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RESUMO

Neste estudo abordamos o desenvolvimento de um algoritmo que adota a estratégia
de alocacgéo Risk Parity com o objetivo de criar uma carteira robusta de investimentos no
mercado brasileiro. O modelo proposto utiliza uma abordagem de alocacgao de risco que
busca distribuir o risco de maneira equanime ao longo de todos os ativos na carteira, a
estratégia central consiste em balancear a contribuicdo de risco de cada ativo para a
carteira. O estudo investiga a aplicacdo de diferentes estimadores de risco para a
construgéo dessa carteira, incluindo métodos classicos e modernos, como o Estimador de
Variancia-Covariancia Simples, o Rotational Invariant Estimator (RIE), o EWMA
(Exponentially Weighted Moving Average), e o Shrinkage Estimator. Esses estimadores séo
analisados quanto a sua capacidade de proporcionar estimativas mais precisas de risco,
com o intuito de melhorar a alocagao entre ativos e otimizar a diversificagao da carteira. A
pesquisa foca exclusivamente em ETFs (Exchange Traded Funds) disponiveis no mercado
brasileiro, dado o crescente interesse por esse tipo de ativo, que oferece liquidez,
diversificacdo e baixos custos operacionais. A analise inclui uma comparagao do
desempenho de cada abordagem, levando em consideragdo métricas de risco, como a
volatilidade, o Drawdown maximo e os indices de Sharpe e Sortino, além de avaliar o
impacto de cada estimador no risco total da carteira. Os resultados sugerem que, embora
os métodos mais sofisticados, como o RIE, possam fornecer estimativas mais precisas de
risco, modelos mais simples, como o Shrinkage e o EWMA, podem apresentar desempenho
superior em cenarios especificos de alta volatilidade, especialmente em periodos de
estresse no mercado. A dissertacdo conclui que, para investidores no Brasil, uma
combinagao estratégica de diferentes estimadores de risco, com uma abordagem focada
em Risk Parity, pode oferecer uma alternativa robusta para uma carteira equilibrada e bem

diversificada.



Publico

ABSTRACT

This study explores the development of an algorithm that implements the Risk Parity
allocation strategy with the objective of constructing a robust investment portfolio in the
Brazilian market. The proposed model adopts a risk-based allocation approach that aims to
evenly distribute risk across all assets in the portfolio. Its core strategy consists of balancing
the individual risk contribution of each asset. The research investigates the application of
various risk estimators for portfolio construction, encompassing both classical and modern
techniques, such as the Simple Variance-Covariance Estimator, the Rotational Invariant
Estimator (RIE), the Exponentially Weighted Moving Average (EWMA), and the Shrinkage
Estimator. These estimators are assessed based on their ability to provide more accurate
risk estimates, thereby enhancing asset allocation and improving portfolio diversification.
The study focuses exclusively on Exchange Traded Funds (ETFs) available in the Brazilian
market, given the growing interest in this asset class due to its liquidity, diversification
benefits, and low operational costs. The analysis includes a performance comparison of
each approach, considering risk metrics such as volatility, maximum drawdown, and the
Sharpe and Sortino ratios, as well as evaluating the impact of each estimator on the total
risk in portfolio. Results suggest that while sophisticated methods such as RIE may yield
more precise risk estimates, simpler models like Shrinkage and EWMA may outperform in
specific high-volatility scenarios, particularly during periods of market stress. The study
concludes that, for investors in Brazil, a strategic combination of different risk estimators
within a Risk Parity framework may offer a robust alternative for constructing a balanced and

well-diversified portfolio.
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1. INTRODUGAO

A Teoria Moderna do Portfélio (TMP), inicialmente apresentada por
Markowitz (1952) [1], foi capaz de revelar a importancia da diversificagdo de
ativos como meio de reducéo de riscos e otimizacdo de retornos. Para Assaf
Neto (2014) [2], a teoria mostra que o risco de um ativo deve ser analisado pela
sua contribuicdo ao risco de um portfolio diversificado, orientando decisdes de
investimentos pelo impacto no risco e retorno global da carteira.

A medida que a teoria evoluiu, surgiram novas abordagens e modelos que
ampliaram e refinaram os conceitos originais de Markowitz. Nos anos 60, o
trabalho de William Sharpe introduziu o Modelo de Capital Asset Pricing Model
(CAPM), que expandiu a TMP ao integrar o conceito de prémio de risco de
mercado e o papel do beta na avaliacdo do risco sistematico dos ativos. Esta
evolucdo forneceu uma maneira mais direta de estimar o retorno esperado de
um ativo com base no seu risco relativo em comparagao ao mercado como um
todo.

Nos ultimos anos, os modelos de Risk Parity (Paridade de Risco)
emergiram como uma alternativa eficiente para a criagdo de portfélios
diversificados. Estas estratégias buscam diversificar as fontes de risco. Cada
fonte de risco carrega um prémio de risco, que € uma potencial fonte de retorno.
Para alcangar essa diversificagcao, essas estratégias pressupbem que as classes
de ativos (como agdes, bonds, etf's ou fiis) devem contribuir de maneira
equanime para o nivel de risco em um portfélio. Isso torna este tipo de modelo
excepcional caso queira criar um portfélio com diferentes classes de ativos,
expostas a diferentes riscos.

Neste estudo buscou-se aplicar a estratégia de Risk Parity a carteiras
compostas por ETF’s na bolsa brasileira oferecendo uma abordagem inovadora
e potencialmente robusta para a gestdo de investimentos. Hoje existem
aproximadamente 91 ETF’s na bolsa brasileira, que seguem diferentes indices
de mercado, das mais variadas classes de ativos. O intuito &€ criar um portfélio
com alta diversificagcdo, investindo em diversas classes de ativos distintas,
reduzindo a volatilidade geral do portfélio, proporcionando uma experiéncia de
investimento mais estavel para o investidor, 0 que € especialmente valioso em

um mercado volatil como o brasileiro.
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2. REFERENCIAL TEORICO

A otimizacdo de portfélio € um processo quantitativo que busca a alocagao
ideal de ativos para maximizar o retorno esperado e mitigar eventuais perdas,
minimizando simultaneamente o risco. Dentro deste escopo, é possivel citar as
principais estratégias de alocacdo de portfolio e as principais métricas para

avaliar a performance e o risco de um portfolio.

2.1 Modelos Quantitativos para Alocagao de Ativos

Modelos quantitativos utilizam dados histoéricos, como a série de precos e
retornos de um determinado ativo. Com base nestes dados, busca-se identificar
um padrao, com o objetivo de prever retornos, ou reduzir riscos, estes modelos
se concentram na criagdo de algoritmos que identifiquem estes padrdes e
executam as estratégias necessarias. A automagdo e a modelagem preditiva
permitem decisdes ageis e eficientes, reduzindo a influéncia de emocgdes (vieses

humanos) nas escolhas de investimento.

2.1.1 Otimizacao de Média Variancia

Como ja discutido anteriormente abordagem classica de Markowitz (1952)
[1], propbe a construgcado de um portfélio que maximize o retorno esperado para
um determinado nivel de risco, ou minimize o risco para um dado retorno
esperado. Essa estratégia envolve a estimagdo das meédias e

variancias/covariancias dos retornos dos ativos.

2.1.2 Modelos Baseados em Fatores

Esses modelos, como o Capital Asset Pricing Model (CAPM) e o Arbitrage
Pricing Theory (APT) [3], buscam explicar os retornos dos ativos em funcao de
fatores de risco sistematicos (ou sistémicos). A alocagao de ativos é feita com

base na exposigao a esses fatores, otimizando a relagao risco-retorno.

2.1.3 Otimizacao Robusta
Esta estratégia procura garantir que a alocagao do portfélio seja robusta

a incertezas nas estimativas dos parametros (como retornos e covariancias).
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Métodos de otimizagao robusta, como a programacéo robusta, sdo usados para

mitigar o impacto de erros de estimativa [4].

2.1.4 Modelos Estocasticos
A otimizagdo estocastica envolve a modelagem de incertezas nos retornos
dos ativos como variaveis aleatorias. Essa abordagem permite simular diferentes

cenarios futuros e otimizar a alocacéo de ativos considerando essas incertezas

[5].

2.1.5 Algoritmos Genéticos

Essas estratégias utilizam algoritmos inspirados na biologia, como
algoritmos genéticos, para explorar o espacgo de solug¢des de alocagéo de ativos.
Essas técnicas sdo uteis em problemas complexos onde as abordagens

tradicionais podem ser limitadas [6].

2.2 Métricas de Risco e Performance

Métricas de risco e performance sdo essenciais para avaliar portfolios de
investimento. Entre as principais métricas de risco, destacam-se o desvio padrao,
que mede a volatilidade dos retornos. Estas métricas em geral, sdo capazes de
fornecer uma visdo abrangente da eficiéncia de um portfélio, permitindo

comparagdes e ajustes estratégicos para otimizar resultados.

2.2.1 Desvio Padrao

Assaf Neto [2] descreve que o desvio padrao é capaz de medir o grau de
dispersao dos retornos em termos de valor esperado, e pode ser interpretado
como o risco total do ativo. Ou seja, € uma medida estatistica indica a dispersao
dos retornos de um ativo em torno de sua média, € utilizada para quantificar a
volatilidade de um ativo e esta diretamente relacionada ao risco total associado.

Sendo assim, ha maior incerteza quanto maior o desvio padrao, ou seja,
maior o risco, porém podem possibilitar retornos elevados. Para um contexto de
formacao de portfélio, ativos que possuem um desvio padrdao mais elevado séo
vistos como mais arriscados, pois seus retornos sao mais imprevisiveis devido a

maior volatilidade.
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A formula matematica do desvio padrdo de um ativo € dada por:

N

o= |5 (Ri-R)’ (2.1)

i=1

Onde:
Ri: Retorno esperado de um ativo

R: Taxa livre de risco
N: Numero total de retornos

2.2.2 Covariancia e Correlagao

As analises de covariancia e de correlacdo entre os retornos dos ativos
podem indicar o grau de dependéncia linear entre as variaveis observadas. Essa
medida indica o grau em que duas variaveis variam juntas, conforme descrito por
Malkiel (2019), a diversificagdo nao é suficiente quando carteira é forma por
acdes com alta covaridncia, uma vez que covaridncias com valores positivos
indicam que os retornos dos dois ativos tendem a se mover na mesma direcao.

Por outro lado, essa medida quando apresenta valores negativos indica
que os ativos se movem em direcdes opostas. Para valor zero, entende-se que
nao ha relacao linear entre os retornos dos ativos. Essa escala de unidades esta
relacionada com as variaveis envolvidas, o que significa que ela pode variar
conforme o conjunto de ativos escolhidos.

A férmula matematica da covariancia € dada por:

n
X -0 -Y)

Cov(X,Y) = — (2.2)

x=1

Onde:

Cov(X,Y):Covariancia entre Xe Y

X;: Valor individual da variavel X na amostra i
Y;: Valor individual da variavel Y na amostra i
X : Média aritmética dos valores de X

Y: Média aritmética dos valores de Y

n: Numero total de amostras

Uma outra maneira de compreender o risco entre ativos, € através da

correlagao, que é descrita por Hull (2018) como uma medida normalizada da

Publico
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covariancia, que indica o grau de relacionamento linear entre as duas variaveis.
Essa pode oferecer uma compreensao mais padronizada entre a relagao entre
as variaveis. A sua escala nado é influenciada pelas escalas das variaveis
envolvidas, diferente da covariancia, possuindo valores podem variar entre -1 e
+1, tornando-a uma métrica que permite maior comparabilidade entre os
diferentes pares de ativos.

A formula matematica da correlagao € dada por:

Cov(X,Y)
COT‘(X, Y) = W (23)

Onde:

Cor(X,Y): Coeficiente de correlagdo entre as variaveis X e Y
ox : Desvio padrao de X

oy : Desvio padrao de Y

Entende-se que ha beneficios em verificar a correlagado entre os ativos
escolhidos para a formacido do portfdlio, uma vez que permitem entender o
comportamento de diferentes ativos em relagdo aos seus retornos. A relagao
entre os retornos de ativos com correlacdo perfeitamente negativa ou

perfeitamente positiva sao ilustrados na Figura 2 e 3, respectivamente.

Figura 1 — Investimentos com correlagao negativa

E(R) ¢

Anos

Fonte: Assaf Neto (2014, p. 236)
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Figura 2 — Investimentos com correlagéo positiva

ERR) 4

Anos

Fonte: Assaf Neto (2014, p. 236)

2.2.3 Beta

O conceito de "beta" B no mercado financeiro € uma medida fundamental
que indica a volatilidade ou o risco sistematico de um ativo ou portfolio em
comparagao ao mercado como um todo. O beta é utilizado principalmente na
analise de agdes e na avaliagdo de investimentos, ajudando investidores e
gestores a entenderem como um ativo tende a se mover em relagdo ao mercado.

O beta € uma medida que quantifica a sensibilidade do retorno de um ativo
em relagdo ao retorno do mercado. Um beta de 1 indica que o ativo tende a se
mover em linha com o mercado; um beta maior que 1 indica que o ativo € mais
volatil do que o mercado, enquanto um beta menor que 1 indica que o ativo é

menos volatil. A equagao padréo para o calculo do beta é:

__ Cov(Rp ,Rm)

p = tn) (24)

Var(Rm)

Onde:

R, : Retorno do portfdlio;

R,,: Retorno do mercado;

Cov : Covariancia entre os retornos do portfélio e mercado;
Var : Variancia dos retornos do mercado.
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O beta € uma ferramenta essencial para investidores que desejam avaliar
o risco de um ativo em relagdo ao mercado. Um ativo com beta alto pode
representar um risco maior, mas também a possibilidade de retornos mais
elevados [7].
O beta é uma parte fundamental do Capital Asset Pricing Model (CAPM),
que relaciona o risco sistematico de um ativo ao seu retorno esperado. A
equacao do CAPM é expressa como:
E(R;) = Ry + Bi(E(Ry,) — Ry) (2.5)

Onde:
E(R;) : Retorno esperado do portfdlio;
R : Taxa livre de risco;

B : sensibilidade do portfélio em relagédo ao mercado (Beta);
E(R,,) — R;: Prémio de risco [8].

2.2.4 Alfa

O indice alfa (ou simplesmente “alfa”) € uma métrica utilizada em finangas
para avaliar a habilidade de um ativo ou de um gestor de investimentos em
superar o mercado ou um benchmark. No geral, ele quantifica o retorno adicional
de um investimento, ajustado ao risco, em relagdo a um indice de referéncia. A

formulagao classica do alfa pode ser expressa como:

a =Ry, — (Re + f(Rm — Ry)) (2.6)

Onde:

R, : Retorno do portfolio;

Ry : Taxa livre de risco;

B : sensibilidade do portfélio em relagédo ao mercado;
R,,: Retorno do mercado.

O alfa é uma ferramenta crucial para gestores de fundos e investidores,
pois fornece uma medida clara do desempenho ajustado ao risco. Uma
formulacdo mais simples do alfa é simplesmente considerar o retorno de
mercado como a taxa livre de risco, desta maneira eliminamos o termo a direita
da equacéao e temos simplesmente a = R, — R;. Também ha a possibilidade em

casos especificos de substituir a risk free por um benchmark de preferéncia.
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2.2.5 indice de Sharpe

O indice de Sharpe compara o retorno de um investimento com seu risco.
E uma expressdo matematica da ideia de que retornos excessivos ao longo do
tempo podem significar mais volatilidade e risco, em vez de habilidade de
investimento.

O economista William F. Sharpe propds o indice de Sharpe em 1964 [7],
como um desdobramento de seu trabalho no modelo de precificagdo de ativos
de capital (CAPM), chamando-o de razdo de recompensa por variabilidade.
Sharpe recebeu o Prémio Nobel de Economia por seu trabalho no CAPM em
1990. O numerador do indice de Sharpe € a diferenga ao longo do tempo entre
os retornos realizados, ou esperados, € um benchmark, como a taxa de retorno
livre de risco ou o desempenho de uma categoria especifica de investimento.
Seu denominador € o desvio padrao dos retornos ao longo do mesmo periodo,

uma medida de volatilidade e risco.

Principais pontos:

¢ O indice de Sharpe divide os retornos excessivos de um portfélio por uma
medida de sua volatilidade para avaliar o desempenho ajustado ao risco;

e Os retornos excessivos sao aqueles que estao acima de um benchmark
(indice de mercado) ou da taxa de retorno livre de risco;

e O calculo pode ser baseado em retornos historicos ou previsées;

e Um indice de Sharpe mais alto € melhor ao comparar portfélios
semelhantes (que apresentem volatilidades préximas);

e O indice de Sharpe tem fraquezas inerentes e pode ser exagerado para

algumas estratégias de investimento.

A formulagado matematica do indice de Sharpe pode ser expressa da seguinte

forma:

Iy = (2.7)

Onde:
R, : Retorno do portfdlio;
R : Taxa livre de risco;
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o, . Desvio padréo dos retornos do portfolio.

Existe uma variagcdo do Sharpe conhecida como Indice de Sortino [9].
Porém, diferentemente do Sharpe no qual consideramos o desvio padrao do
Portfélio levando em conta todos os retornos histéricos. No indice de Sortino
consideramos apenas o0 semidesvio, ou seja, o desvio padrdo somente dos
retornos que sao inferiores aos retornos do benchmark. Portanto consideramos

somente a volatilidade de downside.

2.3 Modelos de Média Variancia

Os modelos de média variancia enfatizam a importancia da diversificacao,
mostrando que combinar ativos com diferentes niveis de risco e correlacdo pode
resultar em portfélios mais eficientes. Isso ajudou a popularizar a pratica de
diversificacdo na gestao de investimentos, reduzindo o risco sem comprometer

significativamente os retornos.

Além disso, os modelos de média-variancia estabeleceram as bases para o
desenvolvimento de outras teorias e ferramentas financeiras, como o Capital
Asset Pricing Model (CAPM) e o indice de Sharpe [7], que se tornaram

essenciais na avaliagao de risco e retorno.

O principal objetivo dos modelos de média variancia de uma maneira
simplista, consiste em minimizar o risco maximizando o retorno, € possivel
elaborar as formulagbes matematicas para minimizar o risco e maximizar o

retorno da seguinte maneira.

min g, Z W;W;0;; (2.8)

N N

L
Sujeito as restricdes:
R, = ?'zl w;R; : retorno esperado da carteira

1 =N, w; :investimento de todo o capital disponivel

0 <w; £ 1: sem alavancagem



Publico

17

N N
max R, zzwji (2.9)

i=1j=1

Sujeito as restri¢des:

oy = \[Z?’zlzyzlwiwjaij ' risco da carteira

1 =%~ w;: investimento de todo o capital disponivel

0 <w; £1: sem alavancagem

O modelo de média-variancia € uma ferramenta que identifica carteiras
eficientes com base na Fronteira Eficiente, visando encontrar a combinagao ideal
de ativos. Essa abordagem leva em conta o nivel de risco e o retorno desejado
pelo investidor. As estratégias tipicas incluem maximizar o retorno dentro de um
limite de risco ou minimizar o risco enquanto se garante um retorno minimo.
Neste estudo, sdo aplicados esses dois métodos, evitando praticas como venda
a descoberto e aluguel de ativos sem risco. O risco associado a carteira é
analisado por meio da matriz de covariancia.

Markowitz fez contribuicbes significativas na formulacdo de técnicas
analiticas voltadas para identificar a carteira mais adequada, de acordo com
objetivos de retorno ajustados ao risco. Na visdo de Ruppert [10], portfdlios
eficientes equilibram a relagéo entre risco e retorno dos ativos, garantindo um
retorno esperado mais elevado para um determinado nivel de risco ou o menor
risco possivel para um retorno especifico. Assim, qualquer tentativa de aumentar
o retorno esperado resultara em um aumento do risco, enquanto a redugao do
risco resultara em um menor retorno esperado.

Essa teoria revolucionou a forma como se investe ao integrar principios
de diversificagdo, otimizacado da relagao risco-retorno e analise de correlagéao

entre ativos na formagao de carteiras consideradas 6timas.
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2.3.1 Fronteira Eficiente

A Fronteira Eficiente € um conceito central na Teoria Moderna de Portfdlio,
desenvolvido por Harry Markowitz na década de 1950 [1]. Essa teoria estabelece
gue os investidores podem construir carteiras de ativos que maximizam o retorno
esperado para um dado nivel de risco ou minimizam o risco para um retorno
esperado especifico. A Fronteira Eficiente é representada graficamente como a
curva que delimita o conjunto de carteiras eficientes, onde cada ponto na curva

corresponde a uma carteira com a melhor relacao risco-retorno.

Figura 3 — Fronteira Eficiente
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De acordo com Bodie, Kane e Marcus (2014) [11], a Fronteira Eficiente é
composta por portfélios que ndo podem ser superados por outros em termos de
retorno ajustado ao risco. Os investidores, ao se situarem nesta fronteira, podem
otimizar suas escolhas com base em suas preferéncias individuais em relacao
ao risco. Essa abordagem foi uma inovacao que permitiu a andlise quantitativa

na alocagao de ativos, transformando a gestao de portfélios.

Em seu livro "Investment Science", David G. Luenberger (1998) [12]
discute como a Fronteira Eficiente resulta da combinagdo de ativos que
apresentam diferentes niveis de risco e retorno, enfatizando a importancia da

diversificagcao. A escolha de ativos correlacionados negativamente pode ajudar
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a reduzir a volatilidade do portfdlio, resultando em uma melhor performance em

relacao a fronteira.

Outro autor relevante € William F. Sharpe, que, em "Portfolio Theory and
Capital Markets" (1970) [13], expande a discussado sobre a Fronteira Eficiente,
conectando-a com o modelo de precificagao de ativos de capital (CAPM). Sharpe
destaca como a Fronteira Eficiente ndo apenas ajuda na selegéo de portfélios,
mas também fundamenta a analise do risco em relagao ao retorno esperado no
mercado.

A Fronteira Eficiente, portanto, ndo € apenas uma ferramenta tedrica, mas
uma abordagem pratica que permite aos investidores tomarem decisdes mais
informadas sobre como alocar seus recursos de maneira a alcangar seus
objetivos financeiros. A integragdo de conceitos de risco e retorno através da
diversificacao e analise de portfélios representa um marco na evolucao da teoria

financeira.

Um conceito central na Teoria Moderna de Portfélio € a Linha de Mercado
de Capitais, ou Capital Market Line (CML), conceito este que estabelece a
relagao entre o risco e o retorno esperado de um portfélio de mercado eficiente.
Representada graficamente, a CML é uma linha que parte da taxa livre de risco
e se estende até o portfélio de mercado, que € uma combinagédo de todos os
ativos disponiveis ponderados pelo seu valor de mercado. Essa linha indica o
retorno esperado para cada nivel de risco total, medido pelo desvio padrao. Ela
pode ser expressa matematicamente como:

(Uup — Uf) "

Ur = Uy + R (2.10)
Om

Onde:
U - Taxa livre de risco
oRr, oy Desvio padrao

Um — e Prémio de risco do portfélio de mercado
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Segundo Prasanna Chandra em "Investment Analysis and Portfolio
Management" (2011) [14], a CML é uma representacdo visual que ajuda os
investidores a entenderem a relagao entre risco e retorno em portfdlios eficientes.
Ainclinacdo dalinha reflete o prémio de risco do mercado, ou seja, a recompensa
adicional esperada pelos investidores ao assumirem riscos além do ativo livre de
risco.

Em "Modern Portfolio Theory and Investment Analysis," Edwin J. Elton e
Martin J. Gruber (2014) [15], discutem como a CML permite que investidores
decidam sobre a alocagao entre ativos de risco e um ativo livre de risco, levando
em consideracdo sua aversao ao risco. Os portfélios que se situam abaixo da
CML séao considerados ineficientes, pois ndo oferecem um retorno proporcional
ao risco assumido.

Outro autor relevante é Richard A. Brealey e Stewart C. Myers, que em
"Principles of Corporate Finance" (2016) [16], abordam a CML em relagéo a
avaliacao de ativos e a formacao de portfélios. Eles enfatizam que a CML fornece
uma abordagem clara para investidores que buscam maximizar seus retornos,
ajustando o risco de acordo com suas preferéncias individuais.

Portanto, a Capital Market Line € uma ferramenta vital para a construcdo de
portfélios eficientes, servindo como um guia que fundamenta a andlise do risco
e retorno no mercado financeiro. A intersecg¢ao entre o portfélio de mercado e a
taxa livre de risco representa um marco significativo na teoria de investimentos,

possibilitando uma gestao de portfélios mais eficaz.

2.3.2 Carteira de Minima Variancia

A carteira de minima variancia, introduzida por Harry Markowitz, &
uma abordagem que busca a combinagao de ativos que minimiza o risco total
para um determinado nivel de retorno esperado. Esse conceito € uma aplicagao
pratica da Teoria Moderna de Portfélio, que enfatiza a diversificagao e a analise
da correlacdo entre os ativos. A fungdo de otimizagao linear do portfélio de

minima variancia pode ser representada como:
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min w WTZW (2.11)

Sujeito as restri¢des:

De acordo com Richard Grinold e Ronald Kahn em "Active Portfolio
Management" (2000) [17], a carteira de minima variédncia € construida de
maneira a ter a menor volatilidade possivel. Essa caracteristica é especialmente
valiosa em momentos de incerteza no mercado, pois proporciona aos

investidores uma camada adicional de protegéo contra perdas significativas.

Figura 4 — Localizagdo da carteira de minima variancia na Fronteira
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Um dos principais beneficios da carteira de minima variancia é sua
habilidade de reduzir a volatilidade sem comprometer drasticamente o retorno
esperado. Essa abordagem € particularmente atraente para investidores
avessos ao risco, pois permite a maximizagao da estabilidade dos retornos. Em
"Portfolio Construction and Risk Management" (2018) [18], o autor David M.
Smith destaca que a diversificagao eficiente pode ser alcangada ao combinar
ativos que apresentam baixa correlagao, resultando em um portfélio que se

comporta de maneira mais previsivel.

Entretanto, existem também limitacdes associadas a essa estratégia.
Conforme mencionado por Michael C. Jensen em "The Performance of Mutual
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Funds in the Period 1945-1964" (1968) [8], uma desvantagem da carteira de
minima variancia € a possibilidade de concentragdo excessiva em certos ativos,
0 que pode aumentar o risco especifico de setores ou empresas. Além disso, a
dependéncia de dados historicos para estimar variancias e correlagdes pode
resultar em decisdes inadequadas se as condicdes de mercado mudarem, como
observado por John C. Hull em "Options, Futures, and Other Derivatives" (2017)
[19].

A construcao de uma carteira de minima variancia requer, portanto, uma
analise cuidadosa das caracteristicas dos ativos e suas inter-relagdes. Em
"Investment Analysis" (2013) [20], o autor Frank K. Reilly afirma que, enquanto
essa estratégia pode oferecer protegdo contra a volatilidade, os investidores
devem estar cientes das dindmicas do mercado e de como elas podem afetar o
desempenho do portfélio ao longo do tempo. A carteira de minima variancia é
uma estratégia importante na gestdo de portfélios, equilibrando a busca por

retornos com a necessidade de minimizar riscos.

2.3.3 Carteira igualmente ponderada

A carteira igualmente ponderada é uma estratégia de investimento em que
todos os ativos sdo alocados com a mesma propor¢gao no portfélio,
independentemente de seu risco ou retorno esperado. Essa abordagem é
simples de implementar e oferece uma maneira pratica de diversificar os

investimentos.

Para Frank K. Reilly e Keith C. Brown em "Investment Analysis and
Portfolio Management" (2012) [20], a carteira igualmente ponderada é
frequentemente utilizada por investidores que desejam evitar a complexidade de
calcular alocagdes oOtimas baseadas em modelos de risco e retorno. Essa
simplicidade a torna acessivel, especialmente para investidores iniciantes ou

aqueles que preferem uma abordagem menos técnica.

Um dos principais beneficios dessa estratégia é a diversificacao natural

que ela proporciona. Ao distribuir o capital igualmente entre diferentes ativos, o
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investidor pode reduzir o risco especifico de cada ativo individual. Em "Modern
Portfolio Theory and Investment Analysis" (2014) [15], Edwin J. Elton e Martin J.
Gruber destacam que, embora a carteira igualmente ponderada possa n&o ser a
mais eficiente em termos de risco-retorno, ela oferece uma abordagem pratica

que pode ser vantajosa em certos contextos de mercado.

No entanto, a carteira igualmente ponderada também apresenta
desvantagens. Uma critica comum € que essa estratégia ndo leva em
consideracao a volatilidade ou correlagdo dos ativos. Como mencionado por
William F. Sharpe em "Portfolio Theory and Capital Markets" (1970) [13],
alocagdes iguais podem resultar em uma maior exposi¢gado ao risco total do

portfélio, especialmente se os ativos incluidos tiverem diferentes perfis de risco.

Outra limitacdo é a falta de adaptacdo as condi¢cdes de mercado.
Conforme discutido por Robert C. Merton em "Continuous-Time Finance" (1990)
[21], uma carteira igualmente ponderada pode n&o responder adequadamente a
mudangas nas condigdes econdmicas ou nos mercados, pois nao ajusta as

alocacdes em funcao do desempenho relativo dos ativos.

E possivel dizer que a carteira igualmente ponderada é uma estratégia de
investimento que combina simplicidade e diversificagcdo, mas pode n&o ser a

mais eficiente em termos de gestao de risco.

2.4 O Modelo de Paridade de Riscos (Risk Parity)

O modelo de paridade de riscos, ou risk parity, € uma abordagem de
alocacao de ativos que visa distribuir o risco de forma equitativa entre diferentes
classes de ativos, em vez de simplesmente alocar capital de maneira igual. Esse
conceito busca criar um portfélio onde cada ativo contribui de forma semelhante
ao risco total, permitindo uma diversificagdo mais eficaz e uma gestao mais
equilibrada do risco.

De acordo com o autor Aswath Damodaran em "Applied Corporate
Finance" (2014) [22], a paridade de riscos se baseia na ideia de que os
investidores devem considerar a volatilidade e a correlacdo dos ativos ao
construir portfolios. Ao equilibrar o risco entre as classes de ativos, os
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investidores podem potencialmente melhorar o desempenho ajustado ao risco,

tornando o portfélio mais robusto frente a flutuagdes de mercado.

Uma das principais vantagens do modelo de paridade de riscos € sua
capacidade de mitigar a volatilidade do portfélio. Em "Risk Parity: A New
Approach to Asset Allocation" (2011), os autores de um estudo na Journal of
Portfolio Management destacam que a abordagem permite que os investidores
evitem uma concentracao excessiva de risco em qualquer ativo ou classe de
ativos especifica. Isso pode resultar em uma performance mais estavel ao longo

do tempo, especialmente em ambientes de mercado volateis.

No entanto, o modelo de paridade de riscos também possui desvantagens.
Conforme mencionado por G. Michael Phillips e H. Kent Baker em "Risk
Management and Derivatives" (2009) [23], a implementacdo do risk parity pode
exigir um reequilibrio frequente do portfélio, o que pode gerar custos de
transacdo. Além disso, a estratégia pode levar a uma superexposi¢ao a ativos

com baixa correlacdo, o que pode nao ser ideal em certas condi¢gdes de mercado.

Outro ponto a ser considerado é a dependéncia de dados histéricos para
estimar a volatilidade e a correlagdo, conforme discutido por James P.
O’Shaughnessy em "What Works on Wall Street" (2005) [24]. Se as condi¢des
de mercado mudarem, as estimativas baseadas em dados passados podem nao
se concretizar, resultando em um desempenho aquém do que foi predito no
modelo.

Uma questao muito importante que faz com que portfélios de Risk Parity
se torne bastante atrativos € a anomalia de baixa volatilidade. A anomalia de
baixa volatilidade € um fendmeno observado nos mercados financeiros onde
ativos de menor volatilidade tendem a oferecer retornos superiores em
comparagao com ativos mais volateis, desafiando as expectativas tradicionais
da teoria financeira, que sugere que maior risco deve ser acompanhado por
maior retorno. Essa anomalia sugere que os investidores podem obter melhores
retornos ajustados ao risco investindo em ativos menos volateis.

Em "The Low-Volatility Anomaly: A Decomposition Analysis" (2014) [25],
Martin Lettau e Sidney Viswanathan analisam como a¢gées com baixa volatilidade
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tendem a superar suas contrapartes mais volateis ao longo do tempo. A pesquisa
mostra que essa tendéncia ndo pode ser completamente explicada por riscos
sistematicos ou por prémios de risco tradicionais, 0 que a torna uma anomalia

intrigante para académicos e investidores.

Figura 5: Estudo de estratégias de baixa volatilidade do BNP Paribas

Exhibit 1
A low volatility strategy has typically done better than the MSCI World in
prolonged poor markets (1-year rolling performance)
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Fonte: Exploiting the low volatility anomaly in practice

Uma das possiveis explicagdes para a anomalia de baixa volatilidade é a
aversao ao risco dos investidores. Para Baker e Wurgler (2006), os investidores
tendem a superestimar o risco associado a ativos mais volateis, levando a uma
demanda excessiva por estes ativos, o que resulta em precos inflacionados e
retornos futuros mais baixos. Por outro lado, ativos que assumam volatilidades

menores podem ser subestimados, resultando em oportunidades de retorno.

Outro fator que pode contribuir para essa anomalia é a tendéncia dos
investidores de seguir modas ou ciclos de mercado, conforme discutido por Cliff
Asness et al. (2013) [27]. Quando o mercado esta em alta, investidores podem
ser atraidos por agbes de maior volatilidade na esperanca de obter ganhos
rapidos, enquanto agdes de menor volatilidade sdo ignoradas, o que pode levar
a uma inversao de expectativas e a retornos superiores para as agcbées menos

volateis.
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Apesar de seus retornos superiores, a anomalia de baixa volatilidade
também apresenta desafios. Como observado por Robert Novy-Marx (2013) [28],
a selecao de agdes de baixa volatilidade pode nio ser tdo simples, pois essas
acdes podem nao performar bem em todos os ciclos de mercado. Assim, a

anomalia pode ser menos previsivel do que parece.

2.5 Estimadores de Risco

Estimadores de risco (volatilidade) tem grande importancia no contexto
dos mercados mobiliarios, ndo se restringindo apenas a avaliar a volatidade, mas
também a tomar decisdes com base na rentabilidade esperada e estruturacao
de estratégias quantitativas para precificagao dos ativos. Estimar o risco permite
que eventuais rebalanceamentos na carteira sejam executados, assim como
ativo possam ser integrados ou retirados da carteira.

De acordo com diversos artigos, a capacidade de antecipar mudangas na
volatilidade e compreender sua dinamica €& fundamental para a criagdo e
implementacédo de estratégias mais robustas para gestdo da carteira (Poon &
Granger, 2003) [29].

2.5.1 O Modelo EWMA

O modelo Exponential Weighted Moving Average (EWMA) se destaca por
ser uma das abordagens mais populares para estimar a volatilidade de ativos
financeiros. Sua principal caracteristica reside em atribuir pesos decrescentes
aos retornos passados e pesos maiores aos retornos mais recentes, sendo mais
eficiente em prever mudancas comportamentais recentes na volatilidade. Este
modelo é amplamente utilizado no mercado financeiro devido a sua simplicidade
e capacidade de responder rapidamente a mudangas nos padrbes de
volatilidade, uma caracteristica importante para modelar ativos, devido a

dindmica dos mercados.

A ideia por tras do EWMA consiste no fato de que a volatilidade do
mercado nao é constante (heterocedasticidade) e tende a mudar ao longo do
tempo. Portanto, o modelo atribui maior relevancia para as observagdes mais
recentes, com o objetivo de capturar a volatilidade condicional — a ideia de que

a volatilidade futura depende nao apenas dos retornos passados, mas também
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de como esses retornos evoluiram recentemente. Esse comportamento ¢

essencial em mercados financeiros, onde a volatilidade pode mudar rapidamente

devido a eventos inesperados ou informag¢des novas (Danielsson, 2011) [30].

O modelo EWMA pode ser formalizado pela seguinte equacgao:

o2 =Aot;+ (1 —Mri, (2.12)

Onde:

- o¢: estimativa de variancia condicional no tempo t,

- A: parametro de suavizagdo que controla a magnitude do peso atribuido ao
valor mais recente,

- r2_,: retorno quadratico no periodo t-1.

A constante A geralmente é escolhida de maneira a suavizar entre os
dados mais antigos e os mais recentes, sendo um valor entre 0 e 1. Se A for
proximo de 1, o modelo atribui maior peso aos dados passados, enquanto
valores de A mais baixos atribuem maior peso aos dados mais recentes.

Geralmente os valores mais aceitos para

A principal vantagem do modelo EWMA consiste em sua flexibilidade e
eficiéncia computacional. Ao contrario de modelos mais complexos, o EWMA néo
requer a estimagao de multiplos parametros nem o uso de métodos iterativos
pesados, tornando-o atrativo para aplicagdes em tempo real ou em mercados
com grande volume de dados. Além disso, o EWMA ¢é particularmente crucial
para captar a persisténcia de volatilidade em mercados financeiros, onde
intervalos de alta volatilidade frequentemente seguem outros intervalos de alta

volatilidade, e vice-versa.

Uma das principais criticas ao modelo EWMA, no entanto, € a sua
simplicidade excessiva. Embora o modelo seja eficiente em termos

computacionais, ele ndo leva em consideracao a possibilidade de efeitos nao-
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lineares ou a heterocedasticidade mais complexa que pode existir em alguns
mercados. Modelos mais avangados, como o GARCH, tentam capturar essas
nuances, mas o EWMA ainda se mantém como uma ferramenta importante
devido a sua capacidade de ajustar rapidamente a volatilidade na medida que

os dados mais recentes ocorrem.

O uso do modelo EWMA é amplamente reconhecido em diversas areas
do mercado financeiro. Por exemplo, no gerenciamento de risco de carteiras o
modelo é comumente utilizado para calcular as variancias e covariancias dos
ativos, que sido fundamentais na alocacido eficiente de capital. Também ¢
utilizado na avaliagdo de Value at Risk (VaR), que € uma medida do risco de
perda em uma carteira de ativos financeiros. A sua simplicidade e capacidade de
adaptacao rdpida a mudancas tornam o modelo uma escolha popular para a
estimativa da volatilidade em condicbes de mercado que apresentam maior

instabilidade.

2.5.2 O Modelo GARCH

Os modelos autorregressivos sao ferramentas amplamente utilizadas em
séries temporais. O modelo GARCH (Generalized Autoregressive Conditional
Heteroskedasticity), proposto por Tim Bollerslev em 1986 [31], € uma extenséo
do modelo ARCH (Autoregressive Conditional Heteroskedasticity), desenvolvido
por Robert Engle em 1982 [32]. O GARCH é amplamente utilizado no mercado
financeiro para modelar a volatilidade condicional. Os modelos se baseiam no
principio de heterocedasticidade, onde assume-se que a varidncia nao ¢

constante, mas sim variavel.

O modelo GARCH(1,1) é uma versao simples, mas eficiente, do modelo
GARCH, onde a volatilidade condicional depende de um termo autoregressivo e
de um termo de média movel. A equagao de retorno r; para um ativo em um
modelo GARCH (1,1) é dada por:
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Onde:

- 1;: retorno no tempo t;

- u: média do retorno;

- €. erro no tempo t, dado por €; = 0,2,

-z, ~ N(0,1): € um ruido branco (white noise), com média 0 e variancia 1.

Avariancia condicional ¢ ¢ modelada como uma fungdo dos erros e da variancia

passada, dada pela férmula:

of = ap + arefy + ot (2.14)

Onde:

N

- of: € a variancia condicional (volatilidade) no tempo t;
- ay: constante;
- a;: é o coeficiente que mede o efeito dos choques passados €Z_;;

- B, € o coeficiente que mede o efeito da volatilidade passada o2 ;.

A eficiéncia do modelo GARCH também pode ser avaliada pela sua
estabilidade e pela capacidade de capturar dindmicas complexas, com isso

podemos introduzir o modelo utilizado neste estudo, o modelo GARCH DCC.

2.5.2.1 GARCH DCC

O modelo GARCH-DCC (Dynamic Conditional Correlation) é¢ uma
extensdo do modelo GARCH. O modelo GARCH-DCC combina a estrutura
GARCH para modelar a volatilidade e uma abordagem dindmica para modelar a
correlagao entre os ativos ao longo do tempo. Esse modelo é especialmente util
em carteiras de ativos onde se deseja avaliar como as correlagdes entre os
ativos variam com o tempo. O GARCH-DCC & um modelo bivariado (ou
multivariado) que descreve as correlagdes dindmicas entre os retornos de
diferentes ativos ao longo do tempo [33]. Ele é formulado em duas etapas

principais:
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A primeira etapa envolve a modelagem da volatilidade condicional dos
ativos individuais, de forma semelhante ao modelo GARCH(1,1) tradicional. Para

cada ativo i (onde i=1,...,N), temos o modelo GARCH:

Lip = U+ € (2.15)

Ja para o erro condicional (residuo) temos e€;, = 0;;z;; . Portanto, a
variancia condicional para o modelo GARCH-DCC ganha a seguinte

caracteristica.

2 2 2
Oit = Qjo + Aj1€r—1 + Pi10ir—1 (2.16)

Esta etapa envolve a modelagem da correlagdo condicional entre os
ativos, ou seja, como as correlagdes entre os residuos €;,. dos ativos variam ao
longo do tempo. Para isso, o modelo DCC utiliza uma matriz de correlagao
dinamica. A ideia € modelar as correlagdes entre os residuos €;; ajustados pelas
volatilidades o; ;. Primeiro, calcula-se os residuos normalizados para cada ativo,
dado por:

€ = it (2.17)

Oit

A matriz de covariancia condicional de N ativos € dada por:

Q=1 —a—B)0+ aéi_1€ 1 + B0ty (2.18)

Onde:

- Q;: matriz de covariancia condicional no tempo t;

- Q: matriz de covaridncia condicional de longo prazo (estimada a partir dos
retornos historicos);

- a & f: parametros que controlam a resposta da matriz de covariancia aos

choques passados e a persisténcia da volatilidade passada, respectivamente.
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Da mesma maneira a matriz de correlagdo dindmica R; pode ser obtida

normalizando-se Q, como:

Ry =—=QD,? (2.19)

onde D, é uma matriz diagonal contendo as variancias ¢} de cada ativo. A matriz

R, fornece as correlagdes dindmicas entre os ativos ao longo do tempo.

2.5.3 Encolhimento Matricial (Shrinkage)

A técnica de encolhimento matricial, ou shrinkage, € um método utilizado
na otimizagao de portfélios com o objetivo de melhorar a estimativa das matrizes
de covariancia dos ativos. Em termos simples, a ideia € "encolher" as estimativas
das variancias e covariancias dos ativos. Na ideia do encolhimento, partimos da
premissa que nem toda informagdo advinda da matriz € proveitosa pra
construgédo de modelo e que muitos dos dados possam ser ruidos brancos (white
noise), com isso eliminando parte dos dados conseguiriamos eliminar mais
informacdes inuteis ao modelo.

Na otimizacdo classica de portfolios, uma das etapas centrais é a
estimativa das covariancias entre os ativos. No entanto, as estimativas a partir
de dados historicos podem ser muito sensiveis a variagdes nos dados de entrada,
especialmente quando o numero de ativos € grande em relagdo ao numero de
observacgbes historicas. Isso pode gerar matrizes de covariancia com alta
variabilidade, que podem resultar em portfélios subétimos, com ativos muito

correlacionados ou com estimativas de risco imprecisas [34].

A técnica funciona de maneira que a matriz de covariancia original é
combinada com uma matriz de covariancia "encolhida" (normalmente, uma
matriz de covariancia baseada em um modelo mais simplificado). O parametro
de shrinkage controla o quanto de "encolhimento" € aplicado, equilibrando entre
as estimativas baseadas nos dados historicos e a matriz de covaridncia mais

simples. Formalmente, a matriz de covariancia ajustada X, .xe.q € dada por:
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2:shrinked =1 z:empirical + (1 - A)Zprior (220)

Onde:

- Ysnrinkea - Matriz de covariéncia encolhida;

-Zempiricar- Matriz de covariancia empirica calculada a partir dos dados historicos
-Zprior- Matriz de covariancia empirica calculada a partir dos dados historicos

- 1. € o parametro de shrinkage, controlando o grau de encolhimento [35].

Ao suavizar as estimativas extremas das covariancias, a técnica ajuda a
reduzir o risco de construir um portfélio baseado em relagdes espurias entre os
ativos, ou seja, reduz consideravelmente o risco de overfitting [36]. Em muitas
situagdes praticas, portfélios otimizados com shrinkage podem apresentar um
desempenho superior em comparagdo com a otimizacdo tradicional,
especialmente quando se trabalha com grandes quantidades de ativos ou

amostras histéricas pequenas [35].

2.5.4 Estimador Invariante a Rotagao (RIE)

O Rotational Invariant Estimator (RIE) possui como principal caracteristica,
ser invariavel a rotagdes, ou seja, ele ndo € afetado por transformacdes
ortogonais nos dados. Isso € importante quando se trabalha com dados de alta
dimensionalidade, onde a estrutura de correlagdo entre os ativos pode ser
complexa. O RIE foi desenvolvido para melhorar a robustez das estimativas de
covariancia, especialmente quando as amostras de dados s&o limitadas ou
guando as matrizes de covariancia empiricas sao instaveis [37].

O RIE é baseado na ideia de que, ao aplicar uma rotagao ortogonal do
tipo Q € RN*N (uma matriz com a propriedade QTQ =1, onde I &€ a matriz
identidade), a estrutura da matriz de covariancia deve permanecer inalterada. A
ideia é projetar um estimador de covariancia que seja invariante a essas rotagoes.
O método pode ser entendido como uma regularizacdao da matriz de covariancia

empirica, que visa melhorar a estabilidade das estimativas.
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O RIE pode ser formulado de forma que a matriz de covariancia estimada
Yr5 Seja uma média ponderada entre a matriz de covariancia empirica £gy,p €
uma matriz de covariancia prior fpn-or, que pode ser uma matriz simples, como

a identidade:

2RIE =2 z:empirical +@1- A)Zprior (2.21)

Onde 1 é um parametro de regularizacdo que controla a quantidade de
suavizagao aplicada. Para garantir a invariancia a rotagéo, o RIE pode ser
aplicado ajustando a forma da matriz de covariancia de maneira que o impacto

de transformagdes ortogonais nos dados seja minimizado [37].

Em suma, a principal vantagem do RIE é sua invariancia a rotagdes. Isso
significa que o estimador nao € influenciado por transformacdes ortogonais nos
dados, o que €& uma caracteristica desejavel quando se lida com ativos
financeiros que podem ter variagdes complexas de correlacdo. Em termos
matematicos, se aplicarmos uma rotacao R aos dados de entrada X, entdo a

estimativa de covariancia ndo deve mudar:

Srie(RX) = REg, g (X)RT (2.22)

Isso garante que a matriz de covariancia estimada nao seja afetada por rotacdes
nos dados [37].



34

3. METODOLOGIA

3.1 Fungao Objetiva e Otimizagao
Dentro do contexto de um algoritmo de Risk Parity. A fungdo objetiva do
busca minimizar a diferenca entre a contribuicdo de risco de cada ativo no
portfolio e a contribuicdo de risco desejada (rb). Analisando detalhadamente.

Analisando a funcdo objetiva, disposta no Apéndice B.

Figura 6: Algoritmo de fungéo objetiva desenvolvido em Python.

obj_fun = lambda x, p cov, rb: np.sum((x*np.dot(p cov,
x) /np.dot (x.transpose (), np.dot(p cov, x))-rb)**2)

Elucidando acerca de cada termo.

x: Representa o vetor de pesos dos ativos no portfdlio;

p_cov: Matriz de covariancia (indicando o risco e as correlagdes entre os ativos).
rb: O Target (valor alvo) para a contribuigdo de risco de cada ativo, que que é
igual para todos os ativos (para o objetivo de "equal risk contribution", o que

implica que todos os ativos devem ter a mesma contribuigdo de risco total).

O que a funcgao faz é calcular a diferenca entre a contribuicao de risco de
cada ativo (dada por x * np.dot(p_cov, x) / np.dot(x.transpose(), np.dot(p_cov, x)))
e a contribui¢cdo de risco alvo rb, e depois soma o quadrado dessas diferencas
para minimizar essa discrepancia. Em outras palavras, o algoritmo busca ajustar
os pesos dos ativos de forma que cada um tenha uma contribuicdo de risco
semelhante a rb.

Também foram impostas condi¢cdes de contorno (restricdes). Na qual o termo
cons_sum_weight impde uma restricdo que o peso total do portfélio seja 1, ou
seja, o portfélio permanece long only 100% comprado em 100% do tempo. Ja a
outra condicdo de contorno cons_long_only weight, impde uma restricao de que
todo percentual alocado em algum ativo deve ser positivo, ou seja, nao podemos

ficar vendidos em algum ativo.
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3.2 Estratégias e Modelagem dos Dados

O objetivo deste estudo, consistiu em aplicar o modelo de Risk Parity
aplicado na bolsa brasileira. Para isso adotamos a estratégia de investir em
ETF’'s que também tenham exposicdo cambial e no mercado estrangeiro
como um todo, a fim de buscar maior diversificacdo da carteira. Estudos,
como os de Barber e Odean (2000) [38], demonstram que investidores
amadores frequentemente performam abaixo do mercado, por tentarem
escolher a¢des especificas, enquanto pesquisas de Fama e French (1992)
[39], comprovam que a diversificagdo e estratégias passivas tendem a
superar muitas tentativas de stock picking. A gestdo passiva de um ETF
também reduz os custos associados a negociagao ativa, como as comissdes
de corretagem, tornando-a uma alternativa mais acessivel e rentavel.

Neste contexto foi feito uma lista de ETF’s negociados na bolsa brasileira,
que tivessem pelo menos 4 anos de negociagao, com isto chegamos na lista

dos seguintes ETF’s.

Tabela 1: ETFs da B3 selecionados

Ticker Indices

XINA11.SA indice MSCI China
GOLD11.SA indice de Preco do Ouro (Spot Gold)
XFIX11.SA indice de Fundos Imobiliarios (IFIX)
ACWI11.SA indice MSCI All Country World Index (ACWI)
BOVA11.SA indice Bovespa (IBOV)
BBSD11.SA indice Small Cap Brasil (SMLL)
ESGB11.SA indice S&P ESG Brasil
HASH11.SA indice Blockchain (Hashdex)
DIVO11.SA indice de Dividendos (IDIV)
IVVB11.SA indice S&P 500 (EUA)
MATB11.SA indice de Materiais Basicos (IMAT)
SMAL11.SA indice Small Cap Brasil (SMLL)
PIBB11.SA indice Brasil 50 (IBrX-50)
FIXA11.SA indice de Renda Fixa (CDI)
IMAB11.SA indice de Mercado de Renda Fixa (IMA-B)
B5MB11.SA indice MSCI Small Cap Brasil
B5P211.SA indice MSCI Small Cap Brasil (Microcaps)
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Com estes indices foi adotada a seguinte estratégia. Foi criado um
conjunto in sample que foi utilizado para simular as matrizes de covariancias

e correlagdes, utilizando a série historica de retornos dos ETF’s.

Para isto foi utilizada a série histérica de retornos desde 01-04-2021
(primeiro de abril de 2021), até 01-04-2022 (primeiro de abril de 2021).
Totalizando 1 ano de retornos, idealmente seria preferivel utilizar uma série
mais longa de dados. Porém, o mercado brasileiro ainda € muito jovem e
fundos passivos de indice é algo recente na nossa bolsa. Portanto, existem
poucos fundos de indice com um periodo relativamente longo para que

simulagdes mais robustas possam ser utilizadas.

Com a série de retornos obtida, foram utilizados grupos de estimadores
de risco, como objetivo de criar a matriz de covariancia mais robusta afim de
obtermos o melhor processo de analise para alocagdao da carteira. Foram
utilizados os modelos descritos na fundamentacdo tedrica. RIE, EWMA,
Encolhimento de matrizes e EWMA com encolhimento. Também foi adotado a
matriz de covariancias simples, sem utilizar nenhum estimador de risco. O
modelo GARCH néao foi utilizado na avaliagdo dos resultados por nao ter

apresentado um resultado satisfatério.

Este projeto foi desenvolvido na linguagem de programacédo Python,
foram utilizadas tanto bibliotecas ja amplamente utilizadas para fins académicos
e profissionais, como também foram implementas bibliotecas proprietarias, cujos

cédigos implementados serao fornecidos via apéndice.

Apos importar as principais bibliotecas foi realizada uma consulta e um

algoritmo foi desenvolvido para capturar todos os principais ETF’s de interesse.
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Com os dados (série histérica de pregos) capturadas. Obtemos os
retornos e analisamos a volatilidade dos ativos. Como ja supracitado
anteriormente, os dados foram divididos em dois conjuntos. O primeiro onde
seria utilizado para obter as matrizes de covariancia e correlagao utilizando
os otimizadores e o segundo para efetivamente rodarmos o backtest. No
primeiro conjunto de dados foram obtidos os seguintes padrdes de

volatilidade.

Tabela 2: Volatilidade do primeiro conjunto (01/04/2021 — 01/04/2022)

ETF Volatilidade Anualizada (%)
HASH11.SA 67.01
XINA11.SA 33.65
MATB11.SA 26.60
SMAL11.SA 26.11
ESGB11.SA 22.90
ACWI11.SA 21.08
PIBB11.SA 20.05
BOVA11.SA 19.42
GOLD11.SA 18.94
DIVO11.SA 18.81
BBSD11.SA 17.48
IVVB11.SA 17.31
XFIX11.SA 10.87
B5MB11.SA 9.99
IMAB11.SA 9.02
FIXA11.SA 5.96
B5P211.SA 4.84

Tabela 3: Volatilidade do segundo conjunto (03/04/2022 — 31/12/2024)

ETF Volatilidade Anualizada (%)
HASH11.SA 48.81
XINA11.SA 31.27
MATB11.SA 24.59
SMAL11.SA 20.99
ESGB11.SA 20.68
ACWI11.SA 17.81
PIBB11.SA 17.51
BOVA11.SA 17.20
GOLD11.SA 17.02
DIVO11.SA 16.45
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BBSD11.SA 16.17
IVVB11.SA 14.91
XFIX11.SA 12.52
B5MB11.SA 8.33
IMAB11.SA 7.44
B5P211.SA 7.24
FIXA11.SA 2.99

38

Para realizacdo do backtest foi utilizada a biblioteca bt. bt - Flexible

Backiesting for Python — bt 0.2.10 documentation. Em conjunto com as

bibliotecas proprietarias com o modelo de otimizagdo por Risk Parity e os

estimadores de risco.

A fim de ter um resultado mais coerente e satisfatorio o portfélio foi
rebalanceado mensalmente, também foi simulado os diferentes portfolios se

comparados aos principais benchmarks de referéncia do pais. O indice

BOVESPA e o CDI.


https://pmorissette.github.io/bt/
https://pmorissette.github.io/bt/
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4. RESULTADOS E DISCUSSOES

4.1 Matrizes de Correlagao

39

A analise foi iniciada avaliando a matriz de correlacdo para os diferentes

estimadores de risco para o conjunto de testes.

KINATLSA -

GOLD11SA - 008

XFIX11.5A - 0.04

ACWILLSA - 037

BOVALILSA - 012

BBSD11.5A - 0.05

ESGB11.5A - 015

HASH11.5A - 012

DIVO11.5A - 0.05

IVWBL11.5A - 032

MATE11.5A - 016

SMALIL.SA - 009

Figura 6: Matriz de Correlagao Simples

Matriz de correlagdo Simples ETF's bolsa brasileira
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Figura 7: Matriz de Correlagao RIE
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BESDI1SA - 011

ESGB11.5A - 030

HASH11.5A - 0.29

DIVO11.5A - 009

IVVB11.5A - 039

MATB11.5A - 0.23

Figura 8: Matriz de Correlagdo EWMA

Matriz de correlagdo EWMA ETF's bolsa brasileira
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Figura 9: Matriz de Correlagdo com Encolhimento

Matriz de correlagdo Shrinkage ETF's bolsa brasileira
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Figura 10: Matriz de Correlagdo EWMA com Encolhimento

Matriz de correlagdo EWMA Shrinkage ETF's bolsa brasileira
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Ao analisar as matrizes de correlagao é possivel observar que o estimador

invariante a rotagdes apresentou dificuldades em encontrar
correlagdes/descorrelagdes entre os ativos selecionados. O RIE pode apresentar
dificuldades, especialmente em situacdes de alta dimensionalidade e em dados
que apresentem muitos ruidos brancos. Talvez pelo tempo relativamente curto
utilizado (1 ano). Com um periodo maior e um tratamento melhor dos dados é

provavel que o estimador apresente melhores resultados.

Por outro lado, conseguimos observar que modelos mais simples como o
EWMA e o encolhimento, assim como o modelo sem a utilizacdo de estimadores
conseguiram identificar muito mais correlagdes entre os ativos. Lembrando que
nem sempre essas correlacbes podem de fato significar que o modelo seja
necessariamente robusto. Modelos mais complexos, como o RIE, podem se
tornar muito sensiveis a variagcdes pequenas nos dados, especialmente se o
numero de variaveis for grande ou se a amostra de dados for limitada. Isso pode

resultar em overfitting, onde o modelo tenta ajustar demasiadamente os dados,
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criando um modelo que performa bem nos dados de treinamento, mas falha em
capturar a correlagdo real em novos dados ou em dados com variagbes mais

"naturais”.

Os modelos mais simples sdo menos sensiveis ao ruido e tém maior
estabilidade em cenarios com amostras menores ou dados mais simples. Eles
capturam bem as correlacbes lineares e ndo introduzem complexidade

desnecessaria.

4.2 Risco por Ativo e Risco Marginal

O risco marginal de um ativo refere-se a contribui¢do adicional para o risco
total do portfélio ao adicionar ou alterar a quantidade desse ativo. Em outras
palavras, é o risco adicional que um ativo marginal (ou seja, uma unidade
adicional desse ativo) traz para o portfdlio.

No contexto de Risk Parity, o risco marginal ajuda a determinar a
quantidade 6tima de alocagao de cada ativo, de modo que a contribuicdo de risco
de cada ativo seja proporcional. O modelo ajusta as alocagbes de forma que a
contribuigdo marginal de risco de cada ativo seja igual, o que resulta em uma
distribuicdo de pesos no portfélio que balanceia o risco total. Foram obtidos
diferentes alocagbes para cada estimador de risco, mas com todos os
estimadores respeitando o principio primordial de um modelo de Risk Parity,

distribuindo o risco de maneira equanime ao longo da carteira.

Figura 11: Contribuicdo Total para o Risco da Carteira sem Estimador

Contribuigées Totais para o Risco simples

0.00025

0.00020 4

0.00015

0.00010

0.00005

0.00000 -




Publico

0.00025 4

0.00020

0.00015 A

0.00010

0.00005 -

0.00000 -

Figura 12: Contribui¢do Total para o Risco da Carteira RIE

Contribuicdes Totais para o Risco corrRIE
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Figura 13: Contribui¢ao Total para o Risco da Carteira EWMA
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Figura 14: Contribuicdo Total para o Risco da Carteira com Encolhimento
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Figura 15: Contribui¢ao Total para o Risco da Carteira EWMA com
Encolhimento
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Tabela 4: Alocacgao dos Ativos
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Alocacdo Alocagdo Alocagdo Alocagéo Alocacéo

Simples RIE (%) EWMA Shrinkage EWMA

(%) (%) (%) Shrinkage

(%)

XINA11.SA
GOLD11.SA 0.00 6.56 0.00 0.00 0.00
XFIX11.SA 10.03 14.19 8.02 10.00 8.70
ACWI11.SA 5.60 4.53 4.35 6.22 4.98
BOVA11l.SA 2.68 8.28 2.82 3.16 3.38
BBSD11.SA 3.45 6.87 4.10 4.05 4.85
ESGB11.SA 2.33 4.07 231 2.78 2.81
HASH11.SA 1.60 2.12 1.35 1.86 1.61
DIVO11.SA 3.17 6.17 3.39 3.70 4.05
IVVB11.SA 7.10 5.00 4.90 7.54 5.47
MATB11.SA 2.87 5.21 3.35 3.34 3.90
SMAL11.SA 2.12 4.44 2.06 2.53 251
PIBB11.SA 2.70 7.34 2.93 3.16 3.48
FIXA11.SA 12.18 0.00 10.79 11.49 10.83
IMAB11.SA 10.65 21.43 12.30 10.90 12.23
B5MB11.SA 10.63 0.00 14.24 10.79 13.42
B5P211.SA 19.73 0.00 21.30 14.90 15.66

E notério observar que o algoritmo RIE evitou alocar na renda fixa e foi o

unico que alocou no etf de ouro, que € bastante descorrelacionado dos ativos de
renda variavel em geral, como demonstrado no capitulo 4.1.
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O RIE é projetado para ser robusto a diferentes padrées de dados,
ajustando-se a uma maior diversidade de correlagbes entre os ativos. Ele n&o
apenas considera a volatilidade de cada ativo, mas também as interagcdes
complexas entre eles, levando em conta a invariancia rotacional. O modelo tem
a capacidade de identificar e captar estruturas de risco mais complexas, o que
pode ter levado a alocagdo no ouro, um ativo tradicionalmente visto como um
refugio em tempos de volatilidade ou crises econdmicas.

Modelos mais simples, como o EWMA ou Shrinkage, ndo levam em
consideracao as interagcbes mais complexas entre os ativos de maneira tao
detalhada como o RIE. Nao possuindo a mesma consideragao para mudancas
estruturais ou comportamentos mais dindmicos no mercado. Eles podem ser
mais inclinados a dar maior énfase a ativos de risco tradicional (como a renda
fixa) devido a um foco maior em estabilidade histérica e previsivel, em vez de
tentar identificar protecdo contra eventos extremos ou correlacdes menos
evidentes.

4.3 Backtest
Considerando que investiriamos 100 reais em cada portfélio teriamos o

seguinte resultado.

Figura 19: Evolugao das carteiras para diferentes estimadores de risco.
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Embora as carteiras tenham apresentado um desempenho abaixo do CDI
no periodo em questao, € importante destacar que o cenario macroeconémico
esteve marcado por uma taxa de juros excepcionalmente elevada, refletindo o

comportamento do CDI, que foi particularmente alto durante esse intervalo.

Por outro lado, as carteiras foram estruturadas para capturar retornos
mais sustentaveis e diversificados no longo prazo, priorizando uma combinagao

entre diversos ETFs que, naturalmente, apresentam maior volatilidade e
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sensibilidade a flutuagbes de mercado. Em periodos de juros elevados, essas
classes de ativos tendem a ter um desempenho relativo mais moderado, pois o
custo de oportunidade de investir em ativos de renda fixa aumenta
significativamente. Avaliando esta questdo o benchmark escolhido para as
carteiras foi o indice BOVESPA.

Tabela 5: Principais Métricas

a a ple N A age a =10 PA )
Retorno Total | 22.69% | 19.89% | 20.04% | 22.53% 19.84% 2.99% 37.21%
Sharpe Diario 1.58 0.96 1.37 1.44 1.24 0.16 23.26
Sortino Diario 2.69 1.63 2.30 244 2.09 0.28 N/C

CAGR 7.76% | 6.86% | 6.91% 7.71% 6.84% 1.08% 12.26%
MaxDrawdown | -4.61% | -8.64% | -4.91% -5.42% -5.84% -18.77% N/C
Calmar 1.69 0.79 1.41 1.42 1.17 0.06 N/C
Vol Diaria 5.55% | 8.33% | 5.76% 6.08% 6.30% 19.45% 0.57%
Anualizada
Melhor Dia 1.22% | 212% | 1.27% 1.33% 1.46% 6.59% 0.71%
Pior Dia -1.69% | -2.05% | -2.01% -1.75% -1.98% -4.22% 0.04%
Melhor Més 454% | 6.21% | 4.60% 4.91% 5.02% 12.72% 1.28%
Pior Més -2.07% | -3.36% | -2.43% -2.21% -2.56% -10.05% 0.79%
Sharpe 1.40 1.31 0.98 1.43 1.00 0.29 7.43
Anualizado
Vol Anualizada | 8.39% | 9.29% | 10.79% 8.45% 10.98% 24.30% 1.62%
Melhor Ano 17.64% | 18.71% | 18.26% 18.03% 18.75% 24.30% 13.16%
Pior Ano 5.78% | 5.58% | 2.99% 6.08% 3.22% -10.06% 10.87%

O modelo RIE alocou recursos majoritariamente em renda variavel,
particularmente em acbées como GOLD11.SA e IMAB11.SA, e nao teve
exposicao significativa a renda fixa. Isso € um reflexo da forma como o RIE se
comporta diante da dindmica de correlagao entre os ativos. Podemos inferir que
em eventuais cenarios de mercado de alta o algoritmo RIE pode performar de
maneira superior aos demais modelos que tiveram uma alocagao superior em

ETF’s com perfil mais conservador.
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5. CONCLUSOES

Esse estudo se propds a criar uma abordagem inovadora criando uma
carteira balanceada e igualmente diversificada, mas nao atribuindo os
mesmos pesos a cada ativo e sim atribuindo o mesmo risco, de modo que
cada ativo contribuisse de maneira equanime ao risco total do portfélio,
mantendo a volatilidade controlada e rebalanceando as carteiras
mensalmente.

Também existem estudos, como o caso da anomalia de baixa volatilidade
e sobre como varios modelos falham ao tentar bater o mercado. Por isso este
estudo buscou adotar a estratégia de investir em ETFs de modo que fosse
possivel buscar grande diversificacdo na carteira investindo em diferentes
classes de ativos, desde ETFs de renda variavel, fixa, inflacdo e fundos
imobiliarios. Um ponto de relevancia € que devido ao mercado de ETFs ser
bastante embrionario no Brasil, ndo foi possivel avaliar um horizonte de longo
prazo, permitindo com que os algoritmos e estimadores de risco
conseguissem obter maior informagéo do mercado.

Um fator que pode explicar o modelo mais simples ter se sobressaido, &
o fato de a matriz de covariancia simples ser mais direta ndo realizando
ajustes complexos, portanto pode ter se destacado devido a sua simplicidade.
Em mercados mais estaveis ou com correlacdes mais constantes entre os
ativos (como ETFs no Brasil, que podem ter comportamentos mais
previsiveis), ele pode capturar bem o risco sem a necessidade de ajustes
sofisticados. O encolhimento de matrizes ajusta a matriz de covariancia para
evitar estimativas extremas e melhorar a robustez, especialmente quando os
dados historicos sao limitados ou ruidosos. O encolhimento provavelmente
se destacou porque pode ter suavizado os dados ruidosos do mercado
brasileiro, levando a uma estimativa de risco mais estavel e menos sensivel
a variagoes de curto prazo.

O EWMA da mais peso aos dados mais recentes, o que pode ser util em
mercados volateis, mas dado o intervalo de tempo analisado, n&do se mostrou
efetivamente, pode ter sido realmente um efeito do periodo analisado e o
estimador pode ter resultados melhores em outros periodos. Ja o RIE € mais

complexo e tenta lidar com a variabilidade de dados, mas pode ser menos
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eficaz quando a estrutura de risco é mais estavel ou linear. O RIE pode ter
introduzido um excesso de complexidade sem agregar valor substancial no
seu backtest.

Um ponto bastante importante para trabalhos futuros é realizar este
estudo, mas desta vez usando ETFs da bolsa americana e convertendo para
Reais Brasileiros (BRL) utilizando a curva de dodlar. Isso permitirdA um
horizonte de evento maior e testara com maior eficacia e eficiéncia a robustez
do modelo.

No geral avaliando que enfrentamos um cenario muito forte de alta de
juros, fica dificil que os modelos batam o CDI com um periodo de
diversificacao tao limitado, por outro lado, esses modelos s&o criados para
ter grande resiliéncia no longo prazo e num periodo bastante desafiador os

modelos conseguiram apresentar um alto nivel de resiliéncia.



Publico

50

REFERENCIAS BIBLIOGRAFICAS

[1] Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77-91.
[2] ASSAF NETO, Alexandre. Finangas Corporativas e Valor. 8% ed. Sdo Paulo.
p. 81-294. Editora Atlas S.A. 2014.

[3] Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on
stocks and bonds. Journal of Financial Economics, 33(1), 3-56.

[4] Goldfarb, D., & lyengar, G. (2003). Robust portfolio selection problems.
Mathematical Finance, 13(4), 437-466.

[5] Dantzig, G. B., & Thapa, M. (2003). Linear Programming 2: Theory and
Extensions. Springer.

[6] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley.

[7] Sharpe, W. F. (1964). "Capital Asset Prices: A Theory of Market Equilibrium
under Conditions of Risk." Journal of Finance.

[8] Jensen, M. C. (1968). "The Performance of Mutual Funds in the Period 1945-
1964." Journal of Finance.

[9] Sortino, F. A. (1994). Better Analysis of Up and Down Markets. The Journal of
Portfolio Management, 20(1), 56-64.

[10] Rupper, David. Matteson, David S.; Statistics and Data Analysis for Financial
Engineering: With R Examples. 2nd Edition. Springer. 2015.

[11] Bodie, Z., Kane, A., & Marcus, A. J. (2014). Investments. McGraw-Hill.

[12] Luenberger, D. G. (1998). Investment Science. Oxford University Press.
[13] Sharpe, W. F. (1970). Portfolio Theory and Capital Markets. McGraw-Hill.
[14] Chandra, P. (2011). Investment Analysis and Portfolio Management.
McGraw-Hill.

[15] Elton, E. J., & Gruber, M. J. (2014). Modern Portfolio Theory and Investment
Analysis. Wiley.

[16] Brealey, R. A., & Myers, S. C. (2016). Principles of Corporate Finance.
McGraw-Hill.

[17] Grinold, R. C., & Kahn, R. D. (2000). Active Portfolio Management. McGraw-
Hill.

[18] Smith, D. M. (2018). Portfolio Construction and Risk Management. Wiley.
[19] Hull, J. C. (2017). Options, Futures, and Other Derivatives. Pearson.



Publico

o1

[20] Reilly, F. K. (2013). Investment Analysis. Cengage Learning.

[21] Merton, R. C. (1990). Continuous-Time Finance. Blackwell.

[22] Damodaran, A. (2014). Applied Corporate Finance. Wiley.

[23] Phillips, G. M., & Baker, H. K. (2009). Risk Management and Derivatives.
Wiley.

[24] O'Shaughnessy, J. P. (2005). What Works on Wall Street. McGraw-Hill.

[25] Lettau, M., & Viswanathan, S. (2014). "The Low-Volatility Anomaly: A
Decomposition Analysis." The Journal of Financial Economics.

[26] Baker, M., & Wurgler, J. (2006). "Investor Sentiment and the Cross-Section
of Stock Returns." The Journal of Finance, 61(4), 1645-1680.

[27] Asness, C., Frazzini, A., & Pedersen, L. H. (2013). "Low-Risk Stocks
Outshine Higher-Risk Stocks." AQR Capital Management.

[28] Novy-Marx, R. (2013). "The Other Side of Value: The Gross Profitability
Premium." Journal of Financial Economics.

[29] Poon, S. H., & Granger, C. W. J. (2003). "Forecasting volatility in financial
markets: A review." Journal of Economic Literature.

[30] Danielsson, J. (2011). *Financial Risk Forecasting: The Theory and Practice
of Forecasting Market Risk with Implementation in R*. Wiley.

[31] Bollerslev, T. (1986). Generalized Autoregressive Conditional
Heteroskedasticity. Journal of Econometrics, 31(3), 307-327.

[32] Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-
1007.

[33] Engle, R. F. (2002). "Dynamic Conditional Correlation: A Simple Class of
Multivariate GARCH Models." Journal of Business & Economic Statistics, 20(3),
339-350.

[34] Ledoit, O., & Wolf, M. (2004). Honey, | Shrunk the Sample Covariance
Matrix. Journal of Portfolio Management, 30(4), 110-119.

[35] Scherer, B. (2012). Optimal Portfolio Choice and the Shrinkage Estimation
of Covariance Matrices. In Financial Risk Forecasting. Wiley.

[36] Jorion, P. (1986). Bayes-Stein Estimators for Portfolio Analysis. Journal of
Financial and Quantitative Analysis, 21(3), 279-292.



Publico

52

[37] Dykstra, R. L., & Lytle, R. L. (1981). A class of rotationally invariant estimators
for covariance matrices. Journal of the American Statistical Association, 76(375),
726-734.

[38] Barber, B. M., & Odean, T. (2000). Trading is hazardous to your wealth: The
common stock investment performance of individual investors. Journal of
Finance, 55(2), 773-806.

[39] Fama, E. F., & French, K. R. (1992). The Cross-Section of Expected Stock
Returns. Journal of Finance, 47(2), 427-465.



Publico

APENDICE A - JUPYTER NOTEBOOK

53

import pandas as pd

import yfinance as yf

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

etfs utilizados = ["XINA1ll.SA", "GOLD1l1.SA", "XFIX11l.SA",
"ACWI11l.SA", "BOVAIl.SA", "BBSD11l.SA", "ESGB11l.SA",
"HASH11.SA","DIVOll.SA", "IVVBI11.SA", "MATB11l.SA",
"SMAL11l.SA", "PIBB11.SA"™, "FIXAl1l.SA", "IMAB11l.SA",
"BS5MB11.SA","B5P211.SA"]

# Lista de ETFs na B3
etfs b3 = etfs utilizados

# Periodo de interesse
start date = "2021-04-01"
end date = "2024-12-31" # Data atual

# Funcdo para obter histédrico de precos de fechamento
def get etf close prices(etfs, start, end):
all data = {}
for etf in etfs:
print (f"Baixando dados para {etf}...")
ticker = yf.Ticker (etf)
hist = ticker.history(start=start, end=end, auto adjust =
False)
if not hist.empty:
all datal[etf] = hist["Adj Close"] # Preco de fechamento
return pd.DataFrame (all data)

# Obter dados
df prices = get etf close prices(etfs b3, start date, end date)

# Conjunto de treinamento
df = df prices["2021-04-01":"2022-04-01"].b£fill ()

# Conjunto de testes
df2 = df prices["2022-04-02":]

# Bibliotecas Proprietérias

import bt

import equalriskcontribution as erc
import ERC functions as erc fun
import aux fun as ax

import portfolio metrics as pm
import erc mod as erc m

import Risk estimators as re




Publico

54

# Matrizes de Covariédncia e Correlacdo para todos os estimadores de
risco

risk estimators = {'simples' : re.shrinkage,
'corrRIE' : re.corrRIE,
'ewma cov' : re.ewma_ cov,
'shrinkage' : re.shrinkage,
'ewma shrinker': re.shrinked ewma}

cov_matrixes = []
corr matrixes = []
for name, res in risk estimators.items():
print (f"Obtendo matriz de correlacdo para {name}")

if name == "ewma shrinker":
df cov = res(prices = df, alpha = .1, gamma = .98, norm =
False)
elif name == "simples":
df cov = res(prices = df, alpha = 0, norm = False)
else:
df cov = res(prices = df)

cov_matrixes.append (pd.DataFrame (df cov, index = df.columns, col-
umns = df.columns))

std dev = np.sqgrt(np.diag(df cov))

df corr = df cov / np.outer (std dev, std dev)

corr matrixes.append(pd.DataFrame (df corr, index = df.columns,
columns = df.columns))

lista estimadores = ["Simples", "RIE", "EWMA", "Shrinkage", "EWMA
Shrinkage"]

for i in range(5):

mask = np.triu(np.ones like (corr matrixes[i], dtype=bool))

plt.figure (figsize=(16, 8))

sns.heatmap (corr matrixes[i], mask=mask, annot=True, cmap="cool-
warm", fmt=".2f", linewidths=0.5)

plt.title(f"Matriz de correlacdo {lista estimadores[i]} ETF's
bolsa brasileira')

plt.xticks (rotation=45) # Rotaciona rdétulos do eixo X
plt.yticks (rotation=0) # Mantém roétulos do eixo Y na horizontal
plt.show ()
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# Alocacdo Ativos
asset allocation = []
for risk in risk estimators.keys():

if risk == "ewma shrinker":
allocation = erc m.erc(prices = df, per = "months", estimator
= risk, alpha = .1, gamma = .98)
elif name == "simples":
allocation = erc m.erc(prices = df, per = "months", estimator
= False)
else:
allocation = erc m.erc(prices = df, per = "months", estimator

risk)

asset allocation.append(allocation.x)

# Risco por Ativo e Risco Marginal
for i in range(len(cov_matrixes)) :

marginal risk = erc fun.mrc(cov_matrix = cov_matrixes[i], weights
= asset allocation[i])

print (erc_ fun.trc(mrc = marginal risk, weights = asset alloca-
tion[i]))

erc_fun.plot total risk(marginal risk, prices = df, weights = as-
set allocation[i], estimador = list(risk estimators.keys()) [i])

# Puxando CDI do Banco Central

# URL da API do Banco Central para o CDI diario (série 12)
url = "https://api.bcb.gov.br/dados/serie/bcdata.sgs.12/da-
dos?formato=json"

# Fazer a requisicgdo e carregar os dados
response = requests.get (url)
if response.status code == 200:
cdi data = response.json()
else:
raise Exception (f"Erro ao acessar API do Banco Central. Cdédigo:
{response.status_code}")

# Converter para DataFrame
cdi df = pd.DataFrame (cdi_data)

# Ajustar formato do DataFrame

cdi df['data'] = pd.to datetime(cdi df['data'], format='%d/sm/%Y') #
Converter a coluna 'data' para datetime
cdi df['valor'] = cdi df['valor'].astype(float) / 100 # Converter

'valor' para float e transformar em retorno percentual diario

# Ordenar por data (apenas por seguranca)
cdi df cdi df.sort values('data') .reset index(drop=True)

cdi df = cdi df.rename({"data" : "Dates", "valor" : "CDI"}, axis =
1) .set _index ("Dates")
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cdi acc

df2.index

l+cdi df) .cumprod() - 1
pd.to datetime (df2.index.strftime ("%Y-%m-%d"))

(
cdi acc mod = cdi _acclcdi _acc.index.isin (df2.index) ]

## Backtest
Smatplotlib inline
class OrderedWeights (bt.Algo) :

def init (self, weights):

self.target weights = weights

def call (self, target):

target.temp['weights'] = dict(zip(target.temp['selected'],

self.target weights))

return True

sl

s2

s3

s4

s5

bt.

bt.

bt.

bt.

bt.

Strategy ("Simples", [bt.algos.RunMonthly(),
bt.algos.SelectAll (),
OrderedWeights (asset _allocation[0]),
bt.algos.Rebalance () ])

Strategy ("RIE", [bt.algos.RunMonthly(),
bt.algos.SelectAll (),
OrderedWeights (asset _allocation[1l]),
bt.algos.Rebalance()])

Strategy ("EWMA", [bt.algos.RunMonthly(),
bt.algos.SelectAll (),
OrderedWeights (asset _allocation[2]),
bt.algos.Rebalance()])

Strategy ("Shrinkage", [bt.algos.RunMonthly (),
bt.algos.SelectAll (),
OrderedWeights (asset _allocation[3]),
bt.algos.Rebalance()])

Strategy ("EWMA Shrinkage", [bt.algos.RunMonthly(),
bt.algos.SelectAll (),
OrderedWeights (asset _allocation[4]),
bt.algos.Rebalance()])

s6

s7

bt.

bt.

Strategy ("IBOVESPA", [bt.algos.RunOnce (),
bt.algos.SelectAll (),
bt.algos.WeighEqually (),
bt.algos.Rebalance()])

Strategy ("CDI", [bt.algos.RunOnce (),
bt.algos.SelectAll (),
bt.algos.WeighEqually (),
bt.algos.Rebalance()])
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test = bt.Backtest(sl, df2.dropna())

test2 = bt.Backtest(s2, df2.dropna())

test3 = bt.Backtest(s3, df2.dropnal())

testd4d = bt.Backtest(s4, df2.dropna())

testb = bt.Backtest(s5, df2.dropna())

test6 = bt.Backtest(s6, df2["BOVAIl.SA"].to frame())

test7 = bt.Backtest(s7, cdi_acc mod/1lel0)
‘results = bt.run(test, test2, test3, test4d4, test5, testo, test?)
‘results.plot()
‘results.display()
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import aux fun as ax

import mgarch

import pandas as pd

import numpy as np

import pyRMT

from pyRMT import optimalShrinkage

def ewma cov(prices, alpha = .98,norm = False):
if norm == True:
ret = cross_section standard(ax.get returns(prices , log
True))
else:
ret = ax.get returns(prices , log = True)
hlf = np.log(.5)/np.log(alpha)
cov_ewma = ret.ewm(halflife=hlf).cov () [-len(prices.columns)
set index(level = 'Dates').drop(['Dates'] , axis =1)

return cov_ewma

def garch estimation(prices, per,norm = False):
# Use grt estimation

if norm == True:
ret = cross_section standard(ax.get returns(prices , log
True))
else:
ret = ax.get returns(prices , log = True)

vol = mgarch.mgarch ()
vol.fit (ret)
return vol.predict (per) ['cov']

def shrinkage (prices, alpha = .1, norm = False):
if norm == True:
ret = cross section standard(ax.get returns(prices , log
True))
else:
ret = ax.get returns(prices , log = True)
cov_matrix = ret.cov()
matrix reduction = (l-alpha)*cov_matrix
ev_shifter = (Eg.trace(cov_matrix)/cov_matrix.shape[l])*al—

pha*np.identity(cov matrix.shapel[l])
shrinker = matrix reduction + ev shifter

return shrinker

] .re-

def shrinked ewma (prices, alpha = None, gamma = .98, norm = False):
if norm == True:
ret = cross section standard(ax.get returns(prices , log =
True))
else:
ret = ax.get returns(prices , log = True)
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hlf = np.log(.5)/np.log (gamma)

cov_ewma = ret.ewm(halflife = hlf).cov () [-len(prices.col-
umns) :] .reset index(level = 'Dates').drop(['Dates'] , axis =1)

cov_matrix = cov_ewma

matrix reduction = (l-alpha)*cov_matrix

ev_shifter = (np.trace(cov_matrix)/cov_matrix.shape[l])*al-

pha*np.identity (cov_matrix.shape[1l])
ewma shrinker = matrix reduction + ev_shifter
return ewma shrinker

def parkinson(prices, id matrix = False):

open prices = prices.filter (regex = "Open") .dropna/ )
low prices = prices.filter(regex = "Low") .dropna ()
high prices = prices.filter (regex = "High") .dropna/()
close prices = prices.filter(regex = "Close") .dropna ()

high low=((high prices.values / low prices).apply(pd.to nu-
meric)) .apply(np.log)

pk = (1/(4*np.log(2))) * (high low)**2

pk.columns = "pk " + pk.columns.str.strip("Low")

vol estimator = (Qg.sum(pk)/pk.shape[O])**.5

df returns = Qg.log((close_prices/close_prices.shift(1))).dropna()

vector = np.diag(vol estimator)

if id matrix == True:
identity = np.identity(vol estimator.shapel0])
return np.dot (vector, np.dot (identity, vector))

else:
return np.dot (vector, np.dot(np.array(df returns.corr()), vec-

tor))

def garman klass(prices, id matrix = False):

open prices = prices.filter (regex = "Open") .dropna/)

low prices = prices.filter (regex = "Low") .dropna ()

high prices = prices.filter (regex = "High") .dropna/()

close prices = prices.filter(regex = "Close") .dropna ()

high low = ((hlgh _prices.values / low prices) .apply(pd.to nu-
meric)) .apply(np.log)

close open = ((closeiprices.values / open prices).apply(pd.to nu-
meric)) .apply(np.log)
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gk = (0.5* (high low**2)) .values - ((2*np.log(2) -
1) * (close open**2))

gk.columns = "gk " + gk.columns.str.strip("Open")

vol estimator = (np.sum(gk)/gk.shape[0])**.5

df returns = np.log((close prices/close prices.shift(1l))) .dropna/()
vector = np.diag(vol estimator)
if id matrix == True:
identity = np.identity(vol estimator.shape[0])
return np.dot (vector, np.dot(identity, vector))
else:
return np.dot (vector, np.dot(np.array(df returns.corr()), vec-

tor))

def rogers satchell (prices, id matrix = False):

open prices = prices.filter (regex = "Open") .dropna/()

low prices = prices.filter(regex = "Low") .dropna ()

high prices = prices.filter (regex = "High") .dropna/()

close prices = prices.filter(regex = "Close") .dropna ()

low open = ((low prices.values / open prices) .apply(pd.to nu-
meric)) .apply (np.log)

high close (high prices.values / close prices).apply(pd.to nu-
meric)) .apply (np.log)

(

1
high open ((high prices.values / open prices).apply(pd.to nu-
meric)) .apply (np.log)
(
1

"B R

low _close ((low prices.values / close prices).apply(pd.to nu-

meric)) .apply(np.log)
rs = ((high close.values*high open) + (low_close.values*low open))
rs.columns = "rs " + rs.columns.str.strip("Open")
vol estimator = (Qg.sum(rs)/rs.shape[O])**.5
df returns = gg.log((close_prices/close_prices.shift(l))).dropna()

vector = np.diag(vol estimator)

if id matrix == True:
identity = np.identity(vol estimator.shapel[0])
return np.dot (vector, np.dot (identity, vector))

else:
return np.dot (vector, np.dot(np.array(df returns.corr()), vec-
tor))

def gkyz(prices, id matrix = False):

Garman-Klass with Yang-Zhang overnight

open prices = prices.filter(regex = "Open") .dropna/()




Publico

61

low prices = prices.filter (regex = "Low") .dropna/()
high prices = prices.filter (regex = "High") .dropna ()
close prices = prices.filter (regex = "Close") .dropna ()

overnight jump = ((open prices.values / close prices.shift (1)) .ap-
ply(pd.to numeric)) .apply (np.log) .dropna ()

high low = ((high prices.iloc[l:, :].values / low _prices.iloc[l:,
:]) .apply (pd.to numeric)) .apply(np.log)

close open = ((close prices.iloc[l:, :].values /
open prices.iloc[l:, :]).apply(pd.to numeric)) .apply(np.log)

garman_zhang = (0.5 * (overnight jump**2)) +
(0.5* (high low**2)) .values - ((2*np.log(2) - 1)*(close open**2)).val-
ues

garman_zhang.columns = "gkyz " + garman zhang.col-
umns.str.strip("Close")

vol estimator = (np.sum(garman zhang)/garman zhang.shape[0])**.5

df returns = np.log((close prices/close prices.shift(1))) .dropna/()
vector = np.diag(vol estimator)
if id matrix == True:

identity = np.identity(vol estimator.shapel[0])

return np.dot (vector, np.dot(identity, vector))

else:

return np.dot (vector, np.dot(np.array(df returns.corr()), vec-
tor))

def yang zhang(prices, id matrix = False, alpha = 0.34):

Yang-Zhang (https://portfolioslab.com/tools/yang-zhang)

open prices = prices.filter(regex = "Open") .dropna/ ()
low prices = prices.filter (regex = "Low") .dropna ()
high prices = prices.filter (regex = "High") .dropna/()
close prices = prices.filter(regex = "Close") .dropna ()
overnight jump = ((open prices.values / close prices.shift (1)) .ap-
ply(gg.to_numeric)).apply(gg.log).dropna()
high low = ((high prices.iloc[l:, :].values / low prices.iloc[l:,
:]).apply(gg.toinumeric)).apply(gg.log)
close open = ((close prices.iloc[l:, :].values /
open prices.iloc[l:, :]).apply(pd.to numeric)) .apply(np.log)
low open = ((low prices.iloc[l:,:].values /
open prices.iloc[l:,:]).apply(pd.to numeric)) .apply(np.log)
high close = ((high prices.iloc[l:,:].values /
close prices.iloc[l:,:]).apply(pd.to numeric)) .apply(np.log)
high open = ((high prices.iloc[l:,:].values /
open prices.iloc[l:,:]).apply(pd.to numeric)) .apply(np.log)
low close = ((low prices.ilocl[l:,:].values /
close prices.iloc[l:,:]).apply(pd.to numeric)) .apply(np.log)
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k = (alpha - 1)/ (alpha + ((prices.shapel[0] + 1)/ (prices.shapel[0] -
1))

overnight jump norm = (np.sum(overnight jump - over-
night jump.mean()))/(prices.shape[0] - 1)

log co norm = (np.sum(close open -
close open.mean()))/ (prices.shape[0] - 1)

rs = ((high close.values*high open) + (low _close.values*low open))
rogers_satchell = (np.sum(rs)/(prices.shape([0] - 1))

yz = (overnight jump norm.values + k*log co norm +
(1 - k)*rogers satchell.values) .rename ({"Open IBOV":
"yz IBOV", "Open SPX": "yz SPX", "Open BLX": "yz BLX"})

vol estimator = yz**.5
df returns = np.log((close prices/close prices.shift(1))) .dropna/()
vector = np.diag(vol estimator)
if id matrix == True:

identity = np.identity(vol estimator.shape[0])

return np.dot (vector, np.dot (identity, vector))
else:

return np.dot (vector, np.dot(np.array(df returns.corr()), vec-
tor))

def corrEigenClip(prices, norm = False):

if norm == True:
ret = cross section standard(ax.get returns(prices , log =
True))
else:
ret = ax.get returns(prices , log = True)

return pyRMT.clipped (ret)

def corrRIE (prices,cov = True, norm = False):

if norm == True:
ret = cross section standard(ax.get returns(prices , log =
True))
else:
ret

ret = ax.get returns(prices , log = True)
return optimalShrinkage (ret, return covariance=cov)
def std cross(ret):

return np.sqrt(np.std(ret.values ** 2))
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def cross_section standard(ret):
return ret - ret.mean() / ret.apply(std cross)

### This version is a modified version of equal risk estimation when
we choose the risk estimators to run the portfolio optimization ####

import pandas as pd

import numpy as np

from scipy.optimize import minimize
import aux fun as ax

import Risk estimators as re

from itertools import repeat

import pyRMT

def erc(prices, per, estimator = False, norm = False, alpha = None,
gamma = .98):
"""A modified function with parameters for risk estimation """
period = ax.get period(per)
norm value = norm

alpha = alpha

obj fun = lambda x, p cov, rb: np.sum( (x*np.dot (p_cov,
X)/gg.dot(x.transpose(), np.dot (p_cov, X)) —rb) **2)

cons_sum weight = Iambda x:np.sum(x) - 1.0
cons_long only weight = lambda x: X

if estimator in ["pk vol", "gk vol", "rs vol", "gkyz vol",
"yz vol"]:

rb =[1/prices.filter (regex = 'Close').shape[l] for x in
(prices.filter (regex = 'Close')) .columns]
else:
rb = [1/prices.shape[l] for x in prices.columns]

def rb p weights(prices, rb):
asset rets = ax.get returns(prices, log=True)
if estimator == 'corrEigenClip':
p _cov = re.corrEigenClip(prices, norm = norm value)

elif estimator == 'corrRIE':
p_cov = re.corrRIE(prices, norm = norm value )

elif estimator == 'garch dcc':
p_cov = re.garch estimation(prices,period, norm =

norm value)

elif estimator == 'ewma cov':
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p_cov = re.ewma cov(prices, alpha = .98,norm = norm value)
elif estimator == 'shrinkage':

p_cov = re.shrinkage(prices, alpha = .l,norm = norm value)
elif estimator == 'ewma shrinker':

p_cov = re.shrinked ewma(prices, alpha = alpha, gamma =

.98, norm = norm value)

#
#
#

elif estimator == 'ledoit wolf':
risk estimators = pl.estimators.RiskEstimators ()
p_cov = risk estimators.shrinked covariance (prices,

price data = True, shrinkage type='lw'")

0.34)

" yz_vol "

umns) ) ) )

elif estimator == 'pk vol':
p_cov = re.parkinson(prices, 1id matrix = False)
elif estimator == 'gk vol':

p_cov = re.garman_ klass(prices, id matrix = False)

elif estimator == 'rs vol':
p_cov = re.rogers_satchell (prices, id matrix = False)

elif estimator == 'gkyz vol':
p _cov = re.gkyz(prices, id matrix = False)

elif estimator == 'yz vol':

p_cov = re.yang zhang(prices, id matrix = False, alpha

else:
p_cov = asset rets.cov()

if estimator in ["pk vol", "gk vol", "rs vol", "gkyz vol",
]:

prices = prices.filter (regex = "Close")
num_arp = len(prices.columns)

w0 = 1.0 * np.ones((num_arp, 1)) / num arp

cons = ({'type':'eq','fun': cons_sum weight},
{'"type': 'ineq', '"fun':cons long only weight})

return minimize (obj fun, w0, args=(p cov, rb),
method="'SLSQP', constraints=cons,
bounds = list (repeat((0,1),len(prices.col-




Publico

65

return rb p weights (prices, rb)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

def calculate risk portfolio(cov matrix,weights):
return np.sqgrt( np.transpose(weights) * cov matrix * weights )

def mrc(cov _matrix, weights):
risk = np.sqrt(np.dot (weights.T, np.dot(cov matrix, weights)))
mrc = (np.dot(weights, cov matrix))/risk
return mrc

def trc(mrc, weights):
trc = mrc*weights
return trc

def random assets returns (mean vec, cov _matrix, dimension, number sam-
ples) :

Computes random assets classes returns

np.random.seed (3003)

n = number samples

d dimension
eig values = np.linalg.eigvals(cov matrix)

if any(eig values<O):
raise Exception('Covariance Matrix is not valid')

K = cov matrix + 0.000001 * np.identity(d) # Need to stability of
Cholesky Decomposition

L = np.linalg.cholesky (K)
u = Eg.random.normal(loc=0, scale=1, size=d*n).reshape(d, n)
assets = mean vec + np.dot (L, u)

return assets

def plot marginal risk(marginal risk, prices):
plt.figure(figsize=(12, 6))
cols = prices.columns
plt.bar(cols, marginal risk)
plt.title("Contribuicdes Marginais para o Risco")
plt.xticks (rotation = 45)




Publico

66

def

return plt.show()

plot total risk(marginal risk, prices, weights, estimador):
total risk = marginal risk*weights

plt.figure(figsize=(12, 6))

cols = prices.columns

plt.bar(cols, total risk)

plt.title("Contribuicdes Totais para o Risco " + str(estimador))
plt.xticks(rotation = 45)

return plt.show ()
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	É possível dizer que a carteira igualmente ponderada é uma estratégia de investimento que combina simplicidade e diversificação, mas pode não ser a mais eficiente em termos de gestão de risco.
	2.4 O Modelo de Paridade de Riscos (Risk Parity)
	O modelo de paridade de riscos, ou risk parity, é uma abordagem de alocação de ativos que visa distribuir o risco de forma equitativa entre diferentes classes de ativos, em vez de simplesmente alocar capital de maneira igual. Esse conceito busca cria...
	De acordo com o autor Aswath Damodaran em "Applied Corporate Finance" (2014) [22], a paridade de riscos se baseia na ideia de que os investidores devem considerar a volatilidade e a correlação dos ativos ao construir portfólios. Ao equilibrar o risco ...
	Uma das principais vantagens do modelo de paridade de riscos é sua capacidade de mitigar a volatilidade do portfólio. Em "Risk Parity: A New Approach to Asset Allocation" (2011), os autores de um estudo na Journal of Portfolio Management destacam que ...
	No entanto, o modelo de paridade de riscos também possui desvantagens. Conforme mencionado por G. Michael Phillips e H. Kent Baker em "Risk Management and Derivatives" (2009) [23], a implementação do risk parity pode exigir um reequilíbrio frequente d...
	Outro ponto a ser considerado é a dependência de dados históricos para estimar a volatilidade e a correlação, conforme discutido por James P. O’Shaughnessy em "What Works on Wall Street" (2005) [24]. Se as condições de mercado mudarem, as estimativas ...
	Uma questão muito importante que faz com que portfólios de Risk Parity se torne bastante atrativos é a anomalia de baixa volatilidade. A anomalia de baixa volatilidade é um fenômeno observado nos mercados financeiros onde ativos de menor volatilidade ...
	Em "The Low-Volatility Anomaly: A Decomposition Analysis" (2014) [25], Martin Lettau e Sidney Viswanathan analisam como ações com baixa volatilidade tendem a superar suas contrapartes mais voláteis ao longo do tempo. A pesquisa mostra que essa tendênc...
	Figura 5: Estudo de estratégias de baixa volatilidade do BNP Paribas
	Fonte: Exploiting the low volatility anomaly in practice
	Uma das possíveis explicações para a anomalia de baixa volatilidade é a aversão ao risco dos investidores. Para Baker e Wurgler (2006), os investidores tendem a superestimar o risco associado a ativos mais voláteis, levando a uma demanda excessiva por...
	Outro fator que pode contribuir para essa anomalia é a tendência dos investidores de seguir modas ou ciclos de mercado, conforme discutido por Cliff Asness et al. (2013) [27]. Quando o mercado está em alta, investidores podem ser atraídos por ações de...
	Apesar de seus retornos superiores, a anomalia de baixa volatilidade também apresenta desafios. Como observado por Robert Novy-Marx (2013) [28], a seleção de ações de baixa volatilidade pode não ser tão simples, pois essas ações podem não performar be...
	2.5 Estimadores de Risco
	Estimadores de risco (volatilidade) tem grande importância no contexto dos mercados mobiliários, não se restringindo apenas a avaliar a volatidade, mas também a tomar decisões com base na rentabilidade esperada e estruturação de estratégias quantitat...
	De acordo com diversos artigos, a capacidade de antecipar mudanças na volatilidade e compreender sua dinâmica é fundamental para a criação e implementação de estratégias mais robustas para gestão da carteira (Poon & Granger, 2003) [29].
	2.5.1 O Modelo EWMA
	O modelo Exponential Weighted Moving Average (EWMA) se destaca por ser uma das abordagens mais populares para estimar a volatilidade de ativos financeiros. Sua principal característica reside em atribuir pesos decrescentes aos retornos passados e pes...
	A ideia por trás do EWMA consiste no fato de que a volatilidade do mercado não é constante (heterocedasticidade) e tende a mudar ao longo do tempo. Portanto, o modelo atribui maior relevância para as observações mais recentes, com o objetivo de captur...
	O modelo EWMA pode ser formalizado pela seguinte equação:
	Onde: (1)
	- ,σ-t-2.: estimativa de variância condicional no tempo t,
	- λ: parâmetro de suavização que controla a magnitude do peso atribuído ao valor mais recente,
	- ,r-t−1-2.: retorno quadrático no período t-1.
	A constante λ geralmente é escolhida de maneira a suavizar entre os dados mais antigos e os mais recentes, sendo um valor entre 0 e 1. Se λ for próximo de 1, o modelo atribui maior peso aos dados passados, enquanto valores de λ mais baixos atribuem ma...
	A principal vantagem do modelo EWMA consiste em sua flexibilidade e eficiência computacional. Ao contrário de modelos mais complexos, o EWMA não requer a estimação de múltiplos parâmetros nem o uso de métodos iterativos pesados, tornando-o atrativo pa...
	Uma das principais críticas ao modelo EWMA, no entanto, é a sua simplicidade excessiva. Embora o modelo seja eficiente em termos computacionais, ele não leva em consideração a possibilidade de efeitos não-lineares ou a heterocedasticidade mais complex...
	O uso do modelo EWMA é amplamente reconhecido em diversas áreas do mercado financeiro. Por exemplo, no gerenciamento de risco de carteiras o modelo é comumente utilizado para calcular as variâncias e covariâncias dos ativos, que são fundamentais na al...
	2.5.2 O Modelo GARCH
	Os modelos autorregressivos são ferramentas amplamente utilizadas em séries temporais. O modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), proposto por Tim Bollerslev em 1986 [31], é uma extensão do modelo ARCH (Autoregressive...
	O modelo GARCH(1,1) é uma versão simples, mas eficiente, do modelo GARCH, onde a volatilidade condicional depende de um termo autoregressivo e de um termo de média móvel. A equação de retorno ,𝑟-𝑡. para um ativo em um modelo GARCH (1,1) é dada por:
	Onde: (2)
	- ,r-t.: retorno no tempo t;
	- μ: média do retorno;
	- ,ϵ-t.: erro no tempo t, dado por ,ϵ-t.=,𝜎-𝑡.,𝑧-𝑡.
	- ,z-t.≈𝑁,0,1.: é um ruído branco (white noise), com média 0 e variância 1.
	A variância condicional ,𝜎-𝑡-2. é modelada como uma função dos erros e da variância passada, dada pela fórmula:
	Onde: (3)
	- ,σ-t-2.: é a variância condicional (volatilidade) no tempo t;
	- ,𝛼-0.: constante;
	- ,𝛼-1.: é o coeficiente que mede o efeito dos choques passados ,𝜖-𝑡−1-2.;
	- ,𝛽-1.: é o coeficiente que mede o efeito da volatilidade passada ,𝜎-𝑡−1-2..
	A eficiência do modelo GARCH também pode ser avaliada pela sua estabilidade e pela capacidade de capturar dinâmicas complexas, com isso podemos introduzir o modelo utilizado neste estudo, o modelo GARCH DCC.
	2.5.2.1 GARCH DCC
	O modelo GARCH-DCC (Dynamic Conditional Correlation) é uma extensão do modelo GARCH. O modelo GARCH-DCC combina a estrutura GARCH para modelar a volatilidade e uma abordagem dinâmica para modelar a correlação entre os ativos ao longo do tempo. Esse m...
	A primeira etapa envolve a modelagem da volatilidade condicional dos ativos individuais, de forma semelhante ao modelo GARCH(1,1) tradicional. Para cada ativo i (onde i=1,…,N), temos o modelo GARCH:
	Já para o erro condicional (resíduo) temos ,ϵ-it.=,𝜎-𝑖𝑡.,𝑧-𝑖𝑡.. Portanto, a variância condicional para o modelo GARCH-DCC ganha a seguinte característica.
	Esta etapa envolve a modelagem da correlação condicional entre os ativos, ou seja, como as correlações entre os resíduos ,ϵ-it.. dos ativos variam ao longo do tempo. Para isso, o modelo DCC utiliza uma matriz de correlação dinâmica. A ideia é modelar ...
	A matriz de covariância condicional de 𝑁 ativos é dada por:
	Onde: (4)
	- ,𝑄-𝑡.: matriz de covariância condicional no tempo t;
	- ,𝑄.: matriz de covariância condicional de longo prazo (estimada a partir dos retornos históricos);
	- 𝛼 & 𝛽: parâmetros que controlam a resposta da matriz de covariância aos choques passados e à persistência da volatilidade passada, respectivamente.
	Da mesma maneira a matriz de correlação dinâmica ,𝑅-𝑡. pode ser obtida normalizando-se ,𝑄-𝑡. como:
	onde ​,𝐷-𝑡. é uma matriz diagonal contendo as variâncias ​ ,𝜎-𝑖𝑡-2. de cada ativo. A matriz ,𝑅-𝑡. fornece as correlações dinâmicas entre os ativos ao longo do tempo.
	2.5.3 Encolhimento Matricial (Shrinkage)
	A técnica de encolhimento matricial, ou shrinkage, é um método utilizado na otimização de portfólios com o objetivo de melhorar a estimativa das matrizes de covariância dos ativos. Em termos simples, a ideia é "encolher" as estimativas das variâncias...
	Na otimização clássica de portfólios, uma das etapas centrais é a estimativa das covariâncias entre os ativos. No entanto, as estimativas a partir de dados históricos podem ser muito sensíveis a variações nos dados de entrada, especialmente quando o ...
	A técnica funciona de maneira que a matriz de covariância original é combinada com uma matriz de covariância "encolhida" (normalmente, uma matriz de covariância baseada em um modelo mais simplificado). O parâmetro de shrinkage controla o quanto de "e...
	Onde: (5)
	- ,Σ-𝑠ℎ𝑟𝑖𝑛𝑘𝑒𝑑.: matriz de covariância encolhida;
	-,Σ-𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙.: matriz de covariância empírica calculada a partir dos dados históricos
	-,Σ-𝑝𝑟𝑖𝑜𝑟.: matriz de covariância empírica calculada a partir dos dados históricos
	- 𝜆: é o parâmetro de shrinkage, controlando o grau de encolhimento [35].
	Ao suavizar as estimativas extremas das covariâncias, a técnica ajuda a reduzir o risco de construir um portfólio baseado em relações espúrias entre os ativos, ou seja, reduz consideravelmente o risco de overfitting [36]. Em muitas situações práticas,...
	2.5.4 Estimador Invariante a Rotação (RIE)
	O Rotational Invariant Estimator (RIE) possui como principal característica, ser invariável a rotações, ou seja, ele não é afetado por transformações ortogonais nos dados. Isso é importante quando se trabalha com dados de alta dimensionalidade, onde ...
	O RIE é baseado na ideia de que, ao aplicar uma rotação ortogonal do tipo ℚ ∈ ,ℝ-N x N. (uma matriz com a propriedade ,ℚ-T.ℚ=I, onde I é a matriz identidade), a estrutura da matriz de covariância deve permanecer inalterada. A ideia é projetar um esti...
	O RIE pode ser formulado de forma que a matriz de covariância estimada ,,Σ.-𝑅𝐼𝐸. seja uma média ponderada entre a matriz de covariância empírica ,,Σ.-𝐸𝑀𝑃. e uma matriz de covariância prior ,,Σ.-𝑝𝑟𝑖𝑜𝑟., que pode ser uma matriz simples, como...
	Onde 𝜆 é um parâmetro de regularização que controla a quantidade de suavização aplicada. Para garantir a invariância à rotação, o RIE pode ser aplicado ajustando a forma da matriz de covariância de maneira que o impacto de transformações ortogonais n...
	Em suma, a principal vantagem do RIE é sua invariância a rotações. Isso significa que o estimador não é influenciado por transformações ortogonais nos dados, o que é uma característica desejável quando se lida com ativos financeiros que podem ter vari...
	Isso garante que a matriz de covariância estimada não seja afetada por rotações nos dados [37].
	3. METODOLOGIA
	3.1 Função Objetiva e Otimização
	Dentro do contexto de um algoritmo de Risk Parity. A função objetiva do busca minimizar a diferença entre a contribuição de risco de cada ativo no portfólio e a contribuição de risco desejada (rb). Analisando detalhadamente. Analisando a função objet...
	Figura 6: Algoritmo de função objetiva desenvolvido em Python.
	Elucidando acerca de cada termo.
	x: Representa o vetor de pesos dos ativos no portfólio;
	p_cov: Matriz de covariância (indicando o risco e as correlações entre os ativos).
	rb: O Target (valor alvo) para a contribuição de risco de cada ativo, que que é igual para todos os ativos (para o objetivo de "equal risk contribution", o que implica que todos os ativos devem ter a mesma contribuição de risco total).
	O que a função faz é calcular a diferença entre a contribuição de risco de cada ativo (dada por x * np.dot(p_cov, x) / np.dot(x.transpose(), np.dot(p_cov, x))) e a contribuição de risco alvo rb, e depois soma o quadrado dessas diferenças para minimiza...
	Também foram impostas condições de contorno (restrições). Na qual o termo cons_sum_weight impõe uma restrição que o peso total do portfólio seja 1, ou seja, o portfólio permanece long only 100% comprado em 100% do tempo. Já a outra condição de contorn...
	3.2 Estratégias e Modelagem dos Dados
	O objetivo deste estudo, consistiu em aplicar o modelo de Risk Parity aplicado na bolsa brasileira. Para isso adotamos a estratégia de investir em ETF’s que também tenham exposição cambial e no mercado estrangeiro como um todo, a fim de buscar maior d...
	Neste contexto foi feito uma lista de ETF’s negociados na bolsa brasileira, que tivessem pelo menos 4 anos de negociação, com isto chegamos na lista dos seguintes ETF’s.
	Tabela 1: ETFs da B3 selecionados
	Com estes índices foi adotada a seguinte estratégia. Foi criado um conjunto in sample que foi utilizado para simular as matrizes de covariâncias e correlações, utilizando a série histórica de retornos dos ETF’s.
	Para isto foi utilizada a série histórica de retornos desde 01-04-2021 (primeiro de abril de 2021), até 01-04-2022 (primeiro de abril de 2021). Totalizando 1 ano de retornos, idealmente seria preferível utilizar uma série mais longa de dados. Porém, o...
	Com a série de retornos obtida, foram utilizados grupos de estimadores de risco, como objetivo de criar a matriz de covariância mais robusta afim de obtermos o melhor processo de análise para alocação da carteira. Foram utilizados os modelos descrito...
	Este projeto foi desenvolvido na linguagem de programação Python, foram utilizadas tanto bibliotecas já amplamente utilizadas para fins acadêmicos e profissionais, como também foram implementas bibliotecas proprietárias, cujos códigos implementados s...
	Após importar as principais bibliotecas foi realizada uma consulta e um algoritmo foi desenvolvido para capturar todos os principais ETF’s de interesse.
	Com os dados (série histórica de preços) capturadas. Obtemos os retornos e analisamos a volatilidade dos ativos. Como já supracitado anteriormente, os dados foram divididos em dois conjuntos. O primeiro onde seria utilizado para obter as matrizes de c...
	Tabela 2: Volatilidade do primeiro conjunto (01/04/2021 – 01/04/2022)
	Tabela 3: Volatilidade do segundo conjunto (03/04/2022 – 31/12/2024)
	Para realização do backtest foi utilizada a biblioteca bt. bt - Flexible Backtesting for Python — bt 0.2.10 documentation. Em conjunto com as bibliotecas proprietárias com o modelo de otimização por Risk Parity e os estimadores de risco.
	A fim de ter um resultado mais coerente e satisfatório o portfólio foi rebalanceado mensalmente, também foi simulado os diferentes portfólios se comparados aos principais benchmarks de referência do país. O índice BOVESPA e o CDI.
	4. RESULTADOS E DISCUSSÕES
	4.1 Matrizes de Correlação
	A análise foi iniciada avaliando a matriz de correlação para os diferentes estimadores de risco para o conjunto de testes.
	Figura 6: Matriz de Correlação Simples
	Figura 7: Matriz de Correlação RIE
	Figura 8: Matriz de Correlação EWMA
	Figura 9: Matriz de Correlação com Encolhimento
	Figura 10: Matriz de Correlação EWMA com Encolhimento
	Ao analisar as matrizes de correlação é possível observar que o estimador invariante a rotações apresentou dificuldades em encontrar correlações/descorrelações entre os ativos selecionados. O RIE pode apresentar dificuldades, especialmente em situaçõ...
	Por outro lado, conseguimos observar que modelos mais simples como o EWMA e o encolhimento, assim como o modelo sem a utilização de estimadores conseguiram identificar muito mais correlações entre os ativos. Lembrando que nem sempre essas correlações...
	Os modelos mais simples são menos sensíveis ao ruído e têm maior estabilidade em cenários com amostras menores ou dados mais simples. Eles capturam bem as correlações lineares e não introduzem complexidade desnecessária.
	4.2 Risco por Ativo e Risco Marginal
	O risco marginal de um ativo refere-se à contribuição adicional para o risco total do portfólio ao adicionar ou alterar a quantidade desse ativo. Em outras palavras, é o risco adicional que um ativo marginal (ou seja, uma unidade adicional desse ativ...
	No contexto de Risk Parity, o risco marginal ajuda a determinar a quantidade ótima de alocação de cada ativo, de modo que a contribuição de risco de cada ativo seja proporcional. O modelo ajusta as alocações de forma que a contribuição marginal de ris...
	Figura 11: Contribuição Total para o Risco da Carteira sem Estimador
	Figura 12: Contribuição Total para o Risco da Carteira RIE
	Figura 13: Contribuição Total para o Risco da Carteira EWMA
	Figura 14: Contribuição Total para o Risco da Carteira com Encolhimento
	Figura 15: Contribuição Total para o Risco da Carteira EWMA com Encolhimento
	Tabela 4: Alocação dos Ativos
	É notório observar que o algoritmo RIE evitou alocar na renda fixa e foi o único que alocou no etf de ouro, que é bastante descorrelacionado dos ativos de renda variável em geral, como demonstrado no capítulo 4.1.
	O RIE é projetado para ser robusto a diferentes padrões de dados, ajustando-se a uma maior diversidade de correlações entre os ativos. Ele não apenas considera a volatilidade de cada ativo, mas também as interações complexas entre eles, levando em con...
	Modelos mais simples, como o EWMA ou Shrinkage, não levam em consideração as interações mais complexas entre os ativos de maneira tão detalhada como o RIE. Não possuindo a mesma consideração para mudanças estruturais ou comportamentos mais dinâmicos n...
	4.3 Backtest
	Considerando que investiríamos 100 reais em cada portfólio teríamos o seguinte resultado.
	Figura 19: Evolução das carteiras para diferentes estimadores de risco.
	Embora as carteiras tenham apresentado um desempenho abaixo do CDI no período em questão, é importante destacar que o cenário macroeconômico esteve marcado por uma taxa de juros excepcionalmente elevada, refletindo o comportamento do CDI, que foi par...
	Por outro lado, as carteiras foram estruturadas para capturar retornos mais sustentáveis e diversificados no longo prazo, priorizando uma combinação entre diversos ETFs que, naturalmente, apresentam maior volatilidade e sensibilidade a flutuações de ...
	Tabela 5: Principais Métricas
	O modelo RIE alocou recursos majoritariamente em renda variável, particularmente em ações como GOLD11.SA e IMAB11.SA, e não teve exposição significativa a renda fixa. Isso é um reflexo da forma como o RIE se comporta diante da dinâmica de correlação e...
	5. CONCLUSÕES
	Esse estudo se propôs a criar uma abordagem inovadora criando uma carteira balanceada e igualmente diversificada, mas não atribuindo os mesmos pesos a cada ativo e sim atribuindo o mesmo risco, de modo que cada ativo contribuísse de maneira equânime a...
	Também existem estudos, como o caso da anomalia de baixa volatilidade e sobre como vários modelos falham ao tentar bater o mercado. Por isso este estudo buscou adotar a estratégia de investir em ETFs de modo que fosse possível buscar grande diversific...
	Um fator que pode explicar o modelo mais simples ter se sobressaído, é o fato de a matriz de covariância simples ser mais direta não realizando ajustes complexos, portanto pode ter se destacado devido à sua simplicidade. Em mercados mais estáveis ou c...
	O EWMA dá mais peso aos dados mais recentes, o que pode ser útil em mercados voláteis, mas dado o intervalo de tempo analisado, não se mostrou efetivamente, pode ter sido realmente um efeito do período analisado e o estimador pode ter resultados melho...
	Um ponto bastante importante para trabalhos futuros é realizar este estudo, mas desta vez usando ETFs da bolsa americana e convertendo para Reais Brasileiros (BRL) utilizando a curva de dólar. Isso permitirá um horizonte de evento maior e testará com ...
	No geral avaliando que enfrentamos um cenário muito forte de alta de juros, fica difícil que os modelos batam o CDI com um período de diversificação tão limitado, por outro lado, esses modelos são criados para ter grande resiliência no longo prazo e n...
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