=  µ
→

/γ γ

núcleo. Quando posicionamos o núcleo em uma região com um campo magnético externo , a 𝐵
0

→

interação entre este campo e o momento  gera na partícula um torque  que, aplicado ao momento µ
→

τ
→

angular , dá origem à equação (1): 𝐼
→

          ​ ​ ​ ​            (1) τ
→

= γ𝐼
→

× 𝐵
0

→

A resposta da partícula é o movimento de precessão do vetor  em torno do eixo de , µ
→

𝐵
0

→

como representado na figura (1). Este movimento é chamado de precessão de Larmor, que ocorre a 

uma frequência específica, dada pela expressão (2) denominada frequência de Larmor. 

 ​ ​ ​ ​ ​            (2)   ω
0

= γ|𝐵
0

→
|

       

 
Figura 1: Representação do momento magnético de uma partícula 

precessionando em torno do eixo do de um campo magnético . Fonte: adaptado de Marcolan, J. [6] 𝐵
0

→
= 𝐵

0
𝑧
^
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Quando submetido a um campo magnético externo, o momento magnético do núcleo é 

forçado para um de dois autoestados possíveis, de acordo com o Hamiltoniano de Zeeman: com 

alinhamento paralelo ou antiparalelo ao campo. O estado paralelo possui menor energia e é mais 

provável. Nesta configuração, as partículas se tornam capazes de absorver energia, saltando para um 

estado mais energético. Utilizando campos magnéticos de curta duração (pulsos) é possível forçar 

transições para o estado antiparalelo, desde que a energia fornecida pelo pulso seja exatamente a 

energia de transição. Para tal, a frequência do pulso precisa ser exatamente a frequência de Larmor. 

Essa frequência está situada na faixa das radiofrequências (RF), sendo proporcional à intensidade 

do campo e a constante giromagnética núcleo. Para para o caso do próton do Hidrogênio (1H),a 

constante giromagnética vale 42.57 MHz/T.  

Quando submetidos a esse campo magnético externo, a maioria dos momentos magnéticos 

da amostra é forçada para o estado paralelo a , como ilustrado na figura (2). Nesta configuração, 𝑧
^

surge um vetor de magnetização total , dado pela soma de todos os momentos magnéticos da 𝑀
→

amostra, como ilustrado em (3): 

​​ ​ ​ ​          (3) 𝑀
→

=
𝑖

𝑁

∑ µ
→

𝑖

 

 
Figura 2: a) Representação dos spins na ausência de campo magnético, sem alinhamento definido. b) Representação dos 

submetidos a um campo magnético, alinhados a  e dando origem ao vetor . Fonte: Elaborada pelo autor. 𝑧
^

𝑀
→

 

2.2 Relaxometria 

A relaxometria por Ressonância Magnética é o estudo do retorno da magnetização à 

condição de equilíbrio após a aplicação de um pulso de excitação. Substâncias variadas apresentam 
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tempos de relaxação distintos, fazendo com que relaxometria possa ser usada para estudar a 

concentração destas substâncias em várias amostras.  

A aplicação de um pulso de RF faz com que o vetor de magnetização  saia da situação de 𝑀
→

equilíbrio termodinâmico, ou seja, alinhada com o campo magnético externo, e passe a precessionar 

no plano transversal, ortogonal a direção do campo externo. O que observamos do referencial do 

laboratório é um tombamento do vetor , que agora passa a descrever um ângulo  com relação a 𝑀
→

θ 𝑧
^

, denominado flip angle, como visto na figura (3). Esta nova direção de  dá origem a uma 𝑀
→

componente transversal da magnetização.  

 
Figura 3: Representação do vetor magnetização total tombando por um flip angle . Fonte: Elaborada pelo autor θ

 

Após o término do pulso de RF, a magnetização tende a retornar a sua posição de equilíbrio 

termodinâmico, paralela a . Durante este processo, ocorrem tanto a perda da componente 𝑧
^

transversal quanto a recuperação da componente longitudinal da magnetização. Estes processos 

ocorrem por fenômenos físicos distintos e são modelados por tempos característicos distintos. O 

estudo destes processos, sua medição e modelagem formam a base da área da relaxometria de 

RMN. 

A recuperação longitudinal da amostra é dada pela interação spin-rede, que dissipa a energia 

ganha pelos núcleos, permitindo que o vetor retorne à posição relaxada. Este processo é mapeado 

por uma constante de tempo denominada , que pode ser medida por experimentos de recuperação 𝑇
1

inversa (inverse recovery, IR). Neste caso, o sinal obtido possui o formato de uma curva de 

recuperação exponencial, dado pela equação (4) e exemplificado na figura (4b): 

 
​ ​ ​ ​            (4) 𝑆(𝑡) = 𝑆

0
1 − 𝑒𝑥𝑝(− 𝑡/𝑇

1
)[ ] 
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Figura 4: a) Representação do retorno da magnetização  à direção . b) Gráfico ilustrativo da recuperação da 𝑀
→

𝑧
^

componente longitudinal  ao longo do tempo. c) Gráfico ilustrativo da perda da componente transversal da 𝑀
𝑧

magnetização  ao longo do tempo. Fonte: Elaborada pelo autor​𝑀
𝑥𝑦

 
Já a perda da componente transversal se dá pela interação spin-spin, que causa 

inomogeneidades no campo magnético e acarreta em pequenas variações locais da frequência de 

Larmor. Deste modo, pouco após a aplicação do pulso de RF, a precessão dos spins perde coerência 

de fase, de modo que suas componentes transversais passam a apontar para direções aleatórias. 

Neste ponto, a componente transversal do vetor  foi completamente perdida. Este processo de 𝑀
→

perda é dado por uma constante de tempo denominada , que pode ser medida por experimentos 𝑇
2

de eco de spin, como a sequência Carr-Purcell-Meiboom-Gill (CPMG). Aqui, o sinal obtido é uma 

curva de decaimento exponencial, dado pela equação (5) e exemplificado em (4c): 

 
​ ​ ​ ​ ​            (5) 𝑆(𝑡) = 𝑆

0
𝑒𝑥𝑝(− 𝑡/𝑇

2
)

 
 

2.3 A Transformada Inversa de Laplace 

​ Diversos tipos de amostras como sementes [1] ou até mesmo o sistema nervoso [7], 

possuem mais de um tempo de relaxação, resultando em um sinal poliexponencial que não pode 

mais ser decomposto por um fitting exponencial simples. A decomposição destas curvas é um 

problema matemático mal-posto, pois existem infinitas maneiras diferentes de decompô-las. Deste 

modo, é necessário desenvolver uma ferramenta de análise que não somente consiga decompor o 

sinal poliexponencial, mas que também ofereça algum recurso para tentar navegar entre as diversas 

soluções indesejadas do problema.  
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1.2.1 Integrais de Fredholm 

A teoria por trás do uso da ILT é melhor explicada com o uso das Integrais de Fredholm do 

primeiro tipo [3]. Elas são uma classe de equações integrais que busca reconstruir uma função  𝑓(𝑥)

através da expressão exibida em (6): 

     ​ ​ ​             ​            (6) 𝑓(𝑥) =
0

∞

∫ ϕ(𝑡)𝐾(𝑥, 𝑡)𝑑𝑡

Onde  é a função de kernel, que confere o formato geral da função ; e  é o 𝐾(𝑥, 𝑡) 𝑓 ϕ(𝑡)

mapa de amplitudes, que informa os valores relevantes do kernel para a integração em . 𝑡

Para um sinal de decaimento exponencial  (como dado pela expressão (5)), o kernel 𝑆(𝑡)

correspondente é dado por (7): 

 ​ ​ ​       ​            (7) 𝐾(𝑇
2
, 𝑡) = 𝑒𝑥𝑝(− 𝑡/𝑇

2
)

​ Onde  indica a constante característica de decaimento. 𝑇
2

​ É possível então, reconstruir o sinal  através da ação deste kernel sobre um mapa de 𝑆

amplitudes :  ϕ(𝑇
2
)

        ​ ​            (8) 𝑆(𝑡) =
0

𝑥

∫ ϕ(𝑇
2
) 𝑒𝑥𝑝(− 𝑡/𝑇

2
) 𝑑𝑇

2
 =  ℒ{ϕ(𝑇

2
)}

 

Como evidenciado em (8), a integral de Fredholm para uma curva exponencial decrescente é 

equivalente à transformada de Laplace do mapa de amplitudes. Em um cenário experimental,  é 𝑆(𝑡)

conhecido, enquanto  precisa ser descoberto.  ϕ(𝑇
2
)

Como nos interessamos especificamente no mapa , podemos isolá-lo em (8) através da ϕ(𝑇
2
)

Transformada Inversa de Laplace. 

            ​ ​ ​ ​                                   ​                        (9)    ϕ(𝑇
2
) = ℒ−1{𝑆(𝑡)}

 
1.2.2 Regularização de Tikhonov 

Para este trabalho foi escolhida a Regularização de Tikhonov como ferramenta de inversão, 

segundo a abordagem proposta em [4]. 

Para que possa ser tratado computacionalmente, o problema deve ser discretizado. Da 

discretização de (8), surge a equação matricial (10): 
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       ​ ​ ​ ​ ​           ​ ​ ​ ​ ​                  (10) 𝑠 = 𝑘𝑓
​  

Onde  é o vetor de magnitudes, obtido experimentalmente,  é a versão matricial do kernel 𝑠 𝑘

e  o mapa vetorial de amplitudes. Apenas  e  são conhecidos. 𝑓 𝑠 𝑘

Para a resolução do sistema (10), utilizamos a Regularização de Tikhonov: 

 
   ​ ​ ​          ​ ​ ​                       (11) 𝑎𝑟𝑔𝑚𝑖𝑛

𝑓
 𝑘𝑓 − 𝑠| || |2 + α 𝑓| || |2⎡⎢⎣

⎤⎥⎦
 
 
​ Na regularização (11) o primeiro termo é o termo de resíduo e equivale ao método dos 

mínimos quadrados. O segundo termo é o termo da norma, que visa penalizar soluções com norma 

grande. A regularização de Tikhonov se baseia na hipótese de que a solução correta do problema é 

suave e de norma pequena. 

​ O parâmetro  introduzido na expressão (11) pode ser ajustado para se obter mais ou menos α

atenuação sobre a solução. Quando  é pequeno, o termo de norma pouco atua na minimização e a α

resposta obtida é ruidosa, similar à resposta dos mínimos quadrados. Quando  é grande, o termo da α

norma é supervalorizado em relação ao termo do resíduo, resultando numa resposta excessivamente 

atenuada, com perda de detalhamento. Este fenômeno é conhecido como sobre-atenuação. 

​ Pela natureza mal-posta do problema, não existe critério exato para se determinar o valor de 

, mas ainda é possível utilizar métodos auxiliares, como a curva-L, para se estimar palpites α

iniciais. 

 

1.2.3 Decomposição do Valor Singular (SVD) 

A regularização de Tikhonov pode ser implementada através de uma Decomposição de 

Valor Singular (Singular Value Decomposition, ou SVD, do inglês) [4], que permite encontrar a 

solução com uma quantidade reduzida de dados: 

A SVD consiste em decompor uma matriz arbitrária, , em três outras: ,  e , de acordo 𝑘 Σ 𝑈 𝑉
com (12): 

 ​ ​ ​ ​ ​          (12) 𝑘 = 𝑈Σ𝑉𝑇

 

A matriz  contém os vetores singulares à esquerda de  em suas colunas, enquanto a matriz 𝑈 𝑘

 contém os vetores singulares à direita de  em suas colunas.  é diagonal e contém os valores 𝑉 𝑘 Σ

singulares de  em ordem decrescente. 𝑘
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Utilizando a SVD para decompor a matriz de kernel , é possível descrever o vetor de 𝑘

soluções, , como o somatório (13), que é análogo à minimização (11): 𝑓

 

​ ​ ​ ​ ​          (13) 
𝑖=1

𝑝𝑜𝑠𝑡𝑜(𝐴)

∑ γ
𝑖
(𝑢

𝑖
𝑇𝑠 𝑣

𝑖
)/σ

𝑖

 

Em (13),  e  são os i-ésimos vetores singulares das matrizes  e ,  é o i-ésimo valor 𝑢
𝑖

𝑣
𝑖

𝑈 𝑉 σ
𝑖

singular de  e é um fator de filtro proporcional a , com formato: Σ γ
𝑖
 α

                                                 ​          (14) γ
𝑖

= σ
𝑖
2/(σ

𝑖
2 +  α2)

 

1.3 O método da Curva-L 

Como mencionado, não existe um método exato para se determinar o parâmetro . Mesmo α

assim, existem ferramentas que podem gerar palpites iniciais para este parâmetro, como é o caso do 

método da curva-L [4,8] 

O método da curva-L consiste em acompanhar individualmente o termo do resíduo e o 

termo de norma da expressão (11) ao longo de várias transformadas sobre um mesmo conjunto de 

dados, feitas com  variado. Denotamos  e  o resíduo e a norma obtidos para um dado α ρ(α) η(α)

valor de .  α

 

 
Figura 5: Gráfico de curva-L. Plot paramétrico da norma( ) x resíduo( ). Fonte: Elaborado pelo autor. α α

 

10 
 



Com estes vetores, é feito um plot paramétrico, da forma ( , ), que tipicamente ρ(α) η(α)

resulta em um gráfico com uma curva em formato de “L”, como visto na figura (5). 
 

O gráfico evidencia que para  muito grande ou muito pequeno, um dos termos domina a α

solução. O método se baseia na hipótese de que a melhor solução seria balanceada, com norma e 

resíduo de igual importância na minimização. Assim, estimamos que o melhor valor de  se α

encontra no ponto de maior curvatura do gráfico, onde nenhum dos termos domina a solução. Deste 

modo, após feito o gráfico, é possível encontrar  com a fórmula para a curvatura: α

 

  ​ ​ ​ ​  ​          (15) κ(α) = ρ'η'' − ρ''η''

((ρ')2+(η')2)3/2

 

Onde as linhas indicam derivadas em relação a . α

 

3​ MATERIAIS E MÉTODOS 

 

2.1 Testes com dados sintéticos 

A fim de compreender os limites da ILT em várias situações, foram feitos testes com dados 

sintéticos, gerados numericamente em Python, através da implementação de classes customizadas 

para criação de curvas exponenciais. Para a geração dos dados, foi utilizada a relação (10), onde 

desta vez queremos realizar a multiplicação direta, , para se obter o sinal  desejado. Para todos 𝑘𝑓 𝑠

os testes, foi utilizado o kernel  descrito na relação (7), enquanto o vetor de amplitudes  foi 𝑘 𝑓

gerado individualmente para cada teste. 

Para gerar os mapa de amplitudes, foi feita uma sobreposição de distribuições log-normais, 

dadas pela função de densidade de probabilidade (16): 

 

     ​ ​ ​         (16)       
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Figura 6: Exemplo de sobreposição de dois picos log-normais, centrados em 10-3 e 10-1. Fonte: Elaborada pelo autor 

 

A expressão (16) descreve uma distribuição com um pico de desvio , centrado em  e σ µ

simétrico em um espaço logarítmico. Várias distribuições são sobrepostas para se criar um mapa de 

amplitudes poliexponencial, que é então multiplicado pelo kernel , dando origem a um sinal  𝑘 𝑠

poliexponencial. 

Para entender o funcionamento da ILT em condições mais realistas, todos os sinais gerados e 

testados foram acrescidos de ruído gaussiano simétrico, de amplitude igual a 1% da amplitude do 

sinal, simulando uma relação sinal-ruído de 1 para 100. Foram gerados dois grupos de dados 

sintéticos: com 2 e com 3 tempos de relaxação. A fim de testar uma ampla gama de casos, cada um 

dos grupos se subdivide em 4 famílias distintas: Família I: picos próximos com amplitudes 

próximas; Família II: picos próximos com amplitudes distintas; Família III: picos distantes com 

amplitudes próximas e Família IV: picos distantes com amplitudes distintas. Os parâmetros das 

curvas do grupo bi-exponencial constam na tabela (1), enquanto os parâmetros das curvas do grupo 

tri-exponencial constam na tabela (2): 

 

Família Tempos de decaimento Amplitudes Sigmas 

I 8x10-2 2x10-2 0.5 0.5 0.30 0.15 

II 2x10-3 9x10-3 0.3 1.0 0.30 0.30 

III 2x10-1 4x10-1 1.0 0.8 0.40 0.40 

IV 8x10-3 5x10-1 0.6 2.0 0.30 0.30 
Tabela 1: Parâmetros das curvas bi-exponenciais sintéticas: valor médio, amplitude e desvio padrão das distribuições 

log-normais utilizadas para modelar as curvas das quatro famílias utilizadas. 
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Família Tempos de Decaimento Amplitudes Sigmas 

I 4x10-3 1x10-2 6x10-2 1.2 1.0 0.8 0.30 0.30 0.30 

II 9x10-3 2x10-2 5x10-2 0.2 0.5 1.4 0.20 0.20 0.20 

III 1.4x10-1 8x10-2 6x10-3 1.0 0.9 1.1 0.30 0.40 0.50 

IV 7.5x10-2 1.5x10-3 7x10-1 2.0 0.6 2.2 0.2 0.4 0.2 
Tabela 2: Parâmetros das curvas tri-exponenciais sintéticas: valor médio, amplitude e desvio padrão das distribuições 

log-normais utilizadas para modelar as curvas das quatro famílias utilizadas. 
 

2.1 Testes com dados reais 

Além dos testes com dados sintéticos, também foram feitos testes com amostras reais. 

Foram testadas amostras de água desmineralizada, óleo mineral, além de uma amostra combinada 

de água e óleo, numa concentração de 4 partes de água para 1 de óleo. Os dados foram coletados 

com experimentos de IR e CPMG, feitos pela aluna Maria Vitória Lima da Silva, aluna de iniciação 

científica do CIERMag, como parte de seu trabalho de conclusão de curso. A coleta de dados foi 

efetuada inteiramente no espectrômetro DMRS, com campo  = 0.54 T, operando na frequência de 𝐵
0

23,25 MHz, para núcleos de Hidrogênio (1H), mas com ajuste fino de frequência para cada uma das 

amostras. Os pulsos de RF foram calibrados para a duração de 30  com amplitudes dos pulso de µ𝑠

180º e 90º devidamente ajustadas. Os parâmetros de aquisição das sequências podem ser 

encontrados nas tabelas (3), para CPMG, e (4) para IR. 

CPMG 

 Água Óleo Água + Óleo 

TR (ms) 60 000 50 000 35 000 

TE (ms) 15 5 14 

Número de Ecos 800 300 800 

Número de pontos  64 64 64 

Médias 4 4 4 
Tabela 3: Parâmetros de aquisição das sequências CPMG da amostra de água, de óleo e de água e óleo misturados. 
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IR 

 Água Óleo Água + Óleo 

T Min (ms) 1 1 1 

T Max (ms) 25 000 70 000 23 000 

TR (ms) 40 000 50 000 35 000 

Repetições 40 60 40 

Número de pontos 64 64 64 

Médias 4 4 4 
Tabela 4: Parâmetros de aquisição das sequências IR da amostra de água, de óleo e de água e óleo misturados. 

2.2 O DMRS 

Existem diversas opções comerciais de espectrômetros de RMN, fornecidos por empresas 

como Bruker ou Siemens. Apesar destas máquinas serem confiáveis, elas oferecem poucas opções 

de sequências experimentais, além de não oferecerem quase nenhuma customização destas 

sequências. Para contornar essa falta de opções, o CIERMag desenvolveu o DMRS [9], um 

espectrômetro digital de design e produção própria. Feito com hardware programável (field 

programmable gate arrays, ou FPGAs), o DMRS foi idealizado para permitir a aplicação de 

quaisquer sequências de pulsos que o usuário desejar. 

Para tal, foi desenvolvido o software PyMR [10], um framework que permite o 

gerenciamento de experimentos e a criação de novas sequências de pulsos. Também foi 

desenvolvida no CIERMag a “F language”, uma linguagem de programação dedicada à criação de 

novas sequências de pulsos.  

4​ RESULTADOS 

 

3.1 Dados Sintéticos 

As figuras (7) até (10) exibem as distribuições sintéticas descritas nas tabelas (1) e (2), 

decompostas através da ILT. Em todas as figuras, a coluna da esquerda exibe a distribuição original, 

a coluna do meio exibe a decomposição obtida com  gerado pela curva-L ( ) e a coluna da direita α α
𝐿

exibe a decomposição com  ótimo ( ), encontrado manualmente. α α
𝑀
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​ 3.1.1 Família I 

A figura (7) demonstra que a ILT possui dificuldade em definir tempos de relaxação muito 

próximos, isto é, dentro da mesma ordem de grandeza. Através da análise dos gráficos é possível 

notar que mesmo quando a ILT falha em dividir picos próximos, a resposta obtida é geralmente um 

único pico largo, que engloba os tempos de relaxação dos dois picos individuais. Assim, mesmo que 

a ferramenta não consiga diferenciar entre tempos próximos, ela ainda consegue apontar em qual 

região estão os tempos de relaxação da amostra.  

 

Figura 7: ILTs sobre a Família I: a) Distribuição bi-exponencial original; b) Distribuição bi-exponencial obtida com ; α
𝐿

c) Distribuição bi-exponencial obtida com ; d) Distribuição tri-exponencial original; e) Distribuição tri-exponencial α
𝑀

obtida com ; f) Distribuição tri-exponencial obtida com . Fonte: Elaborada pelo Autor α
𝐿

α
𝑀

 

3.1.2 Família II 

Na figura (8) novamente observamos a tendência de ILT de agregar picos próximos em um 

pico geral mais largo. Aqui, este efeito é ainda mais pronunciado, pois os picos pequenos possuem 

contribuições menores, que dificilmente são percebidas pela ferramenta. Nestes casos, a solução 

tipicamente é um pico único, com posição semelhante ao pico de maior amplitude da distribuição 

original. Mais uma vez, vemos que  é um pouco acima do ideal, embora ainda proporcione uma α
𝐿

decomposição similar à obtida com   α
𝑀

.
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Figura 8: ILTs sobre a Família II: a) Distribuição bi-exponencial original; b) Distribuição bi-exponencial obtida com ; α

𝐿
c) Distribuição bi-exponencial obtida com ;d) Distribuição tri-exponencial original; e) Distribuição tri-exponencial α

𝑀
obtida com ; f) Distribuição tri-exponencial obtida com . Fonte: Elaborada pelo Autor α

𝐿
α

𝑀

3.1.3 Família III 

Esta família, com distribuições espaçadas e contribuições similares, se mostrou o caso mais 

favorável para a ILT. Como evidenciado pelas figuras (9c) e (9f), é possível recuperar os tempos de 

relaxação com bastante confiabilidade, uma vez escolhido um valor de  apropriado. Novamente α

vemos os efeitos de sobre-atenuação nas curvas da figura (9e), causado pelo valor ligeiramente 

elevado de . α
𝐿

 

Figura 9: ILTs sobre a Família III: a) Distribuição bi-exponencial original; b) Distribuição bi-exponencial obtida com; ​
c) Distribuição bi-exponencial obtida com  ;d) Distribuição tri-exponencial original; e) Distribuição tri-exponencial α

𝑀
obtida com ; f) Distribuição tri-exponencial obtida com . Fonte: Elaborada pelo Autor α

𝐿
α

𝑀
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A curva na figura (9e) também exibe uma reta horizontal elevada em relação ao eixo x, na 

região de 10-3 até 10-5. Esta reta não possui significado físico e pode ser entendido como um artefato 

computacional indesejado, que aparece com relativa frequência no uso da ILT. Pela natureza 

mal-posta do problema, é difícil apontar exatamente qual sua causa, mas ele geralmente surge 

quando decompomos curvas com tempos de relaxação curtos (na casa de 10-3 s). Este artefato 

costuma ser agravado por valores elevados de , como visível ao comparar as figuras (9e) e (9f).  α

3.1.4 Família IV 

A figura (10e) mostra novamente a reta horizontal sobre os tempos mais curtos, indicando 

que a ILT enfrenta dificuldades na recuperação de tempos de relaxação muito distantes ou muito 

curtos. Esta família apresenta problemas na sua decomposição, pois como visto na análise da 

família II, os picos grandes tendem a dominar a solução, dificultando a definição dos picos 

menores. Vemos que as soluções desta família são ruidosas, com picos indesejados se misturando 

aos picos de interesse, dificultando a identificação da solução. 

 

Figura 10: ILTs sobre a Família IV: a) Distribuição bi-exponencial original; b) Distribuição bi-exponencial obtida com 
; c) Distribuição bi-exponencial obtida com ;d) Distribuição tri-exponencial original; e) Distribuição α

𝐿
α

𝑀
tri-exponencial obtida com ; f) Distribuição tri-exponencial obtida com .Fonte: Elaborada pelo Autor α

𝐿
α

𝑀

 

3.2 Dados reais 

A aplicação da ILT sobre os dados experimentais resultou na figura (11), onde cada coluna 

possui as distribuições de uma das amostras. Para todos os fittings, o parâmetro  foi encontrado α

utilizando o palpite inicial da curva-L, que foi então refinado manualmente. Para a água 
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desmineralizada, foram encontradas distribuições monoexponenciais.com  e 𝑇
1
 =  3. 5 ± 0. 1 𝑠

, visíveis na figuras (11a) e (11d) e condizentes com valores encontrados na 𝑇
2
 =  1. 98 ± 0. 8 𝑠

literatura [6]. Analogamente, também foram encontradas distribuições monoexponenciais para o 

óleo mineral, com  e , visíveis nas figuras (11b) e 𝑇
1
 = 0. 15 ± 0. 04  𝑠 𝑇

2
 =  0. 16 ± 0. 3 𝑠

(11e). 

Para a amostra mista, a contribuição da água foi muito maior do que a do óleo, resultando 

na distribuição final similar às distribuições da água pura. Ainda assim, é possível observar 

componentes de baixa amplitude na região correspondente aos tempos de relaxação do óleo, tanto 

na distribuição de T₁ quanto na de T₂, como mostrado nas figuras (11c) e (11f), respectivamente. 

Apesar dessa coincidência, a interpretação desses picos é dificultada pelo fato de apresentarem 

intensidades da mesma ordem de grandeza que os artefatos característicos da ILT. Neste caso, 

entretanto, o problema pode estar relacionado à grande diferença de amplitude entre os picos, uma 

condição que, como observado nos casos sintéticos, não é ideal. 

​

Figura 11: Distribuições de tempos de relaxação obtidas dos dados reais. a) Distribuição T1 da água desmineralizada; b) 

Distribuição T1 do óleo mineral; c) Distribuição T1 da amostra mista de água e óleo; d) Distribuição T2 da água 

desmineralizada; e) Distribuição T2 do óleo mineral; f) Distribuição T2 da amostra mista de água e óleo;  

18 
 



5​ CONCLUSÕES E CONSIDERAÇÕES FINAIS 

 

Apesar de mal-posta, a Transformada Inversa de Laplace é uma ferramenta útil para a 

decomposição de sinais exponenciais. Embora ela demande conhecimento por parte do operador, 

boa parte dos sinais adquiridos experimentalmente possuem um formato favorável para sua 

utilização na ILT, permitindo uma decomposição eficaz. 

Os testes revelaram que a ILT apresenta dificuldade em resolver tempos de relaxação muito 

curtos, muito próximos e de amplitude muito distinta. Notavelmente, a aquisição de tempos de 

relaxação muito curtos ou muito próximos também é problemática do ponto de vista experimental, 

pois demanda equipamentos muito precisos e com baixos níveis de ruído. Assim, conclui-se que a 

ILT exibe mais falhas justamente com os casos experimentais mais desafiadores.  

Ademais, foi visto que a curva-L frequentemente fornece palpites iniciais um tanto elevados 

para o parâmetro , mas que ainda assim eles se encontram próximos o bastante do valor inicial α

para servir como um palpite inicial válido, mas que ainda precisa passar pela parcimônia do 

operador.  

De maneira geral, os testes feitos com a ILT se mostraram eficientes para recuperação dos 

tempos de relaxação seguindo algumas limitações, agora conhecidas. Como perspectiva futura, 

pretende-se investigar mais amostras poliexponenciais de diferentes famílias para que seja possível 

garantir a validade da ILT diante destes dados. Além disso, pretende-se trabalhar numa versão 2D 

da ILT que é capaz de gerar um mapa de correlações entre os pares de tempo de relaxação de cada 

componente da amostra.  
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