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RESUMO 

Neste estudo abordamos o desenvolvimento de um algoritmo que adota a estratégia 

de alocação Risk Parity com o objetivo de criar uma carteira robusta de investimentos no 

mercado brasileiro. O modelo proposto utiliza uma abordagem de alocação de risco que 

busca distribuir o risco de maneira equânime ao longo de todos os ativos na carteira, a 

estratégia central consiste em balancear a contribuição de risco de cada ativo para a 

carteira. O estudo investiga a aplicação de diferentes estimadores de risco para a 

construção dessa carteira, incluindo métodos clássicos e modernos, como o Estimador de 

Variância-Covariância Simples, o Rotational Invariant Estimator (RIE), o EWMA 

(Exponentially Weighted Moving Average), e o Shrinkage Estimator. Esses estimadores são 

analisados quanto à sua capacidade de proporcionar estimativas mais precisas de risco, 

com o intuito de melhorar a alocação entre ativos e otimizar a diversificação da carteira. A 

pesquisa foca exclusivamente em ETFs (Exchange Traded Funds) disponíveis no mercado 

brasileiro, dado o crescente interesse por esse tipo de ativo, que oferece liquidez, 

diversificação e baixos custos operacionais. A análise inclui uma comparação do 

desempenho de cada abordagem, levando em consideração métricas de risco, como a 

volatilidade, o Drawdown máximo e os índices de Sharpe e Sortino, além de avaliar o 

impacto de cada estimador no risco total da carteira. Os resultados sugerem que, embora 

os métodos mais sofisticados, como o RIE, possam fornecer estimativas mais precisas de 

risco, modelos mais simples, como o Shrinkage e o EWMA, podem apresentar desempenho 

superior em cenários específicos de alta volatilidade, especialmente em períodos de 

estresse no mercado. A dissertação conclui que, para investidores no Brasil, uma 

combinação estratégica de diferentes estimadores de risco, com uma abordagem focada 

em Risk Parity, pode oferecer uma alternativa robusta para uma carteira equilibrada e bem 

diversificada. 
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ABSTRACT 

This study explores the development of an algorithm that implements the Risk Parity 

allocation strategy with the objective of constructing a robust investment portfolio in the 

Brazilian market. The proposed model adopts a risk-based allocation approach that aims to 

evenly distribute risk across all assets in the portfolio. Its core strategy consists of balancing 

the individual risk contribution of each asset. The research investigates the application of 

various risk estimators for portfolio construction, encompassing both classical and modern 

techniques, such as the Simple Variance-Covariance Estimator, the Rotational Invariant 

Estimator (RIE), the Exponentially Weighted Moving Average (EWMA), and the Shrinkage 

Estimator. These estimators are assessed based on their ability to provide more accurate 

risk estimates, thereby enhancing asset allocation and improving portfolio diversification. 

The study focuses exclusively on Exchange Traded Funds (ETFs) available in the Brazilian 

market, given the growing interest in this asset class due to its liquidity, diversification 

benefits, and low operational costs. The analysis includes a performance comparison of 

each approach, considering risk metrics such as volatility, maximum drawdown, and the 

Sharpe and Sortino ratios, as well as evaluating the impact of each estimator on the total 

risk in portfolio. Results suggest that while sophisticated methods such as RIE may yield 

more precise risk estimates, simpler models like Shrinkage and EWMA may outperform in 

specific high-volatility scenarios, particularly during periods of market stress. The study 

concludes that, for investors in Brazil, a strategic combination of different risk estimators 

within a Risk Parity framework may offer a robust alternative for constructing a balanced and 

well-diversified portfolio. 
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1. INTRODUÇÃO 

A Teoria Moderna do Portfólio (TMP), inicialmente apresentada por 

Markowitz (1952) [1], foi capaz de revelar a importância da diversificação de 

ativos como meio de redução de riscos e otimização de retornos. Para Assaf 

Neto (2014) [2], a teoria mostra que o risco de um ativo deve ser analisado pela 

sua contribuição ao risco de um portfólio diversificado, orientando decisões de 

investimentos pelo impacto no risco e retorno global da carteira. 

À medida que a teoria evoluiu, surgiram novas abordagens e modelos que 

ampliaram e refinaram os conceitos originais de Markowitz. Nos anos 60, o 

trabalho de William Sharpe introduziu o Modelo de Capital Asset Pricing Model 

(CAPM), que expandiu a TMP ao integrar o conceito de prêmio de risco de 

mercado e o papel do beta na avaliação do risco sistemático dos ativos. Esta 

evolução forneceu uma maneira mais direta de estimar o retorno esperado de 

um ativo com base no seu risco relativo em comparação ao mercado como um 

todo. 

Nos últimos anos, os modelos de Risk Parity (Paridade de Risco) 

emergiram como uma alternativa eficiente para a criação de portfólios 

diversificados. Estas estratégias buscam diversificar as fontes de risco. Cada 

fonte de risco carrega um prêmio de risco, que é uma potencial fonte de retorno. 

Para alcançar essa diversificação, essas estratégias pressupõem que as classes 

de ativos (como ações, bonds, etf’s ou fiis) devem contribuir de maneira 

equânime para o nível de risco em um portfólio. Isso torna este tipo de modelo 

excepcional caso queira criar um portfólio com diferentes classes de ativos, 

expostas a diferentes riscos. 

 Neste estudo buscou-se aplicar a estratégia de Risk Parity a carteiras 

compostas por ETF’s na bolsa brasileira oferecendo uma abordagem inovadora 

e potencialmente robusta para a gestão de investimentos. Hoje existem 

aproximadamente 91 ETF’s na bolsa brasileira, que seguem diferentes índices 

de mercado, das mais variadas classes de ativos. O intuito é criar um portfólio 

com alta diversificação, investindo em diversas classes de ativos distintas, 

reduzindo a volatilidade geral do portfólio, proporcionando uma experiência de 

investimento mais estável para o investidor, o que é especialmente valioso em 

um mercado volátil como o brasileiro. 
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2. REFERENCIAL TEÓRICO 

 

 A otimização de portfólio é um processo quantitativo que busca a alocação 

ideal de ativos para maximizar o retorno esperado e mitigar eventuais perdas, 

minimizando simultaneamente o risco. Dentro deste escopo, é possível citar as 

principais estratégias de alocação de portfólio e as principais métricas para 

avaliar a performance e o risco de um portfólio. 

 

2.1 Modelos Quantitativos para Alocação de Ativos 

 Modelos quantitativos utilizam dados históricos, como a série de preços e 

retornos de um determinado ativo. Com base nestes dados, busca-se identificar 

um padrão, com o objetivo de prever retornos, ou reduzir riscos, estes modelos 

se concentram na criação de algoritmos que identifiquem estes padrões e 

executam as estratégias necessárias. A automação e a modelagem preditiva 

permitem decisões ágeis e eficientes, reduzindo a influência de emoções (vieses 

humanos) nas escolhas de investimento. 

 

2.1.1 Otimização de Média Variância 

 Como já discutido anteriormente abordagem clássica de Markowitz (1952) 

[1], propõe a construção de um portfólio que maximize o retorno esperado para 

um determinado nível de risco, ou minimize o risco para um dado retorno 

esperado. Essa estratégia envolve a estimação das médias e 

variâncias/covariâncias dos retornos dos ativos.  

 

2.1.2 Modelos Baseados em Fatores 

 Esses modelos, como o Capital Asset Pricing Model (CAPM) e o Arbitrage 

Pricing Theory (APT) [3], buscam explicar os retornos dos ativos em função de 

fatores de risco sistemáticos (ou sistêmicos). A alocação de ativos é feita com 

base na exposição a esses fatores, otimizando a relação risco-retorno. 

 

2.1.3 Otimização Robusta 

 Esta estratégia procura garantir que a alocação do portfólio seja robusta 

a incertezas nas estimativas dos parâmetros (como retornos e covariâncias). 
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Métodos de otimização robusta, como a programação robusta, são usados para 

mitigar o impacto de erros de estimativa [4]. 

 

2.1.4 Modelos Estocásticos 

 A otimização estocástica envolve a modelagem de incertezas nos retornos 

dos ativos como variáveis aleatórias. Essa abordagem permite simular diferentes 

cenários futuros e otimizar a alocação de ativos considerando essas incertezas 

[5]. 

  

2.1.5 Algoritmos Genéticos 

 Essas estratégias utilizam algoritmos inspirados na biologia, como 

algoritmos genéticos, para explorar o espaço de soluções de alocação de ativos. 

Essas técnicas são úteis em problemas complexos onde as abordagens 

tradicionais podem ser limitadas [6]. 

 

2.2 Métricas de Risco e Performance 

 Métricas de risco e performance são essenciais para avaliar portfólios de 

investimento. Entre as principais métricas de risco, destacam-se o desvio padrão, 

que mede a volatilidade dos retornos. Estas métricas em geral, são capazes de 

fornecer uma visão abrangente da eficiência de um portfólio, permitindo 

comparações e ajustes estratégicos para otimizar resultados. 

 

2.2.1 Desvio Padrão 

 Assaf Neto [2] descreve que o desvio padrão é capaz de medir o grau de 

dispersão dos retornos em termos de valor esperado, e pode ser interpretado 

como o risco total do ativo. Ou seja, é uma medida estatística indica a dispersão 

dos retornos de um ativo em torno de sua média, é utilizada para quantificar a 

volatilidade de um ativo e está diretamente relacionada ao risco total associado. 

Sendo assim, há maior incerteza quanto maior o desvio padrão, ou seja, 

maior o risco, porém podem possibilitar retornos elevados. Para um contexto de 

formação de portfólio, ativos que possuem um desvio padrão mais elevado são 

vistos como mais arriscados, pois seus retornos são mais imprevisíveis devido a 

maior volatilidade. 
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A fórmula matemática do desvio padrão de um ativo é dada por: 

 𝜎 = √
1

𝑁
∑(𝑅𝑖 − 𝑅)

2
𝑁

𝑖=1

 (2.1) 

Onde: 

𝑅𝑖: Retorno esperado de um ativo 

𝑅: Taxa livre de risco 
N: Número total de retornos 

 

2.2.2 Covariância e Correlação 

As análises de covariância e de correlação entre os retornos dos ativos 

podem indicar o grau de dependência linear entre as variáveis observadas. Essa 

medida indica o grau em que duas variáveis variam juntas, conforme descrito por 

Malkiel (2019), a diversificação não é suficiente quando carteira é forma por 

ações com alta covariância, uma vez que covariâncias com valores positivos 

indicam que os retornos dos dois ativos tendem a se mover na mesma direção. 

Por outro lado, essa medida quando apresenta valores negativos indica 

que os ativos se movem em direções opostas. Para valor zero, entende-se que 

não há relação linear entre os retornos dos ativos. Essa escala de unidades está 

relacionada com as variáveis envolvidas, o que significa que ela pode variar 

conforme o conjunto de ativos escolhidos. 

A fórmula matemática da covariância é dada por: 

 𝐶𝑜𝑣(𝑋, 𝑌) = ∑
(𝑋𝑖 − 𝑋 )(𝑌𝑖 − 𝑌 )

𝑛 − 1

𝑛

𝑥=1

 (2.2) 

Onde: 

𝐶𝑜𝑣(𝑋, 𝑌):Covariância entre X e Y 

𝑋𝑖: Valor individual da variável X na amostra i 

𝑌𝑖: Valor individual da variável Y na amostra i 
𝑋  : Média aritmética dos valores de X 

𝑌 : Média aritmética dos valores de Y 
n: Número total de amostras 

 

Uma outra maneira de compreender o risco entre ativos, é através da 

correlação, que é descrita por Hull (2018) como uma medida normalizada da 
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covariância, que indica o grau de relacionamento linear entre as duas variáveis. 

Essa pode oferecer uma compreensão mais padronizada entre a relação entre 

as variáveis. A sua escala não é influenciada pelas escalas das variáveis 

envolvidas, diferente da covariância, possuindo valores podem variar entre -1 e 

+1, tornando-a uma métrica que permite maior comparabilidade entre os 

diferentes pares de ativos. 

A fórmula matemática da correlação é dada por: 

 𝐶𝑜𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑥 ∗ 𝜎𝑦
 (2.3) 

Onde: 

𝐶𝑜𝑟(𝑋, 𝑌): Coeficiente de correlação entre as variáveis X e Y 

𝜎𝑥 : Desvio padrão de X 
𝜎𝑦 : Desvio padrão de Y 

 

Entende-se que há benefícios em verificar a correlação entre os ativos 

escolhidos para a formação do portfólio, uma vez que permitem entender o 

comportamento de diferentes ativos em relação aos seus retornos. A relação 

entre os retornos de ativos com correlação perfeitamente negativa ou 

perfeitamente positiva são ilustrados na Figura 2 e 3, respectivamente. 

 

Figura 1 – Investimentos com correlação negativa 

           

Fonte: Assaf Neto (2014, p. 236) 
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Figura 2 – Investimentos com correlação positiva 

             

Fonte: Assaf Neto (2014, p. 236) 

 

2.2.3 Beta 

O conceito de "beta" β no mercado financeiro é uma medida fundamental 

que indica a volatilidade ou o risco sistemático de um ativo ou portfolio em 

comparação ao mercado como um todo. O beta é utilizado principalmente na 

análise de ações e na avaliação de investimentos, ajudando investidores e 

gestores a entenderem como um ativo tende a se mover em relação ao mercado. 

O beta é uma medida que quantifica a sensibilidade do retorno de um ativo 

em relação ao retorno do mercado. Um beta de 1 indica que o ativo tende a se 

mover em linha com o mercado; um beta maior que 1 indica que o ativo é mais 

volátil do que o mercado, enquanto um beta menor que 1 indica que o ativo é 

menos volátil. A equação padrão para o cálculo do beta é: 

 

                                            𝛽 =
𝐶𝑜𝑣(𝑅𝑝 ,𝑅𝑚)

𝑉𝑎𝑟(𝑅𝑚)
                                                (2.4) 

 Onde: 

𝑅𝑝 : Retorno do portfólio; 

𝑅𝑚: Retorno do mercado; 

𝐶𝑜𝑣 : Covariância entre os retornos do portfólio e mercado; 
𝑉𝑎𝑟 : Variância dos retornos do mercado. 
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O beta é uma ferramenta essencial para investidores que desejam avaliar 

o risco de um ativo em relação ao mercado. Um ativo com beta alto pode 

representar um risco maior, mas também a possibilidade de retornos mais 

elevados [7]. 

O beta é uma parte fundamental do Capital Asset Pricing Model (CAPM), 

que relaciona o risco sistemático de um ativo ao seu retorno esperado. A 

equação do CAPM é expressa como: 

                                 𝐸(𝑅𝑖) = 𝑅𝑓 + βi(𝐸(𝑅𝑚) − 𝑅𝑓)                                   (2.5) 

Onde: 

𝐸(𝑅𝑖) : Retorno esperado do portfólio; 
𝑅𝑓 : Taxa livre de risco; 

𝛽 : sensibilidade do portfólio em relação ao mercado (Beta); 
𝐸(𝑅𝑚) − 𝑅𝑓: Prêmio de risco [8]. 

 

2.2.4 Alfa 

 O índice alfa (ou simplesmente “alfa”) é uma métrica utilizada em finanças 

para avaliar a habilidade de um ativo ou de um gestor de investimentos em 

superar o mercado ou um benchmark. No geral, ele quantifica o retorno adicional 

de um investimento, ajustado ao risco, em relação a um índice de referência. A 

formulação clássica do alfa pode ser expressa como: 

 

                                           𝛼 = 𝑅𝑝 − (𝑅𝑓 + 𝛽(𝑅𝑚 − 𝑅𝑓))                                            (2.6) 

Onde: 
𝑅𝑝 : Retorno do portfólio; 

𝑅𝑓 : Taxa livre de risco; 

𝛽 : sensibilidade do portfólio em relação ao mercado; 
𝑅𝑚: Retorno do mercado. 

 
O alfa é uma ferramenta crucial para gestores de fundos e investidores, 

pois fornece uma medida clara do desempenho ajustado ao risco. Uma 
formulação mais simples do alfa é simplesmente considerar o retorno de 
mercado como a taxa livre de risco, desta maneira eliminamos o termo a direita 
da equação e temos simplesmente 𝛼 = 𝑅𝑝 − 𝑅𝑓. Também há a possibilidade em 

casos específicos de substituir a risk free por um benchmark de preferência. 
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2.2.5 Índice de Sharpe 

 

 O índice de Sharpe compara o retorno de um investimento com seu risco. 

É uma expressão matemática da ideia de que retornos excessivos ao longo do 

tempo podem significar mais volatilidade e risco, em vez de habilidade de 

investimento. 

 O economista William F. Sharpe propôs o índice de Sharpe em 1964 [7], 

como um desdobramento de seu trabalho no modelo de precificação de ativos 

de capital (CAPM), chamando-o de razão de recompensa por variabilidade. 

Sharpe recebeu o Prêmio Nobel de Economia por seu trabalho no CAPM em 

1990. O numerador do índice de Sharpe é a diferença ao longo do tempo entre 

os retornos realizados, ou esperados, e um benchmark, como a taxa de retorno 

livre de risco ou o desempenho de uma categoria específica de investimento. 

Seu denominador é o desvio padrão dos retornos ao longo do mesmo período, 

uma medida de volatilidade e risco. 

 

Principais pontos: 

 O índice de Sharpe divide os retornos excessivos de um portfólio por uma 

medida de sua volatilidade para avaliar o desempenho ajustado ao risco; 

 Os retornos excessivos são aqueles que estão acima de um benchmark 

(índice de mercado) ou da taxa de retorno livre de risco; 

 O cálculo pode ser baseado em retornos históricos ou previsões; 

 Um índice de Sharpe mais alto é melhor ao comparar portfólios 

semelhantes (que apresentem volatilidades próximas); 

 O índice de Sharpe tem fraquezas inerentes e pode ser exagerado para 

algumas estratégias de investimento. 

A formulação matemática do índice de Sharpe pode ser expressa da seguinte 

forma: 

                                                         𝐼𝑠 =  
𝑅𝑝−𝑅𝑓

𝜎𝑝
                                                (2.7) 

Onde: 
𝑅𝑝 : Retorno do portfólio; 

𝑅𝑓 : Taxa livre de risco; 
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𝜎𝑝 : Desvio padrão dos retornos do portfólio. 

 
Existe uma variação do Sharpe conhecida como Índice de Sortino [9]. 

Porém, diferentemente do Sharpe no qual consideramos o desvio padrão do 

Portfólio levando em conta todos os retornos históricos. No Índice de Sortino 

consideramos apenas o semidesvio, ou seja, o desvio padrão somente dos 

retornos que são inferiores aos retornos do benchmark. Portanto consideramos 

somente a volatilidade de downside. 

 

2.3 Modelos de Média Variância  

 Os modelos de média variância enfatizam a importância da diversificação, 

mostrando que combinar ativos com diferentes níveis de risco e correlação pode 

resultar em portfólios mais eficientes. Isso ajudou a popularizar a prática de 

diversificação na gestão de investimentos, reduzindo o risco sem comprometer 

significativamente os retornos. 

 

Além disso, os modelos de média-variância estabeleceram as bases para o 

desenvolvimento de outras teorias e ferramentas financeiras, como o Capital 

Asset Pricing Model (CAPM) e o índice de Sharpe [7], que se tornaram 

essenciais na avaliação de risco e retorno. 

 

 O principal objetivo dos modelos de média variância de uma maneira 

simplista, consiste em minimizar o risco maximizando o retorno, é possível 

elaborar as formulações matemáticas para minimizar o risco e maximizar o 

retorno da seguinte maneira. 

 𝑚𝑖𝑛 𝜎𝑝   √∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 (2.8) 

Sujeito às restrições: 

𝑅𝑝 = ∑ 𝑤𝑖𝑅̅𝑖
𝑁
𝑖=1  : retorno esperado da carteira 

1 = ∑ 𝑤𝑖
𝑁
𝑖=1  : investimento de todo o capital disponível 

0 ≤ 𝑤𝑖  ≤ 1: sem alavancagem 
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 𝑚𝑎𝑥 𝑅𝑝    ∑∑𝑤𝑖𝑅̅𝑖

𝑁

𝑗=1

𝑁

𝑖=1

 (2.9) 

Sujeito às restrições: 

𝜎𝑝  = √∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗  
𝑁
𝑗=1

𝑁
𝑖=1 : risco da carteira 

1 = ∑ 𝑤𝑖 
𝑁
𝑖=1 : investimento de todo o capital disponível 

0 ≤ 𝑤𝑖  ≤ 1: sem alavancagem 

 

O modelo de média-variância é uma ferramenta que identifica carteiras 

eficientes com base na Fronteira Eficiente, visando encontrar a combinação ideal 

de ativos. Essa abordagem leva em conta o nível de risco e o retorno desejado 

pelo investidor. As estratégias típicas incluem maximizar o retorno dentro de um 

limite de risco ou minimizar o risco enquanto se garante um retorno mínimo. 

Neste estudo, são aplicados esses dois métodos, evitando práticas como venda 

a descoberto e aluguel de ativos sem risco. O risco associado à carteira é 

analisado por meio da matriz de covariância. 

Markowitz fez contribuições significativas na formulação de técnicas 

analíticas voltadas para identificar a carteira mais adequada, de acordo com 

objetivos de retorno ajustados ao risco. Na visão de Ruppert [10], portfólios 

eficientes equilibram a relação entre risco e retorno dos ativos, garantindo um 

retorno esperado mais elevado para um determinado nível de risco ou o menor 

risco possível para um retorno específico. Assim, qualquer tentativa de aumentar 

o retorno esperado resultará em um aumento do risco, enquanto a redução do 

risco resultará em um menor retorno esperado. 

Essa teoria revolucionou a forma como se investe ao integrar princípios 

de diversificação, otimização da relação risco-retorno e análise de correlação 

entre ativos na formação de carteiras consideradas ótimas. 
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2.3.1 Fronteira Eficiente  

 

A Fronteira Eficiente é um conceito central na Teoria Moderna de Portfólio, 

desenvolvido por Harry Markowitz na década de 1950 [1]. Essa teoria estabelece 

que os investidores podem construir carteiras de ativos que maximizam o retorno 

esperado para um dado nível de risco ou minimizam o risco para um retorno 

esperado específico. A Fronteira Eficiente é representada graficamente como a 

curva que delimita o conjunto de carteiras eficientes, onde cada ponto na curva 

corresponde a uma carteira com a melhor relação risco-retorno. 

 

Figura 3 – Fronteira Eficiente 

 

 

De acordo com Bodie, Kane e Marcus (2014) [11], a Fronteira Eficiente é 

composta por portfólios que não podem ser superados por outros em termos de 

retorno ajustado ao risco. Os investidores, ao se situarem nesta fronteira, podem 

otimizar suas escolhas com base em suas preferências individuais em relação 

ao risco. Essa abordagem foi uma inovação que permitiu a análise quantitativa 

na alocação de ativos, transformando a gestão de portfólios. 

 

Em seu livro "Investment Science", David G. Luenberger (1998) [12] 

discute como a Fronteira Eficiente resulta da combinação de ativos que 

apresentam diferentes níveis de risco e retorno, enfatizando a importância da 

diversificação. A escolha de ativos correlacionados negativamente pode ajudar 
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a reduzir a volatilidade do portfólio, resultando em uma melhor performance em 

relação à fronteira. 

 

Outro autor relevante é William F. Sharpe, que, em "Portfolio Theory and 

Capital Markets" (1970) [13], expande a discussão sobre a Fronteira Eficiente, 

conectando-a com o modelo de precificação de ativos de capital (CAPM). Sharpe 

destaca como a Fronteira Eficiente não apenas ajuda na seleção de portfólios, 

mas também fundamenta a análise do risco em relação ao retorno esperado no 

mercado. 

A Fronteira Eficiente, portanto, não é apenas uma ferramenta teórica, mas 

uma abordagem prática que permite aos investidores tomarem decisões mais 

informadas sobre como alocar seus recursos de maneira a alcançar seus 

objetivos financeiros. A integração de conceitos de risco e retorno através da 

diversificação e análise de portfólios representa um marco na evolução da teoria 

financeira. 

 

 Um conceito central na Teoria Moderna de Portfólio é a Linha de Mercado 

de Capitais, ou Capital Market Line (CML), conceito este que estabelece a 

relação entre o risco e o retorno esperado de um portfólio de mercado eficiente. 

Representada graficamente, a CML é uma linha que parte da taxa livre de risco 

e se estende até o portfólio de mercado, que é uma combinação de todos os 

ativos disponíveis ponderados pelo seu valor de mercado. Essa linha indica o 

retorno esperado para cada nível de risco total, medido pelo desvio padrão. Ela 

pode ser expressa matematicamente como: 

 𝜇𝑅  =  𝜇𝑓  +  
(𝜇𝑀  −  𝜇𝑓)

𝜎𝑀
 𝜎𝑅 (2.10) 

 

Onde: 

𝜇f : Taxa livre de risco 

𝜎R, 𝜎M: Desvio padrão 

𝜇M  −  𝜇f: Prêmio de risco do portfólio de mercado 
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Segundo Prasanna Chandra em "Investment Analysis and Portfolio 

Management" (2011) [14], a CML é uma representação visual que ajuda os 

investidores a entenderem a relação entre risco e retorno em portfólios eficientes. 

A inclinação da linha reflete o prêmio de risco do mercado, ou seja, a recompensa 

adicional esperada pelos investidores ao assumirem riscos além do ativo livre de 

risco. 

Em "Modern Portfolio Theory and Investment Analysis," Edwin J. Elton e 

Martin J. Gruber (2014) [15], discutem como a CML permite que investidores 

decidam sobre a alocação entre ativos de risco e um ativo livre de risco, levando 

em consideração sua aversão ao risco. Os portfólios que se situam abaixo da 

CML são considerados ineficientes, pois não oferecem um retorno proporcional 

ao risco assumido. 

Outro autor relevante é Richard A. Brealey e Stewart C. Myers, que em 

"Principles of Corporate Finance" (2016) [16], abordam a CML em relação à 

avaliação de ativos e à formação de portfólios. Eles enfatizam que a CML fornece 

uma abordagem clara para investidores que buscam maximizar seus retornos, 

ajustando o risco de acordo com suas preferências individuais. 

Portanto, a Capital Market Line é uma ferramenta vital para a construção de 

portfólios eficientes, servindo como um guia que fundamenta a análise do risco 

e retorno no mercado financeiro. A intersecção entre o portfólio de mercado e a 

taxa livre de risco representa um marco significativo na teoria de investimentos, 

possibilitando uma gestão de portfólios mais eficaz. 

 

2.3.2 Carteira de Mínima Variância 

 

 A carteira de mínima variância, introduzida por Harry Markowitz, é 

uma abordagem que busca a combinação de ativos que minimiza o risco total 

para um determinado nível de retorno esperado. Esse conceito é uma aplicação 

prática da Teoria Moderna de Portfólio, que enfatiza a diversificação e a análise 

da correlação entre os ativos. A função de otimização linear do portfólio de 

mínima variância pode ser representada como: 

 



21 

 

 

 

Público 

 
min w      𝑤𝑇∑𝑤 (2.11) 

Sujeito às restrições: 

𝑤𝑇𝜇 ≥  𝛽  

1𝑇𝑤 = 1; w ≥ 0 

 

De acordo com Richard Grinold e Ronald Kahn em "Active Portfolio 

Management" (2000) [17], a carteira de mínima variância é construída de 

maneira a ter a menor volatilidade possível. Essa característica é especialmente 

valiosa em momentos de incerteza no mercado, pois proporciona aos 

investidores uma camada adicional de proteção contra perdas significativas. 

 

Figura 4 – Localização da carteira de mínima variância na Fronteira 

Eficiente 

 

 

Um dos principais benefícios da carteira de mínima variância é sua 

habilidade de reduzir a volatilidade sem comprometer drasticamente o retorno 

esperado. Essa abordagem é particularmente atraente para investidores 

avessos ao risco, pois permite a maximização da estabilidade dos retornos. Em 

"Portfolio Construction and Risk Management" (2018) [18], o autor David M. 

Smith destaca que a diversificação eficiente pode ser alcançada ao combinar 

ativos que apresentam baixa correlação, resultando em um portfólio que se 

comporta de maneira mais previsível. 

 

Entretanto, existem também limitações associadas a essa estratégia. 

Conforme mencionado por Michael C. Jensen em "The Performance of Mutual 
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Funds in the Period 1945-1964" (1968) [8], uma desvantagem da carteira de 

mínima variância é a possibilidade de concentração excessiva em certos ativos, 

o que pode aumentar o risco específico de setores ou empresas. Além disso, a 

dependência de dados históricos para estimar variâncias e correlações pode 

resultar em decisões inadequadas se as condições de mercado mudarem, como 

observado por John C. Hull em "Options, Futures, and Other Derivatives" (2017) 

[19]. 

 

A construção de uma carteira de mínima variância requer, portanto, uma 

análise cuidadosa das características dos ativos e suas inter-relações. Em 

"Investment Analysis" (2013) [20], o autor Frank K. Reilly afirma que, enquanto 

essa estratégia pode oferecer proteção contra a volatilidade, os investidores 

devem estar cientes das dinâmicas do mercado e de como elas podem afetar o 

desempenho do portfólio ao longo do tempo. A carteira de mínima variância é 

uma estratégia importante na gestão de portfólios, equilibrando a busca por 

retornos com a necessidade de minimizar riscos.  

 

 2.3.3 Carteira igualmente ponderada 

 

A carteira igualmente ponderada é uma estratégia de investimento em que 

todos os ativos são alocados com a mesma proporção no portfólio, 

independentemente de seu risco ou retorno esperado. Essa abordagem é 

simples de implementar e oferece uma maneira prática de diversificar os 

investimentos. 

 

Para Frank K. Reilly e Keith C. Brown em "Investment Analysis and 

Portfolio Management" (2012) [20], a carteira igualmente ponderada é 

frequentemente utilizada por investidores que desejam evitar a complexidade de 

calcular alocações ótimas baseadas em modelos de risco e retorno. Essa 

simplicidade a torna acessível, especialmente para investidores iniciantes ou 

aqueles que preferem uma abordagem menos técnica. 

 

Um dos principais benefícios dessa estratégia é a diversificação natural 

que ela proporciona. Ao distribuir o capital igualmente entre diferentes ativos, o 
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investidor pode reduzir o risco específico de cada ativo individual. Em "Modern 

Portfolio Theory and Investment Analysis" (2014) [15], Edwin J. Elton e Martin J. 

Gruber destacam que, embora a carteira igualmente ponderada possa não ser a 

mais eficiente em termos de risco-retorno, ela oferece uma abordagem prática 

que pode ser vantajosa em certos contextos de mercado. 

 

No entanto, a carteira igualmente ponderada também apresenta 

desvantagens. Uma crítica comum é que essa estratégia não leva em 

consideração a volatilidade ou correlação dos ativos. Como mencionado por 

William F. Sharpe em "Portfolio Theory and Capital Markets" (1970) [13], 

alocações iguais podem resultar em uma maior exposição ao risco total do 

portfólio, especialmente se os ativos incluídos tiverem diferentes perfis de risco. 

 

Outra limitação é a falta de adaptação às condições de mercado. 

Conforme discutido por Robert C. Merton em "Continuous-Time Finance" (1990) 

[21], uma carteira igualmente ponderada pode não responder adequadamente a 

mudanças nas condições econômicas ou nos mercados, pois não ajusta as 

alocações em função do desempenho relativo dos ativos. 

 

É possível dizer que a carteira igualmente ponderada é uma estratégia de 

investimento que combina simplicidade e diversificação, mas pode não ser a 

mais eficiente em termos de gestão de risco.  

 

2.4 O Modelo de Paridade de Riscos (Risk Parity) 

 O modelo de paridade de riscos, ou risk parity, é uma abordagem de 

alocação de ativos que visa distribuir o risco de forma equitativa entre diferentes 

classes de ativos, em vez de simplesmente alocar capital de maneira igual. Esse 

conceito busca criar um portfólio onde cada ativo contribui de forma semelhante 

ao risco total, permitindo uma diversificação mais eficaz e uma gestão mais 

equilibrada do risco. 

De acordo com o autor Aswath Damodaran em "Applied Corporate 

Finance" (2014) [22], a paridade de riscos se baseia na ideia de que os 

investidores devem considerar a volatilidade e a correlação dos ativos ao 

construir portfólios. Ao equilibrar o risco entre as classes de ativos, os 
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investidores podem potencialmente melhorar o desempenho ajustado ao risco, 

tornando o portfólio mais robusto frente a flutuações de mercado. 

 

Uma das principais vantagens do modelo de paridade de riscos é sua 

capacidade de mitigar a volatilidade do portfólio. Em "Risk Parity: A New 

Approach to Asset Allocation" (2011), os autores de um estudo na Journal of 

Portfolio Management destacam que a abordagem permite que os investidores 

evitem uma concentração excessiva de risco em qualquer ativo ou classe de 

ativos específica. Isso pode resultar em uma performance mais estável ao longo 

do tempo, especialmente em ambientes de mercado voláteis. 

 

No entanto, o modelo de paridade de riscos também possui desvantagens. 

Conforme mencionado por G. Michael Phillips e H. Kent Baker em "Risk 

Management and Derivatives" (2009) [23], a implementação do risk parity pode 

exigir um reequilíbrio frequente do portfólio, o que pode gerar custos de 

transação. Além disso, a estratégia pode levar a uma superexposição a ativos 

com baixa correlação, o que pode não ser ideal em certas condições de mercado. 

 

Outro ponto a ser considerado é a dependência de dados históricos para 

estimar a volatilidade e a correlação, conforme discutido por James P. 

O’Shaughnessy em "What Works on Wall Street" (2005) [24]. Se as condições 

de mercado mudarem, as estimativas baseadas em dados passados podem não 

se concretizar, resultando em um desempenho aquém do que foi predito no 

modelo. 

Uma questão muito importante que faz com que portfólios de Risk Parity 

se torne bastante atrativos é a anomalia de baixa volatilidade. A anomalia de 

baixa volatilidade é um fenômeno observado nos mercados financeiros onde 

ativos de menor volatilidade tendem a oferecer retornos superiores em 

comparação com ativos mais voláteis, desafiando as expectativas tradicionais 

da teoria financeira, que sugere que maior risco deve ser acompanhado por 

maior retorno. Essa anomalia sugere que os investidores podem obter melhores 

retornos ajustados ao risco investindo em ativos menos voláteis. 

Em "The Low-Volatility Anomaly: A Decomposition Analysis" (2014) [25], 

Martin Lettau e Sidney Viswanathan analisam como ações com baixa volatilidade 
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tendem a superar suas contrapartes mais voláteis ao longo do tempo. A pesquisa 

mostra que essa tendência não pode ser completamente explicada por riscos 

sistemáticos ou por prêmios de risco tradicionais, o que a torna uma anomalia 

intrigante para acadêmicos e investidores. 

 

Figura 5: Estudo de estratégias de baixa volatilidade do BNP Paribas 

 

Fonte: Exploiting the low volatility anomaly in practice 

 

Uma das possíveis explicações para a anomalia de baixa volatilidade é a 

aversão ao risco dos investidores. Para Baker e Wurgler (2006), os investidores 

tendem a superestimar o risco associado a ativos mais voláteis, levando a uma 

demanda excessiva por estes ativos, o que resulta em preços inflacionados e 

retornos futuros mais baixos. Por outro lado, ativos que assumam volatilidades 

menores podem ser subestimados, resultando em oportunidades de retorno. 

 

Outro fator que pode contribuir para essa anomalia é a tendência dos 

investidores de seguir modas ou ciclos de mercado, conforme discutido por Cliff 

Asness et al. (2013) [27]. Quando o mercado está em alta, investidores podem 

ser atraídos por ações de maior volatilidade na esperança de obter ganhos 

rápidos, enquanto ações de menor volatilidade são ignoradas, o que pode levar 

a uma inversão de expectativas e a retornos superiores para as ações menos 

voláteis. 

https://viewpoint.bnpparibas-am.com/exploiting-the-low-volatility-anomaly-in-practice/
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Apesar de seus retornos superiores, a anomalia de baixa volatilidade 

também apresenta desafios. Como observado por Robert Novy-Marx (2013) [28], 

a seleção de ações de baixa volatilidade pode não ser tão simples, pois essas 

ações podem não performar bem em todos os ciclos de mercado. Assim, a 

anomalia pode ser menos previsível do que parece. 

 

2.5 Estimadores de Risco 

 Estimadores de risco (volatilidade) tem grande importância no contexto 

dos mercados mobiliários, não se restringindo apenas a avaliar a volatidade, mas 

também a tomar decisões com base na rentabilidade esperada e estruturação 

de estratégias quantitativas para precificação dos ativos. Estimar o risco permite 

que eventuais rebalanceamentos na carteira sejam executados, assim como 

ativo possam ser integrados ou retirados da carteira.  

De acordo com diversos artigos, a capacidade de antecipar mudanças na 

volatilidade e compreender sua dinâmica é fundamental para a criação e 

implementação de estratégias mais robustas para gestão da carteira (Poon & 

Granger, 2003) [29].  

 

2.5.1 O Modelo EWMA 

 O modelo Exponential Weighted Moving Average (EWMA) se destaca por 

ser uma das abordagens mais populares para estimar a volatilidade de ativos 

financeiros. Sua principal característica reside em atribuir pesos decrescentes 

aos retornos passados e pesos maiores aos retornos mais recentes, sendo mais 

eficiente em prever mudanças comportamentais recentes na volatilidade. Este 

modelo é amplamente utilizado no mercado financeiro devido à sua simplicidade 

e capacidade de responder rapidamente a mudanças nos padrões de 

volatilidade, uma característica importante para modelar ativos, devido a 

dinâmica dos mercados. 

 

A ideia por trás do EWMA consiste no fato de que a volatilidade do 

mercado não é constante (heterocedasticidade) e tende a mudar ao longo do 

tempo. Portanto, o modelo atribui maior relevância para as observações mais 

recentes, com o objetivo de capturar a volatilidade condicional — a ideia de que 

a volatilidade futura depende não apenas dos retornos passados, mas também 
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de como esses retornos evoluíram recentemente. Esse comportamento é 

essencial em mercados financeiros, onde a volatilidade pode mudar rapidamente 

devido a eventos inesperados ou informações novas (Danielsson, 2011) [30]. 

 

O modelo EWMA pode ser formalizado pela seguinte equação: 

 

σt
2  = λσt−1

2 + (1 − λ)rt−1
2  (2.12) 

 

Onde: 

- σt
2: estimativa de variância condicional no tempo t, 

- λ : parâmetro de suavização que controla a magnitude do peso atribuído ao 

valor mais recente, 

- rt−1
2 : retorno quadrático no período t-1. 

 

A constante λ  geralmente é escolhida de maneira a suavizar entre os 

dados mais antigos e os mais recentes, sendo um valor entre 0 e 1. Se λ for 

próximo de 1, o modelo atribui maior peso aos dados passados, enquanto 

valores de λ  mais baixos atribuem maior peso aos dados mais recentes. 

Geralmente os valores mais aceitos para  

 

A principal vantagem do modelo EWMA consiste em sua flexibilidade e 

eficiência computacional. Ao contrário de modelos mais complexos, o EWMA não 

requer a estimação de múltiplos parâmetros nem o uso de métodos iterativos 

pesados, tornando-o atrativo para aplicações em tempo real ou em mercados 

com grande volume de dados. Além disso, o EWMA é particularmente crucial 

para captar a persistência de volatilidade em mercados financeiros, onde 

intervalos de alta volatilidade frequentemente seguem outros intervalos de alta 

volatilidade, e vice-versa. 

 

Uma das principais críticas ao modelo EWMA, no entanto, é a sua 

simplicidade excessiva. Embora o modelo seja eficiente em termos 

computacionais, ele não leva em consideração a possibilidade de efeitos não-
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lineares ou a heterocedasticidade mais complexa que pode existir em alguns 

mercados. Modelos mais avançados, como o GARCH, tentam capturar essas 

nuances, mas o EWMA ainda se mantém como uma ferramenta importante 

devido à sua capacidade de ajustar rapidamente a volatilidade na medida que 

os dados mais recentes ocorrem. 

 

O uso do modelo EWMA é amplamente reconhecido em diversas áreas 

do mercado financeiro. Por exemplo, no gerenciamento de risco de carteiras o 

modelo é comumente utilizado para calcular as variâncias e covariâncias dos 

ativos, que são fundamentais na alocação eficiente de capital. Também é 

utilizado na avaliação de Value at Risk (VaR), que é uma medida do risco de 

perda em uma carteira de ativos financeiros. A sua simplicidade e capacidade de 

adaptação rápida a mudanças tornam o modelo uma escolha popular para a 

estimativa da volatilidade em condições de mercado que apresentam maior 

instabilidade. 

 

2.5.2 O Modelo GARCH 

 Os modelos autorregressivos são ferramentas amplamente utilizadas em 

séries temporais. O modelo GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity), proposto por Tim Bollerslev em 1986 [31], é uma extensão 

do modelo ARCH (Autoregressive Conditional Heteroskedasticity), desenvolvido 

por Robert Engle em 1982 [32]. O GARCH é amplamente utilizado no mercado 

financeiro para modelar a volatilidade condicional. Os modelos se baseiam no 

princípio de heterocedasticidade, onde assume-se que a variância não é 

constante, mas sim variável. 

 

O modelo GARCH(1,1) é uma versão simples, mas eficiente, do modelo 

GARCH, onde a volatilidade condicional depende de um termo autoregressivo e 

de um termo de média móvel. A equação de retorno 𝑟𝑡 para um ativo em um 

modelo GARCH (1,1) é dada por: 

 

rt = 𝜇 + 𝜖𝑡 (2.13) 
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Onde: 

- rt: retorno no tempo t; 

- μ: média do retorno; 

- ϵt: erro no tempo t, dado por ϵt = 𝜎𝑡𝑧𝑡 

- zt ≈ 𝑁(0,1): é um ruído branco (white noise), com média 0 e variância 1. 

 

A variância condicional 𝜎𝑡
2 é modelada como uma função dos erros e da variância 

passada, dada pela fórmula: 

 

σt
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2  (2.14) 

Onde: 

- σt
2: é a variância condicional (volatilidade) no tempo t; 

- 𝛼0: constante; 

- 𝛼1: é o coeficiente que mede o efeito dos choques passados 𝜖𝑡−1
2 ; 

- 𝛽1: é o coeficiente que mede o efeito da volatilidade passada 𝜎𝑡−1
2 . 

 

A eficiência do modelo GARCH também pode ser avaliada pela sua 

estabilidade e pela capacidade de capturar dinâmicas complexas, com isso 

podemos introduzir o modelo utilizado neste estudo, o modelo GARCH DCC. 

 

2.5.2.1 GARCH DCC 

 O modelo GARCH-DCC (Dynamic Conditional Correlation) é uma 

extensão do modelo GARCH. O modelo GARCH-DCC combina a estrutura 

GARCH para modelar a volatilidade e uma abordagem dinâmica para modelar a 

correlação entre os ativos ao longo do tempo. Esse modelo é especialmente útil 

em carteiras de ativos onde se deseja avaliar como as correlações entre os 

ativos variam com o tempo. O GARCH-DCC é um modelo bivariado (ou 

multivariado) que descreve as correlações dinâmicas entre os retornos de 

diferentes ativos ao longo do tempo [33]. Ele é formulado em duas etapas 

principais: 
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A primeira etapa envolve a modelagem da volatilidade condicional dos 

ativos individuais, de forma semelhante ao modelo GARCH(1,1) tradicional. Para 

cada ativo i (onde i=1,…,N), temos o modelo GARCH: 

 

r𝑖𝑡 = 𝜇 + 𝜖𝑖𝑡 (2.15) 

 

 Já para o erro condicional (resíduo) temos ϵit = 𝜎𝑖𝑡𝑧𝑖𝑡 . Portanto, a 

variância condicional para o modelo GARCH-DCC ganha a seguinte 

característica. 

σit
2 = 𝛼𝑖0 + 𝛼𝑖1𝜖𝑖,𝑡−1

2 + 𝛽𝑖1𝜎𝑖,𝑡−1
2  (2.16) 

 

Esta etapa envolve a modelagem da correlação condicional entre os 

ativos, ou seja, como as correlações entre os resíduos ϵit. dos ativos variam ao 

longo do tempo. Para isso, o modelo DCC utiliza uma matriz de correlação 

dinâmica. A ideia é modelar as correlações entre os resíduos ϵit ajustados pelas 

volatilidades 𝜎𝑖,𝑡. Primeiro, calcula-se os resíduos normalizados para cada ativo, 

dado por: 

𝜖𝑖̂𝑡 = 
𝜖𝑖𝑡
𝜎𝑖𝑡

 (2.17) 

A matriz de covariância condicional de 𝑁 ativos é dada por: 

 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼𝜖𝑡̂−1𝜖′̂𝑡−1 + 𝛽𝑄𝑡−1 (2.18) 

Onde: 

- 𝑄𝑡: matriz de covariância condicional no tempo t; 

- 𝑄̅ : matriz de covariância condicional de longo prazo (estimada a partir dos 

retornos históricos); 

- 𝛼 & 𝛽 : parâmetros que controlam a resposta da matriz de covariância aos 

choques passados e à persistência da volatilidade passada, respectivamente. 
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Da mesma maneira a matriz de correlação dinâmica 𝑅𝑡  pode ser obtida 

normalizando-se 𝑄𝑡 como: 

 

𝑅𝑡 =
1

√𝐷𝑡
𝑄𝑡𝐷𝑡

−
1
2  (2.19) 

 

onde 𝐷𝑡 é uma matriz diagonal contendo as variâncias  𝜎𝑖𝑡
2  de cada ativo. A matriz 

𝑅𝑡 fornece as correlações dinâmicas entre os ativos ao longo do tempo. 

 

2.5.3 Encolhimento Matricial (Shrinkage) 

 A técnica de encolhimento matricial, ou shrinkage, é um método utilizado 

na otimização de portfólios com o objetivo de melhorar a estimativa das matrizes 

de covariância dos ativos. Em termos simples, a ideia é "encolher" as estimativas 

das variâncias e covariâncias dos ativos. Na ideia do encolhimento, partimos da 

premissa que nem toda informação advinda da matriz é proveitosa pra 

construção de modelo e que muitos dos dados possam ser ruídos brancos (white 

noise), com isso eliminando parte dos dados conseguiríamos eliminar mais 

informações inúteis ao modelo. 

 Na otimização clássica de portfólios, uma das etapas centrais é a 

estimativa das covariâncias entre os ativos. No entanto, as estimativas a partir 

de dados históricos podem ser muito sensíveis a variações nos dados de entrada, 

especialmente quando o número de ativos é grande em relação ao número de 

observações históricas. Isso pode gerar matrizes de covariância com alta 

variabilidade, que podem resultar em portfólios subótimos, com ativos muito 

correlacionados ou com estimativas de risco imprecisas [34]. 

 

 A técnica funciona de maneira que a matriz de covariância original é 

combinada com uma matriz de covariância "encolhida" (normalmente, uma 

matriz de covariância baseada em um modelo mais simplificado). O parâmetro 

de shrinkage controla o quanto de "encolhimento" é aplicado, equilibrando entre 

as estimativas baseadas nos dados históricos e a matriz de covariância mais 

simples. Formalmente, a matriz de covariância ajustada Σ𝑠ℎ𝑟𝑖𝑛𝑘𝑒𝑑  é dada por: 
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Σ𝑠ℎ𝑟𝑖𝑛𝑘𝑒𝑑  = 𝜆 Σ𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 + (1 − 𝜆)Σ𝑝𝑟𝑖𝑜𝑟 (2.20) 

 

Onde: 

- Σ𝑠ℎ𝑟𝑖𝑛𝑘𝑒𝑑 : matriz de covariância encolhida; 

-Σ𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 : matriz de covariância empírica calculada a partir dos dados históricos 

-Σ𝑝𝑟𝑖𝑜𝑟 : matriz de covariância empírica calculada a partir dos dados históricos 

- 𝜆: é o parâmetro de shrinkage, controlando o grau de encolhimento [35]. 

 

Ao suavizar as estimativas extremas das covariâncias, a técnica ajuda a 

reduzir o risco de construir um portfólio baseado em relações espúrias entre os 

ativos, ou seja, reduz consideravelmente o risco de overfitting [36]. Em muitas 

situações práticas, portfólios otimizados com shrinkage podem apresentar um 

desempenho superior em comparação com a otimização tradicional, 

especialmente quando se trabalha com grandes quantidades de ativos ou 

amostras históricas pequenas [35]. 

 

2.5.4 Estimador Invariante a Rotação (RIE) 

 

 O Rotational Invariant Estimator (RIE) possui como principal característica, 

ser invariável a rotações, ou seja, ele não é afetado por transformações 

ortogonais nos dados. Isso é importante quando se trabalha com dados de alta 

dimensionalidade, onde a estrutura de correlação entre os ativos pode ser 

complexa. O RIE foi desenvolvido para melhorar a robustez das estimativas de 

covariância, especialmente quando as amostras de dados são limitadas ou 

quando as matrizes de covariância empíricas são instáveis [37]. 

 O RIE é baseado na ideia de que, ao aplicar uma rotação ortogonal do 

tipo ℚ ∈  ℝN x N  (uma matriz com a propriedade ℚTℚ = I , onde I  é a matriz 

identidade), a estrutura da matriz de covariância deve permanecer inalterada. A 

ideia é projetar um estimador de covariância que seja invariante a essas rotações. 

O método pode ser entendido como uma regularização da matriz de covariância 

empírica, que visa melhorar a estabilidade das estimativas. 
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 O RIE pode ser formulado de forma que a matriz de covariância estimada 

Σ̂𝑅𝐼𝐸  seja uma média ponderada entre a matriz de covariância empírica Σ̂𝐸𝑀𝑃  e 

uma matriz de covariância prior Σ̂𝑝𝑟𝑖𝑜𝑟, que pode ser uma matriz simples, como 

a identidade:  

 

Σ̂𝑅𝐼𝐸  = 𝜆 Σ𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 + (1 − 𝜆)Σ𝑝𝑟𝑖𝑜𝑟  (2.21) 

Onde 𝜆  é um parâmetro de regularização que controla a quantidade de 

suavização aplicada. Para garantir a invariância à rotação, o RIE pode ser 

aplicado ajustando a forma da matriz de covariância de maneira que o impacto 

de transformações ortogonais nos dados seja minimizado [37]. 

 

Em suma, a principal vantagem do RIE é sua invariância a rotações. Isso 

significa que o estimador não é influenciado por transformações ortogonais nos 

dados, o que é uma característica desejável quando se lida com ativos 

financeiros que podem ter variações complexas de correlação. Em termos 

matemáticos, se aplicarmos uma rotação 𝑅  aos dados de entrada 𝑋 , então a 

estimativa de covariância não deve mudar: 

Σ̂𝑅𝐼𝐸(RX) = 𝑅Σ̂𝑅𝐼𝐸(𝑋)𝑅
𝑇 (2.22) 

 

Isso garante que a matriz de covariância estimada não seja afetada por rotações 

nos dados [37]. 
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3. METODOLOGIA 

3.1 Função Objetiva e Otimização 

 Dentro do contexto de um algoritmo de Risk Parity. A função objetiva do 

busca minimizar a diferença entre a contribuição de risco de cada ativo no 

portfólio e a contribuição de risco desejada (rb). Analisando detalhadamente. 

Analisando a função objetiva, disposta no Apêndice B. 

 

Figura 6: Algoritmo de função objetiva desenvolvido em Python. 

 

 Elucidando acerca de cada termo. 

 x: Representa o vetor de pesos dos ativos no portfólio; 

 p_cov: Matriz de covariância (indicando o risco e as correlações entre os ativos). 

 rb: O Target (valor alvo) para a contribuição de risco de cada ativo, que que é 

igual para todos os ativos (para o objetivo de "equal risk contribution", o que 

implica que todos os ativos devem ter a mesma contribuição de risco total). 

 

O que a função faz é calcular a diferença entre a contribuição de risco de 

cada ativo (dada por x * np.dot(p_cov, x) / np.dot(x.transpose(), np.dot(p_cov, x))) 

e a contribuição de risco alvo rb, e depois soma o quadrado dessas diferenças 

para minimizar essa discrepância. Em outras palavras, o algoritmo busca ajustar 

os pesos dos ativos de forma que cada um tenha uma contribuição de risco 

semelhante a rb. 

Também foram impostas condições de contorno (restrições). Na qual o termo 

cons_sum_weight impõe uma restrição que o peso total do portfólio seja 1, ou 

seja, o portfólio permanece long only 100% comprado em 100% do tempo. Já a 

outra condição de contorno cons_long_only_weight, impõe uma restrição de que 

todo percentual alocado em algum ativo deve ser positivo, ou seja, não podemos 

ficar vendidos em algum ativo.   
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3.2 Estratégias e Modelagem dos Dados 

 

O objetivo deste estudo, consistiu em aplicar o modelo de Risk Parity 

aplicado na bolsa brasileira. Para isso adotamos a estratégia de investir em 

ETF’s que também tenham exposição cambial e no mercado estrangeiro 

como um todo, a fim de buscar maior diversificação da carteira. Estudos, 

como os de Barber e Odean (2000) [38], demonstram que investidores 

amadores frequentemente performam abaixo do mercado, por tentarem 

escolher ações específicas, enquanto pesquisas de Fama e French (1992) 

[39], comprovam que a diversificação e estratégias passivas tendem a 

superar muitas tentativas de stock picking. A gestão passiva de um ETF 

também reduz os custos associados à negociação ativa, como as comissões 

de corretagem, tornando-a uma alternativa mais acessível e rentável. 

Neste contexto foi feito uma lista de ETF’s negociados na bolsa brasileira, 

que tivessem pelo menos 4 anos de negociação, com isto chegamos na lista 

dos seguintes ETF’s. 

 

Tabela 1: ETFs da B3 selecionados 

Ticker Indices 

XINA11.SA Índice MSCI China 

GOLD11.SA Índice de Preço do Ouro (Spot Gold) 

XFIX11.SA Índice de Fundos Imobiliários (IFIX) 

ACWI11.SA Índice MSCI All Country World Index (ACWI) 

BOVA11.SA Índice Bovespa (IBOV) 

BBSD11.SA Índice Small Cap Brasil (SMLL) 

ESGB11.SA Índice S&P ESG Brasil 

HASH11.SA Índice Blockchain (Hashdex) 

DIVO11.SA Índice de Dividendos (IDIV) 

IVVB11.SA Índice S&P 500 (EUA) 

MATB11.SA Índice de Materiais Básicos (IMAT) 

SMAL11.SA Índice Small Cap Brasil (SMLL) 

PIBB11.SA Índice Brasil 50 (IBrX-50) 

FIXA11.SA Índice de Renda Fixa (CDI) 

IMAB11.SA Índice de Mercado de Renda Fixa (IMA-B) 

B5MB11.SA Índice MSCI Small Cap Brasil 

B5P211.SA Índice MSCI Small Cap Brasil (Microcaps) 
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Com estes índices foi adotada a seguinte estratégia. Foi criado um 

conjunto in sample que foi utilizado para simular as matrizes de covariâncias 

e correlações, utilizando a série histórica de retornos dos ETF’s. 

 

Para isto foi utilizada a série histórica de retornos desde 01-04-2021 

(primeiro de abril de 2021), até 01-04-2022 (primeiro de abril de 2021). 

Totalizando 1 ano de retornos, idealmente seria preferível utilizar uma série 

mais longa de dados. Porém, o mercado brasileiro ainda é muito jovem e 

fundos passivos de índice é algo recente na nossa bolsa. Portanto, existem 

poucos fundos de índice com um período relativamente longo para que 

simulações mais robustas possam ser utilizadas. 

 

 Com a série de retornos obtida, foram utilizados grupos de estimadores 

de risco, como objetivo de criar a matriz de covariância mais robusta afim de 

obtermos o melhor processo de análise para alocação da carteira. Foram 

utilizados os modelos descritos na fundamentação teórica. RIE, EWMA, 

Encolhimento de matrizes e EWMA com encolhimento. Também foi adotado a 

matriz de covariâncias simples, sem utilizar nenhum estimador de risco. O 

modelo GARCH não foi utilizado na avaliação dos resultados por não ter 

apresentado um resultado satisfatório. 

 

 Este projeto foi desenvolvido na linguagem de programação Python, 

foram utilizadas tanto bibliotecas já amplamente utilizadas para fins acadêmicos 

e profissionais, como também foram implementas bibliotecas proprietárias, cujos 

códigos implementados serão fornecidos via apêndice. 

 

 Após importar as principais bibliotecas foi realizada uma consulta e um 

algoritmo foi desenvolvido para capturar todos os principais ETF’s de interesse. 
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Com os dados (série histórica de preços) capturadas. Obtemos os 

retornos e analisamos a volatilidade dos ativos. Como já supracitado 

anteriormente, os dados foram divididos em dois conjuntos. O primeiro onde 

seria utilizado para obter as matrizes de covariância e correlação utilizando 

os otimizadores e o segundo para efetivamente rodarmos o backtest. No 

primeiro conjunto de dados foram obtidos os seguintes padrões de 

volatilidade. 

 

Tabela 2: Volatilidade do primeiro conjunto (01/04/2021 – 01/04/2022) 

ETF Volatilidade Anualizada (%) 

HASH11.SA 67.01 

XINA11.SA 33.65 

MATB11.SA 26.60 

SMAL11.SA 26.11 

ESGB11.SA 22.90 

ACWI11.SA 21.08 

PIBB11.SA 20.05 

BOVA11.SA 19.42 

GOLD11.SA 18.94 

DIVO11.SA 18.81 

BBSD11.SA 17.48 

IVVB11.SA 17.31 

XFIX11.SA 10.87 

B5MB11.SA 9.99 

IMAB11.SA 9.02 

FIXA11.SA 5.96 

B5P211.SA 4.84 

 

Tabela 3: Volatilidade do segundo conjunto (03/04/2022 – 31/12/2024) 

ETF Volatilidade Anualizada (%) 

HASH11.SA 48.81 

XINA11.SA 31.27 

MATB11.SA 24.59 

SMAL11.SA 20.99 

ESGB11.SA 20.68 

ACWI11.SA 17.81 

PIBB11.SA 17.51 

BOVA11.SA 17.20 

GOLD11.SA 17.02 

DIVO11.SA 16.45 
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BBSD11.SA 16.17 

IVVB11.SA 14.91 

XFIX11.SA 12.52 

B5MB11.SA 8.33 

IMAB11.SA 7.44 

B5P211.SA 7.24 

FIXA11.SA 2.99 

 

 

 

 Para realização do backtest foi utilizada a biblioteca bt. bt - Flexible 

Backtesting for Python — bt 0.2.10 documentation. Em conjunto com as 

bibliotecas proprietárias com o modelo de otimização por Risk Parity e os 

estimadores de risco. 

 

 A fim de ter um resultado mais coerente e satisfatório o portfólio foi 

rebalanceado mensalmente, também foi simulado os diferentes portfólios se 

comparados aos principais benchmarks de referência do país. O índice 

BOVESPA e o CDI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://pmorissette.github.io/bt/
https://pmorissette.github.io/bt/
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4. RESULTADOS E DISCUSSÕES 

4.1 Matrizes de Correlação 

 

A análise foi iniciada avaliando a matriz de correlação para os diferentes 

estimadores de risco para o conjunto de testes. 

 

Figura 6: Matriz de Correlação Simples 

 

Figura 7: Matriz de Correlação RIE 
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Figura 8: Matriz de Correlação EWMA 

 

 

Figura 9: Matriz de Correlação com Encolhimento 
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Figura 10: Matriz de Correlação EWMA com Encolhimento 

 

 

 

 

 Ao analisar as matrizes de correlação é possível observar que o estimador 

invariante a rotações apresentou dificuldades em encontrar 

correlações/descorrelações entre os ativos selecionados. O RIE pode apresentar 

dificuldades, especialmente em situações de alta dimensionalidade e em dados 

que apresentem muitos ruídos brancos. Talvez pelo tempo relativamente curto 

utilizado (1 ano). Com um período maior e um tratamento melhor dos dados é 

provável que o estimador apresente melhores resultados. 

  

 Por outro lado, conseguimos observar que modelos mais simples como o 

EWMA e o encolhimento, assim como o modelo sem a utilização de estimadores 

conseguiram identificar muito mais correlações entre os ativos. Lembrando que 

nem sempre essas correlações podem de fato significar que o modelo seja 

necessariamente robusto. Modelos mais complexos, como o RIE, podem se 

tornar muito sensíveis a variações pequenas nos dados, especialmente se o 

número de variáveis for grande ou se a amostra de dados for limitada. Isso pode 

resultar em overfitting, onde o modelo tenta ajustar demasiadamente os dados, 
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criando um modelo que performa bem nos dados de treinamento, mas falha em 

capturar a correlação real em novos dados ou em dados com variações mais 

"naturais". 

 

 Os modelos mais simples são menos sensíveis ao ruído e têm maior 

estabilidade em cenários com amostras menores ou dados mais simples. Eles 

capturam bem as correlações lineares e não introduzem complexidade 

desnecessária. 

 

4.2 Risco por Ativo e Risco Marginal 

 O risco marginal de um ativo refere-se à contribuição adicional para o risco 

total do portfólio ao adicionar ou alterar a quantidade desse ativo. Em outras 

palavras, é o risco adicional que um ativo marginal (ou seja, uma unidade 

adicional desse ativo) traz para o portfólio. 

No contexto de Risk Parity, o risco marginal ajuda a determinar a 

quantidade ótima de alocação de cada ativo, de modo que a contribuição de risco 

de cada ativo seja proporcional. O modelo ajusta as alocações de forma que a 

contribuição marginal de risco de cada ativo seja igual, o que resulta em uma 

distribuição de pesos no portfólio que balanceia o risco total. Foram obtidos 

diferentes alocações para cada estimador de risco, mas com todos os 

estimadores respeitando o princípio primordial de um modelo de Risk Parity, 

distribuindo o risco de maneira equânime ao longo da carteira. 

 

Figura 11: Contribuição Total para o Risco da Carteira sem Estimador 
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Figura 12: Contribuição Total para o Risco da Carteira RIE 

 

 

Figura 13: Contribuição Total para o Risco da Carteira EWMA 
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Figura 14: Contribuição Total para o Risco da Carteira com Encolhimento 

 

 

Figura 15: Contribuição Total para o Risco da Carteira EWMA com 

Encolhimento 
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Tabela 4: Alocação dos Ativos 

Ativos Alocação 
Simples 
(%) 

Alocação 
RIE (%) 

Alocação 
EWMA 
(%) 

Alocação 
Shrinkage 
(%) 

Alocação 
EWMA 
Shrinkage 
(%) 

XINA11.SA 3.16 3.78 1.81 3.59 2.13 

GOLD11.SA 0.00 6.56 0.00 0.00 0.00 

XFIX11.SA 10.03 14.19 8.02 10.00 8.70 

ACWI11.SA 5.60 4.53 4.35 6.22 4.98 

BOVA11.SA 2.68 8.28 2.82 3.16 3.38 

BBSD11.SA 3.45 6.87 4.10 4.05 4.85 

ESGB11.SA 2.33 4.07 2.31 2.78 2.81 

HASH11.SA 1.60 2.12 1.35 1.86 1.61 

DIVO11.SA 3.17 6.17 3.39 3.70 4.05 

IVVB11.SA 7.10 5.00 4.90 7.54 5.47 

MATB11.SA 2.87 5.21 3.35 3.34 3.90 

SMAL11.SA 2.12 4.44 2.06 2.53 2.51 

PIBB11.SA 2.70 7.34 2.93 3.16 3.48 

FIXA11.SA 12.18 0.00 10.79 11.49 10.83 

IMAB11.SA 10.65 21.43 12.30 10.90 12.23 

B5MB11.SA 10.63 0.00 14.24 10.79 13.42 

B5P211.SA 19.73 0.00 21.30 14.90 15.66 

 

 É notório observar que o algoritmo RIE evitou alocar na renda fixa e foi o 
único que alocou no etf de ouro, que é bastante descorrelacionado dos ativos de 
renda variável em geral, como demonstrado no capítulo 4.1.  
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O RIE é projetado para ser robusto a diferentes padrões de dados, 
ajustando-se a uma maior diversidade de correlações entre os ativos. Ele não 
apenas considera a volatilidade de cada ativo, mas também as interações 
complexas entre eles, levando em conta a invariância rotacional. O modelo tem 
a capacidade de identificar e captar estruturas de risco mais complexas, o que 
pode ter levado à alocação no ouro, um ativo tradicionalmente visto como um 
refúgio em tempos de volatilidade ou crises econômicas. 

 
Modelos mais simples, como o EWMA ou Shrinkage, não levam em 

consideração as interações mais complexas entre os ativos de maneira tão 
detalhada como o RIE. Não possuindo a mesma consideração para mudanças 
estruturais ou comportamentos mais dinâmicos no mercado. Eles podem ser 
mais inclinados a dar maior ênfase a ativos de risco tradicional (como a renda 
fixa) devido a um foco maior em estabilidade histórica e previsível, em vez de 
tentar identificar proteção contra eventos extremos ou correlações menos 
evidentes. 
 
4.3 Backtest 

 Considerando que investiríamos 100 reais em cada portfólio teríamos o 

seguinte resultado. 

 

Figura 19: Evolução das carteiras para diferentes estimadores de risco. 

 

 

  

 Embora as carteiras tenham apresentado um desempenho abaixo do CDI 

no período em questão, é importante destacar que o cenário macroeconômico 

esteve marcado por uma taxa de juros excepcionalmente elevada, refletindo o 

comportamento do CDI, que foi particularmente alto durante esse intervalo. 

 

 Por outro lado, as carteiras foram estruturadas para capturar retornos 

mais sustentáveis e diversificados no longo prazo, priorizando uma combinação 

entre diversos ETFs que, naturalmente, apresentam maior volatilidade e 
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sensibilidade a flutuações de mercado. Em períodos de juros elevados, essas 

classes de ativos tendem a ter um desempenho relativo mais moderado, pois o 

custo de oportunidade de investir em ativos de renda fixa aumenta 

significativamente. Avaliando esta questão o benchmark escolhido para as 

carteiras foi o índice BOVESPA. 

 

Tabela 5: Principais Métricas 

 

Estatística Simples RIE EWMA Shrinkage EWMA 

Shrinkage 

IBOVESPA CDI 

Retorno Total 22.69% 19.89% 20.04% 22.53% 19.84% 2.99% 37.21% 

Sharpe Diário 1.58 0.96 1.37 1.44 1.24 0.16 23.26 

Sortino Diário 2.69 1.63 2.30 2.44 2.09 0.28 N/C 

CAGR 7.76% 6.86% 6.91% 7.71% 6.84% 1.08% 12.26% 

MaxDrawdown -4.61% -8.64% -4.91% -5.42% -5.84% -18.77% N/C 

Calmar 1.69 0.79 1.41 1.42 1.17 0.06 N/C 

Vol Diária 

Anualizada 

5.55% 8.33% 5.76% 6.08% 6.30% 19.45% 0.57% 

Melhor Dia 1.22% 2.12% 1.27% 1.33% 1.46% 6.59% 0.71% 

Pior Dia -1.69% -2.05% -2.01% -1.75% -1.98% -4.22% 0.04% 

Melhor Mês 4.54% 6.21% 4.60% 4.91% 5.02% 12.72% 1.28% 

Pior Mês -2.07% -3.36% -2.43% -2.21% -2.56% -10.05% 0.79% 

Sharpe 

Anualizado 

1.40 1.31 0.98 1.43 1.00 0.29 7.43 

Vol Anualizada 8.39% 9.29% 10.79% 8.45% 10.98% 24.30% 1.62% 

Melhor Ano 17.64% 18.71% 18.26% 18.03% 18.75% 24.30% 13.16% 

Pior Ano 5.78% 5.58% 2.99% 6.08% 3.22% -10.06% 10.87% 

 

O modelo RIE alocou recursos majoritariamente em renda variável, 

particularmente em ações como GOLD11.SA e IMAB11.SA, e não teve 

exposição significativa a renda fixa. Isso é um reflexo da forma como o RIE se 

comporta diante da dinâmica de correlação entre os ativos. Podemos inferir que 

em eventuais cenários de mercado de alta o algoritmo RIE pode performar de 

maneira superior aos demais modelos que tiveram uma alocação superior em 

ETF’s com perfil mais conservador. 
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5. CONCLUSÕES 

Esse estudo se propôs a criar uma abordagem inovadora criando uma 

carteira balanceada e igualmente diversificada, mas não atribuindo os 

mesmos pesos a cada ativo e sim atribuindo o mesmo risco, de modo que 

cada ativo contribuísse de maneira equânime ao risco total do portfólio, 

mantendo a volatilidade controlada e rebalanceando as carteiras 

mensalmente. 

Também existem estudos, como o caso da anomalia de baixa volatilidade 

e sobre como vários modelos falham ao tentar bater o mercado. Por isso este 

estudo buscou adotar a estratégia de investir em ETFs de modo que fosse 

possível buscar grande diversificação na carteira investindo em diferentes 

classes de ativos, desde ETFs de renda variável, fixa, inflação e fundos 

imobiliários. Um ponto de relevância é que devido ao mercado de ETFs ser 

bastante embrionário no Brasil, não foi possível avaliar um horizonte de longo 

prazo, permitindo com que os algoritmos e estimadores de risco 

conseguissem obter maior informação do mercado. 

Um fator que pode explicar o modelo mais simples ter se sobressaído, é 

o fato de a matriz de covariância simples ser mais direta não realizando 

ajustes complexos, portanto pode ter se destacado devido à sua simplicidade. 

Em mercados mais estáveis ou com correlações mais constantes entre os 

ativos (como ETFs no Brasil, que podem ter comportamentos mais 

previsíveis), ele pode capturar bem o risco sem a necessidade de ajustes 

sofisticados. O encolhimento de matrizes ajusta a matriz de covariância para 

evitar estimativas extremas e melhorar a robustez, especialmente quando os 

dados históricos são limitados ou ruidosos. O encolhimento provavelmente 

se destacou porque pode ter suavizado os dados ruidosos do mercado 

brasileiro, levando a uma estimativa de risco mais estável e menos sensível 

a variações de curto prazo. 

O EWMA dá mais peso aos dados mais recentes, o que pode ser útil em 

mercados voláteis, mas dado o intervalo de tempo analisado, não se mostrou 

efetivamente, pode ter sido realmente um efeito do período analisado e o 

estimador pode ter resultados melhores em outros períodos. Já o RIE é mais 

complexo e tenta lidar com a variabilidade de dados, mas pode ser menos 
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eficaz quando a estrutura de risco é mais estável ou linear. O RIE pode ter 

introduzido um excesso de complexidade sem agregar valor substancial no 

seu backtest. 

Um ponto bastante importante para trabalhos futuros é realizar este 

estudo, mas desta vez usando ETFs da bolsa americana e convertendo para 

Reais Brasileiros (BRL) utilizando a curva de dólar. Isso permitirá um 

horizonte de evento maior e testará com maior eficácia e eficiência a robustez 

do modelo. 

No geral avaliando que enfrentamos um cenário muito forte de alta de 

juros, fica difícil que os modelos batam o CDI com um período de 

diversificação tão limitado, por outro lado, esses modelos são criados para 

ter grande resiliência no longo prazo e num período bastante desafiador os 

modelos conseguiram apresentar um alto nível de resiliência. 
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APÊNDICE A – JUPYTER NOTEBOOK 

 

import pandas as pd 

import yfinance as yf 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

etfs_utilizados = ["XINA11.SA", "GOLD11.SA", "XFIX11.SA",

 "ACWI11.SA", "BOVA11.SA", "BBSD11.SA", "ESGB11.SA",

 "HASH11.SA","DIVO11.SA", "IVVB11.SA", "MATB11.SA", 

"SMAL11.SA", "PIBB11.SA", "FIXA11.SA", "IMAB11.SA", 

"B5MB11.SA","B5P211.SA"] 

 

# Lista de ETFs na B3 

etfs_b3 = etfs_utilizados 

 

# Período de interesse 

start_date = "2021-04-01" 

end_date = "2024-12-31"  # Data atual 

 

# Função para obter histórico de preços de fechamento 

def get_etf_close_prices(etfs, start, end): 

    all_data = {} 

    for etf in etfs: 

        print(f"Baixando dados para {etf}...") 

        ticker = yf.Ticker(etf) 

        hist = ticker.history(start=start, end=end, auto_adjust = 

False) 

        if not hist.empty: 

            all_data[etf] = hist["Adj Close"]  # Preço de fechamento 

    return pd.DataFrame(all_data) 

 

# Obter dados 

df_prices = get_etf_close_prices(etfs_b3, start_date, end_date) 

 

# Conjunto de treinamento 

df = df_prices["2021-04-01":"2022-04-01"].bfill() 

 

# Conjunto de testes 

df2 = df_prices["2022-04-02":] 

 

# Bibliotecas Proprietárias 

import bt 

import equalriskcontribution as erc 

import ERC_functions as erc_fun 

import aux_fun as ax 

import portfolio_metrics as pm 

import erc_mod as erc_m 

import Risk_estimators as re 
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# Matrizes de Covariância e Correlação para todos os estimadores de 

risco 

 

risk_estimators = {'simples' : re.shrinkage,  

                   'corrRIE' : re.corrRIE,  

                   'ewma_cov' : re.ewma_cov, 

                   'shrinkage' : re.shrinkage,  

                   'ewma_shrinker': re.shrinked_ewma} 

 

cov_matrixes = [] 

corr_matrixes = [] 

for name, res in risk_estimators.items(): 

    print(f"Obtendo matriz de correlação para {name}") 

    if name == "ewma_shrinker": 

        df_cov = res(prices = df, alpha = .1, gamma = .98, norm = 

False) 

    elif name == "simples": 

        df_cov = res(prices = df, alpha = 0, norm = False) 

    else: 

        df_cov = res(prices = df) 

    cov_matrixes.append(pd.DataFrame(df_cov, index = df.columns, col-

umns = df.columns)) 

    std_dev = np.sqrt(np.diag(df_cov)) 

    df_corr = df_cov / np.outer(std_dev, std_dev) 

    corr_matrixes.append(pd.DataFrame(df_corr, index = df.columns, 

columns = df.columns)) 

 

lista_estimadores = ["Simples", "RIE", "EWMA", "Shrinkage", "EWMA 

Shrinkage"] 

 

for i in range(5): 

    mask = np.triu(np.ones_like(corr_matrixes[i], dtype=bool)) 

    plt.figure(figsize=(16, 8)) 

    sns.heatmap(corr_matrixes[i], mask=mask, annot=True, cmap="cool-

warm", fmt=".2f", linewidths=0.5) 

    plt.title(f"Matriz de correlação {lista_estimadores[i]} ETF's 

bolsa brasileira") 

    plt.xticks(rotation=45)  # Rotaciona rótulos do eixo X 

    plt.yticks(rotation=0)   # Mantém rótulos do eixo Y na horizontal 

    plt.show() 

 

 

 

 

 

 

 

 



55 

 

 

 

Público 

 

# Alocação Ativos 

asset_allocation = [] 

for risk in risk_estimators.keys(): 

    if risk == "ewma_shrinker": 

        allocation = erc_m.erc(prices = df, per = "months", estimator 

= risk, alpha = .1, gamma = .98) 

    elif name == "simples": 

        allocation = erc_m.erc(prices = df, per = "months", estimator 

= False) 

    else: 

        allocation = erc_m.erc(prices = df, per = "months", estimator 

= risk) 

         

    asset_allocation.append(allocation.x) 

 

# Risco por Ativo e Risco Marginal 

for i in range(len(cov_matrixes)): 

    marginal_risk = erc_fun.mrc(cov_matrix = cov_matrixes[i], weights 

= asset_allocation[i]) 

    print(erc_fun.trc(mrc = marginal_risk, weights = asset_alloca-

tion[i])) 

    erc_fun.plot_total_risk(marginal_risk, prices = df, weights = as-

set_allocation[i], estimador = list(risk_estimators.keys())[i]) 

 

# Puxando CDI do Banco Central 

# URL da API do Banco Central para o CDI diário (série 12) 

url = "https://api.bcb.gov.br/dados/serie/bcdata.sgs.12/da-

dos?formato=json" 

 

# Fazer a requisição e carregar os dados 

response = requests.get(url) 

if response.status_code == 200: 

    cdi_data = response.json() 

else: 

    raise Exception(f"Erro ao acessar API do Banco Central. Código: 

{response.status_code}") 

 

# Converter para DataFrame 

cdi_df = pd.DataFrame(cdi_data) 

 

# Ajustar formato do DataFrame 

cdi_df['data'] = pd.to_datetime(cdi_df['data'], format='%d/%m/%Y')  # 

Converter a coluna 'data' para datetime 

cdi_df['valor'] = cdi_df['valor'].astype(float) / 100  # Converter 

'valor' para float e transformar em retorno percentual diário 

 

# Ordenar por data (apenas por segurança) 

cdi_df = cdi_df.sort_values('data').reset_index(drop=True) 

 

cdi_df = cdi_df.rename({"data" : "Dates", "valor" : "CDI"}, axis = 

1).set_index("Dates") 
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cdi_acc = (1+cdi_df).cumprod() – 1 

df2.index = pd.to_datetime(df2.index.strftime("%Y-%m-%d")) 

cdi_acc_mod = cdi_acc[cdi_acc.index.isin(df2.index)] 

 

## Backtest 

%matplotlib inline 

class OrderedWeights(bt.Algo): 

    def __init__(self, weights): 

        self.target_weights = weights 

 

    def __call__(self, target): 

        target.temp['weights'] = dict(zip(target.temp['selected'], 

self.target_weights)) 

        return True 

 

s1 = bt.Strategy("Simples", [bt.algos.RunMonthly(), 

                        bt.algos.SelectAll(), 

                        OrderedWeights(asset_allocation[0]), 

                        bt.algos.Rebalance()]) 

s2 = bt.Strategy("RIE", [bt.algos.RunMonthly(), 

                        bt.algos.SelectAll(), 

                        OrderedWeights(asset_allocation[1]), 

                        bt.algos.Rebalance()]) 

s3 = bt.Strategy("EWMA", [bt.algos.RunMonthly(), 

                        bt.algos.SelectAll(), 

                        OrderedWeights(asset_allocation[2]), 

                        bt.algos.Rebalance()]) 

s4 = bt.Strategy("Shrinkage", [bt.algos.RunMonthly(), 

                        bt.algos.SelectAll(), 

                        OrderedWeights(asset_allocation[3]), 

                        bt.algos.Rebalance()]) 

s5 = bt.Strategy("EWMA Shrinkage", [bt.algos.RunMonthly(), 

                        bt.algos.SelectAll(), 

                        OrderedWeights(asset_allocation[4]), 

                        bt.algos.Rebalance()]) 

 

s6 = bt.Strategy("IBOVESPA", [bt.algos.RunOnce(), 

                        bt.algos.SelectAll(), 

                        bt.algos.WeighEqually(), 

                        bt.algos.Rebalance()]) 

 

s7 = bt.Strategy("CDI", [bt.algos.RunOnce(), 

                        bt.algos.SelectAll(), 

                        bt.algos.WeighEqually(), 

                        bt.algos.Rebalance()]) 
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test = bt.Backtest(s1, df2.dropna()) 

test2 = bt.Backtest(s2, df2.dropna()) 

test3 = bt.Backtest(s3, df2.dropna()) 

test4 = bt.Backtest(s4, df2.dropna()) 

test5 = bt.Backtest(s5, df2.dropna()) 

test6 = bt.Backtest(s6, df2["BOVA11.SA"].to_frame()) 

test7 = bt.Backtest(s7, cdi_acc_mod/1e10) 

 

results = bt.run(test, test2, test3, test4, test5, test6, test7) 

 

results.plot() 

 

results.display() 
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APÊNDICE B – BIBLIOTECAS PROPRIETÁRIAS 

import aux_fun as ax 

import mgarch 

import pandas as pd 

import numpy as np 

import pyRMT  

from pyRMT import optimalShrinkage 

 

def ewma_cov(prices, alpha = .98,norm = False): 

    if norm == True: 

        ret = cross_section_standard(ax.get_returns(prices , log = 

True)) 

    else:     

        ret = ax.get_returns(prices , log = True) 

    hlf = np.log(.5)/np.log(alpha) 

    cov_ewma = ret.ewm(halflife=hlf).cov()[-len(prices.columns):].re-

set_index(level = 'Dates').drop(['Dates'] , axis =1) 

    return cov_ewma 

     

     

def garch_estimation(prices,per,norm = False): 

    # Use qrt estimation 

    if norm == True: 

        ret = cross_section_standard(ax.get_returns(prices , log = 

True)) 

    else: 

        ret = ax.get_returns(prices , log = True) 

    vol = mgarch.mgarch() 

    vol.fit(ret) 

    return vol.predict(per)['cov'] 

 

def shrinkage(prices, alpha = .1, norm = False): 

    if norm == True: 

        ret = cross_section_standard(ax.get_returns(prices , log = 

True)) 

    else: 

        ret = ax.get_returns(prices , log = True) 

     

    cov_matrix = ret.cov() 

     

    matrix_reduction = (1-alpha)*cov_matrix 

     

    ev_shifter = (np.trace(cov_matrix)/cov_matrix.shape[1])*al-

pha*np.identity(cov_matrix.shape[1]) 

     

    shrinker = matrix_reduction + ev_shifter 

     

    return shrinker 

 

def shrinked_ewma(prices, alpha = None, gamma = .98, norm = False): 

    if norm == True: 

        ret = cross_section_standard(ax.get_returns(prices , log = 

True)) 

    else: 

        ret = ax.get_returns(prices , log = True) 
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    hlf = np.log(.5)/np.log(gamma) 

 

    cov_ewma = ret.ewm(halflife = hlf).cov()[-len(prices.col-

umns):].reset_index(level = 'Dates').drop(['Dates'] , axis =1) 

 

    cov_matrix = cov_ewma 

 

    matrix_reduction = (1-alpha)*cov_matrix 

     

    ev_shifter = (np.trace(cov_matrix)/cov_matrix.shape[1])*al-

pha*np.identity(cov_matrix.shape[1]) 

     

    ewma_shrinker = matrix_reduction + ev_shifter 

 

    return ewma_shrinker 

 

def parkinson(prices, id_matrix = False): 

 

    open_prices = prices.filter(regex = "Open").dropna() 

    low_prices = prices.filter(regex = "Low").dropna() 

    high_prices = prices.filter(regex = "High").dropna() 

    close_prices = prices.filter(regex = "Close").dropna() 

 

     

    high_low=((high_prices.values / low_prices).apply(pd.to_nu-

meric)).apply(np.log)  

     

    pk = (1/(4*np.log(2))) * (high_low)**2 

     

    pk.columns = "pk_" + pk.columns.str.strip("Low") 

    vol_estimator = (np.sum(pk)/pk.shape[0])**.5 

 

    df_returns = np.log((close_prices/close_prices.shift(1))).dropna() 

     

    vector = np.diag(vol_estimator) 

     

    if id_matrix == True: 

        identity = np.identity(vol_estimator.shape[0]) 

        return np.dot(vector, np.dot(identity, vector)) 

     

    else: 

        return np.dot(vector, np.dot(np.array(df_returns.corr()), vec-

tor)) 

 

def garman_klass(prices, id_matrix = False): 

         

    open_prices = prices.filter(regex = "Open").dropna() 

    low_prices = prices.filter(regex = "Low").dropna() 

    high_prices = prices.filter(regex = "High").dropna() 

    close_prices = prices.filter(regex = "Close").dropna() 

     

    high_low = ((high_prices.values / low_prices).apply(pd.to_nu-

meric)).apply(np.log) 

    close_open = ((close_prices.values / open_prices).apply(pd.to_nu-

meric)).apply(np.log) 
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    gk = (0.5*(high_low**2)).values - ((2*np.log(2) - 

1)*(close_open**2)) 

    gk.columns = "gk_" + gk.columns.str.strip("Open") 

    vol_estimator = (np.sum(gk)/gk.shape[0])**.5 

 

    df_returns = np.log((close_prices/close_prices.shift(1))).dropna() 

     

    vector = np.diag(vol_estimator) 

     

    if id_matrix == True: 

        identity = np.identity(vol_estimator.shape[0]) 

        return np.dot(vector, np.dot(identity, vector)) 

     

    else: 

        return np.dot(vector, np.dot(np.array(df_returns.corr()), vec-

tor)) 

 

def rogers_satchell(prices, id_matrix = False): 

     

    open_prices = prices.filter(regex = "Open").dropna() 

    low_prices = prices.filter(regex = "Low").dropna() 

    high_prices = prices.filter(regex = "High").dropna() 

    close_prices = prices.filter(regex = "Close").dropna() 

     

    low_open = ((low_prices.values / open_prices).apply(pd.to_nu-

meric)).apply(np.log) 

    high_close = ((high_prices.values / close_prices).apply(pd.to_nu-

meric)).apply(np.log) 

    high_open = ((high_prices.values / open_prices).apply(pd.to_nu-

meric)).apply(np.log) 

    low_close = ((low_prices.values / close_prices).apply(pd.to_nu-

meric)).apply(np.log) 

     

    rs = ((high_close.values*high_open) + (low_close.values*low_open)) 

    rs.columns = "rs_" + rs.columns.str.strip("Open") 

     

    vol_estimator = (np.sum(rs)/rs.shape[0])**.5 

 

    df_returns = np.log((close_prices/close_prices.shift(1))).dropna() 

     

    vector = np.diag(vol_estimator) 

     

    if id_matrix == True: 

        identity = np.identity(vol_estimator.shape[0]) 

        return np.dot(vector, np.dot(identity, vector)) 

     

    else: 

        return np.dot(vector, np.dot(np.array(df_returns.corr()), vec-

tor)) 

 

 

def gkyz(prices, id_matrix = False): 

    """ 

    Garman-Klass with Yang-Zhang overnight  

    """ 

     

    open_prices = prices.filter(regex = "Open").dropna() 
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    low_prices = prices.filter(regex = "Low").dropna() 

    high_prices = prices.filter(regex = "High").dropna() 

    close_prices = prices.filter(regex = "Close").dropna() 

 

     

    overnight_jump = ((open_prices.values / close_prices.shift(1)).ap-

ply(pd.to_numeric)).apply(np.log).dropna() 

    high_low = ((high_prices.iloc[1:, :].values / low_prices.iloc[1:, 

:]).apply(pd.to_numeric)).apply(np.log) 

    close_open = ((close_prices.iloc[1:, :].values / 

open_prices.iloc[1:, :]).apply(pd.to_numeric)).apply(np.log) 

     

    garman_zhang = (0.5 * (overnight_jump**2)) + 

(0.5*(high_low**2)).values - ((2*np.log(2) - 1)*(close_open**2)).val-

ues 

    garman_zhang.columns = "gkyz_" + garman_zhang.col-

umns.str.strip("Close") 

    vol_estimator = (np.sum(garman_zhang)/garman_zhang.shape[0])**.5 

 

    df_returns = np.log((close_prices/close_prices.shift(1))).dropna() 

     

    vector = np.diag(vol_estimator) 

     

    if id_matrix == True: 

        identity = np.identity(vol_estimator.shape[0]) 

        return np.dot(vector, np.dot(identity, vector)) 

     

    else: 

        return np.dot(vector, np.dot(np.array(df_returns.corr()), vec-

tor)) 

 

def yang_zhang(prices, id_matrix = False, alpha = 0.34): 

     

    """ 

    Yang-Zhang (https://portfolioslab.com/tools/yang-zhang) 

     

    """ 

     

    open_prices = prices.filter(regex = "Open").dropna() 

    low_prices = prices.filter(regex = "Low").dropna() 

    high_prices = prices.filter(regex = "High").dropna() 

    close_prices = prices.filter(regex = "Close").dropna() 

 

    overnight_jump = ((open_prices.values / close_prices.shift(1)).ap-

ply(pd.to_numeric)).apply(np.log).dropna() 

    high_low = ((high_prices.iloc[1:, :].values / low_prices.iloc[1:, 

:]).apply(pd.to_numeric)).apply(np.log) 

    close_open = ((close_prices.iloc[1:, :].values / 

open_prices.iloc[1:, :]).apply(pd.to_numeric)).apply(np.log) 

    low_open = ((low_prices.iloc[1:,:].values / 

open_prices.iloc[1:,:]).apply(pd.to_numeric)).apply(np.log) 

    high_close = ((high_prices.iloc[1:,:].values / 

close_prices.iloc[1:,:]).apply(pd.to_numeric)).apply(np.log) 

    high_open = ((high_prices.iloc[1:,:].values / 

open_prices.iloc[1:,:]).apply(pd.to_numeric)).apply(np.log) 

    low_close = ((low_prices.iloc[1:,:].values / 

close_prices.iloc[1:,:]).apply(pd.to_numeric)).apply(np.log) 
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    k = (alpha - 1)/(alpha + ((prices.shape[0] + 1)/(prices.shape[0] - 

1))) 

     

    overnight_jump_norm = (np.sum(overnight_jump - over-

night_jump.mean()))/(prices.shape[0] - 1) 

    log_co_norm = (np.sum(close_open - 

close_open.mean()))/(prices.shape[0] - 1) 

     

    rs = ((high_close.values*high_open) + (low_close.values*low_open)) 

    rogers_satchell = (np.sum(rs)/(prices.shape[0] - 1)) 

 

    yz = (overnight_jump_norm.values + k*log_co_norm +  

          (1 - k)*rogers_satchell.values).rename({"Open IBOV": 

"yz_IBOV", "Open SPX": "yz_SPX", "Open BLX": "yz_BLX"}) 

     

    vol_estimator = yz**.5 

     

    df_returns = np.log((close_prices/close_prices.shift(1))).dropna() 

     

    vector = np.diag(vol_estimator) 

     

    if id_matrix == True: 

        identity = np.identity(vol_estimator.shape[0]) 

        return np.dot(vector, np.dot(identity, vector)) 

     

    else: 

        return np.dot(vector, np.dot(np.array(df_returns.corr()), vec-

tor)) 

 

     

def corrEigenClip(prices, norm = False): 

    if norm == True: 

        ret = cross_section_standard(ax.get_returns(prices , log = 

True)) 

         

    else: 

        ret = ax.get_returns(prices , log = True) 

     

    return pyRMT.clipped(ret)  

    

     

def corrRIE(prices,cov = True, norm = False): 

     

    if norm == True: 

        ret = cross_section_standard(ax.get_returns(prices , log = 

True)) 

    else: 

        ret =  ret = ax.get_returns(prices , log = True) 

     

    return optimalShrinkage(ret, return_covariance=cov) 

        

def std_cross(ret): 

     

    return np.sqrt(np.std(ret.values ** 2)) 
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def  cross_section_standard(ret): 

    return ret - ret.mean() / ret.apply(std_cross) 

 

###  This version is a modified version of equal_risk_estimation when 

we choose the risk estimators to run the portfolio optimization #### 

 

import pandas as pd 

import numpy as np 

from scipy.optimize import minimize 

import aux_fun as ax 

import Risk_estimators as re 

from itertools import repeat 

import pyRMT  

 

def erc(prices, per, estimator = False, norm = False, alpha = None, 

gamma = .98): 

    """A modified function with parameters for risk estimation """ 

     

    period = ax.get_period(per) 

     

    norm_value = norm 

 

    alpha = alpha 

     

    obj_fun = lambda x, p_cov, rb: np.sum((x*np.dot(p_cov, 

x)/np.dot(x.transpose(), np.dot(p_cov, x))-rb)**2) 

     

    cons_sum_weight = lambda x:np.sum(x) - 1.0 

     

    cons_long_only_weight = lambda x: x 

     

    if  estimator in ["pk_vol", "gk_vol", "rs_vol", "gkyz_vol", 

"yz_vol"]: 

         

        rb =[1/prices.filter(regex = 'Close').shape[1] for x in 

(prices.filter(regex = 'Close')).columns] 

    else: 

        rb = [1/prices.shape[1] for x in prices.columns]  

     

     

    def rb_p_weights(prices, rb): 

         

        asset_rets = ax.get_returns(prices,log=True) 

 

         

        if  estimator == 'corrEigenClip': 

            p_cov = re.corrEigenClip(prices, norm = norm_value) 

                 

        elif  estimator == 'corrRIE': 

            p_cov = re.corrRIE(prices, norm = norm_value ) 

                 

        elif estimator == 'garch_dcc': 

            p_cov =  re.garch_estimation(prices,period, norm = 

norm_value) 

              

        elif estimator ==  'ewma_cov': 
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            p_cov = re.ewma_cov(prices, alpha = .98,norm = norm_value) 

 

        elif estimator ==  'shrinkage': 

            p_cov = re.shrinkage(prices, alpha = .1,norm = norm_value) 

 

        elif estimator == 'ewma_shrinker': 

            p_cov = re.shrinked_ewma(prices, alpha = alpha, gamma = 

.98, norm = norm_value) 

             

#         elif estimator == 'ledoit_wolf': 

#             risk_estimators = pl.estimators.RiskEstimators() 

#             p_cov = risk_estimators.shrinked_covariance(prices, 

price_data = True, shrinkage_type='lw') 

 

        elif estimator == 'pk_vol': 

            p_cov = re.parkinson(prices, id_matrix = False) 

 

        elif estimator == 'gk_vol': 

            p_cov = re.garman_klass(prices, id_matrix = False) 

 

        elif estimator == 'rs_vol': 

            p_cov = re.rogers_satchell(prices, id_matrix = False) 

 

        elif estimator == 'gkyz_vol': 

            p_cov = re.gkyz(prices, id_matrix = False) 

 

        elif estimator == 'yz_vol': 

            p_cov = re.yang_zhang(prices, id_matrix = False, alpha = 

0.34) 

  

        else: 

            p_cov = asset_rets.cov() 

         

         

 

        if estimator in ["pk_vol", "gk_vol", "rs_vol", "gkyz_vol", 

"yz_vol"]: 

            prices = prices.filter(regex = "Close") 

          

        num_arp = len(prices.columns)  

        

        w0 = 1.0 * np.ones((num_arp, 1)) / num_arp 

             

         

 

         

        cons = ({'type':'eq','fun': cons_sum_weight}, 

                {'type': 'ineq','fun':cons_long_only_weight}) 

         

        return minimize(obj_fun, w0, args=(p_cov, rb),  

                        method='SLSQP', constraints=cons, 

                        bounds = list(repeat((0,1),len(prices.col-

umns)))) 
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    return rb_p_weights(prices,rb) 

 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

def calculate_risk_portfolio(cov_matrix,weights): 

     

    return  np.sqrt( np.transpose(weights) * cov_matrix * weights )  

 

def mrc(cov_matrix, weights): 

    risk = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) 

    mrc = (np.dot(weights, cov_matrix))/risk 

    return mrc 

 

def trc(mrc, weights): 

    trc = mrc*weights 

    return trc 

 

def random_assets_returns(mean_vec, cov_matrix, dimension, number_sam-

ples): 

    """ 

    Computes random assets classes returns 

    """ 

    np.random.seed(3003) 

 

    n = number_samples 

 

    d = dimension 

 

    eig_values = np.linalg.eigvals(cov_matrix)  

 

    if any(eig_values<0): 

        raise Exception('Covariance Matrix is not valid') 

 

    K = cov_matrix + 0.000001 * np.identity(d) # Need to stability of 

Cholesky Decomposition 

 

    L = np.linalg.cholesky(K)  

 

    u = np.random.normal(loc=0, scale=1, size=d*n).reshape(d, n) 

 

    assets = mean_vec + np.dot(L, u) 

 

    return assets 

     

 

 

def plot_marginal_risk(marginal_risk, prices): 

    plt.figure(figsize=(12, 6)) 

    cols = prices.columns 

    plt.bar(cols, marginal_risk) 

    plt.title("Contribuições Marginais para o Risco") 

    plt.xticks(rotation = 45) 
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    return plt.show() 

 

def plot_total_risk(marginal_risk, prices, weights, estimador): 

    total_risk = marginal_risk*weights 

    plt.figure(figsize=(12, 6)) 

    cols = prices.columns 

    plt.bar(cols, total_risk) 

    plt.title("Contribuições Totais para o Risco " + str(estimador)) 

    plt.xticks(rotation = 45) 

    return plt.show() 
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	Outro autor relevante é Richard A. Brealey e Stewart C. Myers, que em "Principles of Corporate Finance" (2016) [16], abordam a CML em relação à avaliação de ativos e à formação de portfólios. Eles enfatizam que a CML fornece uma abordagem clara para i...
	Portanto, a Capital Market Line é uma ferramenta vital para a construção de portfólios eficientes, servindo como um guia que fundamenta a análise do risco e retorno no mercado financeiro. A intersecção entre o portfólio de mercado e a taxa livre de ri...
	2.3.2 Carteira de Mínima Variância
	A carteira de mínima variância, introduzida por Harry Markowitz, é uma abordagem que busca a combinação de ativos que minimiza o risco total para um determinado nível de retorno esperado. Esse conceito é uma aplicação prática da Teoria Moderna de Por...
	Sujeito às restrições: (2)
	,𝑤-𝑇.𝜇 ≥ 𝛽
	,1-𝑇.𝑤 = 1; w ≥ 0
	De acordo com Richard Grinold e Ronald Kahn em "Active Portfolio Management" (2000) [17], a carteira de mínima variância é construída de maneira a ter a menor volatilidade possível. Essa característica é especialmente valiosa em momentos de incerteza ...
	Um dos principais benefícios da carteira de mínima variância é sua habilidade de reduzir a volatilidade sem comprometer drasticamente o retorno esperado. Essa abordagem é particularmente atraente para investidores avessos ao risco, pois permite a maxi...
	Entretanto, existem também limitações associadas a essa estratégia. Conforme mencionado por Michael C. Jensen em "The Performance of Mutual Funds in the Period 1945-1964" (1968) [8], uma desvantagem da carteira de mínima variância é a possibilidade de...
	A construção de uma carteira de mínima variância requer, portanto, uma análise cuidadosa das características dos ativos e suas inter-relações. Em "Investment Analysis" (2013) [20], o autor Frank K. Reilly afirma que, enquanto essa estratégia pode ofer...
	2.3.3 Carteira igualmente ponderada
	A carteira igualmente ponderada é uma estratégia de investimento em que todos os ativos são alocados com a mesma proporção no portfólio, independentemente de seu risco ou retorno esperado. Essa abordagem é simples de implementar e oferece uma maneira ...
	Para Frank K. Reilly e Keith C. Brown em "Investment Analysis and Portfolio Management" (2012) [20], a carteira igualmente ponderada é frequentemente utilizada por investidores que desejam evitar a complexidade de calcular alocações ótimas baseadas em...
	Um dos principais benefícios dessa estratégia é a diversificação natural que ela proporciona. Ao distribuir o capital igualmente entre diferentes ativos, o investidor pode reduzir o risco específico de cada ativo individual. Em "Modern Portfolio Theor...
	No entanto, a carteira igualmente ponderada também apresenta desvantagens. Uma crítica comum é que essa estratégia não leva em consideração a volatilidade ou correlação dos ativos. Como mencionado por William F. Sharpe em "Portfolio Theory and Capital...
	Outra limitação é a falta de adaptação às condições de mercado. Conforme discutido por Robert C. Merton em "Continuous-Time Finance" (1990) [21], uma carteira igualmente ponderada pode não responder adequadamente a mudanças nas condições econômicas ou...
	É possível dizer que a carteira igualmente ponderada é uma estratégia de investimento que combina simplicidade e diversificação, mas pode não ser a mais eficiente em termos de gestão de risco.
	2.4 O Modelo de Paridade de Riscos (Risk Parity)
	O modelo de paridade de riscos, ou risk parity, é uma abordagem de alocação de ativos que visa distribuir o risco de forma equitativa entre diferentes classes de ativos, em vez de simplesmente alocar capital de maneira igual. Esse conceito busca cria...
	De acordo com o autor Aswath Damodaran em "Applied Corporate Finance" (2014) [22], a paridade de riscos se baseia na ideia de que os investidores devem considerar a volatilidade e a correlação dos ativos ao construir portfólios. Ao equilibrar o risco ...
	Uma das principais vantagens do modelo de paridade de riscos é sua capacidade de mitigar a volatilidade do portfólio. Em "Risk Parity: A New Approach to Asset Allocation" (2011), os autores de um estudo na Journal of Portfolio Management destacam que ...
	No entanto, o modelo de paridade de riscos também possui desvantagens. Conforme mencionado por G. Michael Phillips e H. Kent Baker em "Risk Management and Derivatives" (2009) [23], a implementação do risk parity pode exigir um reequilíbrio frequente d...
	Outro ponto a ser considerado é a dependência de dados históricos para estimar a volatilidade e a correlação, conforme discutido por James P. O’Shaughnessy em "What Works on Wall Street" (2005) [24]. Se as condições de mercado mudarem, as estimativas ...
	Uma questão muito importante que faz com que portfólios de Risk Parity se torne bastante atrativos é a anomalia de baixa volatilidade. A anomalia de baixa volatilidade é um fenômeno observado nos mercados financeiros onde ativos de menor volatilidade ...
	Em "The Low-Volatility Anomaly: A Decomposition Analysis" (2014) [25], Martin Lettau e Sidney Viswanathan analisam como ações com baixa volatilidade tendem a superar suas contrapartes mais voláteis ao longo do tempo. A pesquisa mostra que essa tendênc...
	Figura 5: Estudo de estratégias de baixa volatilidade do BNP Paribas
	Fonte: Exploiting the low volatility anomaly in practice
	Uma das possíveis explicações para a anomalia de baixa volatilidade é a aversão ao risco dos investidores. Para Baker e Wurgler (2006), os investidores tendem a superestimar o risco associado a ativos mais voláteis, levando a uma demanda excessiva por...
	Outro fator que pode contribuir para essa anomalia é a tendência dos investidores de seguir modas ou ciclos de mercado, conforme discutido por Cliff Asness et al. (2013) [27]. Quando o mercado está em alta, investidores podem ser atraídos por ações de...
	Apesar de seus retornos superiores, a anomalia de baixa volatilidade também apresenta desafios. Como observado por Robert Novy-Marx (2013) [28], a seleção de ações de baixa volatilidade pode não ser tão simples, pois essas ações podem não performar be...
	2.5 Estimadores de Risco
	Estimadores de risco (volatilidade) tem grande importância no contexto dos mercados mobiliários, não se restringindo apenas a avaliar a volatidade, mas também a tomar decisões com base na rentabilidade esperada e estruturação de estratégias quantitat...
	De acordo com diversos artigos, a capacidade de antecipar mudanças na volatilidade e compreender sua dinâmica é fundamental para a criação e implementação de estratégias mais robustas para gestão da carteira (Poon & Granger, 2003) [29].
	2.5.1 O Modelo EWMA
	O modelo Exponential Weighted Moving Average (EWMA) se destaca por ser uma das abordagens mais populares para estimar a volatilidade de ativos financeiros. Sua principal característica reside em atribuir pesos decrescentes aos retornos passados e pes...
	A ideia por trás do EWMA consiste no fato de que a volatilidade do mercado não é constante (heterocedasticidade) e tende a mudar ao longo do tempo. Portanto, o modelo atribui maior relevância para as observações mais recentes, com o objetivo de captur...
	O modelo EWMA pode ser formalizado pela seguinte equação:
	Onde: (1)
	- ,σ-t-2.: estimativa de variância condicional no tempo t,
	- λ: parâmetro de suavização que controla a magnitude do peso atribuído ao valor mais recente,
	- ,r-t−1-2.: retorno quadrático no período t-1.
	A constante λ geralmente é escolhida de maneira a suavizar entre os dados mais antigos e os mais recentes, sendo um valor entre 0 e 1. Se λ for próximo de 1, o modelo atribui maior peso aos dados passados, enquanto valores de λ mais baixos atribuem ma...
	A principal vantagem do modelo EWMA consiste em sua flexibilidade e eficiência computacional. Ao contrário de modelos mais complexos, o EWMA não requer a estimação de múltiplos parâmetros nem o uso de métodos iterativos pesados, tornando-o atrativo pa...
	Uma das principais críticas ao modelo EWMA, no entanto, é a sua simplicidade excessiva. Embora o modelo seja eficiente em termos computacionais, ele não leva em consideração a possibilidade de efeitos não-lineares ou a heterocedasticidade mais complex...
	O uso do modelo EWMA é amplamente reconhecido em diversas áreas do mercado financeiro. Por exemplo, no gerenciamento de risco de carteiras o modelo é comumente utilizado para calcular as variâncias e covariâncias dos ativos, que são fundamentais na al...
	2.5.2 O Modelo GARCH
	Os modelos autorregressivos são ferramentas amplamente utilizadas em séries temporais. O modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), proposto por Tim Bollerslev em 1986 [31], é uma extensão do modelo ARCH (Autoregressive...
	O modelo GARCH(1,1) é uma versão simples, mas eficiente, do modelo GARCH, onde a volatilidade condicional depende de um termo autoregressivo e de um termo de média móvel. A equação de retorno ,𝑟-𝑡. para um ativo em um modelo GARCH (1,1) é dada por:
	Onde: (2)
	- ,r-t.: retorno no tempo t;
	- μ: média do retorno;
	- ,ϵ-t.: erro no tempo t, dado por ,ϵ-t.=,𝜎-𝑡.,𝑧-𝑡.
	- ,z-t.≈𝑁,0,1.: é um ruído branco (white noise), com média 0 e variância 1.
	A variância condicional ,𝜎-𝑡-2. é modelada como uma função dos erros e da variância passada, dada pela fórmula:
	Onde: (3)
	- ,σ-t-2.: é a variância condicional (volatilidade) no tempo t;
	- ,𝛼-0.: constante;
	- ,𝛼-1.: é o coeficiente que mede o efeito dos choques passados ,𝜖-𝑡−1-2.;
	- ,𝛽-1.: é o coeficiente que mede o efeito da volatilidade passada ,𝜎-𝑡−1-2..
	A eficiência do modelo GARCH também pode ser avaliada pela sua estabilidade e pela capacidade de capturar dinâmicas complexas, com isso podemos introduzir o modelo utilizado neste estudo, o modelo GARCH DCC.
	2.5.2.1 GARCH DCC
	O modelo GARCH-DCC (Dynamic Conditional Correlation) é uma extensão do modelo GARCH. O modelo GARCH-DCC combina a estrutura GARCH para modelar a volatilidade e uma abordagem dinâmica para modelar a correlação entre os ativos ao longo do tempo. Esse m...
	A primeira etapa envolve a modelagem da volatilidade condicional dos ativos individuais, de forma semelhante ao modelo GARCH(1,1) tradicional. Para cada ativo i (onde i=1,…,N), temos o modelo GARCH:
	Já para o erro condicional (resíduo) temos ,ϵ-it.=,𝜎-𝑖𝑡.,𝑧-𝑖𝑡.. Portanto, a variância condicional para o modelo GARCH-DCC ganha a seguinte característica.
	Esta etapa envolve a modelagem da correlação condicional entre os ativos, ou seja, como as correlações entre os resíduos ,ϵ-it.. dos ativos variam ao longo do tempo. Para isso, o modelo DCC utiliza uma matriz de correlação dinâmica. A ideia é modelar ...
	A matriz de covariância condicional de 𝑁 ativos é dada por:
	Onde: (4)
	- ,𝑄-𝑡.: matriz de covariância condicional no tempo t;
	- ,𝑄.: matriz de covariância condicional de longo prazo (estimada a partir dos retornos históricos);
	- 𝛼 & 𝛽: parâmetros que controlam a resposta da matriz de covariância aos choques passados e à persistência da volatilidade passada, respectivamente.
	Da mesma maneira a matriz de correlação dinâmica ,𝑅-𝑡. pode ser obtida normalizando-se ,𝑄-𝑡. como:
	onde ​,𝐷-𝑡. é uma matriz diagonal contendo as variâncias ​ ,𝜎-𝑖𝑡-2. de cada ativo. A matriz ,𝑅-𝑡. fornece as correlações dinâmicas entre os ativos ao longo do tempo.
	2.5.3 Encolhimento Matricial (Shrinkage)
	A técnica de encolhimento matricial, ou shrinkage, é um método utilizado na otimização de portfólios com o objetivo de melhorar a estimativa das matrizes de covariância dos ativos. Em termos simples, a ideia é "encolher" as estimativas das variâncias...
	Na otimização clássica de portfólios, uma das etapas centrais é a estimativa das covariâncias entre os ativos. No entanto, as estimativas a partir de dados históricos podem ser muito sensíveis a variações nos dados de entrada, especialmente quando o ...
	A técnica funciona de maneira que a matriz de covariância original é combinada com uma matriz de covariância "encolhida" (normalmente, uma matriz de covariância baseada em um modelo mais simplificado). O parâmetro de shrinkage controla o quanto de "e...
	Onde: (5)
	- ,Σ-𝑠ℎ𝑟𝑖𝑛𝑘𝑒𝑑.: matriz de covariância encolhida;
	-,Σ-𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙.: matriz de covariância empírica calculada a partir dos dados históricos
	-,Σ-𝑝𝑟𝑖𝑜𝑟.: matriz de covariância empírica calculada a partir dos dados históricos
	- 𝜆: é o parâmetro de shrinkage, controlando o grau de encolhimento [35].
	Ao suavizar as estimativas extremas das covariâncias, a técnica ajuda a reduzir o risco de construir um portfólio baseado em relações espúrias entre os ativos, ou seja, reduz consideravelmente o risco de overfitting [36]. Em muitas situações práticas,...
	2.5.4 Estimador Invariante a Rotação (RIE)
	O Rotational Invariant Estimator (RIE) possui como principal característica, ser invariável a rotações, ou seja, ele não é afetado por transformações ortogonais nos dados. Isso é importante quando se trabalha com dados de alta dimensionalidade, onde ...
	O RIE é baseado na ideia de que, ao aplicar uma rotação ortogonal do tipo ℚ ∈ ,ℝ-N x N. (uma matriz com a propriedade ,ℚ-T.ℚ=I, onde I é a matriz identidade), a estrutura da matriz de covariância deve permanecer inalterada. A ideia é projetar um esti...
	O RIE pode ser formulado de forma que a matriz de covariância estimada ,,Σ.-𝑅𝐼𝐸. seja uma média ponderada entre a matriz de covariância empírica ,,Σ.-𝐸𝑀𝑃. e uma matriz de covariância prior ,,Σ.-𝑝𝑟𝑖𝑜𝑟., que pode ser uma matriz simples, como...
	Onde 𝜆 é um parâmetro de regularização que controla a quantidade de suavização aplicada. Para garantir a invariância à rotação, o RIE pode ser aplicado ajustando a forma da matriz de covariância de maneira que o impacto de transformações ortogonais n...
	Em suma, a principal vantagem do RIE é sua invariância a rotações. Isso significa que o estimador não é influenciado por transformações ortogonais nos dados, o que é uma característica desejável quando se lida com ativos financeiros que podem ter vari...
	Isso garante que a matriz de covariância estimada não seja afetada por rotações nos dados [37].
	3. METODOLOGIA
	3.1 Função Objetiva e Otimização
	Dentro do contexto de um algoritmo de Risk Parity. A função objetiva do busca minimizar a diferença entre a contribuição de risco de cada ativo no portfólio e a contribuição de risco desejada (rb). Analisando detalhadamente. Analisando a função objet...
	Figura 6: Algoritmo de função objetiva desenvolvido em Python.
	Elucidando acerca de cada termo.
	x: Representa o vetor de pesos dos ativos no portfólio;
	p_cov: Matriz de covariância (indicando o risco e as correlações entre os ativos).
	rb: O Target (valor alvo) para a contribuição de risco de cada ativo, que que é igual para todos os ativos (para o objetivo de "equal risk contribution", o que implica que todos os ativos devem ter a mesma contribuição de risco total).
	O que a função faz é calcular a diferença entre a contribuição de risco de cada ativo (dada por x * np.dot(p_cov, x) / np.dot(x.transpose(), np.dot(p_cov, x))) e a contribuição de risco alvo rb, e depois soma o quadrado dessas diferenças para minimiza...
	Também foram impostas condições de contorno (restrições). Na qual o termo cons_sum_weight impõe uma restrição que o peso total do portfólio seja 1, ou seja, o portfólio permanece long only 100% comprado em 100% do tempo. Já a outra condição de contorn...
	3.2 Estratégias e Modelagem dos Dados
	O objetivo deste estudo, consistiu em aplicar o modelo de Risk Parity aplicado na bolsa brasileira. Para isso adotamos a estratégia de investir em ETF’s que também tenham exposição cambial e no mercado estrangeiro como um todo, a fim de buscar maior d...
	Neste contexto foi feito uma lista de ETF’s negociados na bolsa brasileira, que tivessem pelo menos 4 anos de negociação, com isto chegamos na lista dos seguintes ETF’s.
	Tabela 1: ETFs da B3 selecionados
	Com estes índices foi adotada a seguinte estratégia. Foi criado um conjunto in sample que foi utilizado para simular as matrizes de covariâncias e correlações, utilizando a série histórica de retornos dos ETF’s.
	Para isto foi utilizada a série histórica de retornos desde 01-04-2021 (primeiro de abril de 2021), até 01-04-2022 (primeiro de abril de 2021). Totalizando 1 ano de retornos, idealmente seria preferível utilizar uma série mais longa de dados. Porém, o...
	Com a série de retornos obtida, foram utilizados grupos de estimadores de risco, como objetivo de criar a matriz de covariância mais robusta afim de obtermos o melhor processo de análise para alocação da carteira. Foram utilizados os modelos descrito...
	Este projeto foi desenvolvido na linguagem de programação Python, foram utilizadas tanto bibliotecas já amplamente utilizadas para fins acadêmicos e profissionais, como também foram implementas bibliotecas proprietárias, cujos códigos implementados s...
	Após importar as principais bibliotecas foi realizada uma consulta e um algoritmo foi desenvolvido para capturar todos os principais ETF’s de interesse.
	Com os dados (série histórica de preços) capturadas. Obtemos os retornos e analisamos a volatilidade dos ativos. Como já supracitado anteriormente, os dados foram divididos em dois conjuntos. O primeiro onde seria utilizado para obter as matrizes de c...
	Tabela 2: Volatilidade do primeiro conjunto (01/04/2021 – 01/04/2022)
	Tabela 3: Volatilidade do segundo conjunto (03/04/2022 – 31/12/2024)
	Para realização do backtest foi utilizada a biblioteca bt. bt - Flexible Backtesting for Python — bt 0.2.10 documentation. Em conjunto com as bibliotecas proprietárias com o modelo de otimização por Risk Parity e os estimadores de risco.
	A fim de ter um resultado mais coerente e satisfatório o portfólio foi rebalanceado mensalmente, também foi simulado os diferentes portfólios se comparados aos principais benchmarks de referência do país. O índice BOVESPA e o CDI.
	4. RESULTADOS E DISCUSSÕES
	4.1 Matrizes de Correlação
	A análise foi iniciada avaliando a matriz de correlação para os diferentes estimadores de risco para o conjunto de testes.
	Figura 6: Matriz de Correlação Simples
	Figura 7: Matriz de Correlação RIE
	Figura 8: Matriz de Correlação EWMA
	Figura 9: Matriz de Correlação com Encolhimento
	Figura 10: Matriz de Correlação EWMA com Encolhimento
	Ao analisar as matrizes de correlação é possível observar que o estimador invariante a rotações apresentou dificuldades em encontrar correlações/descorrelações entre os ativos selecionados. O RIE pode apresentar dificuldades, especialmente em situaçõ...
	Por outro lado, conseguimos observar que modelos mais simples como o EWMA e o encolhimento, assim como o modelo sem a utilização de estimadores conseguiram identificar muito mais correlações entre os ativos. Lembrando que nem sempre essas correlações...
	Os modelos mais simples são menos sensíveis ao ruído e têm maior estabilidade em cenários com amostras menores ou dados mais simples. Eles capturam bem as correlações lineares e não introduzem complexidade desnecessária.
	4.2 Risco por Ativo e Risco Marginal
	O risco marginal de um ativo refere-se à contribuição adicional para o risco total do portfólio ao adicionar ou alterar a quantidade desse ativo. Em outras palavras, é o risco adicional que um ativo marginal (ou seja, uma unidade adicional desse ativ...
	No contexto de Risk Parity, o risco marginal ajuda a determinar a quantidade ótima de alocação de cada ativo, de modo que a contribuição de risco de cada ativo seja proporcional. O modelo ajusta as alocações de forma que a contribuição marginal de ris...
	Figura 11: Contribuição Total para o Risco da Carteira sem Estimador
	Figura 12: Contribuição Total para o Risco da Carteira RIE
	Figura 13: Contribuição Total para o Risco da Carteira EWMA
	Figura 14: Contribuição Total para o Risco da Carteira com Encolhimento
	Figura 15: Contribuição Total para o Risco da Carteira EWMA com Encolhimento
	Tabela 4: Alocação dos Ativos
	É notório observar que o algoritmo RIE evitou alocar na renda fixa e foi o único que alocou no etf de ouro, que é bastante descorrelacionado dos ativos de renda variável em geral, como demonstrado no capítulo 4.1.
	O RIE é projetado para ser robusto a diferentes padrões de dados, ajustando-se a uma maior diversidade de correlações entre os ativos. Ele não apenas considera a volatilidade de cada ativo, mas também as interações complexas entre eles, levando em con...
	Modelos mais simples, como o EWMA ou Shrinkage, não levam em consideração as interações mais complexas entre os ativos de maneira tão detalhada como o RIE. Não possuindo a mesma consideração para mudanças estruturais ou comportamentos mais dinâmicos n...
	4.3 Backtest
	Considerando que investiríamos 100 reais em cada portfólio teríamos o seguinte resultado.
	Figura 19: Evolução das carteiras para diferentes estimadores de risco.
	Embora as carteiras tenham apresentado um desempenho abaixo do CDI no período em questão, é importante destacar que o cenário macroeconômico esteve marcado por uma taxa de juros excepcionalmente elevada, refletindo o comportamento do CDI, que foi par...
	Por outro lado, as carteiras foram estruturadas para capturar retornos mais sustentáveis e diversificados no longo prazo, priorizando uma combinação entre diversos ETFs que, naturalmente, apresentam maior volatilidade e sensibilidade a flutuações de ...
	Tabela 5: Principais Métricas
	O modelo RIE alocou recursos majoritariamente em renda variável, particularmente em ações como GOLD11.SA e IMAB11.SA, e não teve exposição significativa a renda fixa. Isso é um reflexo da forma como o RIE se comporta diante da dinâmica de correlação e...
	5. CONCLUSÕES
	Esse estudo se propôs a criar uma abordagem inovadora criando uma carteira balanceada e igualmente diversificada, mas não atribuindo os mesmos pesos a cada ativo e sim atribuindo o mesmo risco, de modo que cada ativo contribuísse de maneira equânime a...
	Também existem estudos, como o caso da anomalia de baixa volatilidade e sobre como vários modelos falham ao tentar bater o mercado. Por isso este estudo buscou adotar a estratégia de investir em ETFs de modo que fosse possível buscar grande diversific...
	Um fator que pode explicar o modelo mais simples ter se sobressaído, é o fato de a matriz de covariância simples ser mais direta não realizando ajustes complexos, portanto pode ter se destacado devido à sua simplicidade. Em mercados mais estáveis ou c...
	O EWMA dá mais peso aos dados mais recentes, o que pode ser útil em mercados voláteis, mas dado o intervalo de tempo analisado, não se mostrou efetivamente, pode ter sido realmente um efeito do período analisado e o estimador pode ter resultados melho...
	Um ponto bastante importante para trabalhos futuros é realizar este estudo, mas desta vez usando ETFs da bolsa americana e convertendo para Reais Brasileiros (BRL) utilizando a curva de dólar. Isso permitirá um horizonte de evento maior e testará com ...
	No geral avaliando que enfrentamos um cenário muito forte de alta de juros, fica difícil que os modelos batam o CDI com um período de diversificação tão limitado, por outro lado, esses modelos são criados para ter grande resiliência no longo prazo e n...
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