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Resumo

Sistemas chaveados aparecem naturalmente em certos modelos de processos fisicos, em que a di-
namica do sistema muda abruptamente segundo certas condi¢des. Mais recentemente, 0s sistemas
chaveados t€m despertado interesse devido aos sistemas de controle em que uma logica € utilizada
para selecionar um dentre virios comportamentos possiveis do sistema; isto € particularmente utili-
zado no contexto do projeto de multiplos controladores para uma tnica planta a fim de melhorar o
desempenho do sistema.

A andlise da estabilidade dos sistemas sob chaveamento ndo é uma questao trivial, pois o chave-
amento em um sistema introduz fendmenos nio observados nos subsistemas que o compdem; assim,
um sistema chaveado pode ser composto de subsistemas estaveis mas apresentar um comportamento
instdvel. Faz-se necessdria, por conseguinte, uma andlise mais refinada da estabilidade de sistemas
chaveados para obter condi¢cdes que garantam sua estabilidade, tanto do ponto de vista de andlise de
um sistema sob um chaveamento ou classe de chaveamentos quanto do ponto de vista de projeto de
sinal de chaveamento estabilizante para um sistema.

Este trabalho apresenta os principais resultados de estabilidade e estabilizacdo de sistemas cha-
veados obtidos nos ultimos anos, com enfoque tanto em resultados aplicdveis na pratica quanto em
técnicas matemadticas de andlise e estudo de sistemas chaveados. Um novo resultado sobre estabi-
lizagdo de sistemas de controle lineares planares a excitacdo persistente com taxa de convergéncia

arbitrdria também € apresentado.

Palavras-chave: sistemas chaveados, estabilidade, estabilizacdo, sistemas lineares, funcodes de
Lyapunov, fungdes de Lyapunov quadraticas comuns, teoremas reciprocos de Lyapunov, principios

variacionais, tempo de permanéncia, fun¢des de Lyapunov multiplas, excitacdo persistente.
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Abstract

Switched systems appear naturally when modeling certain physical processes in which the dynam-
ics of the system changes abruptly under certain conditions. More recently, switched systems have
attracted interest due to the use of control systems in which a certain logic is used to select one of
several possible behaviors of the system; this is particularly used in the context of design of multiple
controllers to a single plant in order to improve system performance.

The stability analysis of systems under switching is not trivial, since the switching introduces
phenomena not observed in subsystems that compose the original system; for instance, a switched
system may be composed of stable subsystems and yet present an unstable behavior. It is thus nec-
essary to perform a more refined analysis of the stability of switched systems to obtain conditions
that guarantee stability, both in terms of analysis of a system under a switching signal or a class of
switching signals and in terms of the choice of a switching signal that stabilizes a given system.

This paper presents the main results of stability and stabilization of switched systems obtained
in recent years, focusing both on results applicable in practice and on techniques of mathematical
analysis and study of switched systems. A new result on the stabilization of planar persistently excited

linear control systems with arbitrary rate of convergence is also presented.

Keywords: switched systems, stability, stabilization, linear systems, Lyapunov functions, com-
mon quadratic Lyapunov functions, converse Lyapunov theorems, variational principles, dwell time,

multiple Lyapunov functions, persistence of excitation.
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Résumé

Les systemes a commutation apparaissent naturellement dans la modélisation de quelques processus
physiques, dans lesquels la dynamique du systeéme change brusquement sous certaines conditions.
Plus récemment, les systemes a commutation ont suscité plus d’intérét en raison des systémes de
commande dans lesquels une logique est utilisée pour choisir un parmi plusieurs comportements
possibles du systéme ; ceci est particulierement utilisé dans le projet de plusieurs contréleurs pour un
seul systeme en vue d’améliorer sa performance.

L’analyse de la stabilité des syst¢tmes a commutation n’est pas triviale, car la commutation in-
troduit des phénomenes qui ne sont pas présents dans les sous-systemes qui composent le systeéme
d’origine ; ainsi, un systéme a commutation peut étre composé de sous-systemes stables et présenter
pourtant un comportement instable. Par conséquent, il est nécessaire de faire une analyse plus fine de
la stabilité des systeémes a commutation pour obtenir des conditions qui garantissent la stabilité, que
ce soit d’un point de vue d’analyse d’un systeme sous un signal ou une classe de signaux de commu-
tation ou d’un point de vue de projet de signal de commutation capable de stabiliser un systéme.

Ce document présente les principaux résultats de stabilité e stabilisation des systemes a com-
mutation obtenus dans les dernieéres années, en se concentrant a la fois sur des résultats applicables
en pratique et sur des techniques mathématiques d’analyse et d’étude de systetmes a commutation.
Un nouveau résultat sur la stabilisation de systémes de commande linéaires planaires a excitation

persistante avec un taux de convergence arbitraire est aussi présenté.

Mots-clés : systémes 2 commutation, stabilité, stabilisation, systemes linéaires, fonctions de Lya-
punov, fonctions de Lyapunov quadratiques communes, théoremes réciproques de Lyapunov, prin-

cipes variationnels, temps de permanence, fonctions de Lyapunov multiples, excitation persistante.
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Capitulo 1

Introducao

1.1 Sistemas hibridos

Sao conhecidos sob o0 nome de sistemas hibridos os sistemas dindmicos cujo comportamento é deter-
minado pela interagdo entre dindmicas continuas e discretas [2,3,26,32,43]. O estudo destes sistemas
tem atraido enorme interesse em pesquisa nos dltimos anos, reunindo pesquisadores de diversas dreas
como engenharia de controle, matemaética e ciéncias de computacdo, devido as suas indmeras apli-
cagdes em dreas como controle de sistemas mecanicos, controle de processos, indidstria automotiva,
sistemas de poténcia, controle de trafego aéreo, processos quimicos, sistemas de transporte, dentre
outros [2, 3,32].

Um exemplo elementar de sistema hibrido € o sistema de refrigeracdo de um quarto, composto
pelas caracteristicas térmicas do quarto, por um aparelho de ar-condicionado e por um elemento de
controle que decide quando acionar ou nio o aparelho de ar-condicionado [3]. Assim, as caracteris-
ticas térmicas do quarto e o aparelho de ar-condicionado fornecem uma dindmica continua da tem-
peratura, que interage com o elemento de controle, cuja dindmica ¢ discreta e s6 possui dois estados:
acionamento do ar-condicionado ou ndo. Esta interacdo pode assim ser modelada considerando-se
que a temperatura 6 do quarto € regida por um sistema dinamico Sy quando o ar-condicionado esta
desligado e por um outro sistema dinamico S; quando o ar-condicionado estd ligado, e a passagem de
um sistema a outro € feita através da légica de controle, que seleciona S; quando se estd no sistema Sy
e a temperatura ultrapassa um limiar 6y, e seleciona Sp quando se estd no sistema S; e a temperatura

cai abaixo de um limiar 0;, conforme a situagao da Figura 1.1.

0> 06y

Dinamica Dinamica
So Si

0 <6,

FIGURA 1.1: Modelo de sistema hibrido do sistema de refrigeracdo de um quarto.

Um outro exemplo de aplicacdo da modelagem por sistemas hibridos é no controle de motores
automotivos a combustao [7]. Um motor de combustio a quatro ciclos, por exemplo, possui uma

representacao hibrida natural, com quatro estados discretos, cada um regido por uma dindmica interna
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continua, a transicao entre estes estados sendo determinada pelo movimento dos pistdes do motor, que
depende, por sua vez, da dindmica interna, evidenciando a interligacdo entre as dindmicas continua
e discreta. Embora esta representacdo hibrida seja natural, o tratamento tradicional deste problema é
através de modelos continuos levando em conta apenas valores médios aproximados, o que torna a
analise do sistema mais simples, mas tem a desvantagem de ser apenas um modelo aproximado. Para
se poder aprimorar o funcionamento de um motor, atendendo a exigéncias de seguranga, conforto
dos passageiros e reducdo de emissdes e de consumo de combustivel, € necessario um modelo mais
preciso, que leve em conta o funcionamento interno do motor em cada ciclo, € um modelo hibrido

responde a estas exigéncias.

1.2 Sistemas chaveados

Em muitas aplicacgdes, o interesse principal estd na dindmica continua e suas propriedades, e a dina-
mica discreta tem apenas um papel secundario. Assim, ao invés de estudar em detalhes a dinAmica
discreta, pode-se simplesmente considerar que o sistema € descrito por vdrias dinamicas continuas e
que uma certa légica de chaveamento escolhe uma destas dinamicas, e estuda-se desta forma o com-
portamento do sistema segundo uma certa familia de 16gicas de chaveamento. Tais sistemas, em que
sdo dadas uma familia de dindmicas continuas e uma familia de chaveamentos entre estas dindmicas,
sdo chamados sistemas chaveados [26,32]. Os sistemas chaveados podem assim ser vistos como um
ponto de vista sobre os sistemas hibridos, em que se faz abstracdo da dindmica discreta precisa a fim
de se obter propriedades sobre a dindmica continua.

Matematicamente, pode-se descrever um sistema chaveado em R? através de uma familia de
aplicacdes f; : RY — R?, k € J, sendo J um conjunto de indices, e de uma funcio ¢ : R, — J constante

por partes, segundo a equagdo dinamica

X(t) = fou)(x(2)), teR;. (1.1)

O estado x é assim a valores em R? e o sinal de chaveamento & é a valores no conjunto de fndices J.
Podem-se também descrever sistemas chaveados a tempo discreto através de uma familia de equacdes

de diferencas, segundo
A+ 1= foy L), JeEN. (12)

O sinal de chaveamento ¢ determina qual das dindmicas fi, k € J, é seguida pelo sistema a cada
intervalo de tempo. O sinal ¢ pode ser visto de vérias formas, cada uma delas sendo mais adaptada
a um tipo de problema e a um tipo de andlise. Pode-se, por exemplo, considerar que o € um sinal
que depende unicamente de ¢, caso em que se diz que o chaveamento é dependente do tempo, ou
controlado pelo tempo. Em alguns casos, pode-se considerar igualmente que o depende também do
estado x, caso em que se diz que o sinal de chaveamento ¢ dependente do estado. Este sinal também
pode ter memdria, no caso em que o(r) depende de o(7) para T < ¢. Sob um ponto de vista de
controle, pode-se também considerar os casos em que ¢ é controlado, isto é, pode ser escolhido ou
modificado por projeto, ou autébnomo, em que ¢ vem de uma condi¢cdo natural de funcionamento

do sistema e ndo pode ser alterado. O chaveamento definido por ¢ também pode ser considerado
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deterministico ou aleatorio.

O interesse principal do estudo de um sistema chaveado sdo as propriedades da dinAmica da varié-
vel continua x que representa o estado do sistema. Neste documento, interessamo-nos as propriedades
de estabilidade e estabilizacdo dos sistemas (1.1) e (1.2). Assim, supondo que a origem é um ponto
de equilibrio destes sistemas, desejamos estudar as condi¢des sob as quais se pode garantir que uma
solucd@o x(z) de (1.1) (resp. uma solucdo x[;] de (1.2)) tenda a origem quando r — oo (resp. j — o).
No caso em que o sinal de chaveamento ¢ € controlado, ¢ também de interesse obter métodos de es-
colha do sinal ¢ a fim de garantir que, para o sinal ¢ escolhido, o sistema seja estdvel. Também é de

interesse investigar as propriedades de estabilizag¢do de um sistema de controle chaveado,

(1) = fo(r) (x(),u(t),  teR,

a tempo continuo, ou
xj+1] = for (il ulil),  jeN

a tempo discreto. O problema € entdo estudar a escolha de realimenta¢des de estado u = @ (x),
k € 9, de forma que o sistema (1) = fo(o) (x(1), @ (o) (x(1))) (resp. x[j+ 1] = fo1; (7], b1 (L))
seja estavel; pode também ser de interesse estudar o caso em que se dispde de apenas uma tUnica
realimentagdo de estado u = @ (x) para estabilizar o sistema, o que é particularmente util quando niao

se tem acesso direto ao sinal de chaveamento o©.

Um caso particular importante dos sistemas chaveados sdo os sistemas chaveados lineares, em
que cada aplicagio f; é linear e dada por f;(x) = Arx, com Ay € R?*?. Neste caso, o sistema (1.1) se
escreve

i1) = Ag(t),  1ER.,

e o sistema a tempo discreto (1.2) se escreve
x[j+1]=Aqxlj],  JjeEN

Apesar de ser um caso particular de sistema chaveado, os sistemas chaveados lineares sdo de grande
importancia e seu estudo tem atraido boa parte do trabalho de pesquisa em sistemas chaveados, com
o objetivo de estudar t6picos como estabilidade, controlabilidade e observabilidade e projetar contro-

ladores com boas caracteristicas de desempenho e estabilidade [4,11,13-15,17,29,40,43].

O estudo da estabilidade de sistemas chaveados lineares mostra que existem efeitos interessantes
que ocorrem devido a interacdo entre a dindmica continua e a légica de chaveamento. O seguinte

exemplo, inspirado de um exemplo similar de [17], mostra um destes efeitos.

Exemplo 1.1. Consideremos o sistema chaveado linear

x(t) :AG(,)x(t) (1.3)
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como(r)eJ={1,2}e

A -1 -9 A -1 1
= 5 2 =
S W T 9 1
As matrizes A e A, sdo ambas estaveis e possuem 0s mesmos autovalores 7L]72 = —1+3i. Con-

sideramos o sinal de chaveamento ¢ definido da seguinte forma: o € constante por partes, ¢
chaveia de 1 a 2 quando x,(¢) = 0 e a dindmica atual é 6(r~) = 1, e 0 chaveia de 2 a 1 quando

x1(t) =0 e a dindmica atual é (1) = 2; isto é,

2 seo(t”)=1lexy(t)=0,
o(t)=
1 seoc(t”)=2ex(t)=0.

O sinal o ¢ assim dependente do estado e com memdria. Notando por @, (r) e P, () as matrizes

fundamentais dos sistemas lineares x = Ajx e X = Ajx, respectivamente, temos

cos3t —3sin3t cos 3t %sin 3t

Q(r)=e" |, . , $ e .

38in3r  cos3t —3sin3¢t cos3t

Afirmamos que toda solu¢do nio identicamente nula deste sistema chaveado tende exponencial-
mente ao infinito quando r — +oo, e, assim, a origem do sistema chaveado ¢ instavel. Para ver isto,
comegamos considerando a trajetdria de condig@o inicial x(0) = (O 1) ' etalque 6(0) = 1. Pela
defini¢do de o, existe um intervalo [0,7) tal que o(¢) = 1 parat € [0,7;), e, assim, neste intervalo,
a solucdo se escreve

—3sin3t

x(t)y=e"

cos 3t

Assim, a solugdo gira no sentindo anti-hordrio em torno da origem. Pela definicdo de ¢, ocorre
um chaveamento para o(7) = 2 no instante em que a solug@o passa pelo eixo xj, isto €, no instante
= 7/6. Desta forma, o(r) = 1 para t € [0,7/6) e 6(%/6) = 2. Um célculo imediato a partir da

expressdo explicita mostra que
|x(t)|| > e parat € [0,7/s) (1.4)
e temos

—3e=7e

x(ofo) =0

Similarmente, ¢ é constante e igual a 2 num intervalo a partir de #/6, e, neste intervalo, temos

x(t) — 3! 008(3(t - n/ﬁ))
3sin(3(t — 7/6))

e, assim, a solug@o gira em torno da origem no sentido hordrio. Pela definicdo de o, este sinal

permanece em 2 até que a solucdo atinja o eixo xa, isto é, em ¢ = 7/3, instante em que ocorre um
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chaveamento para 1. Desta forma, 6(t) = 2 parat € [7/6,7/3) e 6(%/3) = 1. Um célculo imediato

a partir da expressdo explicita mostra que
|x(2)|| =3¢~ parat € [v/6,7/3) (1.5)

e temos
0

SCOR P

A solucdo volta assim para o eixo x, com o valendo 1, e, assim, seu comportamento a partir de
entdo pode ser deduzido do que ja foi estudado por homogeneidade. Em particular, por (1.4) e

(1.5), deduz-se que
x(t)|| > 3"e~("FD3 parat € [nf,(n+1)%), ne€N,
e, como 3¢~ > 1, deduz-se assim que ||x(¢)|| === +oo exponencialmente. O comportamento

desta solugdo estd ilustrado na Figura 1.2.

Solugéo x(t)
10 : ‘

FIGURA 1.2: Comportamento da solucéo x(t) do sistema chaveado do Exemplo 1.1 quando x(0) = (0,1)T e
c(0)=1.

A homogeneidade do sistema permite afirmar que ||x(7)] 2 e exponencialmente para

toda solucdo x(7) do sistema com condig¢@o inicial x(0) # 0 sobre o eixo x, e com ¢(0) = 1.
Similarmente, se a condigdo inicial x(0) # 0 estd sobre o eixo x; e 6(0) = 2, entdo basta notar
que a solugdo correspondente x(z) coincide com %(7 + #/6) para uma solugdo ¥ com condigdo
inicial £(0) # 0 sobre 0 eixo x; ¢ &(0) = 1, e, desta forma, [[x(¢)|| =" +oco exponencialmente.

Se x(#) é uma solu¢do com condi¢@o inicial fora dos eixos e com um certo valor de ¢(0),
entdo x gira em torno da origem, no sentido anti-hordrio se 6(0) = 1 e no sentido hordrio se
c(0) =2, até atingir um dos eixos, e, a partir deste ponto, x coincide com uma trajetdria descrita
anteriormente, de forma que ||x(¢)]] 127, +oo exponencialmente; isto vale igualmente para os

casos em que a condi¢@o inicial ndo-nula x(0) estd sobre o eixo x; € 6(0) = 1 ou em que x(0) estd

5
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sobre o eixo x; e 0(0) = 2.
Logo, toda solucdo nao identicamente nula do sistema chaveado (1.3) tende exponencialmente

ao infinito quando t — oo, €, assim, a origem é um ponto de equilibrio instdvel do sistema. [J

O interesse do Exemplo 1.1 é mostrar que, mesmo quando o chaveamento € realizado entre dois
sistemas que sdo, isoladamente, assintoticamente estaveis, o sistema chaveado pode ser instavel. A
referéncia [17] ressalta a importancia deste fato, lembrando que o chaveamento entre dois sistemas
assintoticamente estdveis pode ocorrer no controle da dinamica longitudinal de uma aeronave com
angulo de ataque restrito, o que mostra que é uma necessidade pratica encontrar condi¢des, sobre 0s
sistemas que compdem um sistema chaveado ou sobre o sinal de chaveamento, sob as quais se pode
garantir que o sistema chaveado seja estivel.

Outro exemplo interessante consiste em uma modificacdo do Exemplo 1.1.

Exemplo 1.2. Consideremos o sistema chaveado linear

X(t) = Ag()x(1) (1.6)
como(r)eJ={1,2}e

1 -9 (1
(. -9 1

Como no caso do Exemplo 1.1, as matrizes A; e Ay possuem os mesmos autovalores A, =
1+ 3i, mas sdo agora matrizes instdveis. O sinal de chaveamento considerado consiste em uma

modificag@o do anterior e é dado por

1 seoc(t”)=2ex(t) =0,
o(t)=
2 seo(t”)=1lex(t)=0.

Notamos por @ (r) e @, () as matrizes fundamentais dos sistemas lineares X = Ajx e X = Apx,

respectivamente, e, assim

Oy(1) = ¢ cos3t —3sin3t Dy(1) = ¢ cos3t  1sin3t
= , = )
! %sin 3t  cos3t 2 —3sin3t cos3t

isto €, as matrizes fundamentais sdo as mesmas que no Exemplo 1.1, a menos do termo expo-

nencial e’

, que é agora ¢'. Afirmamos que toda solugdo ndo identicamente nula deste sistema
chaveado tende exponencialmente a origem quando t — oo, €, assim, a origem do sistema cha-
veado € exponencialmente estdvel. Similarmente ao caso anterior, isto € mostrado considerando
inicialmente a trajetéria de condigdo inicial x(0) = (1 O)T e tal que 6(0) = 1. Pela defini¢do de
o, existe um intervalo [0,#;) tal que o(¢) = 1 parat € [0,;), e, assim, neste intervalo, a solu¢do

S€ €SCreve

cos 3t
x(t)=e| | .
38in3t



1.2. Sistemas chaveados

Assim, a solugdo gira no sentindo anti-horario em torno da origem. Ocorre um chaveamento para
o (1) = 2 no instante em que a solugdo passa pelo eixo xp, isto €, em 1 = 7/6, e, assim, o(t) = 1

parat € [0,7/6) e 6(%/6) = 2. Um célculo imediato a partir da expressdo explicita mostra que

|x(2)|| < e”*  parat e [0,7/6) (1.7)
c
0
V3 6) =
X( /) %eﬂ/ﬁ

Similarmente, o é constante e igual a 2 num intervalo a partir de #/6, e, neste intervalo, temos

1, (4sin(3(t—/o))

D=3 cos3 - 7))

e, assim, a solugdo gira em torno da origem no sentido horario. O chaveamento seguinte ocorre
quando a solugdo atinge o eixo xp, isto é, em ¢ = 7/3, e, assim, o (t) = 2 para t € [7/6,7/3) e

o (7/3) = 1. Um célculo imediato a partir da expressdo explicita mostra que

|
|lx(0)|| < 3¢ / parat € [%/6,7/3) (1.8)

1,73
96

x(wfs) = 7

A solucdo volta assim para o eixo x; com ¢ valendo 1, e, assim, como no caso do Exemplo
1.1, pode-se deduzir o comportamento da solucdo a partir deste instante por homogeneidade. Em
particular, por (1.7) e (1.8), deduz-se que

()| < 317e("+1>% parat € [nZ,(n+ 1)E), neN,
e, como %e”/ 6 < 1, deduz-se assim que ||x(¢)|| =2 0 exponencialmente. O comportamento desta
solu¢do estd ilustrado na Figura 1.3.

O argumento para mostrar que ||x(r)| == 0 exponencialmente para toda solugdo x() do
sistema (1.6) € idéntico ao argumento andlogo feito no Exemplo 1.1, utilizando a homogeneidade
do sistema e o fato de toda solucdo passar pelos eixos x; € xp. Desta forma, toda solucido ndo
identicamente nula do sistema chaveado (1.3) tende exponencialmente a origem quando ¢ — oo,

e, assim, a origem € um ponto de equilibrio exponencialmente estdvel do sistema. U

O Exemplo 1.2 mostra assim uma situacao contraria a do Exemplo 1.1: mesmo quando o chavea-
mento € realizando entre dois sistemas que sdo, isoladamente, instdveis, o sistema chaveado pode ser
exponencialmente estdvel. Estes dois exemplos ilustram o quanto a dindmica do sistema chaveado
pode ser diferente da dindmica dos subsistemas que o compdem. Além disto, eles ajudam a definir
questdes de interesse pratico em sistemas chaveados. Assim, quando temos subsistemas estaveis e

deseja-se que o sistema chaveado composto por este subsistemas seja estdvel, o Exemplo 1.1 mostra
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Solugéo x(t)
0.7 :

0.6f : : : 1

0.5F 1

0.4 1

0.3 1

0.2¢ 1

0.1> N 4

FIGURA 1.3: Comportamento da solugéo x(t) do sistema chaveado do Exemplo 1.2 quando x(0) = (1,0)” e
c(0)=1.

que a estabilidade dos subsistemas ndo implica a estabilidade do sistema chaveado, sendo portanto
de interesse a obtencdo de condicdes suplementares sobre os subsistemas ou sobre o sinal de chavea-
mento para garantir a estabilidade do sistema chaveado. Por outro lado, o Exemplo 1.2 mostra que é
possivel estabilizar os subsistemas instaveis de um sistema chaveado através do sinal de chaveamento,
e a questdo de interesse pratico € entdo obter condi¢des sobre os subsistemas instdveis e sobre o sinal

de chaveamento para que isto possa ocorrer.

1.3 Trabalho realizado

A redacdo deste documento faz parte do Trabalho de Conclusdo de Curso em Engenharia Elétrica -
Enfase em Eletronica, na Escola de Engenharia de Sao Carlos da Universidade de Sdo Paulo, do aluno
Guilherme Afonso Mazanti. Esse trabalho tem por base o estdgio de pesquisa [35] realizado pelo
aluno no CMAP - Centre de Mathématiques Appliquées, da Ecole Polytechnique, Franga, no periodo
de abril a junho de 2011, e em trabalhos subsequentes, em que o estudo de sistemas chaveados foi
iniciado pelo aluno. O presente panorama nao-exaustivo da pesquisa em sistemas chaveados permite
ao aluno uma melhor compreensao do estado da pesquisa neste topico, permitindo assim um melhor
direcionamento de futuros trabalhos sobre o assunto.

Tendo por base o artigo [15], o trabalho [35] interessa-se pelo problema da estabilizagdo a velo-

cidade arbitraria de sistemas de controle do tipo
X=Ax+0o(t)Bu

parax € R?, u € R™ e ¢ um sinal de chaveamento a excitacdo persistente, isto é, existem constantes

T > u > 0 tais que, para todo ¢,
t+T
L o(s)ds > .
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Mais geralmente, o interesse € o estudo deste tipo de sistema nfo s6 para o caso em que ¢ € um sinal
de chaveamento, mas sim para o caso em que o : R — [0, 1] pertence a uma certa classe de sinais.
Em [15], mostrou-se que, quando « é um controle escalar, (A,B) € R¥*¢ x R? é controldvel e todos
os autovalores de A possuem parte real negativa ou nula, é possivel, dadas constantes 7 > u > 0,
escolher o controle u# sob a forma u = —Kx de tal forma que o sistema resultante seja estavel para
toda fun¢do o : Ry — [0, 1] mensurdvel a excitagdo persistente com constantes 7', 1. Notemos que o
caso em que ¢ ¢ um sinal de chaveamento a excitacao persistente € um caso particular deste resultado
e, assim, isto fornece um importante resultado de estabiliza¢do de sistemas de controle chaveados a
excitacdo persistente, em que o sinal de controle pode ser escolhido de forma uniforme com relagao
a classe de sinais de chaveamento a excitagdo persistente para constantes 7 > u > 0 fixadas.

Apesar da estabiliza¢@o ser possivel, também foi mostrado em [15] que, quando a razéo #/T é
pequena, esta estabilizacdo ndo pode ser realizada a velocidade arbitréria, isto €, a faxa mdxima de
convergéncia exponencial é finita, e isto tanto para sinais ¢ : R — [0, 1] quanto para sinais de cha-
veamento a excitacdo persistente. Um problema aberto apresentado em [15] foi assim de determinar
se € possivel obter um resultado de estabilizacdo a velocidade arbitrdria para uma classe mais restrita
de sinais 0, e uma classe sugerida foi a de sinais ¢ : R — [0, 1] lipschitzianos com constante de
Lipschitz limitada por um valor M.

Foi este problema de estabilizacdo a velocidade arbitraria que foi tratado pelo aluno em [35].
Neste documento, foi mostrado que € possivel estabilizar a velocidade arbitraria o sistema X = Ax +
o (t)bu, em que x € R?, A é o duplo integrador e u é um controle escalar, quando ¢ é um sinal a
excitacdo persistente lipschitziano de constante de Lipschitz limitada por um valor M. Este resultado
pode ainda ser generalizado ao caso em que (A,b) € um par controlavel em dimenséo 2, e o resultado
do trabalho realizado durante o estdgio de pesquisa, acrescido desta generalizagdo subsequente, foi
submetido para publicacdo [14]. Os enunciados precisos dos resultados obtidos estdo apresentados
na Secdo 4.1.4 e a demonstracio do resultado principal obtido no estdgio € assunto do Capitulo 5.

Assim, este documento tem por objetivo complementar o estudo de sistemas chaveados iniciado
pelo aluno em [35], trazendo um panorama do estado atual da pesquisa neste topico. O propdsito € ex-
plorar os diversos aspectos da teoria de sistemas chaveados, mostrando quais os principais resultados
obtidos sobre as questdes de estabilizacdo e estabilidade de sistemas chaveados e quais as principais
linhas de pesquisa que tém sido tratadas recentemente. Para a compilacdo deste panorama, foram uti-
lizados diversos artigos que exploram os principais aspectos de sistemas chaveados [2,3,17,29,32,43],

além de livros sobre o tema [26,45] e artigos sobre tépicos mais especificos [4,7,11,13,15,27,31,38].

1.4 Organizacao do documento

O objetivo deste documento € o estudo da estabilidade e da estabilizacdo de sistemas chaveados.
Devido ao fato de boa parte da pesquisa recente em sistemas chaveados ter se concentrado sobre
os sistemas chaveados lineares, estes ultimos serdo o tépico principal do estudo, mas alguns dos
resultados aqui apresentados serdo dados em um contexto mais geral. Por se tratar de um estudo
introdutdrio sobre as questdes de estabilidade e estabilizacao de sistemas chaveados, restringimo-nos

a sistemas em que o estado x pertence ao espacgo euclidiano R,
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A organizagdo do documento é a seguinte. No Capitulo 2, sdo dadas as principais defini¢des
que serdo utilizadas ao longo deste documento. O Capitulo 3 trata do caso de sistemas chaveados
em que o sinal de chaveamento ¢ ¢é visto como uma funcio constante por partes arbitraria, visando
obter condicdes de estabilidade para este caso. Outros resultados podem ser obtidos no caso em
que o chaveamento definido por ¢ obedece a certas restricdes, e é este o interesse do Capitulo 4.
Em particular, o Capitulo 4 trata também dos resultados obtidos no estigio de pesquisa [35]. A
demonstracdo do resultado principal obtido em [35] é assunto do Capitulo 5. Finalmente, o Capitulo

6 conclui as questdes abordadas neste documento.
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Capitulo 2

Definicoes

2.1 Notacoes

Neste documento, a notacdo R é utilizada para o conjunto {x € R |x > 0} = [0,o0) e N denota
o conjunto dos inteiros positivos ou nulos, isto é, N = {0,1,2,3,...}, enquanto que N* = N\ {0}
e R* =R\ {0}. O conjunto das matrizes d x m a coeficientes reais é notado por R**™, e, como
usualmente, o conjunto das matrizes coluna R¢*! ¢ identificado com os vetores de R¢. A norma
p, p € [1,%], de um elemento x € R? é notada por ||x|| , € a norma de matriz associada de uma
matriz A € R?*? ¢ notada igualmente por ||A| - No caso p =2 da norma euclidiana, notamos estas
quantidades simplesmente por ||x|| e ||A]], respectivamente. Para um nimero complexo z, Re(z) denota
sua parte real e Im(z), a sua parte imagindria.

Dada uma matriz A € R?*¢ simétrica, escrevemos A > 0 para dizer que A é definida positiva e
A > 0 para dizer que A é semidefinida positiva. Dadas duas matrizes A, B € R, a notagio A > B
quer simplesmente dizer A — B > 0, e analogamente para A >~ B. Finalmente, as notacdes A < B e
A <X B querem dizer B > A e B = A, respectivamente.

Dado um conjunto A C R? (ou A € R?*?), notamos por coA o seu envelope convexo, definido

por

N N
COA—{Zaka|Xk€A,ak€R+7Za]{_l,NEN*},
k=1 k=1

que é o menor conjunto convexo contendo A. Quando A ={A},A,} paraA;,A; € Rd*d

, este conjunto
¢ notado igualmente por y(A,A3).

Dados dois inteiros ki,k, € Z com k > ki, utilizamos a notagdo [k;,k,] para o conjunto dos
inteiros de k; a kp, isto é, o intervalo de inteiros {k € Z | k) <k <k} = {ki,ki +1,..., ko — 1,kp}.
Dado um niimero x € R, a notagdo | x| € utilizada para notar o maior inteiro menor ou igual a x, isto

é, |x] é o unico inteiro satisfazendo x — 1 < [x]| < x.

2.2 Sistemas chaveados

Neste capitulo, sdo apresentadas as principais defini¢des necessarias ao estudo da estabilidade e es-

tabilizacdo de sistemas chaveados. Para isto, comegamos dando uma descri¢do matematica da nogao

11
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de sistema de controle chaveado em R, que tem por base as defini¢des dadas em [29,31,32,45].

Definicao 2.1 (Sistema de controle chaveado a tempo continuo). Seja J um conjunto de indices e
fi i RYExR™ - RY, k € J, uma familia de aplicacdes. Definimos o sistema de controle chaveado (a

tempo continuo) (ou simplesmente sistema chaveado) como o sistema de controle descrito por

Xt) = fou (x(t),u(r), teRy (2.1)

em que x(t) € R? é o estado, u(t) € R™ é uma entrada de controle e 6 (t) € J é um sinal de chavea-

mento, que ¢ uma fungdo constante por partes satisfazendo a equacio

o(1) = (1,0(t7),x(1))

para uma certa ldgica de chaveamento ¢ : Ry x I x R? — J em uma dada classe G. Os instantes ¢ de

descontinuidade de o sdo chamados de instantes de chaveamento. Cada sistema

X(1) = fi(x(t),u(t), keI
é chamado de subsistema ou modo do sistema chaveado (2.1).

A Defini¢@o 2.1 traz um quadro matemadtico amplo para tratar os sistemas chaveados, e diversas

consideracdes podem ser feitas a seu respeito. Em primeiro lugar, deve-se notar que cada subsistema

xX(t) = fie(x(t),u(t))

€ por si s6 um sistema de controle. Notemos que poderia ter sido dada uma defini¢do mais geral, em

que cada subsistema € do tipo

(1) = fielt, x(2),u(t)),

isto é, fx depende explicitamente de 7. Isto é matematicamente possivel, mas ndo possui muito in-
teresse do ponto de vista pratico: um sistema chaveado surge através do chaveamento entre diversas
dinimicas, e, assim, a dependéncia principal da dindmica em fun¢do do tempo € através do sinal
de chaveamento o, de forma que, na maioria dos modelos, f; ndo depende explicitamente de ¢, o
que justifica ndo considerarmos este caso aqui, apesar de ser ttil em alguns casos praticos. Também

poderiamos considerar subsistemas do tipo

() = fie(x(t),u(t),d (1)),

em que d(¢) é um sinal externo, que pode representar, por exemplo, uma perturba¢do ou um ruido no
sistema. Este tipo de modelo apresenta diversas aplicagdes praticas, mas, por simplicidade, supore-
mos, no tratamento dado aqui, a auséncia de sinais externos.

Quando sdo considerados sistemas de controle, além de uma equagdo de estado do tipo

12
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inclui-se também no modelo do sistema uma equacdo de saida

Assim, poderiamos ter incluido na Defini¢do 2.1, para cada subsistema k € J de um sistema chaveado,

além da equacdo de estado

X = fe(x(t),u(t)),

uma equacdo de saida
(1) = gk (x(2),u(t)).

Isto ndo foi feito por simplicidade: uma vez que o objetivo principal deste documento € analisar a
estabilidade de sistemas chaveados, que concerne assim propriedades referentes ao estado x, fazemos
abstracdo da saida y do sistema. Enfatizamos que a saida y é importante para algumas questdes de
estabilidade, como, por exemplo, a estabilizacdo por realimentacdo de saida, mas estes topicos nao
serdo tratados aqui.

Um caso particular importante da Defini¢do 2.1 é quando cada subsistema do sistema chaveado
é autdbnomo, isto &, as fungdes f; sdo todas independentes da varidvel de controle u. A andlise das
nog¢oes de estabilidade de Lyapunov tem por base este caso, que é também o caso ao qual € reduzido
o sistema de controle quando se realiza uma realimentagio de estado do tipo u = g(x). Este serd o
principal caso tratado neste documento.

Outra simplificacio realizada aqui € o fato de considerar que o estado x do sistema chaveado é
uma variavel no espaco R¢. Em muitas aplicagdes, é natural definir o estado como pertencente a uma
certa variedade M, e certos resultados apresentados aqui podem ser generalizados a este caso; porém,
para manter a simplicidade de uma exposicao inicial do tépico, sdo considerados apenas os sistemas
definidos sobre R¢.

Na defini¢do acima, ndo foi feita nenhuma hiptese quanto ao nimero de subsistemas de um dado
sistema chaveado. Na maioria dos casos de interesse, este ndmero € finito, isto é, podemos tomar
J={1,...,N} para um certo N € N*, mas alguns dos resultados apresentados aqui sdo mais gerais e
podem ser aplicados a uma familia infinita de subsistemas.

Os sistemas chaveados podem ser vistos como um ponto de vista dos sistemas hibridos, no qual
as propriedades de interesse sdo as da dindmica da varidvel continua x. Assim, no estudo de sistemas
chaveados, a 16gica de chaveamento particular ¢ ndo é de muito interesse, o que justifica o fato de,
na Definicdo 2.1, ndo se fixar uma tnica légica de chaveamento particular ¢, mas permitir que esta
seja escolhida dentro de uma classe G. Isto quer simplesmente dizer que, ao se estudar um sistema
chaveado, busca-se em geral estudar suas propriedades ndo para uma tnica légica de chaveamento
particular, mas sim para toda uma classe de l6gicas de chaveamento.

Alguns casos particulares de ldgicas de chaveamento sdo de grande importancia pratica. O pri-
meiro € quando as logicas ¢ da classe G sdo fun¢des unicamente do tempo, e assim a equagio do sinal

de chaveamento o torna-se

ot)=e¢(), @€,

isto €, o sinal de chaveamento é a prépria légica de chaveamento, que é escolhida em uma classe G.
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Neste caso, dizemos que o chaveamento é dependente do tempo. Dizemos ainda que este sinal de

chaveamento € arbitrario se a classe G for a classe de todas os sinais de chaveamento, isto é, se
G={¢:R; —IJ| ¢ éconstante por partes}.

Outro caso importante € quando cada ¢ da classe G depende apenas do estado x. Neste caso, a

equacdo do sinal de chaveamento o é

o() =), ¢€§

e diz-se que o chaveamento é dependente do estado. Casos mais gerais de sinais de chaveamento sdao
discutidos, por exemplo, em [45].

Pode-se também classificar o chaveamento em auténomo ou controlado. No primeiro caso, a
classe § ¢é dada, definida pelo modelo fisico utilizado e ndo pode ser alterada, enquanto que, no
segundo caso, a classe G pode ser escolhida por projeto de forma a se atingir um dado objetivo de
controle.

Similarmente a Defini¢do 2.1, pode-se igualmente definir um sistema de controle chaveado a

tempo discreto.

Definicao 2.2 (Sistema de controle chaveado a tempo discreto). Seja J um conjunto de indices e
fi:RYExR™ - RY, k € J, uma familia de aplicacdes. Definimos o sistema de controle chaveado (a

tempo discreto) como o sistema de controle descrito por

x[j+1] = forpxlilsuli]),  jeN (2.2)

em que x[j] € R? é o estado, u[j] € R™ é uma entrada de controle e o|j] € J é um sinal de chavea-

mento, que satisfaz a equacao
olj+1]= e, oljlx])

para uma certa ldgica de chaveamento @ : N x J x R? — J em uma dada classe G. Cada sistema

x[j+1] = fixjl,ulj]), k€I
é chamado de subsistema ou modo do sistema chaveado (2.2).

Esta defini¢do é o andlogo em tempo discreto da Defini¢do 2.1, em que a notagdo g[j], com
a variavel entre colchetes, é utilizada para enfatizar que a varidvel j da funcdo g é uma varidvel
discreta. Com relacdo a Defini¢do 2.1, nota-se que ndo € mais necessdrio exigir que ¢ seja uma fungdo
constante por partes. As demais observacdes feitas para a Definicdo 2.1 sdo também aplicaveis neste
caso.

No caso em que toda fungdo f; € linear, isto é, em que fi(x,u) = Agx + Byu para certas matri-
zes Ay € R¥*4 e B; € R¥*™, diz-se que o sistema chaveado correspondente é um sistema chaveado
linear. Este tipo de sistema tem atraido o maior interesse recente em pesquisa devido a sua grande im-

portancia. De fato, modelos lineares s@o encontrados nas mais diversas dreas aplicadas, surgindo de
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2.3. Solugées de sistemas chaveados

fendmenos lineares ou de linearizagdes em torno de pontos de operacdo de fendmenos nao-lineares.
Além disto, devido & maior simplicidade matemética dos modelos lineares, mais resultados podem ser
obtidos para este caso, utilizando técnicas que, muitas vezes, aplicam-se apenas a sistemas lineares,
numa situacao similar ao que ocorre no estudo de equacdes diferenciais lineares. A restri¢do ao caso
linear também preserva diversos aspectos matemaéticos interessantes dos sistemas chaveados que sao
devidos ao chaveamento; por exemplo, os Exemplos 1.1 e 1.2 apresentados no Capitulo 1 mostram
fendmenos de desestabilizacdo e estabilizacdo devidos ao chaveamento em sistemas lineares. Assim,
devido a ampla pesquisa realizada nesta 4rea e ao interesse dos resultados, boa parte desta exposicao

se concentrara nos sistemas chaveados lineares.

2.3 Solucoes de sistemas chaveados

Tendo definido o conceito de sistemas chaveados, € importante definir o que queremos dizer com a
solucdo de um tal sistema, que € o objeto da Defini¢do 2.3. Para jo, j; € N com jy < j;, lembremos

que a notagdo [jo, ji] representa o intervalo de inteiros { jo, jo+ 1, jo+2,...,j1 — L, j1 }.

Definicao 2.3. Seja o sistema chaveado dado por

X(t) = fou) (x(t),u(?)), (2.3a)
O-(t) = (p(t,c(t*),x(t)), (2.3b)
teR, x(t) eRY, u(t) eR™, o(t) €J, p €G. (2.3¢)

Dizemos que uma fungio absolutamente continua x : [to,#;) — R é uma solugdo do sistema (2.3) no
intervalo [t,#;) para um controle u() dado se existir ¢ € § e uma fungéo o : [tg,7;) — J constante
por partes e com um nidmero finito de descontinuidades em todo intervalo de tempo limitado tais que
o par (x,0) satisfaz (2.3a) e (2.3b) para quase todo 7 € [fy,1]).

Similarmente, para o sistema chaveado

x[j+1] = for)(xLil ulf]), (2.4a)
olji+1]=o(j,olj,x[j]), (2.4b)
JEN, x[j] €R? u[j] €eR™, o[jl €7, 9 €, (2.4¢)

diz-se que a fungdo x : [jo, j1] — R? é uma solucdo do sistema (2.4) no intervalo [jo, j;] para um
controle u[j] dado se existir ¢ € G e uma funcdo o : [jo, j1] — J tais que o par (x, o) satisfaz (2.4a) e
(2.4b) para todo j € [jo, ji1]-

Observamos que, na definicdo de solugdo de sistema chaveado a tempo continuo, a continuidade
absoluta de x garante que esta fung¢@o possui uma derivada em quase todo ponto ¢ € [ty,#) (em que
o termo “quase todo” € usado no sentido da medida de Lebesgue em R), de forma que faz sentido
exigir que esta funcdo satisfaca (2.3a) para quase todo . Para o sistema chaveado a tempo discreto
(2.4), ndo € necessdrio supor a continuidade absoluta de x nem o fato de ¢ ser constante por partes,

pois estas condic¢des sdo supérfluas no contexto de funcdes de uma varidvel discreta.

15



2. Definicoes

Algumas questdes delicadas surgem na definicdo de solucdes. Notemos, em primeiro lugar, que
ha légicas de chaveamento que conduzem a ndo-existéncia de solugdes. De fato, se, por exemplo,
tomamos, em J = {1,2}, a fun¢do ¢ : J — J, independente de 7 e de x e dependente apenas de o, dada
por (1) =2, ¢(2) = 1, entdo ndo existe nenhuma fun¢io constante por partes ¢ : I — J, em que I é
um intervalo real, tal que 6(t) = ¢(o (7)), e, assim, se G é reduzida a esta fungio ¢, o sistema (2.3)
ndo possui nenhuma solugdo. Em geral, porém, supde-se que a classe G é escolhida de tal forma a que
este caso ndo ocorra e que, para toda ¢ € G, o sistema possa apresentar a0 menos uma solucdo para
toda condigdo inicial x(to) € R, o que é o caso nos exemplos préticos de sistemas chaveados. Nio
entramos aqui em detalhes sobre condi¢des para que isto ocorra, mas enfatizamos que este € o caso
quando consideramos chaveamentos dependentes do tempo ou do estado, que sdo nosso principal

caso de interesse.

2.3.1 Comportamento de Zenao

Certas 16gicas de chaveamento podem conduzir a sinais de chaveamento que apresentem um nimero
infinito de descontinuidades em um intervalo de tempo limitado, o chamado comportamento de Ze-

ndo. Isto ocorre, por exemplo, no sistema do Exemplo 2.4.

Exemplo 2.4. Seja o sistema chaveado com dois subsistemas definido em R? por

x(,)zm (2.52)
[ A6 x ()|
com
_ 1
a={0 2, a0 P (2.5b)
1 0 2 0

e com a légica de chaveamento
0
o(t)= , (2.5¢)
0.

em que utilizamos a convengdo H%H =0sex=0. As trajetérias de X = Hﬁ%\l sdo elipses centradas
na origem, de eixo maior em x|, de eixo menor em x; e tais que o eixo maior € o dobro do
eixo menor. De fato, considerando Vi (x) = ? —|—x%, calcula-se que %Vl (x(1)) = %xw’q + 2x7Xp =
m (—x1x2 +x1x2) = 0, donde segue que V; é constante ao longo das trajetérias de x = Hﬁ\%\\’ o
que implica o resultado enunciado. Similarmente, as trajetorias de x = ﬁ sao elipses centradas
na origem, de eixo maior em x;, de eixo menor em Xx; e tais que o eixo maior é o dobro do eixo
menor, o que pode ser visto constatando-se que a derivada ao longo de uma trajetéria da fungdo
Va(x) = x7 + % € nula. A trajetdria deste sistema de condigdo inicial x(0) = (2 O)T eoc(0)=1
estd representada na Figura 2.1.

A partir do instante ¢ = 0, a trajetdria do sistema é um arco de elipse de semi-eixo maior
2 no eixo x; e semi-eixo menor 1 no eixo xp, percorrida no sentido anti-horario, até o instante

de chaveamento #; em que x;(7;) = 0; neste instante, x,(#;) = 1. A partir de entdo, ocorre o
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2.3. Solugées de sistemas chaveados

Solugéo x(t)
12 : ‘

041 1

FIGURA 2.1: Trajetéria do sistema chaveado definido por (2.5) quando x(0) = (2,0)” e 5(0) = 1.

chaveamento para o subsistema 2 e a trajetéria € um arco de elipse de semi-eixo maior 1 no eixo
Xz € semi-eixo menor !/2 no eixo xj, percorrida no sentido hordrio, até o instante de chaveamento
, em que x;(f2) = 0; neste instante, x| (f,) = 1/2. Verifica-se que, a partir de entfo, a situagéo
¢ similar, fornecendo uma trajetéria composta por diversos arcos de elipse, e os instantes de
chaveamento formam uma sequéncia (f1,1,13, ... ,t,,...).

Afirmamos que a sequéncia dos instantes de chaveamento converge para um certo ¢, finito.
De fato, para ver isto, basta notar que o instante # € igual ao comprimento da trajetdria percorrida

de 0 a ¢, pois este comprimento vale

0or) = jo’ ()| ds = jo’ds:t

uma vez que ||x(7)|| = 1 para quase todo ¢, enquanto a origem néo for atingida. Seja a elipse
centrada na origem, de semi-eixo maior 2 no eixo x; e de semi-eixo menor 1 no eixo x; e notemos
por £y o comprimento do arco desta elipse correspondente ao primeiro quadrante, de forma que

t1 = £o. Assim, temos
n—1 EO
I, = Z ?7
k=0
donde segue que

t, = lim t,, = 24,
n—ro0

que € assim finito. O sinal de chaveamento correspondente a solucao da Figura 2.1 estd mostrado
na Figura 2.2.

Este sinal possui assim um nidmero infinito de descontinuidades em um intervalo de tempo
limitado. O

Nota-se que, no caso do comportamento de Zendo do Exemplo 2.4, pode-se definir x como zero

e o qualquer a partir de t,, e obtém-se assim um par (x, ) que satisfaz as condi¢des da Defini¢do
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Sinal de chaveamento o(t)

a(t)

0 0.25 0.5 0.75 1 1.25 15 1.75 2
t [Co]

FIGURA 2.2: Sinal de chaveamento correspondente a trajetoria da Figura 2.1.

2.3, exceto pelo fato de o possuir um nimero infinito de descontinuidades em um intervalo de tempo
limitado. Porém, em casos mais complicados de sistemas chaveados, detectar comportamentos de
Zendo e estender a solucdo além do ponto de acumulagao dos instantes de chaveamento pode ser uma
tarefa complicada. Além disso, na prética, é desejdvel evitar o comportamento de Zendo, pois uma
frequéncia muito grande de chaveamento pode causar com que os componentes fisicos do sistema
trabalhem fora de sua regido de operacdo, fazendo com que o modelo matematico do sistema nao seja
necessariamente vdlido e causando um possivel desgaste ou estrago dos componentes. Assim, para
simplicidade de andlise neste estudo, a imagem do que é feito nas principais referéncias [26,29,43,45],
exige-se que o sinal de chaveamento de uma solugdo apresente um ntimero finito de descontinuidades

em todo intervalo de tempo limitado.

2.3.2 Movimento escorregadio

Consideremos um sistema chaveado com chaveamento dependente do estado € com um ntimero finito
N de subsistemas, de forma que J = {1,...,N}. Neste caso, uma lei de chaveamento ¢ : R — J
particiona o espago de estados em regides Q, = ¢! (n), n € J, e os chaveamentos podem ser definidos
através de superficies de chaveamento S, em que S,, é a fronteira comum de Q, e Q,. Um
fendmeno importante que pode ocorrer neste caso é o chamado movimento escorregadio, em que a
solugdo, ao atravessar de uma regido 2, a uma regido €, deixa de estar definida segundo a Defini¢do

2.3, um caso que € mostrado no Exemplo 2.5.

Exemplo 2.5. Consideremos o sistema chaveado X(t) = f(,)(x(t)) com dois subsistemas fi e f

definidos por
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2.3. Solugées de sistemas chaveados

e com um chaveamento dependente do estado dado pela lei

1 sexy >0,
¢(x) =

2 sexy <O.
Tomemos uma trajetéria com condicdo inicial no semiplano x; > 0. Assim, temos o(f) = 1 até
o instante ¢; em que esta trajetéria atinge a superficie 8 definida por x, = 0, conforme a situagao
da Figura 2.3. Neste instante, porém, a solu¢do deixa de estar definida, pois a trajetdria ndo pode
entrar no semiplano x, < 0, uma vez que o campo de vetores f> aponta na direcdo de 8, nem voltar
ao semiplano x, > 0, pois o campo f] aponta na dire¢do de 8, nem ficar em 8, uma vez que, sobre

8, o campo f] aponta na dire¢do do semiplano x; < 0.

Campos de vetoreslfe f2 e solugéo x(t)

NN N S S/

FIGURA 2.3: Campo de vetores (em vermelho) e trajetdria (em azul) do sistema chaveado do Exemplo 2.5.

O

Um comportamento tipico que pode ocorrer na pratica em uma situacdo como a do Exemplo 2.5
¢é a solucdo oscilar entre os dois modos do sistema devido, por exemplo, ao atraso nos sensores de
deteccdo de posicdo ou nos elementos de chaveamento do sistema fisico; neste caso, na situagcdo da
Figura 2.3, a solucdo, apds o instante ¢, seguiria na direcio positiva do eixo x; oscilando entre as
regides x» < 0 e x, > 0 numa estreita faixa em torno de 8. Isto corresponde ao chamado movimento
escorregadio, em que a solucio “escorrega’ sobre a superficie 8 entre as duas regides x > 0 e xp < 0.
Este movimento pode muitas vezes ser indesejavel devido ao grande nimero de chaveamentos que
ocorre num sistema pratico, mas sua ocorréncia também permite que o sistema siga uma dinamica
diferente das dindmicas de seus subsistemas, o que pode ser desejavel em alguns casos para resolver
problemas de controle dificeis ou impossiveis de serem resolvidos de outra forma.

Assim, para levar em conta no modelo matematico a possibilidade de ocorréncia de movimento

escorregadio, generaliza-se o conceito de solucdo de sistema chaveado definindo a chamada solucdo
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no sentido de Filippov. Para um sistema chaveado com chaveamento dependente do estado e em que
o espaco de estados estd particionado em regides abertas Q,, n € J, e 8;;,...;, € a fronteira comum das
regioes Q; ,...,L; , diz-se que uma fun¢do absolutamente continua x € uma solugdo de Filippov se
satisfizer a inclusdo diferencial

X € F(x)
em que F(x) = {f,(x)} se x € Q, e F(x) = co{fi, (x),..., fi,(x)} se x € §;,...;,; lembramos que coA
denota o envelope convexo do conjunto A.

Exemplo 2.6. Retomemos o Exemplo 2.5. Utilizando o conceito de solu¢éo de Filippov, verifica-

se que uma solugao deste sistema deve satisfazer

(1 —I)T se xp >0,
=11 1)T se xy < 0, 2.6)

T
(1 (x) sex =0, com o € [—1,1].

T
Assim, a solucdo definida como no Exemplo 2.5 até #; e definida por x(z) = (x(tl) +(t—n) 0)
parat > t1 satisfaz (2.6) e € assim solucdo no sentido de Filippov do sistema chaveado do Exemplo
2.5. 0

2.4 Estabilidade

Seja o sistema chaveado dado por

X(t) = fo((x(1)),
o(t)=e(t,o(),x(1)), (2.7)
reRy, x(t) eRY, u(r) eR™, 6(r) €7, 9 € 8.

Nosso objetivo agora é estudar a estabilidade dos pontos de equilibrio deste sistema e, para isto,

comegamos definindo o conceito de ponto de equilibrio.

Definicdio 2.7. Dizemos que p € R? é um ponto de equilibrio do sistema (2.7) se fi(p) = 0 para todo
kel

Para o estudo da estabilidade de um ponto de equilibrio p de (2.7), podemos supor, sem perda
de generalidade, que o ponto de equilibrio em questdo é a origem. Os conceitos de estabilidade
que utilizamos aqui s@o os de estabilidade uniforme, estabilidade uniforme assintética e estabilidade

uniforme exponencial. Antes de defini-los, lembramos a defini¢do de uma funcdo de classe K L.

Definicao 2.8. Dizemos que a fungédo continua ¢ : R, — R € de classe K se for estritamente cres-
cente e tal que ¢(0) = 0. Dizemos que a fun¢io continua y : R, — R é de classe L se for decres-
cente e W() == 0. Finalmente, dizemos que 8 : R, x R, — R é de classe KL se r— B(rt) for
de classe X paratodot > 0 e set +— [(r1) for de classe £ para todo r > 0.
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Podemos assim definir os conceitos de estabilidade que serdo utilizados na sequéncia.
Definiciao 2.9. Consideremos o sistema chaveado (2.7).

(a) A origem de (2.7) é uniformemente estdvel (US) se, dado € > 0, existir 6 > 0 tal que ||x(0)|| < 0
implica ||x(¢)|| < € parat > 0 e para toda solucdo x de (2.7).

(b) A origem de (2.7) é uniformemente assintoticamente estdvel (UAS) se existir 6 > 0 e uma
fungdo B de classe XL tais que, para todo x(0) com ||x(0)|| < &, para toda solugdo x de (2.7) e

para todo ¢ > 0, tenhamos

()]l < BIIx(0) [} 2)- (2.8)

(¢) Se a origem de (2.7) for uniformemente assintoticamente estdvel e tal que a fungdo  dada
em (b) possa ser escolhida sob a forma f3(r,t) = Mre™*' para certas constantes M > 0, A > 0,

dizemos que a origem & uniformemente exponencialmente estdvel (UES).

(d) Se, em (b), a fun¢do B for independente de & e a desigualdade (2.8) for vélida para todo
x(0) € R?, dizemos que o equilibrio é global e que a origem é globalmente uniformemente
assintoticamente estdvel (GUAS). Se estivermos no caso de (c), dizemos que a origem ¢ glo-

balmente uniformemente exponencialmente estdvel (GUES).

A uniformidade a qual fazemos referéncia nestas defini¢des é com relagdo ao sinal de chavea-
mento particular o: as condi¢des exigidas nas defini¢des de estabilidade devem ser validas para toda
lei de chaveamento ¢ € G e todo sinal de chaveamento ¢ satisfazendo esta lei. No que segue, por
simplicidade, omitiremos o termo “uniformemente” do tipo de estabilidade considerado, deixando-
o implicito. Também por simplicidade, faremos o abuso de linguagem de falar da estabilidade do
sistema chaveado (2.7) ao invés da estabilidade da origem do sistema chaveado.

No caso de sistemas chaveados lineares, os conceitos de GUAS e GUES coincidem. Além disto,

para sistemas chaveados lineares em que o chaveamento depende apenas do tempo, ou em que o

chaveamento depende do estado x apenas através de sua dire¢do m e ndo de sua norma ||x||, a
homogeneidade do sistema garante que toda estabilidade do sistema serd global.
No caso de um sistema chaveado a tempo discreto
x[j+1] = forn(xLi]),
olj+1) = p(j,0ljl,xlj)). (2.9)

JEN, x[j]eRY u[j]eR", o[jl€d, p €6,

pode-se definir, analogamente a Definicdo 2.7, a no¢do de ponto de equilibrio de (2.9), que, neste

caso, corresponde a no¢do de um ponto fixo comum a todas as aplicagdes.

Defini¢io 2.10. Dizemos que p € R? é um ponto de equilibrio do sistema (2.9) se fi(p) = p para
todo k € 7J.
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Assim como no caso continuo, o estudo da estabilidade de um ponto de equilibrio se faz, sem
perda de generalidade, supondo que o ponto de equilibrio em questdo ¢ a origem. Neste caso, as de-
finicdes dos conceitos de estabilidade dadas na Defini¢cdo 2.9 se aplicam igualmente ao caso discreto,

bastando substituir a varidvel continua ¢ pela varidvel discreta j.

2.5 Funcgoes de Lyapunov

A andlise de estabilidade através das fungdes de Lyapunov constitui um dos principais métodos de
estudo de estabilidade de sistemas chaveados. A ideia principal deste método € procurar por uma
fungdo V(x) do estado x que seja positiva definida e decrescente ao longo das trajetdrias de fodos os
subsistemas x(7) = fi(x(¢)) do sistema chaveado (2.7). Neste caso, a fun¢éo V é chamada de fun¢io

de Lyapunov, e a sua existéncia permite obter resultados de estabilidade.

Definicdio 2.11. Seja V : R — R, uma funcio de classe @' positiva definida. Dizemos que V é uma
fungdo de Lyapunov para o sistema chaveado (2.7) se existir uma funcio continua definida positiva
W :R? — R, tal que, para todo x € R? e todo k € J,

V- filx) < =W (x). (2.10)

O resultado principal neste caso € o seguinte, apresentado em [26], que consiste em uma genera-

lizagdo do teorema de Lyapunov para sistemas dindmicos ao caso de sistemas chaveados.

Teorema 2.12. Se existir uma funcdo de Lyapunov radialmente ilimitada para o sistema chaveado

(2.7), entdo este sistema é GUAS.

No caso discreto, a condi¢@o (2.10) € substituida pela condicao de decrescimento estrito de V ao
longo das trajetérias do sistema; isto é, se x[j] é uma solucdo de (2.9), exige-se que V (x[j+ 1]) —
V(x[j]) < =W (x[j]). O Teorema 2.12 permanece valido neste caso.

Deve-se notar que a Defini¢do 2.11 ndo traz o caso mais geral de funcdes de Lyapunov. Pode-se,
por exemplo, considerar fungdes V e W definidas apenas em uma vizinhanca em torno da origem e
a desigualdade (2.10) satisfeita apenas nesta vizinhanca; neste caso, ndo se pode obter um resultado
de estabilidade global como o Teorema 2.12, mas pode-se concluir a estabilidade assintética local do
equilibrio da origem.

Da mesma forma, outras generalizacdes do conceito de fungcdo de Lyapunov sdo possiveis, em
que, por exemplo, nio se exige que V seja de classe C', ou em que se permite o uso de miiltiplas
funcdes de Lyapunov V. Assim, pode-se considerar, por exemplo, funcdes de Lyapunov chaveadas,
isto é, que dependem do sinal o (), fungdes de Lyapunov miiltiplas, fun¢des de Lyapunov quadraticas
por partes, funcdes de Lyapunov lineares por partes, dentre outras. Estes conceitos serdo introduzidos
posteriormente conforme necessario.

Um caso particular importante de fung@o de Lyapunov € quando esta é quadritica, isto €, quando
V(x) =xTPx.

Definicfio 2.13. Dizemos que a funcio de Lyapunov V da Defini¢iio 2.11 é quadritica se V (x) = x" Px
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2.5. Fungdes de Lyapunov

para uma certa matriz P simétrica definida positiva. Neste caso, dizemos também que V é uma funcdo

de Lyapunov quadrdtica comum (CQLF) do sistema chaveado (2.7).

Neste caso, o resultado andlogo ao Teorema 2.12, apresentado também em [26], possui uma

conclusio mais forte.

Teorema 2.14. Se existir uma CQLF para o sistema chaveado (2.7) e se a funcdo W da Definicdo
2.11 for quadrdtica, entdo (2.7) é GUES.

Assim, boa parte do estudo da estabilidade de sistemas chaveados tem por objetivo procurar
condigdes sobre os subsistemas X = f;(x) para garantir a existéncia de uma fung¢éo de Lyapunov para
o sistema chaveado, o que permite garantir a sua estabilidade. Muitas vezes, o objetivo é procurar
uma CQLF, uma vez que a forma particular da CQLF V(x) = x"Px e os resultados de fungdes de
Lyapunov quadraticas para sistemas lineares simplificam o procedimento de procura da CQLEF, e,
assim, muitos resultados foram obtidos neste sentido. Porém, ndo se pode esperar obter uma teoria
geral baseada apenas em CQLFs, pois existem sistemas chaveados GUES que ndo possuem uma

CQLF, como mostra o Exemplo 2.15, retirado de [26] e originalmente apresentado em [16].

Exemplo 2.15. Seja o sistema chaveado linear com J = {1,2},

(1) = Ag(x(1), (2.11a)

A=t =P 710 (2.11b)
Tl ) 2"\ 1) '

e 0 : Ry — J um sinal de chaveamento arbitrério, isto é, o € uma fun¢do mensuravel qualquer
constante por partes e com um ndmero finito de descontinuidades em todo intervalo limitado de

tempo.

Afirmamos que este sistema ¢ GUES. Uma forma de demonstrar isto geometricamente ¢ atra-
vés da técnica do chaveamento de pior caso, em que se procura obter o sinal de chaveamento
que corresponde ao caso de maior afastamento possivel da origem. Esta técnica tem diversas
aplicacdes em sistemas chaveados [8, 14, 16,26] e se, no pior caso, a solugdo ainda convergir para
a origem, entlo esta convergéncia ocorre para todos os outros sinais de chaveamento possiveis.
Notemos que os campos de vetores Ajx e Arx sdo paralelos em duas retas passando pela origem,

a saber, as retas de equagdes
2x1+ (V161 +11)x, =0, 2x1 — (V161 —11)x, = 0.

Estas retas dividem o plano em quatro regides, notadas Q1, Q», Q3 € Q4, conforme a Figura 2.4.

Nas regides Q1 e O3, 0 campo Ax aponta mais para fora que o campo A,x e, assim, 0 maior
afastamento da origem é obtido seguindo Ajx em Q; e O3. Em O, e Q4, € 0 campo Arx que

aponta mais para fora, e, assim, o maior afastamento da origem é obtido seguindo Arx em Q; e
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2. Definicoes

Campos Alx e A2x

x

FIGURA 2.4: Campos de vetores normalizados A1 x (em azul) e Ayx (em vermelho) (representados em roxo

no caso em que sdo paralelos), retas em que estes campos sdo paralelos e regioes Q1, Q2, Q3 € Qa

Q4. Logo, pode-se definir a 16gica de chaveamento

1 sexeQiouxeQs,
P(x) = (2.12)
2 sexeQroux€ Qy,

e o sinal de chaveamento o(f) = @(x(¢)). Para este sinal de chaveamento, toda solug¢do do

sistema tende exponencialmente a origem. De fato, tomando a solu¢do de condicdo inicial
T

x(0) = (1 0) , a trajetdria da solucdo pode ser calculada explicitamente utilizando-se as matri-

zes fundamentais

Ay 4 [cOst  —sint Ay ¢ [ cost  —10sint

=e , et =e

e
sint  cost % sint cost

Uma representagdo grafica da solugdo estd mostrada na Figura 2.5.

Notamos por 7] o instante em que a trajetéria atinge pela primeira vez a reta 2x; — (v/ 161 —
11)x; = 0, por #, o instante em que a reta 2x; + (/161 + 11)x; = 0 é atingida pela primeira vez,
e por t3 o instante em que a solugdo volta para o eixo xj, em seu semi-eixo negativo. Um cdlculo
direto mostra que

V161411 V161 V161 —11

tHy = arctan | ——— th —t; = arctan [ —— t3 —tp = arctan
20 ’ 9 ’ 20

e que
9v161+121
x(t3) = e (ttn) [T AT o —-0,8727
0 0

Assim, ao voltar para o eixo x; no instante #3, a norma da solu¢do diminui. Por homogeneidade,

isto garante que x(¢) =20 exponencialmente. Também por homogeneidade, toda solu¢do com
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2.5. Fungdes de Lyapunov

Solugéo x(t)

0.4

FIGURA 2.5: Trajetéria do sistema chaveado (2.11) sob a légica de chaveamento (2.12) e com condi¢éo
inicial x(0) = (1,0)".

condico inicial no eixo x; tende a origem exponencialmente, e, como as solugdes deste sistema
circulam em torno da origem, toda solug¢do do sistema passa pelo eixo x;, donde segue que toda
solu¢do do sistema chaveado (2.11) sob a l6gica de chaveamento (2.12) tende a origem exponen-
cialmente. Esta l6gica de chaveamento fornece um limitante inferior uniforme (com relacdo a
légica de chaveamento) para a velocidade exponencial de convergéncia das solugdes do sistema
(2.11), e, assim, toda solucdo do sistema chaveado (2.11) converge exponencialmente para a ori-
gem sob qualquer 16gica de chaveamento, o que mostra que o sistema ¢ GUES. O Exemplo 3.33
abaixo mostrard este resultado de outra forma, através de critérios algébricos sobre as matrizes A}
e A, utilizando o Teorema 3.32. Notemos que a demonstracdo do Teorema 3.32 utiliza a técnica

do pior caso, fornecendo um critério algébrico mais simples do que a utilizacdo direta da técnica.

Verificamos agora que o sistema (2.11) ndo possui uma CQLF. De fato, suponhamos que
existisse V (x) = xTPx uma CQLF do sistema para uma certa matriz P simétrica definida positiva.

Sem perda de generalidade, podemos escrever

1
q r

pois, se V € uma CQLF, entdo aV é uma CQLF para todo o > 0, o que justifica a normalizacao

do primeiro coeficiente de P. Como V € fun¢do de Lyapunov, temos em particular
VV-Aix <0, VV-Ax <0, VxeRY

donde segue que
ATP+PA; <0,  AIP+PA; <0.
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Calculamos entdo

2-2g 2q+1-— 21 2g+10—
—A{P—PA, = S ., —AlP—PA, = 5 q-+ 0]
2q+1—r 2q+2r 2q+10— 4 20g+2r

e, lembrando que uma matriz € definida positiva se e somente se todos os seus menores principais

forem positivos, obtemos que estas matrizes sdo definidas positivas se e somente se

g<1 g <10
r?—6r+84>+1<0, r* — 6007 4 80042 + 10000 < 0,

o que fornece assim as regides elipticas dadas por

(r— 3)2 2

—300)2 2
i (r )” . q

<1, 80000 100 <1

Estas regides, esbocadas na Figura 2.6, ndo se interceptam. Assim, ndo ha nenhum par (g,r) €
R? que torne as matrizes —ATP — PA| e —ATP — PA, simultaneamente definidas positivas, o que
mostra que o sistema (2.11) nao possui uma CQLF.

Regibes elipticas
50

(r—3)2

__[Ey
(r—300)* q°
- so000 _ + 100

45r

<1

40r
35F

30F

20¢
15t : 1

10f 1

_12\2 _ 2 2
FIGURA 2.6: Regido eliptica % +¢* < 1 (em azul) e parte da regido eliptica (rg()%%%) + fiﬁ <1 (em

vermelho).

O

O Exemplo 2.15 mostra assim que, embora a procura de uma CQLF seja uma técnica usual e
muito utilizada no estudo da estabilidade de sistemas chaveados, ela ndo permite realizar um estudo
completo de estabilidade, pois a existéncia de uma CQLF ¢ uma condig¢ao suficiente mas ndo necessa-
ria para a estabilidade exponencial. Isto justifica a procura de fun¢des de Lyapunov sob formas mais

complicadas para se obter critérios mais gerais.
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Capitulo 3

Analise da estabilidade sob chaveamento

arbitrario

Neste capitulo, estudamos o sistema chaveado dado por

(1) = fo(x(), o€,

(3.1)
x(t)eR?, o(r)e€d, reR,
com
G ={o:R; — Jmensurdvel |c € constante por partes e possui um nimero finito de
descontinuidades em todo intervalo de tempo limitado},
e seu equivalente a tempo discreto,
X]+1 :f 'xja 6697
[+ 1] = Fap &1 .

xj]eR?, o[j]€d, jeN

com § = {0 : N — J}. Estes sistemas correspondem assim ao caso de chaveamento dependente do
tempo arbitrdrio: supomos que a dindmica do sistema possa seguir qualquer sinal de chaveamento
possivel. Notemos que a defini¢do da classe G de sinais de chaveamento possiveis depende do con-

texto. Em quase todo o capitulo, nosso interesse serd pelo sistema chaveado linear
X(t) =As@x(1), o€, (3.3)

ou, no caso discreto,
x[j+1]=Asxlj], o©€9, (3.4)

e suporemos, exceto quando explicitado o contrario, que o conjunto de indices J € finito, isto €, ha

apenas uma quantidade finita de subsistemas, e escrevemos J = {1,...,N}.
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3. Andlise da estabilidade sob chaveamento arbitrdrio

3.1 Sistemas chaveados, inclusoes diferenciais e estabilidade robusta

O estudo da estabilidade de sistemas chaveados sob um chaveamento arbitrdrio se relaciona com
outras dreas de estudo, principalmente as chamadas inclusdes diferenciais e problemas de estabilidade
robusta. Na prética, explorar estas relacdes é importante para poder aplicar aos sistemas chaveados
técnicas e teorias desenvolvidas em outros contextos, permitindo inclusive uma transposi¢do direta de
certos resultados.

No caso de chaveamento arbitrério, o estudo do sistema chaveado estd fortemente relacionado

com o estudo das chamados inclusdes diferenciais [43]. Assim, correspondente ao sistema chaveado

linear
X(t) = Ag()x(1), (3.5)
temos a inclusdo diferencial
x(t) e {Ax(r) |[A e A} (3.6)
com A = {Aj,...,Ay}. Uma solucdo de (3.6) é uma fungdo absolutamente continua x satisfazendo

x(t) € {Ax(r) |A € A} em quase todo t € R, e isto é equivalente a existéncia de uma aplicagio

mensuravel p : R, — J tal que
X(1) =Ap)x(t)

em quase todo t € R... Assim, a no¢do de solugdo da inclusdo diferencial (3.6) € uma generalizacio da
nogao de solucdo do sistema chaveado (3.5) em que o sinal de chaveamento arbitrario o é substituido
por uma fun¢do mensurdvel qualquer p. Toda solugdo sistema chaveado (3.5) € assim solugcdo de
(3.6) e, como o sinal de chaveamento em (3.5) € arbitrario, espera-se que considerar uma funcio
mensurdvel qualquer p ndo seja muito diferente de considerar um sinal de chaveamento arbitrério o,
isto €, espera-se que o conjunto das solugdes de (3.5) esteja fortemente relacionado com o conjunto
das solugdes de (3.6). Além disso, notando por coA o envelope convexo de A, podemos considerar

igualmente a inclusdo diferencial convexificada
x(t) € {Ax(t) |A € coA}. 3.7)

Como nos processos de convexificacdo em sistemas de controle, espera-se que as solucdes de (3.7)
estejam fortemente relacionadas com as de (3.5) e (3.6). De fato, [43] fornece a relacdo entre estes

sistemas através dos conjuntos atingiveis. Notando

Aghaveado () — £x(¢) | x é solugdo de (3.5) para algum sinal de chaveamento & e x(0) = xo},

Aid(xo) = {x(t) | x é solugdo de (3.6) e x(0) = xo},
AoV (x0) = {x(¢) | x é solugdo de (3.7) e x(0) = xo},

temos
‘Afhaveado (XO) C .A;d (xO) C .A;d’ conv (XO) — ‘Atchaveado (Xo),

que mostra assim a relagdo entre as solucdes de (3.5), (3.6) e (3.7) e explicita a proximidade que ha

entre elas. Esta proximidade pode ser explorada para se obter informacdes sobre o sistema (3.5) a
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3.2. Fungdo de Lyapunov quadrdtica comum

partir de informagdes sobre os sistemas (3.6) e (3.7), que vém sendo estudados ha mais tempo e sobre
0s quais mais resultados s@o conhecidos; ver, por exemplo, [21,22].
O problema (3.7) pode também ser visto como o problema de buscar uma solu¢do do sistema

linear incerto politépico variante no tempo
x(t) = A(t)x(t) (3.8)

comA(t) € coA =co{Ay,...,Ax}, sendo coA um politopo em R*¢ e A(¢) uma fungio mensurével.
A estabilidade de (3.8) é estudada em termos de estabilidade exponencial robusta, isto é, deseja-
se que toda soluc@o x(¢) convirja exponencialmente para a origem, independentemente da fungédo
mensuravel A(¢) a valores em A escolhida, a robustez sendo portanto com relagdo a matriz A(¢) do
sistema. Vadrios resultados existem para este tipo de sistema, e traduzi-los para o caso de sistemas

chaveados torna-se possivel através de um resultado apresentado em [29].

Teorema 3.1. O sistema chaveado (3.3) é exponencialmente estdvel se e somente se o sistema (3.8)

for robustamente exponencialmente estdvel.

Através desta equivaléncia, pode-se assim obter resultados de estabilidade para sistemas chavea-
dos a partir de resultados ja estabelecidos para sistemas do tipo (3.8). A titulo de exemplo, menciona-
mos que os Teoremas 3.22 e 3.25 apresentados abaixo foram inicialmente mostrados no contexto de
(3.8), e é o0 Teorema 3.1 que permite o seu enunciado como um teorema sobre sistemas chaveados.

O andlogo € vdlido para sistemas a tempo discreto. Assim, ao sistema chaveado linear a tempo

discreto (3.4), pode-se associar o sistema
x[j+1] =A[j]x[j] (3.9)

com A[j] pertencente ao politopo coA = co{Ay,...,Ay} de R¥*?¢ O Teorema 3.1 é também vilido

neste caso.

Teorema 3.2. O sistema chaveado (3.4) é exponencialmente estdvel se e somente se o sistema (3.9)

for robustamente exponencialmente estdvel.

Apesar de ndo fazermos referéncia explicita aos Teoremas 3.1 e 3.2, deve-se lembrar que sao estes
teoremas que estdo por trds de alguns dos resultados apresentados nas préximas secdes, permitindo

interpretar resultados de estabilidade robusta em termos de resultados sobre sistemas chaveados.

3.2 Funcao de Lyapunov quadratica comum

Uma das formas de se analisar a estabilidade de sistemas chaveados sob chaveamento arbitrario é
através da procura de uma fungdo de Lyapunov quadratica comum (CQLF). Como foi explicitado no
Exemplo 2.15, nem todo sistema chaveado GUES possui uma CQLF, mas a procura por uma CQLF,
além de ser matematicamente mais simples, leva a varios critérios de estabilidade importantes.
Interessamo-nos ao sistema chaveado linear (3.3) e seu correspondente em tempo discreto, (3.4),
que relembramos aqui.
x(t) :AG(,)x(I), ce€g, 3.3)
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3. Andlise da estabilidade sob chaveamento arbitrdrio

x[j+1] = Ao, oeg. (3.4)

Uma CQLEF para estes sistemas é uma fun¢do de Lyapunov do tipo V(x) = xT Px com P uma matriz

simétrica definida positiva. No caso continuo, a condi¢ao
Vv (x) “Ax <0

pode ser escrita como
PA+ALP <0, Vked, (3.10)

e, no caso discreto, a condigdo exigida é que V (x[/]) seja estritamente decrescente, o que corresponde
a condigdo

ALPA, —P <0, Vk e 9. (3.11)
As desigualdades matriciais (3.10) e (3.11) sdo desigualdades matriciais lineares (LMIs), e, assim,

o problema de encontrar uma CQLF para o sistema chaveado (3.3) (resp. (3.4)) é equivalente ao
problema de encontrar uma solu¢iao P a LMI (3.10) (resp. (3.11)).

3.2.1 Matrizes que comutam

Consideremos inicialmente o caso de uma familia finita de matrizes {A,...,Ay}. Um primeiro
critério de estabilidade através da obtencdo de uma CQLF € obtido no caso em que as matrizes desta

familia sdo todas Hurwitz e comutam duas a duas, isto €, se A;A; = A ;A; para todos i, j € J [3].

Teorema 3.3. SejaJ = {1,...,N} e suponha que as matrizes A;, i € J comutem duas a duas e sejam
todas Hurwitz. Sejam Py, ..., Py as matrizes simétricas definidas positivas que satisfazem as equagcoes
de Lyapunov

A{Pl +PA = —1,
AITPl—i_PlAl:_Pl—h i:27”'7N7

Entdo Py é dada por
Py = jw A fweA’(’*‘lN*‘ ---ImeAlr“eAmdtl Ry AR
0 0 0

e a funcdo V(x) = xTPyx é uma CQLF para o sistema chaveado (3.3).
Este resultado possui igualmente um andlogo discreto.

Teorema 3.4. Sejad={1,...,N} e suponha que as matrizes A;, i € J comutem duas a duas e sejam

todas Hurwitz. Sejam P, ..., Py as matrizes simétricas definidas positivas que satisfazem as equagoes
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3.2. Fungdo de Lyapunov quadrdtica comum

de Lyapunov

ATPA —P =1,
AJPA;—P,=-P_;, i=2,...,N,

Entdo a fungdo V (x) = xTPyx é uma CQLF para o sistema chaveado (3.4).

Assim, no caso em que as matrizes dos subsistemas comutam, hd sempre uma CQLF para o
sistema correspondente, € um coroldrio dos Teoremas 3.3 e 3.4 ¢ entdo a estabilidade do sistema

chaveado.

Corolario 3.5. Sob as hipéteses do Teorema 3.3 (resp. Teorema 3.4), o sistema chaveado (3.3) (resp.
(3.4)) ¢ GUES.

3.2.2 Algoritmos numéricos

Na prética, boa parte dos casos de interesse correspondem a sistemas cujas matrizes ndo comutam
e, assim, o Coroldrio 3.5 ndo se aplica. A obtencdo de critérios para o caso geral, porém, é bem
mais complicada. Uma técnica possivel € a busca numérica por solu¢des das LMIs (3.10) e (3.11)
utilizando métodos cléssicos de andlise numérica, como algoritmos de otimiza¢do convexa. Alguns
algoritmos sdo capazes de resolver uma LMI desde que esta possua uma solucdo, e hd também crité-
rios para a existéncia de solugdes que podem ser verificados numericamente; por exemplo, em [43],

afirma-se que, se existir R;, i € J={1,...,N}, talque R; > O e

(ATR; 4+ RiA;) = 0,

M=

Il
—_

entdo a LMI (3.10) ndo possui solug@o simétrica definida positiva.

Um método numérico de solugao de LMIs que merece destaque € o apresentado em [28], baseado
num algoritmo de gradiente iterativo que garante a convergéncia para uma solugdo P das LMIs (3.10)
em um ndmero finito de iteracdes, quando uma solugdo existe. A consideragdo inicial do algoritmo é

notar que, se existir P > 0 satisfazendo
ATP+PA; <0, VicI={l1,...,N}, (3.12)

entdo, dada uma matriz arbitraria Q > 0, a menos de multiplicar P por um escalar suficientemente
grande, temos
ATP+PA;+0 =<0, VieJ={l,...,N}, (3.13)

e esta segunda condicdo € na verdade equivalente a primeira, o que faz com que seja possivel resolver
as LMIs de (3.12) procurando por solucdes de (3.13). Assim, fixa-se Q > 0. O algoritmo parte de
uma fungio diferencidvel convexa f definida sobre o espago das matrizes de R4*? simétricas que, a

cada matriz R, associa um nimero real f(R) com a propriedade que f(R) < 0 se e somente se R < 0.
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3. Andlise da estabilidade sob chaveamento arbitrdrio

Define-se assim v(P,A) = f(ATP+ PA+ Q) e uma fungio 4 : N — J por h(k) = (k mod N) + 1. Para
o € [0,2] e r > 0 arbitrarios e para k € N, define-se

v (P, Apgiy) +7 HVPV(PkaAh(k)) |

M =
1V pv(Pes Ay ||

O método numérico de [28] € entdo

P — i Vpv(P, A , sev(P,A >0,
Pk+1_{ % — iV pv(Pe, Ape) (P, Anr)) 3.14)

Py, caso contrario.

O resultado principal de [28] é a convergéncia deste método numérico.

Teorema 3.6. Para o algoritmo (3.14) acima, se existirem solucoes de (3.13), entdo existe um inteiro
k* tal que Py € solucdo de (3.13).

Assim, quando o sistema (3.3) admitir uma CQLF, esta pode ser calculada utilizando o algoritmo
acima. O artigo [28] sugere escolhas possiveis da funcio f e propde modifica¢des neste algoritmo que
facilitariam a convergéncia, além de propor um algoritmo estocdstico capaz de determinar uma CQLF
para uma familia compacta (possivelmente infinita) de matrizes Hurwitz que garante a convergéncia
no sentido de probabilidade.

Apesar da eficiéncia dos métodos numéricos para o cdlculo da CQLF de um sistema chaveado
quando esta existe, estes algoritmos nio ajudam a compreender o motivo por que uma CQLF existe
ou ndo para um dado sistema chaveado, nem de estudar a relacdo entre a existéncia da CQLF e
a dinamica do sistema chaveado. Assim, por exemplo, a questdo de determinar quais classes de
matrizes apresentam uma CQLF ndo pode ser respondida através dos algoritmos numéricos. Além
disto, estes algoritmos podem nao ser eficientes para um nimero grande de matrizes, o que justifica o

estudo de estruturas especiais de matrizes que garantem a existéncia de uma CQLF.

3.2.3 Condicoes suficientes para a existéncia de CQLF

Um dos problemas no estudo da existéncia de uma CQLF para um sistema chaveado é determinar
classes de matrizes para as quais a existéncia de uma CQLF € garantida. Um caso particular disto
foi dado na Secdo 3.2.1, em que foram dados resultados de existéncia de CQLF para matrizes que
comutam, e outros casos mais gerais podem ser obtidos.

Um primeiro caso corresponde as classes de matrizes que admitem a fungio de Lyapunov V (x) =
xTx, isto é, que satisfazem

AT+A<0. (3.15)

Assim, se todas as matrizes de {Ay,k € J} admitem esta fungio de Lyapunov, ela é evidentemente uma
CQLF para o sistema chaveado correspondente, que € portanto GUES. A referéncia [43] lembra que
todas as matrizes normais, isto é, as matrizes A com AAT = ATA, satisfazem (3.15) se forem Hurwitz,
e que, se A satisfaz (3.15) e S € anti-simétrica, entdo A + S também satisfaz (3.15). Estes critérios
podem assim ser tteis para determinar a existéncia de uma CQLF, que, neste caso, é conhecida e vale
V(x) =xTx.
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Um segundo caso lembrado por [43] é o de matrizes triangulares.

Teorema 3.7. Suponhamos as matrizes Hurwitz {Ay,...,An} triangulares superiores. Entdo o sis-

tema chaveado correspondente admite uma CQLF da formaV (x) = x! Px com P uma matriz diagonal.

Uma generalizacdo imediata deste resultado € o caso das matrizes Hurwitz que sdo simultanea-
mente triangularizaveis, isto é, de uma familia {A;,...,Ay} para a qual existe R ndo-singular tal que
RA;R™! é triangular superior para todo i. De fato, se este for o caso, entdo o Teorema 3.7 garante a

existéncia de P tal que
0i=(R") ATR™P+PRAR ' <0,  Vie{l,...,N}.
Assim, Q; é simétrica e definida negativa, e portanto o mesmo vale para RTQ;R, donde segue que
ATRTPR+RTPRA; = RTQ:R < 0,

e assim V(x) = xTRTPRx é uma CQLF para o sistema chaveado definido pelas matrizes A1,...,Ay.

Obtemos assim o seguinte coroldrio.

Corolério 3.8. Suponhamos que as matrizes Hurwitz {Ay,...,An} sejam simultaneamente triangu-

larizaveis. Entdo o sistema chaveado correspondente admite uma CQLF.

O caso da Secdo 3.2.1 segue assim como caso particular, uma vez que uma familia de matrizes
que comutam duas a duas pode ser simultaneamente triangularizada.

O Teorema 3.7 e o Coroldrio 3.8 mostram assim que, quando consideramos o caso em que as
matrizes {Aj,...,Ay} sdo triangulares superior ou triangularizaveis, a verifica¢do da estabilidade ex-
ponencial do sistema chaveado (3.3) é imediada, bastando verificar a estabilidade exponencial de cada
subsistema que o constitui. Porém, perturbacdes de uma familia de matrizes triangulares superiores
ou triangularizaveis podem fazer com que a familia deixe de sé-lo, e, além disto, muitos casos praticos
lidam com matrizes que ndo sdo destes tipos. Assim, faz-se necessdrio obter resultados mais gerais
que o Teorema 3.7 e o Coroldrio 3.8.

O artigo [27] apresenta um outro ponto de vista do Coroldrio 3.8. De fato, [27] mostra o seguinte

resultado.

Teorema 3.9. Seja {Ay,k € I} uma familia compacta (possivelmente infinita) de matrizes Hurwitz.
Se a dlgebra de Lie gerada por esta familia for solivel, entdo o sistema chaveado correspondente
(3.3) admite uma CQLF.

Lembramos que uma dlgebra de Lie g é dita soldvel se g = {0} para um certo k, em que g* é
definido por recorréncia como g° = g e gc*! = [g¥, g¥]. Um cdlculo direto mostra que toda dlgebra
de Lie gerada por familia de matrizes triangulares superiores ¢ soldvel, e esse resultado estende-se
facilmente as dlgebras de Lie geradas por familias de matrizes simultaneamente triangularizaveis.
Por outro lado, se a dlgebra de Lie gerada por uma certa familia de matrizes é soldvel, entdo esta
familia é simultaneamente triangularizavel, e, assim, o Teorema 3.9 é equivalente ao Corolario 3.8.

Porém, o Teorema 3.9 € ainda interessante, uma vez que relaciona a existéncia de uma CQLF com a
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dlgebra de Lie gerada pela familia de matrizes que define o sistema chaveado. Além disto, enquanto
que a verificacdo da triangulariza¢do simultdnea de uma familia de matrizes pode ser complicada, a
verificagdo da solubilidade de uma dlgebra de Lie € direta e parte apenas das matrizes originais. O
ponto de vista do Teorema 3.9 possibilita igualmente uma extensdo deste resultado a sistemas nio-

lineares, dada em [27].

Teorema 3.10. Seja o sistema chaveado ndo-linear (3.1) e suponhamos fi(0) = 0 e fi de classe C!
em uma vizinhanga da origem D para todo k € J. Suponhamos ainda que a familia { fi.,k € I} possa
ser parametrizada por um conjunto de indices compacto J de tal forma que k — %(x) seja uma
fungdo continua de k para todo x € D. Notemos F, = %(0) e suponhamos que Fj, seja uma matriz
Hurwitz para todo k € J. Se a dlgebra de Lie gerada por {Fy,k € J} for soliivel, entdo o sistema (3.1)

admite uma CQLF local, e é assim UES.

O fato de o Teorema 3.9 relacionar a dlgebra de Lie gerada por uma familia de matrizes com a
existéncia de uma CQLF indica que o estudo da dlgebra de Lie pode trazer informagdes importantes
sobre o comportamento do sistema chaveado (3.3). Um outro indicio deste fato é que a dlgebra de Lie
traduz as relagdes de comutacéo entre as matrizes de uma familia, e, como foi visto na Secdo 3.2.1,
estas relacdes também sao importantes para o estudo da existéncia de uma CQLF. Com base nisto, [1]

traz um resultado que generaliza o Teorema 3.9.

Teorema 3.11. Consideremos uma familia compacta de matrizes Hurwitz {Ag,k € I}. Seja g a dlge-
bra de Lie gerada por {1,A; |k € I} e notemos g =t ® s a decomposi¢do de Levi de g em seu radical
v e em uma subdlgebra semi-simples s. Se s é compacta, entdo o sistema chaveado (3.3) admite uma
CQLF. Além disso, se s ndo for compacta, entdo existe uma familia finita de matrizes Hurwitz que

geram g e tais que o sistema chaveado correspondente ndo é GUES.

Lembramos que o radical v de uma algebra de Lie g € o maior ideal solivel contido em g, sendo
que a subdlgebra § de g é chamada de ideal se [g, f] € f para todo f € f, g € g. Neste caso, a decom-
posi¢do de Levi consiste em escrever g =t @ s em que § € uma algebra de Lie semi-simples, isto &,
de radical 0.

O Teorema 3.11, além de fornecer um critério mais forte para a existéncia de uma CQLF, mostra
também que este critério € em certo sentido o melhor que se pode esperar através de dlgebras de Lie,
pois, quando este critério ndo estd satisfeito, uma determinada familia de geradores da édlgebra de Lie
g da origem a um sistema chaveado que nao ¢ GUES e, portanto, que ndo admite uma CQLF. Uma
observagdo sobre o seu enunciado é que, para concluir a existéncia de uma CQLF, ndo é necessaria
a introduc@o da matriz identidade / na familia de geradores da dlgebra de Lie g, isto é, podemos
considerar simplesmente g gerada por {A, k € J}. A introdugdo da matriz identidade faz-se necessaria
apenas para que seja vélida a segunda parte do teorema, que conclui a existéncia de uma familia de
geradores Hurwitz cujo sistema chaveado correspondente ndo é GUES.

Assim como o Teorema 3.9, o Teorema 3.11 admite uma generalizagdo ao caso nao-linear.

Teorema 3.12. Seja o sistema chaveado ndo-linear (3.1) e suponhamos que suas funcoes fi satisfa-
cam as hipoteses do Teorema 3.10. Definamos F;, como no Teorema 3.10 e seja g a dlgebra de Lie

gerada por {Fi,k € 7}, ainda sob a hipdtese de todas as Fy serem Hurwitz. Notemos por g =t@s a
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decomposicdo de Levi de g em seu radical v e em uma subdlgebra semi-simples s. Se s é compacta,

entdo o sistema chaveado (3.1) admite uma CQLF local, e é assim UES.

Um outro ponto de vista na andlise da estabilidade de sistemas chaveados € através do operador de
Lyapunov. Notando por S*? o subespago de R?*“ das matrizes simétricas, o operador de Lyapunov

definido por A € R?*¢ ¢ a aplicacdo L4 : $4*¢ — §9%¢ dada por
Ls(P)=PA+ATP.

Assim, a matriz A é Hurwitz se e somente se existir P > 0 tal que L4 (P) < 0. Pode-se igualmente

definir o operador de Lyapunov adjunto L} com relagdo ao produto escalar (X,Y) = Tr(X'Y) em

544 através da relagio

(X,La(Y)) = (L5(X),Y), VXY es¥

Como

(X,La(Y)) = (X,YA+ATY) =Tr(X"YA+X"ATY) =
=Tr(AX"Y +XTA"Y) = Tr(XAT +AX)"Y) = (XAT + AX,Y),

a defini¢do de L} mostra que
L% (X) = XAT + AX = Lr(X).

Os operadores de Lyapunov podem ser utilizados para obter condi¢des suficientes para a exis-
téncia de uma CQLF para um sistema chaveado [43]. A base deste estudo € a observacdo que um
sistema chaveado a dois subsistemas, definidos pelas matrizes Hurwitz A| e A,, possui uma CQLF se

e somente se existir Q > 0 tal que Ly, L;zl (Q) = 0. Com isto, mostram-se os seguintes resultados.

Teorema 3.13. Seja um sistema chaveado (3.3) a dois subsistemas, definidos pelas matrizes Ay e Aj.

Suponhamos Ay e A, Hurwitz. Se
|_/§2_A1 LAZ*AI — LXILAI — |_j;2|_A2 = O,

entdo este sistema chaveado possui uma CQLF.

Teorema 3.14. Seja {Ay,...,Ay} uma familia de matrizes Hurwitz, e defina
wij = Amin (LaLa} (1)) ij€ {1 N}

e M = (W;;). Se M for semi-positiva, isto é, se existir x € RN com x; > 0 para todo i tal que (Mx); >0

para todo i, entdo o sistema chaveado definido por esta familia de matrizes admite uma CQLF.

Estes dois resultados fornecem assim condicdes diretas sobre os operadores de Lyapunov que
permitem concluir a existéncia de uma CQLF, e, por conseguinte, a estabilidade exponencial de um

sistema chaveado. Diferentemente do Corolério 3.8 e do Teorema 3.11, que fornecem condicdes sobre
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a forma das matrizes ou sobre propriedades de sua dlgebra de Lie, estes resultados exigem condi¢des
algébricas sobre os operadores de Lyapunov das matrizes do sistema chaveado. Estes diferentes

pontos de vista fornecem assim diferentes critérios, que possuem, cada um, sua aplicabilidade.

3.2.4 Condicoes necessarias e suficientes para a existéncia de CQLF

Em alguns casos particulares, podem-se obter resultados de existéncia de CQLF que fornecem con-
dicOes necessdrias e suficientes. Um primeiro resultado deste tipo, mencionado em [29], considera
um sistema planar composto de duas matrizes Hurwitz. Lembramos que (A, B) denota o envelope
convexo de {A,B}, Y(A,B) ={0A+(1—a)B|0< a < 1}.

Teorema 3.15. Sejam A e Ay duas matrizes Hurwitz de R**%. As condicdes a seguir sdo equivalen-

tes:
(a) existe uma CQLF para o sistema chaveado linear correspondente as matrizes Ay e Ay;
(b) todas as matrizes de y(A1,A;) e Y(A1,A5 ") sdo Hurwitz;
(c) as matrizes AjAy e A1A; U nao possuem autovalores reais negativos.

Estas condigdes algébricas sobre A; e A, s@o facilmente verificaveis e fornecem um resultado
simples e elegante sobre a existéncia de uma CQLF para um par de matrizes em dimensio 2; porém,
os argumentos utilizados na demonstracdo ndo permitem uma generalizacio deste tipo de resultado a
dimensdes superiores ou a mais matrizes. No caso de dimensdo superior, é possivel, para o caso de

dois subsistemas, obter uma condi¢io necessdria de existéncia de CQLF.

Teorema 3.16. Sejam A| e Ay duas matrizes Hurwitz de R*?. Se existir uma CQLF para o sistema
chaveado correspondente a estas matrizes, entdo as matrizes A[0A1 + (1 — &)Az) e A[0A; + (1 —

a)A>| ! nédo possuem nenhum autovalor real negativo para todo o € [0,1].

Um outro resultado interessante para um par de matrizes Hurwitz A;, A, em dimensao qualquer
pode ser obtido quando o posto da diferenca destas matrizes € 1, isto €, quando a dimensao da imagem

da aplicag@o linear A, —A; € 1.

Teorema 3.17. Sejam A, e Ay duas matrizes Hurwitz de R4%d com posto(A, —A;) = 1. Entdo as

seguintes condicdes sdo equivalentes:
(a) existe uma CQLF para o sistema chaveado linear correspondente as matrizes Ay e Ap;
(b) todas as matrizes Ay + 0A, & > 0, sdo ndo-singulares;
(¢) a matriz A1Ay ndo possui autovalores reais negativos.

Isto € particularmente ttil no caso de sistemas de controle lineares X = Ax+ bu em que a entrada u
é escalar e em que se faz uma realimentacio de estado u = —k'x. Neste caso, o sistema realimentado
segue a dinimica x = (A — bk")x. O Teorema 3.17 pode ser aplicando quando o sistema de controle
pode chavear entre o sistema ndo-controlado x = Ax e o sistema controlado X = (A — bk")x, pois as

matrizes A e A — bk! diferem de bkT, que é uma matriz de posto 1.
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Os teoremas anteriores se aplicam apenas ao caso em que se consideram apenas dois subsistemas,
mas ¢ de muito interesse prético o estudo de casos que consideram um nimero maior de subsiste-
mas. Evidentemente, uma condi¢do necessdria para que um sistema chaveado com N subsistemas
seja exponencialmente estdvel é que cada par de subsistemas seus forme um sistema chaveado expo-
nencialmente estdvel, mas, a menos de certos casos particulares, esta condi¢do ndo € suficiente. Um
importante caso particular em que isto € suficiente, porém, € quando os subsistemas do sistema cha-
veado sdo positivos. Lembramos que o sistema linear X = Ax € positivo se, para toda condi¢ao inicial
x(0) com todas as suas componentes positivas ou nulas, a solu¢do x(¢) correspondente possui todas
as suas componentes positivas ou nulas para todo ¢ > 0. O fato de o sistema ser positivo é equivalente
ao fato de a matriz A possuir todas as suas entradas ndo-diagonais positivas ou nulas, e uma matriz
deste tipo é chamada matriz Metzler.

Sistemas positivos aparecem naturalmente na pratica em certas aplicagdes, em que o fato de a
varidvel ser positiva ou nula possui uma interpretacao particular. Assim, em fendmenos envolvendo
trocas de calor, reacdes quimicas, concentra¢ido de substincias (como por exemplo em modelos at-
mosféricos envolvendo concentracdo de dgua ou poluentes), modelos estocasticos (em que a varidvel
de estado representa uma probabilidade), é frequente encontrar sistemas positivos. Sua presenga
também ocorre em certos casos de sistemas mecanicos ou elétricos, e, assim, apesar de a classe de
sistemas positivos ser um caso particular, ela € de elevada importancia pratica; para mais detalhes
sobre estes sistemas, ver [19].

Em [23], dois resultados importantes sobre a estabilidade de sistemas positivos planares sdo apre-

sentados.

Teorema 3.18. Sejam Ay,A; € R2*2 duas matrizes Hurwitz e Metzler. Entdo o sistema chaveado

composto por estas matrizes é exponencialmente estdvel se e somente se admitir uma CQLF.

Assim, no caso particular de sistemas chaveados planares positivos, a existéncia de uma CQLF ¢é
na verdade equivalente a estabilidade exponencial e, portanto, ndo ha nenhuma perda de generalidade

ao se estudar a estabilidade deste tipo de sistema através da procura de uma CQLFE.

Teorema 3.19. Seja {Ay,...,Ay} uma familia de matrizes Hurwitz e Metzler em R**?. Entdo o
sistema chaveado correspondente a estas matrizes é GUES se e somente se cada par de matrizes
{Ai,A}}, 1 <i< j<N, admitir uma CQLF.

Assim, em sistemas positivos planares, basta analisar cada par de matrizes A;,A; que compdem o
sistema, o que pode ser feito, por exemplo, através do Teorema 3.15. No caso geral de sistemas pla-
nares, apesar de o resultado acima ndo ser necessariamente valido, pode-se ainda obter um resultado

similar considerando triplas de matrizes, conforme apresentado em [29].

Teorema 3.20. Seja {Ay,...,Ay} uma familia de matrizes Hurwitz em R**? tal que, notando Ay =
(agf))1§i7j§2 para todo k € {1,...,N}, tenhamos agi) # 0 para todo k. Entdo existe uma CQLF para o
sistema chaveado formado por esta familia de matrizes se e somente se existir uma CQLF para cada
tripla de matrizes {A;,Aj, Ay} com i, j,k € {1,...,N} distintos.

Outros critérios para a existéncia de uma CQLF existem, baseados em outros tipos de andlise dos

sistemas; porém, os critérios apresentados acima representam boa parte dos caminhos de pesquisa
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seguidos recentemente, além de serem tteis para aplicacdes praticas. A busca de condi¢des sobre
as matrizes de um sistema chaveado que garantam a existéncia de uma CQLF ainda é um tema de
pesquisa ativo, e o problema de achar condi¢cdes necessdrias e suficientes para a existéncia de uma

CQLF no contexto geral de sistemas chaveados lineares ainda estd aberto.

3.3 Outros tipos de funcoes de Lyapunov

Como foi lembrado no comeco da Se¢do 3.2, a existéncia de uma CQLF para um sistema chaveado é
uma condi¢do suficiente, mas nio necessdria, de estabilidade exponencial. Assim, dado um sistema
chaveado, ¢ interessante buscar a existéncia de funcdes de Lyapunov sob outras formas a fim de se
obter resultados menos conservadores.

Uma classe de fungdes que apresenta interesse neste sentido € a classe das fungoes de Lyapunov

quadrdticas chaveadas, isto é, de fungdes da forma
V(t,x) = xTPG(t)x.
Assim, a fungdo V depende do sinal de chaveamento ¢ (¢). Quando escolhemos Py de tal forma que
PA+ATP, <0

para todo k € J, entdo V é definida positiva, e basta assim estabelecer o seu decrescimento ao longo
das solugdes para estabelecer a estabilidade exponencial do sistema chaveado correspondente.

Para sistemas a tempo discreto, [18] propde um critério necessdrio e suficiente para a existéncia
de uma func¢do de Lyapunov quadrética chaveada. Consideramos assim o sistema chaveado linear a
tempo discreto (3.4) e procuramos uma func¢io de Lyapunov sob a forma

V(j,x) =x"Pg;

X (3.16)

Supondo todos os subsistemas de (3.4) exponencialmente estdveis, para cada subsistema k € J =
{1,...,N}, existe P tal que Vi (x) = xT Px é uma fungéo de Lyapunov do subsistema x[j 4 1] = Azx[}],

e queremos assim encontrar matrizes P, que satisfacam
ALPAL— P <0

para todo k € J. Neste caso, a funcdo V definida em (3.16) € definida positiva, e basta entdo encontrar

condi¢des para que ela seja decrescente sobre toda trajetéria do sistema chaveado, isto €, para que
VG+ L+ 1) =V (jx[j]) <0 3.17)

quando x[j] # 0. O artigo [18] fornece algumas condi¢des necessdrias e suficientes para que isto

ocorra.

Teorema 3.21. Consideremos o sistema chaveado a tempo discreto (3.4). As seguintes condicoes sdo
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equivalentes:

(a) Existe uma fungdo de Lyapunov chaveada sob a forma (3.16) para a qual a diferenca (3.17) é

estritamente negativa.

(b) Existem matrizes P, simétricas definidas positivas e matrizes Fy,Gy € R4 k€7, tais que,
para todos k,m € J,
AkaT—i-FkA{—Pk A G — F;

<0,
GIA]—F'  P,—Gy—G]

e a fungdo de Lyapunov é entdo dada por (3.16).

(¢) Existem P, simétricas definidas positivas, k € J, satisfazendo, para todos k,m € J,

P, AlP,

- 0,
PmAk Pm

e a fungdo de Lyapunov é entdo dada por (3.16).

(d) Existem matrizes Py simétricas definidas positivas e matrizes G, € R¥4, k € J, tais que, para
todos k,m € J,
—P AiGy

<0,
GIAl P,—Gy—G!

e a fungdo de Lyapunov é entdo dada por (3.16).
Nestes casos, o sistema chaveado (3.4) é exponencialmente estdvel.

Assim, pode-se verificar a existéncia de uma func¢ao de Lyapunov quadrética chaveada resolvendo
desigualdades matriciais lineares, o que pode ser feito numericamente através de algoritmos de oti-
mizacdo convexa. Quando todas as P sdo iguais, a fungdo (3.16) torna-se uma CQLF do sistema
chaveado (3.4), e, assim, estes critérios sdo mais gerais que os obtidos através de CQLFs; porém, a
existéncia de uma func¢do de Lyapunov do tipo (3.16) € ainda uma condigdo apenas suficiente para a
estabilidade exponencial.

Um outro tipo de func¢do de Lyapunov de interesse sdo as fungdes de Lyapunov lineares por partes.
Para o sistema chaveado linear a tempo continuo (3.3) com J = {1,...,N}, uma fun¢io de Lyapunov

deste tipo de escreve sob a forma

V(x) = max |w]x]| (3.18)
1<i<m
em que w; € RY, i € {1,...,m}, e as funcdes lineares x wlx sdo chamadas de geradores da fungdo

de Lyapunov linear por partes.

A vantagem do uso de fungdes de Lyapunov lineares por partes € que a existéncia de uma tal fun-
¢do € ndo apenas suficiente mas também necessdria para a estabilidade exponencial do sistema (3.3),
conforme o Teorema 3.25 abaixo, e, assim, critérios envolvendo este tipo de funcdo sdo suficiente-
mente gerais. Porém, atualmente, poucos desses critérios sdo conhecidos para esse tipo de fungao,
e, além disto, os métodos numéricos desenvolvidos com base nestas funcdes apresentam em geral

uma complexidade de célculo elevada, o que dificulta o seu uso na pratica. Uma das dificuldades
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frequentemente encontradas € o fato de ndo se saber, a principio, quantos vetores w; s30 necessarios
para que (3.18) seja uma fungdo de Lyapunov linear por partes.

Notando por W a matriz de R4*” cujas colunas sdo os vetores w;, a funcio V de (3.18) se escreve
como

V(x)= HWTwa = max ‘wiTx‘ :

Um resultado de [36] fornece uma condicao necessdria e suficiente para a existéncia de uma fungao de

Lyapunov linear por partes para o sistema chaveado (3.3), que é, portanto, uma condi¢do necessdria e

suficiente de estabilidade exponencial.

Teorema 3.22. A fungdo V (x) = HWTXHOO € uma fungdo de Lyapunov linear por partes para o sistema
chaveado (3.3) se e somente se m > d, W for de posto d e existir Q; = (q52)1§j7k§m c Rmxm g ¢

{1,...,N}, cada uma possuindo uma diagonal negativa estritamente dominante, isto é, tal que

. N
q,(<2<—Zq,(3, ie{l,....,N},ke{l,...,m},
j=1
7k
e tal que
Alw=wgQ],  ie{l,...,N}.

Notemos que uma outra linha possivel de generalizacdo destes resultados é procurar fungdes de
Lyapunov do tipo V (x) = HWTpr para p € [1,0], e alguns resultados existem neste sentido.

O Teorema 3.22 possui também uma versao para sistemas chaveados a tempo discreto, apresen-
tada em [36].

Teorema 3.23. A fungdo V (x) = HWTme é uma funcdo de Lyapunov linear por partes para o sistema
chaveado (3.4) se e somente se m > d, W for de posto d e existir Q; = (qs.lk))lgjvkgm c Rmxm g ¢

{1,...,N}, cada uma com no mdximo d elementos ndao-nulos em cada coluna e tal que

m
1 - (i)
01 = max ¥ |ai| <1.
satisfazendo

Alw =wol, ie{l,...,N}.

As condicdes dos Teoremas 3.22 e 3.23 sdo dificeis de serem verificadas na pratica, sobretudo
devido ao fato de ndo se saber a principio qual o valor de m. Neste sentido, alguns teoremas tentam
fornecer critérios mais faceis de serem verificados, mas validos apenas para certos casos particulares.
E o caso do teorema abaixo, apresentado em [43], em que sdo considerados dois sistemas no plano e

procura-se uma funcéo de Lyapunov linear por partes com m = 4.

Teorema 3.24. Seja o sistema chaveado linear definido pelas matrizes Ay,A; € R**? e suponhamos
que os espectros de A e de A, estejam contidos em (—,0), e que exista o € (0,1) tal que o espectro
de aA| + (1 — @)A, ndo intercepte o eixo real. Neste caso, existe uma fungdo de Lyapunov linear por
partes com m = 4 se e somente se, para todo a € [0,1], o mddulo da parte real dos autovalores de

oA + (1 — a)A; for maior que o médulo da parte imagindria.
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Evidentemente, os resultados apresentados aqui sobre os diversos tipos de fungdes de Lyapunov
ndo sdo exaustivos, uma vez que muito esforco tem sido dedicado a este tpico recentemente. Em
particular, na linha de pesquisa das fun¢des de Lyapunov lineares por partes, varios algoritmos nu-
méricos foram desenvolvidos para se obter numericamente uma tal funcdo quando ela existir; porém,
em geral, o problema destes algoritmos é possuir uma complexidade elevada, dificultando assim sua

aplicacdo a sistemas de dimensdo elevada e com muitos subsistemas.

3.4 Teoremas reciprocos de Lyapunov

Nas Secdes 3.2 e 3.3, buscamos estudar a estabilidade do sistema chaveado procurando por uma
funcdo de Lyapunov comum sob uma certa forma particular. O caso mais comum € a procura por
uma fungdo de Lyapunov quadritica comum, que, conforme visto, nem sempre existe. Assim, é
de interesse estudar os chamados teoremas reciprocos, que, partindo de um sistema, concluem a
existéncia de funcdes de Lyapunov sob uma determinada forma, para poder obter assim critérios mais
abrangentes do que a procura por uma fungdo de Lyapunov quadratica.

O principal resultado obtido neste sentido estd apresentado em [36], fornecendo diversos tipos de

funcgdes de Lyapunov que existem para um sistema chaveado exponencialmente estavel.
Teorema 3.25. Consideremos o sistema chaveado (3.3). Entdo, sdo equivalentes:
(a) O sistema (3.3) ¢ GUES.

(b) Existe uma funcdo de Lyapunov 'V estritamente convexa, definida positiva, homogénea de grau
2 da forma

com L(x) € R™*? v (0) =0,
L(x)T:L(x) = L(tx) paraxGRd,x#O,reR,T;éO,

cuja derivada ao longo das solugées de (3.3) satisfaz

max Al ) < =7l para um certo y > 0, (3.19)
ye{Aix,....,Anx} ax
em que
V. V(crhy)—V(x)
PR N f )
dy (x) 320 h

(¢) Existe uma funcdo de Lyapunov quadrdtica por partes V, definida por

2
V(x) = max (wlx
(x) = max (w;x)
para certos vetores w; € Rd, i€ {1 yeen ,m}, tais que m > d, a matriz W cujas colunas sdo os

vetores w; tem posto d, e tal que a derivada de V ao longo das solucdes de (3.3) satisfaz (3.19).
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(d) Existe uma fungdo de Lyapunov linear por partes V, definida por

V(x) = max ‘wiTx‘
1<i<m
para certos vetores w; € Rd, i€ {1 yenn 7m}, tais que m > d, a matriz W cujas colunas sdo os

vetores w; tem posto d, e tal que a derivada de V ao longo das solucoes de (3.3) satisfaz (3.19).

(e) Existe uma funcdo de Lyapunov de classe C, homogénea de grau 2p para um certo inteiro
p > 1, definida por

para certos vetores w; € Rd, i€ {17 .. ,m}, tais que m > d, a matriz W cujas colunas sdo os

vetores w; tem posto d, e tal que a derivada de V ao longo das solugoes de (3.3) satisfaz

m

2 max wa ZP_IWT < _ X 2p
p)’G{Alx,...,ANx} 1:21( ! ) iy nH H

para um certo 1 > 0.

Este teorema fornece, assim, diversas formas de fun¢des de Lyapunov cuja existéncia € nao s6
suficiente mas também necessdria para a estabilidade exponencial. Estas funcdes nao sdo tdo simples
de se manipular algebricamente quanto fungdes de Lyapunov quadréticas, o que explica a maior
dificuldade para obtenc¢do de critérios tendo por base estas fungdes, mas ainda assim alguns critérios
podem ser estabelecidos, como os Teoremas 3.22 e 3.23 da Secdo 3.3 acima.

Um outro resultado de teorema reciproco de Lyapunov, obtido em [16], garante que a estabilidade
exponencial, para sistemas lineares, é equivalente a existéncia de uma fun¢do de Lyapunov homo-
génea de grau 2 e de classe C!. Existem também teoremas reciprocos de Lyapunov para sistemas
a tempo discreto e para sistemas chaveados nao-lineares [43]. Para sistemas a tempo discreto, por
exemplo, sabe-se que, para uma inclusdo linear a tempo discreto exponencialmente estavel, existe
uma norma que ¢ uma funcio de Lyapunov. Um outro resultado, para sistemas ndo-lineares, esta-
belece que a existéncia de um equilibrio GUAS equivale a existéncia de uma funcdo de Lyapunov
suave.

Um resultado apresentado em [34] garante que, para um sistema chaveado linear, sempre existe
uma fung¢d@o de Lyapunov polinomial, mas o polindmio em questdo pode ter um grau arbitrariamente

grande.

Teorema 3.26. Seja um sistema chaveado linear definido pela familia de matrizes {Ay,k € T}, e
suponhamos esta familia compacta. Se este sistema for GUES, entdo ele admite uma funcdo de

Lyapunov polinomial.

Teorema 3.27. Seja E o conjunto de todos os sistemas chaveados lineares GUES definidos por um
par de matrizes A,B € R>*2. Para um par de matrizes A,B definindo um sistema de E, notemos
por m(A,B) o menor grau possivel de uma fungdo de Lyapunov polinomial para o sistema chaveado

definido por A e B. Entdo m(A,B) ndo pode ser limitado uniformemente sobre a classe E.
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Este tltimo resultado quer dizer que € possivel encontrar sistemas chaveados planares exponenci-
almente estdveis compostos de dois subsistemas tais que o grau minimo de uma fun¢do de Lyapunov
polinomial para este sistema ¢é arbitrariamente grande. Isto sugere que estas fun¢des de Lyapunov
sdo complicadas, e sumariza em parte as dificuldades de se obter uma teoria geral de estabilidade de
sistemas chaveados através das funcdes de Lyapunov.

O estudo da estabilidade de sistemas chaveados através de fungdes de Lyapunov corresponde a
uma ampla drea de pesquisa, com diversas questdes ainda em aberto. As Sec¢des 3.2, 3.3 e 3.4 mostra-
ram diversos resultados importantes que representam as principais linhas de pesquisa em estabilidade
de sistemas chaveados através de fun¢des de Lyapunov, apresentando as principais técnicas utilizadas
neste dominio através de resultados que sdo, em geral, aplicaveis em contextos praticos, mas € impor-
tante lembrar que esta lista é ndo-exaustiva e que diversos outros resultados relacionando estabilidade

e funcdes de Lyapunov existem.

3.5 Anadlise por principios variacionais

Um ponto de vista que tem se mostrado eficiente para o estudo de sistemas chaveados é a andlise
de sua estabilidade através do uso de principios variacionais, tendo por objetivo caracterizar o pior
caso, correspondente ao chaveamento que torna o sistema o “mais instavel” o possivel. O Exemplo
2.15 mostra a aplicacdo desta técnica em um caso particular, utilizando argumentos geométricos
para justificar que a trajetdria construida é de fato a pior; propomo-nos aqui a mostrar os resultados
da utilizac@o desta técnica de um ponto de vista mais geral, justificando as construgdes através de
principios variacionais aplicados a problemas de controle 6timo.

Em [32], a técnica geral utilizada na anélise por principios variacionais é explicada. Assim,
consideremos o sistema chaveado (3.1) com dois subsistemas, definidos pelas aplicagdes f1 e f>.

Notando por u = ¢ — 1, de forma que u é a valores em {0, 1}, o sistema (3.1) pode ser escrito como

2= A0 +u@)(HE) - Aikx),  ult) {01} (3.20)

Assim, (3.20) pode ser visto como um sistema de controle de entrada u(¢) € {0,1}. Para simplificar

a anélise por principios variacionais, € interessante considerar o problema convexificado, isto &,

= fi(x)+ul)(2(x) - LX), u)€01], (3.21)

em que exige-se que u(t) seja apenas mensurdavel. Nota-se que toda soluc¢@o de (3.20) é também
solucdo de (3.21) e, assim, a estabilidade de (3.21) implica a de (3.20). Deve-se notar que o estudo
de (3.20) a partir do estudo de (3.21) é simplesmente uma aplica¢io dos principios descritos na Secao
3.1.

O estudo do sistema (3.21) pode ser feito procurando-se o controle u* o “mais desestabilizante”
possivel, isto é, aquele que maximiza um funcional que representa o crescimento exponencial da
norma da solu¢do com o tempo. Assim, um tal u* pode ser caracterizado como a solugdo a um pro-

blema de controle 6timo, para o qual diversos resultados estdo disponiveis, destacando-se o Principio
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3. Andlise da estabilidade sob chaveamento arbitrdrio

do Médximo de Pontryagin (ver, por exemplo, [10]). Assim, se a trajetoria correspondente a u* for es-
tdvel, por maximizar o crescimento exponencial da normal da solucdo, isto implica que toda trajetéria
de (3.21) é também estdvel, donde se conclui a estabilidade de (3.1).

Nota-se também que, neste tipo de estudo de estabilidade, as relacdes de comutagdo entre os
campos de vetores f] e f tém um papel importante nas propriedades do sistema chaveado (3.1) e
do sistema de controle correspondente (3.21). Assim, € interessante estudar a dlgebra de Lie gerada
por estes campos de vetores, e o estudo das adlgebras de Lie combinado com o uso de principios
variacionais tem se provado importante para se compreender as questdes de estabilidade dos sistemas
chaveados.

As principais vantagens do estudo de sistemas chaveados por principios variacionais, segundo
[32], sdo a possibilidade de se aplicar importantes resultados da teoria de controle 6timo, o fato
de a andlise da “pior trajetéria” explicitar quais os mecanismos exatos do chaveamento que levam a
instabilidade, e o fato de resultados sobre estes sistemas serem automaticamente validos em contextos

mais gerais, por serem obtidos para (3.21) em vez de diretamente para (3.1).

3.5.1 Problema da estabilidade absoluta

Para ilustrar a aplicabilidade dos métodos variacionais, apresentamos aqui os resultados de [32] que

se referem ao sistema chaveado linear a dois subsistemas

X(t) = Ag(x(t)

(3.22)
comA|; =A, A = A+ kbcT

em que A € R?*? ¢ Hurwitz, b,c € R, o par (A, b) é controldvel e o par (A, c) é observdvel. Conforme

o procedimento descrito acima, o estudo deste sistema é feito através do estudo de
x(t) = Ax(t) +u(t)Bx(1), uel, (3.23)

em que B = kbcT e U € a classe das fungdes mensuraveis a valores em [0, 1]. A questdo de [32] é

calcular o valor critico de k para a estabilidade exponencial deste sistema, isto €, calcular
k* = inf{k > 0(3.23) ndo é GUES}. (3.24)

O estudo deste problema de controle permite resolver o problema da estabilidade absoluta, um pro-
blema formulado na década de 1940 que objetiva estudar a estabilidade de um sistema de controle
sob uma determinada realimentagcdo de saida, sendo um problema cldssico de controle para o qual
condicdes vdrias condi¢des suficientes de estabilidade haviam sido dadas ao longo dos anos, e para
o qual o método variacional permite fornecer uma condi¢@o necessaria e suficiente em determinados
casos [32]. Esta condic@o necessaria e suficiente é equivalente ao célculo da constante k* de (3.24).
O uso de métodos variacionais permite, quando k = k*, caracterizar um controle u* e a trajetdria
correspondente x* de (3.23) tais que x* ndo tende exponencialmente a origem e, portanto, mostra a
ndo-ocorréncia da estabilidade exponencial. Apesar de obter informagdes sobre k* a partir disto ser

dificil no caso geral, [32] cita um critério aplicdvel em sistemas em dimensdo 2 ou 3.
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Teorema 3.28. Se d =2 ou d =3, entdo, para k = k*, a equagdo
det (eBre™ +1) =0 (3.25)
admite uma solugcdo t© > 0, 11 > 0, enquanto que nenhuma solugdo de (3.25) existe quando k € [0,k*).

Esta condig¢do pode ser interpretada com o a existéncia de uma trajetéria fechada e, assim, [32]
fornece um método de programacao dindmica que permite determinar mais explicitamente a solugao
de (3.25), reduzindo esta equagdo a uma tnica equagdo escalar em k*. A solugdo desta equacéio escalar
permite assim determinar uma condi¢@o necessdria e suficiente para a estabilidade exponencial de
(3.22).

3.5.2 Sistemas a tempo discreto

A aplicagdo dos métodos variacionais pode também ser feita a sistemas a tempo discreto, como mostra
[37], em que os principios variacionais sdo utilizados para se estudar questdes de acessibilidade do
espaco de estados de um sistema de controle a tempo discreto. Em particular, alguns resultados de

estabilidade sdo apresentados em [37], e destacamos aqui o seguinte.

Teorema 3.29. Seja o sistema chaveado linear a tempo discreto (3.4) constituido de dois subsis-
temas definidos pelas matrizes Ay e A, e suponhamos cada subsistema exponencialmente estdvel.
Suponhamos que, para todo k > 1,

[[40,A1],A¢] =0,

e, notando P = A 2[AO,A 1jeQ=A4A; YA\, suponhamos também que
P’=0, PQ=0.

Entdo o sistema (3.4) é GUES.

3.5.3 Sistemas chaveados planares a dois subsistemas

Um caso que ilustra a aplicacdo dos métodos variacionais para a obtencdo de critérios da estabilidade
é o apresentado em [8], em que é dado um critério de estabilidade para um sistema chaveado em R?
definido por um par de matrizes Hurwitz A, B. Este critério leva em conta todos os casos possiveis
que podem ocorrer, fornecendo assim uma classificacdo completa dos sistemas chaveados planares
compostos de dois subsistemas. Apresentamos aqui o resultado de [34], que traz uma versdo corrigida
do enunciado de [8].

Sejam assim duas matrizes A e B de R**2. O caso em que A e B nio sio Hurwitz nio apresenta
interesse, pois, neste caso, um sinal de chaveamento constante ja mostra que nao hd a estabilidade
exponencial sob chaveamento arbitrario, e supomos assim A e B Hurwitz. O caso em que A e B comu-
tam ja esta tratado no Teorema 3.3 e, assim, consideramos apenas o caso nao-comutativo. Portanto,

supomos doravante que sdo vélidas as seguintes hipdteses:
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(H1). Sejam A;, Ay (resp. A3, A4) os autovalores de A (resp. B). Entdo Re(4;) < 0, Re(4y) < 0,
Re(A3) <0eRe(A4) <O0.

(H2). [A,B] #0.
Além disso, supomos, por simplicidade, as seguintes hipéteses:
(H3). A e B sdo diagonalizaveis em C.

(H4). Sejam vy, v, (resp, v3, v4) os autovetores de A (resp. B). Entdo v; # v parai € {1,2}, j € {3,4}.

No caso em que A ou B ndo sdo diagonalizdveis em C, o sistema pode ou nio ser GUES, e, para
saber qual € o caso, basta aplicar técnicas similares as de [8]; isto foi feito em [5], que fornece um
critério para o caso em que uma das matrizes ndo é diagonalizavel. No caso em que A ou B sdo
diagonalizdveis mas um autovetor de A coincide com um autovetor de B, argumentos similares aos
apresentados em [8] mostram que o sistema é GUES.

Quando as hipéteses (H1) a (H4) acima estdo satisfeitas, podem-se calcular quantidades a par-
tir de A e B que permitem decidir a estabilidade exponencial do sistema chaveado correspondente.

Definimos assim estas quantidades.

Definicao 3.30. Sejam A,B € R22 ¢ suponha que sdo validas as hipéteses (H1), (H2), (H3) e (H4).
Escolhamos os indices 1, 2, 3 e 4 dos autovalores A1, A3, A3 e A4 de forma que os autovalores A; e A,
de A satisfacam |A;| > |4 | se ambos forem reais ou Im(A,) < 0 no caso em que ambos sdo complexos
ndo-reais, e similarmente, que os autovalores A3 e A4 de B satisfacam |A4| > |A3| se ambos forem reais

ou Im(A4) < 0 no caso em que ambos sdo complexos nao-reais. Definimos as quantidades

B _l.7tl+lz __l.l3 + A4
pA_ )L]—AQ’ PB— 2’3_2‘47
Tr(AB) — 1 Tr(A) Tr(B)
(M —A)As—Ag)

D = K> +2p4psK — (14 p3 + p3)-

Os valores numéricos destas quantidades satisfazem certas relacdes que estdo resumidas na pro-

posicdo a seguir.

Proposicao 3.31. Sejam A e B como na Definicdo 3.30. Entdo
(@) pa € R, pa > 0 se e somente se A possuir autovalores ndo-reais (e analogamente para B).
(b) pa € iR, pa/i > 1 se e somente se A possuir autovalores reais (e analogamente para B).
(© DeR
(d) Se os autovalores de A e B sdo complexos ndo-reais, entdo X € R e |X| > 1.

(e) Se os autovalores de A e B sdo reais, entdo K € R\ {£1}.
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(f) Uma dentre as matrizes A e B possui autovalores reais e a outra ndo se e somente se X € iR.

A partir do cdlculo das quantidades da Defini¢ao 3.30, utilizando as técnicas variacionais para

o estudo da “pior trajetdria”, [8] apresenta um critério de estabilidade no caso bidimensional para o
sistema

x(t) = u(t)Ax(t) + (1 —u(t))Bx(t), uel, (3.26)

com U a classe das fun¢des mensuréveis a valores em [0, 1] e x € R?. A estabilidade exponencial deste
sistema implica evidentemente a estabilidade exponencial do sistema chaveado (3.3) com as matrizes
A e B, pois toda solugdo de (3.3) € solugdo de (3.26).

Teorema 3.32. Sejam A e B duas matrizes reais satisfazendo as hipéteses (HI), (H2), (H3) e (H4)
acima e sejam pa, P, K e D como na Definicdo 3.30. Temos entdo as seguintes condicdes de
estabilidade do sistema chaveado (3.26):

Caso (CC). Se A e B possuirem autovalores complexos ndo-reais, entdo:

Caso (CC.1). Se D < 0, entdo (3.26) é GUES.
Caso (CC.2). Se D > 0, entdo:

Caso (CC.2.1). Se X < —1, entdo (3.26) ¢ instdvel.
Caso (CC.2.2). Se X > 1, entdo definimos pcc por

Pcc =exp [—pA arctan <—[)A:K\/§‘|‘PB> — pparctan <I’A—\/%139<> - g(PA +p3)} X

paps+X ++/D
X .
papp+X—vD

Entdo (3.26) é GUES se pcc < 1, apenas estdvel (mas ndo assintoticamente) se

pcc = 1 e instdvel se pcc > 1.
Caso (CC.3). Se D =0, entdo (3.26) é GUES se K > 1 e apenas estdvel (mas ndo assintoti-

camente) se X < —1.

Caso (RC). Se A e B possuirem uma autovalores reais e a outra autovalores complexos ndo-reais,
defina = paX — pB, em que pa e pp sdo escolhidos de forma a que ps € iR e pg € R. Entdo:
Caso (RC.1) Se D > 0, entdo (3.26) é GUES.
Caso (RC.2) Se D <0, entdo y #0e:

Caso (RC.2.1) Se x > 0, entdo (3.26) € instdvel e, neste caso, X /i < 0.
Caso (RC.2.2) Se y <0, entdo:

Caso (RC.2.2.A) Se K /i <0, entdo (3.26) é GUES.

Caso (RC.2.2.B) Se K /i > 0, entdo definimos pgc por

mt —3(pa/i-1) _
PrC = <) e Po {mi sinfy/ 1 — X2 — (cosi — X/isin7)
m
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com

mE = —xEtv-D

= Cpafi- K0
—pa/i+psK/i

V(1= (1+p})

f = arccos

Entdo (3.26) é GUES se pgrc < 1, apenas estdvel (mas ndo assintoticamente) se

prc =1 e instdvel se prc > 1.
Caso (RC.3) Se D =0, entdo (3.26) é GUES se x < 0 e apenas estdvel (mas ndo assintotica-
mente) se ¥ > 0.

Caso (RR). Se A e B possuirem autovalores reais, entdo:

Caso (RR.1) Se D <0, entdo (3.26) é GUES e, além disso, temos |X| > 1.
Caso (RR.2) Se D >0, entdo K # —papp (note que —papp > 1) e:
Caso (RR.2.1) Se K > —papp, entdo (3.26) ¢ instdvel.
Caso (RR.2.2) Se X < —papsp, entdo:
Caso (RR.2.2.A) Se X > —1, entdo (3.26) é GUES.
Caso (RR.2.2.B) Se K < —1, entdo definimos prr por

Prr = =" (Pa, P8, K) 4" (Pas pB, K) f" (P8, P2, K)
com

_ I+pa/i+ps/i+K—vD
1+pa/i+ps/i+K+VD’
Lpa/i—1
pB/l—ijA/l— \/@ z(pA/ )
ps/i—Xpa/i+ VD '

fSim(pA>pB7g<)

faSSim(pA7pB7g<) = (

Entdo (3.26) é GUES se pgrgr < 1, apenas estdvel (mas ndo assintoticamente) se

Prr = 1 e instdvel se prr > 1.

Caso (RR.3) Se D =0, entdo (3.26) é GUES se X < —papp e apenas estdvel (mas ndo assin-
toticamente) se K > —papp.

Este teorema apresenta assim uma classificagdo completa da estabilidade dos sistemas chaveados
lineares planares a dois subsistemas. Notemos, primeiramente, que esta classificacdo em termos dos
autovalores de A e de B e das quantidades py4, pp, K e D ndo é simples, e que diversos casos tiveram de
ser estabelecidos a fim de se fazer uma classificacdo completa. Isto € um evidente contraste com o caso
de um tnico sistema linear, X = Ax, em que os autovalores de A e suas multiplicidades fornecem toda a
informacao de estabilidade do sistema de uma forma direta, e traduz o fato de o chaveamento, mesmo

entre dois sistemas planares, enriquecer bastante a dindmica do sistema chaveado com relacdo as
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dinamicas possiveis dos subsistemas quando considerados independentemente. E também notédvel o
fato de um critério completo como este ter sido obtido através do estuda da “pior trajetéria” utilizando
métodos variacionais, o que evidencia a extrema aplicabilidade dos métodos variacionais e a forca dos

resultados obtidos através deles.

Para exemplificar um caso do Teorema 3.32, retomamos o Exemplo 2.15 a fim de mostrar a

estabilidade do sistema considerado naquele exemplo através desse tltimo resultado.

Exemplo 3.33. Seja o sistema chaveado do Exemplo 2.15, definido, com J = {1,2}, por

-1 -1 -1 -10
A]: y A2: )
-1 o —1

e 6 : Ry — J um sinal de chaveamento arbitrario, isto é, ¢ é uma fungdo mensurdvel qualquer
constante por partes € com um ndmero finito de descontinuidades em todo intervalo limitado de

tempo.

Desejamos mostrar que este sistema ¢ GUES utilizando o Teorema 3.32. Para utilizar a mesma
notacdo do teorema, escrevemos A = A; e B = A;. Comegamos entdo calculando os autovalores

de A e B. Na notacdo utilizada na Defini¢cdo 3.30, temos assim
M=—1+i, L=—-1—i, A3=—-1+i, A=-1-1i

Verifica-se assim que a hipétese (H1) estd satisfeita. Além disto, um cdlculo imediato mostra que

99 0
[A,B] - )
0 —99

e, assim, A e B ndo comutam, e (H2) estd satisfeita. Como os autovalores de A e B sdo complexos
ndo-reais, estas matrizes sdao diagonalizaveis em C, e, assim, (H3) esta satisfeita. Finalmente, um

célculo imediato de autovetores mostra que

() ) () ()

e, assim, (H4) esta satisfeita, e o Teorema 3.32 € aplicavel. Calculamos entdo as quantidades da
Defini¢ao 3.30,
pa=pp=1, X = 5,05, D =32,6025.

O Teorema 3.32 mostra assim que estamos no caso (CC.2.2). Para determinar a estabilidade do

sistema, basta ent@o calcular pcc. Com quatro casas decimais de precisdo, temos
pcc = 0,8727,
e, assim, o Teorema 3.32 garante que o sistema chaveado (3.27) ¢ GUES. |
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Deve-se notar que a aplicagdo do Teorema 3.32 torna mais fécil a demonstracdo da estabilidade
exponencial do Exemplo 2.15. De fato, o Exemplo 2.15 mostra diretamente a estabilidade exponen-
cial do sistema chaveado (3.27) através de um argumento de pior caso, enquanto que o Teorema 3.32
concentra este e outros tipos de argumentos de pior caso comuns em um Unico enunciado que facilita

a aplicac@o nos casos de interesse.

O Teorema 3.32 e os resultados apresentados em [5] apresentam todos os casos possiveis para um
sistema chaveado planar a dois subsistemas satisfazendo (H1) e (H2). Nesta apresentacdo, porém, ha
um grande nimero de casos possiveis, o que pode dificultar a sua aplicacdo pratica. Pensando nisto,
[6] apresenta um resultado mais concentrado, em que as possibilidades para um sistema chaveado
planar a dois subsistemas sdo agrupadas em apenas quatro casos. O ponto de vista de [6] é combinar
métodos variacionais com func¢des de Lyapunov para obter resultados mais diretos em alguns casos.

Assim, os quatro casos de [6] sdo os seguintes.

(S1). Corresponde a existéncia de uma CQLF para o sistema chaveado, que implica assim a estabili-

dade exponencial.

(S2). Corresponde a existéncia de v € (0,1) tal que VA; + (1 — v)A, possui um autovalor real posi-

tivo, caso em que o sistema € instivel.

(S3). Corresponde a existéncia de uma fung¢do de Lyapunov ndo-estrita para o sistema, isto €, que
decresce ao longo das trajetérias, mas ndo estritamente. Neste caso, mostra-se que o sistema é

estavel, mas ndo assintoticamente.

(S4). Finalmente, os casos restantes sdo tratados através de uma andlise de “pior trajetéria”, e o
célculo de uma determinada quantidade relacionada a esta trajetoria permite determinar a esta-

bilidade do sistema.

Para enunciar precisamente o resultado de [6], definimos o discriminante de uma matriz X € R>*2
por
8x = Tr(X)? —4det(X).

Dadas duas matrizes, X,Y € R2*2, definimos

L(X,Y) = % (Te(X) Te(Y) — Tr(XY))
Consideremos entdo o sistema (3.26), que retomamos aqui:
x(t) = u(t)Aix(t) + (1 —u(t))Axx(t), uel, (3.28)

com U a classe das funcdes mensuréveis a valores em [0,1] e x € R?. Para as matrizes A; e A do
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3.5. Andlise por principios variacionais

sistema (3.28), definimos as quantidades

( Tr(A;
4o se 04, # 0, 64, # 0,
‘614,"
Tr Ai
T = (4) se 64,64, =0 mas &4, #0, | i=1,2,
’3/*/"
Tr(A;
I'( ) se 5A| = 5A2 =0,
2
2’L’1 T
=——"(Tr(A1A2) — 1/2Tr(A;) Tr(A
A=4(T(A1,A2)* —T(A1,A1)[(A2,42)),
T_ arctan <Tr(Al)Tr(A2)(kTi + T3_i)> se 04, <0,
2 2T11’2\/K
2’[] ’Cz\/Z
t arctan (Tr(Al)Tr(Az)(kr,- — T3—i)> se 04, >0, | i=1,2,
2VA
Se 5A, = 0,
(TI'(A]AQ) — 1/2TI'(A1 ) TI'(Az)) T !

?_ 2T(Ay,A2) + VA SO0
2¢/det(A;)det(A,)

Estes valores permitem determinar a estabilidade do sistema (3.28).

Teorema 3.34. A estabilidade do sistema (3.28) pode ser estudada segundo os quatro casos a seguir.

(S1). SeT'(A1,A2) > —+/det(A;)det(Az) e Tr(A1A2) > —2+/det(A1)det(Ay), entdo o sistema (3.28)
admite uma CQLF e é portanto GUES. Nota-se que, se —+/det(A;)det(Az) < I'(A1,A2) <
\/det(Ay)det(Ay), entdo a condi¢do Tr(A1Ay) > —2+/det(A;)det(A,) estd automaticamente

satisfeita.

(S2). SeT'(A1,Ay) < —y/det(A})det(Ay), entdo o sistema (3.28) é instdvel.

(S3). SeI'(A1,Ay) = —+/det(A;)det(Ay), entdo o sistema (3.28) € estdvel, mas ndo assintoticamente.

(S4). SeT'(A1,Ay) > y/det(A;)det(Ar) e Tr(A1A2) < —2+/det(A;)det(A,), entdo o sistema (3.28) é
GUES se R < 1, estdvel mas ndo assintoticamente se R = 1 e instdvel se R > 1.

O Teorema 3.34 sintetiza assim o estudo da estabilidade de sistemas chaveados planares com
dois subsistemas, de forma mais simples que o Teorema 3.32. Esta maior simplicidade do Teorema
3.34 vem do fato de sua demonstracdo utilizar diversas técnicas; assim, para (S1), por exemplo, a
demonstragao utiliza a existéncia de uma CQLF, retomando os métodos da Secdo 3.2, e funcdes de
Lyapunov também sdo utilizadas para se mostrar (S3), enquanto que a demonstracdo de (S4) passa
pelos métodos variacionais discutidos nesta se¢do, mostrando assim a sua importancia para completar

o Teorema 3.34.
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3. Andlise da estabilidade sob chaveamento arbitrdrio

Os resultados discutidos neste capitulo sdo importantes para o estudo da estabilidade de sistemas
chaveados a chaveamento arbitrdrio. Além de sua utilidade prética para a determinacdo da estabili-
dade, estes resultados evidenciam as principais técnicas utilizadas no dominio dos sistemas chaveados
e os resultados que podem ser obtidos por elas. Apesar do grande desenvolvimento que este estudo
de estabilidade tem tido nos ultimos anos, muitas questdes permanecem em aberto, e os resultados

ainda sdo em geral escassos para o caso de sistemas nio-lineares.
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Capitulo 4

Analise da estabilidade sob chaveamento
restrito

O objetivo deste capitulo € estudar o sistema chaveado

X(t) = fo()(x(1)),
o(t)=o¢(t,o(t),x(t)), @G, (4.1)
x(1)eRY o()ed, teR,

em que, diferentemente do Capitulo 3, o sinal 6(7) ndo € mais um sinal de chaveamento qualquer a
valores em J, mas apresenta alguma restricéo, representada por uma determinada escolha da classe §

em que se tomam os sinais ¢. Similarmente, consideramos o sistema chaveado a tempo discreto

x[j+ 1] = for;)(x[j])s
olj+1] = o(j,oljl,x[j]), @<, 4.2)
x[jleR?, o[jled, jeN

Novamente, o interesse principal deste capitulo serdo os sistemas chaveados lineares, cuja equagao
de estado é dada por
x(t) = Agr)x(1) (4.3)

no caso de tempo continuo, ou por
x[j+1] = Agjx[J] (4.4)

no caso discreto. Igualmente, supomos, exceto onde mencionado o contrdrio, que o conjunto de

indices J € finito e escrevemos J = {1,...,N}.

Lembramos que o ponto de vista no estudo de sistemas chaveado € priorizar a dindmica f da
varidvel continua x, ignorando os detalhes da dindmica ¢ da variavel discreta 0. Assim, o estudo
realizado no Capitulo 3 consiste em ignorar a0 mdximo a dinadmica de o, admitindo que qualquer
sinal de chaveamento ¢ (constante por partes e com um ntimero finito de descontinuidades em todo

intervalo de tempo limitado) pode guiar a dindmica da varidvel continua x. Esta abstracdo total da di-
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4. Andlise da estabilidade sob chaveamento restrito

namica da varidvel discreta resulta em critérios robustos de estabilidade com relagdo ao chaveamento:
quando se lida com um sistema exponencialmente estdvel sob chaveamento arbitririo, pode-se abs-
trair completamente a dindmica do chaveamento sem que isto cause um prejuizo para a estabilidade
do sistema. Isto possui diversas aplicacdes praticas em situagdes em que a légica de chaveamento é

completamente desconhecida ou entdo muito complicada para ser utilizada na andlise.

Em muitos casos, porém, estdo disponiveis informacdes sobre a l6gica de chaveamento que po-
dem ajudar na andlise do sistema chaveado, permitindo obter critérios de estabilidade mais finos.
Além disto, um determinado sistema chaveado pode ser instdvel com relacdo a um chaveamento ar-
bitrario, mas pode recuperar sua estabilidade sob certas restricdes ao seu sinal de chaveamento, e,
assim, em certos casos, a andlise levando em consideragao estas restricdes € necessaria. As restri¢des
ao sinal de chaveamento podem aparecer naturalmente na modelagem do problema devido a restri¢des
fisicas ou a informacdes sobre a l6gica de chaveamento. Em sistemas de controle, pode-se também
considerar o caso em que multiplos controladores sdo projetados para uma tnica planta a fim de se
melhorar as caracteristicas de controle, e uma légica de chaveamento é implementada para selecionar
um controlador segundo certas informacdes do estado da planta; neste caso, a lI6gica de chaveamento
é projetada e, portanto, conhecida, e levd-la em considera¢do na andlise do problema pode garantir

melhores resultados de controle.

Neste capitulo, interessamo-nos a dois tipos de restricdo aos sinais de chaveamento, as restri¢des
pelo tempo e pelo estado. No caso de chaveamento restrito pelo tempo, os modelos (4.1) e (4.2)

podem ser escritos, como no caso do Capitulo 3, sob a forma

(1) = fon(x(1)), o€, 4.5)
com

G C {o:R; — I mensurdvel |c € constante por partes e possui um nimero finito de

descontinuidades em todo intervalo de tempo limitado}

no caso continuo e
A+ =Fop(ll), o €8, (4.6)

com G C {0 : N — J} no caso discreto. Notemos que esta escrita é a mesma que a utilizada Capitulo
3, a menos do fato de a classe § ndo ser mais a classe de todos os sinais de chaveamento possiveis,
mas sim uma subclasse desta. Algumas subclasses apresentam interesse particular, como € o caso da
classe dos sinais de chaveamento lentos, em que o tempo que separa dois chaveamentos consecutivos
€ uniformemente minorado, e também da classe dos sinais de chaveamento a excitacdo persistente,
em que o sinal de chaveamento deve satisfazer uma determinada condi¢do de excitacdo persistente

para, por exemplo, evitar os modos instaveis.

No caso de chaveamento restrito pelo estado, os modelos (4.1) e (4.2) podem ser escritos como

X(t) = foun (x(1)),
o(t) = o(x(r))

“.7)
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4.1. Chaveamento restrito pelo tempo

no caso continuo e

(4.8)

no caso discreto. A fung@o ¢ representa assim a légica de chaveamento e particiona o espago de
estados R? em regides O, k € J, com Q; = ¢! (k). Este tipo de caso ocorre com frequéncia em
problemas de controle em que vérios controladores sdo projetados para uma mesma planta e a esco-
lha de um controlador especifico depende do estado da planta. O chaveamento restrito pelo estado
também aparece na pratica quando um sistema cujo comportamento pode ser complicado € dividido
em diversas regides de operacdo e, em cada regido de operagdo, um modelo mais simples € utilizado.

Um outro problema de interesse € a estabilizagdo de um sistema através do chaveamento. Neste
caso, o chaveamento ¢ um pardmetro de projeto e deve ser escolhido de forma a garantir a estabili-
dade do sistema chaveado que dele decorre. Este problema é encontrado na prética ao se projetarem
multiplos controladores para uma mesma planta.

No caso dos sistemas sob chaveamento arbitrdrio no Capitulo 3, utilizamos com frequéncia o fato
de as nocdes de estabilidade assintética e estabilidade exponencial serem equivalentes para sistemas
chaveados lineares sob chaveamento arbitrario. Uma observagdo importante feita em [29] € que esta
equivaléncia € mantida sob chaveamento restrito controlado pelo tempo, mas ndo € mais valida para

chaveamento restrito controlado pelo estado.

4.1 Chaveamento restrito pelo tempo

Nesta secdo, desejamos estudar os sistemas (4.5) e (4.6) para determinadas classes de sinais de cha-

veamento §. Na maioria dos casos, interessar-nos-emos pelos sistemas lineares
x(t) =Asux(t), o€, (4.9)

no caso continuo, €
x[j+1]=Asxlj], o€, (4.10)

no caso discreto, com A, € R4*4 ke 7.

4.1.1 Tempo de permanéncia

O Exemplo 1.1 mostrou o caso de um sistema chaveado instdvel com dois subsistemas estdveis.
Analisando o exemplo, nota-se que a instabilidade ocorre devido ao sobressinal: apesar de cada
subsistema ser estdvel, a norma da solu¢do de um subsistema X = Axx cresce instantaneamente antes
de comecar a decrescer e tender a origem, causando assim um sobressinal com relagdo a condicao
inicial. Assim, se o chaveamento for escolhido de tal forma a ocorrer durante o sobressinal, os
sobressinais dos dois sistemas se acumulam, causando assim a instabilidade observada na Figura 1.2.
Uma forma possivel de evitar este fendmeno € entdo impedir a ocorréncia de chaveamento enquanto
houver o sobressinal, isto €, a cada vez que se chavear para um subsistema, deve-se permanecer nele

um tempo suficientemente grande a fim de evitar chaveamentos durante o sobressinal, garantindo
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4. Andlise da estabilidade sob chaveamento restrito

assim a estabilidade. E esta ideia que motiva a defini¢do de tempo de permanéncia de um sinal de

chaveamento.

Defini¢ao 4.1. Dizemos que 7, € R € um tempo de permanéncia do sinal de chaveamento ¢ se o
intervalo de tempo entre dois chaveamentos consecutivos de ¢ € maior ou igual a 7,. Notamos por

8(7,) a classe dos sinais de chaveamento a tempo continuo com tempo de permanéncia T,,.

Um primeiro resultado importante, mostrado em [39], mostra a estabilidade exponencial para o
caso em que o tempo de permanéncia € suficientemente grande e cada subsistema é exponencialmente

estavel.

Teorema 4.2. Seja o sistema chaveado linear (4.9) com G = 8(t,) definido por uma familia compacta

(possivelmente infinita) de matrizes {Ayx,k € I} de R4 Para todo k € I, suponhamos Ay Hurwitz e

tomemos constantes a; > 0, A > 0 tais que HeAkt H < et para todot > 0. Seja
ag
5 =sup —
P keJ ;Lk

e suponhamos T, finito. Entdo, se T, > T,, o sistema chaveado (4.9) é exponencialmente estdvel.

Como caso particular importante, notemos que, quando a familia {Ay,k € J} é finita, 7, € automa-
ticamente finito, e assim, para toda familia finita de matrizes, o sistema chaveado linear é exponenci-
almente estdvel para um tempo de permanéncia suficientemente grande desde que cada subsistema o
seja.

A exigéncia de se ter um limite inferior uniforme para o tempo de permanéncia pode ser rela-
xada: se um chaveamento ocorre em um tempo inferior a 7, desde o ultimo chaveamento, pode-se
imaginar que isto ndo ¢ muito grave desde que os chaveamentos seguintes compensem este chavea-
mento rapido, e estes chaveamentos mais rapidos ndo sejam tdo frequentes. Em outras palavras, ndao
€ necessario que o tempo entre dois chaveamentos quaisquer seja superior a T,, mas apenas que este

tempo seja superior a T, em média. Esta € a ideia da defini¢do de tempo de permanéncia médio.

Definicao 4.3. Dizemos que 7,, € R € um tempo de permanéncia médio do sinal de chaveamento ¢
se o nimero de chaveamentos Ny (¢, T) de o entre dois instantes T e t com ¢ > T > 0 satisfizer
r—7T
No(t,7) <No+ —— 4.11)

m

para uma certa constante Ny > 0, chamada de limite de vibragdo (do inglés “chatter bound’). Notamos
por 8,,(T,) a classe dos sinais de chaveamento a tempo continuo com tempo de permanéncia médio

Ty

Notemos que, no caso em que Ny (2, T) —No > 0, (4.11) pode ser reescrita como

-7 -
AT . N Ay Z tmy
NG (t7 T) - NO
e N(;ﬁ fornece uma medida do tempo médio que se passa entre dois chaveamentos consecutivos
ol\l,v)—INg
do sinal.
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4.1. Chaveamento restrito pelo tempo

Foi demonstrado em [25] que a existéncia de um tempo de permanéncia médio garante a estabili-

dade exponencial de uma familia de matrizes segundo o teorema a seguir.

Teorema 4.4. Seja o sistema chaveado linear (4.9) com G = 8,,(T,) definido por uma familia com-
pacta (possivelmente infinita) de matrizes {Ay,k € I} de R¥4 e suponhamos que exista Ay > 0 tal
que Ay + Aol é Hurwitz para todo k € J. Entdo existe uma constante T}, tal que o sistema (4.9) é

exponencialmente estdvel se T, > T,

Como um tempo de permanéncia é, em particular, um tempo de permanéncia médio, o Teorema
4.4 contém o Teorema 4.2 como caso particular. Notamos também que, no caso de uma familia finita
de matrizes, a existéncia da constante Ay enunciada no teorema é automatica. O artigo [25] também

apresenta uma generalizacdo do Teorema 4.4 ao caso de sistemas chaveados ndo-lineares.

Teorema 4.5. Seja o sistema chaveado (4.5) com G =8, () definido por uma familia (possivelmente
infinita) de aplicagoes { fi,k € I} de R em R tais que f,(0) = 0 para todo k € J. Suponhamos que
existam aplicacées Vi : R? — R para todo k € J, constantes positivas Ay e | e funcoes o, B : Ry — R,

estritamente crescentes, continuas, ndo-limitadas e com o.(0) = B(0) = 0, tais que

2% () ) < Ao (0, @.120)
() < Vo) < (). @.120)

Vie(x) < UV, (x), (4.12¢)

para todo x € R? e k,m € J. Entdo existe uma constante T

~ tal que o sistema chaveado (4.5) é

assintoticamente estdvel se T,, > T),.

As condicdes (4.12) impostas sobre os campos de vetores f; sdo o andlogo da exigéncia de as
matrizes Ay serem Hurwitz; assim, exigimos que os f; possuam cada um uma func¢io de Lyapunov,
que € o expresso nas condicdes (4.12a) e (4.12b), e estas fun¢des de Lyapunov ainda devem satisfazer
a relacdo (4.12c), que pode restringir a aplicabilidade do Teorema 4.5. Pode-se mostrar que, no caso
linear, funcdes de Lyapunov satisfazendo (4.12) sempre existem sob as hipdteses do Teorema 4.4.

Os Teoremas 4.2 e 4.4 também possuem andlogos no caso do sistema chaveado discreto (4.10),
conforme apresentado em [46]. A defini¢do do tempo de permanéncia médio para sinais de chavea-

mento a tempo discreto utilizada em [46] € andloga ao caso continuo.

Definiciao 4.6. Dizemos que 7,, € R é um tempo de permanéncia médio do sinal de chaveamento o
a tempo discreto se o nimero de chaveamentos Ny[j] de o no intervalo [0, j| satisfizer

q < J

No [] ] <No+ ?

m

Ao ¢6

para uma certa constante Ny > 0, chamada de limite de vibragdo (do inglés “chatter bound”). Notamos

por 8%[1,] a classe dos sinais de chaveamento a tempo discreto com tempo de permanéncia médio
("

O teorema de estabilidade correspondente € entdo o seguinte.
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4. Andlise da estabilidade sob chaveamento restrito

Teorema 4.7. Seja o sistema chaveado linear (4.10) com G = 8% [t,,] definido pela familia de matrizes
{A,k € 3} de R¥*¢ com I = {1,...,N} e suponhamos que os subsistemas deste sistema chaveado

sejam todos exponencialmente estdveis. Entdo existe uma constante T, tal que o sistema (4.10) é

exponencialmente estdvel se T, > T),.

A versdo deste teorema apresentada em [46] é mais geral que a apresentada acima, permitindo
que algumas das matrizes A; sejam instaveis e restringindo o sinal de chaveamento para que o sistema
ndo passe muito tempo nos modos instdveis, garantindo assim a estabilidade do sistema chaveado.

E também de interesse a seguinte questdo: dado um sistema chaveado linear (4.9) ou (4.10),
qual o menor valor de 7, ou de 7, que garanta a estabilidade exponencial do sistema chaveado para
chaveamentos na a classe 8(7,), 8,u(Tn) ou 84,[7,]? O Teorema 4.2 fornece uma estimativa para o
valor de 7,, e estimativas para T, também podem ser obtidas ao se analisar as demonstracoes dos
Teoremas 4.4 e 4.7. Porém, como nota [43], estas estimativas sdo, em geral, muito conservadoras.
No Teorema 4.2, por exemplo, o valor de 'E; pode ser grande mesmo para uma familia de matrizes
que comutam, mas, neste caso, sabe-se pelo Teorema 3.3 que a estabilidade ocorre para sinais de
chaveamento arbitrarios e, portanto, ocorre estabilidade para sinais na classe S('L'p) para todo 7, > 0,
0 que mostra que a estimativa dada por 7, pode ser muito conservadora. O problema de encontrar
melhores estimativas para o tempo de permanéncia e o tempo de permanéncia médio é ainda um

problema em aberto.

4.1.2 Funcoes de Lyapunov miltiplas

Uma possibilidade de andlise de sistemas chaveados com chaveamento restrito no tempo é através
do uso de fungdes de Lyapunov miultiplas. Considerando, assim, o sistema chaveado (4.5) com sub-
sistemas exponencialmente estdveis, o fato de cada subsistema ser exponencialmente estidvel garante
a existéncia de uma func@o de Lyapunov V; para o subsistema x = fi(x). Pode-se, assim, utilizar
estas funcdes de Lyapunov para se obter restricdes no tempo que devem satisfazer os sinais de cha-
veamento a fim de se garantir a estabilidade exponencial. Uma condi¢do possivel, seria, por exem-
plo, de exigir que um chaveamento de um estado k para um estado m s6 pode ser realizado quando
Vin(x(t)) < Vi(x()), o que garante assim a estabilidade exponencial do sistema chaveado. Esta con-
dicdo € relativamente conservadora, e resultados menos conservadores podem ser obtidos, como o

seguinte, apresentado em [43].

Teorema 4.8. Seja o sistema chaveado (4.5) definido pelos campos de vetores fi, k€ I={1,...,N}
que possuem, cada um, uma fung¢do de Lyapunov Vi(x). Para um sinal de chaveamento o, definimos
a sequéncia de chaveamentos (k;)i>q e a sequéncia de instantes de chaveamento (t;);> de forma que,
em t;, o sistema chaveia do modo k;_1 para o modo k; # ki_1. Se, para todo m € J e, para todo t; tal
que k; = m, tivermos

Vin(x(t1)) < Vi (x(2)) (4.13)

em que j=sup{j<ilk 1= m} € tal que t; € o iiltimo instante em que se chaveou saindo do modo

m, entdo o sistema chaveado (4.5) é assintoticamente estdvel.
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4.1. Chaveamento restrito pelo tempo

O Teorema 4.8 fornece assim um critério que devem satisfazer os sinais de chaveamento para que
o sistema chaveado correspondente seja assintoticamente estdvel. A condicdo (4.13) exige assim que,
ao se entrar em um modo m, o valor da fungdo de Lyapunov V,, deve ser inferior ao valor que ela

possuia quando o sistema saiu do modo m pela dltima vez. Uma representacio grafica disto para 3
subsistemas estd dada na Figura 4.1.

Funcéo de Lyapunov \{(x(t)) Funcéo de Lyapunov \é(x(t)) Funcéo de Lyapunov \é(x(t))
[ ‘\\
» '
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FIGURA 4.1: Representacao das condigdes do Teorema 4.8 para um sistema chaveado com 3 subsistemas.
Estdo representadas as fungdes Vi(x(t)), k € {1,2,3}, em linha continua quando o subsistema k estd ativo e
em tracejado sendo. Verifica-se que a fungdo V(;)(x(t)) ndo é decrescente, mas o critério do Teorema 4.8 estd
satisfeito: a cada vez que se entra no subsistema k, o valor de Vi.(x(t)) ¢é inferior ao valor desta funcao
quando se saiu do subsistema k pela iltima vez.

Variantes do Teorema 4.8 podem ser feitas para se obter critérios com menos restricdes. As-
sim, [29] afirma que é possivel, por exemplo, relaxar a exigéncia (4.13), exigindo que o valor de
Vi(x(2)) no instante de saida do subsistema k seja inferior ao seu valor no instante de saida anterior,
ou seja, que a sequéncia dos valores de Vi (x(7)) nos instantes de saida do subsistema k seja uma
sequéncia decrescente. Uma variante desta condigdo € exigir que a sequéncia dos valores de Vi (x(2))
nos instantes de entrada no subsistema k seja uma sequéncia decrescente. Vdrios outros critérios
podem ser estabelecidos de forma a, assim como o Teorema 4.8, garantir a estabilidade do sistema
chaveado sob chaveamento restrito.

Segundo [29], a teoria das fungdes de Lyapunov multiplas é uma das mais estudadas na area de
sistemas chaveados. A principal vantagem deste método, segundo [43], estd em sua facilidade, uma
vez que, dadas as fungdes de Lyapunov Vj, basta verificar quando Vi (x(¢)) cai abaixo do valor que esta

funcdo possuia quando saiu do subsistema k para poder autorizar um novo chaveamento de volta a k.
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4. Andlise da estabilidade sob chaveamento restrito

Isto faz com que o método possa ser facilmente utilizado nas aplicacdes, além de possuir as vantagens
de ndo estar restrito ao caso linear nem depender de um tipo particular de funcdo de Lyapunov. Porém,
a escolha das fungdes de Lyapunov é uma das dificuldades do método, uma vez que ndo ha nenhum
critério conhecido para isto que garanta resultados melhores, e uma escolha ruim poderia levar a sinais
de chaveamento muito conservadores. Este procedimento de escolha das fun¢des de Lyapunov que
garantem critérios menos conservadores para o sinal de chaveamento é um dos problemas abertos
importantes da teoria de fungdes de Lyapunov muiltiplas.

Assim como existem teoremas reciprocos que garantem a existéncia de uma fungdo de Lyapunov
no caso do chaveamento arbitrério, vistos na Secdo 3.4, existem também teoremas deste tipo para
sistemas com chaveamento restrito apresentando um tempo de permanéncia [43]. Deve-se notar que
ndo se pode esperar encontrar, em geral, uma func¢do de Lyapunov independente do tempo neste
caso, pois, se fosse o caso, o sistema seria exponencialmente estdvel sob chaveamento arbitrério, o
que ndo é o caso geral de interesse quando se trabalha com chaveamento restrito. Assim, a ideia
é procurar uma funcio de Lyapunov multipla, construida a partir de fun¢des de Lyapunov para cada
subsistema k. O Teorema 4.9 mostra uma classe de funcdes de Lyapunov cuja existéncia é equivalente

a estabilidade exponencial no caso linear a chaveamento restrito com tempo de permanéncia.

Teorema 4.9. Seja o sistema chaveado linear (4.9) com G = 8(t,) definido pela familia de matrizes
{Ar,k €3} de R4, com I = {1,...,N}. Este sistema é exponencialmente estdvel se e somente se

existirem normas vy,...,vy em R e uma constante B > 0 tais que, para todo k € J,
(M) < e P, vt >0,
e, para todos k,m € J,
V(€M x) < e Py (x), Vx e RY V> 1,

Neste caso, V (t,x) = V(1) (x) € uma func¢do de Lyapunov do sistema estritamente decrescente ao

longo das trajetorias.

No Teorema 4.9, a norma de matriz induzida por v; foi notada igualmente por v;. O teorema
fornece assim a existéncia de uma fun¢do de Lyapunov midltipla estritamente decrescente ao longo
das trajetérias. Na prética, obter uma tal fun¢do pode ser complicado, o que motiva a procura por

funcgdes de Lyapunov satisfazendo a critérios menos restritivos, como no Teorema 4.8.

4.1.3 Estabilizacao de sistemas com tempo de permanéncia

A existéncia de um tempo de permanéncia finito também permite obter resultados de estabilizagcdo

para o sistema de controle
X(1) = Ag(x(t) + Boul(t), o€, x(t)eRY, y(t) eR" (4.14)

O problema da estabiliza¢do consiste em escolher uma realimentacao de estado u(r) = K(¢)x() de tal
forma que o sistema
i(t) = (Ao + BonK(1)) x(t), o €9 (4.15)
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4.1. Chaveamento restrito pelo tempo

seja exponencialmente estdvel. Uma solucdo para este problema em termos da frequéncia de chave-

amento € proposta em [13].

Definiciao 4.10. Seja um sinal de chaveamento ¢ : R, — J. Definimos a frequéncia de chaveamento
f de o por
Nos(t,0
f= limsupg(t’ )

t—+oo

em que, como na Defini¢do 4.3, Ns(z,7) é o nimero de chaveamentos de ¢ no intervalo [t,¢] para
t>1t>0.

Um primeiro resultado de [13] € quando tanto o sinal de chaveamento ¢ quanto um limitante ¢
para a sua frequéncia de chaveamento f sdo dados, e, assim, pode-se construir a realimentacido de

estado em termos de um ganho de realimentac@o K (¢) dependente de o e .

Teorema 4.11. Seja o sistema de controle chaveado (4.14) definido por (Ay,Bi),...,(An,Bn) €
R¥*4 x RY*M ¢ suponhamos que cada par (Ay,By) é controldvel. Seja a > 0. Entdo existem ma-
trizes de ganho Ky, k € {1,...,N}, tais que, para todo sinal de chaveamento G com frequéncia de
chaveamento f < @, a realimentagdo de estado u(t) = Kq(\x(t) estabiliza exponencialmente o sis-

tema (4.15).

Este resultado nio € tao surpreendente. De fato, dada uma frequéncia de chaveamento f finita,
o tempo entre dois chaveamentos consecutivos pode ser minorado por um certo 7,. Como cada
subsistema (Ay, Bx) é controldvel, o Teorema de Alocagdo de Polos permite escolher uma matriz Kj
de forma que Ay + By K} seja estavel com uma velocidade exponencial de convergéncia arbitraria, e
assim a ideia seria escolher K; com um ganho suficientemente grande para que, apds um intervalo de
tempo 7,, o fendmeno de sobressinal devido a dindmica de A, + BiKj ja tenha passado, prevalecendo
entdo a convergéncia exponencial. O fato de existir uma escolha de K} que garanta que a estabiliza¢do
exponencial predomine sobre o sobressinal apés um tempo fixado 7, é uma consequéncia de um
resultado de [12]. Esta é, entdo, a ideia da demonstracao do Teorema 4.11.

Em muitas situacdes de interesse, porém, ndo se conhece um limitante ¢ da frequéncia de chave-
amento f do sinal o, sabendo apenas que ¢ tem uma frequéncia de chaveamento finita. Neste caso,

um segundo teorema de [13] garante que a estabilizag¢do ainda € possivel.

Teorema 4.12. Seja o sistema de controle chaveado (4.14) definido por (Ay,B),...,(An,By) €
R4 5 R™ ¢ suponhamos que cada par (Ag,By) € controldvel. Entdo, para todo sinal de cha-
veamento G com frequéncia de chaveamento finita (desconhecida) f, existe uma realimentagdo de

estado u(t) = K(t)x(t) que estabiliza exponencialmente o sistema (4.15).

Com relacdo ao Teorema 4.11, a dificuldade na demonstragdo do Teorema 4.12 € o fato de que
a frequéncia de chaveamento f nfo é conhecida e, assim, ndo se pode utilizar a mesma ideia de
demonstra¢do do Teorema 4.11 por ndo se ter um limitante inferior conhecido 7, para o intervalo
de tempo entre dois chaveamentos. Porém, apesar de este limitante ndo ser conhecido, ele existe, e
pode-se assim utilizar o sinal ¢ para se construir um estimador £, de 7,. As matrizes K} do Teorema
4.11 sdo assim atualizadas junto com a estimativa Z,,, e pode-se mostrar que a realimentacio de estado

definida por estas matrizes estabiliza exponencialmente o sistema.
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4. Andlise da estabilidade sob chaveamento restrito

Tanto no Teorema 4.11 quanto no Teorema 4.12, o conhecimento do sinal o(¢) é necessdrio para
a constru¢do da realimentacdo. Em muitos casos, porém, este sinal ndo é conhecido. Assim, [13]
apresenta um resultado de estabilizacdo valido também para este caso; porém, é necessario agora

conhecer um tempo de permanéncia para ©.

Teorema 4.13. Seja o sistema de controle chaveado (4.14) definido por (Ay,By),...,(An,By) €
R4 5 R¥*™ ¢ suponhamos que cada par (Ay,By) € controldvel. Entdo, dado um tempo de perma-
néncia t, > 0, existe uma realimentagdo de estado u(t) = K(t)x(t) que estabiliza exponencialmente

o sistema (4.15) para todo sinal de chaveamento ¢ com tempo de permanéncia T,,.

Para se demonstrar o Teorema 4.13, busca-se estimar o sinal de chaveamento 6. Assim, constroi-
se um estimador & de 0, e, utilizando matrizes K; construidas como no Teorema 4.11 e esta estimativa
6, constréi-se uma realimentagdo linear de estado que estabiliza exponencialmente o sistema.

Os Teoremas 4.11, 4.12 e 4.13 s@o assim importantes em sistemas de controle para estabilizar
sistemas chaveados. Se os resultados dados aqui fornecem apenas a existéncia de uma realimentacao
de estado estabilizante, as demonstracdes apresentadas em [13] fornecem uma ideia de como pode

ser feita uma implementac@o pratica destes resultados através da construgdo do ganho K (¢).

4.1.4 Sinais de chaveamento a excitacao persistente

Consideremos o sistema de controle chaveado
x(t) = Ax(t) + o(t)Bu(t),  x(t) €R? u(t) eR™, o(t) € {0,1}, (4.16)

em que ¢ é um sinal de chaveamento entre o sistema nio-controlado X = Ax e o sistema controlado
X = Ax+ Bu. Embora o chaveamento entre o sistema controlado e o sistema nao-controlado possa
ocorrer em algumas situacdes praticas, o maior interesse do estudo de (4.16) estd no estudo do sistema

convexificado correspondente,
x(t) = Ax(t) + o(t)Bu(t), x(t) €RY, u(r) e R™, o(r) € [0,1]. (4.17)

Este sistema, ou sistemas andlogos a este, aparecem em algumas situagdes préticas de interesse. Por

exemplo, [30] cita o caso do sistema nao-linear
O=S®o+gtu, o©ckR,

em que S(®) € R3*? é uma matriz dependente de @ e g(¢) é uma matriz dependente do tempo tal
que postog(r) < 3 para todo 7. Este sistema € utilizado no controle de naves espaciais com atuadores
magnéticos e pode ser visto como uma generalizacdo de (4.17). Outro exemplo citado em [30] € o
controle do sistema

x=f(t,x)+g(t,x)u

com g(#,x) uma matriz invertivel para todo (z,x). Este sistema aparece naturalmente em diversas

aplicacdes de controle de sistemas mecanicos devido a forma das equagdes lagrangianas. Deve-se
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lembrar, também, que um sistema como (4.17), o sistema (3.23), foi utilizado na Se¢do 3.5.1 para
mostrar a solucdo apresentada em [32] ao problema da estabilidade absoluta para as dimensdes 2 e
3. Em [32], o problema da estabilidade absoluta é reformulado de forma a levar a um sistema de
controle do tipo (3.23). Isto motiva, assim, o estudo do sistema (4.17).

O problema de interesse no estudo do sistema (4.17) é a sua estabilizacdo através de uma reali-
mentagdo de estado linear u = —Kx independente do sinal de chaveamento o, isto é, desejamos obter
K independente de o tal que

x=(A—o(t)BK)x

seja exponencialmente estdvel para todo sinal de chaveamento 6 em uma determinada classe §. A
escolha G = L*(R™, [0, 1]) ndo € interessante, pois estamos interessados no caso geral em que A ndo
é necessariamente estdvel, e esta classe contém sinais em que o controle ¥ = —Kx nfo estd ativo
o suficiente, como é o caso de o(¢) = 0 para todo ¢ ou o(r) = 0 a partir de um certo #,. Assim,
é necessdrio garantir que o sinal de chaveamento o ative o suficiente o controle u#. Para isto, [11]

propde o uso de sinais a excitacdo persistente.

Definicao 4.14. Sejam T, i duas constantes positivas com 7' > pt. Dizemos que uma fun¢io mensu-

ravel 6 : Ry — [0, 1] é um sinal (T, 1) se, para todo ¢ € R, tivermos

t+T
L o(s)ds > . (4.18)

O conjunto de sinais (7, 1) é notado por G(T, ). Dizemos que uma fun¢do mensurdvel ¢ : R, —
[0, 1] é um sinal a excitagdo persistente (ou simplesmente sinal PE) se for um sinal (7', i) para certas

constantes positivas 7 e L com T > (.

A condicdo de excitacdo persistente, que aparece naturalmente em certos contextos de identifica-
¢do e controle adaptativo, garante assim que, para cada janela de tempo 7', o sinal o “ativa” o controle

u em uma quantidade uniformemente minorada. Assim, o sistema de interesse é
x(t) = Ax(t) + o(t)Bu(t), cec9(T,u), (4.19)

que € as vezes chamado de sistema a excitacdo persistente ou sistema PE.

Em [11], foi obtido um resultado de estabilizacdo de (4.19) para o caso em que a matriz A é
neutramente estdvel, isto &, todos os autovalores de A possuem parte real negativa ou nula e os de
parte real nula possuem multiplicidade geométrica igual a multiplicidade algébrica, ou seja, o bloco

de Jordan associado € trivial; isto € equivalente ao fato de o sistema X = Ax ser estavel.

Teorema 4.15. Suponhamos que o par (A,B) seja estabilizdvel e que a matriz A seja neutramente
estdavel. Entdo existe uma matriz K € R4 gl que, para todo T > 1 > 0, a realimentagdo de estado

u = —Kx estabiliza exponencialmente o sistema (4.19).

Lembremos que o par (A, B) é chamado de estabiliz4vel se existir K € R”*? tal que A + BK seja
Hurwitz. Como o sinal ¢ constante igual a 1 para todo ¢ estd na classe G(T, 1t), a estabilizabilidade

de (A, B) é evidentemente uma condi¢@o necessaria de estabiliza¢do do sistema (4.19).
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4. Andlise da estabilidade sob chaveamento restrito

O Teorema 4.15 mostra assim que a estabilizacdo do sistema (4.19) por uma realimentacdo de
estado independente do sinal ¢ é possivel e que a matriz K desta realimentacio independe das cons-
tantes T e u de excitacdo persistente do sinal o. O caso considerado de sistema neutramente estavel
é importante na prética, aparecendo naturalmente em varios modelos fisicos em que ocorre a conser-
vagdo da energia em ao menos uma parte do sistema e nao hé injecdo de energia no sistema.

E de interesse, porém, generalizar o resultado do Teorema 4.15 a casos mais gerais de matriz A.

Um primeiro resultado neste sentido foi apresentado em [11], em que mostrou-se que o sistema (4.19)

pode ser estabilizado por uma realimentagdo de estado u = —Kx quando (A, B) € o duplo integrador,
isto €, quando
0 1 0
A — s B =
00 1

Este resultado foi em seguida generalizado em [15] para o caso em que A possui todos os seus auto-
valores com parte real negativa ou nula. Assim, com relagdo ao Teorema 4.15, a generalizacdo esta
no fato de permitir que os autovalores de parte real nula de A tenham blocos de Jordan nao-triviais,
o que corresponde assim a uma possivel instabilidade com divergéncia polinomial do sistema nao-
controlado x = Ax. O resultado de [15] considera o sistema (4.19) com uma entrada escalar, isto €, a

matriz B é simplesmente um vetor coluna b € R¢,

Teorema 4.16. Seja (A,b) € R¥*¢ x RY um par controldvel e suponha que os autovalores de A
possuem parte real negativa ou nula. Entdo, para todos T, 1t com T > 1 > 0, existe K € R? tal que

a realimentagdo de estado u = —K Tx estabiliza exponencialmente o sistema (4.19).

E interessante analisar a estratégia de demonstracio do Teorema 4.16, que pode ser ilustrada

através do caso do duplo integrador, isto &, com

01 0
A - y b =
00 1
Neste caso, o sistema (4.19) se escreve
xl = X2,
,  oe§(T,pu). (4.20)
Xy = G(t)u.

A demonstracdo neste caso baseia-se no seguinte fato: para todo v > 0, K = (kl k2> é um ga-
nho de realimentagdo de estado que estabiliza (4.20) com relagdo a classe G(7, 1) se e somente se
(v2k1 vk2> for um ganho de realimentacdo de estado que estabiliza (4.20) com relagdo a classe

G(T/v,u/v), o que pode ser visto considerando a equagao satisfeita por

xy(t) = ((1) 3) x(vr).

A ideia da demonstragao é assim construir um ganho K = (kl k2> que estabilize (4.20) com relagdo

a classe G(T/v,u/v) para um certo v grande o suficiente, e assim o ganho de estabiliza¢do procu-
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rado com relagdo a classe §(7,u) é (kl /v k) v). A construcdo de um tal K é baseada em um
procedimento de limite: dada uma sequéncia de sinais 6, € G(T /V,,lt/Vy,) com lim,,_, 4o V,, = o0,
por compacidade fraca-x de L*(R, [0, 1]), existe uma subsequéncia de (0,,) fraco-x convergente em
L*(R4,[0,1]) para um certo limite o,, e pode-se mostrar que o, (f) > % para quase todo ¢. Pode-se

assim utilizar o sistema limite

e o) =5, @21)
Xo = G*(t)u, T

para se obter propriedades do sistema (4.20) através de um processo limite. A ideia geral é portanto
acelerar a dindmica de (4.20) por um fator v. Esta acelerac@o reduz a importancia dos intervalos
em que o é pequeno pois, no limite, o, (t) > # para quase todo ¢, facilitando assim o estudo do
comportamento do sistema. Construimos assim um ganho de realimentacdo K = (lq kz) para um
sistema para o qual a escala de aceleracdo v € grande o suficiente, e finalmente pode-se estabilizar
o sistema original por um ganho (k1 /v ky/ v). Deve-se notar que, para v grande, este ganho é
pequeno, e a técnica de estabilizacdo utilizada para se demonstrar o Teorema 4.16 é assim chamada
de técnica de ganho pequeno.

Apesar de generalizar o Teorema 4.15, o Teorema 4.16 ainda s6 € aplicdvel a matrizes A cujos
autovalores t€m parte real negativa ou nula, e nio foi obtido em [15] nenhum resultado relativo ao
caso geral de uma matriz A podendo possuir autovalores de parte real positiva. Este problema pode,

entretanto, ser reformulado em termos de um problema de taxa de convergéncia arbitriria.

Definicdo 4.17. Para o sistema (4.19) com realimentagio de estado u = —Kx e uma classe §(7T, u),
notando por x(¢;xp,0) a solugdo de (4.19) com condic@o inicial x(0;x9) = xo para um sinal ¢ €
G(T, 1), pode-se definir o expoente de Lyapunov mdximo A" (c,K) por
1 t;x9,0
AT (0,K)= sup limsupw.

llxol|=1 1—>+eo t

A taxa de convergéncia associada ao sistema (4.19) para um ganho de realimentacio K € entao

rCS(TvlJ>K):_ sup A+(G,K),
oeS(T,u)

e define-se assim a mdxima taxa de convergéncia do sistema (4.19) como

RCq(T,u) = sup rcg(T,u,K).
KeRm»d
O sistema (4.19) pode assim ser estabilizado com uma taxa de convergéncia arbitréria se e so-
mente se RCq (T, i) = +oo.
Suponhamos que fosse possivel estabelecer, no Teorema 4.16, que o ganho K pode ser escolhido
para se obter uma taxa de convergéncia arbitraria para qualquer par controldvel (A,b) € R?*? x R,
Entio, tomando um par controldvel (A’,b) € R4*¢ x R qualquer, pode-se escolher A suficientemente

grande de forma que (A" — Al b) satisfaga as hipiteses do Teorema 4.16. Se fosse possivel obter uma
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taxa de convergéncia arbitrdria neste teorema, poder-se ia entdo escolher um ganho K tal que o sistema
definido por (A" — Apl,b) convergisse com uma taxa de convergéncia superior a Ay. Mas verifica-se
facilmente que as solugdes de

x=(A—DK)x (4.22)

e de
y=(A—2AI—DK)y (4.23)

estdo relacionadas por x() = ¢™'y(t) e, assim, estabilizar (4.23) com uma taxa de convergéncia su-
perior a Ay corresponde assim a estabilizar exponencialmente (4.22). Logo, mostrar o Teorema 4.16
com uma taxa de convergéncia arbitrdria implica mostrar o Teorema 4.16 para um par controldvel
(A,b) € R™4 x RY qualquer. A implicagdo inversa pode ser obtida por argumentos similares, e, as-
sim, generalizar o Teorema 4.16 a um par controldvel (A,b) € R?*4 % R? qualquer é um problema
equivalente a estabelecer a taxa de convergéncia arbitraria no Teorema 4.16.

Por este motivo, [15] interessa-se ao problema de estabilizacdo de (4.19) a uma taxa de conver-

géncia arbitraria. Dois resultados foram obtidos neste sentido.

Teorema 4.18. Seja d um inteiro positivo. Existe p* € (0,1) tal que, para todo par controldvel
(A,b) € R4 x R? ¢ todos T, W positivos satisfazendo p* < % <1, temos RCq(T, L) = +oo.

Isto quer dizer que, ao menos para % grande o suficiente, a estabilizacdo a uma taxa arbitraria de
convergéncia é possivel para o sistema (4.19) com um par (A, b) controlavel. Assim, para p* < % <lI,
o resultado do Teorema 4.16 ¢ vilido para todo par controlavel (A,b) € R¥*? x RY. Entretanto, [15]

também mostra que o resultado € falso para % pequeno, ao menos em dimensao 2.

Teorema 4.19. Existe p, € (0,1) tal que, para todo par controldvel (A,b) € R**? x R? e todos T, p
positivos satisfazendo 0 < & < p,, temos RCg(T, 11) < +oo.

Dizer que RCq(T, 1) < +oo significa que existe C > 0 tal que, para todo KT € R?, tem-se
reg(T, 1, K) < C, e portanto que existe o € §(7,u) tal que A7(0,K) > —C. A demonstragdo do
Teorema 4.19 dada em [15] constréi explicitamente um tal ¢ para todo KT € R2. Em particular, a
constru¢do mostra que, conforme ||K|| aumenta, o sinal desestabilizante ¢ construido oscila cada vez
mais rdpido entre 0 e 1. Como observado em [15], pode-se interpretar esta constru¢do dizendo que
o tempo que ¢ passa em 1 € curto o suficiente de forma a que o efeito estabilizante da dindmica do
sistema x = (A — bK)x seja compensado pelo efeito de sobressinal que ocorre em pequenos intervalos
de tempo, e € este efeito de sobressinal que impede que o sistema seja estabilizado a uma taxa arbi-
trdria. Isto s6 é possivel devido ao fato de ¢ oscilar rapidamente entre 1 e 0, e, assim, uma questao
levantada em [15] ao final do artigo é de procurar uma subclasse de §(7, 1) para a qual um resultado
de estabilizacdo a velocidade arbitréria seja vélido. Esta classe deve impedir as oscilacdes rdpidas
de o e, assim, [15] sugere a classe de sinais a excitagdo persistente lipschitzianos com constante de

Lipschitz limitada por um certo M.

Definicao 4.20. Sejam T, 1 e M constantes positivas com 7 > . Dizemos que uma funcdo men-

surdvel o : Ry — [0,1] é um sinal (T,u,M) se for um sinal (T,u) e além disso for globalmente
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M-lipschitziana, isto é, para todo t,s € R,
lo(t)—o(s)| <M|r—s].

O conjunto dos sinais (7, u,M) é notado por D(T,u,M). Dizemos que uma fun¢do mensuravel
o : Ry — [0,1] é um sinal lipschitziano a excitagdo persistente (ou simplesmente sinal PEL) se for

um sinal (7, i, M) para certas constantes positivas 7', t e M com T > u.

Assim, o sistema de interesse €
x(t) = Ax(t) + o (t)Bu(t), ceD(T,u,M), (4.24)

que € as vezes chamado de sistema a excitacdo persistente lipschitziano ou sistema PEL. De forma
andloga a Definicdo 4.17, podemos definir a faxa de convergéncia e a mdxima taxa de convergéncia

para o sistema (4.24).

Defini¢do 4.21. Para o sistema (4.24) com realimentagio de estado u = —Kx e uma classe D (T, u, M),
notando por x(¢;xp,0) a solu¢do de (4.24) com condic@o inicial x(0;x9) = xo para um sinal ¢ €
D(T, u, M), pode-se definir o expoente de Lyapunov mdximo A+ (o,K) por
1 t;x9,0
AT (0,K)= sup limsupw.

llxol|=1 1=>+eo t

A taxa de convergéncia associada ao sistema (4.24) para um ganho de realimentacio K € entao

I‘CD(T,[J,M,K):— sup )'Jr(GvK)a
o€D(T,u,M)

e define-se assim a mdxima taxa de convergéncia do sistema (4.24) como

RCop(T,u,M)= sup rcp(T,u,M,K).
KeRmxd

Assim, para o € D(T,u,M), o fendbmeno de oscilagdo rapida que resulta no Teorema 4.19 néo é
possivel, pois, se, por exemplo, ¢ assumir um certo valor positivo p em um instante ¢, o intervalo de
tempo préximo a t em que ¢ é maior do que /2 ndo pode ser arbitrariamente pequeno, e espera-se
assim que o fendmeno de sobressinal de x = (A — pbK)x possa ser compensado pelo efeito estabi-
lizante para K suficientemente grande em norma. Em outras palavras, o argumento utilizando na
demonstra¢do do Teorema 4.19 ndo se aplica a um sinal em D(7, i, M), e pode-se assim esperar que
o resultado RCq (T, i, M) = oo seja vilido.

A busca deste resultado foi a parte central do estidgio de pesquisa [35] realizado pelo aluno no
CMAP - Centre de Mathématiques Appliquées da Ecole Polytechnique, Palaiseau, Franca, e que foi
prolongado pelo presente trabalho de conclusio de curso na Escola de Engenharia de Sao Carlos da
Universidade de Sao Paulo, Sdo Carlos, Brasil. O resultado foi obtido em [35] para o caso do duplo
integrador em dimensdo 2, e uma generalizacdo imediata aos sistemas planares controlaveis foi feita

em [14]. O resultado final obtido é portanto o seguinte.
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4. Andlise da estabilidade sob chaveamento restrito

Teorema 4.22. Seja o sistema (4.24) com (A,b) € R**? x R? controldvel. Sejam T, 1 e M constan-
tes positivas com T > W. Entdo, para este sistema, tem-se RC@(T, u,M ) = +oo, isto é, para toda

constante M, existe KT € R? tal que, para todo & € D(T, u,M), tem-se A+ (5,K) < —A.

A técnica utilizada na demonstragdo do Teorema 4.16 ndo foi 1til neste caso: o estudo do sistema
limite (4.21) parte de uma técnica de aceleragdo da dindmica do sistema, o que quer dizer que a apli-
cacdo desta técnica no caso da classe D (T, 1, M) levaria a considerar um sinal c € D(T /v, /v, vM)
para uma constante v grande e, portanto, no limite v — +oo, 0 fato de ¢ ser vM-lipschitziano nao
traria nenhuma informacao adicional para a fungdo limite fraco-* o,. Ademais, mesmo se, por uma
mudanga de varidveis, a lipschitzianidade de o pudesse ser levada em conta, o procedimento de ace-
leracdo da dindmica fornece um ganho baixo K que estabiliza o sistema devagar. Por estes motivos,
a procura por uma demonstra¢do do Teorema 4.22 usando um sistema limite ndo apresenta aplicacao
direta neste caso.

Para demonstrar o Teorema 4.22, foi utilizada uma técnica diferente. Primeiramente, escolheram-
se uma forma particular de K e uma mudanca de variaveis que concentra a informagdo de conver-
géncia do sistema, de tal forma que € necessdrio apenas limitar a taxa de divergéncia da solug¢do do
sistema na nova variavel y a fim de se concluir a convergéncia da varidvel original x. Na nova variavel
y, pode-se mostrar que o sistema gira em torno da origem, e pode-se assim decompor o tempo em
intervalos nos quais a solucdo completa meia volta em torno da origem. Segundo o comportamento
de o em cada um destes intervalos, pode-se estimar a taxa de divergéncia de y, e estas estimativas
fornecem uma taxa de divergéncia menor que a taxa de convergéncia dada pela mudancga de varidveis
de x para y, o que implica a convergéncia de x a uma taxa arbitréria.

A demonstragdo completa do Teorema 4.22 ¢ assunto do Capitulo 5.

4.2 Chaveamento restrito pelo estado

Nesta secao, desejamos estudar os sistemas (4.7) e (4.8). Na maioria dos casos, interessar-nos-emos

pelos sistemas lineares

(4.25)

no caso continuo e

(4.26)
no caso discreto, com A € R4 k € 7.

4.2.1 Funcoes de Lyapunov quadraticas por partes

Assim como, na Secdo 4.1.2, foram utilizadas fun¢des de Lyapunov multiplas para se obter critérios
sobre o sinal de chaveamento no tempo que garantem a estabilidade do sistema chaveado corres-
pondente, este tipo de funcdo também pode ser utilizado para analisar a estabilidade de sistemas

chaveados com chaveamento restrito pelo estado.
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4.2. Chaveamento restrito pelo estado

Notemos, inicialmente, que o sistema (4.25) pode ser escrito sob a forma
X =Apx, sex € Qy,

em que Q; = ¢! (k). Isto é, @ determina uma parti¢io do espaco de estados, RY = Uivzl Qy, com
Q,NQ,,, = 0 se k # m, de tal forma que, sobre Q, age o sistema definido por A;. Em muitos casos,
porém, € pode ndo ser conhecido com precisdo, ou ainda pode ser interessante aproximar €2; em
vez de utilizar sua expressdo exata, como serd visto mais adiante. Assim, € interessante considerar
na pratica nio uma particio de R? definida por uma tnica légica de chaveamento ¢, mas sim uma
decomposicio R? = U’k\’:1 Q. em que os conjuntos £, podem se interceptar, e o chaveamento de k a
m ocorre na regido ;N €,. Assim, vérias 16gicas de chaveamento podem ser representadas por uma
mesma decomposi¢io R? = Ulkvzl Q. Um exemplo de uma tal decomposi¢do esta representado na
Figura 4.2.

X2

Q

X1

FIGURA 4.2: Representagdo de uma particdo do espaco de estados R* em 7 regides Q. O chaveamento de
k a m so pode ocorrer na regido Qi N Q.

Consideremos, assim, o sistema

X =Apx, se x € Qp, 4.27)
definido por uma familia finita de matrizes {Ax,k € 3} com J = {1,...,N} e pelas decomposi¢io de
RY em regides Q1,...,Qy. O objetivo é construir fungdes do tipo de Lyapunov V;(x) = xT P;x para

cada regido Q; a fim de construir uma fungio de Lyapunov quadritica por partes V) (x) a partir das
multiplas fungdes Vj.. Quando isto for possivel, obtém-se assim a fungdo de Lyapunov desejada, que
garante a estabilidade exponencial do sistema (4.25). A apresentacdo deste resultado dada aqui é a
de [29].
Impomos condigdes sobre Vi a fim de facilitar a sua procura. Assim, supomos que cada Vi,
ke{l,...,N}, é daforma
Vi(x) =x"Px, xe (4.28)

para uma certa matriz simétrica P, (que nao necessariamente ¢ definida positiva, mas que deve sa-
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4. Andlise da estabilidade sob chaveamento restrito

tisfazer xT P.x > 0 para todo x € Q, x # 0, condicdo que é implicada por (4.29) abaixo). Supomos

também que existem escalares 3; > oy > 0 tais que
oy [lx||* < Vie(x) < Bellx]?, para todo x € €. (4.29)
A condicido (4.29) é assim equivalente a exigir que

xT(OtkI—Pk)x < O,

para todo x € €.
xT (P — Bil)x <0,

Exigimos também que, para todo x € Q, x # 0, a fungdo de Lyapunov V;, seja estritamente decrescente
ao longo de uma trajetdria passando por x, isto é, que %(x)Akx < 0 para todo x € . Calculando

%, isto fornece a condic¢do

xT (AL P4 PA)x < 0, para todo x € €. (4.30)

Finalmente, exigimos que, em um chaveamento, o valor de Vg ;) (x) diminua. Assim, notando por
Qpm C 1ML, aregido em que o sistema pode chavear de k para m, esta exigéncia pode ser traduzida
por

X Pux < xTka, para todo x € Qy . 4.31)

Procuramos assim por funcdes do tipo de Lyapunov da forma (4.28) satisfazendo as condi¢des
(4.29), (4.30) e (4.31). A existéncia de funcdes deste tipo permite construir uma fung¢io de Lyapunov
quadrdtica por partes Vi) (x) que garante a estabilidade exponencial do sistema (4.27), e, assim,
o objetivo é criar métodos de procura de tais fungdes. Notemos que as condigdes (4.29), (4.30) e
(4.31) correspondem a desigualdades que estdo restritas a certas regides, Q; ou Qy ,,. O fato de as
desigualdades estarem restritas a regides dificulta a procura por fungdes de Lyapunov satisfazendo-
as, principalmente de um ponto de vista numérico, e, assim, € interessante ter um procedimento que
converta estas desigualdades restritas a regides em desigualdades matriciais. Existe, para isto, uma
técnica chamada procedimento § (ver referéncias em [29]) que permite substituir as desigualdades
restritas a regides por desigualdades matriciais, desde que as regides em questdo sejam caracterizadas

por uma forma quadritica, isto é, desde que
Q={xeR XTQx >0}, Q= {xcR?|xTQs x>0} (4.32)

para certas matrizes Qx, Ok . Evidentemente, isto pode ndo ser o caso para as regides £ € Q

dadas; porém, notemos que, se € estiver contida em uma outra regido €, que pode ser caracterizada

/

por uma forma quadrética, e similarmente para Qy , C €

entdo todo sinal de chaveamento possivel

para o sistema (4.27) com as regides £ e Q; ,, € também um sinal de chaveamento possivel para o

!/

sistema (4.27) com as regides Q) e Qo

e, assim, a estabilidade exponencial do sistema (4.27) com
as regides Q; e Q; , implica a estabilidade exponencial do sistema (4.27) com as regides Qi ¢ Q .
Logo, basta aproximar £ e & ,, por fora por regides caracterizadas por formas quadriticas, o que,

segundo [29], é sempre possivel.

70



4.2. Chaveamento restrito pelo estado

Podemos assim supor que as regides Q; e £ ,, sdo dadas por (4.32) para certas matrizes Qy €
Oi.m- Estas matrizes sdo parametros do sistema, conhecidas, e desejamos assim determinar matrizes
P, tais que as fungdes de Lyapunov correspondentes V; dadas por (4.28) satisfacam as condicdes
(4.29), (4.30) e (4.31). Através da aplicag@o do procedimento & a estas condi¢des restritas a regides,

pode-se obter um critério de estabilidade exponencial de (4.27), dado no teorema a seguir [29].

Teorema 4.23. O sistema (4.27) é exponencialmente estdvel se existirem matrizes simétricas Py,
ke{l,...,N} e escalares o« >0, B >0, i >0, vy >0, % >0e N,y >0, k,m € {1,...,N}, tais
que

ol + e Or = P < BI— Oy,

AP+ PA, + %0 = —1, para todos k,m € {1,... N}.

B+ MiemQiem = Py
Neste caso, temos a estimativa

_L
()|l < /B/ae” 2" ||xo]

em que x(t) € uma trajetdria de (4.27) com condigdo inicial xy.

O Teorema 4.23 fornece assim condicdes suficientes para garantir a estabilidade do sistema cha-
veado (4.27). Um andlogo a tempo discreto deste resultado é fornecido em [20], em que se considera

o sistema chaveado linear a tempo discreto
x[j+ 1] = Agx[J], sex € Q, ke{l,...,N}, (4.33)

em que se supde que £ é um politopo de R? e RY = Ui\’: 1 Q. Por ser definido por um politopo, Q
pode ser escrito na forma
Q={xe R? | (Exx); > 0 para todo i} (4.34)

para uma certa matriz E;. O artigo [20] segue entdo os mesmos procedimentos utilizados para a
obtencdo do Teorema 4.23, obtendo condicdes sobre funcdes de Lyapunov quadréticas por partes,
andalogas a (4.29), (4.30) e (4.31), que garantam a estabilidade do sistema, e, em seguida, traduzindo
estas condigdes restritas a certas regides do espago em termos de desigualdades matriciais através do

procedimento §. Notando por

L = {(k,m) | existe uma trajetdria x com x[j] € Q,x[j+ 1] € Qp }
o conjunto de todas as transi¢des de estado possiveis, o resultado obtido em [20] é o apresentado a
seguir.
Teorema 4.24. O sistema (4.33) com Q. dado por (4.34) é exponencialmente estdvel se existirem
matrizes simétricas P, k € {1,... N}, e matrizes simétricas Uy, Wy, k € {1,...,N} € O, (k,m) €L,
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4. Andlise da estabilidade sob chaveamento restrito

com Uy, Wy e Oy  possuindo entradas positivas ou nulas, tais que

P —E[UE; - 0, paratodo k € {1,...,N},
A,{PkAk—Pk—i—E,CTWkEk%O, paratodok € {1,...,N},
ATP, AL — P+ EkTQk’mEk <0, paratodo (k,m) € L.

O Teorema 4.24 € um caso particular de um teorema mais geral de [20], que se refere aos sistemas
afins, isto &, sistemas do tipo x[j + 1] = Agx[j] +ax com A; € R4, g, € R?; neste caso um outro con-
junto de desigualdades matriciais permite obter uma condi¢do suficiente de estabilidade exponencial

do sistema chaveado.

Os Teoremas 4.23 e 4.24 fornecem assim condicdes suficientes para a estabilidade exponencial
de (4.27) e (4.33). Estas condi¢des, porém, podem por vezes ser muito conservadoras, uma vez que
se partiu de uma forma muito particular de funcdo de Lyapunov Vj para cada subsistema (4.28) e
outras condig¢des, (4.29), (4.30) e (4.31), foram impostas sobre cada Vi a fim de garantir a estabili-
dade exponencial, sem serem, porém, necessdrias para a estabilidade. Pode-se assim imaginar que
existam escolhas de V; e condigdes menos conservadoras que ainda garantam a estabilidade expo-
nencial. Algumas pesquisas foram feitas neste sentido e [29] menciona o cado do uso de funcdes de
Lyapunov polinomiais por partes. O uso deste tipo de fun¢do permite obter critérios menos conser-
vadores que podem ser utilizados em aplica¢des préticas. Além disto, outros métodos de andlise de
estabilidade de sistemas com chaveamento restrito pelo estado existem; para mais detalhes, ver [29]

e suas referéncias.

4.3 Estabilizacao pelo chaveamento

As Secdes 4.1 e 4.2 interessaram-se pelo problema de analisar um sistema chaveado dado, com uma
certa l6gica de chaveamento sobre a qual se tem algumas informagdes, buscando obter informacdes
de estabilidade sobre o sistema chaveado. Em vdrios casos praticos, porém, a l6gica de chaveamento
faz parte do projeto do sistema. E o caso, por exemplo, de sistemas de controle com mdltiplos
controladores para uma tinica planta, em que a selecdo de um controlador em um determinado instante
faz parte do projeto do sistema de controle. Assim, o problema da estabilizacdo pelo chaveamento é:

dada uma familia de sistemas a tempo continuo
x(t) = Agx(1), kel (4.35)

ou a tempo discreto
x[j+1]=Awxlj], k€7, (4.36)

projetar uma légica de chaveamento ¢ tal que o sistema chaveado composto por (4.35) ou (4.36) e
a légica @ seja exponencialmente estdvel. Note que alguns dos subsistemas de (4.35) ou (4.36), ou
mesmo todos, podem ser instdveis, € mesmo assim o problema da estabilizagdo pelo chaveamento

pode possuir uma solucdo, como mostra o Exemplo 1.2 do Capitulo 1.
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4.3.1 Estabilizacao quadratica

Uma técnica de estabilizagdo da familia de sistemas (4.35) € buscar garantir a existéncia de uma
funcdo de Lyapunov quadritica comum para a familia, isto é, escolher uma légica de chaveamento
para a qual V (x) = xT Px seja uma CQLF para os sistemas de (4.35) para uma certa matriz P simétrica
definida positiva. Neste caso, dizemos que a estabilizacao realizada é quadrdtica, e, quando uma tal
estabilizagdo é possivel, dizemos que a familia (4.35) é quadraticamente estabilizdvel.

Para duas matrizes A| e A,, um critério necessdrio e suficiente de existéncia de uma estabilizacdo

quadratica é apresentado em [29,43].

Teorema 4.25. Consideremos a familia (4.35) com dois subsistemas definidos pelas matrizes A1 e Aj.

Esta familia é quadraticamente estabilizdvel se e somente se y(A1,A2) contiver uma matriz Hurwitz.

Lembremos que Y(A;,Az) = co{A;,A2} = {@A; + (1 —a)A2 | ¢ € [0,1]}. Assim, a condigdo
do Teorema 4.25 é que exista a € [0, 1] tal que A(a) = aA; + (1 — @)A; seja Hurwitz. A ideia da

demonstragdo € entdo tomar P simétrica definida positiva tal que
A(a)"P+PA(x) <0,

isto é,
ox"(ATP+PA)x+ (1 — &) (AP +PA2)x <0 4.37)

para todo x € R?, x # 0. Esta condicio implica que R? = Q; UQ, U {0} com
Q= {xeRY|XTATP+PA)Xx <0},  ke{1,2}

pois, se existisse x € RY, x # 0 tal que x ¢ Q, x ¢ Q,, entdo terfamos xT(AZP—FPAk)x > 0 para
k € {1,2}, o que contradiz (4.37). Definem-se entdo duas superficies de chaveamento préximas as
fronteiras de Q; e Q, de forma que o sistema chaveado resultante admita V (x) = xT Px como fungéo
de Lyapunov e, assim, seja exponencialmente estavel. Este procedimento de construcdo da légica de
chaveamento garante que os sinais de chaveamento resultantes tenham apenas um ndmero finito de
chaveamentos em todo intervalo limitado de tempo; [43] observa que € possivel definir outras logicas
de chaveamento em que esta condi¢do nio estd satisfeita, mas, como foi observado no Exemplo 2.4,
isto pode levar a um comportamento de Zendo, e, na prética, € desejavel evitar este fendmeno.

O resultado do Teorema 4.25 pode ser generalizado a uma familia finita de matrizes qualquer,

mas a condi¢do de estabilizacdo quadratica passa a ser apenas suficiente e ndo mais necessaria.

Teorema 4.26. Consideremos a familia (4.35) definida pelas matrizes {Ay,k € I},  ={1,...,N}. Se

existirem constantes oy € [0,1], k € J, com Y ycq 04 = 1 e tais que

A(Ot) = Z oy Ax
kel

seja Hurwitz, entdo (4.35) é quadraticamente estabilizdvel através do sinal de chaveamento

o(t) = argmin {x(r)"PAx(t) } (4.38)
kel
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4. Andlise da estabilidade sob chaveamento restrito

em que P é simétrica, definida positiva e satisfaz A(ot)"P+ PA(a) < 0. Neste caso, V(x) = x'Px é

uma fungdo de Lyapunov quadrdtica para o sistema.

A légica de chaveamento que define o sinal em (4.38) é chamada de estratégia da projecdo do

minimo e foi proposta em [41], em que uma versdo mais geral do Teorema 4.26 para sistemas ndo-

lineares é apresentada. Notemos que x' PA;x é o produto escalar de x com o campo de vetores PA;x, e,

assim, seu valor serd tdo menor quanto PAx for proximo da direcdo de —ux, isto é, quanto PA;x apontar

para a origem. Assim, a estratégia é, a cada instante, selecionar o campo de vetores Ay que aponta o

maximo possivel para a origem (apds a transformacéo por P, que vem do fato de a aproximacgao da

origem que se deseja é tal que minimize V (x) = xT Px). Um exemplo de aplicagio do Teorema 4.26 é
dado no Exemplo 4.27.
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Exemplo 4.27. Consideremos a familia de sistemas (4.35) com 3 subsistemas definidos pelas

matrizes
2 0 1 -2 =50 0O 0 -3
Ai=]10 -6 0, Ayp=|-1 0 O], A3=10 0 O
2 =7 2 0 -6 1 -1 3 —4

Verifica-se que nenhuma das matrizes A, A, e A3 é Hurwitz. De fato, notando por ll-(k) 0 i-ésimo

autovalor da matriz Ay, temos

A =6, AV=-1-v6, AV=-2-7,
n=2-v2, AV=1, A =o,
n=24v2, AV =V6-1, AP =v7-2.

Tomando o = (o, o, a3) = (0,2,0,3,0,5), verifica-se que a combinagdo convexa A(a) = oy A; +
A, + 03A3 é Hurwitz. De fato,

02 -15 —173
Ala)=|-03 —12 0
0,1 —-1,7 —13

e seu polindmio caracteristico é
Pag@(A) =A% +2,7A% + 1,484 +0,234;

aplicando-se o critério de Routh-Hurwitz a este polindmio, conclui-se que todas as suas raizes
tém parte real estritamente negativa, donde segue que A(cr) é Hurwitz. Verifica-se que a matriz

simétrica definida positiva

10 0 -9
P=10 3 -1
-9 -1 10
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é tal que
—22 —05 —0,2
A(0)"P+PA()= | -0,5 —38 —1 | =<0,
—02 —1 -26

e, assim, as condi¢des do Teorema 4.26 estdo satisfeitas. Logo, o sistema

x(t) = Ag(r)x(0),

o(t) = argmin x(¢)TPAx(¢)
ke{1,2,3}

é exponencialmente estdvel.

(4.39)

Algumas trajetérias do sistema (4.39) estio representadas na Figura 4.3. Verifica-se o compor-

tamento correspondente a estratégia da projecdo do minimo: cada soluc¢do segue um determinado

campo de vetores A; enquanto este for o que a aproxima o maximo possivel da origem, no sen-

tido da minimizacéo de x" PA;x, chaveando entre os campos de vetores a fim de se aproximar da

origem.

Solugbes

FIGURA 4.3: Representacdo de algumas trajetdrias do sistema (4.39).

A Figura 4.4 apresenta o valor da fungio de Lyapunov V (x) = xT Px sobre as trajetdrias repre-

sentadas na Figura 4.3. Verifica-se assim que, como esperado, V decresce estritamente ao longo

das trajetérias, sendo assum uma CQLF para o sistema (4.39).

O

Deve-se notar que a condicdo do Teorema 4.26 € suficiente para a estabilizabilidade quadrética

de (4.35), mas ndo necessdria: ha exemplos de sistemas para os quais toda combinagdo convexa das
matrizes Ay € instdvel, mas ainda assim o sistema é quadraticamente estabilizavel [29]. E possivel,
porém, fornecer outro critério de estabilizacdo quadratica que seja necessdario e suficiente, apresentado
em [44].
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Funcéo de Lyapunov V(x(t))

V(x®)

FIGURA 4.4: Fungao de Lyapunov V (x) = x! Px calculada sobre as trajetérias do sistema (4.39)
representadas na Figura 4.3.

Teorema 4.28. A familia (4.35) definida pelas matrizes {Ay,k € I}, [ ={1,...,N} é quadraticamente
estabilizdvel se e somente se existir uma matriz P simétrica definida positiva tal que, para todo x € R,
x# 0, exista k € J tal que

x"(Af P+ PAy)x < 0.

Neste caso, o sinal de chaveamento & definido por

o(t) = argmin {x(¢)" (AL P+ PA) x(t) }
kel
estabiliza exponencialmente o sistema e V (x) = xT Px é uma CQLF do sistema chaveado correspon-

dente.

O resultado do Teorema 4.28 ndo € surpreendente; de fato, basta notar que a derivada da funcdo

V(x) = xTPx ao longo das trajetérias do sistema chaveado (4.3) é

d T T
TV (x(1) = " (AT P+ PAo( ) x

em todo intervalo em que o(r) é constante, e, assim, exigir que V seja estritamente decrescente
fora da origem corresponde a exigir que, para todo x # 0, se possa encontrar um indice k tal que
X! (AEP —i—PAk) x < 0, e este indice k é entdo o selecionado quando se passa por x. Quando a familia
{B;} é tal que, para todo x € R?, x # 0, existe k tal que x'Byx < 0, dizemos que a familia {B;}
¢é estritamente completa. Assim, a condicdo do Teorema 4.28 corresponde a exigir que a familia
{AIP + PAy} seja estritamente completa.

O procedimento anterior também pode ser realizado com a diferenga V (x[j + 1]) — V (x[j]) no caso

do sistema chaveado a tempo discreto (4.4), obtendo assim um teorema andlogo ao Teorema 4.28.

Teorema 4.29. A familia (4.36) definida pelas matrizes {Ay,k € I}, I = {1,...,N} é quadratica-
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mente estabilizdvel se e somente se existir uma matriz P simétrica definida positiva tal que a familia

{A,{PA;{ — P} seja estritamente completa. Neste caso, o sinal de chaveamento G definido por

olj]= ar%n;in {x[j]" (ALPAL— P) x[j]}
€
estabiliza exponencialmente o sistema e V (x) = x" Px é uma CQLF do sistema chaveado correspon-

dente.

O problema dos Teoremas 4.28 e 4.29 € que verificar que uma familia de matrizes € estritamente
completa é um problema NP-dificil, e, assim, a sua implementacao pratica exige um tempo de calculo

elevado.

4.3.2 Estabilizacao quadratica por partes

O problema da estabilizacdo quadratica € que a existéncia de uma CQLF para um sistema chaveado
linear ¢ uma condi¢do suficiente mas ndo necessdria de estabilidade exponencial. Assim, buscar
a estabilizacdo quadrética pode ser um método muito conservador em alguns casos e, para obter
métodos mais gerais, é de interesse estudar condi¢des mais gerais que ainda garantam a estabilidade
exponencial do sistema chaveado.

Uma condicao mais geral que a existéncia de uma CQLF e que garante a estabilidade exponencial
é a do Teorema 4.23, que procura nao uma CQLF mas uma funcdo de Lyapunov quadrética por
partes. O Teorema 4.23 ¢ utilizado para a andlise de um sistema chaveado do tipo (4.27) em que
a decomposicio de RY em regides € é dada. Uma observacio importante de [29] é que se pode,
porém, considerar o mesmo problema do sistema (4.27), em que agora as matrizes {A,k € J} sdo
dadas mas as regides ; sdo parametros de projeto, a serem escolhidos de forma a estabilizar o
sistema (4.27). Seguimos assim o procedimento de [29] para a estabilizacdo através de funcdes de
Lyapunov quadraticas por partes.

Consideremos assim o sistema
X = Apx, sex € Qy (4.40)

definido por uma familia finita de matrizes {Ax,k € 3} com J = {1,...,N}. Desejamos escolher
para que este sistema seja exponencialmente estdvel. Como no caso da Sec¢do 4.2.1, € de interesse
considerar o caso em que os conjuntos € sdo definidos por uma forma quadratica, e, assim, exigimos
que €y seja da forma

Q= {xeRY|xTQux >0} (4.41)

para certas matrizes simétricas Q; € R?*¢. E importante que R seja decomposto segundo os conjun-
tos Q, isto é, que R? = UkN:1 Q. Uma condicao suficiente para que isto ocorra é que existam 6; > 0,
k €7, tais que

N
Y 6T Qx> 0; (4.42)
k=1

de fato, se os Q; ndo cobrirem R?, entdo existe x € R¥ tal que x ¢ Qy para todo x, donde XTQx <0
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4. Andlise da estabilidade sob chaveamento restrito

para todo k, e assim é impossivel de se satisfazer (4.42).
A lei de chaveamento é escolhida como

o(t) = argmax {x(t)T Qux(t) } ; (4.43)
ke

esta € a estratégia da maior fungdo de regido, que garante assim que x(¢) € € se o sistema k esti-
ver ativo. Desenvolvendo outras condi¢des com a ajuda do procedimento 8, [29] apresenta assim o

seguinte critério de estabilizacao.

Teorema 4.30. O sistema (4.40) com as regioes Qi dadas por (4.41) é exponencialmente estabilizdvel
se existirem matrizes simétricas Py, O, k € J, e escalares € >0, B >0, i >0, vy >0, 6, >0, % >0

e Nims k,m € J, que sejam solugoes do problema de otimizagdo

min 8
ol + W Qx =X P X Bl — Vi Oy,
ALP A+ Pl + DOk = 1,
P+ M (Qk — Om) = B,
001+ + 60, = 0,
para todos k,m € {1,... ,N}.

tal que

Neste caso, a estratégia da maior fungdo de regido (4.43) estabiliza exponencialmente o sistema com

1 T 5 ~ o .
uma taxa de 35 ¢ V(t,x)=x Ps(1)X € uma fungdo de Lyapunov quadrdtica por partes do sistema.

Assim como o Teorema 4.23 possui seu andlogo discreto, o Teorema 4.24, o Teorema 4.30 tam-
bém pode ser formulado para sistemas a tempo discreto. Esta reformulag¢do, porém, ndo é débvia,
pois os sistemas a tempo discreto apresentam a dificuldade de o chaveamento ndo ocorrer exatamente
sobre uma superficie de chaveamento, mas em regides préximas a uma tal superficie. Assim, traduzir
condicdes sobre o chaveamento em desigualdades matriciais é mais complicado, o que leva a um

critério de estabilizacdo mais complicado que o Teorema 4.30. Para o sistema
x[j+1] = Aex[Jj], se x[j] € O (4.44)
com as regides ; dadas em (4.41) e com a estratégia da maior fun¢do de regidao

olj]= ar%n;ax {x[j]TQkx[j]} , (4.45)
€

as condicdes de estabilizacdo estdo dadas no seguinte teorema.

Teorema 4.31. O sistema (4.44) com as regioes Qi dadas por (4.41) é exponencialmente estabilizdvel
se existirem matrizes simétricas P, Oy, k € J, matrizes Fy, Gy, Fim e Qi € escalares v >0, o > 0,

B >0 me>0 pr >0, e >0, ey >0e 6 >0, kym €I, que sejam solugées do problema de
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otimiza¢do
max v
ol + MOk = Pr = Bl — pxQOx,
AI{FkT + FRAg — P+ 1 QO + vI AZG,{ —F <0
GiAr— FT PB—G—Gl) =7
tal que
AZF,Zm + Fe mAk — Pr + Wy Ok AZGlzm —Fim <0
GimAc—FL,, Pu—=Gim =Gl + mQn) ~
0101+ + 650, =0,

para todos k,m € {1,... ,N}.

Neste caso, a estratégia da maior fungdo de regido (4.45) estabiliza exponencialmente o sistema e

V(t,x) = xTPG(,)x é uma funcdo de Lyapunov quadrdtica por partes do sistema.

Os critérios de estabilizacdo apresentados nos Teoremas 4.30 e 4.31 podem ser dificeis de se
verificar na prética, mesmo numericamente, por se tratarem de desigualdades matriciais bilineares,
uma vez que hé produtos de incégnitas nas condi¢des de estabilizacdo. Assim, um problema tipico
da aplicac@o destes teoremas € o tempo de célculo dos algoritmos que resolvem os problemas de
otimizagdo correspondentes.

Deve-se lembrar que os métodos de estabilizacdo desenvolvidos nas Sec¢des 4.3.1 e 4.3.2 ndo
s@0 os Unicos possiveis para se obter critérios de estabilizacdo pelo chaveamento. Outros resultados
podem ser obtidos tendo por base andlises que partam de outros principios que nio a construgdo de
uma CQLF ou de uma fun¢do de Lyapunov quadratica por partes. Os resultados dessas se¢des, porém,
sdo importantes ndo sé pelos métodos e principios que utilizam, mas também pelas suas aplicagdes

préticas.

4.3.3 Estabilizabilidade pelo chaveamento

Os resultados das Se¢des 4.3.1 e 4.3.2 apresentam apenas condigdes suficientes de estabilizabilidade,
mas a questao de condicdes necessdrias e suficientes de estabilizabilidade das familias (4.35) e (4.36) é
também de interesse. Uma interessante condi¢ao necessaria de estabilizabilidade é dada pelo seguinte

critério, retirado de [29].

Teorema 4.32. Considere a familia (4.35) definida por matrizes Ay, ..., Ay € R4, Se existir um
sinal de chaveamento G que estabilize assintoticamente o sistema chaveado x = A\, entdo existe

um subsistema Ay, tal que ao menos um dos autovalores de Ay, —I—A,{ € real negativo.

Este critério simples pode ser util para determinar a impossibilidade da estabilizacio pelo chave-
amento. Critérios mais elaborados que fornecem condi¢gdes necessdrias e suficientes de estabilizabi-
lidade existem; para mais detalhes, ver [29]. Apesar de estes critérios mais elaborados fornecerem
condicdes necessdrias e suficientes, a verificagdo destas condi¢des € um processo complicado, e a
obtencdo de critérios cuja verificagdo seja mais simples é um importante problema da questdo de

estabilizabilidade pelo chaveamento.
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Capitulo 5

Estabilizacao de sistemas de controle
lineares planares a excitacao persistente

com taxa de convergéncia arbitraria

Este capitulo dedica-se a demonstracdo do Teorema 4.22 apresentado na Secdo 4.1.4. Este teorema
foi originalmente demonstrado para o caso particular do duplo integrador no estagio de pesquisa [35]
realizado pelo aluno e generalizado em seguida ao caso controldvel em dimensao 2 [14].

O sistema de interesse neste capitulo é
x(t) =Ax(t) + o (t)bu(t), ceD(T,u,M) (5.1

em que D(T, u, M) é a classe dos sinais lipschitzianos a excitagio persistente definida pelas constantes
T>u>0eM>0ce (Ab) € R%*? x R? é um par controldvel. Desejamos mostrar o seguinte

enunciado.

Teorema 5.1. Seja o sistema (5.1) com (A,b) € R2%2 x R? controldvel. Sejam T, U e M constan-
tes positivas com T > W. Entdo, para este sistema, tem-se RCq (T, W,M) = oo, isto é, para toda
constante 1., existe KT € R? tal que, para todo & € D(T,u,M), tem-se A+ (c,K) < —A.

Comegamos fazendo uma transformagdo linear algébrica no sistema de controle. Como (A,b) é

controldvel, podemos, sem perda de generalidade, supor (A,b) na forma controldvel, isto é,

() ()
—d Tr(A) 1

Ademais, se A é substituido por A — Tr(A)I, entdo RCp (T, u,M) é simplesmente transladado de
—Tr(A). Portanto, é suficiente demonstrar o Teorema 5.1 supondo Tr(A) = 0. O sistema pode assim

ser escrito sob a forma
X1 =X,
ce€D(T,u,M). (5.2)
Xo = —dx; + G(t)u,

Supomos doravante que 7, u, M e A estdo fixados. Mostraremos o Teorema 5.1 construindo
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5. Estabilizacdo de sistemas de controle lineares planares

explicitamente o ganho K que satisfaz A" (0,K) < —A para todo ¢ € D(T,u,M). Para fazé-lo,

escrevemos K = (lq k2> e, assim, a realimentagdo u = —Kx leva ao sistema

. 0 1
X = X.

—(d+o(t)k) —o(t)k
A varidvel x| satisfaz a equacg@o escalar
X1 +hkoo(t)x)+ (d+kio(t)x; =0

€ temos xp = Xj.

Notamos que o sinal ¢ constante e igual a 1 estd em D(T,u,M), e, portanto, uma condi¢éo

necessdria para que a realimentagcdo u = —Kx estabilize o sistema (5.2) seja vélido é que a matriz
0 1
A—bK =
—d—ki —ky

seja Hurwitz, o que € o caso se e somente se k| > —d, k; > 0. No que segue, restringiremos a procura
de K as matrizes da forma
K= (k2 k) , k >0 e k grande. (5.3)

A equacdo diferencial satisfeita por x; € entdo

X1 +ko ()% + (d + ko (t)) x; = 0. (5.4)

5.1 Estratégia da demonstracao

Discutamos a estratégia a ser usada para demonstrar o Teorema 5.1. Comec¢amos fazendo uma mu-
dancga de varidveis em (5.4) na Secdo 5.2 que facilitard o estudo do sistema. Além de colocar o sistema
em uma forma mais f4cil de se estudar e adaptada aos métodos que serdo aplicados na sequéncia,
esta mudanca de varidveis concentra as informacdes de convergéncia do sistema, uma vez que a va-
ridvel original x e a nova varidvel y estdo relacionadas por (5.6), que contém o termo exponencial
e~2yol)dstiy/5i—d , que converge para 0 quando ¢ — 4o uma vez que ¢ € um sinal a excitagdo
persistente, e, assim, € suficiente mostrar que a taxa de crescimento exponencial de y € menor que a
taxa de convergéncia dada pela mudanca de varidveis.

Na Secdo 5.3, interessamo-nos assim ao estudo do sistema satisfeito por y. Comecamos escre-
vendo este sistema em coordenadas polares na Secdo 5.3.1 e isso permitird mostrar, na Se¢do 5.3.2,
que a solucdo gira em torno da origem um nimero infinito de vezes, o que por sua vez permitird
decompor, na Se¢do 5.3.3, o tempo R, nos intervalos “bons” de J,, em que a fungdo Y definida em
(5.8) € limitada inferiormente por uma constante positiva (ver o Lema 5.4), e nos intervalos “ruins”
de Jo, em que ¥ € pequena. A estimativa da taxa de crescimento de y nos intervalos de J.; esta feita na
Secdo 5.3.4: utilizamos o fato de que o angulo polar 8 é uma func¢ao estritamente monétona do tempo

para escrever a varidvel radial das coordenadas polares r em fungdo de 0, e entdo uma integragdo
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5.2. Mudanga de varidveis

direta da equacao diferencial satisfeita por Inr permite obter a estimativa desejada. Quando ¥ ndo é
limitado inferiormente por uma constante, ndo é possivel de se aplicar uma técnica similar, e, assim,
na Secdo 5.3.5, estudamos o comportamento de y nos intervalos de Jo usando a teoria do controle
6timo: procuramos por um sinal ¥ que leva a maior taxa de crescimento possivel para y, e entdo, apli-
cando o Principio do Madximo de Pontryagin, é possivel caracterizar a solucdo y que corresponde a
maxima taxa de crescimento e, finalmente, estimar esta quantidade. Basta entdo juntar as estimativas
nos intervalos Jy e J e concluir o estudo de y, o que é feito na Secdo 5.3.6.

Uma vez conhecidos o comportamento de y e sua taxa de convergéncia, basta voltar a mudanga de
varidveis para obter o resultado correspondente em x, e isto é feito na Secdo 5.4. A estimativa obtida
para x mostra que a sua taxa de convergéncia depende de k, e basta assim tomar k grande o suficiente
para obter o resultado de convergéncia a taxa arbitraria desejado, concluindo assim a demonstra¢do

do Teorema 5.1.

5.2 Mudanca de variaveis

Supomos doravante que a escolha de k serd feita com k > % A fim de simplificar as notacdes,

T
escrevemos h = \/2kM — 4d. Consideramos o sistema em uma nova varidvel y = (yl yz) definida

pelas relag()es
k (t h
5 Jo o(s)ds—5t
yl—xlezuﬁ) ()52’

; 7 (5.5)
r=i= (e (5o -5 ) ) et howis

cuja escolha serd justificada no final desta se¢do. As varidveis x e y estdo assim relacionadas por

1 N o 1 0 t 0
y= e%fo o(s)ds—4t ) , x, x= e—%fo o(s)ds+41 , y (5.6)

e y; satisfaz a equacdo diferencial

NI =

Vi +hy1 + k()1 =0 (5.7)
com Iy "
v =80+ 1220 g0y =0t (1- o). 58)

O sistema satisfeito por y € entdo

(o ] 59
Tk —n)” '

Como o(t) € [0, 1] para todo t € R, temos f(t) € [0,3/4]. Ademais, como ¢ é M-lipschitziana, f3
também € lipschitziana com a mesma constante de Lipschitz, pois

<

B~ B(s)] = [0(1) = o(s) = § (0(1)*~ 0(s)?)| = [0 (1) — o (s)] |1 - 52l

<|o(t)—o(s)| <Ml|t—s|
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5. Estabilizacdo de sistemas de controle lineares planares

para todos ¢,s € R,. Como o satisfaz a condicéo de excitagdo persistente (4.18),  satisfaz
LHTBQstZ%u. (5.10)
Como |6 (t)| < M para quase todo ¢ € R, v pode ser limitada por
0<y(r)<3+%
para quase todo ¢ € R e satisfaz também a condicdo de excitacdo persistente
Lf+Tﬂ@ds2%u. G.11)

Supomos, a partir de agora, que

2
k> K;(M) = max <4M,]5’>, (5.12)

de forma que & < 2v/kM e, para quase todot € R,

0<y(r) <L

Discutamos a mudanga de varidveis (5.5). O termo e2 Jools)ds corresponde a uma mudanca de
variaveis classica em equacgdes escalares de segunda ordem (ver, por exemplo, [24]) que elimina
o termo em ; de (5.4), sendo substituido pelo novo termo —;k*o ()% — gd(t) multiplicando y;.
Entretanto, se apenas esse termo fosse considerado na mudanca de varidveis, a fungdo 7y resultante
seria y(t) = B(t) + w
controle 6timo da Secdo 5.3.5, é importante manipular uma fungéo positiva ¥, e € por isto que o termo

, que pode ser negativa em alguns instantes ¢. Para aplicar as técnicas de

he L. . e .
e2' ¢ introduzido na mudanga de variaveis.

Outra caracteristica importante dessa mudanga de varidveis € que a relacdo entre x e y, dada por
k (t h - ~
(5.6), é tal que x(r) se comporta como e 2 ()45+31y(1) Como h < 2v/kM e & € a excitagdo per-

sistente, este fator exponencial é limitado por e~ 1%

para k grande, para uma certa constante c¢; > 0.
Concentramos assim a informacao de convergéncia na mudanca de varidveis, e ndo é mais necessario
demonstrar a convergéncia a origem do sistema nas varidveis y: basta mostrar que a taxa de cresci-

ookt

mento exponencial de y € limitada por e para k grande, para certas constantes c; >0ea < 1.

Esta mudanca de varidveis também justifica a escolha de K sob a forma (5.3). A equagdo (5.7)
é uma equacdo diferencial escalar linear de segunda ordem e, no caso em que seus coeficientes sdao
constantes, iy, pode ser interpretado como um termo de amortecimento e k%>yy; como um termo os-
cilatério. Um tal sistema gira em volta da origem se 4k*>y > h* = 2kM — 4d, que é o caso se k for
suficientemente grande. No caso em que Y depende do tempo, a condicdo de excitagdo persistente
(5.11) ainda garante um certo comportamento oscilatério para k grande o suficiente. Isto sé € possivel
porque, para k grande o suficiente, o termo oscilatério em (5.7) é muito maior que o termo de amorte-
cimento, o que é uma consequéncia da escolha de K sob a forma particular (5.3). E importante assim,

na escolha (5.3), que k; seja muito maior que k; conforme k, aumenta; outros tipos de escolha de K
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neste sentido seriam possiveis. E o comportamento oscilatério descrito acima que serd explorado no

que segue para se mostrar o Teorema 5.1.

5.3 Propriedades do sistema nas novas variaveis

5.3.1 Coordenadas polares

Desejamos agora estudar o sistema (5.9) e a equagdo diferencial correspondente (5.7). Para fazé-
lo, escrevemos primeiramente este sistema em coordenadas polares no plano (y;,y;): definimos as

varidveis r € R, e 8 € R (ou 6 € R/27Z, segundo o contexto) pelas relagdes

=i+,
yp =rcosf,
y1 =rsin0,
que levam as equacgdes
6 = —sin® @ — k*y(t) cos®> @ — hsin O cos 6, (5.13a)
i =rsin@cos O(1 — k*y(t)) — hrsin” 6. (5.13b)

Como o sistema em questao € linear, a origem € uma solugao de equilibrio e, se considerarmos apenas
as outras solu¢des do sistema, temos r(¢) > 0 para todo r € R, e podemos assim escrever (5.13b)
como

%lnr:sinGcosH(l—kzy(t))—hsin29. (5.13¢)

5.3.2 Rotacgoes ao redor da origem

Consideremos a equagdo (5.13a). Se sinfcos8 > 0, entdo 0 < 0, sendo esta desigualdade estrita
exceto quando sin® = 0 e ¥(¢t) = 0. Se sinf cos @ < 0, ainda se espera que 0 seja “majoritariamente”
negativa, no sentido em que, se tomarmos k grande o suficiente, fora de uma certa regido do plano
préxima da reta cos 8 = 0, temos ainda 6 < 0, e, como % é pequeno perto de k> para k suficientemente
grande, espera-se que isto implique que lim,_, ;. 0(#) = —oo, mostrando assim que a solugdo y gira
em sentido hordrio (na orientacao usual dos eixos y; e y;) ao redor da origem, mesmo se, em certos
pontos, esta solucdo gire em sentido anti-hordrio por um curto periodo de tempo. Esta € a ideia por

trds do resultado a seguir.
Lema 5.2. Existe K>(T,1,M) tal que, para k > K>(T, 1, M), a solugdo 0 de (5.13a) satisfaz

lim 6(f) = —eco.

1—>+oo

Demonstracdo. Comecamos fixando r € R e o intervalo I = [t +T]. A equagdo (5.10) mostra

que existe 7, € I tal que B(t,) > 3‘#' Como f é M-lipschitziana, temos f3(s) > % sels—1,| < ﬁ,
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e, assim, como ¥(s) > B(s), temos ¥(s) > 57 para |s —1,| < zi7=. Se tomarmos

kZmax{1,<2A5T2>4}, (5.14)

T/2, o que implica que ao menos um dentre os intervalos

—H < e L o<
temos o tm S aMT © s S

U u . . X .
t — W’t*} e [t*,t* + e | estd conﬁldo em /; not:,rnos J este intervalo e escrevamo-lo
como J = [sp,s1], de modo que s; —s¢ = i € Y(s) = oy paras € J.
B ()
31
1
DN
ar
ool
2T
I J !
t t, t+T

FIGURA 5.1: Uma fungdo B, um intervalo I e o intervalo correspondente J. As propriedades de que
precisamos sdo que J C I e que y(s) > % para s € J. Neste caso, pode-se mostrar que a solucdo gira em
sentido hordrio em volta da origem em J e que o niimero de voltas aumenta como K, enquanto que, no resto
do intervalo I, o niimero de voltas ao redor da origem em sentido anti-hordrio é em O(kl/ %), 0 que implica
que, para k grande o suficiente, 0(t +T) — (1) < —2m.

Se s € J, podemos estimar 8 em (5.13a) por

2
—6(s) > sin” B(s) + % cos® O(s) + hsin O(s)cos O(s) =

1 2 sin (s
= (sin@(s) cos@(s)) i uiz (s) .
5 57/ \cosO(s)
Em particular, se
2MT
k>0 (5.15)
u
1 4 .
entdo a matriz | ‘3(2 ¢ definida positiva e, portanto, 6(s) < 0O para todo s € J. Logo, 6
2 2T

¢ estritamente decrescente em J e € uma bijec@o entre J e a sua imagem 6(J). Pode-se assim

escrever (5.13a) em J como
9 JR—
sin? O 4 k2ycos? @ + hsin @ cos 6

-1 (5.16)
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e, integrando de s¢ a s1 e usando a relacdo

Jn/z do 2n

= . a>0,b*<4a
~7/25in% 0 +acos2 O +bsinOcos®  V/da— b2

(que pode ser calculada diretamente através da mudanga de varidveis 7 = tan 0), obtemos

7‘1 =81 —80 = — B G(S) dS<
AMTK'/ s0 sin O(s) +k2y(s)cos? O(s) +hsinO(s)cos O(s)
6(s0) de
< <
- L’(S1) sin2 9 + ]‘22—#0052 0 +hsinOcosO
- je(s.)m(NH) de _ G.17)
= Jo(s1) sin20+k22—#cos26+hsin9c059

_ 2r(N+1)  2r(N+1)
2%2 2 ’
VEE R amk

em que N é o nimero de voltas de angulo 7 ao redor da origem feitas durante o intervalo J, isto é,

"ELELA]

s
T

lembramos que a notagdo |x| é utilizada para denotar o maior inteiro menor ou igual a x. Assim,

2 4M
G(SO)—B(sl)2717N2k3/48MLT\/7”—7—7r. (5.18)

Por outro lado, pode-se estimar 6 em (5.13a) para todo s € I por
0(s) <h,
de forma que
0(so) — 0(r) < h(so—1), Ot +T)—0(s1) <h(t+T —s1). (5.19)

Logo, por (5.18) e (5.19), obtemos

2u AM
— < — 3/4L - .
0(t+T)—0(t) <2VKMT —k T\ T . +7n

A expressdo a direita tende a —eo quando k — +-co € os parametros 7', 4 e M estdo fixados. Logo,
existe K, (T, u,M) tal que, se
k> K.(T,u,M), (5.20)

entao

2 aM
2\/kMT—k3/48MLT 7“—7+7rg—2n
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e, assim,
0(t+T)—0(t) < —2m.

Agrupamos as condi¢des (5.14), (5.15) e (5.20) em uma unica definindo

4 2MT
KZ(T7H7M> - max{l, (%) a‘uvK*(Ta.uvM)}

e exigindo que
k>K)(T,u,M).

Sob esta condi¢do, a solugdo realiza ao menos uma rotagdo completa no sentido horario ao final
do intervalo [t,7+ T|]. Este resultado é vélido para todo # € R e, assim, uma recorréncia imediada
mostra que

0(t+nT)—0(t) < —2nm

paratodo n € N, de modo que, paratodot € R,
0()=60{/r}T+|/r]T) <6 ({/r}T)-2[/r]x (521

emque {x} =x— |x] €[0,1). Como 6 ¢ limitado no intervalo [0, 7], a desigualdade (5.21) mostra

que lim,_, 1 6(t) = —oo, completando a demonstragdo. [

5.3.3 Decomposicao do tempo em intervalos J, e J,

Usando o Lema 5.2, podemos decompor R em uma sequéncia de intervalos (dependente de o) nos
quais a solugdo gira de um angulo 7 ao redor da origem. Mais precisamente, definimos a sequéncia

(tn)nen por recorréncia como

tozinf{t20|$eZ},

(5.22)
ty=inf{t >, 1|0(t)=0(t,—1) — 7}, n>1,

e a continuidade de 6 e o Lema 5.2 mostram que esta sequéncia estd bem definida. Definimos também
a sequéncia de intervalos (1) e por I, = [t,—1,1,] paran > 1 e Iy = [0,1o]. Esta constru¢do quer entdo
dizer que esperamos que a solucdo passe pelo eixo y; pela primeira vez e, a partir deste momento,
dividimos o tempo em intervalos nos quais a solugdo gira de um angulo 7 ao redor da origem, voltando
ao eixo yj.

Mostremos um primeiro resultado sobre o comportamento de 6 nestes intervalos.
Lema 5.3. Sejan > 1. Entdo, para todo t € I, = [ty,_1,1,], temos
0(tn) < 0(t) < O(tn—1)- (5.23)

Demonstracao. A primeira desigualdade em (5.23) é uma consequéncia da defini¢cdo de ¢,: se

existisse ¢ € I, com 0(r) < 6(t,), entdo, pela continuidade de 6, existiria s € (¢,—1,7) tal que
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0(s) = 0(t,) = O(ty,—1) — 7, e, assim, pela definicdo de t,, teriamos t, < s <1 < t,, 0 que é
absurdo, e, portanto, temos 6(¢) > 6(t,) para todo ¢ € I,.

(1)
O(ty—1)+72 T
~
B(t,,,l) T
0(t,) T
t
fo1 so S 1 ty

FIGURA 5.2: Argumento de contradi¢do utilizado para mostrar a segunda desigualdade em (5.23). A
existéncia de t tal que 8(t) > 0(t,_1) permite construir um intervalo [so,s1] em que (s1) > 0(so) mas 6 <0,
levando assim a um absurdo.

A segunda desigualdade de (5.23) pode ser igualmente mostrada por contradi¢do. Supomos
que exista ¢ € I, tal que 6(r) > 6(t,—1). Entdo, pela continuidade de 6, existem so,s; € [ty—1,7]
tais que 0(so) = 0(t,—1), O(s1) > O(ts—1) e O(s) € [0(tys—1),0(tn—1) + 7/2] para todo s € [so,s1].
Mas 6(t,—1) =0 mod 7, de modo que sin® cos ¥ > 0 para ¥ € [0(t,—1), O(t,—1) +7/2], e, assim,
por (5.13a), (s) < 0 para quase todo s € [so, s1], 0 que contradiz o fato de termos 8 (sg) = 0(t,_1)
e 0(s;) > 6(t,—1) pois 8 € absolutamente continua. Assim, 0(t) < 6(,_;) paratodor € ,. W

Separamos agora os intervalos da sequéncia (I,),en+ em duas classes, I+ e Jp, segundo o com-

portamento de 3 nesses intervalos. Definimos

I+ ={I,|n € N*, 3t € I, tal que B(r) > 2/ vk},
Jo={l, |n € N*Vt € I, B(t) <?2/v&}.

5.3.4 Estimativas em intervalos da familia J

Comecamos estudando os intervalos da familia J.. Afirmamos que, para k grande o suficiente, temos
¥(t) > 1/Vk para quase todor € I etodo I € J.

Lema 5.4. Existe K3(M) tal que, para k > Kz(M) e para todo I € I, temos B(t) > 1/Vk para todo
t €ley(t) > 1/Vk para quase todo t € I.

Demonstrac¢do. Fixamos um intervalo I = [t,_1,t,] € J. e notamos por #, € I um elemento
de I tal que B(t.) > 2/vk. Como B é M-lipschitziana, para todo ¢ tal que |t —t,| < ﬁ, temos

1/vk < B(t) <3/vk. Em particular, como y(z) > B(¢) em R, temos y(¢) > 1/vk para |t — t,| < ﬁ

A ideia € mostrar que, para k grande o suficiente, devemos ter I C [t* — W e+ ﬁ] ,oque
fazemos mostrando que, para k grande o suficiente, o nimero de rotacdes de dngulo 7 em volta
da origem feito em cada um dos intervalos [t* — ﬁ,t*} e [t*, t+ ﬁ} ¢ maior do que 1, que é

o nimero de rotacdes de angulo 7 em volta da origem feitas em 1.
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1 1
Tomamos s, 51 € [t* — m,t*+ M—\/]J , S0 < s1. Para todo s € [s9,s1], temos

—6(s) > sin® O(s) 4+ k7> cos? O (s) + hsin O (s) cos B (s) =

h sin O (s
= <sin6(s) cosG(s)) ( kf/z) (cosz((s))> ;

IS =

h
2

2 /2) € definida positiva se

€ a matriz (

Tomamos k satisfazendo (5.24). Podemos assim escrever (5.13a) em [sp, s1] como (5.16), e, inte-

IS —

k> M?. (5.24)

grando como em (5.17), obtemos

o f (s1)+7(N(s0,51)+1) do _
0= sin2 0 + k*2cos2 0 + hsinOcos O
_ 27‘[( (So,S1)+1) _ 717(N(S0,S1)+ 1)

VA — AMk Ky 10 ’

em que

N(s0,81) = V(SO)_G(S])J

T

€ o nimero de rotacdes de angulo 7 em torno da origem feitas pela solugdo entre sg e s1. Assim,

N(s(),s)>kv4 \ll—m

1/4
N(l* M\[’ = \/ kl/z
I/4
N(t*,t* 1 k‘/2

Para M fixado, temos , /11— W —p At +oo, e, portanto, existe K, (M) tal que, para

e, em particular,

k> K.(M), (5.25)
temos y
k/* M
vV T 1>1
Logo,
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e, assim,
0(t,)— 6 (r*+ Mf> >, 8 (t*— ﬁ) —8(t,) > . (5.26)

Pela defini¢do de I, temos 0(t,—1) — 6(,) = 7, e, pelo Lema 5.3, 6(t,) < 0(¢r) < 0(t,—1) para
todo t € I; o fato de que 1, € I e (5.26) mostram que #, — ﬁ ¢t + ﬁ ¢ I, donde se conclui

que
t*_ﬁ<tn—ly M\[>tn7
e, assim, I C [ M\[, «+ \f . Agrupamos (5.24) e (5.25) definindo
K3(M) = max {M* K, (M)}
e exigindo que
k> K3 (M) .
Sob esta hipétese, temos I C |1, — ﬁ, \[] e, como f3(r) > 1/vkparatodot tal que [t — 1| <
ﬁ e y(t) > 1/vk para quase todo 7 tal que |t — 1, < m f’ obtemos o resultado desejado. |

Utilizando este resultado, podemos estimar a taxa de divergéncia das solugdes de (5.13c) nos

intervalos pertencentes a familia I, .

Lema 5.5. Existe K4(M) tal que, para todo k > K4(M) e todo I = [t,_1,t,] € I, a solu¢do de (5.13¢)
satisfaz
1
AR (5.27)

Demonstracio. Tomamos
k> K3z(M) (5.28)

de forma a poder aplicar o Lema 5.4 e obter que f(¢) > 1/Vk paratodo t € I e y(t) > 1/Vk para
quase todo t € I. Temos assim, parat € I,

—0(1) > sin® 0(r) + k7> cos? O(t) + hsin O () cos O (t) =

/. 14 sinO(r)
= (sm@(t) cos 0(t)) <g k32/2> (cosG(r)) >0

pois, como k > K3(M), temos em particular (5.24) e, assim, a matriz acima é definida positiva.
Logo, 6 ¢ uma fun¢do continua estritamente decrescente em /, sendo portanto uma bijecdo en-
tre I = [t,_1,1,] e a sua imagem [0(,),0(t,—1)]. Notamos por T a inversa de 60, definida em
[0(n), O(tn—1)]; T satisfaz assim

art 1 1

4T oy - __ _ 2
dﬁ(l” 0(t(%)) sin © 4+ k2y(7(9)) cos? & + hsin ¥ cos ¥ 629

Escrevendo p = ro 7 e usando (5.13c) e (5.29), obtemos

Lo sin® cos ¥ (1 —k*yo t(¥)) — hsin® &
ao P sin® ® + k2yo 1(1) cos? ¥ + hsin ¥ cos
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Podemos integrar esta expressédo de 6(z,) a 0(t,—1) = 0(t,) + 7, obtendo

r([n) 0(ty)+m
1 = F
. fem) (8,70 7(8))dd
com ) )
sintcos ¥ (1 —k“y) —hsin“ ¥
Fo.7)= U=k)

 sin?® +k2ycos? ¥ + hsin ¥ cos O

Afirmamos que, se % > 1/vk é constante, entdo

0(ty)+m
Jou,  F@.1)d <0; (5.30)

de fato, basta notar que, como F é m-peridédica na sua primeira varidvel ¥, esta integral pode ser
tomada em qualquer intervalo de comprimento 7, donde jee(gt”)H” F(%,1)dd = ﬁ/ﬂz/z F(%,%)do.

Assim, fazendo a mudanga de varidveis 7 = tan 1%, temos

(1 —kz’}/())f—hfz
+ht + k) (24 1)
< f+°° (1K)t
= Jeeo (apf* +bo) (2 +1)

dif <

[0 Fwamar = [ o

df =0,

y—h*/4 k2 . ~ ... . .
W eby= Ty‘) — %3 ap e by sdo ambos positivos, pois Y > 1/Vk e k satisfaz (5.24),

e sdo escolhidos de forma a que 7> + hi + &>y > aof* + by para todo 7 € R.

com ag =

Por (5.30), temos

r(ty) 0(ty)+7
1 < F(® ®)) — F(9,7)]d0. 531
nr(tnfl)_J\Q(tn) [F(8,701(8)) —F(3,%)] (5.31)
Calculamos
E(ﬁ )= — k? sin ¥ cos
IY = (sin® & + k2ycos? © + hsin ¥ cos ¥)2

e, portanto, parat € I,

k2 |sin 9| |cos |
(sin® ® + kY2 cos? ® + hsin ¥ cos ¥)?

w0 <

Tomamos agora % = B(t,—1) em (5.31), obtendo

n r(t,) <fe<zn)+n k2 |sin 9| |cos |

F(ta—1) ~ Jo) (sin219+k3/2cos219—|—hsin19c0s19)2’yOT(ﬁ)_B(tn_l)‘dﬁ' (532)

Para quase todo ¢ € /, pode-se estimar

70— Bltn1)] < 1B() — Bltwr)] + \"“)‘ < M(ta—to 1)

LM
2k

T (5.33)

Tomamos k satisfazendo (5.12), o que quer dizer que 0 < y(¢) < 1 para quase todo t € R, e,
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portanto, integrando (5.16) de ¢, a t,,, obtemos

tn 0(s)
by —lhi—1=— ) . ds >
tn1 8in” 0 (s) +k2Y(s) cos? O(s) + hsin O (s) cos O(s)
> J*G(I,,)Jrﬂ? do . T
0(n)  sin® 6 +k2cos? 0 + hsin O cos O X 1_(£)2’
2%
donde .

< Iy —th—1
k— =«

e, assim, (5.33) se escreve

W(l‘) fﬁ(l‘n 1)| <M(1+ L) (l‘n —1y 1) < 2M(tn —1In 1).
2n
Usamos esta estimativa em (5.32), o que leva a

0(ty i
In r(ty) §2k2M(tn_tn71)J‘ (ta)+7 |sin ¥ |cos |

r(tn—1) 8(tn)  (sin® O + kY2 cos? © + hsin B cos ¥)2

dd. (5.34)

Para calcular a integral em (5.34), usamos a m-periodicidade do integrando e que, paraa >0 e

b? < 4a, temos

j7:/2 |sin ¥ | |cos B | o 1 N B arctan (B/vA) < 1 <1 N 7rc>
= — —_— n p— J—
/2 (sin® ¥ + acos? © + bsin ¥ cos ¥)2 A AP A 2
comA=a—t/s>0,B=blreC=B//aA= \/ﬁ. A aplicagdo disto a (5.34) fornece
o ) 2K M (1, — 1) LT kM
r(tn—1) ~ 1— k% 2V 212 —2kM
koo .
e, como % (1 + 5,/ 2k3/ff"2kM> ~%5 1, existe K, (M) tal que, se
k> K,(M), (5.35)
entdo 1*1% (1 +5 21(3/%21(/1/1) < 2, e, portanto,
r(tn) 1/2
1 <4kTM(t, —t,1).
n }"(tn_l) — ( n n l)

Agrupamos as hipéteses (5.12), (5.28) e (5.35) sobre k definindo
K4(M) =max{K;(M),Kz(M),K,(M)}
e exigindo que

k> K4(M)
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Sob estas hipdteses, obtemos, conforme desejado, que

r(ty) < r(ta) MK (t=t1)

5.3.5 Estimativas em intervalos da familia J,

O Lema 5.5 permite estimar o crescimento da norma ao final de uma rotacdo de dngulo 7 em um
intervalo da familia J,. Desejamos agora obter um resultado similar para intervalos da familia Jy;

para fazé-lo, comecamos caracterizando a duragdo desses intervalos e o comportamento de 7 neles.

Lema 5.6. Existe Ks(T, 1, M) tal que, se k > Ks(T, 1,M), entdo, para todo I = [t,_,t,] € Jo, temos
¥(t) < 3/Vk para quase todo t € I e

T
Thgaen =0 st

Demonstracdo. Fixamos I = [t,_1,1,] € Jo. Se
k> M?, (5.36)

entdo 0 < y(r) — B(r) < % < ﬁ, e, assim, ¥(¢) < 3/vk em quase todo ponto de /. Além disto, se

8T\ 2
k> <3H) , (5.37)

temos P (1) < 2/vik < 2—’;, e, assim, pela excita¢@o persistente (5.10) de 3, obtemos que t,, — t,—1 <
T. Ademais, (5.13a) implica que — < 1+ 3k”>+4h em quase todo ponto de I, e entdo, integrando

em [, obtemos t,, — t,,_1 > Assim, definindo

_m
1+h+3K%2°

2
KS(TauvM) = max {M27 <§£> } )

as desigualdades (5.36) e (5.37) estdo satisfeitas se
k>Ks(T,u,M),

fornecendo assim o resultado desejado. |

Supomos a partir de agora que k > Ks(T, 1, M). Nosso objetivo é obter um resultado similar ao
Lema 5.5 para o caso de um intervalo I € Jy. Comegamos definindo a classe © (7T, u,M, k) em que

tomamos 7.
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Definicéo 5.7. Definimos a classe © (T, u, M, k) por

2k

o]
@(T,H,M,k):{ﬁ(l—lc)—i- , GGD(T,;L,M)}.
Fixamos I = [t,_1,t,] € Jo. Observamos que, se ¥ € ©(T,u,M, k), entdo, para todo top € Ry, a
fungdo 1 — y(r +19) estd também em O (T, 1, M, k). A menos de uma translagdo no tempo, podemos

entdo supor que / = [0, 7] com T =1, —1,_| € [ T). A solugdo r(7) de (5.13¢c) no instante T

.
1+h+3K%2°
pode ser escrita como

r(t) =r(0)e”

para uma certa constante A. Sabemos, pela construgdo de I, que r(0) estd no eixo y; e portanto,
como o sistema (5.9) € linear, conclui-se por homogeneidade que A nao depende do valor particular
de r(0), dependendo apenas de 7 e r(7). Nosso objetivo é estimar A uniformemente com relagdo

a classe dos sinais ¥ € ©(T,u, M, k) e com relagéo aos intervalos I € Jy para uma dada escolha de

i ' Axi Ly, (D] T
Y. Podemos assim estimar A pelo maximo valor de - In EQI sobre todo 7 € [1+h+3k3/2 , T) e todo
Y€ D(T,u,M,k) com y(t) < 3/vk, em que y é uma solugdo de (5.9) com y(0) e y(7) no eixo y;. Isto
é, A é estimado pela solucao do problema

( Lol

Encontrar sup —In
T [y

T
1€ |——, T,
[1+h+3k3/2 }

com

yeD(T,u,M,k), v(t)<3/vkon|0,1],

(5.38)
0 1 y1(0) 3
y — s O = R T) = R
y (_kzym _h>y ¥(0) ( 0 ¥(7) 0
\y1(0>7§€R*7 )’1(0)§<0
Podemos escolher y;(0) = —1 sem perda de generalidade devido ao fato de a equagdo satisfeita

por y ser linear. Também podemos ver que, ampliando a classe em que se toma Y e tomando y €
L=([0,7],]0,3/,/7]), obtemos um problema cuja solu¢do é maior que a de (5.38), e assim A pode
também ser estimado pela solu¢do do problema

1
Encontrar sup;ln ly(t)|| com

T o
TG[W,T], 1=[0,7, yeL=(1,[0,1)). (5.39)

. 0 1 -1 £
\y=<_3k3/2m) _h>y, y(0)=<0>, y(f)€{<0>,§eR+},

A discussdo acima pode ser resumida no seguinte resultado.

Lema 5.8. Seja A(T,M k) a solugcdo do Problema (5.39) e seja Ks(T,u,M) como no Lema 5.6. Se
k> Ks(T,u,M), entdo, para todo 'y € D(T, u,M,k) e todo I = [t,_1,t,] € Jp, temos

F(ta) < r(ty—1) MM =in1), (5.40)
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Demonstracdo. Fixemos y € ©(T,u,M k) e I = [t,_1,t,) € Jo. Tomamos k > Ks5(T,u,M) para
aplicar o Lema 5.6. Definimos T =1, —1t,_1, €, portanto, o Lema 5.6 mostra que 7 €

e ¥(t) < 3/Vk para quase todo 7 € .

T __ T
1+h+3k72°

Notamos ¥(r) = %y(t +1,-1) paratodo 7 € I, e, assim, ¥ € L*(1, [0, 1]) com I = [0, 7]. Nota-
mos por y uma solucio de (5.9) com uma condi¢io inicial ndo-nula e por z a fun¢do definida por
Z(t) = —wy(t +t,—1). Vemos que z estd bem definida, pois ||y(¢,—1)|| # 0, e z satisfaz

Hy(tnfl)H
- 0 I 0 1
Ty —n) S\ sy k)

Pela defini¢do de I, y(f,—1) e y(t,) estdo ambos no eixo yj, de lados opostos da origem, e, assim,

z(0) e z(1) estdo ambos no eixo z; de lados opostos da origem; pela definicdo de z, podemos

2(0) = (‘01> 0 e {(g) ¥ em}.

Basta agora notar que, pela definicao de A(7T, M, k), temos

assim escrever

1
_In ()| < AT MK,

e, assim,
Ja(z) | < ATHOT,

Pelas definicdes de z e T, obtemos (5.40). [ |

Podemos agora nos concentrar na resolu¢do do problema (5.39). Comegamos mostrando que o

sup nesse problema ¢ atingido.

Lema 5.9. Seja k > Ks5(T,u,M) em que Ks estd definido como no Lema 5.6, e seja A(T,M k) a

solugdo do problema (5.39). Entdo existem T, € e € L*(I,,[0,1]), em que I, = [0, T, ],

T _ T
1+h+3K72° }
tais que, se y, é a solugdo de

(0 (1
Yx = (—3](3/2)/*(1‘) —h) Voo ¥+(0) = ( 0 ) )
y.(7) e{(f))é €R+}

1
—Inly.()]| = AT, M, ).

entdo
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Demonstracdo. Comegamos tomando uma sequéncia (T,, % )nen cOm T, € [ng%’ T} 1, =
[0,7,] e » € L™ (I,,,[0, 1]), tal que, notando por y, a solugio de
. 0 1

yn(o) = <_01> )

. 1
lim —In Hyn(Tn)H :A(T7M7k)’

n—+oo T,

temos

uma tal sequéncia maximizante existe pela definicdo de sup. A menos de estender 7, por O fora
de I, podemos supor que ¥, € L*(1,[0,1]) em que I = [0,7T] e assim, por compacidade fraca-
: T
deste espaco e pela compacidade de o
convergindo fraco-x para uma certa fungio ¥, € L*(1,]0,1]) e tal que a subsequéncia correspon-

T} , podemos tomar uma subsequéncia de (¥, )nen

dente de (7,),cn converge para T, € T] ; para simplificar a notacdo, escrevemos ainda

T
1+h+3k72
(Yu)nen € (Tn)nen para notar estas subsequéncias.

Observamos que ¥, é igual a 0 em quase todo ponto fora de I, = [0, 7,] pois, para toda fungéo
¢ € L'([t.,T]), temos

T T
L* Y%()o(t)dt = lim | % (t)e(r)dr

n—+oo J 1,

0 se T, < T,,

‘ Tn n—4-o0

T
Yu(t)o(t)dt| = :
‘L* o) w(odi| < [Tlpld 50 se T, > 1.
Ty T

Assim, podemos considerar que ¥ € L*(I,,[0,1]). Notamos por y, a solugdo correspondente a

. 0 1
e 3k (1) —h e

Y% isto &, a solucdo de

(5.42)

Definindo ¥, e % por 0 em [0,7] fora dos seus respectivos intervalos de defini¢do I, e I,
podemos considerar as solugdes y, e y, de (5.41) e (5.42) como definidas em [0, T] e, neste caso,
a menos da extragdo de uma subsequéncia, temos lim,_, 1.y, = ¥, uniformemente em [0, 7]. De

fato, notemos e, = y, — y«. Escrevemos

1
An(t) = 30 , B= 03 o).
=3k Py, (1) —h -3k 0

{ én(t) = An(t)en(t) + (1(t) — %(2))By«(2),
en(0) = (0,0)T,

A funcio e, satisfaz

97



5. Estabilizacdo de sistemas de controle lineares planares

e, integrando esta equacdo, obtemos
= [ Anen(s)ds+ha(0),  ult) = [ (ls) = %(s)Byils)ds.  (5.43)
Aplicamos entéo o Lema de Gronwall a ||e,(¢)||, o que fornece
llen(D)]] < [[a(2)l +f ()1 1A4n(s) | 141 g5 (5.44)

Se ¢t estd fixado, a convergéncia fraco-x de ¥, a ¥, mostra que lim,_, 1. h,(¢) = 0 para todo ¢ €
[0,T] e, além disso, a sequéncia (h,),cn € uniformemente limitada em [0, 7], o que mostra, pelo

Teorema da Convergéncia Dominada, que

nmjuh ) |An(s)|| € 14N g — o

n——+oo

paratodo € [0,7], pois (||An||)nen também € uniformemente limitada. Assim, lim,,_, ;. e,(7) =0
paratodo? € [0,T]. Como (hy,)qen € uniformemente limitada, (e,),cn também o é devido a (5.44),

e (5.43) mostra que, parat > 1’,

en(t) —en(t IA s)en(s ds—i—j (Vu(s $))Byx(s)ds,

0 que, com a limitacdo uniforme de (ey),cn, mostra que esta sequéncia é equicontinua. Logo,
pelo Teorema de Arzela-Ascoli, a menos da extracdo de uma subsequéncia, (e,),cn converge
uniformemente e, como esta sequéncia converge ponto a ponto para 0, seu limite uniforme € a

fun¢do 0, o que mostra finalmente que lim,,—, 1y, = y, uniformemente em [0, 7'].
A convergéncia uniforme de (y,),en permite mostrar a conclusdo do lema. De fato, como
T
yn(Ty) € {(5 0) ,Ee R+} e lim,— 4o Y (T1) = y«(Ts), concluimos, pela convergéncia uni-
T
forme, que y,(7,) € { (5 0) ,E € R+} uma vez que este conjunto € fechado. A convergéncia

uniforme de y, a y, também mostra que

1 .1
Il ()l = lim oy (5) | = AT.M.6)

0 que completa a demonstracao. |

Como o sup no problema (5.39) € atingido, podemos usar o Principio do Médximo de Pontrya-
gin para caracterizar a trajetoria y, que maximiza (5.39). Usamos como referéncia o enunciado do

Principio do Méaximo de Pontryagin dado no Teorema 7.3 de [10], que enunciamos aqui.

Teorema 5.10 (Principio do Maximo de Pontryagin). Considere o problema

max Po(7,¥(7)) (5.452)
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para o sistema descrito pela equacdes

y=f(t),y()), y(0)=yo, 7y(t)€U em quase todo ponto, (5.45b)

em que o tempo terminal T e o ponto terminal y(T) estdo sujeitos as restri¢oes

oi(t,y(7)) =0, i=1,...,n. (5.45¢)

Supomos também que f é continua em Q x U, em que Q C R? é aberto, que f é continuamente dife-
rencidvel com relacdo a 'y e que as funcoes ¢;, i =0,...,n, sdo continuamente diferencidveis. Sejam

T, e Y : [0, 7] — U maximizantes de (5.45a), com ¥, limitado, e seja y, a trajetdria correspondente,

2¢; 9¢; 9¢i
a1 dy;? " dyy

pendentes no ponto (T, yx(7:)). Entdo existe um vetor linha p ndo-trivial absolutamente continuo tal

solucdo de (5.45b). Supomos que os vetores ( ) i=1,...,n, sdo linearmente inde-

que
p(t) =—p(t) 'Dyf(y*(t)a %)), (5.46a)
P(O)- FO(0),(0)) = max (1) (31 (0), ) (5.460)
para quase todo t € |0, 7T,]. Ademais, existem constantes Ay, ..., A, com Ay > 0 tais que
p(z) = Y AiVei(T.,y.(1.) #0, (5.46¢)
i=0
max {p(z.)- Fr.(5). @)} = - ¥ 4 (2, 3.(5.) (5.460
prh P T« YxlTx), = "t wy Yr T .
com V@; = (gfl’ yeees gf’;) Finalmente, a funcdo t — p(t) - f(y«(t), Y (t)) é constante em quase todo
ponto.

O Teorema 5.10 pode ser aplicado ao problema (5.39). A funcdo ¢y do enunciado do teorema e a

funcdo f que define o sistema sao

1 0 1

Ainda nas notacdes do Teorema 5.10, temos
U=[0,1, U=L=([0,7],[0,1]). (5.47b)
A restri¢do no ponto final pode ser escrita como ¢ (7,y(7)) = 0 com
o1 (,y) =2, (5.47¢)

e, assim, n = 1. Observamos também que f, @y e ¢; satisfazem as hip6teses de regularidade enuncia-

das no teorema. Assim, dados 7, e ¥, como no enunciado do Lema 5.9 e a solu¢do correspondente y,,
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as c

onclusdes do Teorema 5.10 sdo viélidas: existe um vetor p e constantes Ay, A; satisfazendo (5.46).

Queremos agora obter, a partir destas conclusdes, propriedades que permitirdo caracterizar Y, € y,.

Lema 5.11. Sejam T, Y, e yx como no enunciado do Lema 5.9. Entdo, a menos de modificacdes

em

um conjunto de medida nula, Y, é a valores em {0,1}. Além disto, existem si,s, € (0,7,)

com s1 < 55 tais que Y, (t) =1 set € [0,51)U(s2,7T] € Y%(t) =0 set € (s1,52). A solucdo y, estd
que %, ¥ ¢aoy

incl

usa no quadrante Q> = {(y1,y2) |y1 < 0,y2 > 0} durante o intervalo [0,s1] e no quadrante

01 ={(1,y2) [y1 = 0,y2 > 0} durante [s,7.].

100

Demonstra¢ao. Em primeiro lugar, escrevamos explicitamente as conclusdes do Teorema 5.10
no caso de (5.47). Notamos por p o vetor linha cuja existéncia é dada pelo Teorema 5.10; a

equacdo (5.46a) satisfeita por p é

o 0 1
P=7P\ sy ) —n)

isto €,
51(1) = 3k (1) pa (1),
{pl() ¥ ()p2(t) (5.48)
pa(t) = hpa(t) — pi(1).
Temos
P f(3e @) = p1y2e — 3K @payis — hpayas,
e, assim, a condi¢do de maximizagdo (5.46b) é
V() p2(1)y1:(r) = min @pa(1)y1.(1). (5.49)

0el0,1]

Podemos agora mostrar que ¥, € a valores em {0, 1}, a menos de um conjunto de medida nula.

Definimos a funcao de chaveamento & por

D(t) = pa(t)y1«(2)

e assim, por (5.49), ¥ pode ser escrita em funcdo de ®, a menos de modificagdes em um conjunto

0 sed(r) >0,
% (t) = { (5.50)
1 sed(r) <0

de medida nula, como

Notamos que, se ®(¢) # 0 em quase todo ponto de [0, 7,], entdo a fungio ¥, estd definida em quase
todo ponto por (5.50), e, em particular, ¥, é a valores em {0,1}. Observamos também que P é

absolutamente continua e

D(t) = hpa(1)y1(t) — pr()y1(t) + p2(t)y2u (1)

logo, ® também é absolutamente continua, o que mostra que & é de classe C'.
Mostramos em seguida que os zeros de P sdo isolados. De fato, considere ¢ € [0, 7,] tal que

®(t) = 0. Este zero é evidentemente isolado se ®(¢) # 0. Consideramos entdo o caso em que
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®(1) = 0. Como p é ndo-trivial e o sistema satisfeito por p é linear, p(t) nunca é o vetor nulo;

como

O(1) = (pl(t) pz(l‘)> <y1f)(t)>’ d(t) = (pl(l‘) Pz(t)> <y2*(z_)y-¢*;§;)l*(t)>7

as condigdes ®(t) = 0 e ®(r) = 0 mostram assim que (0,y1,(£))T € (—y1.(t),y25(t) + hy1(2))T
sdo ambos ortogonais a p(¢)T; estes vetores sdo assim paralelos, o que quer dizer que y;.(¢) = 0.
Logo, um zero de ® e d deve ser um zero de Vix. Como y, ndo se anula e yj, = Y24, 0S Zeros
de y1, sdo isolados. Logo, ® admite um ndmero finito de zeros em [0, 7,] e % (¢) é constante por

partes e a valores em {0, 1}.
Para concluir a demonstragdo do lema, isto €, determinar a regra de chaveamento entre 0 e

1 de 7., adaptamos as técnicas desenvolvidas em [9] para a andlise de problemas de controle

bidimensionais otimizados em tempo. Come¢amos definindo as matrizes

0 1 0 0
F= 5 G= )
<0 —h) (1 0)

0 1
( ) y=Fy=3k"*yGy.

de tal forma que

—3ky  —h

A funcio de chaveamento @ e sua derivada & podem ser escritas como

(1) = p(1)Gy.(t), @) = p(t)[G,Fly.(1)

em que [G,F| = GF — FG é o comutador das matrizes G e F. Definimos as fungdes

0
AA(y) = det(Fya Gy) = hy y =Yy1)y2,
—hyy i
0 -V
Ap(y) = det(Gy,[G, Fly) = T
1 1 2

O conjunto A;l (0), correspondente aos eixos y; € y,, € o conjunto dos pontos em que 0s campos
de vetores definidos por F' e G sdo paralelos e o conjunto AEI (0), correspondente ao eixo y,, é
o conjunto dos pontos em que os campos de vetores definidos por G e [G, F| sdo paralelos. Em
particular, fora de AXI (0), Fy e Gy sdo vetores linearmente independentes e constituem assim
uma base de R?; logo, existem escalares fs(y) e gs(y) tais que [G,F]y = fs(y)Fy + gs(y)Gy para
todo y € R*\ A, (0). Temos Ap(y) = det(Gy,[G, Fly) = fs(y)det(Gy, Fy) = —fs(y)Aa(y), 0 que

mostra que
Ap(y) _ nt

O

Desejamos agora caracterizar os chaveamentos de ¥, quando a trajetoria estd fora de Agl(O) U

fs(y) =
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Ag'(0), isto é, quando a trajetéria ndo estd em nenhum dos eixos. Tomamos um intervalo de
tempo aberto J durante o qual y, estd fora dos eixos. Em particular, fs(y.(¢)) e gs(y«(f)) estdo
definidos paratodot € J. Se ¥, chaveiaemt, € J, a equacao (5.50) e a continuidade de ¢ mostram

que ®(z,) = 0. Temos assim p(z.)Gy,(t.) = D(t.) = 0 e, portanto,

(1) = p(1)[G, Flye(ts) = fs(ru (1)) p(t) F (). (5.51)

O Teorema 5.10 mostra que 7 — p(t) - f(v«(¢), % (¢)) é constante em quase todo ponto, isto é,
t = p(6)Fya(t) = 3KV .() p(1)Gy. (1) (5.52)

¢ constante em quase todo ponto; notemos C esta constante. As fungdes t — p(t)Fy.(t) e t —
p(t)Gy.(t) sdo absolutamente continuas, o que quer dizer que os tnicos instantes em que (5.52)
pode ndo ser igual a C € quando 7}, € descontinua, isto é, nos instantes de chaveamento. Em
particular, tomando o limite quando ¢ tende a um instante de chaveamento pelos pontos em que 7,
é zero, obtemos que p(t)Fy, (1) = C no instante de chaveamento, e, como p(t)Gy,(t) = ®(t) =0
neste instante, (5.52) é na verdade constante em todo . Em particular, as equacdes (5.46b) e
(5.46d) mostram que C vale
€= 202 (2, 3. (5)) = 2.z
t 72

e, assim, C > 0. Logo, p(t.)Fy.(t:) > 0; mas p(t.)Gy.(t.) = 0, Fy,(t.) € Gy.(t:) sdo linearmente
independentes e p(t,) # 0, o que mostra que p(t,)Fy,(t.) > 0, e, assim, por (5.51), ®(t,) e
fs(y«(t:)) possuem o mesmo sinal. A fungio fs(y.(¢)) é diferente de O para todo 7 € J, e, portanto,
seu sinal é constante neste intervalo. Se fs(y«(¢)) > 0, entdo ®(t) > 0 para todo instante de
chaveamento ¢ € J de ,; em particular, isto quer dizer que ¥, pode chavear apenas uma vez em
J e que, se o chaveamento ocorrer, é necessariamente, por (5.50), de 1 a 0. Similarmente, se
fs(y«(t)) <0, entdo ¥, chaveia no maximo uma vez em J, e este chaveamento s6 pode ser de 0 a
1.

Podemos assim obter as propriedades desejadas de ¥, e y,. Partindo de y,(0) = (—1,0)7,
podemos ficar parados neste ponto se ¥, (f) = 0, o que ndo maximiza ¢, ou sair deste ponto em
direc@o ao interior de Q; se ¥,(0) = 1; é portanto a segunda alternativa que ocorre, e % (1) = 1
em uma vizinhanga a direita de 0. A solugdo y, deve sair de Q», uma vez que y,(7,) estd na parte
positiva do eixo y; e este conjunto ndo pode ser alcangado em tempo finito sem sair de 5, e as
expressoes dos campos de vetores nas fronteiras de O, mostram que y, sai pelo eixo y, e ndo pode
voltar para o interior de Q»; ademais, y, ndo pode ficar parada sobre o eixo, e, portanto, existe um
tnico s, tal que y,(s,) estd no eixo y,.

Parar € (0,s,), a solugdo estd no interior de Q», em que fs(y) > 0, e podemos assim chavear
no maximo uma vez de 1 a 0; notamos s; o instante em que este chaveamento ocorre, com a
convengdo que s; = s, se o chaveamento ndo ocorrer. A partir de s,, a solugdo vai ao interior de
01, até 1,, instante em que atinge o eixo yj, e, portanto, no intervalo (s, T.), Y« estd no interior

de Q;, em que fs(y) < 0, e podemos portanto chavear no maximo uma vez de 0 a 1. Observamos
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0 X < AN 0
< N\ \
<IN ™

M

FIGURA 5.3: Campo de vetores f para y =1 (em azul) e y = 0 (em vermelho). Todos os vetores

representados estdo normalizados. As conclusoes do Principio do Mdximo de Pontryagin implicam que 7,
pode chavear no mdximo uma vez no interior de cada quadrante Q1 e Q>. Ademais, este chaveamento
possivel éde 1 a0 em Oy ede0a l em Qy, pois fs(y) < 0 no interior de Qy e fs(y) > 0 no interior de Q5.

que, se a solugdo entrar em Q; com %(¢) = 1, entdo nenhum chaveamento é possivel e teremos
Y. (t) = 1 até 7,; neste caso, escrevemos s = §,. Se, por outro lado, a solu¢do entrar em Q| com
Y.(t) = 0, o chaveamento em um instante s, € (s,,T,) € obrigatério, pois, caso isto ndo ocorra,

ndo € possivel de se atingir o eixo y; em tempo finito.
Y2

O 51 01

52

t=0 T Vi

FIGURA 5.4: Representacdo da solucdo y.. Como enunciado no Lema 5.11, y, é uma solucdo de (5.42) com
Y(t) =1 em[0,s1), %(t) =0 em (s1,52) € %(t) = 1 em (s2,7,]. A solugdo y,(t) estd em Qp parat € [0,s1] e
em Q| parat € [sy, Tyl.

Assim, por construcdo de s; e 57, estes valores satisfazem as propriedades enunciadas no lema.
[ |

Gragas a caracterizacdo de ¥, e y, pelo Lema 5.11, o problema (5.39) pode ser resolvido mais
facilmente. De fato, em vez de maximizar a funcido ¢y de (5.47a) sobre todo o espaco de 7, € ¥

possiveis, podemos ver que ¥, estd completamente caracterizado pelos instantes s; e s, € portanto
T
devemos maximizar @ sobre todo T,, 5| € s, com a restri¢ao y,(7,) € { (é 0) ,EEeR, } e, assim,

o problema de calcular A(T,M, k) se reduz a um problema de maximiza¢do em dimensao 2.
Lema 5.12. Seja Ks(T,u,M) como no Lema 5.6. Existe K¢(M) tal que, se k > Ks(T,u,M) e k >
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Ke(M), entdo
A(T,M k) < V3K (5.53)

Demonstracdo. Supomos k > K5 (T, i, T) e tomamos Ty, % € ¥« como no Lema 5.9. Temos entdo

1
AT M k) = —In iy ()]

*

Utilizamos a caracterizag¢do de 7, e y, dadas no Lema 5.11 para estimar esta quantidade. Sejam

s1 € s como no Lema 5.11. Entdo, no intervalo [0, s;], temos % () = 1 e, assim, y, satisfaz

0 1 —1
Ve = - +(0) = . 5.54
¥ (—318/2 _h>y y«(0) ( 0 ) (5.54)

k> — (5.55)

Tomamos

de modo que 3k”* > /4, e podemos assim definir a quantidade positiva ® = /3k¥2 —#*/4. Um

calculo direto mostra que a solugdo de (5.54) é

_h h .
Vi«(t) = —e 2 <cos ot + 30 sin wt) , (5.56a)
)=(w+ N o ginor (5.56b)
Vo (t) = 1 )¢ S sinor. .

No intervalo [s;,s2], temos % (z) = 0 e, assim, y, satisfaz
) 0 1
y* - 0 —h y*a

(1= €770 ) yau(2) + y1als1), (5.57a)

y2«(s1)- (5.57b)

o que leva a solugdo

Finalmente, no intervalo [sy, 7], temos %(¢) = 1 e, assim, a equagdo diferencial satisfeita por

v« € a mesma que em (5.54), mas consideramos agora a condi¢éo

Vo(T) = (f))
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com & > 0. Isto leva a solugio

h
yie(t) = gg—%(l—f*) (cos ot —1.)+ %% sinw(r — ‘L;)) , (5.58a)
RPN\ .
yut)==E|o+—)e sino(t—1,). (5.58b)
40
Temos .
A(T,M k) = T—ln?j. (5.59)

Para simplificar a notacdo, escrevemos ¢ = s, — s1. Desejamos estimar (5.59) em func¢ao de s;
e G e, para fazé-lo, usamos as igualdades obtidas ao se impor que as solucdes dadas em (5.57) e

(5.58) coincidam no ponto s;. Estas igualdades fornecem

h e—hg
Eex(" " sinw(T, —57) = —v2(s1), (5.60a)
1o
ée%(f*’”)cos O(Te — 52) = y1x(51) +y24(51) ! (1 —e’hg) + ﬂ (5.60b)
* 2 yl* 1 y2* 1 h 2(])2—|—h2/4 9 N
e podemos assim escrever & em fungéo de s, ¢ € Ty, €, substituindo em (5.59), obtemos
—hg 2 L,—hg, (s1) 2
7/1(1*752)+ln (yl*(sl)+y2*(sl) |:% (lfe*h§)+ 2£§+/12/4D + (ﬁ)
A(T, M, k) = o (5.61)

2[s1+6+(T—s2)]

Para limitar esta expressdo, usamos primeiramente que —h (T, —s2) < 0e T— s, > 0. Pela expres-
s80 (5.56b) de y,, em [0, 5], obtemos

e "y2.(s1)

2
o+ 15

< sinwsy;

lembramos que y,,(f) > 0, o que mostra em particular por (5.56b) que sin @s; > 0, justificando
essa estimativa. Temos também que yi.(s2) > 0 e yx(s2) > 0, e, assim, (5.58) implica que
sin@ (T, —s2) > 0 e cos (T, —s2) > 0. Logo, (5.60b) mostra que

he™"s

1 l
_ _ e NS [ .
Yix(s1) +y24(51) [h (1 e >+ T 4] > 0;
podemos entdo estimar esta expressdo em (5.61) usando que yi,(s;) < 0, que é uma concluséo do

Lema 5.11. Temos também que %(1 —e ") < ¢ e, por (5.56b), obtemos

he™"s .
— sin wsy.

—— <
Y2 )30 T < 2w
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. 2\ . . .
Podemos estimar y,,(s;) por (w + j’—w) sin ws; e, combinando estas estimativas, obtemos

In(sin® @s;) + In [1 + (g (a)+ %) + 212))2]

A(T, M, k) <
(T, M) 140

Por (5.55), temos que % <lew+ % < 2w, o que leva finalmente a

In(sin® ws1) +In [1 + Rwg+ 1)2}
2(s1+9)

A(T,M, k) <

Definimos ' = ws1, ¢’ = g, €, assim, temos

In(sins") + In [1 (¢ + 1)2}
2(s'+¢')

AT,M k) <o
Um célculo direto mostra que a func¢io

In(sin®s’) 4 In [1 + (26" + 1)2}
2(s'+¢')

(s',¢") —
é limitada superiormente em (IR* )2 por 1, e, limitando @ por 3k, obtemos a estimativa dese-
jada (5.53) sob as hipéteses k > K5 (T, t,M) e k > K¢(M) com K¢(M) = M/, [

Combinando este resultado com o Lema 5.8, obtemos a estimativa desejada da taxa de cresci-

mento de y.

Corolario 5.13. Sejam Ks(T,u,M) como no Lema 5.6 e K¢(M) como no Lema 5.12. Se
k> max (Ks(T,u,M),Ks(M)),
entdo, para todo 'y € D (T, W,M k) e todo I = [t,—1,t,) € Jo, a solugcdo r de (5.13b) satisfaz

F(t) < F(ta_r )e\/§k3/4(tn7tn—l) _

5.3.6 Estimativa de y

Agora que o crescimento de y em intervalos das classes J; e Jy foi estimado, basta agrupar estes

resultados a fim de se obter uma estimativa do crescimento de y em todo intervalo [0,z].

Lema 5.14. Existe K7(T,u,M) tal que, para k > K7(T, 1, M), existe uma constante C dependendo
apenas de T, M e k tal que, para todo sinal 6 € D(T,u,M), todo t € R, e toda solucdo y de (5.9),
temos

ORI MO (5.62)

Demonstraciao. Supomos que k > K; parai=1,...,6 a fim de poder aplicar todos os resultados
anteriores. Fixemos 6 € D(T,u,M) et € R,.
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Como a sequéncia (t,),en definida em (5.22) tende monotonicamente a +co quando n — +oo,
existe N € N tal que ¢ € [fy_1,ty) (com a convengdo 7_; = 0). Podemos usar o Lema 5.5 e
o Corolério 5.13 para estimar o crescimento de y em cada intervalo /,, n = 1,...,N — 1, mas
estas estimativas ndo se aplicam a Iy = [0,7p] e [ty—1,]. O comprimento destes dois intervalos &,
entretanto, limitado por 7', o que é uma consequéncia da demonstragao do Lema 5.2: mostramos
que 6(r+T)—0(t) < —2x, e assim, em particular, o fato de ter (7)) — 6(0) < —27 e a defini¢do
de 1y mostram que 7y € [0,7); para o intervalo [ty_1,?], é o fato de que O (ty—1 +7T) — O(ty_1) <
—27 e a defini¢do de N e ty que mostram que ty—1 <t <ty < ty—1+ 1. Podemos assim utilizar
uma estimativa mais grosseira do crescimento de y em [0,19] e [ty_1,]: por (5.13c), temos 4 Inr <
k*4+h+1, e, assim,

r(to) < r(o)eT(l<2+l1+1)7

r(t) < r(y—y)e! ©HD,

Combinamos entdo estes resultados com (5.27) e (5.53), o que leva a

r(t) < e2T(k2+h+1)r(0> H AME2 (t,—1, 1) H V3 (ty—ta_1) <
I, €J+ [ EJO
< Cr(0)eV3H rramil

com C = 2T (K +h+1), que depende apenas de 7', k e M (por ). Basta tomar k grande o suficiente, e

4
mais precisamente k > < \[) , para obter (5.62). Tomamos assim K7 (7, i, M) como 0 maximo

4
entre K;,i=1,...,6,¢e ( \[> , concluindo assim a demonstracao. |

5.4 Demonstracao do Teorema 5.1

Uma vez estudada em detalhes a taxa de crescimento de y, podemos mostrar o Teorema 5.1 combi-

nando (5.62) e a relacdo (5.6) entre x e y.

Demonstracido do Teorema 5.1. Seja A uma constante real. Tomamos k > K7(T,u,M) e
consideramos o ganho de realimentacdo K = (k2 k). Por (5.6), temos que, paratodo s € R,

)] < e o0t (1424 2 o)

_h h k
o)) < et 5o (14 24 2 ol
e assim, em particular,

rﬂ>w_Q+h+k)w<w
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5. Estabilizacdo de sistemas de controle lineares planares

Logo, combinando estas desigualdades com (5.62), obtemos
Ix(2)]| < C'[|x(0)]| e~ o o(s)ds+hr+264

em que C’' é uma constante que depende apenas de k, M e T. Usamos que
II o(s)ds > JLHT o(s)ds > LLJ u> K —u
0 —Jo - LT - T
para obter

||x(t)|| S GHX(O)H e(—§%+/§1+2k3/4)t

para uma nova constante C, que depende agora de k, M, T e . Como, para T, u e M fixados,

temos K h
. l’l’ 3/4
im (—SHE 47 o) =
i < 27 2t > ’

existe K(T,u,M,A) tal que, para k > K(T,uu,M,A), temos —%% + g +2k7* < =1, e, assim,
lx(6) ]| < Clx(0) ]| e ™.

Isto conclui a demonstragao, pois, para um tal k, temos

nfOl
t

lim sup
t—ro0
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Capitulo 6

Conclusoes

O estudo realizado neste documento, apesar de ndo ter coberto todo o dominio de sistemas chaveados
devido a amplitude deste, permitiu construir um panorama da questdo de andlise de estabilidade e
estabilizacdo de sistemas chaveados, mostrando os principais resultados de estabilidade conhecidos,
os principais métodos e técnicas utilizados no dominio e as principais limita¢des dos resultados atuais,
que levam aos problemas ainda em aberto no dominio e as principais linhas de pesquisa modernas
adotadas na andlise de sistemas chaveados.

No Capitulo 1, objetivou-se introduzir a no¢do de sistemas chaveados a partir de exemplos de
situacdes praticas em que o seu uso € necessario. Os primeiros exemplos matematicos tratados obje-
tivaram mostrar que, apesar de ter uma descri¢do matemaética simples, os sistemas chaveados podem
apresentar um comportamento complicado, em que o comportamento do sistema global pode ser bem
diferente do comportamento isolado de cada subsistema constituinte devido ao chaveamento. Em
particular, os Exemplos 1.1 e 1.2 mostraram que se pode desestabilizar um par de sistemas estaveis
ou estabilizar um par de sistemas instdveis através do chaveamento.

Para poder estudar estes sistemas de um ponto de vista matemdtico, o Capitulo 2 definiu preci-
samente as nog¢des utilizadas ao longo deste documento. A defini¢do formal de sistemas chaveados
foi amplamente comentada; embora ela apresente possiveis generalizacdes, a definicdo dada ainda é
suficientemente geral e permite tratar os principais casos de sistemas chaveados, como a sequéncia
do documento o mostrou. As sutilidades que ocorrem devidas ao chaveamento foram vistas ao se
estudar o conceito de solucdo de sistemas chaveados, uma vez que certos efeitos, como o comporta-
mento de Zendo e o movimento escorregadio, em geral indesejados na pratica, podem aparecer em
alguns tipos de sistemas chaveados. Finalmente, o conceito de estabilidade e a sua andlise por fun-
¢oes de Lyapunov foram as dltimas defini¢des importantes do capitulo, utilizadas ao longo de todo o
documento.

Os Capitulos 3 e 4 constituiram a parte principal do documento, fornecendo os principais resul-
tados de estabilidade e estabilizagdo de sistemas chaveados. Sob chaveamento arbitrario, pode-se
perceber a grande utilidade das func¢des de Lyapunov na andlise da estabilidade, fornecendo diver-
sos critérios com base em vdrias classes de funcdes de Lyapunov, e, em particular, para as fungdes
de Lyapunov quadraticas comuns. Também foi possivel perceber a importincia de outras formas de

andlise dos sistemas chaveados, obtendo, na Secdo 3.5, critérios de estabilidade completos no caso
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6. Conclusoes

planar através dos chamados principios variacionais. As fungdes de Lyapunov também foram muito
dteis nas andlises feitas no Capitulo 4, em que diversos tipos de restricdes de chaveamento foram
considerados.

O Capitulo 5 apresentou, por fim, a demonstracdo do principal resultado obtido no estigio de
pesquisa [35] realizado pelo aluno no CMAP - Centre de Mathématiques Appliquées da Ecole Poly-
technique, Palaiseau, Franga, ao qual o presente trabalho de conclusdo de curso dé sequéncia. Esta
demonstracdo utiliza ideias e técnicas importantes, permitindo obter, através de diversas estimativas,
o resultado de estabilizagdo desejado.

O objetivo do presente trabalho de conclusio de curso foi assim atingido ao se produzir um docu-
mento que, a0 mesmo tempo em que resume os principais resultados e métodos utilizados no dominio
de sistemas chaveados, fornece as questdes em aberto e as principais linhas de pesquisa seguidas atu-
almente na andlise destes sistemas. A exposicdo da teoria de sistemas chaveados, combinada com a
demonstracdo do resultado obtido no estdgio de pesquisa [35], permite assim o aprofundamento nas

questdes inerentes aos sistemas chaveados.
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