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RESUMO

Kerr, T. B. Diagnóstico de Anomalias Estomacais: Utilizando Aprendizado
Profundo, Transfer Learning e Machine Learning. 2023. 42p. Monografia (MBA
em Inteligência Artificial e Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2023.

O advento da Inteligência Artificial (IA) e, particularmente, do aprendizado profundo
(Deep Learning), impulsionou avanços notáveis em diversas indústrias. Na área da visão
computacional, notadamente na medicina, esses avanços têm revelado eficácia significativa,
especialmente no diagnóstico médico por meio de exames de endoscopia. Este trabalho
propõe uma solução para o diagnóstico de anomalias estomacais, utilizando imagens
de exames endoscópicos. A aplicação de técnicas de Transfer Learning foi empregada,
aproveitando três redes neurais convolucionais predefinidas (ResNet50, MobileNet e VGG-
19) para extrair características das imagens. Esse processo gerou colunas de características
variadas para cada imagem na base de dados. Foram utilizados dois modelos de Machine
Learning (KNN e Random Forest) para classificação das anomalias estomacais a partir
das características extraídas. Os resultados mostraram que o modelo baseado em Random
Forest apresentou melhor desempenho geral, com a MobileNet fornecendo os melhores
resultados entre as redes neurais estudadas. A análise da matriz de confusão e métricas
específicas, como acurácia, precisão e recall, evidenciou a assertividade e eficácia do
modelo Random Forest, especialmente quando utilizado em conjunto com a MobileNet.
Os achados deste estudo destacam a promissora viabilidade de utilizar redes neurais
convolucionais predefinidas em conjunto com modelos de Machine Learning para diagnóstico
de anomalias estomacais. Como próximo passo, a implementação deste modelo em uma
aplicação web para classificação automática de imagens e a exploração de outros modelos
de Machine Learning representam caminhos interessantes para aprimorar a aplicabilidade
e assertividade do modelo proposto.

Palavras-chave: Deep Learning. Trasnfer Learning. Machine Leaning.





ABSTRACT

Kerr, T. B. One-class Learning. 2023. 42p. Monograph (MBA in Artificial Intelligence
and Big Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos, 2023.

The emergence of Artificial Intelligence (AI), particularly Deep Learning, has propelled
significant advancements across various industries. In the realm of computer vision, notably
in medicine, these advancements have demonstrated notable efficacy, especially in medical
diagnosis through endoscopy exams. This work proposes a solution for diagnosing stomach
anomalies using images from endoscopic examinations. Transfer Learning techniques
were employed, leveraging three pre-defined convolutional neural networks (ResNet50,
MobileNet, and VGG-19) to extract features from the images. This process generated
diverse feature columns for each image in the dataset. Two Machine Learning models
(KNN and Random Forest) were utilized for classifying stomach anomalies based on the
extracted features. Results indicated that the Random Forest-based model showcased
better overall performance, with MobileNet providing the best results among the studied
neural networks. Analysis of the confusion matrix and specific metrics such as accuracy,
precision, and recall highlighted the accuracy and effectiveness of the Random Forest
model, particularly when used in conjunction with MobileNet. The findings of this study
underscore the promising feasibility of employing pre-defined convolutional neural networks
alongside Machine Learning models for diagnosing stomach anomalies. As a next step,
implementing this model in a web application for automatic image classification and
exploring other Machine Learning models represent interesting avenues to enhance the
applicability and accuracy of the proposed model.

Keywords: Deep Learning. Trasnfer Learning. Machine Leaning.
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1 INTRODUÇÃO

O cenário contemporâneo é marcado pelo crescente avanço da Inteligência Artificial
(IA) em diversas indústrias, impulsionando otimizações notáveis nos domínios de negócios
(LEE, 2019; ARAUJO, 2020). Esse avanço é atribuído, em grande parte, ao advento
do Deep Learning ou aprendizado profundo, aliado à disponibilidade de significativo
poder computacional (ACADEMY, 2022). Uma área de análise de destaque é a visão
computacional, revelando eficácia em setores como medicina, agronegócio, marketing
digital, entre outros. Aplicações específicas incluem diagnóstico médico, otimização de
áreas de plantio, e análise de sentimentos em tempo real.

O impacto positivo dessas soluções é notável, especialmente no campo da visão com-
putacional. Uma implementação efetiva nesse domínio proporciona vantagens substanciais,
como a capacidade de avaliar simultaneamente milhares de imagens em tempo reduzido.
Em comparação, especialistas humanos demandam consideravelmente mais tempo para
realizar a mesma tarefa. Além disso, a homogeneidade na avaliação é assegurada pela visão
computacional, minimizando discrepâncias frequentemente observadas entre especialistas
humanos. Isso é respaldado por estudos, como os apresentados por (MONGELO et al.,
2012), que confirmam a equivalência de assertividade entre modelos de visão computacional
e especialistas humanos.

O âmbito da visão computacional aplicada à medicina tem ganhado notoriedade nos
últimos anos. Uma pesquisa no Google Scholar com o termo ”computer vision for medicine”
resulta em aproximadamente 4.380.000 resultados (considerando todo o período). Desde
2019, foram registrados cerca de 37.000 resultados. Temáticas em evidência englobam
abordagens gerais que aplicam aprendizado profundo à medicina, bem como aquelas
relacionadas à COVID-19.

O presente trabalho propõe uma solução para o diagnóstico de anomalias estomacais,
utilizando exames de endoscopia. O processo compreende a extração de características
por meio de três redes neurais distintas, seguido pela aplicação de dois algoritmos de
Machine Learning (KNN e Random Forest). A comparação dos resultados visa identificar
a abordagem mais eficaz para o propósito proposto.

1.1 Contextualização, Motivação

A crescente aplicação da Inteligência Artificial (IA) em exames de imagens médicas
representa uma tendência ascendente. Trabalhos específicos, como o presente, que se
concentram em um tipo particular de exame, contribuem significativamente para a expansão
do uso da IA na área médica. A falta de trabalhos que utilizam classificação de imagens a
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partir de imagens de endoscopia utilizando transfer learning é um ganho para identificar se
essa abordagem melhora de forma significativa os resultados. Essa abordagem não apenas
impulsiona a eficiência, mas também promove a padronização dos serviços, resultando em
benefícios tangíveis para a população em geral, dada a abrangência do impacto da saúde.

1.2 Objetivos

A questão de pesquisa centraliza-se na criação de uma solução para a classificação
de 8 tipos de condições/doenças estomacais separados em três grupos: Marcos Anatômicos
(Z-line, Piloro e Ceco), Achados Patológicos (Esofagite, Pólipos e Colite ulcerativa) e
Remoção de Pólipos (Pólipos tingidos e levantados 6, Margens de ressecção tingidas), a
partir de imagens obtidas em exames endoscópicos, utilizando algoritmos de Deep Learning
e Machine Learning. O objetivo primordial é desenvolver uma abordagem que aprimore a
precisão e eficácia no diagnóstico dessas doenças, contribuindo assim para o avanço da
aplicação da IA na medicina.
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2 FUNDAMENTAÇÃO TEÓRICA

Visão computacional, conforme definido por (MILANO; HONORATO, 2010), refere-
se à capacidade de uma máquina interpretar imagens, ou seja, como um computador
percebe seu ambiente, analisando dados significativos extraídos de imagens provenientes
de diversas fontes. Esse processo possibilita a manipulação e categorização de objetos
presentes em uma imagem (BALLARD, 1982).

Segundo (MILANO; HONORATO, 2010), a velocidade com que o olho humano
interpreta informações visuais é notavelmente rápida, atribuída à complexidade do córtex
visual no cérebro. Esse aspecto do processamento cerebral tornou-se um foco de estudos
visando entender e replicar seu funcionamento na visão computacional.

O aprendizado na visão computacional, inicialmente direcionado pela apresentação
de imagens a algoritmos para a classificação de novas imagens com base nos pixels, tornou-
se mais eficaz com o advento do Deep Learning. Esse avanço ocorreu após décadas desde o
início da aplicação de Inteligência Artificial na medicina, datando de 1950 com o Turing
Test, como ilustrado na Figura 1 (KAUL; ENSLIN; GROSS, 2020).

Figura 1 – Evolução da IA (KAUL; ENSLIN; GROSS, 2020)

(KAUL; ENSLIN; GROSS, 2020) destacam outros fatores cruciais, como o avanço
do processamento computacional, especialmente com o uso de Unidades de Processamento
Gráfico (GPU), e a disponibilidade de grandes conjuntos de dados abertos e categorizados.
Esses elementos propiciaram uma explosão de estudos na interseção entre Inteligência
Artificial e medicina. Um exemplo notável é o trabalho de (HU et al., 2018), que abrange
diversas áreas médicas, utilizando algoritmos como convolutional neural networks, fully
convolutional networks, auto-encoders, and deep belief networks para diagnosticar vários
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tipos de câncer. O estudo oferece sugestões para melhorias futuras e evidencia resultados
positivos na detecção de diferentes tipos de câncer.

2.1 Trabalhos Relacionados

A crescente aplicação de técnicas de visão computacional na detecção de anomalias
médicas tem demonstrado um notável avanço. Este estudo busca aprimorar os modelos
para a classificação de diagnósticos, integrando metodologias estatísticas na comparação
de diferentes algoritmos.

A base de dados Kvasir (POGORELOV et al., 2017), de acesso público, tem sido
amplamente utilizada em diversos estudos. Uma busca por ”Kvasir image classification”
no Google Scholar retornou 1550 resultados até o momento, abrangendo pesquisas entre
2019 e 2023. No entanto, a maioria desses trabalhos não está disponível em português.
Referências como (LIMA et al., 2023) e (THOMAZ, 2020) exploraram essa mesma base
de dados, porém adotaram abordagens e técnicas distintas das propostas neste estudo. O
avanço rápido da Inteligência Artificial motiva a busca por resultados mais eficazes ou
com melhor desempenho em comparação com estudos anteriores que utilizaram essa base
de dados.

Em 2015, cerca de 8 milhões de mortes foram relacionadas a doenças gastrointesti-
nais (CHAN et al., 2019). Diversas pesquisas abordam as classes estudadas neste trabalho
de maneira individual. Por exemplo, (JR, 2006) examina o ceco, identificando-o como
causador de vários sintomas, como dor abdominal intermitente, distensão, empanzinamento,
cólicas, entre outros. Já (MAGALHÃES, 2019) analisa os pólipos, que são detectados em
aproximadamente 1% a 4% dos exames e demonstra que, embora a maioria seja benigna e
não necessite de intervenção, alguns apresentam potencial maligno. Há outros estudos que
abrangem as doenças apresentadas neste trabalho.

Essas doenças são comuns e exigem tempo e atenção por parte do examinador
para avaliação da condição, levando em média 7 dias úteis para obtenção dos resultados
dos exames. Soluções altamente precisas e rápidas seriam extremamente benéficas para
auxiliar os profissionais da saúde, possibilitando avaliações mais céleres e permitindo que
os pacientes iniciem o tratamento mais prontamente.
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3 METODOLOGIA

3.1 Base de dados

Os dados analisados correspondem à base de dados pública denominada Kvasir
(POGORELOV et al., 2017), um conjunto de imagens classificado para auxiliar na detecção
computadorizada de doenças gastrointestinais. Essas imagens foram capturadas por um
dispositivo endoscópico pertencente ao Vestre Viken Heath Trust (VV), localizado na
Noruega, uma entidade composta por quatro hospitais que atendem a uma população de
470.000 pessoas.

A base de dados é composta por 8.000 imagens, categorizadas em 8 classes distintas,
com 1.000 imagens por classe. As classes são agrupadas em três categorias principais:
Marcos Anatômicos (que incluem Linha Z, Piloro e Ceco), Achados Patológicos (como
Esofagite, Pólipos e Colite Ulcerativa) e Remoção de Pólipos (englobando Pólipos Tingidos
e Levantados, e Margens de Ressecção Tingidas). A resolução das imagens na base de dados
varia de 720x576 a 1920x1072 pixels. As Figuras 2 a 9 ilustram amostras representativas
de cada classe incluídas neste estudo.

Marcos Anatômicos: É um atributo visível no trato gastrointestinal que é
facilmente identificável através do endoscópio.

A linha Z é definido como o local de transição entre o esôfago e o estômago. Um
exemplo de sua imagem é mostrada na Figura 2

Figura 2 – Z-line (POGORELOV et al., 2017)
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Piloro é definido como a área ao redor da abertura do estômago até a primeira
parte do intestino delgado (duodeno). Um exemplo de sua imagem é mostrada na Figura 3

Figura 3 – Piloro (POGORELOV et al., 2017)

Ceco é a parte mais proximal do intestino grosso. Um exemplo de sua imagem é
mostrada na Figura 4

Figura 4 – Ceco (POGORELOV et al., 2017)

Achados Patológicos: É um atributo anormal no trato gastrointestinal

Esofagite é uma inflamação do esôfago visível como uma ruptura na mucosa
esofágica em relação à linha Z. Um exemplo de sua imagem é mostrada na Figura 5

Figura 5 – Esofagite (POGORELOV et al., 2017)

Pólipos são lesões no intestino detectáveis à medida que a mucosa cresce. Um
exemplo de sua imagem é mostrada na Figura 6

Figura 6 – Pólipos (POGORELOV et al., 2017)
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Colite ulcerativa é uma doença inflamatória crônica que afeta o intestino grosso.
Um exemplo de sua imagem é mostrada na Figura 7

Figura 7 – Colite ulcerativa (POGORELOV et al., 2017)

Remoção de pólipos: Os pólipos no intestino grosso são associados como precur-
sores de câncer, por isso sua remoção é necessária.

A Figura 8 ilustra um exemplo de pólipos tingidos e levantados por injeção de
solução salina e índigo carmim.

Figura 8 – Pólipos tingidos e levantados (POGORELOV et al., 2017)

Margens de ressecção tingidas são importantes para avaliar se o pólipo foi totalmente
removido ou não. O tecido residual do pólipo pode levar ao crescimento contínuo e, no pior
dos casos, ao desenvolvimento de malignidade. Um exemplo de sua imagem é mostrada na
Figura 9

Figura 9 – Margens de ressecção tingidas (POGORELOV et al., 2017)

3.2 Transfer Learning

O Transfer Learning é um paradigma no campo de aprendizado de máquina reco-
nhecido por sua habilidade em aprimorar o desempenho de modelos em tarefas específicas,
alavancando informações obtidas em tarefas correlatas anteriores. Esta abordagem visa
transferir o conhecimento adquirido em uma ’Tarefa 01’ para melhorar a capacidade de
generalização em uma ’Tarefa 02’. Essencialmente, o Transfer Learning explora os pesos
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aprendidos por uma rede neural em uma tarefa anterior para melhorar a execução de uma
nova tarefa.

A principal motivação para aplicar essa técnica reside na capacidade de utilizar o
conhecimento obtido a partir do treinamento de uma rede neural com um extenso conjunto
de dados e aplicá-lo em uma nova tarefa com um conjunto de dados limitado, evitando
assim iniciar o processo de aprendizado desde o início. Essa estratégia é de particular
importância em situações em que os recursos computacionais são restritos, especialmente
ao lidar com problemas de treinamento em conjuntos de dados volumosos.

No contexto do Transfer Learning, diferentes abordagens podem ser implementadas.
Neste estudo, optou-se pela estratégia de Extração de Características (Feature Extraction),
onde as representações de alto nível aprendidas por três redes neurais distintas (ResNet50,
MobileNet e VGG-19) na penúltima camada de saída foram utilizadas como entrada em
um novo modelo de machine learning. Em vez de reajustar completamente o modelo
pré-treinado, as características extraídas são empregadas para treinar um novo modelo
específico para a tarefa em questão.

3.2.1 ResNet50

As Redes Residuais (ResNets) representam uma arquitetura avançada de redes
neurais profundas utilizada em aprendizado profundo (deep learning). Introduzidas por
(HE et al., 2016), as ResNets foram projetadas para mitigar o desafio comum de trei-
nar redes profundas, conhecido como o problema de desvanecimento do gradiente. Essa
abordagem inovadora incorpora conexões de atalho, permitindo que a informação flua
diretamente através da rede sem ser afetada negativamente pelos efeitos adversos da
retropropagação em camadas mais profundas. A utilização de blocos residuais, nos quais a
entrada original é somada à saída de uma camada intermediária, facilita a aprendizagem
de representações mais eficazes e contribui para o treinamento mais estável e eficiente de
redes neurais extremamente profundas. As ResNets tornaram-se um marco importante em
visão computacional e outras tarefas de aprendizado profundo, demonstrando melhorias
significativas na precisão e eficiência do treinamento em comparação com arquiteturas
convencionais. O resumo de sua arquitetura é mostrada em Figura 10

Figura 10 – Resumo arquitetura ResNet (WIKIDOCS, 2023c)
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3.2.2 VGG-19

A VGG-19 é uma arquitetura de rede neural convolucional desenvolvida pela
Visual Geometry Group (VGG) do Departamento de Engenharia Eletrônica e Elétrica da
Universidade de Oxford. Proposta por (SIMONYAN; ZISSERMAN, 2014), a VGG-19 é
caracterizada por sua profundidade notável, consistindo em 19 camadas convolucionais e
totalmente conectadas. A rede é conhecida por sua simplicidade conceitual, baseada na
repetição de blocos de camadas convolucionais 3x3 e camadas de pooling, mantendo um
número relativamente constante de filtros em cada camada. Essa uniformidade facilita
a interpretação e análise da rede. A VGG-19 alcançou sucesso notável em competições
de reconhecimento de imagens, destacando-se pela capacidade de extrair características
complexas e hierárquicas das imagens, contribuindo para seu papel proeminente no avanço
da pesquisa em visão computacional. Apesar de sua profundidade, a VGG-19 tornou-se uma
referência e uma base para arquiteturas mais avançadas, influenciando significativamente
o desenvolvimento subsequente de redes neurais convolucionais. Os parâmetros de 5 tipos
de ResNet, incluindo a usada neste trabalho ResNet50 são vistos em Figura 11

Figura 11 – Arquitetura VGG (WIKIDOCS, 2023b)

3.2.3 MobileNet

A MobileNet é uma arquitetura de rede neural convolucional projetada especifica-
mente para otimizar a eficiência computacional e o desempenho em dispositivos com recur-
sos limitados, como smartphones e dispositivos embarcados. Desenvolvida por (HOWARD
et al., 2017), a MobileNet utiliza um conjunto de técnicas inovadoras, como convoluções
separáveis em profundidade e convoluções lineares, visando reduzir drasticamente o número
de parâmetros e operações computacionais sem comprometer significativamente a precisão
da rede. Essa abordagem permite que a MobileNet atinja uma eficiência computacional
notável, tornando-a especialmente adequada para implantações em dispositivos móveis
com restrições de recursos, onde a eficiência energética e o espaço de armazenamento são
considerações críticas. A arquitetura MobileNet contribuiu significativamente para avanços
em visão computacional em dispositivos móveis e aplicações de Internet das Coisas (IoT),
oferecendo uma solução viável para aplicações práticas que demandam inferência de redes



30

neurais profundas em ambientes com recursos limitados. Sua arquitetura é vista em Figura
12

Figura 12 – Arquitetura MobileNet (WIKIDOCS, 2023a)

3.3 KNN

O k-Nearest Neighbors (KNN) (HART; STORK; DUDA, 2000) é um algoritmo
de classificação e regressão no campo de aprendizado de máquina supervisionado. Essa
abordagem é fundamentada no princípio da similaridade, onde a classificação ou predição
de um novo ponto de dados é determinada pela maioria das classes ou valores dos k
pontos de dados mais próximos no espaço de características. A proximidade é geralmente
medida usando métricas de distância, como a distância euclidiana. O parâmetro k, que
define o número de vizinhos considerados, é uma variável crucial na configuração do
algoritmo, impactando a sensibilidade do modelo à variação local nos dados. O KNN é não
paramétrico e adaptativo, pois não faz suposições explícitas sobre a distribuição subjacente
dos dados. Embora seja simples e intuitivo, o KNN pode ser computacionalmente caro para
conjuntos de dados grandes e é sensível a atributos irrelevantes ou ruidosos. No entanto,
sua aplicabilidade em uma variedade de contextos e a ausência de suposições sobre a
natureza dos dados tornam o KNN uma ferramenta versátil e amplamente utilizada em
várias áreas de reconhecimento de padrões e análise de dados.

3.4 Random Forest

A Floresta Aleatória (Random Forest) é um algoritmo de aprendizado de máquina
que se baseia em um conjunto de árvores de decisão para realizar tarefas de classificação
ou regressão. Proposta por (BREIMAN, 2001), a Random Forest introduz aleatoriedade
durante o treinamento, utilizando subamostras aleatórias do conjunto de dados e sele-
cionando características de forma aleatória em cada nó de decisão de cada árvore. Isso
promove uma diversidade entre as árvores individuais, evitando sobreajuste e melhorando
a generalização para novos dados. Cada árvore na floresta opera de maneira independente
durante a inferência, e as previsões são combinadas para formar uma decisão final robusta.
Por outro lado, uma Árvore Aleatória (Random Tree) refere-se a uma única árvore de
decisão treinada com amostras de dados aleatórias, mas sem a adição de aleatoriedade
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nas características. Embora as árvores aleatórias também possam ser eficazes, a força
distintiva da Random Forest reside na combinação de múltiplas árvores, proporcionando
maior estabilidade e desempenho geralmente superior em comparação com uma única
árvore aleatória.

3.5 Avaliação

A matriz de confusão é uma tabela que descreve o desempenho de um modelo de
classificação, comparando as previsões do modelo com os rótulos verdadeiros dos dados.
Ela é composta por quatro elementos: verdadeiros positivos (TP), falsos positivos (FP),
verdadeiros negativos (TN) e falsos negativos (FN). A acurácia (accuracy) é a proporção
de predições corretas em relação ao total de predições e é calculada como (T P +T N)

(T P +F P +T N+F N) .
A precisão (precision) é a proporção de verdadeiros positivos em relação à soma de
verdadeiros positivos e falsos positivos, ou seja, T P

(T P +F P ) . O recall, também conhecido como
sensibilidade ou taxa de verdadeiros positivos, é a proporção de verdadeiros positivos em
relação à soma de verdadeiros positivos e falsos negativos, calculada como T P

(T P +F N) . O
F1-score é uma métrica que combina precisão e recall, representando a média harmônica
entre essas duas medidas e sendo calculado como 2 ∗ (precision×recall)

(precision+recall) . Cada uma dessas
métricas fornece uma perspectiva única sobre o desempenho do modelo em diferentes
aspectos, sendo úteis para avaliar sua eficácia em tarefas de classificação.

3.6 Pré Processamento

O resultado do Transfer Learning, no qual as redes neurais convolucionais ResNet50,
VGG-19 e MobileNet foram aplicadas para extrair características das imagens, gerou para
a ResNet50 38.400 colunas de características, para a VGG-19 produziu 30.000 colunas
e a MobileNet 50.176 colunas de características para cada imagem na base de dados e
esse resutlado serviu como entrada para os modelos de machine learning (KNN e Randon
Forest).

No processo de pré-processamento, os dados foram divididos em conjuntos de
treinamento e teste com uma proporção de 80% para treinamento e 20% para teste. Para
garantir uma distribuição uniforme das classes nos dados de treinamento e validação durante
o treinamento dos modelos, foi empregada a técnica de validação cruzada estratificada
(ATKESON; MOORE; SCHAAL, 1997). Isso foi realizado com o intuito de mitigar qualquer
viés resultante de desequilíbrios nas classes.

Os modelos utilizados, Random Forest e K-Nearest Neighbors, foram configura-
dos com parâmetros específicos: o Random Forest foi configurado com 100 estimadores,
enquanto o KNN foi ajustado para considerar 5 vizinhos mais próximos. Em seguida, o
conjunto de treinamento foi submetido a um processo de validação cruzada para avaliar a
capacidade de generalização do modelo KNN. Posteriormente, ambos os modelos foram
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empregados para fazer previsões nos dados de teste, gerando assim resultados preditivos
para a avaliação de suas performances.

3.7 Comparação de Modelos

O teste qui-quadrado é uma ferramenta estatística utilizada para avaliar a inde-
pendência entre variáveis categóricas. Ele se baseia na comparação entre as frequências
observadas e as frequências esperadas, permitindo determinar se há uma relação signi-
ficativa entre as variáveis analisadas. As hipóteses nula (H0) e alternativa (H1) neste
contexto envolvem a independência das variáveis e a presença de associação entre elas,
respectivamente (SIEGEL, 1981).

No contexto de comparação de três modelos através de suas matrizes de confusão, o
teste qui-quadrado pode ser empregado para analisar se a assertividade na classificação das
classes é significativamente diferente entre esses modelos. Ao somar os acertos e erros das
previsões de cada modelo a partir das matrizes de confusão, é possível obter as frequências
observadas para cada categoria. Em seguida, ao estimar as frequências esperadas sob a
hipótese de independência entre os modelos e as classes, o teste qui-quadrado pode ser
aplicado para determinar se existe uma associação significativa (no presente trabalhou
adotou que p-valores menores do que 0,05 são considerados significativos) entre o modelo
utilizado e a assertividade na classificação das classes.

Análise de Correspondência (Anacor) é uma técnica estatística multivariada utili-
zada para explorar e visualizar associações entre variáveis categóricas em um conjunto
de dados. Quando o p-valor associado ao teste qui-quadrado realizado na Anacor é sig-
nificativo, isso indica que existe uma associação estatisticamente significativa entre as
categorias das variáveis estudadas. Em outras palavras, rejeitar a hipótese nula (H0) no
teste qui-quadrado na Anacor sugere que há uma relação não aleatória entre as variáveis.

A significância estatística do p-valor obtido neste teste indica que existe um padrão
de associação entre as categorias das variáveis envolvidas na análise. Isso significa que a
disposição das categorias em diferentes dimensões nos gráficos de Anacor não é aleatória,
mas sim influenciada por uma relação subjacente entre elas. A interpretação dos resultados
significativos na Anacor com um p-valor baixo indica a presença de associações relevantes
e não aleatórias entre as categorias das variáveis estudadas. A interpretação na Análise de
Correspondência (Anacor) ocorre da seguinte maneira: o residual padronizado do teste
qui-quadrado representa o grau de associação. Para um nível de confiança de 95%, valores
do residual padronizado acima de 1,96 indicam associações entre as categorias das variáveis
analisadas.
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4 RESULTADOS

O processo de Feature Extration tem um resultado para cada rede neural, tanto em
valores, quanto na quantidade de variáveis e no tempo de processamento, onde Resnet50
gerou 38400 variáveis levando de menos de 1 a 8 segundos por imagem, VGG19 25089
variáveis levando de menos de 1 a 5 segundos por imagem e MobileNet 50176 variáveis
levando até 1 segundo por imagem. Para cada saída das redes neurais foram aplicados
dois algoritmos, KNN e Random Forest. Os resultados de cada rede são mostrados abaixo,
na matriz de confusão os codigos são em relação as seguintes classes: Z-line 0, Piloro 1,
Ceco 2, Esofagite 3, Pólipos 4, Colite ulcerativa 5, Pólipos tingidos e levantados
6 e Margens de ressecção tingidas 7. Também foi testado um modelo de redução de
dimensionalidade antes da aplicação dos modelos de Machine Learning, mas os resultados
não ficaram interessantes, com as predições ficando com métricas baixas em todas as
classes e não são apresentados no presente trabalho.
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4.1 MobileNet

É possível perceber pela matriz de confusão ilustrada na Figura 13, é possível
perceber que ambos os algoritmos concentraram os maiores valores na diagonal principal
da matriz de confusão, o que representa assertividade. Os erros foram semelhantes em
relação às classes trocadas, exemplo, a classe 0 e 1, classe 2 e 5, porém a assertividade foi
maior no Random Forest, o que pode ser melhor visualizado na Tabela 4.1, acurácia do
Random Forest foi de 81 contra 65,44 do KNN, vale comentar que olhando as métricas
classe a classe o Random Forest é melhor em todos e apenas em um casa (classe 5) ambos
modelos tiveram os mesmos resultados.

Classe Precision Recall f1-score Modelo
dyed-lifted-polyps 0.76 0.76 0.76 RF
dyed-resection-margins 0.78 0.76 0.77 RF
esophagitis 0.75 0.72 0.73 RF
normal-cecum 0.83 0.95 0.89 RF
normal-pylorus 0.93 0.94 0.93 RF
normal-z-line 0.72 0.77 0.74 RF
polyps 0.85 0.74 0.79 RF
ulcerative-colitis

81,00

0.88 0.84 0.86 RF
dyed-lifted-polyps 0.62 0.30 0.41 KNN
dyed-resection-margins 0.87 0.20 0.33 KNN
esophagitis 0.77 0.56 0.65 KNN
normal-cecum 0.53 0.96 0.68 KNN
normal-pylorus 0.93 0.91 0.92 KNN
normal-z-line 0.63 0.84 0.72 KNN
polyps 0.48 0.57 0.52 KNN
ulcerative-colitis

65,44

0.72 0.88 0.79 KNN

Tabela 1 – Resultados MobileNet

4.2 VGG19

Via Imagem 14, é possível perceber que no Random forest os valores se concentraram
na diagonal principal da matriz de confusão, o que representa assertividade, ja o KNN
isso ocorreu a partir da classe 02. Já na Tabela 4.2, nota-se que mesmo classe a classe
o random forest foi superior ao KNN em todos os casos, e de forma geral obteve uma
acurácia de 80,31 contra 63,19.
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Figura 13 – Matriz de Confusão MobileNet

Classe Precision Recall f1-score Modelo
dyed-lifted-polyps 0.72 0.61 0.66 RF
dyed-resection-margins 0.71 0.74 0.72 RF
esophagitis 0.77 0.74 0.75 RF
normal-cecum 0.79 0.95 0.86 RF
normal-pylorus 0.95 0.98 0.96 RF
normal-z-line 0.75 0.82 0.78 RF
polyps 0.82 0.73 0.77 RF
ulcerative-colitis

80,31

0.90 0.88 0.89 RF
dyed-lifted-polyps 0.71 0.28 0.40 KNN
dyed-resection-margins 0.73 0.37 0.49 KNN
esophagitis 0.57 0.56 0.57 KNN
normal-cecum 0.50 0.96 0.66 KNN
normal-pylorus 0.85 0.91 0.88 KNN
normal-z-line 0.55 0.89 0.68 KNN
polyps 0.80 0.32 0.46 KNN
ulcerative-colitis

63,19

0.68 0.77 0.72 KNN

Tabela 2 – Resultados VGG-19

4.3 ResNet50

Via Imagem 15, é possível perceber que ambos os algoritmos concentraram os
maiores valores na diagonal principal da matriz de confusão, o que representa assertividade,
os erros foram semelhantes em relação às classes trocadas, exemplo, a classe 0 e 1, classe 2
e 5, porém a assertividade foi maior no Random Forest, o que pode ser melhor visualizado
na Tabela 4.3, acurácia do Random Forest foi de 81 contra 65,44 do KNN, vale comentar
que olhando as métricas classe a classe o Random Forest é melhor em todos e apenas em
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Figura 14 – Matriz de Confusão VGG-19

um casa (classe 5) ambos modelos tiveram os mesmos resultados.

Classe Precision Recall f1-score Modelo
dyed-lifted-polyps 0.68 0.68 0.68 RF
dyed-resection-margins 0.78 0.73 0.75 RF
esophagitis 0.71 0.71 0.71 RF
normal-cecum 0.84 0.95 0.89 RF
normal-pylorus 0.89 0.93 0.91 RF
normal-z-line 0.72 0.72 0.72 RF
polyps 0.77 0.72 0.75 RF
ulcerative-colitis

77,94

0.83 0.81 0.82 RF
dyed-lifted-polyps 0.69 0.48 0.57 KNN
dyed-resection-margins 0.73 0.62 0.67 KNN
esophagitis 0.67 0.51 0.58 KNN
normal-cecum 0.65 0.90 0.76 KNN
normal-pylorus 0.79 0.94 0.86 KNN
normal-z-line 0.63 0.77 0.69 KNN
polyps 0.68 0.66 0.67 KNN
ulcerative-colitis

69,69

0.73 0.73 0.73 KNN

Tabela 3 – Resultados ResNet50

4.4 Comparação de Modelos

Entre as métricas da matriz de confusão utilizadas para avaliar os modelos, o
Random Forest demonstrou ser o mais eficaz. Considerando as redes neurais utilizadas
como entrada de dados, foi conduzido um teste adicional para investigar se a assertividade
do modelo Random Forest depende ou não dessas redes neurais. Conforme apresentado na
Tabela 4, o p-valor obtido foi estatisticamente significativo, indicando que a assertividade
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Figura 15 – Matriz de Confusão ResNet50

do modelo depende de algum aspecto relacionado aos modelos neurais. Na análise de
correspondência (Anacor) presente na Tabela 5, são apresentadas as associações entre os
modelos de redes neurais e os acertos e erros. Observa-se que o modelo MobileNet possui
uma associação significativa com os acertos (valores acima de 1,96), enquanto o modelo
ResNet50 está associado de maneira significativa aos erros. Em geral, isso sugere que, no
caso do MobileNet, os acertos estão acima do esperado, enquanto para o ResNet50, os erros
estão acima do esperado. Não foi observada uma associação significativa para a VGG19,
indicando que seus valores encontrados estão dentro do esperado quando comparados às
outras redes neurais.

Modelo Acertou p-valor
Sim Não

MobileNet 1296 247
VGG19 1285 315

ResNet50 1247 353
<0,000

Tabela 4 – Teste qui quadrado entre modelos

Modelo Acertos Erros
MobileNet 3,97 -3,97

VGG19 -0,49 0,49
ResNet50 -3,45 3,45

Tabela 5 – Associação via ANACOR
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5 CONCLUSÕES

O presente estudo explorou a aplicação de redes neurais convolucionais (CNNs)
para extração de características em imagens médicas, seguida da utilização de algoritmos de
aprendizado de máquina para classificação. Três arquiteturas de CNN foram empregadas:
ResNet50, VGG19 e MobileNet, com o intuito de investigar a influência dessas redes na
performance dos modelos de aprendizado de máquina.

Os resultados indicam que o processo de Feature Extraction por meio das redes
neurais trouxe diferenças substanciais em termos de volume de características, tempo de
processamento e desempenho subsequente dos modelos de aprendizado de máquina. O
algoritmo Random Forest demonstrou consistentemente melhores métricas de precisão,
recall e pontuação F1 em comparação com o KNN para todos os conjuntos de dados
gerados pelas CNNs.

Além disso, a análise comparativa entre as redes neurais revelou que o desempenho
dos modelos de aprendizado de máquina parece ser sensível à arquitetura da rede neural
utilizada na etapa de extração de características. Foi observada uma associação significativa
entre a escolha da rede neural e a distribuição dos acertos e erros nos modelos finais,
evidenciando que diferentes arquiteturas influenciaram a assertividade dos algoritmos
de maneira distinta, onde a arquitetura da MobileNet obteve os melhores valores gerais,
MobileNet também foi o mais performático.

Portanto, conclui-se que a escolha da arquitetura de rede neural desempenha
um papel crucial na eficácia dos modelos de aprendizado de máquina para tarefas de
classificação de imagens. Esta conclusão ressalta a importância de considerações específicas
sobre a seleção de redes neurais ao desenvolver sistemas de visão computacional ou tarefas
de reconhecimento de imagem, destacando a necessidade de estudos mais aprofundados
para compreender como diferentes arquiteturas influenciam diretamente a eficiência dos
modelos de aprendizado de máquina em cenários de processamento de imagens médicas.

Para próximos passos poderia ser implementado o modelo em uma aplicação web
para classificação automática das imagens, auxiliando o profissional afim de classificar as
imagens. Testar novos modelos com processamento paralelo para melhorar a performance
e testar outros modelos de machine learning (SVM,XGBoost, entre outros) para tentar
melhorar a assertividade dos resultados.
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