
 

UNIVERSIDADE   DE   SÃO   PAULO  
ESCOLA   DE   ENGENHARIA   DE   SÃO   CARLOS  

 
 
 
 

Yuri   Castro   Neo   de   Carvalho  

 

 

 

 

 

SAT   e   SMT   solvers:   fundamentos   e   aplicação   ao   problema   de  

alocação   de   frequências  

 
 
 

 
 
 
 
 
 

São   Carlos  

2019  

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2  



 

                     YURI   CASTRO   NEO   DE   CARVALHO  
 

 

 

SAT   E   SMT   SOLVERS:   FUNDAMENTOS   E   APLICAÇÃO   AO  
PROBLEMA   DE   ALOCAÇÃO   DE   FREQUÊNCIAS  

 

 

 

 

Trabalho   de   Conclusão   de   Curso   apresentado   à   Escola   de  

Engenharia   de   São   Carlos,   da   Universidade   de   São   Paulo  

 

Curso   de   Engenharia   Elétrica   com   ênfase   em   Eletrônica  

 

 

 

 

Orientadores:  

Prof.   Dr.   Rogério   Andrade   Flauzino   (EESC)  

Prof.   Dr.   Orlando   de   Andrade   Figueiredo   (UNESP/Rio   Claro)  

 

 

 

 

 

                                            São   Carlos  

                                                2019  

3  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

4  



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

 
 
Carvalho, Yuri Castro Neo de 

 C331s SAT e SMT solvers: fundamentos e aplicação ao 
problema de alocação de frequências / Yuri Castro Neo
de  Carvalho; orientador Orlando  de Andrade
Figueiredo; coorientador Rogério Andrade Flauzino. São
Carlos, 2019.

 
 
Monografia (Graduação em Engenharia Elétrica com 

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2019.

 
 
1. SAT. 2. SMT. 3. Lógica. 4. Problema de 

Alocação de Frequência. 5. Z3. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

                               1 / 1



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  



FOLHA DE APROVACAO

Nome: Yuri Castro Neo de Carvalho

Titulo: "SAT e SMT solvers: fundamentos e aplicacao ao problema
de alocacao de frequenclas"

Trabalho de Conclusao de Curso defendido e aprovado
em \3 1 H 110~ ,

corn NOTA l,5 (~\t ,~t\.)\D 1, pela Comissao Julgadora:

Professor Assistente Doutor Orlando de Andrade Figueiredo -
Orientador - UNESP/Campus Rio Claro

Prof. Associado Rogerio Andrade Flauzino - SEUEESC/USP

Prof. Dr. Maximiliam Luppe - SEUEESC/USP

Coordenador da CoC-Engenharia Eletrica - EESC/USP:
Prof. Associado Roqerio Andrade Flauzino



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Contrariwise,'   continued   Tweedledee,   'if   it   was   so,   it   might   be;  
  and   if   it   were   so,   it   would   be;   but   as   it   isn't,   it   ain't.   That's   logic.”  

Lewis   Carroll,   Through   the   Looking   Glass  
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Resumo    

 
 

Carvalho,  Y.  C.  N. SAT  e  SMT  solvers:  fundamentos  e  aplicação  ao  problema  de  alocação                
de  frequência.  2019.  70p.  Monografia  (Trabalho  de  Conclusão  de  Curso)  -  Escola  de              
Engenharia   de   São   Carlos.  

 
 

O  problema  da  satisfatibilidade  booleana  (Boolean  Satisfiability,  ou  simplesmente          

SAT)  é  decidir  se  existe  alguma  interpretação  para  uma  dada  fórmula  booleana  de  maneira               

que  avaliação  da  fórmula  seja  verdadeiro.  Desde  seus  primeiros  algoritmos  na  década  de              

1960,  os  SAT  solvers  evoluíram  muito,  não  só  incorporando  conceitos  como  aprendizado,  mas              

também  permitindo  representações  mais  compactas  e  expressivas  com  o  uso  de  solvers             

específicos  para  uma  dada  teoria,  conhecido  como  Satisfiability  Modulo  Theories  (SMT).            

Antes  restritos  a  apenas  algumas  centenas  de  variáveis,  SAT  e  SMT  solvers  alcançaram              

capacidade  de  lidar  com  problemas  industriais,  lidando  com  milhões  de  variáveis  e  restrições.              

Possuem  aplicações  práticas  em  diversas  áreas  como  Electronic  Design  Automation  (EDA),            

Verificação,  Inteligência  Artificial  e  Pesquisa  Operacional.  O  presente  trabalho  fornece  o            

embasamento  teórico  de  lógica  e  a  evolução  dos  principais  algoritmos  até  atingir  o              

estado-da-arte.  No  contexto  de  uma  aplicação  militar,  existe  o  problema  de  se  alocar              

frequências  para  pares  de  links  de  rádios  (RLFAP),  de  maneira  que  as  interferências  sejam               

evitadas.  Neste  trabalho,  o  problema  de  RLFAP  foi  abordado  utilizando-se  com  sucesso  o  Z3               

SMT  Solver  da  Microsoft  e  um  conhecido  conjunto  de  dados  construído  a  partir  de  redes  reais                 

e   fornecido   pelo   CELAR   (Centro   de   Eletrônica   do   Exército   Francês).  

 

 

 

Palavras-chave:    SAT,   SMT,   Lógica,   Problema   de   Alocação   de   Frequências,   Z3.  
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Abstract  

 

Carvalho,  Y.  C.  N. SAT  and  SMT  solvers:  fundamentals  and  application  to  the  problem               
of  frequency  assignment.  2019.  70p.  Monografia  (Trabalho  de  Conclusão  de  Curso)  -  Escola              
de   Engenharia   de   São   Carlos  

 

The  problem  of  Boolean  Satisfiability  (or  simply  SAT)  is  deciding  if  there  exists  an               

interpretation  for  a  given  boolean  formula  such  that  all  clauses  are  satisfied.  Since  its  first                

algorithms  in  the  1960s,  SAT  solvers  have  evolved  a  lot,  incorporating  not  only  concepts  such                

as  learning,  but  also  allowing  for  more  compact  and  expressive  representations  with  the  use  of                

specific  solvers  for  a  given  theory,  known  as  Satisfiability  Modulo  Theories  (SMT).  What              

once  could  only  handle  hundreds  of  variables,  SAT  and  SMT  solvers  have  reached  industrial               

capability,  now  being  able  to  handle  millions  of  variables  and  constraints.  Their  practical              

applications  range  from  Electronic  Design  Automation  (EDA),  Verification,  Artificial          

Intelligence  and  Operations  Research.  This  work  provides  a  background  in  logic  and  the              

evolution  of  the  main  algorithms  until  reaching  the  state-of-the-art.  In  the  context  of  a  military                

application,  the  problem  of  assigning  frequencies  to  pairs  of  radio  links  (RLFAP),  such  that               

interference  is  avoided,  is  successfully  explored  by  using  Microsoft’s  Z3  SMT  Solver  with  a               

well-known   real-world   dataset   provided   by   CELAR   (French   Army   Electronics   Center).  

 

Keywords:    SAT,   SMT,   Logic,   Frequency   Assignment   Problem,   Z3.  
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1.Introdução  
 

1.1. Motivação  

 

O  problema  da  satisfatibilidade  booleana,  ou  simplesmente  SAT,  consiste  em  verificar  se  uma              

dada  fórmula  contendo  conectivos  lógicos  e  variáveis  binárias  possui  alguma  combinação  de  valores              

( True/False ,  0/1)  para  os  quais  todas  componentes  da  fórmula  (cláusulas)  são  satisfeitas.  Isto  é,  ao                

substituir  os  valores  dessa  interpretação,  a  fórmula  avalia  para True /1.  Tais  fórmulas  podem  ser               

utilizadas  para  descrever  propriedades  de  sistemas  e,  utilizando  algum solver ,  verificar  se  tal  sistema               

se   comporta   de   acordo   com   uma   especificação.  

Contudo,  há  domínios  de  problemas  nos  quais  a  expressividade  de  uma  codificação  binária              

não  é  intuitiva,  podendo  levar  a  erros  e  perda  de  eficiência.  Para  contornar  tal  problema,  os  SAT                  

solvers  foram  expandidos  para  interagir  com  procedimentos  que  decidem  a  satisfatibilidade  de  uma              

fórmula  em  relação  a  outras  teorias  como  Aritmética  de  Inteiros.  Chamados  de  SMT (Satisfiability               

Modulo  Theories) ,  permitem  a  descrição  de  sistemas  e  restrições  utilizando  notações  mais  expressivas              

e   intuitivas.  

No  campo  da  engenharia,  SAT solvers  apresentam  inúmeras  aplicações  em  problemas  de             

Automação   de   Projeto   Eletrônico,   sendo   capaz   de   resolvê-los   de   maneira   eficiente,   como   lista   [1]:  

● Equivalence  Checking :  provar  que  dois  circuitos  produzem  a  mesma  saída  para  qualquer             

entrada  

● Model  Checking :  verifica  se  um  modelo  satisfaz  as  especificações,  utilizado  na Intel  desde  os               

primeiros  modelos  Pentium,  após  uma  falha  na  unidade  de  ponto  flutuante  que  resultou  em  um                

prejuízo   de   475   milhões   de   dólares   [2,   3]   

● Delay  Fault  Testing:  busca  por  padrões  em  falhas  de  circuitos  causadas  por  atrasos  nas  portas                

lógicas  

● Logic   Synthesis:    síntese   de   circuitos   lógicos   que   satisfazem   uma   dada   especificação  

● FPGA   routing:    busca   de   rotas   em   circuitos   de   uma   FPGA  

● Redundancy   Identification:    busca   por   partes   redundantes   em   um   circuito  

 

Outro   campo   no   qual   SAT    solvers    atuam   buscando   inconsistências   é   em    software :  

● Verificação   de   drivers   e   controladores   [4]  

● Verificação  de  controle  de  acesso  a  recursos  na  plataforma  de  computação  em  nuvem Amazon               

Web   Services    [5]   
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SAT  e  SMT solvers também  são  utilizados  em  problemas  combinatórios,  nos  quais  se  tem  um                

conjunto  de  variáveis  e  restrições,  buscando  um  modelo  que  faça  satisfaça  todas  as  restrições,  ou  pelo                 

menos  minimize  a  quantidade  das  violadas.  A  otimização  de  material  utilizado  em  gráfica  de  grande                

porte  [6]  e  o  problema  de  agendamento  de  ligas  esportivas  profissionais  européias  [7]  são  alguns                

exemplos.  

 Apesar  das  várias  aplicações,  é  preciso  notar  que  SAT  é  um  problema  NP-Completo  [8],  para                 

os  quais  as  soluções  que  conhecemos  atualmente  possuem,  no  pior  dos  casos,  tempo  computacional               

exponencial  em  relação  ao  número  de  variáveis.  Todavia,  de  acordo  com  [9],  deve-se  enfatizar  que  o                 

pior  dos  casos  é  exponencial,  de  maneira  que  há  casos  em  domínios  de  problemas  específicos  nos                 

quais   isso   não   ocorre,   e   são   nesses   casos   que   os   SAT   e   SMT   solvers   são   explorados.   

A  solidificação  da  base  teórica  e  prática  levou,  a  partir  dos  anos  2000,  a  um  crescimento  no                  

número  de  SAT  e  SMT solvers  no  meio  acadêmico,  o  que  levou  a  criação  da SAT  Competitions  (2002)                   

[9]  e SMTCOMP  (2005)  [10],  competições  nas  quais  são  utilizados  conjuntos  de  dados  industriais               

reais.  

Problemas  da  classe  NP-Completo  podem  ser  reescritos  em  termos  de  SAT  [11],  permitindo              

casos  como  o  da  coloração  de  grafos,  no  qual  deve-se  atribuir  cores  para  os  vértices  a  partir  de  um                    

conjunto  finito,  de  maneira  que  vértices  vizinhos  não  possuam  a  mesma  cor.  Uma  variação  desse  caso                 

é  o  problema  de  se  alocar  frequências  (ou  canais)  a  células  de  uma  rede  de  telecomunicação,  de                  

maneira   que   interferências   sejam   evitadas   ou   mitigadas.  

 
  

1.2. Objetivos  

 
Este   trabalho   tem   como   objetivos:  

● realizar  um  levantamento  sobre  a  evolução  dos  principais  métodos  e  algoritmos  utilizados  por              

SAT  e  SMT solvers  na  literatura,  fornecendo  a  fundamentação  teórica  de  Lógica  Proposicional              

e   de   Primeira    Ordem,   necessária   para   modelar   sistemas;  

● como  aplicação,  é  utilizado  o  conhecido  e  premiado solver Z3  da  Microsoft  em  um  problema                

de   alocação   de   frequências.  
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1.3. Organização   do   trabalho  

 
O  trabalho  é  composto  por  5  capítulos.  Neste  foram  apresentadas  as  motivações  para  o  estudo                

de  SAT  e  SMT  solvers  a  partir  de  suas  vastas  aplicações.  O  capítulo  2  introduz  os  fundamentos                  

teóricos  da  Lógica  Proposicional  e  de  Primeira  Ordem,  bem  como  os  principais  procedimentos  de               

decisão  e  a  definição  do  problema  de  alocação  de  frequências.  O  capítulo  3  trata  do  conjunto  de  dados                   

(materiais)  e  métodos  (codificação  e solver  utilizado).  O  capítulo  4  apresenta  os  resultados              

apresentados   e   o   5   as   conclusões.  
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2.  Fundamentos   Teóricos  
 

2.1. Lógica   Proposicional   e   de   Primeira   Ordem  

 
2.1.1. Introdução   

Em  sua  tese  de  mestrado,  intitulada A  Symbolic  Analysis  of  Relay  and  Switching  Circuits ,               

Claude  Shannon  [12]  demonstrou  como  era  possível  utilizar  a  álgebra  de  Boole  para  analisar  circuitos                

comutativos.  Anos  mais  tarde  ele  foi  além  e  forneceu  uma  definição  para  o  conceito  de  informação,  de                  

maneira  semelhante  àquela  que  define  entropia  em  física,  tornando  possível  o  estudo  de  sua               

transmissão   por   meios   de   comunicação,   os   quais   podem   apresentar   interferências.   

Apesar  de  neste  trabalho  abordarmos  um  problema  de  comunicação,  mais  especificamente            

tentando  evitar  ou  mitigar  as  interferências,  faz-se  necessário  compreender  a  importância  da  análise              

simbólica   utilizada   por   Shannon.   

George  Boole  publicou  em  1847  um  panfleto  intitulado The  Mathematical  Analysis  of  Logic              

[13],  no  qual  ele  afirma  que  o  uso  da  Álgebra  Simbólica  não  depende  dos  símbolos  utilizados,  e  sim                   

das  regras  que  definem  a  combinação  dos  mesmos.  Portanto,  é  possível  utilizar  uma  notação  algébrica                

para  descrever  as  propriedades  elementares  de  conjuntos,  e  a  partir  disso,  formular  problemas  sobre               

números,   geometria   ,   dinâmica,   óptica,   entre   outros,   o   que   Boole   chamou   de   “Cálculo   da   Lógica”.  

Dessa  maneira,  este  capítulo  se  dedica  a  fornecer  os  fundamentos  das  lógicas  Proposicional  e               

de   Primeira   Ordem,   as   quais   serviram   de   base   para   modelar   um   problema   de   engenharia.   

  

2.1.2. Sintaxe   da   Lógica   Proposicional  

A  sintaxe  de  uma  linguagem  lógica  consiste  em  um  conjunto  de  símbolos  e  regras  usadas  para                 

combiná-los  e  formar  fórmulas  (ou  “sentenças”)  [14].  Os  seguintes  elementos  compõem  o  alfabeto  da               

Lógica   Proposicional   :  

 

● Símbolos   de   pontuação   :    (    e    )  

● Valores-verdade   :   (verdadeiro)   e     (falso)  ⊤  ⊥   

● Variáveis   proposicionais   :     , x , ... ,   x 1  2  x n  

● Átomos   :   (variável) , , x  ⊤ ⊥   

● Literais   :      (um   átomo   ou   sua   negação)  , ￢a  a   

● Conectivos   :  

(negação), ∧ (conjunção), ∨ (disjunção), → (implicação, se ... então), ↔ (se somente se ...)  ￢       

● Fórmulas:   (um   átomo   ou  , ￢f  ,  f  ∧  f   ,  f  ∨  f   ,    f  →   f  ,    f  ↔   f     a  1  1 2  1 2  1 2  1 2  

conectivos   aplicados   à   fórmulas)  
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Note  que  nem  toda  combinação  de  símbolos  da  linguagem  é  válida,  assim  damos  o  nome  de                 

fórmula   bem   formada   (fbf)   àquelas   que   seguem   as   seguintes   regras   de   formação   indutiva:   

1. Toda   proposição   isolada   p   é   uma   fbf  

2. Se   p   é   uma   fbf,   então   também   é   uma   fbf p¬  

3. Se   p   e   q   são   fbfs   então   são   fbfs p ), (p ), (p ) e (p )  ( ⋁ q  ⋀ q  → q ↔ q  

 

Podemos  classificar  os  conectivos  em  relação  a  quantos  argumentos  o  mesmo  utiliza.  O              

conectivo  de  negação  necessita  de  um  único  termo  (unário),  enquanto  os  outros  necessitam  de    ¬)(             

dois   (binário).  

Algumas  fórmulas  podem  ser  decompostas,  então  caso  G  ocorra  sintaticamente  em  F  dizemos              

que   G   é   subfórmula   de   F.   Considera-se   que   toda   fórmula   é   subfórmula   de   si   mesma.   

Ademais,  é  possível  definir  uma  ordem  para  as  subfórmulas  :  precede  caso seja           F 1   F 2   F 1  

sub   fórmula   de   . F 2  

 

 

2.1.3. Semântica   da   Lógica   Proposicional  

A  semântica  de  uma  lógica  é  aquilo  que  fornece  seu  significado  [14],  que  em  Lógica                

Proposicional  é  dado  pelos  valores  constantes  e .  Assim,  para  se  determinar  o  significado  de  uma        ⊤    ⊥          

fórmula  é  preciso  avaliá-la  dentro  de  um  contexto,  que  recebe  o  nome  de  interpretação  da  fórmula,  e                  

corresponde  a  um  conjunto  de  valores  a  serem  atribuídos  às  variáveis  das  fórmulas  [14],  únicos  para                 

variável  proposicional.  Caso  uma  interpretação I  de  uma  fórmula F  resulte  em  verdadeiro,  dizemos               

que   a   mesma   satisfaz   a   fórmula.   

De   maneira   compacta,   podemos   reformular   utilizando   os   seguintes   símbolos    :   

 

 ⊨ F   (a interpretação I  satisfaz a fórmula f )  I  

 ⊭ F   (a interpretação I  falsif ica a fórmula f )  I  

 

Supondo   uma   fórmula   ,   uma   possível   interpretação   é:  ∧ q  ∨ ¬q  F : p → p  

 

                                            p ↦ ⊥, q ↦⊥}  I : {   
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Por  outro  lado,  se  uma  fórmula F  é  satisfazível  por  todas  as  possíveis  interpretações  I,  diz-se                 

que  a  fórmula  é  válida.  Podemos  então  omitir  I  e  escrever  apenas  .  Note  que  são  características              F  ⊨       

duais   :   uma   fórmula    F     só   é   válida   se   sua   negação     não   for   satisfazível. F  ￢  

 

Uma  tabela-verdade  oferece  a  maneira  mais  simples  de  verificar  se  uma  interpretação  satisfaz              

ou  mesmo  valida  uma  fórmula,  e  para  construí-la  utilizamos  como  ponto  de  partida  as  tabelas-verdade                

dos   conectivos.  

  

                              Tabela   1.   Tabela-verdade   dos   conectivos   proposicionais  

p  q  p¬   p ⋀ q   p ⋁ q  p → q

    

  p ↔ q  

 ⊥   ⊥   ⊤   ⊥   ⊥   ⊤   ⊤  

 ⊤   ⊥   ⊥   ⊥   ⊤   ⊥   ⊥  

 ⊥   ⊤   ⊤   ⊥   ⊤   ⊤   ⊥  

 ⊤   ⊤   ⊥   ⊤   ⊤   ⊤   ⊤  

                            Fonte:   elaborada   pelo   autor   

  

  

Note  também  que,  se  uma  fórmula F  contém  n  proposições,  então  existem possíveis             2n  

interpretações.  Como  o  número  de  linhas  cresce  exponencialmente  com  o  de  variáveis,  a  construção  de                

tabelas-verdade   torna-se   um   método   ineficiente.  

Para  verificar  se  uma  interpretação  satisfaz  (ou  não)  uma  fórmula,  aplica-se  um  conjunto  de               

regras  para  manipular  os  símbolos  apresentados  anteriormente.  No  caso  da  Lógica  Proposicional,  o              

cálculo   utiliza   as   seguintes   regras:   

 

1.  ⊨ ⊤  I  

2.  ⊭ ⊥  I  

3.  ⊨ x  se e somente I[x] ⊤ (I  atribui ⊤ à x)  I =   

4.  ⊨ ¬F   se e somente se I  ⊭ F  I 1 1  

5.  ⊨ F   ∧  F   se e somente se I  ⊨ F   e  I  ⊨ F    I 1 2 1 2  

6.  ⊨ F   ∨  F   se e somente se  I  ⊨ F   ou  I  ⊨ F      I 1 2 1 2  
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7.  ⊨ F   →  F   se e somente se  I  ⊭ F   ou  I  ⊨ F    I 1 2 1 2  

8.  ⊨ F  ↔ F   se e somente se I  ⊨ F  e I  ⊨ F ,  ou I  ⊭ F  e I  ⊭ F  I 1 2 1 2  1 2  

 

 

Suponha  a  seguinte  fórmula  e  a  interpretação .      p ∧ q  ∨  ¬ q  F :  → p      p ↦ ⊤, q ↦ ⊥ }  I : {   

Substituindo  os  valores  fornecidos  em I  pode-se  facilmente  montar  uma  tabela  verdade  para  avaliar F ,                

e   verificar   que   a   mesma   é   satisfeita   por    I :  

 

                     Tabela   2.   Tabela-verdade   parcial   da   fórmula    p    ¬ q  F :  ⋀ q → p ⋁   

p  q     q  ¬   ∧ q  p    ∨  ¬ q  p  F  

 ⊤   ⊥   ⊤   ⊥   ⊤   ⊤  

                 Fonte:   elaborada   pelo   autor  

  

 

Contudo,  para  determinar  se F  é  válida  é  necessário  completar  a  tabela  com  todos  as  possíveis                 

combinações   de    p    e    q    :   

 

                       Tabela   3.   Tabela-verdade   completa   da   fórmula    p    ¬ q  F :  ⋀ q → p ⋁   

p  q     q  ¬   ∧ q  p    ∨  ¬ q  p  F  

 ⊥   ⊥   ⊤   ⊥   ⊤   ⊤  

 ⊥   ⊤   ⊥   ⊥   ⊥   ⊤  

 ⊤   ⊥   ⊤   ⊥   ⊤   ⊤  

 ⊤   ⊤   ⊥   ⊤   ⊤   ⊤  

                                Fonte:   elaborada   pelo   autor  

  

 

Pode-se   assegurar,   portanto,   que    F    é   válida.   

 

Uma  alternativa  para  avaliar  a  validade  de  uma  fórmula  consiste  em  tomar  uma  abordagem               

sintática,  provando-se  por  dedução  ou  refutação,  a  partir  de  regras  de  inferência.  Regras  de  inferência                
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relacionam  as  premissas  (ou  antecedentes)  com  as  deduções  (ou  consequentes),  separando-as  com  uma              

linha   vertical,   com   as   premissas   acima   da   linha   e   as   conclusões   abaixo   [14].   

Assim,  partindo  da  semântica  dos  conectivos,  podemos  estabelecer  as  seguintes  regras  (note             

que   dependendo   da   premissa,   é   necessário   fazer   considerar   cada   caso   separadamente):  

●  e  I  ⊭ F
I  ⊨ ¬F

I  ⊨ F
I  ⊭ ¬F   

●    e     I  ⊨ F  ⋀ G
I  ⊨ F     I  ⊨ G 

I  ⊭ F  ⋀ G
I  ⊭ F  ∣ I  ⊭ G  

●    e     I  ⊨ F  ⋁ G
I  ⊨ F  ∣  I  ⊨ G

I  ⊭ F  ⋀ G
I  ⊭ F       I  ⊭ G  

●    e     I  ⊨ F  → G
I  ⊭ F  ∣  I  ⊨ G

I  ⊭ F  → G
I  ⊨ F       I  ⊭ G  

●    e     I  ⊨ F  ↔ G
I  ⊨ F⋀ G ∣ I  ⊭ F  ⋁ G  

I  ⊭ F  ↔ G
I  ⊨ F  ⋀ ¬G  ∣ I  ⊨ ¬F  ⋀  G  

●    (contradição)  ⊥  
I  ⊨ F       I  ⊭ F    

 

Considere  a  seguinte  fórmula .  Para  estabelecer  a  validade  de F  primeiro       ∧ q  ∨ ¬q  F : p → p         

assumimos  que  ela  é  inválida ,  ou  seja,  existe  uma  interpretação I  que  satisfaz  a  fórmula.  Em       ⊭ F  I             

seguida,   utilizando   as   regras   de   inferência   para   construir   argumentos   [14]   :  

1.                 premissa   ⊭  p ∧ q  ∨¬q  I → p  

2.                                    utilizando   1   e   a   semântica   de    ⊨ p ∧ q  I →  

3.                                utilizando   1   e   a   semântica   de     ⊭ p ∧ ¬q  I →  

4.                                          utilizando   2   e   a   semântica   de    ⊨ p  I  ∧  

5.                                         utilizando   3   e   a   semântica   de     ⊭ p  I  ∨  

 

Observando  4  e  5,  pode-se  concluir  que  temos  uma  contradição,  e  a  prova  pode  ser  encerrada,                 

comprovando   que   é,   de   fato,   válida. F¬   

  

2.1.4. Sintaxe   da   Lógica   de   Primeira   Ordem  

A  Lógica  de  Primeira  Ordem  estende  a  Proposicional  com  predicados,  funções  e             

quantificadores  [14].  Com  isso,  ganha-se  expressividade  para  fórmulas  cujas  variáveis  podem  ser             

números   inteiros,   reais,    arrays ,   vetores   de    bits ,   entre   outros.  

O   alfabeto   da   Lógica   de   Primeira   Ordem   é   formado   por:  

● Símbolos   de   pontuação   :    (    e    )  

● Variáveis   :   , ,x y z   

● Constantes   :   , ,a b c  

30  



 

● Predicados   :   , ,p q r   

● Variáveis   proposicionais   (predicados   de   aridade   0)   :   , ,P Q R  

● Funções:   , ,f g h  

● Conectivos   proposicionais:   ￢,   ∧   ,   ∨,   →   ,   ↔   

● Quantificadores   :   ,  ∀ ∃  

● Átomos   :   , , p (predicados)  ⊥ ⊤   

● Literais   :   átomos   ou   sua   negação  

● Fórmulas   :   literais,   aplicação   de   conectivos   à   fórmulas,   aplicação   de   quantificadores   à  

fórmulas  

 

As  funções  adicionam  expressividade  ao  permitir  o  uso  de  domínios  que  não  sejam  apenas  os                

valores-verdade  e .  Podem  variar  na  quantidade  de  argumentos  que  utilizam  (aridade),  sendo  que   ⊥    ⊤             

as  de  aridade  0  podem  ser  vistas  como  constantes.  Dessa  maneira,  pode-se  trabalhar  com  domínios  de                 

interesse   como   naturais,   inteiros   e   reais.   

Predicados,  assim  como  as  funções,  variam  em  relação  à  aridade,  mas  quando  avaliados              

mapeiam   valores   para   o   domínio   booleano.   

As  fórmulas  em  Lógica  de  Primeira  Ordem  também  seguem  uma  regra  indutiva  na  definição               

de   fórmulas   bem   formadas   e   expandem   aquelas   da   Lógica   Proposicional:   

1. Todo   literal     é   uma   fbf l  

2. A   aplicação   dos   conectivos   às   fbfs   é   uma   fbf  

3. A   aplicação   dos   quantificadores   a   uma   fbf   é   uma   fbf  

 

Os  quantificadores  universal  ( )  e  existencial  ( )  podem  ser  vistos  como  operadores  que     ∀     ∃        

aplicam  um  predicado  em  todo  um  domínio.  O  quantificador  universal  somente  retorna  caso  todos              ⊤    

os  elementos  do  domínio  validem  o  predicado,  já  o  quantificador  existencial  retorna  caso  pelo              ⊤    

menos   um   elemento   do   domínio   valide   o   predicado.   

 

 

2.1.5. Semântica   da   Lógica   de   Primeira   Ordem  

Com  a  adição  de  funções,  pode-se  trabalhar  com  diversos  domínios  além  do  booleano,  assim  é                

necessário  incluir  o  domínio  da  interpretação.  Trata-se  de  um  conjunto  não-vazio  de  valores  como     DI            

inteiros,  dias  da  semana,  etc.  Podendo  ser  finitos,  como  um  baralho  de  52  cartas,  ou  incontavelmente                 

finito   como   os   números   reais   [14].  
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Assim,  uma  interpretação  é  um  par  formado  pelo  domínio  e  atribuições  ( ),    D , )I : ( I αI        DI    αI  

mapeando   constantes,   funções   e   predicados   para   elementos,   funções   e   predicados   do   domínio   . DI   

Considerando  a  fórmula ,  podemos  ver  que  ela  é  composta  de        F : x + y > z → y > z − x         

símbolos ,  os  quais  são  escolhidos  para  dar  uma  intuição  sobre  o  significado  proposto  para  a  , ,+ − >                

fórmula.   Note   que   a   mesma   pode   ser   reescrita   como   . (f (x, ), ) (y, (z, ))  F ′ : p y z → p g x  

 

 

 

Portanto,   se   considerarmos:  

●  DI = ℤ  

●  ↦ +  , ↦ ,  >  ,  ↦ 13 , y ↦ 42 , z ↦ 1  }  αI = { +  ℤ  −  −ℤ  > ↦ ℤ x ℤ  ℤ  ℤ  

 

Podemos  avaliar  se  a  interpretação I satisfaz  a  fórmula F  avaliando  recursivamente  os  termos               

das   fórmulas   e   utilizando   as   mesmas   regras   da   Lógica   Proposicional   :  

1.                     pois    ⊨ x  I + y > z  [x ]  +   42    1  αI + y > z = 13ℤ ℤ ℤ >ℤ ℤ  

2.                      pois    ⊨ y  I > z − x  [y ]     1   13  αI > z − x = 42ℤ >ℤ ℤ −ℤ ℤ  

3.                                 a   partir   de   1,   2   e   a   semântica   de    ⊨ F  I →  

  

No  caso  de  fórmulas  que  contêm  quantificadores,  consideramos  variantes  da  interpretação,            

denotando  por a  variante  de I na  qual para  algum ,  e  utilizamos  as    ◁ { x ↦ v }  J : I       [x]αJ = v    v ∈ DI     

seguintes   regras:  

1.       se   e   somente   se   para   todo    ⊨ ∀x. F  I , I  ◁ { x ↦ v }⊨ F   v ∈ DI   

2.       se   e   somente   se   existe   de   maneira   que    ⊨ ∃x. F  I  v ∈ DI  ◁ { x ↦ v }⊨ F  I  

 

Apesar  da  introdução  dos  quantificadores,  iremos  restringir  a  atenção  para  fragmentos  não             

quantificados   de   alguma   teoria    T     de   primeira   ordem.   

Uma  teoria  de  primeira  ordem  é  um  par  composto  de  uma  assinatura ,  um  conjunto  de             Σ     

constantes,  símbolos  de  funções  e  predicados,  e  o  conjunto  de  axiomas ,  um  conjunto  de  fórmulas            A      

nas   quais   só   aparecem   elementos   presentes   em   ,   e   que   fornece   o   significado   de   seus   símbolos   [14]. Σ  

Dessa  maneira,  pode-se  definir  a  validade  e  satisfatibilidade  de  uma F  construída  a  partir  de                Σ

em  relação  a  uma  teoria T observando  se  toda  interpretação I  que  satisfaz  os  axiomas  de T também                A     

satisfaz    F    (validade),   ou   se   existe   pelo   menos   uma   interpretação    I    que   satisfaz    F    (satisfatibilidade).  
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2.1.6. Formas   Normais  

Existem  três  formas  normais  (canônicas)  de  se  representar  fórmulas  em  Lógica  Proposicional             

e   Lógica   de   Primeira   Ordem,   variando   em   relação   ao   modo   como   os   conectivos   são   utilizados.  

A Negation  Normal  Form  (NNF)  ou  Forma  Normal  da  Negação  requer  que  apenas  os               

conectivos , sejam  utilizados,  e  negações  só  aparecem  em  literais.  Por  exemplo  ¬  , ∨  ∧            

  está   escrita   em   NNF. (¬P  ∨ ¬(P  ∧ Q))  F : ¬  

Pode-se  transformar  uma  fórmula F em  uma  equivalente F’ utilizando  as  seguintes  regras              

recursivamente,   da   esquerda   para   a   direita,   onde   o   símbolo     representa   equivalência   [14]:  ⇔  

 

1. ¬F   ¬ ⇔ F   

2. ⊤  ¬ ⇔ ⊥  

3.     (De   Morgan) (F  ∧ F ) ⇔ ¬F  ∨ ¬F  ¬ 1 2 1 2  

4.     (De   Morgan) (F  ∨ F ) ⇔ ¬F  ∧ ¬F  ¬ 1 2 1 2  

5.  → F  ⇔ ¬F  ∨ F  F 1 2 1 2  

6.  ↔ F  ⇔ (F  → F ) ∧ (F  → F )  F 1 2 1 2 2 1  

 

A Disjunctive  Normal  Form (DNF)  ou  Forma  Normal  Disjuntiva  é  formada  por  disjunções  de               

conjunções   de   literais,   isto   é   . ⋀  l  ⋁i j i,j   

Por   exemplo,      está   escrita   em   DNF. Q  ∧ R ) ∨ (Q  ∧ R ) ∨ (Q  ∧ R ) ∨ (Q  ∧ R )  F : ( 1 1 1 2 2 1 2 2  

 

A  conversão  para  DNF  consiste  em  primeiro  transformá-la  em  NNF  e  em  seguida  aplicar  as                

seguintes   regras   de   equivalência,   também   da   esquerda   para   a   direita:  

1. F  ∨ F ) ∧ F  ⇔ (F  ∧ F ) ∨ (F  ∧ F )  ( 1 2 3 1 3 2 3  

2.  ∧ (F  ∨ F ) ⇔ (F  ∧ F ) ∨ (F  ∧ F )  F 1 2 3 1 2 1 3  

 

Dualmente,  temos  a Conjunctive  Normal  Form (CNF)  ou  Forma  Normal  Conjuntiva,  que             

consiste  em  uma  conjunção  de  disjunções ,  onde  cada  bloco  de  disjunção  é  chamado  de       ⋁  l  ⋀i j i,j          

cláusula.  Por  exemplo ,  está  em  CNF  e e  são  suas    Q  ∨ Q ) ∧ (Q  ∨ Q )  F : ( 1 2 2 3      Q  ∨ Q )  ( 1 2  Q  ∨ Q )  ( 2 3    

cláusulas.  

As   regras   de   equivalência   para   converter   uma   fórmula    F    em   CNF,   utilizadas   após   a   conversão  

para   NNF,   são   :  

1. F 1 ∧ F ) ∨ F  ⇔ (F  ∨ F ) ∧ (F  ∨ F )  ( 1 2 3 1 3 2 3   

2.  ∨ (F  ∧  F ) ⇔ (F  ∨ F ) ∧ (F  ∨  F )  F 1 2 3 1 2 1 3  
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SAT/SMT  solvers  utilizam  CNFs  como  formato  padrão  de  entrada.  Apesar  de  ser  possível              

converter  uma  fórmula  arbitrária  para  DNF,  e  esse  ser  um  formato  no  qual  decidir  a  satisfatibilidade                 

pode  ser  feito  em  tempo  linear  [15],  a  transformação  pode  aumentar  exponencialmente  o  tamanho  da                

fórmula.  

Por  outro  lado,  a  conversão  em  CNF  utilizando  o  método  de  transformação  de  Tseiting  [16]                

aumenta   o   tamanho   da   fórmula   linearmente,   através   da   adição   de   novas   variáveis.  
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2.2. Procedimentos   de   Decisão  

2.2.1. Introdução  

O   problema   de   se   verificar   a   satisfatibilidade   de   uma   fórmula   proposicional   é   comumente  

abreviado   para    SAT .   Programas   que   implementam   procedimentos   para   resolver   esse   problema   são  

chamados    SAT   solvers .   Caso   a   fórmula   utilize   uma   teoria    T    de   primeira   ordem,   os    solvers    recebem   o  

nome   de    SMT   (Satisfiability   Modulo   Theories) .   Esta   seção   se   dedica   a   explorar   maneiras  

(procedimentos)   para   solucionar   essas   duas   versões   do   problema.   

Existem   algumas   propriedades   que   gostaríamos   que   tais   procedimentos   tivessem.   A   primeira  

( soundness)    é   que,   dada   uma   fórmula   arbitrária   válida,   o   procedimento   sempre   retorne   “válida”.   A  

segunda   ( completeness )   requer   que   o   procedimento   garantidamente   termine.   Assim,   os   procedimentos  

que   apresentam   as   duas   propriedades   para   qualquer   fórmula   de   uma   teoria    T    são   chamados   de  

procedimentos   de   decisão.   [17]   aponta   que   existe   uma   confusão   enraizada   na   literatura,   já   que  

assume-se   que   um   procedimento   não   necessariamente   termine,   enquanto   um   algoritmo   sim,   de   modo  

que   faria   mais   sentido   chamar   de   “algoritmo   de   decisão”.  

Apesar   de   sempre   buscarmos   utilizar   procedimentos   completos,   isso   nem   sempre   é   possível.  

Por   outro   lado,   em   vários   casos   práticos,   procedimentos   incompletos   acabam   terminando   [17].   A  

figura   abaixo,   extraída   de   [17]   ilustra   um   procedimento   de   decisão   como   um   engenhoso   e   complexo  

processo   que,   no   final   das   contas,   decide   se   uma   fórmula   (representada   pelas   fitas   à   direita)   é   decidível  

ou   não.  

                                 Fig.   1.   Ilustração   de   um   Procedimento   de   Decisão  
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                                      Fonte:   [17,   p.   VIII]  

 

2.2.2. Procedimento   de   Davis-Putnam   (DPP)  

O  primeiro  procedimento  surge  em  um  manuscrito  não  publicado  para  a  Agência  Nacional  de               

Segurança  americana  (NSA)  [18],  no  qual  Davis  e  Putnam  sugerem  os  seguintes  princípios,  assumindo               

uma   fórmula   em   CNF:  

1. Regra  da  cláusula  unitária:  caso  exista  uma  cláusula  contendo  um  único  literal  ( l ),              

remova   todas   as   cláusulas   contendo    l ,   e   todos   os   literais   . l¬  

2. Regra  do  literal  puro:  caso  um  literal l apareça  em  alguma  cláusula  mas  a  sua  negação                 

  não,   remova   todas   as   cláusulas   contendo    l . l¬  

3. Regra  da  resolução:  caso  duas  cláusulas  contenham  um  mesmo  literal v ,  mas  divirjam              

em  relação  à  sua  polaridade,  remova  o  literal  e  forme  uma  nova  disjunção  a  partir  dos                 

outros   literais   restantes,   isto   é   ,   substitua  

v ∨ l  ∨ l  ) ∧ (¬v ∨ l  ∨ l )  ( 1 2 3 4  

              por  

  l  ∨ l  ∨ l  ∨ l )  ( 1 2 3 4  

 

As  regras  devem  ser  aplicadas  recursivamente  até  que  não  haja  mais  cláusulas,  o  que  significa                

que   a   fórmula   é   satisfatível,   ou   até   derivar   a   cláusula   vazia,   no   qual   a   fórmula   é   insatisfatível.   

Esse  procedimento,  apesar  de  ter soundness ,  não  é  completo,  e  além  disso  a  regra  da  resolução                 

acaba   utilizando   muita   RAM   quando   implementada   [18],   uma   forte   restrição   na   época.   
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2.2.3. Davis-Putnam-Logemann-Loveland   (DPLL)  

Em  1962,  os  programadores  Logemann  e  Loveland  foram  contratados  por  Davis  e  Putnam              

para  trabalhar  no  algoritmo,  e  forneceram  sugestões  mais  eficientes  para  o  cálculo  da  satisfatibilidade.               

O   resultado,   comumente   referenciado   por   DPLL,   se   tornou   a   base   para   solvers   modernos.  

A  sugestão  dos  programadores  foi  restringir  o  uso  da  resolução  para  o  caso  de  cláusulas                

unitárias,  o  qual  recebeu  o  nome  de Boolean  Constraint  Propagation  (BCP).  Suponha  que  em  uma                

fórmula F exista  uma  cláusula  unitária  ( l )  e  que  também  exista  uma  cláusula C  na  qual l aparece  como                    

,   assim,   pode-se   substituir   a   cláusula    C    pelo   subconjunto   que   não   contém   .   Isto   é: l¬ l¬  

 

 C[⊥]
l      C[¬l] 

  

 

Suponha   que   .   Pode-se   aplicar   BCP   nas   primeiras   duas P ) ∧ (¬P  ∨ Q) ∧ (R ∨ ¬Q ∨ S)  F : (  

cláusulas   :  

Q
P     (¬P  ∨ Q)   

 
Que   resulta   em   .   Podemos   continuar   aplicando   BCP   : ′ (Q) ∧ (R ∨ ¬Q ∨ S)  F :   

 

R ∨ S
Q    (R ∨ ¬Q ∨ S)  

 

Resultando   em   . ′′ (R ∨ S)  F :   

 

Caso  a  fórmula  não  seja  reduzida  para  ou ,  basta  escolher  uma  variável x  e  aplicar  BCP         ⊥    ⊤          

para   as   atribuições   e   .   O   algoritmo   pode   ser   expresso   em   pseudocódigo   como   [19]:  ↦⊤  x  ↦ ⊥  x  

 

Entrada:   fórmula   proposicional   em   CNF  

Saída:   “SAT”   caso   a   fórmula   for   satisfatível,   “UNSAT”   caso   contrário  

 

 

  DPLL(F):  
F '=   BCP(F)                                ( 1 )  
IF   F'    =     RETURN    "SAT"                   ( 2 )  ⊤  

        IF    F '   =     RETURN   "UNSAT"                 ( 3 )  ⊥  
       X   =   CHOOSE(VARS(F' ))                     ( 4 )  
       RETURN   DPLL(F '   ∧   X)   ||   DPLL(F'    ∧   X)    ( 5 )  ¬   
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O  DPLL  pode  ser  compreendido  como  uma  busca  em  uma  árvore  binária,  cujas  ramificações               

são  atribuições  dos  valores  e  para  cada  variável  na  fórmula.  Caso  uma  atribuição  termine  em  um      ⊤    ⊥             

modelo  que  não  satisfaz  a  fórmula,  o  algoritmo  volta  um  nível  de  decisão  e  atribui  um  outro  valor.  A                    

figura  a  seguir  ilustra  a  árvore  gerada  durante  a  execução  do  DPLL  para  uma  fórmula  composta  pelas                  

seguintes   cláusulas   :  

●   ¬x  ∨ ¬x  ∨ ¬x  ∨ x )  C1 = ( 2 3 4 5  

● ¬x  ∨ ¬x  ∨ x )  C2 = ( 1 5 6  

● ¬x  ∨ x )  C3 = ( 5 7  

● ¬x  ∨ ¬x  ∨ ¬x )  C4 = ( 1 6 7  

● ¬x  ∨ ¬x  ∨ x )  C5 = ( 1 2 5  

● ¬x  ∨ ¬x  ∨ x )  C6 = ( 1 3 5  

● ¬x ∨ ¬x  ∨ x )  C7 = ( 1 4 5  

● ¬x  ∨ x  ∨ x  ∨ x  ∨  x  ∨ ¬x )  C8 = ( 1 2 3 4 5 6  

 

As   setas   cheias   representam   atribuições   definidas   pela   função    CHOOSE ,   enquanto   as   setas  

pontilhadas   representam   deduções   realizadas   pela   função    BCP .   Os   nós   vermelhos   representam   ramos  

da   busca   cujo   modelo   representa   uma   contradição,   isto   é,   não   satisfaz   a   fórmula.   Já   o   nó   verde  

representa   um   modelo   que   de   fato   satisfaz   a   fórmula.   
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   Fig.   2   -   Ilustração   da   execução   do   algoritmo   DPLL .  

 

 Fonte:   Adaptado   de   [21]  

2.2.4. Conflict-Driven   Clause   Learning  

Em  alguns  casos,  o  algoritmo  DPLL  pode  acabar  perdendo  tempo  buscando  em  ramos  que               

inevitavelmente  irão  falhar.  Isso  ocorre  porque,  ao  encontrar  um  conflito,  nenhuma  informação  é              

extraída   e   ele   só   desfaz   um   nível   de   decisão.   

Pode-se  construir  um  grafo  a  partir  das  decisões  tomadas  em  cada  nível  e  as  implicações                

provocadas  pelo  BCP,  e,  através  dele,  identificar  novas  implicações  que  ajudarão  a  guiar  o  processo  de                 

busca,   como   proposto   em   [20].  
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Considere  uma  fórmula  em  CNF  composta  pelas  mesmas  cláusulas  do  exemplo  anterior  [21].              

Como  não  há  nenhuma  cláusula  unitária,  não  podemos  utilizar  BCP,  assim  escolhemos  uma  variável  e                

atribuímos  um  valor,  por  exemplo ,  e  associamos  ao  nível  de  decisão  1  na  forma .      ↦⊤  x1           @1  x1 = ⊤  

Essa  decisão  não  gera  nenhuma  cláusula  para  utilizar  BCP,  assim  continua-se  com  uma  nova               

atribuição   . @2  x2 = ⊤  

Observe  que  a  segunda  decisão  faz  com  que  a  cláusula se  torne  unitária,  implicando  que  a           C5       

variável .  Após  isso,  a  cláusula também  se  torna  unitária,  de  modo  que .  O  @2  x5 = ⊤      C2        @2  x6 = ⊤   

mesmo   ocorre   em   ,   implicando   .   Até   o   momento   temos   o   seguinte   grafo   de   implicação: C3 @2  x7 = ⊤  

 

                                  Fig.   3.   Grafo   de   implicação   parcial.   Adaptado   de   [21]  

 

Fonte:.   Adaptado   de   [21]  

  

Contudo,  atribuindo ,  e  implica  que  a  cláusula não  é   @1  x1 = ⊤  @2  x6 = ⊤   @2  x7 = ⊤      C4   

satisfeita,   ou   seja,   ocorreu   um   conflito.   

 

 

 

 

 

 

                                        Fig.   4.   Grafo   de   implicação   com   conflito.  
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                         Fonte:   Adaptado   de   [21]  

 

 

 Em  vez  de  simplesmente  voltar  em  um  nível  de  decisão,  é  possível  analisar  as  cláusulas                 

envolvidas  no  conflito  partindo-se  da  cláusula  envolvida  no  mesmo, nesse  caso.  Assim,  visitam-se          C4     

as  variáveis  implicadas  via  BCP  no  nível  de  decisão  atual  (2,  no  caso)  mantendo  dos  antecedentes                 

(cláusulas  incidentes)  as  variáveis  atribuídas  em  níveis  de  decisão  anteriores  ao  mais  recente  através               

da  aplicação  da  regra  de  resolução  (ver  seção  2.2.2),  repetindo  o  processo  até  que  a  decisão  mais                  

recente   seja   visitada   [22].  

Dessa   maneira,   aplicando   resolução   nas   cláusulas   e   obtemos   a   cláusula   intermediária: C4 C3  

(¬x  ∨ ¬x  ∨ ¬x  )1 5 6

(¬x  ∨ ¬x  ∨ ¬x )     (¬x  ∨ x )1 6 7 5 7  

Em   seguida.   aplica-se   resolução   entre   a   cláusula   intermediária   e   ,   obtendo: C2  

(¬x  ∨ ¬x )1 5

(¬x  ∨ ¬x  ∨ ¬x  )        (¬x  ∨ ¬x  ∨ x )1 5 6 1 5 6  

 

Como  só  resta  um  literal  no  nível  de  decisão  2,  e possui  o  nível  de  decisão  mais  alto,            x1        

volta-se  ao  nível  de  decisão  1,  desfazendo  as  decisões  do  nível  2,  e  aplica-se  a  nova  cláusula                  

aprendida:  

  ¬x  ∨ ¬x )  C9 = ( 1 5  

 

 

 

 

 

 

Como ,  para  satisfazer segue  que .  A  partir  disso,  uma  série  de  @1  x1 = ⊤    C9    x5 = ⊥        

propagações   são   realizadas:  
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Fig.   5.   Grafo   de   implicação   final   após   propagações.  

 

Fonte:   Adaptado   de   [21]  

 

Assim,   conclui-se   que   a   fórmula   é   satisfatível   com   a   interpretação:  

   { x ↦⊤, x ↦⊥, x ↦⊥, x ↦⊥, x ↦⊥, x ↦⊥ }  I :  1  2  3  4  5  6  

 

A   figura   a   seguir   ilustra   a   execução   do   algoritmo   CDCL,   note   como   o   mesmo   evita  

percorrer   vários   ramos   devido   ao   aprendizado   de   cláusulas.  

 

     Fig.   6   -   Ilustração   da   execução   do   algoritmo   CDCL  

.  

Fonte:   Adaptado   de   [21].  
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Seja F uma  fórmula  proposicional  em  CNF, V um  conjunto  de  tuplas  associando             x  , )  ( i vi   

variáveis   e   valores   ou   .    O   algoritmo,   em   pseudocódigo   é   [22]   :  ⊤  ⊥  

 

Entrada:   fórmula   proposicional    F ,   interpretação    V  

Saída:    SAT    ou    UNSAT   

 

 

   CDCL(F,   V):  
      IF    BCP(F,V)   = "CONFLICT"     THEN    RETURN    "UNSAT"       ( 1 )  
     dl      0      (nível   de   decisão)                    ( 2 )  ←  
  
     WHILE(NOT   AllVariablesAssigned(F))               ( 3 )  
         DO   (x,v)   =   PickBranchingVariable(F,V)        ( 4 )  
             dl    dl   +    1                                ( 5 )  
             v    v   ∪   {   (x,v)   }  
              IF    BCP(F,V)   = "CONFLICT"                   ( 6 )  
              THEN      =   ConflictAnalysis(F,V)          ( 7 )  β  
                   IF      <    0     THEN    RETURN    "UNSAT"        ( 8 )  β  
                   ELSE    Backtrack(F,V, )              ( 9 )  β  
                       dl                          ( 10 )  ←  β  
     RETURN    "SAT"                                      ( 11 )   

 

 
 

Onde AllVariablesAssigned  simplesmente  verifica  se  já  foram  atribuídos  valores  para  as            

variáveis  e PickBranchingVariable  faz  o  mesmo  papel  de Choose do  DPP.  ConflictAnalysis              

corresponde  ao  processo  de  identificar  as  causas  do  conflito,  analisando  as  decisões  feitas  a  partir  do                 

grafo  de  implicação,  gerando  novas  cláusulas  e  o  nível  de  decisão  para  o  qual  deve  se  retornar,  que  é                    

realizado   por    Backtrack .  
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2.2.5. DPLL(T)  

Apesar   dos   diversos   avanços   nos   algoritmos,   resolver   problemas   utilizando   SAT   é   uma   tarefa  

difícil,   pois   codificações   eficientes   não   são   triviais,   o   formato   que   os    solvers    recebem   como   entrada   é  

feito   especialmente   para   eles   (o   que   dificulta   a   sua   interpretação   por   parte   das   pessoas),   e,   além   disso,  

a   expressividade   é   baixa,   o   que   induz   a   erros   [23].   

Uma  solução,  introduzida  por  [24],  é  estender  o  algoritmo  DPLL  (ou  CDCL)  para  incorporar               

um  procedimento  de  decisão  de  uma  teoria T de  primeira  ordem  como  Aritmética  Linear  de  Inteiros,                 

Reais,   Arrays,   vetores   de   bits,   etc.   

Substituindo-se  as  cláusulas  que  contêm  funções  de  outras  teorias  por  variáveis            

proposicionais,  a  fórmula  é  primeiro  analisada  por  um  SAT  solver,  e,  em  seguida,  o solver  específico                 

de   cada   teoria   é   invocado   para   verificar   a   consistência   da   cláusula   de   acordo   com   sua   teoria.  

Assim  como  no  CDCL,  a  arquitetura  DPLL(T)  inclui  ações  como  propagação  (semelhante  à              

BCP)  e  análise  de  conflitos,  a  partir  das  quais  são  geradas  novas  cláusulas  que  guiam  o  processo  de                   

busca.  

Considere  a  Teoria  da  Aritmética  Linear  de  Inteiros  ( LIA  -  Linear  Integer  Arithmetic ),  cuja               

assinatura  é  composta  por e  cada  interpretação  avalia  as  funções  no      , , , , , , ℤ }  ΣLIA = { +  −  <  ≤  >  ≥         

sentido  usual  (isto  é,  1+1=2,  1  <  0  =  falso,  etc).  Os  seguintes  exemplos  ilustram  a  semântica  de  uma                    

interpretação   [25]   :  x ↦ 7, y ↦ 1 }  I = {   

 

●      já   que   resulta   em   ,   que   resulta   em       ⊨ x y  I >  + 5  y   xI >  I + 5 7 > 6  ⊤  

●     já   que      resulta   em   ,   que   resulta   em       ⊭ y  0  I − x >    0  yI − xI >  − 6 > 0  ⊥  

 

Seja ,  o  exemplo  a  seguir   x  ∨ x  ) ∧  ( x   ∨  x ) ∧ ¬(x )  F : ( + 1 > 0 + y > 0 < 0 + y > 4 + y > 0      

ilustra   uma   execução   do    solver    instanciado   com   DPLL( LIA)    :  

O   primeiro   passo   é   fazer   o   codificação     dos   literais   em   termos   de   variáveis   proposicionais:   

 

A ∨ B) ∧ (C ∨ D) ∧ (¬B)  F ′ : (  

 

Onde   ,   ,     e   . A = x + 1 > 0    B = x + y > 0 0  C = x <  D = x + y > 4  

 

Seguindo  o  que  ocorre  no  DPLL  e  CDCL,  o  próximo  passo  consiste  em  aplicar  BCP,  a  qual                  

atua  no  literal ,  unitário,  implicando  que .  Consequentemente,  a  primeira  cláusula    B¬     @1  B = ⊥      

também  se  torna  unitária,  implicando .  Como  não  há  mais  nada  que  possa  ser  deduzido  via      @1  A = ⊤            

BCP,   decide-se   . @2  C = ⊤  
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Uma  vez  decidido  o  valor  proposicional,  é  preciso  verificar  a  satisfatibilidade  das  atribuições              

até  o  momento  em  relação  à LIA  com  o  contexto  até  o  momento,  o  qual  identifica  que  :  e                   x + 1 > 0   

 não  podem  ser  verdadeiros  ao  mesmo  tempo.  Portanto,  adiciona-se  a  cláusula  à 0  x <              ¬A ∨ ¬C)  (   

fórmula   e   se   reinicia   o   processo,   já   que   só   houve   uma   decisão.   Assim,   temos:  

 

A ∨ B) ∧ (C ∨ D) ∧ (¬B) ∧ (¬A ∨ ¬C)  F ′′ : (  

 

Novamente  se  aplica  BCP,  deduzindo  que  e .  Em  vez  de  cair  no  mesmo       @1  B = ⊥   @1  A = ⊤        

erro,  agora  a  nova  cláusula  se  torna  unitária,  implicando .  A  cláusula também  se          @1  C = ⊥    C ∨ D)  (   

torna  unitária,  implicando .  Resta  agora  verificar  a  satisfatibilidade  da  fórmula  em  relação  à    @1  D = ⊤            

LIA .  

Dessa  vez  são  os  literais  e que  não  podem  ser  verdadeiros  ao  mesmo      (x  )  ¬ + y > 0   x + y > 4        

tempo,  o  que  implica  em  uma  nova  cláusula .  Contudo,  como  só  houve  trabalho  feito  via         ¬B ∨ D)  (         

BCP  e  nenhuma  decisão  foi  tomada,  não  havendo  outro  nível  de  decisão  para  o  qual  retornar,                 

conclui-se   que    fórmula   é    LIA-UNSAT .   

 

O  procedimento  de  decisão  utilizado  para  verificar  a  satisfatibilidade  de  uma  fórmula- LIA  é               

uma  variação  do  algoritmo Simplex ,  o  qual  não  necessita  de  uma  função  objetivo  por  não  se  tratar  de                   

um  problema  de  otimização  e,  através  da  adição  de  novas  variáveis,  transforma  o  sistema  de  entrada                 

numa   forma   normal   composta   de    [17]:  

● Igualdades   da   forma:   x  . . . a  x 0  a1 1 +  +  n n =   

● Limites   superiores   e   inferiores:   (opcionais) li ≤ x  i ≤ ui
  

 

 

Note   que   qualquer   restrição   linear   do   tipo   ,   onde   pode   ser   convertida  L ⊙ R { , , }  ⊙  ∈  ≤  ≥  =   

para   a   forma   mencionada.   

  Assim   como   no   método    Simplex    comum,   constrói-se   um    tableau    para   verificar   a  

satisfatibilidade   dos   limites   impostos   e   manipular   operações   de   pivotação.   As   variáveis   originais   do  

sistema   são   chamadas   de   básicas,   enquanto   aquelas   adicionadas   durante   a   transformação   são   chamadas  

de   não-básicas.  

O   algoritmo   pode   então   ser   visto   como   [17]:  
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Entrada:   um   sistema   linear   de   restrições    S  

Saída:    SAT    ou    UNSAT  

 

1. Transformar   o   sistema   para   a   forma   normal   

   e     xA = 0   l  s   ⋀i = 1...m i ≤  i ≤ lm   

onde   são   as   variáveis   não-básicas  s  ... si m  

2. Construir   o    tableau    de    A  

3. Determinar   uma   ordem   fixa   das   variáveis   

4. Caso   nenhuma   variável   básica   viole   os   limites,   retorna    SAT .   Caso   contrário   escolhe-se   a  

primeira   variável   básica   que   apresenta   violação xi  

5. Busca-se   uma   variável   não-básica   para   pivotar   com   ,   caso   não   exista,   retorna    UNSAT xj xi  

6. Pivota-se   e   xi xj   

7. Ir   para   o   passo   (4)  
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2.2.6. Otimizações  

 
Além  do  aumento  na  velocidade  de  busca,  fornecido  pelo  algoritmo  CDCL,  outras  abordagens              

e  sugestões  foram  feitas  no  início  dos  anos  2000  para  tornar  os solvers  mais  competitivos.  As                 

otimizações  partem  da  observação  que  os solvers  gastam,  na  prática,  cerca  de  90%  do  tempo  efetuando                 

BCP   [26].  

A  partir  disso,  duas  melhorias  foram  propostas,  uma  no  campo  da  estrutura  de  dados  utilizada                

pelos solvers  e  a  utilização  de  heurística  no  momento  de  se  escolher  uma  variável  à  qual  nenhum  valor                   

ainda   foi   atribuído.  

No  campo  da  estrutura  de  dados,  a  técnica  conhecida  como Two-Watched  Literals [26]  propõe               

utilizar  um  contador  por  cláusula  que  informa  a  quantos  literais  atribuiu-se  o  valor .  Assim,  se  uma               ⊥     

cláusula  contém N  literais,  visita-se  a  mesma  apenas  quando  o  número  de  literais cair  de N-2  para               ⊥     

N-1 .  Para  isso,  escolhem-se  dois  literais  (ainda  não  atribuídos  valor ),  garantindo  que  até  que  um            ⊥       

deles   seja   atribuído   o   valor   ,   não   existem   mais   do   que    N-2    literais   ,  ⊥  ⊥  

Essa  técnica  torna  o  processo  de  se  reatribuir  valores  à  variáveis  mais  rápido,  pois  os  literais                 

observados  não  precisam  ser  modificados  quando  ocorre  uma  mudança  do  nível  de  decisão  atual  para                

um   anterior   ( backtrack) .  

Já  no  campo  da  heurística,  a  técnica  conhecida  como VSIDS  (Variable  State  Independent              

Decay  Sum)  propõe  manter  um  contador  para  cada  literal  de  cada  polaridade,  inicializando  em  0.                

Quando  uma  cláusula  é  adicionada,  o  contador  de  cada  um  dos  literais  presente  nela  é  incrementado  e,                  

no  momento  de  se  decidir  o  próximo  literal,  escolhe-se  aquele  com  maior  valor,  enquanto               

periodicamente  se  divide  os  contadores  por  uma  constante.  A  idéia  é  tentar  satisfazer  os  conflitos  mais                 

recentes,  especialmente  porque,  em  problemas  difíceis,  as  cláusulas  conflitantes  dominam  o  problema             

em   número   de   literais.  

Além  disso,  eventuais  deleções  de  cláusulas  (para  evitar  sobrecarga  de  memória)  e             

reinicializações  (mantendo  parte  das  informações  adquiridas  previamente)  também  se  mostraram  boas            

estratégias   para   desenvolver    solvers    mais   eficientes.  
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2.3. Radio   Link   Frequency   Assignment   Problem   (RLFAP)  

 
Segundo  [27],  o  problema  de  alocação  de  frequências  ( Frequency  Assignment  Problem,  FAP)             

ocorre  em  diferentes  tipos  de  comunicações  sem-fio,  as  quais  têm  que  lidar  com  o  fato  de  que  o                   

espectro  de  frequências  é  um  recurso  finito.  Portanto,  faz-se  necessário  balancear  o  reúso  do  espectro                

sem   incorrer   em   perda   de   qualidade   de   comunicação   por   conta   de   interferências.   

Segundo   [28],   tais   interferências   são   influenciadas   por:  

● Potência   dos   transmissores  

● Sensitividade   dos   receptores  

● Ganho   das   antenas  

● Distância  

● Condições   climáticas  

● Frequências   utilizadas  

○ Restrição   co-canal  

○ Restrição   de   canal   adjacente  

○ Restrição   co-local  

 

Consideremos  que,  com  exceção  das  frequências  utilizadas,  a  maioria  dos  fatores  não  possam              

ser   influenciados,   focaremos   a   análise   do   problema   nas   restrições   às   escolhas   de   frequências   utilizadas.  

A  restrição  de  co-canal  ocorre  quando  não  se  pode  alocar  um  mesmo  canal  para  certos  pares                 

de  células  ao  mesmo  tempo,  enquanto  na  restrição  de  canal  adjacente,  canais  muito  próximos  não                

devem  ser  alocados  simultaneamente.  Finalmente,  a  restrição  co-local  estabelece  que  deve  haver  uma              

separação   mínima   entre   dois   canais   alocados   em   uma   mesma   célula.  

Tais  restrições  são  utilizadas  no  contexto  de  uso  militar  de  rádios  de  comunicação  [29],  no                

qual  o  FAP  consiste  em  um  conjunto X  de  links  de  rádio,  para  os  quais,  a  cada  deve-se                   ,  i ∈ X    

escolher  uma  frequência  a  partir  de  um  conjunto  finito  disponível  para  cada  transmissor.  Assim,    f i        Di       

para   cada   par   de   links     as   restrições   podem   ser   dos   tipos: i, )( j  

f  f ∣  ∣ i −  j > dij  

f  f ∣  ∣ i −  j = δij  

Onde representa  uma  distância  mínima  para  se  evitar  interferência  co-local,  e é  definida  dij           δij   

por   restrições   tecnológicas   dos   transmissores.  

     Dadas   as   restrições,   pode-se   investigar:  

1. A   viabilidade   de   se   respeitar   todas   as   restrições  

2. Minimizar   a   máxima   frequência   utilizada,   caso   seja   viável   respeitar   todas   as   restrições  
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3. Minimizar   o   número   de   frequências   diferentes   usadas,   caso   seja   viável   respeitar   todas   as  

restrições  

4. Maximizar   a   viabilidade,   atribuindo   custos   às   violações   de   restrições,   os   quais   devem   ser  

minimizados  

 

A  figura  abaixo  ilustra  uma  rede  com  6  antenas  [30],  cada  uma  representada  com  seu                

identificador  e  seu  conjunto  de  frequências  (embaixo).  Os  aparelhos  celulares  representam  os  links              

com  os  canais  alocados  e  os  raios  entre  as  antes  indica  a  distância  mínima  de  separação  para  as                   

frequências   usadas   por   duas   antenas.   

  

 

   Fig.   7.    Ilustração   de   uma   rede   com   seus   conjuntos   de   frequência   e   restrições  

 
Fonte:   [30].   

 
Esse  é  o  contexto  que  serve  de  base  para  os  experimentos  apresentados  nos  capítulos               

seguintes,  deixando  claro  desde  já  que  o  trabalho  se  ateve  especialmente  no  item  1  acima,  a  satisfação                  

de   todas   as   restrições.  

 
 
 
 
 
 
 
 
 
 
 

50  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

51  



 

3. Materiais   e   Métodos  
 
3.1. Conjunto   de   Dados   

 
O CELAR (Centro  de  Eletrônica  do  Exército  Francês)  construiu  um  conjunto  de  dados  para  o                

problema  RLFAP  a  partir  de  dados  de  redes  reais,  como  parte  do  projeto EUCLID CALMA                

(Combinatorial   Algorithms   for   Military   Applications)    [29],   e   pode   ser   encontrado   em   [31].  

O  conjunto  é  composto  por  três  instâncias  nas  quais  são  fornecidas  as  variáveis,  o  conjunto  do                 

domínio  das  frequências,  as  restrições  na  forma  ou ,  bem  como  os        f ∣ d  ∣ i − f j >  ij   f ∣ δ  ∣ i − f j =  ij     

critérios   a   serem   otimizados   e   os   custos   para   cada   violação:  

● CELAR:    11   instâncias   

● GRAPH:    ou    Generating   Radio   link   Assignment   Problems   Heuristically    [32],   são   14   instâncias  

geradas   a   partir   das   características   presentes   na   CELAR   como   os   domínios   das   frequências   e  

proporção   de   links   e   restrições   

● SUBCELAR   :   5   sub-instâncias   extraídas   a   partir   da   instância   CELAR   6,   possui   tamanho  

reduzido   mas   igual   dificuldade,   sendo   ideal   para    benchmarking   

 

Cada   instância   possui   quatro   arquivos:  

● var.txt :    associa   as   variáveis   ( links )   a   seus   domínios;  

● dom.txt :   fornece   a   definição   dos   domínios;  

● ctr.txt : fornece  as  restrições  e  os  índices  de  mobilidade,  que  vão  de  0  a  4,  onde  0  significa  que                    

a  restrição  deve  ser  respeitada,  enquanto  as  mobilidades  1-4  apresentam  um  aumento  dos              

custos;   

● cst.txt :   fornece   os   custos   associados   a   cada   índice   de    mobilidade.  
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3.2. Codificação   do   problema   

 
A   codificação   utilizada   foi   baseada   em   [33],   e   pode   ser   quebrada   em   duas   partes:  

● domínios,   isso   é,   codificar   que    f i ∈ Di  

● restrições     ou    f ∣ d  ∣ i − f j >  ij f ∣ δ  ∣ i − f j =  ij  

 

Os   domínios   podem   ser   vistos   como   uma   união   disjunta   de   quatro   subdomínios:  

 

2 14m ∣ 1 ≤ m ≤ 11}         {2 14m ∣ 18 ≤ m ≤ 28}  { +  +   

                          8 14m ∣ 29 ≤ m ≤ 39}        {8 14m ∣ 46 ≤ m ≤ 56}  { +  +   

 

Assim,   foram   utilizadas   duas   variáveis,   uma   proposicional     ,   para   representar   se     é ti f i  

ou   não,   e   um   número   inteiro     para   representar   ,   obtendo   :  mod 14  2 mi  mod 14  f i  

 

 → (1 ≤ m  ≤ 11 ∨ 18 ≤ m  ≤ 28)  ti i i  

   t  → (29 ≤ m  ≤ 39 ∨ 46 ≤ m  ≤ 56)  ¬ i i i  

 

A   codificação   das   restrições   é   feita   analisando,   para   cada   caso,   se     e     são      ou ti tj  mod 14  2  

não.   Supondo   que     seja   e   que   não,   temos: ti tj   

 

 2 14 m  8 14 m  ∣ k  ∣ +  i −  −  j >    

 

que   após   manipular   se   torna:  

 

t  ∧ ¬t ) → ( m  − m   ≥ ⌊(k ) 14⌋ 1  ∨  m  − m  ≤  ⌈( ) 14)⌉ 1)  ( i j i j + 6 / +  i j − k + 6 / −   

 

  Fazendo   o   mesmo   para   o   caso   ,   obtemos   todos   os   outros   casos: f ∣ δ  ∣ i − f j =  ij  

 

¬t  ∧ t ) → ( m  − m   ≥ ⌊(k ) 14⌋ 1  ∨  m  − m  ≤  ⌈( ) 14)⌉ 1)  ( i j i j − 6 / +  i j − k − 6 / −   

t  ∧ t ) → ( m  − m   ≥ ⌊ k 14 ⌋ 1  ∨  m  − m  ≤  ⌈ 14 ⌉ 1)  ( i j i j / +  i j − k/ −   

  ¬t  ∧ ¬t ) → ( m  − m   ≥ ⌊ k 14⌋ 1  ∨  m  − m  ≤  ⌈ 14 ⌉ 1)  ( i j i j / +  i j − k/ −   

 

t  ∧ ¬t ) → ( m  − m   ⌊(k ) 14⌋ 1  ∨  m  − m   ⌈( ) 14)⌉ 1)  ( i j i j =  + 6 / +  i j =  − k + 6 / −   
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¬t  ∧ t ) → ( m  − m  ⌊(k ) 14 ⌋ 1   ∨    m  − m   ⌈( ) 14 ⌉ 1)  ( i j i j =  − 6 / +  i j =  − k − 6 / −   

t  ∧ t ) → ( m  − m  ⌊ k 14 ⌋ 1   ∨    m  − m   ⌈ 14 ⌉ 1)  ( i j i j =  / +  i j =  − k/ −   

t  ∧ t ) → ( m  − m  ⌊ k 14 ⌋ 1   ∨    m  − m   ⌈ 14 ⌉ 1)  ( i j i j =  / +  i j =  − k/ −   
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3.3. Z3   SMT   Solver  

 
O  Z3  [34],  da Microsoft  Research ,  é  um solver  condecorado  [35,  36],  que  se  tornou                

open-source  em  2015,  e  suporta  as  principais  teorias,  como  Aritmética  de  Inteiros,  Reais,  Funções               

Não-Interpretadas, Arrays ,  Vetores  de bits ,  tipos  de  dados  algébricos,  entre  outros,  podendo  ser  obtido               

em   [37].  

 Internamente  na  Microsoft,  o  Z3  é  utilizado  na  verificação  de  software  como drivers  para  o                 

sistema  operacional Windows e  na  geração  de  casos  de  testes[38].  No  campo  da  biologia,  o  Z3  é                  

utilizado  na  análise  e  síntese  de  redes  regulatórias  genéticas  [39].  De  maneira  semelhante,  ele  também                

é   usado   na   análise   e   síntese   de   compostos   químicos   [40].  

Apesar  de  escrito  em C++ ,  o solver  pode  ser  utilizado  a  partir  de  diversas  linguagens  como                 

Python,   C,   Java,   C#    e    OCaml .   

Neste  trabalho,  utilizou-se  a  interface  em Python  em  execução  em  um  sistema  Intel  Core               

i7-7700HQ   @   2.80   GHz   e   16   GB    de   memória    RAM ,   com   Sistema   Operacional    Ubuntu    18.04.  

O  Z3  oferece  duas  classes  básicas  de solvers .  Um Solver pode  ser  instanciado  com  uma  lógica                 

( QF_LIA  -  Quantifier-Free  Linear  Arithmetic )  ou  não  (ficando  o  Z3  responsável  por  identificar  a               

melhor  opção).  A  outra  classe  é  a Optimize ,  na  qual  pode-se  incluir  pesos  para  as  cláusulas                 

adicionadas,   as   quais   serão   automaticamente   minimizadas.  

Para  adicionar  cláusulas,  basta  usar  os  métodos assert  e assert_soft ,  o  qual  recebe  um  peso                

(por  padrão  é  1)  e  um id ,  o  qual  pode  ser  utilizado  para  agrupar  ou  separar  objetivos.  Uma  vez                    

adicionadas  as  cláusulas,  utilizam-se  os  métodos check  e model para,  respectivamente,  verificar  se  as               

fórmula   final   é   satisfatível   (ou   não),   e   obter   o   modelo   encontrado   

As  variáveis  são  instanciadas  a  partir  de  funções  como Bool , Int ,  Real,  Array ,  etc,  as  quais                 

recebem   um   nome   como   argumento.  

Os  exemplos  que  seguem  foram  retirados  do  tutorial  do  Z3  [41]  e  de  [42],  sendo  o  último  uma                   

extensa   e   diversa   coleção   de   problemas   discutidos   em   detalhe.  

  Suponha   o   seguinte   conjunto   de   equações   lineares:  

1. x 2y  1  3 +  − z =   

2. x 2y 4z  2 −  +  =  − 2  

3.  y z  − x +  2
1 −  = 0  

Pode-se   facilmente   codificar   o   problema   usando   Z3:  

from    z3    import    *  
x   =   Real( 'x' )  
y   =   Real( 'y' )  
z   =   Real( 'z' )  
s   =   Solver   ()  

55  



 

s.add   ( 3 *x   +    2 *y   -   z   ==    1 )  
s.add   ( 2 *x   -    2 *y   +    4 *z   ==    -2 )  
s.add(-x   +    0.5 *y   -   z   ==    0 )  
print (s.check())  
print (s.model())  

 

O   qual,   após   executado,   retorna:  

sat   
[z   =    -2 ,   y   =    -2 ,   x   =    1 ]   

 

Para   o   próximo   exemplo,   é   bom   recordar   que,   para   verificar   se   uma   fórmula    F    é   válida,   basta  

provar   sua   negação   é   inválida.   Assim,   podemos   usar   o   Z3   para   provar   o   teorema   de   De   Morgan. F¬  

from    z3    import    *  
 
s   =   Solver()  
a,b   =   Bools( 'a   b' )  
de_morgan   =   And(a,b)   ==   Not(Or(Not(a),Not(b)))  
 
s.add(Not(de_morgan))  
print(s.check())  

 

Que   retorna:  

unsat  

 
Suponha   agora   que   queremos   otimizar   a   soma   de   dois   números   inteiros,    x    e    y ,   com   as  

restrições   de   que      e   :   x < 2   y − x < 1  

 

from    z3    import    *  
 
s   =   Optimize()  
x,y   =   Ints( 'x   y' )  
 
s.add(x   <    2 )  
s.add(y   -   x   <    1 )  
 
s.maximize(x+y)  
 
print(s.check())  
 
print(s.model())  
print(s.model().evaluate(x   +   y))  
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Na   última   linha,   utilizamos   o   próprio   modelo   gerado   pelo    solver    para   avaliar   a   função   custo,  

que   nos   retorna:  

 

sat  
[y   =    1 ,   x   =    1 ]  
2  

 
 

 
Retornando  ao  RLFAP,  suponha  que  estejamos  iterando  sobre  uma  lista  de  restrições             

(presentes  nos  arquivos ctr.txt ),  na  qual  cada  restrição  possui  os  links  ( first_var )  e ( second_var) ,            f i    f j  

o  operador  ( operator )  utilizado  ( ou ),  bem  como  a  distância  ( deviation )  e  os  custos  ( costs ).     >  =           

Assumindo  que  as  restrições  com  operador  (=)  não  possuem  mobilidade,  pode-se  codificar  o  problema               

da   seguinte   maneira:  

 

from    z3    import    *  
from    math    import    ceil,   floor  
 
s   =   Optimize()  
 
for   ctr   in   Ctrs:  
     #   declarando   as   variáveis   
     ti   =   Bool('t_%d'   %   ctr.first_var)   
     tj   =   Bool('t_%d'   %   ctr.second_var)  
     mi   =   Int('m_%d'    %   ctr.first_var)  
     mj   =   Int('m_%d'    %   ctr.second_var)  
     k    =   ctr.deviation  

  

      #   codificando   o   domínio   de   Fi  
      #   ti    →   (1    ≤   mi   ≤   11   ∨   18   ≤   mi   ≤   28)  
      #   ¬ti   →   (29   ≤   mi   ≤   39   ∨   46   ≤   mi   ≤   56)  
     s.add(Implies(  
          ti,  
          Or(   And( 1     <=   mi,   mi   <=    11 ),   And( 18    <=   mi,   mi   <=    28 )))  
     )  
  
 
     s.add(Implies(  
          Not(ti),   Or(   And( 29    <=   mi,   mi   <=    39 ),   And( 46    <=   mi,   mi   <=    56 )))  
     )  
  
      #   codificando   o   domínio   de   Fj  
     s.add(Implies(  
           tj,  

57  



 

           Or(And( 1     <=   mj,   mj   <=    11 ),   And( 18    <=m   j,mj   <=    28 )))  
     )  
 
     s.add(Implies(  
           Not(tj),  
           Or(And( 29    <=   mj,   mj   <=    39 ),   And( 46    <=   mj,   mj   <=    56 )))  
     )  
 

 

Note   que   utilizamos   o   método    add    para   adicionar   cláusulas   que   devem   ser  

respeitadas   ( hard   constraints ).   Já   para   adicionar   as   restrições   e   seus   custos:  

 

if    ctr.operator   ==    '>' :  
  
     weight   =   costs[ctr.weight]  
 
      #   (ti   ∧   ¬tj)   
     s.add_soft(  
        Implies(And(ti,   Not(tj)),   Or(mi   -   mj   >=   math.floor((k+ 6 )/ 14 )   +  
1 ,   
                                     mi   -   mj   <=   math.ceil((-k+ 6 )/ 14 )    -1 )),   
               weight  
     )  
     #   (¬ti   ∧   tj)  
    s.add_soft(  
       Implies(And(Not(ti),   tj),   Or(mi   -   mj   >=   math.floor((k -6 )/ 14 )   +    1 ,   
                                    mi   -   mj   <=   math.ceil((-k -6 )/ 14 )   -  
1 )),   
            weight  
    )  
 
    #   (ti   ∧   tj)  
   s.add_soft(  
        Implies(And(ti,tj)   ,      Or(   mi   -   mj   >=   math.floor(k/ 14 )   +    1 ,  
                                    mi   -   mj   <=   math.ceil(-k/ 14 )    -1 )),  
        weight  
   )  
 
 
      #   (¬ti   ∧   ¬tj)  
    s.add_soft(  
     Implies(And(Not(ti),   Not(tj)),   Or(mi   -   mj   >=   math.floor(k/ 14 )   +    1 ,   
                                      mi   -   mj   <=   math.ceil(-k/ 14 )    -1 )),   
     weight)  
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4.  Resultados  
 
 
O  Z3  foi  utilizado  com  todas  as  instâncias  do  grupo  GRAPH,  e  seus  resultados  são  expostos  na                  

tabela   a   seguir,   os   dados   sobres   as   instâncias   são   encontrados   em   [29].  
 
 

Tabela   4   -   Resultados   obtidos   pela   verificação   das   instâncias    GRAPH  

Instância  No.   de  
variáveis  

No.   de  
restrições  

Realizável?  Resposta   Z3  Tempo   (s)  

GRAPH-1  200  1134  Sim  SAT  0,157  

GRAPH-2  400  2245  Sim  SAT  0,924  

GRAPH-3  200  1134  Sim  SAT  1,274  

GRAPH-4  400  2244  Sim  SAT  87,94  

GRAPH-5  200  1134  Não  UNSAT  0,056  

GRAPH-6  400  2170  Não  UNSAT  0,127  

GRAPH-7  400  2170  Não  UNSAT  0,118  

GRAPH-8  680  3757  Sim  SAT  10,601  

GRAPH-9  916  5246  Sim  SAT  99,081  

GRAPH-10  680  3907  Sim  SAT  65,958  

GRAPH-11  680  3757  Não  UNSAT  0,304  

GRAPH-12  680  4017  Não  UNSAT  0,404  

GRAPH-13  916  5273  Não  UNSAT  0,631  

GRAPH-14  916  4638  Sim  SAT  6,848  

Fonte:   Elaborada   pelo   autor,   adaptado   de   [29]  
 
 
Pode-se  notar  que  em  muitos  casos,  o  Z3  consegue  definir  a  satisfatibilidade  de  maneira               

extremamente  rápida,  no  resto  ainda  apresenta  um  bom  desempenho,  dada  a  dificuldade  intrínseca  do               

problema   em   questão.   

 

A  figura  a  seguir  apresenta  uma  parte  das  restrições  presentes  na  instância GRAPH-1 ,              

levando-se  em  consideração  apenas  a  variável  de  número  1,  e  ilustra  suas  conexões  com  outras                
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variáveis.  É  importante  esclarecer  que  trata-se  apenas  de  uma  ilustração,  não  apresentando  nenhuma              

informação   relativa   a   disposição   topológica   da   rede   em   questão.  

 

           Fig.   8   -   Ilustração   das   restrições   relativas   à   variável   1   da   instância    GRAPH-1  

 

Fonte:   Elaborada   pelo   autor,   adaptada   de   [29].  

 

 

 

A  execução  pelo  Z3  resultou  em  e ,  o  que  significa  que  a  frequência  alocada        t1 = ⊥   9m1 = 4         

foi .  A  tabela  a  seguir  indica  os  valores  encontrados  para  as  variáveis  ilustradas  na  figura  94 Hz  f 1 = 6                

anterior,   mostrando   que   de   fato   as   restrições   foram   respeitadas.  
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                                Tabela   5   -   Restrições   e   valores   encontrados   pelo   Z3  

Variável  tj  mj      Tipo   da   restrição   d i j   f j  ∣  ∣ f 1 − f j  

2   ⊥  32  =  238  456  238  

38   ⊤  22  >  7  310  384  

41   ⊥  35  >  5  498  196  

46   ⊥  29  >  7  414  280  

113   ⊥  36  >  9  512  182  

198   ⊤  19  >  46  268  426  

199   ⊥  38  >  19  540  54  

200   ⊥  56  >  21  792  98  

   Fonte:   Elaborada   pelo   autor.  

 

 

Como  o  aumento  do  número  de  variáveis  aumenta  exponencialmente  o  espaço  de  soluções  a               

ser  percorrido,  é  de  se  esperar  que  o  tempo  aumente  muito.  Contudo,  na  prática,  conjuntos  de  dados                  

reais  envolvidos  em  casos  industriais  costumam  apresentar  uma  estrutura  que  é  explorada  pelo              

maquinário   dos    solvers .   

 

As  figuras  a  seguir,  provenientes  da  competição SAT  2013  [43] , ilustram  essa  diferença              

estrutural  presente  em  conjuntos  de  dados  de  casos  industriais,  em  contraste  com  conjuntos  de  dados                

gerados   aleatoriamente.  
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                            Fig.   9   -   Estrutura   de   um   conjunto   de   dados   industrial   [43].  

 
 
 
 

   Fig.   10   -   Estrutura   de   um   conjunto   de   dados   gerado   aleatoriamente   [43]. 
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5. Conclusões   
 
 

O  presente  trabalho  teve  como  objetivo  explorar  os  conceitos  de  SAT  e  SMT,  fornecendo  o                

fundamento  teórico  sobre  lógica  necessário  para  entender  como  modelar  problemas  e  passando  pela              

evolução  dos  principais  algoritmos  utilizados.  Uma  aplicação  básica  foi  utilizada  no  contexto  de              

engenharia  discutida  e  realizada,  na  qual  o  Z3  SMT  Solver  mostrou  um  bom  desempenho  na  solução                 

da   maioria   das   instâncias.   

Apesar  da  vasta  literatura  existente  sobre  o  tema,  a  principal  dificuldade  encontrada  está  na               

codificação  de  problemas  em  termos  de  Lógica  Proposicional  e  de  Primeira  Ordem,  a  qual  geralmente                

requer  conhecimento  íntimo  do  sistema  abordado  e  necessitam  de  perícia  por  parte  do  usuário  para                

gerar  fórmulas  que  sejam  eficientes.  O  mesmo  pode  ser  dito  sobre  as  implementações  de  SAT  e  SMT                  

solvers ,  as  quais  requerem  um  profundo  conhecimento  nos  métodos  e  abordagens  mais  eficientes  para               

possibilitar  uma  interação  satisfatória  a  nível  de  uso  industrial.  Assim,  a  utilização  de  tais  técnicas  é                 

mais  comumente  encontrada  em  grandes  empresas,  com  porte  suficiente  para  manter  grupos             

especializados  na  área,  como Amazon , Intel e Microsoft ,  ou  em  empresas  de  pequeno  porte  com                

membros   da   academia   como    Barcelogic    [7].  

Deve-se  enfatizar,  contudo,  que  nem  todo  problema  é  viável  de  ser  abordado  pelos  meios               

expostos  neste  trabalho.  Não  apenas  por  conta  da  complexidade  computacional  (NP-Completo)  mas             

também  porque  necessita  que  haja  um  procedimento  de  decisão  (completo  ou  não)  eficiente  para  os                

domínios   de   problemas   de   interesse.  

Contudo,  trata-se  de  uma  área  madura  e  promissora,  a  qual  tem  ganhado  cada  vez  mais  espaço                 

na  indústria  e  continua  com  um  alto  fluxo  de  publicações.  A  existência  de  competições  certamente                

colaboram  na  divulgação  e  padronização  de  formatos  e  métricas  para  comparar  diferentes solvers  a               

partir   de   problemas   reais.   

Como  trabalhos  futuros,  uma  das  linhas  que  podem  ser  exploradas  é  lidar  com  os  objetivos  de                 

minimizar  a  frequência  máxima,  minimizar  o  número  de  frequências  diferentes  e  minimizar  os  custos               

associados  com  as  restrições  que  não  foram  respeitadas,  como  se  propõe  em  [29].  Trata-se  da  variante                 

chamada  MAX-SAT  e  MAX-SMT  [44],  na  qual  deve-se  satisfazer  o  maior  número  de  cláusulas               

possíveis.   
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