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Resumo

Carvalho, Y. C. N. SAT e SMT solvers: fundamentos e aplicacdo ao problema de alocaciao
de frequéncia. 2019. 70p. Monografia (Trabalho de Conclusio de Curso) - Escola de
Engenharia de Sdo Carlos.

O problema da satisfatibilidade booleana (Boolean Satisfiability, ou simplesmente
SAT) ¢ decidir se existe alguma interpretacdo para uma dada férmula booleana de maneira
que avaliacdo da foérmula seja verdadeiro. Desde seus primeiros algoritmos na década de
1960, os SAT solvers evoluiram muito, ndo s6 incorporando conceitos como aprendizado, mas
também permitindo representagdes mais compactas e expressivas com o uso de solvers
especificos para uma dada teoria, conhecido como Satisfiability Modulo Theories (SMT).
Antes restritos a apenas algumas centenas de variaveis, SAT e SMT solvers alcancaram
capacidade de lidar com problemas industriais, lidando com milhdes de variaveis e restri¢des.
Possuem aplicagdes praticas em diversas areas como Electronic Design Automation (EDA),
Verificacdo, Inteligéncia Artificial e Pesquisa Operacional. O presente trabalho fornece o
embasamento teorico de légica e a evolugdo dos principais algoritmos até atingir o
estado-da-arte. No contexto de uma aplicagdo militar, existe o problema de se alocar
frequéncias para pares de links de radios (RLFAP), de maneira que as interferéncias sejam
evitadas. Neste trabalho, o problema de RLFAP foi abordado utilizando-se com sucesso o Z3
SMT Solver da Microsoft e um conhecido conjunto de dados construido a partir de redes reais

e fornecido pelo CELAR (Centro de Eletronica do Exército Francés).

Palavras-chave: SAT, SMT, Logica, Problema de Alocagao de Frequéncias, Z3.
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Abstract

Carvalho, Y. C. N. SAT and SMT solvers: fundamentals and application to the problem
of frequency assignment. 2019. 70p. Monografia (Trabalho de Conclusao de Curso) - Escola
de Engenharia de Sao Carlos

The problem of Boolean Satisfiability (or simply SAT) is deciding if there exists an
interpretation for a given boolean formula such that all clauses are satisfied. Since its first
algorithms in the 1960s, SAT solvers have evolved a lot, incorporating not only concepts such
as learning, but also allowing for more compact and expressive representations with the use of
specific solvers for a given theory, known as Satisfiability Modulo Theories (SMT). What
once could only handle hundreds of variables, SAT and SMT solvers have reached industrial
capability, now being able to handle millions of variables and constraints. Their practical
applications range from Electronic Design Automation (EDA), Verification, Artificial
Intelligence and Operations Research. This work provides a background in logic and the
evolution of the main algorithms until reaching the state-of-the-art. In the context of a military
application, the problem of assigning frequencies to pairs of radio links (RLFAP), such that
interference is avoided, is successfully explored by using Microsoft’s Z3 SMT Solver with a

well-known real-world dataset provided by CELAR (French Army Electronics Center).

Keywords: SAT, SMT, Logic, Frequency Assignment Problem, Z3.
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1.Introducio

1.1. Motivacao

O problema da satisfatibilidade booleana, ou simplesmente SAT, consiste em verificar se uma
dada férmula contendo conectivos 16gicos e variaveis bindrias possui alguma combinagdo de valores
(True/False, 0/1) para os quais todas componentes da formula (clausulas) sdo satisfeitas. Isto é, ao
substituir os valores dessa interpretacdo, a formula avalia para True/l. Tais férmulas podem ser
utilizadas para descrever propriedades de sistemas e, utilizando algum solver, verificar se tal sistema
se comporta de acordo com uma especificagdo.

Contudo, ha dominios de problemas nos quais a expressividade de uma codificagdo binaria
ndo € intuitiva, podendo levar a erros e perda de eficiéncia. Para contornar tal problema, os SAT
solvers foram expandidos para interagir com procedimentos que decidem a satisfatibilidade de uma
formula em relagdo a outras teorias como Aritmética de Inteiros. Chamados de SMT (Satisfiability
Modulo Theories), permitem a descricao de sistemas e restri¢cdes utilizando notagdes mais expressivas
e intuitivas.

No campo da engenharia, SAT solvers apresentam intimeras aplicacdes em problemas de
Automagao de Projeto Eletronico, sendo capaz de resolvé-los de maneira eficiente, como lista [1]:

® FEquivalence Checking: provar que dois circuitos produzem a mesma saida para qualquer
entrada

e Model Checking: verifica se um modelo satisfaz as especificacdes, utilizado na /nte/ desde os
primeiros modelos Pentium, ap6s uma falha na unidade de ponto flutuante que resultou em um

prejuizo de 475 milhdes de dolares [2, 3]

® Delay Fault Testing: busca por padrdes em falhas de circuitos causadas por atrasos nas portas
logicas

e Logic Synthesis: sintese de circuitos logicos que satisfazem uma dada especificagdo

e FPGA routing: busca de rotas em circuitos de uma FPGA

® Redundancy Identification: busca por partes redundantes em um circuito

Outro campo no qual SAT solvers atuam buscando inconsisténcias ¢ em software:
e Verificagdo de drivers e controladores [4]
e Verificagdo de controle de acesso a recursos na plataforma de computacdo em nuvem Amazon

Web Services [5]
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SAT e SMT solvers também sao utilizados em problemas combinatdrios, nos quais se tem um
conjunto de variaveis e restricdes, buscando um modelo que faca satisfaga todas as restri¢des, ou pelo
menos minimize a quantidade das violadas. A otimizagdo de material utilizado em grafica de grande
porte [6] ¢ o problema de agendamento de ligas esportivas profissionais européias [7] sdo alguns
exemplos.

Apesar das vérias aplicacdes, ¢ preciso notar que SAT ¢ um problema NP-Completo [8], para
os quais as solugdes que conhecemos atualmente possuem, no pior dos casos, tempo computacional
exponencial em relacdo ao ntimero de variaveis. Todavia, de acordo com [9], deve-se enfatizar que o
pior dos casos é exponencial, de maneira que ha casos em dominios de problemas especificos nos
quais isso ndo ocorre, € sdo nesses casos que os SAT e SMT solvers sdo explorados.

A solidificagdo da base tedrica e pratica levou, a partir dos anos 2000, a um crescimento no
numero de SAT e SMT solvers no meio académico, o que levou a criagdo da SAT Competitions (2002)
[9] e SMTCOMP (2005) [10], competigdes nas quais sdo utilizados conjuntos de dados industriais
reais.

Problemas da classe NP-Completo podem ser reescritos em termos de SAT [11], permitindo
casos como o da coloracdo de grafos, no qual deve-se atribuir cores para os vértices a partir de um
conjunto finito, de maneira que vértices vizinhos nao possuam a mesma cor. Uma variacao desse caso
¢ o problema de se alocar frequéncias (ou canais) a células de uma rede de telecomunicagdo, de

maneira que interferéncias sejam evitadas ou mitigadas.

1.2.  Objetivos

Este trabalho tem como objetivos:

e realizar um levantamento sobre a evolugdo dos principais métodos e algoritmos utilizados por
SAT e SMT solvers na literatura, fornecendo a fundamentagdo tedrica de Logica Proposicional
¢ de Primeira Ordem, necessaria para modelar sistemas;

e como aplicagdo, ¢ utilizado o conhecido e premiado solver Z3 da Microsoft em um problema

de alocagdo de frequéncias.
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1.3.  Organizacio do trabalho

O trabalho ¢ composto por 5 capitulos. Neste foram apresentadas as motivagdes para o estudo
de SAT e SMT solvers a partir de suas vastas aplicagdes. O capitulo 2 introduz os fundamentos
teoricos da Logica Proposicional e de Primeira Ordem, bem como os principais procedimentos de
decisdo e a definicdo do problema de alocacdo de frequéncias. O capitulo 3 trata do conjunto de dados
(materiais) e métodos (codificagdo e solver utilizado). O capitulo 4 apresenta os resultados

apresentados € 0 5 as conclusdes.
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2. Fundamentos Teoricos

2.1. Ldgica Proposicional e de Primeira Ordem

2.1.1. Introducio

Em sua tese de mestrado, intitulada 4 Symbolic Analysis of Relay and Switching Circuits,
Claude Shannon [12] demonstrou como era possivel utilizar a algebra de Boole para analisar circuitos
comutativos. Anos mais tarde ele foi além e forneceu uma definigdo para o conceito de informacao, de
maneira semelhante aquela que define entropia em fisica, tornando possivel o estudo de sua
transmissao por meios de comunicagdo, os quais podem apresentar interferéncias.

Apesar de neste trabalho abordarmos um problema de comunicagdo, mais especificamente
tentando evitar ou mitigar as interferéncias, faz-se necessario compreender a importancia da analise
simbolica utilizada por Shannon.

George Boole publicou em 1847 um panfleto intitulado The Mathematical Analysis of Logic
[13], no qual ele afirma que o uso da Algebra Simbélica ndo depende dos simbolos utilizados, ¢ sim
das regras que definem a combinacdo dos mesmos. Portanto, é possivel utilizar uma notacao algébrica
para descrever as propriedades elementares de conjuntos, e a partir disso, formular problemas sobre
numeros, geometria , dindmica, dptica, entre outros, o que Boole chamou de “Calculo da Logica”.

Dessa maneira, este capitulo se dedica a fornecer os fundamentos das 16gicas Proposicional e

de Primeira Ordem, as quais serviram de base para modelar um problema de engenharia.

2.1.2.  Sintaxe da Logica Proposicional
A sintaxe de uma linguagem ldgica consiste em um conjunto de simbolos e regras usadas para
combina-los e formar formulas (ou “sentengas™) [14]. Os seguintes elementos compdem o alfabeto da

Loégica Proposicional :

e Simbolos de pontuagdo: ( e )

e Valores-verdade : T (verdadeiro) e L (falso)
e Varidveis proposicionais : X, X 5, ... ,X

e Atomos: T,L, x (variavel)

e Literais: a, —a (um atomo ou sua negagao)

e (Conectivos :
—(negacdo), N (conjuncdo), V (disjungao), — (implicacdo, se ... entdo), <> (se somente se ...)
e Formulas: a, =fy, [ A Sy, [V o, f1— [ fi1e [, (umétomo ou

conectivos aplicados a formulas)
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Note que nem toda combinagdo de simbolos da linguagem ¢ valida, assim damos o nome de
formula bem formada (fbf) aquelas que seguem as seguintes regras de formagao indutiva:
1. Toda proposigdo isolada p é uma fbf

2. Se p ¢ uma fbf, entdo —ptambém ¢é uma fbf

3. Sepeqsaofbfsentio (pVg), PAq), (p — q)e(p < q) sdo fbfs

Podemos classificar os conectivos em relagdo a quantos argumentos o mesmo utiliza. O
conectivo de negacdo (—) necessita de um Unico termo (unario), enquanto os outros necessitam de
dois (binario).

Algumas formulas podem ser decompostas, entdo caso G ocorra sintaticamente em F dizemos
que G ¢ subformula de F. Considera-se que toda formula ¢ subformula de si mesma.

Ademais, ¢ possivel definir uma ordem para as subformulas : F; precede F', caso F'|seja

sub formula de F, .

2.1.3. Semantica da Légica Proposicional
A semantica de uma ldégica é aquilo que fornece seu significado [14], que em Logica

Proposicional ¢ dado pelos valores constantes T ¢ L. Assim, para se determinar o significado de uma
formula ¢ preciso avalid-la dentro de um contexto, que recebe o nome de interpretagdo da formula, e
corresponde a um conjunto de valores a serem atribuidos as variaveis das formulas [14], unicos para
variavel proposicional. Caso uma interpretacdo / de uma férmula F' resulte em verdadeiro, dizemos
que a mesma satisfaz a formula.

De maneira compacta, podemos reformular utilizando os seguintes simbolos :

1 E F (ainterpretacido I satisfaz a formula f)

I ¥ F (ainterpretacdo [ falsifica a formula f)

Supondo uma formula £ : p A g — p V —q , uma possivel interpretagio é:

I:{p— Ll g1}
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Por outro lado, se uma férmula F' ¢ satisfazivel por todas as possiveis interpretagoes I, diz-se

que a formula ¢ valida. Podemos entdo omitir I e escrever apenas = F' . Note que sdo caracteristicas

duais : uma formula F sé € valida se sua negagdo —F nao for satisfazivel.

Uma tabela-verdade oferece a maneira mais simples de verificar se uma interpretacdo satisfaz

ou mesmo valida uma férmula, e para construi-la utilizamos como ponto de partida as tabelas-verdade

dos conectivos.

Tabela 1. Tabela-verdade dos conectivos proposicionais

p|laq | P»|pPNg | PVg | Poqg |pPeog
1 1 T 1 1 T T
T 1| L 1 T 1 L
Ll T|T 1 T T L
T T 1 T T T T

Fonte: elaborada pelo autor

Note também que, se uma formula F contém n proposi¢des, entdo existem 2" possiveis

interpretagdes. Como o numero de linhas cresce exponencialmente com o de varidveis, a construgio de

tabelas-verdade torna-se um método ineficiente.

Para verificar se uma interpretacdo satisfaz (ou ndo) uma féormula, aplica-se um conjunto de

regras para manipular os simbolos apresentados anteriormente. No caso da Logica Proposicional, o

calculo utiliza as seguintes regras:

1. IET

2. T#1

3. [ Ex seesomentel[x] = T (I atribui T ax)

4. I E—F, seesomentesel ¥ F,

5. IEF |[ANF, seesomentesel EF [ e [EF ,

6. IEF V F, seesomentese [IEF | ou IEF,
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7. IEF | — F, seesomentese [#F, ou Il = F,

8. IEF, < F, seesomentesel EF el EF,, oul #F el#F,

Suponha a seguinte formula F : pAgq —pV —q e ainterpretagio [ : {p> T, g L} .
Substituindo os valores fornecidos em / pode-se facilmente montar uma tabela verdade para avaliar F,

e verificar que a mesma ¢ satisfeita por /:

Tabela 2. Tabela-verdade parcial da formula ¥ : p Ag —>p V —gq

p q -q pPNAg pV g F

T 1 T 1 T T

Fonte: elaborada pelo autor

Contudo, para determinar se F ¢ valida € necessario completar a tabela com todos as possiveis

combinacdesdep e g :

Tabela 3. Tabela-verdade completa da formula ¥ : p Aqg —»p V —¢q

p q -q pANg |pV Tq| F
1 1 T 1 T T
1 T 1 1 1 T
T 1 T 1 T T
T T 1 T T T

Fonte: elaborada pelo autor

Pode-se assegurar, portanto, que F ¢ valida.

Uma alternativa para avaliar a validade de uma férmula consiste em tomar uma abordagem

sintatica, provando-se por deducdo ou refutacdo, a partir de regras de inferéncia. Regras de inferéncia
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relacionam as premissas (ou antecedentes) com as dedugdes (ou consequentes), separando-as com uma
linha vertical, com as premissas acima da linha e as conclusdes abaixo [14].
Assim, partindo da semantica dos conectivos, podemos estabelecer as seguintes regras (note

que dependendo da premissa, é necessario fazer considerar cada caso separadamente):
I =—-F e L#F
® 1w#F © IEF

IEFAG [EFAG
TeF IFG € TeFIIRG

IEFVG IEFAG
® JEFIIEG I F I¥G
IEF>G I#F —G
® I¥F|IEG IeEF I¥G
IEF oG e IEF oG
® J/EFAGII¥FVG IEFAN-GI|IE-FNAG
[EF JBF -
° T (contradicao)

Considere a seguinte formula ¥ : p A g — p V —q . Para estabelecer a validade de F primeiro
assumimos que ela é invalida / ¥ F', ou seja, existe uma interpretagdo / que satisfaz a formula. Em

seguida, utilizando as regras de inferéncia para construir argumentos [14] :

1. I ¥ pANg—>pVg premissa

2. IEpAg utilizando 1 e a semantica de —
3. I ¥pA—q utilizando 1 e a semantica de —
4. IEDP utilizando 2 e a semantica de A
5. I ¥p utilizando 3 e a semantica de V

Observando 4 ¢ 5, pode-se concluir que temos uma contradi¢do, € a prova pode ser encerrada,

comprovando que —F ¢, de fato, valida.

2.1.4. Sintaxe da Logica de Primeira Ordem
A Loégica de Primeira Ordem estende a Proposicional com predicados, fungdes e
quantificadores [14]. Com isso, ganha-se expressividade para férmulas cujas varidveis podem ser
numeros inteiros, reais, arrays, vetores de bits, entre outros.
O alfabeto da Logica de Primeira Ordem ¢é formado por:
e Simbolos de pontuacdo: ( ¢ )
e Variaveis: x,y,z

e Constantes : a,b,c
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e Predicados: p,q,r

e Variaveis proposicionais (predicados de aridade 0) : P,Q,R
e Fungdes: f,g,h

e (Conectivos proposicionais: 7, A, V, — , <>

e (Quantificadores : V,3

e Atomos: L, T, p (predicados)

e Literais : 4&tomos ou sua negagao

e Formulas : literais, aplicagdo de conectivos a formulas, aplicagdo de quantificadores a

formulas

As fungdes adicionam expressividade ao permitir o uso de dominios que ndo sejam apenas os
valores-verdade 1 e T.Podem variar na quantidade de argumentos que utilizam (aridade), sendo que
as de aridade 0 podem ser vistas como constantes. Dessa maneira, pode-se trabalhar com dominios de
interesse como naturais, inteiros € reais.

Predicados, assim como as fung¢des, variam em relacdo a aridade, mas quando avaliados
mapeiam valores para o dominio booleano.

As formulas em Logica de Primeira Ordem também seguem uma regra indutiva na defini¢ao
de formulas bem formadas e expandem aquelas da Logica Proposicional:

1. Todo literal / é uma fbf
2. A aplicagdo dos conectivos as fbfs € uma fbf

3. A aplicacdo dos quantificadores a uma fbf € uma fbf

Os quantificadores universal (V) e existencial (3) podem ser vistos como operadores que
aplicam um predicado em todo um dominio. O quantificador universal somente retorna T caso todos
os elementos do dominio validem o predicado, ja o quantificador existencial retorna T caso pelo

menos um elemento do dominio valide o predicado.

2.1.5. Semaintica da Légica de Primeira Ordem
Com a adicao de fungdes, pode-se trabalhar com diversos dominios além do booleano, assim ¢

necessario incluir o dominio D, da interpretagdo. Trata-se de um conjunto ndo-vazio de valores como

inteiros, dias da semana, etc. Podendo ser finitos, como um baralho de 52 cartas, ou incontavelmente

finito como os nimeros reais [14].
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Assim, uma interpretagdo / : (D, 0,;) ¢ um par formado pelo dominio D, e atribui¢des (a, ),
mapeando constantes, fungdes e predicados para elementos, fungdes e predicados do dominio D, .

Considerando a formula F :x+y>z —y >z —x, podemos ver que ela é composta de
simbolos +,—,>, os quais sdo escolhidos para dar uma intui¢@o sobre o significado proposto para a

formula. Note que a mesma pode ser reescrita como F’ : p(f(x,),z) — p(v,g(z,x)) -

Portanto, se considerarmos:
o D, =7

o o, ={+pH+ - —, >p>, xe 13,y 42, 21, }

~
7

Podemos avaliar se a interpretagd@o / satisfaz a formula F avaliando recursivamente os termos

das férmulas e utilizando as mesmas regras da Logica Proposicional :

1. IEx+y>z pois o, [x+y>z] =13, +, 42, >, 1,
2. IEy>z—x pois o, [y >z—-x] =42, >, 1,—,13,
3. IEF a partir de 1, 2 e a semantica de —

No caso de formulas que contém quantificadores, consideramos variantes da interpretagdo,
denotando por J : I < {x v } a variante de / na qual o,[x] = v para algum v € D,, e utilizamos as
seguintes regras:

1. IEVx.F seesomenteseparatodo VvED,, [ I{xHv}EF

2. ITE3x.F seesomente se existe v € D, de maneiraque / I{x+H v }EF

Apesar da introdug¢do dos quantificadores, iremos restringir a atengdo para fragmentos ndo
quantificados de alguma teoria 7' de primeira ordem.

Uma teoria de primeira ordem ¢ um par composto de uma assinatura X, um conjunto de
constantes, simbolos de fungdes e predicados, e o conjunto de axiomas 4, um conjunto de féormulas
nas quais s6 aparecem elementos presentes em X, e que fornece o significado de seus simbolos [14].

Dessa maneira, pode-se definir a validade e satisfatibilidade de uma F construida a partir de
em relagdo a uma teoria T observando se toda interpretagdo / que satisfaz os axiomas 4 de 7' também

satisfaz /" (validade), ou se existe pelo menos uma interpretacao / que satisfaz / (satisfatibilidade).
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2.1.6. Formas Normais

Existem trés formas normais (candnicas) de se representar formulas em Logica Proposicional
e Logica de Primeira Ordem, variando em relagdo ao modo como os conectivos sdo utilizados.

A Negation Normal Form (NNF) ou Forma Normal da Negacdo requer que apenas os
conectivos —, A, Vsejam utilizados, e negagdes sO aparecem em literais. Por exemplo
F :=(=P v —~(P A Q)) esta escrita em NNF.

Pode-se transformar uma formula F em uma equivalente £ utilizando as seguintes regras

recursivamente, da esquerda para a direita, onde o simbolo < representa equivaléncia [14]:

1. —F oF

2. T el

3. (F|ANF,)®~F,V~F, (DeMorgan)
4. —~(F,VF, e ~F,AN"F, (DeMorgan)
5. F,—>F,&F, VF,

6. FyoF),oFE =F)NF,—F)

A Disjunctive Normal Form (DNF) ou Forma Normal Disjuntiva ¢ formada por disjun¢des de
conjungdes de literais, isto ¢ V; A; [, .

Por exemplo, ' : (O, AR)V (O, AR)V(Q, AR|)V (O, AR,) esta escritaem DNF.

A conversdo para DNF consiste em primeiro transforma-la em NNF e em seguida aplicar as
seguintes regras de equivaléncia, também da esquerda para a direita:
I (Fy\VF)ANF; S (FIAF3)V(F,NF3)

2. FINFVFy) S (F AF)V(F|NF;5)

Dualmente, temos a Conjunctive Normal Form (CNF) ou Forma Normal Conjuntiva, que

consiste em uma conjunc¢do de disjungdes A,V /;;, onde cada bloco de disjungdo ¢ chamado de

i 2
clausula. Por exemplo F : (Q; VO,)A(Q,V O;), esta em CNF ¢ (O, V O,)e (O, V O;) sio suas
clausulas.
As regras de equivaléncia para converter uma formula ' em CNF, utilizadas apds a conversdo
para NNF, sdo :
. (FJIAF)VF,& (F,VF3)A(F,VF;)

2. FIVIFLANF) S EVF)NEFV Fy)
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SAT/SMT solvers utilizam CNFs como formato padrio de entrada. Apesar de ser possivel
converter uma formula arbitraria para DNF, e esse ser um formato no qual decidir a satisfatibilidade
pode ser feito em tempo linear [15], a transformagao pode aumentar exponencialmente o tamanho da
formula.

Por outro lado, a conversdao em CNF utilizando o método de transformacao de Tseiting [16]

aumenta o tamanho da formula linearmente, através da adi¢do de novas variaveis.
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2.2. Procedimentos de Decisao

2.2.1. Introducio

O problema de se verificar a satisfatibilidade de uma formula proposicional ¢ comumente
abreviado para SAT. Programas que implementam procedimentos para resolver esse problema sdo
chamados SAT solvers. Caso a féormula utilize uma teoria 7' de primeira ordem, os solvers recebem o
nome de SMT (Satisfiability Modulo Theories). Esta se¢do se dedica a explorar maneiras
(procedimentos) para solucionar essas duas versdes do problema.

Existem algumas propriedades que gostariamos que tais procedimentos tivessem. A primeira
(soundness) é que, dada uma férmula arbitraria valida, o procedimento sempre retorne “valida”. A
segunda (completeness) requer que o procedimento garantidamente termine. Assim, os procedimentos
que apresentam as duas propriedades para qualquer formula de uma teoria 7 sdo chamados de
procedimentos de decisdo. [17] aponta que existe uma confusdo enraizada na literatura, ja que
assume-se que um procedimento nao necessariamente termine, enquanto um algoritmo sim, de modo
que faria mais sentido chamar de “algoritmo de decisao”.

Apesar de sempre buscarmos utilizar procedimentos completos, isso nem sempre € possivel.
Por outro lado, em varios casos praticos, procedimentos incompletos acabam terminando [17]. A
figura abaixo, extraida de [17] ilustra um procedimento de decisdo como um engenhoso € complexo
processo que, no final das contas, decide se uma férmula (representada pelas fitas a direita) ¢ decidivel
ou nao.

Fig. 1. Ilustracdo de um Procedimento de Decisao
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Fonte: [17, p. VIII]

2.2.2. Procedimento de Davis-Putnam (DPP)

O primeiro procedimento surge em um manuscrito ndo publicado para a Agéncia Nacional de
Seguranca americana (NSA) [18], no qual Davis e Putnam sugerem os seguintes principios, assumindo
uma férmula em CNF:

1. Regra da clausula unitaria: caso exista uma clausula contendo um tnico literal (/),
remova todas as clausulas contendo /, e todos os literais —/.

2. Regra do literal puro: caso um literal / apareca em alguma clausula mas a sua negagao
=/ ndo, remova todas as clausulas contendo /.

3. Regra da resolugdo: caso duas clausulas contenham um mesmo literal v, mas divirjam
em relacdo a sua polaridade, remova o literal e forme uma nova disjun¢éo a partir dos
outros literais restantes, isto € , substitua

VVLVL)YNCVYVI V)
por

VLV V)

As regras devem ser aplicadas recursivamente até que ndo haja mais clausulas, o que significa
que a formula ¢ satisfativel, ou até derivar a clausula vazia, no qual a férmula ¢ insatisfativel.
Esse procedimento, apesar de ter soundness, ndo é completo, e além disso a regra da resolugdo

acaba utilizando muita RAM quando implementada [18], uma forte restri¢do na época.
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2.2.3. Davis-Putnam-Logemann-Loveland (DPLL)

Em 1962, os programadores Logemann e Loveland foram contratados por Davis e Putnam
para trabalhar no algoritmo, e forneceram sugestdes mais eficientes para o calculo da satisfatibilidade.
O resultado, comumente referenciado por DPLL, se tornou a base para solvers modernos.

A sugestdo dos programadores foi restringir o uso da resolucdo para o caso de clausulas
unitarias, o qual recebeu o nome de Boolean Constraint Propagation (BCP). Suponha que em uma
formula F' exista uma clausula unitaria (/) e que também exista uma clausula C na qual / aparece como

—[, assim, pode-se substituir a clausula C pelo subconjunto que ndo contém —/. Isto ¢é:

I C[~
C[1]

Suponha que £ : (P)A(P VO)A(RV —QVS) . Pode-se aplicar BCP nas primeiras duas
clausulas :

P (-PVQ)
o

Que resultaem F': (Q) A(RV ~QV S).Podemos continuar aplicando BCP :

0 (Rv—-0OVYS)
RVS

Resultando em F": (RV S).

Caso a formula ndo seja reduzida para L ou T, basta escolher uma variavel x e aplicar BCP

para as atribui¢des x =T e x = L. O algoritmo pode ser expresso em pseudocodigo como [19]:

Entrada: férmula proposicional em CNF

Saida: “SAT” caso a formula for satisfativel, “UNSAT” caso contrario

DPLL(F):
F'= BCP(F)
IF F' = T RETURN "SAT"

IF F' = 1 RETURN "UNSAT"
X = CHOOSE(VARS(F'))
RETURN DPLL(F' A X) || DPLL(F' A —X)
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O DPLL pode ser compreendido como uma busca em uma arvore bindria, cujas ramificagdes
sdo atribuicdes dos valores T e L para cada variavel na formula. Caso uma atribui¢do termine em um
modelo que ndo satisfaz a formula, o algoritmo volta um nivel de decisdo e atribui um outro valor. A
figura a seguir ilustra a arvore gerada durante a execug¢@o do DPLL para uma féormula composta pelas
seguintes clausulas :

o C,=( V™3V, VXs)
o C,=(x Vx5Vxg)

o (C3=(x5Vxy)

o C,=(x V™V x)

o Cs=(xV™x,Vxs)

o Co=(xV™x;Vxs)

o C,=(xVxVXxs)

o Co=(X VX, VX3V, V x5V x)

As setas cheias representam atribuicdes definidas pela funcdo CHOOSE, enquanto as setas
pontilhadas representam dedugdes realizadas pela fungdo BCP. Os nos vermelhos representam ramos
da busca cujo modelo representa uma contradigdo, isto é, ndo satisfaz a formula. Ja o né verde

representa um modelo que de fato satisfaz a formula.
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Fig. 2 - Tlustrag@o da execugdo do algoritmo DPLL.

Fonte: Adaptado de [21]

2.2.4. Conflict-Driven Clause Learning
Em alguns casos, o algoritmo DPLL pode acabar perdendo tempo buscando em ramos que
inevitavelmente irdo falhar. Isso ocorre porque, ao encontrar um conflito, nenhuma informagao ¢
extraida e ele s6 desfaz um nivel de decisao.
Pode-se construir um grafo a partir das decisdes tomadas em cada nivel e as implicagdes
provocadas pelo BCP, e, através dele, identificar novas implicagdes que ajudardo a guiar o processo de

busca, como proposto em [20].
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Considere uma formula em CNF composta pelas mesmas clausulas do exemplo anterior [21].
Como nao ha nenhuma clausula unitdria, ndo podemos utilizar BCP, assim escolhemos uma variavel e

atribuimos um valor, por exemplo x;=T, e associamos ao nivel de decisdo 1 na forma x;, = T@]1.
Essa decisdo ndo gera nenhuma clausula para utilizar BCP, assim continua-se com uma nova
atribui¢do x, = T@2.

Observe que a segunda decisdo faz com que a clausula Cj se torne unitaria, implicando que a
variavel x5 = T@2. Apos isso, a clausula C, também se torna unitaria, de modo que x; = T@2. O

mesmo ocorre em C,, implicando x;, = T@2 . Até o momento temos o seguinte grafo de implicacdo:

Fig. 3. Grafo de implicagdo parcial. Adaptado de [21]

Cg

Fonte:. Adaptado de [21]

Contudo, atribuindo x;, =T@1, x,=T@2 e x; = T@2 implica que a clausula C,ndo ¢é

satisfeita, ou seja, ocorreu um conflito.

Fig. 4. Grafo de implicacdo com conflito.
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Cy

Ca

Fonte: Adaptado de [21]

Em vez de simplesmente voltar em um nivel de decis@o, ¢ possivel analisar as clausulas
envolvidas no conflito partindo-se da cldusula envolvida no mesmo, C,nesse caso. Assim, visitam-se
as variaveis implicadas via BCP no nivel de decisdo atual (2, no caso) mantendo dos antecedentes
(clausulas incidentes) as variaveis atribuidas em niveis de decisdo anteriores ao mais recente atraveés
da aplicacdo da regra de resolugdo (ver segdo 2.2.2), repetindo o processo até que a decisdo mais
recente seja visitada [22].

Dessa maneira, aplicando resolugdo nas clausulas C, e C; obtemos a cldusula intermediaria:

(x Vg V) (s Vxg)

(>, Vg Vg )
Em seguida. aplica-se resolugdo entre a clausula intermediaria e C, , obtendo:

(_'xl \ X5 \ Xg ) (_‘xl \ Xs5 VXG)
(7, V)

Como s6 resta um literal no nivel de decisdo 2, e x, possui o nivel de decisdo mais alto,
volta-se ao nivel de decisdo 1, desfazendo as decisdes do nivel 2, e aplica-se a nova clausula

aprendida:

Cy=(x; Vxy)

Como x;, =T@!, para satisfazer C,segue que x;= L. A partir disso, uma série de

propagacdes sdo realizadas:
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Fig. 5. Grafo de implicacdo final apds propagacdes.

ecc"c C ?"eic |

Fonte: Adaptado de [21]

Assim, conclui-se que a formula ¢ satisfativel com a interpretagao:

I {xPT, x,oL, x30L, x,oL, xgoL, xoL }

A figura a seguir ilustra a execugdo do algoritmo CDCL, note como o mesmo evita

percorrer varios ramos devido ao aprendizado de clausulas.

Fig. 6 - Ilustragdo da execugdo do algoritmo CDCL

@ -G
@O -0

Fonte: Adaptado de [21].
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Seja Fuma formula proposicional em CNF, ¥ um conjunto de tuplas (x; ,v;) associando

variaveis e valores Tou L. O algoritmo, em pseudocddigo € [22] :

Entrada: férmula proposicional F, interpretagdo V'

Saida: SAT ou UNSAT

CDCL(F, V):
IF BCP(F,V) ="CONFLICT" THEN RETURN "UNSAT"
dlL < (nivel de decisdo)

WHILE(NOT AlLLVariablesAssigned(F))
DO (x,v) = PickBranchingVariable(F,V)
dL dL +
v vu{(xv)}
IF BCP(F,V) ="CONFLICT"
THEN B = ConflictAnalysis(F,V)
IF B < THEN RETURN "UNSAT"
ELSE Backtrack(F,V, B )
dL <P
RETURN "SAT"

Onde AllVariablesAssigned simplesmente verifica se ja foram atribuidos valores para as
variaveis e  PickBranchingVariable faz o mesmo papel de Choose do DPP. ConflictAnalysis
corresponde ao processo de identificar as causas do conflito, analisando as decisdes feitas a partir do
grafo de implicacdo, gerando novas clausulas e o nivel de decisdo para o qual deve se retornar, que é

realizado por Backtrack.
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2.2.5. DPLL(T)

Apesar dos diversos avangos nos algoritmos, resolver problemas utilizando SAT ¢ uma tarefa
dificil, pois codificagdes eficientes ndo sdo triviais, o formato que os solvers recebem como entrada é
feito especialmente para eles (o que dificulta a sua interpretagdo por parte das pessoas), e, além disso,
a expressividade ¢ baixa, o que induz a erros [23].

Uma solug¢do, introduzida por [24], ¢ estender o algoritmo DPLL (ou CDCL) para incorporar
um procedimento de decisdo de uma teoria 7 de primeira ordem como Aritmética Linear de Inteiros,
Reais, Arrays, vetores de bits, etc.

Substituindo-se as clausulas que contém fungdes de outras teorias por varidveis
proposicionais, a férmula é primeiro analisada por um SAT solver, e, em seguida, o solver especifico
de cada teoria é invocado para verificar a consisténcia da clausula de acordo com sua teoria.

Assim como no CDCL, a arquitetura DPLL(T) inclui agdes como propagacao (semelhante a
BCP) e analise de conflitos, a partir das quais sdo geradas novas clausulas que guiam o processo de
busca.

Considere a Teoria da Aritmética Linear de Inteiros (LIA - Linear Integer Arithmetic), cuja
assinatura ¢ compostapor X,,, = { +, —, <, <, >, >, Z} e cada interpretagdo avalia as fun¢des no
sentido usual (isto ¢, 1+1=2, 1 < 0 = falso, etc). Os seguintes exemplos ilustram a semantica de uma

interpretagdo /= {x 7, y > 1} [25]:

e [Fx>y+5 jaquex! >y +5resultaem 7> 6, queresultaem T

e [y -x>0 jaque ' —x/ > 0 resultaem —6 >0, que resultaem L
Seja F:(x+1>0Vx+y>0)A (x<0 V x+y>4)A—~(x+y>0), o exemplo a seguir
ilustra uma execugdo do solver instanciado com DPLL(LIA) :
O primeiro passo ¢ fazer o codificacdo dos literais em termos de variaveis proposicionais:
F':(AVB)AN(CVD)A(—B)

Onde A=x+1>0,B=x+y >0, C=x<0eD=x+ty>4.

Seguindo o que ocorre no DPLL ¢ CDCL, o proximo passo consiste em aplicar BCP, a qual
atua no literal —B, unitdrio, implicando que B = 1l@]1. Consequentemente, a primeira clausula
também se torna unitéria, implicando 4 = T@1. Como ndo h4 mais nada que possa ser deduzido via

BCP, decide-se C=T@?2.
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Uma vez decidido o valor proposicional, ¢ preciso verificar a satisfatibilidade das atribui¢des
até o momento em relagdo a L/4 com o contexto até o momento, o qual identifica que : x+1>0 e
x < 0 ndo podem ser verdadeiros ao mesmo tempo. Portanto, adiciona-se a clausula (74 V —C) a

formula e se reinicia o processo, ja que s6 houve uma decisdo. Assim, temos:

F":(AVB)A(CVD)A(B)A (-4 V—C)

Novamente se aplica BCP, deduzindo que B= 1@l ¢ 4 =T@!. Em vez de cair no mesmo
erro, agora a nova cldusula se torna unitaria, implicando C = L@]1 . A clausula (C V D)também se
torna unitaria, implicando D = T@]1 . Resta agora verificar a satisfatibilidade da formula em relagdo a
LIA.

Dessa vez sdo os literais —(x +y >0) e x+y >4 que ndo podem ser verdadeiros a0 mesmo
tempo, o que implica em uma nova clausula (7B V D). Contudo, como s6 houve trabalho feito via

BCP ¢ nenhuma decisdo foi tomada, ndo havendo outro nivel de decisdo para o qual retornar,

conclui-se que formula € LIA-UNSAT.

O procedimento de decisdo utilizado para verificar a satisfatibilidade de uma formula- L4 ¢
uma variacdo do algoritmo Simplex, o qual ndo necessita de uma funcéo objetivo por ndo se tratar de
um problema de otimizagdo e, através da adi¢cdo de novas variaveis, transforma o sistema de entrada
numa forma normal composta de [17]:

e Jgualdades da forma: a;x; + ... + a,x,= 0

e Limites superiores e inferiores: /; <x; <u, (opcionais)

Note que qualquer restri¢do linear do tipo L(O R,onde O© € { <, >, = } pode ser convertida
para a forma mencionada.

Assim como no método Simplex comum, constrdi-se um tableau para verificar a
satisfatibilidade dos limites impostos e manipular operagdes de pivotagdo. As varidveis originais do
sistema sdo chamadas de basicas, enquanto aquelas adicionadas durante a transformacgéo sdo chamadas
de ndo-basicas.

O algoritmo pode entdo ser visto como [17]:
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Entrada: um sistema linear de restri¢cdes S

Saida: SAT ou UNSAT

Transformar o sistema para a forma normal

Ax=0 ¢ N_; , L <s, <1,

onde s; ... s, sd0 as varidveis ndo-basicas

Construir o tableau de A

Determinar uma ordem fixa das variaveis

Caso nenhuma variavel basica viole os limites, retorna SA7. Caso contrario escolhe-se a
primeira varidvel basica x; que apresenta violagdo

Busca-se uma variavel ndo-basica x; para pivotar com x;, caso ndo exista, retorna UNSAT
Pivota-se x; e x;

Ir para o passo (4)
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2.2.6. Otimizacoes

Além do aumento na velocidade de busca, fornecido pelo algoritmo CDCL, outras abordagens
¢ sugestoes foram feitas no inicio dos anos 2000 para tornar os solvers mais competitivos. As
otimizacdes partem da observacdo que os solvers gastam, na pratica, cerca de 90% do tempo efetuando
BCP [26].

A partir disso, duas melhorias foram propostas, uma no campo da estrutura de dados utilizada
pelos solvers e a utilizagdo de heuristica no momento de se escolher uma varidvel a qual nenhum valor
ainda foi atribuido.

No campo da estrutura de dados, a técnica conhecida como Tivo-Watched Literals [26] propde
utilizar um contador por clausula que informa a quantos literais atribuiu-se o valor L. Assim, se uma
clausula contém N literais, visita-se a mesma apenas quando o nimero de literais L cair de N-2 para
N-1. Para isso, escolhem-se dois literais (ainda ndo atribuidos valor 1), garantindo que até que um
deles seja atribuido o valor L, ndo existem mais do que N-2 literais L,

Essa técnica torna o processo de se reatribuir valores a variaveis mais rapido, pois os literais
observados nao precisam ser modificados quando ocorre uma mudanga do nivel de decisdo atual para
um anterior (backtrack).

J& no campo da heuristica, a técnica conhecida como VSIDS (Variable State Independent
Decay Sum) propde manter um contador para cada literal de cada polaridade, inicializando em 0.
Quando uma clausula ¢ adicionada, o contador de cada um dos literais presente nela é incrementado e,
no momento de se decidir o proximo literal, escolhe-se aquele com maior valor, enquanto
periodicamente se divide os contadores por uma constante. A idéia ¢ tentar satisfazer os conflitos mais
recentes, especialmente porque, em problemas dificeis, as cldusulas conflitantes dominam o problema
em numero de literais.

Além disso, eventuais delecdes de clausulas (para evitar sobrecarga de memoria) e
reinicializagdes (mantendo parte das informagdes adquiridas previamente) também se mostraram boas

estratégias para desenvolver solvers mais eficientes.
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2.3. Radio Link Frequency Assignment Problem (RLFAP)

Segundo [27], o problema de alocagdo de frequéncias (Frequency Assignment Problem, FAP)
ocorre em diferentes tipos de comunicacdes sem-fio, as quais tém que lidar com o fato de que o
espectro de frequéncias ¢ um recurso finito. Portanto, faz-se necessario balancear o reuso do espectro
sem incorrer em perda de qualidade de comunicag@o por conta de interferéncias.
Segundo [28], tais interferéncias sao influenciadas por:
e Poténcia dos transmissores
e Sensitividade dos receptores
e Ganho das antenas
e Distancia
o Condigoes climaticas
e Frequéncias utilizadas
o Restri¢do co-canal
o Restri¢ao de canal adjacente

o Restri¢do co-local

Consideremos que, com excec¢do das frequéncias utilizadas, a maioria dos fatores ndo possam
ser influenciados, focaremos a analise do problema nas restri¢des as escolhas de frequéncias utilizadas.

A restrigdo de co-canal ocorre quando ndo se pode alocar um mesmo canal para certos pares
de células a0 mesmo tempo, enquanto na restrigdo de canal adjacente, canais muito préximos nao
devem ser alocados simultaneamente. Finalmente, a restricdo co-local estabelece que deve haver uma
separagdo minima entre dois canais alocados em uma mesma célula.

Tais restrigdes sdo utilizadas no contexto de uso militar de radios de comunicagdo [29], no
qual o FAP consiste em um conjunto X de links de radio, para os quais, a cada i € X, deve-se
escolher uma frequéncia f; a partir de um conjunto finito D, disponivel para cada transmissor. Assim,

para cada par de links (7,j) as restrigdes podem ser dos tipos:
If; — 1,1 >d;
= £ =5,
Onde d;; representa uma distdncia minima para se evitar interferéncia co-local, e 8,; ¢ definida

por restrigoes tecnoldgicas dos transmissores.
Dadas as restri¢des, pode-se investigar:
1. A viabilidade de se respeitar todas as restrigdes

2. Minimizar a maxima frequéncia utilizada, caso seja viavel respeitar todas as restrigoes
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3. Minimizar o nimero de frequéncias diferentes usadas, caso seja viavel respeitar todas as
restri¢des
4. Maximizar a viabilidade, atribuindo custos as violagdes de restrigdes, os quais devem ser

minimizados

A figura abaixo ilustra uma rede com 6 antenas [30], cada uma representada com seu
identificador e seu conjunto de frequéncias (embaixo). Os aparelhos celulares representam os links
com os canais alocados e os raios entre as antes indica a distdncia minima de separagdo para as

frequéncias usadas por duas antenas.

Fig. 7. Tlustragdo de uma rede com seus conjuntos de frequéncia e restricdes

{0,1, 2,3} 3

Fonte: [30].

Esse é o contexto que serve de base para os experimentos apresentados nos capitulos
seguintes, deixando claro desde ja que o trabalho se ateve especialmente no item 1 acima, a satisfacdo

de todas as restric¢oes.
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3.

Materiais e Métodos

3.1. Conjunto de Dados

O CELAR (Centro de Eletronica do Exército Francés) construiu um conjunto de dados para o

problema RLFAP a partir de dados de redes reais, como parte do projeto EUCLID CALMA

(Combinatorial Algorithms for Military Applications) [29], e pode ser encontrado em [31].

O conjunto é composto por trés instancias nas quais sao fornecidas as variaveis, o conjunto do

dominio das frequéncias, as restri¢des na forma |f; —f;| > d; ou |f;—f;| = &;, bem como os

critérios a serem otimizados e os custos para cada violagao:

CELAR: 11 instancias

GRAPH: ou Generating Radio link Assignment Problems Heuristically [32], sdo 14 instancias
geradas a partir das caracteristicas presentes na CELAR como os dominios das frequéncias e
proporg¢ao de links e restri¢des

SUBCELAR : 5 sub-instancias extraidas a partir da instdncia CELAR 6, possui tamanho

reduzido mas igual dificuldade, sendo ideal para benchmarking

Cada instancia possui quatro arquivos:

var.txt: associa as variaveis (/inks) a seus dominios;

dom.xt: fornece a definicdo dos dominios;

ctr.txt: fornece as restrigdes e os indices de mobilidade, que vao de 0 a 4, onde 0 significa que
a restricdo deve ser respeitada, enquanto as mobilidades 1-4 apresentam um aumento dos
custos;

cst.txt: fornece os custos associados a cada indice de mobilidade.
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3.2. Codificaciao do problema

A codificagdo utilizada foi baseada em [33], e pode ser quebrada em duas partes:

e dominios, isso ¢, codificar que f; € D,

e restrigdes |f; —f;1 > d; ou |f;—f;| =&,
Os dominios podem ser vistos como uma unido disjunta de quatro subdominios:

2+ 14m|1<m<I11} {2+ 14m | 18<m <28}
{8 + 14m |29 <m <39} {8 + 14m |46 <m <56}

Assim, foram utilizadas duas varidveis, uma proposicional ¢, , para representar se f; €

2 mod 14 ou ndo, € um niimero inteiro m; para representar f; mod 14, obtendo :

t,—>(1<m; <11V 18<m,<28)
—t; — (29 <m; <39 V 46 < m, < 56)

A codificagdo das restrigdes ¢ feita analisando, para cada caso, se ¢; e t; sdo 2 mod 14 ou

ndo. Supondo que #; seja e que £ ndo, temos:

12+ 14m; — 8 — 14m, | > k

que apos manipular se torna:

(t; A=) — (my—m; > |(k+6)/14] + 1V m;—m, < [(=k+6)/14)] — 1)

Fazendo o mesmo para o caso |f; —f;| = 8, , obtemos todos os outros casos:

ij H

(4 At — (my—m; = |(—6)/14] + 1V m,—m < [(—k-6)/14)] — 1)
(G AE)— (my—m; 2| K14 + 1V m—m; < [-k/14] — 1)

(Ct; At) = (my—m, | k/14] + 1V m;—m, < [-k/14] = 1)

GAt)— (mp—m; = |(k+6)/14] + 1V m;—m; = [(—k+6)/14)] — 1)
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AL > (m—m, = [k—6)/14] + 1V m—m = [(—k—6)/14] - 1)
A > (mp=m; = | K14] + 1 vV m—m; = [-k/14] - 1)

OGN — (m—m; = |K/14] + 1 Vv m—m; = [-k/14] = 1)
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3.3. Z3 SMT Solver

O Z3 [34], da Microsoft Research, ¢ um solver condecorado [35, 36], que se tornou
open-source em 2015, e suporta as principais teorias, como Aritmética de Inteiros, Reais, Fungdes
Nao-Interpretadas, Arrays, Vetores de bits, tipos de dados algébricos, entre outros, podendo ser obtido
em [37].

Internamente na Microsoft, o Z3 ¢ utilizado na verificacdo de software como drivers para o
sistema operacional Windows e na geracdo de casos de testes[38]. No campo da biologia, o Z3 ¢
utilizado na andlise e sintese de redes regulatorias genéticas [39]. De maneira semelhante, ele também
¢ usado na analise e sintese de compostos quimicos [40].

Apesar de escrito em C++, o solver pode ser utilizado a partir de diversas linguagens como
Python, C, Java, C#e OCaml.

Neste trabalho, utilizou-se a interface em Python em execug¢do em um sistema Intel Core
17-7700HQ @ 2.80 GHz ¢ 16 GB de memoria RAM, com Sistema Operacional Ubuntu 18.04.

O Z3 oferece duas classes basicas de solvers. Um Solver pode ser instanciado com uma logica
(QF LIA - Quantifier-Free Linear Arithmetic) ou nao (ficando o Z3 responsavel por identificar a
melhor opcdo). A outra classe € a Optimize, na qual pode-se incluir pesos para as clausulas
adicionadas, as quais serdo automaticamente minimizadas.

Para adicionar clausulas, basta usar os métodos assert ¢ assert soft, o qual recebe um peso
(por padrao € 1) e um id, o qual pode ser utilizado para agrupar ou separar objetivos. Uma vez
adicionadas as clausulas, utilizam-se os métodos check e model para, respectivamente, verificar se as
formula final ¢ satisfativel (ou ndo), e obter o modelo encontrado

As variaveis sdo instanciadas a partir de fun¢des como Bool, Int, Real, Array, etc, as quais
recebem um nome como argumento.

Os exemplos que seguem foram retirados do tutorial do Z3 [41] e de [42], sendo o ultimo uma
extensa e diversa colecdo de problemas discutidos em detalhe.

Suponha o seguinte conjunto de equagdes lineares:

. 3x+2y-z=1
2. 2x =2y +4z = -2
3. —x-F%y-—z =0

Pode-se facilmente codificar o problema usando Z3:

from z3 import *
X = Real('x")
Real('y")

y
z = Real('z")
s = Solver ()
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s.add (3*x +
s.add (2*x -
s.add(-x +
print(s.check())
print(s.model())

Para o proximo exemplo, ¢ bom recordar que, para verificar se uma féormula F € valida, basta

provar sua negacao —F ¢ invalida. Assim, podemos usar o Z3 para provar o teorema de De Morgan.

from z3 import *

s = Solver()
a,b = Bools('a b")
de_morgan = And(a,b) == Not(Or(Not(a),Not(b)))

s.add(Not(de_morgan))
print(s.check())

Que retorna:

unsat

Suponha agora que queremos otimizar a soma de dois niimeros inteiros, x € y, com as

restricbesdeque x <2 ey —x<1:

from z3 import *

s = Optimize()
X,y = Ints('x y')

s.add(x < 2)
s.add(y - x < 1)

s.maximize(x+y)

print(s.check())

print(s.model())
print(s.model().evaluate(x + y))
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Na ultima linha, utilizamos o préprio modelo gerado pelo solver para avaliar a fun¢ao custo,

que nos retorna:

Retornando ao RLFAP, suponha que estejamos iterando sobre uma lista de restrigdes

(presentes nos arquivos cir:txf), na qual cada restri¢do possui os links f; (first_var) e f; (second_var),

o operador (operator) utilizado (>ou =), bem como a distincia (deviation) e os custos (costs).

Assumindo que as restricdes com operador (=) ndo possuem mobilidade, pode-se codificar o problema

da seguinte maneira:

from z3 import *
from math import ceil, floor

s = Optimize()

for ct

r in Ctrs:

# declarando as variaveis

ti
t]
mi
mj
k

Bool('t_%d' % ctr.first_var)
Bool('t_%d' % ctr.second_var)
Int('m_%d' % ctr.first_var)
Int('m_%d' % ctr.second var)
ctr.deviation

add(Implies(
ti,
Or( And( <= mi, mi <= ), And(

add(Implies(
Not(ti), Or( And( <= mi, mi <=

add(Implies(
t3,

<= mi, mi <= )))

)> And(

<= mi, mi <=
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Or (And( <= mj, mj <= ), And( <=m j,mj <= 28)))

s.add(Implies(
Not(tj),
Or (And( <= mj, mj <= ), And( <= mj, mj <= )))

Note que utilizamos o método add para adicionar cldusulas que devem ser

respeitadas (hard constraints). Ja para adicionar as restrigoes € seus custos:

if ctr.operator == '>":

weight = costs[ctr.weight]

s.add_soft(
Implies(And(ti, Not(tj)), Or(mi - mj >= math.floor((k+6)/14) +

mi - mj <= math.ceil((-k+6)/14) -1)),
weight

s.add_soft(
Implies(And(Not(ti), tj), Or(mi j math.floor((k-6)/14) + 1,
mi j math.ceil((-k-6)/14) -

))s
weight

s.add_soft(
Implies(And(ti,tj) , Or( mi j math.floor(k/
mi j math.ceil(-k/

weight

s.add_soft(

Implies(And(Not(ti), Not(tj)), Or(mi - mj >= math.floor(k/14) + 1,
mi - mj <= math.ceil(-k/14) )),

weight)
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4. Resultados

O Z3 foi utilizado com todas as instancias do grupo GRAPH, e seus resultados sdo expostos na

tabela a seguir, os dados sobres as instincias sdo encontrados em [29].

Tabela 4 - Resultados obtidos pela verificagdo das instancias GRAPH

Instancia No. de No. de Realizavel? Resposta Z3 Tempo (s)
variaveis restrigoes
GRAPH-1 200 1134 Sim SAT 0,157
GRAPH-2 400 2245 Sim SAT 0,924
GRAPH-3 200 1134 Sim SAT 1,274
GRAPH-4 400 2244 Sim SAT 87,94
GRAPH-5 200 1134 Nio UNSAT 0,056
GRAPH-6 400 2170 Nio UNSAT 0,127
GRAPH-7 400 2170 Nio UNSAT 0,118
GRAPH-8 680 3757 Sim SAT 10,601
GRAPH-9 916 5246 Sim SAT 99,081
GRAPH-10 680 3907 Sim SAT 65,958
GRAPH-11 680 3757 Nio UNSAT 0,304
GRAPH-12 680 4017 Nio UNSAT 0,404
GRAPH-13 916 5273 Nao UNSAT 0,631
GRAPH-14 916 4638 Sim SAT 6,848

Fonte: Elaborada pelo autor, adaptado de [29]

Pode-se notar que em muitos casos, o Z3 consegue definir a satisfatibilidade de maneira

extremamente rapida, no resto ainda apresenta um bom desempenho, dada a dificuldade intrinseca do

problema em questao.

A figura a seguir apresenta uma parte das restrigdes presentes na instancia GRAPH-I,

levando-se em consideragdo apenas a variavel de nimero 1, e ilustra suas conexdes com outras
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variaveis. E importante esclarecer que trata-se apenas de uma ilustracdo, ndo apresentando nenhuma

informacao relativa a disposi¢do topologica da rede em questdo.

Fig. 8 - Ilustragdo das restri¢des relativas a variavel 1 da instancia GRAPH-1

113

...Jf\

.r.J‘

46 v
vl

u

/1 41

38

199

Fonte: Elaborada pelo autor, adaptada de [29].

A execucdo pelo Z3 resultou em ¢, = 1 e m; =49, o que significa que a frequéncia alocada
foi f| =694 Hz. A tabela a seguir indica os valores encontrados para as variaveis ilustradas na figura

anterior, mostrando que de fato as restrigoes foram respeitadas.
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Tabela 5 - Restri¢des e valores encontrados pelo Z3

Variavel t; m; Tipo da restri¢io d;; 7 Lfi =/l
2 1 32 = 238 456 238
38 T 22 > 7 310 384
41 1 35 > 5 498 196
46 1 29 > 7 414 280
113 1 36 > 9 512 182
198 T 19 > 46 268 426
199 L 38 > 19 540 54
200 1 56 > 21 792 98

Fonte: Elaborada pelo autor.

Como o aumento do numero de variaveis aumenta exponencialmente o espago de solugdes a
ser percorrido, ¢ de se esperar que o tempo aumente muito. Contudo, na pratica, conjuntos de dados
reais envolvidos em casos industriais costumam apresentar uma estrutura que ¢ explorada pelo

maquindrio dos solvers.
As figuras a seguir, provenientes da competigdo SAT 2013 [43], ilustram essa diferenca

estrutural presente em conjuntos de dados de casos industriais, em contraste com conjuntos de dados

gerados aleatoriamente.
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Fig. 9 - Estrutura de um conjunto de dados industrial [43].

Fig. 10 - Estrutura de um conjunto de dados gerado aleatoriamente [43].
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5. Conclusoes

O presente trabalho teve como objetivo explorar os conceitos de SAT e SMT, fornecendo o
fundamento tedrico sobre 1dgica necessario para entender como modelar problemas e passando pela
evolucdo dos principais algoritmos utilizados. Uma aplicacdo basica foi utilizada no contexto de
engenharia discutida e realizada, na qual o Z3 SMT Solver mostrou um bom desempenho na solugdo
da maioria das instancias.

Apesar da vasta literatura existente sobre o tema, a principal dificuldade encontrada esta na
codificagdo de problemas em termos de Logica Proposicional e de Primeira Ordem, a qual geralmente
requer conhecimento intimo do sistema abordado e necessitam de pericia por parte do usuario para
gerar formulas que sejam eficientes. O mesmo pode ser dito sobre as implementacdes de SAT e SMT
solvers, as quais requerem um profundo conhecimento nos métodos e abordagens mais eficientes para
possibilitar uma intera¢ao satisfatoria a nivel de uso industrial. Assim, a utilizacdo de tais técnicas ¢
mais comumente encontrada em grandes empresas, com porte suficiente para manter grupos
especializados na area, como Amazon, Intel ¢ Microsoft, ou em empresas de pequeno porte com
membros da academia como Barcelogic [7].

Deve-se enfatizar, contudo, que nem todo problema ¢é viavel de ser abordado pelos meios
expostos neste trabalho. Ndo apenas por conta da complexidade computacional (NP-Completo) mas
também porque necessita que haja um procedimento de decisdo (completo ou ndo) eficiente para os
dominios de problemas de interesse.

Contudo, trata-se de uma area madura e promissora, a qual tem ganhado cada vez mais espago
na industria e continua com um alto fluxo de publicagdes. A existéncia de competi¢cdes certamente
colaboram na divulgacdo e padronizagdo de formatos e métricas para comparar diferentes solvers a
partir de problemas reais.

Como trabalhos futuros, uma das linhas que podem ser exploradas ¢é lidar com os objetivos de
minimizar a frequéncia maxima, minimizar o nimero de frequéncias diferentes e minimizar os custos
associados com as restrigdes que ndo foram respeitadas, como se propde em [29]. Trata-se da variante
chamada MAX-SAT e MAX-SMT [44], na qual deve-se satisfazer o maior nimero de clausulas

possiveis.
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