

UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Yuri Castro Neo de Carvalho

SAT e SMT solvers: fundamentos e aplicação ao problema de

alocação de frequências

São Carlos

2019

2

 YURI CASTRO NEO DE CARVALHO

SAT E SMT SOLVERS: FUNDAMENTOS E APLICAÇÃO AO
PROBLEMA DE ALOCAÇÃO DE FREQUÊNCIAS

Trabalho de Conclusão de Curso apresentado à Escola de

Engenharia de São Carlos, da Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em Eletrônica

Orientadores:

Prof. Dr. Rogério Andrade Flauzino (EESC)

Prof. Dr. Orlando de Andrade Figueiredo (UNESP/Rio Claro)

 São Carlos

 2019

3

4

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Carvalho, Yuri Castro Neo de

 C331s SAT e SMT solvers: fundamentos e aplicação ao
problema de alocação de frequências / Yuri Castro Neo
de Carvalho; orientador Orlando de Andrade
Figueiredo; coorientador Rogério Andrade Flauzino. São
Carlos, 2019.

Monografia (Graduação em Engenharia Elétrica com

ênfase em Eletrônica) -- Escola de Engenharia de São
Carlos da Universidade de São Paulo, 2019.

1. SAT. 2. SMT. 3. Lógica. 4. Problema de

Alocação de Frequência. 5. Z3. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

6

FOLHA DE APROVACAO

Nome: Yuri Castro Neo de Carvalho

Titulo: "SAT e SMT solvers: fundamentos e aplicacao ao problema
de alocacao de frequenclas"

Trabalho de Conclusao de Curso defendido e aprovado
em \3 1 H 110~ ,

corn NOTA l,5 (~\t ,~t\.)\D 1, pela Comissao Julgadora:

Professor Assistente Doutor Orlando de Andrade Figueiredo -
Orientador - UNESP/Campus Rio Claro

Prof. Associado Rogerio Andrade Flauzino - SEUEESC/USP

Prof. Dr. Maximiliam Luppe - SEUEESC/USP

Coordenador da CoC-Engenharia Eletrica - EESC/USP:
Prof. Associado Roqerio Andrade Flauzino

8

“Contrariwise,' continued Tweedledee, 'if it was so, it might be;
 and if it were so, it would be; but as it isn't, it ain't. That's logic.”

Lewis Carroll, Through the Looking Glass

9

10

SUMÁRIO

Introdução 23
Motivação 23
Objetivos 24
Organização do trabalho 25

Fundamentos Teóricos 27
Lógica Proposicional e de Primeira Ordem 27

Introdução 27
Sintaxe da Lógica Proposicional 27
Semântica da Lógica Proposicional 28
Sintaxe da Lógica de Primeira Ordem 31
Semântica da Lógica de Primeira Ordem 32
Formas Normais 33

Procedimentos de Decisão 36
Introdução 36
Procedimento de Davis-Putnam (DPP) 37
Davis-Putnam-Logemann-Loveland (DPLL) 38
Conflict-Driven Clause Learning 40
DPLL(T) 45
Otimizações 48

Radio Link Frequency Assignment Problem (RLFAP) 50

Materiais e Métodos 54
Conjunto de Dados 54
Codificação do problema 55
Z3 SMT Solver 57

Resultados 62

Conclusões 67

Referências 69

11

12

Lista de Figuras

Figura 1 - Ilustração de Procedimentos de Decisão . 35

Figura 2 - Ilustração de uma árvore de busca feita pelo algoritmo DPLL 38

Figura 3 - Grafo de implicação parcial . 39

Figura 4 - Grafo de implicação com conflito . 40

Figura 5 - Grafo de implicação final após propagações . 41

Figura 7 - Ilustração de uma árvore de busca feita pelo algoritmo CDCL. 42

Figura 8 - Ilustração de uma rede com seus conjuntos de frequência e restrições 61

Figura 9 - Estrutura de um conjunto de dados industrial . 63

Figura 10 - Estrutura de um conjunto de dados gerado aleatoriamente 63

13

Lista de Abreviaturas e Siglas

BCP Boolean Constraint Propagation

CDCL Conflict-Driven Clause Learning

CNF Conjunctive Normal Form

DNF Disjunctive Normal Form

DPLL Procedimento de Davis-Putnam-Logeman-Loveland

DPLL(T) Procedimento de Davis-Putnam-Logeman-Loveland Procedure

 para a teoria T

DPP Procedimento de Davis-Putnam

FBF Fórmula bem formada

LIA Linear Integer Arithmetic

NNF Negation Normal Form

SAT Satisfiability / Satisfied

SMT Satisfiability Modulo Theories

UNSAT Unsatisfied

14

Lista de Símbolos

 Verdadeiro ⊤

 Falso ⊥

 Negação ¬

∧ Conjunção

∨ Disjunção

⋀ Conjunção n-ária

⋁ Disjunção n-ária

 Implicação →

 Equivalência / Bi-implicação ↔

 Satisfaz ⊨

 Não satisfaz / Falsifica ⊭

 Atribuição ↦

 Quantificador Universal ∀

 Quantificador Existencial ∃

15

Lista de Tabelas

Tabela 1 - Tabela-verdade dos conectivos proposicionais . 17

Tabela 2 - Tabela-verdade parcial da fórmula 18 p ∧ q ∨ ¬ q F : → p

Tabela 3 - Tabela-verdade completa da fórmula 18 p ∧ q ∨ ¬ q F : → p

Tabela 4 - Resultados obtidos pela verificação das instâncias GRAPH 45

Tabela 5 - Restrições e valores encontrados pelo Z3 62

16

17

Resumo

Carvalho, Y. C. N. SAT e SMT solvers: fundamentos e aplicação ao problema de alocação
de frequência. 2019. 70p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos.

O problema da satisfatibilidade booleana (Boolean Satisfiability, ou simplesmente

SAT) é decidir se existe alguma interpretação para uma dada fórmula booleana de maneira

que avaliação da fórmula seja verdadeiro. Desde seus primeiros algoritmos na década de

1960, os SAT solvers evoluíram muito, não só incorporando conceitos como aprendizado, mas

também permitindo representações mais compactas e expressivas com o uso de solvers

específicos para uma dada teoria, conhecido como Satisfiability Modulo Theories (SMT).

Antes restritos a apenas algumas centenas de variáveis, SAT e SMT solvers alcançaram

capacidade de lidar com problemas industriais, lidando com milhões de variáveis e restrições.

Possuem aplicações práticas em diversas áreas como Electronic Design Automation (EDA),

Verificação, Inteligência Artificial e Pesquisa Operacional. O presente trabalho fornece o

embasamento teórico de lógica e a evolução dos principais algoritmos até atingir o

estado-da-arte. No contexto de uma aplicação militar, existe o problema de se alocar

frequências para pares de links de rádios (RLFAP), de maneira que as interferências sejam

evitadas. Neste trabalho, o problema de RLFAP foi abordado utilizando-se com sucesso o Z3

SMT Solver da Microsoft e um conhecido conjunto de dados construído a partir de redes reais

e fornecido pelo CELAR (Centro de Eletrônica do Exército Francês).

Palavras-chave: SAT, SMT, Lógica, Problema de Alocação de Frequências, Z3.

18

19

Abstract

Carvalho, Y. C. N. SAT and SMT solvers: fundamentals and application to the problem
of frequency assignment. 2019. 70p. Monografia (Trabalho de Conclusão de Curso) - Escola
de Engenharia de São Carlos

The problem of Boolean Satisfiability (or simply SAT) is deciding if there exists an

interpretation for a given boolean formula such that all clauses are satisfied. Since its first

algorithms in the 1960s, SAT solvers have evolved a lot, incorporating not only concepts such

as learning, but also allowing for more compact and expressive representations with the use of

specific solvers for a given theory, known as Satisfiability Modulo Theories (SMT). What

once could only handle hundreds of variables, SAT and SMT solvers have reached industrial

capability, now being able to handle millions of variables and constraints. Their practical

applications range from Electronic Design Automation (EDA), Verification, Artificial

Intelligence and Operations Research. This work provides a background in logic and the

evolution of the main algorithms until reaching the state-of-the-art. In the context of a military

application, the problem of assigning frequencies to pairs of radio links (RLFAP), such that

interference is avoided, is successfully explored by using Microsoft’s Z3 SMT Solver with a

well-known real-world dataset provided by CELAR (French Army Electronics Center).

Keywords: SAT, SMT, Logic, Frequency Assignment Problem, Z3.

20

21

1.Introdução

1.1. Motivação

O problema da satisfatibilidade booleana, ou simplesmente SAT, consiste em verificar se uma

dada fórmula contendo conectivos lógicos e variáveis binárias possui alguma combinação de valores

(True/False , 0/1) para os quais todas componentes da fórmula (cláusulas) são satisfeitas. Isto é, ao

substituir os valores dessa interpretação, a fórmula avalia para True /1. Tais fórmulas podem ser

utilizadas para descrever propriedades de sistemas e, utilizando algum solver , verificar se tal sistema

se comporta de acordo com uma especificação.

Contudo, há domínios de problemas nos quais a expressividade de uma codificação binária

não é intuitiva, podendo levar a erros e perda de eficiência. Para contornar tal problema, os SAT

solvers foram expandidos para interagir com procedimentos que decidem a satisfatibilidade de uma

fórmula em relação a outras teorias como Aritmética de Inteiros. Chamados de SMT (Satisfiability

Modulo Theories) , permitem a descrição de sistemas e restrições utilizando notações mais expressivas

e intuitivas.

No campo da engenharia, SAT solvers apresentam inúmeras aplicações em problemas de

Automação de Projeto Eletrônico, sendo capaz de resolvê-los de maneira eficiente, como lista [1]:

● Equivalence Checking : provar que dois circuitos produzem a mesma saída para qualquer

entrada

● Model Checking : verifica se um modelo satisfaz as especificações, utilizado na Intel desde os

primeiros modelos Pentium, após uma falha na unidade de ponto flutuante que resultou em um

prejuízo de 475 milhões de dólares [2, 3]

● Delay Fault Testing: busca por padrões em falhas de circuitos causadas por atrasos nas portas

lógicas

● Logic Synthesis: síntese de circuitos lógicos que satisfazem uma dada especificação

● FPGA routing: busca de rotas em circuitos de uma FPGA

● Redundancy Identification: busca por partes redundantes em um circuito

Outro campo no qual SAT solvers atuam buscando inconsistências é em software :

● Verificação de drivers e controladores [4]

● Verificação de controle de acesso a recursos na plataforma de computação em nuvem Amazon

Web Services [5]

22

SAT e SMT solvers também são utilizados em problemas combinatórios, nos quais se tem um

conjunto de variáveis e restrições, buscando um modelo que faça satisfaça todas as restrições, ou pelo

menos minimize a quantidade das violadas. A otimização de material utilizado em gráfica de grande

porte [6] e o problema de agendamento de ligas esportivas profissionais européias [7] são alguns

exemplos.

 Apesar das várias aplicações, é preciso notar que SAT é um problema NP-Completo [8], para

os quais as soluções que conhecemos atualmente possuem, no pior dos casos, tempo computacional

exponencial em relação ao número de variáveis. Todavia, de acordo com [9], deve-se enfatizar que o

pior dos casos é exponencial, de maneira que há casos em domínios de problemas específicos nos

quais isso não ocorre, e são nesses casos que os SAT e SMT solvers são explorados.

A solidificação da base teórica e prática levou, a partir dos anos 2000, a um crescimento no

número de SAT e SMT solvers no meio acadêmico, o que levou a criação da SAT Competitions (2002)

[9] e SMTCOMP (2005) [10], competições nas quais são utilizados conjuntos de dados industriais

reais.

Problemas da classe NP-Completo podem ser reescritos em termos de SAT [11], permitindo

casos como o da coloração de grafos, no qual deve-se atribuir cores para os vértices a partir de um

conjunto finito, de maneira que vértices vizinhos não possuam a mesma cor. Uma variação desse caso

é o problema de se alocar frequências (ou canais) a células de uma rede de telecomunicação, de

maneira que interferências sejam evitadas ou mitigadas.

1.2. Objetivos

Este trabalho tem como objetivos:

● realizar um levantamento sobre a evolução dos principais métodos e algoritmos utilizados por

SAT e SMT solvers na literatura, fornecendo a fundamentação teórica de Lógica Proposicional

e de Primeira Ordem, necessária para modelar sistemas;

● como aplicação, é utilizado o conhecido e premiado solver Z3 da Microsoft em um problema

de alocação de frequências.

23

1.3. Organização do trabalho

O trabalho é composto por 5 capítulos. Neste foram apresentadas as motivações para o estudo

de SAT e SMT solvers a partir de suas vastas aplicações. O capítulo 2 introduz os fundamentos

teóricos da Lógica Proposicional e de Primeira Ordem, bem como os principais procedimentos de

decisão e a definição do problema de alocação de frequências. O capítulo 3 trata do conjunto de dados

(materiais) e métodos (codificação e solver utilizado). O capítulo 4 apresenta os resultados

apresentados e o 5 as conclusões.

24

25

2. Fundamentos Teóricos

2.1. Lógica Proposicional e de Primeira Ordem

2.1.1. Introdução

Em sua tese de mestrado, intitulada A Symbolic Analysis of Relay and Switching Circuits ,

Claude Shannon [12] demonstrou como era possível utilizar a álgebra de Boole para analisar circuitos

comutativos. Anos mais tarde ele foi além e forneceu uma definição para o conceito de informação, de

maneira semelhante àquela que define entropia em física, tornando possível o estudo de sua

transmissão por meios de comunicação, os quais podem apresentar interferências.

Apesar de neste trabalho abordarmos um problema de comunicação, mais especificamente

tentando evitar ou mitigar as interferências, faz-se necessário compreender a importância da análise

simbólica utilizada por Shannon.

George Boole publicou em 1847 um panfleto intitulado The Mathematical Analysis of Logic

[13], no qual ele afirma que o uso da Álgebra Simbólica não depende dos símbolos utilizados, e sim

das regras que definem a combinação dos mesmos. Portanto, é possível utilizar uma notação algébrica

para descrever as propriedades elementares de conjuntos, e a partir disso, formular problemas sobre

números, geometria , dinâmica, óptica, entre outros, o que Boole chamou de “Cálculo da Lógica”.

Dessa maneira, este capítulo se dedica a fornecer os fundamentos das lógicas Proposicional e

de Primeira Ordem, as quais serviram de base para modelar um problema de engenharia.

2.1.2. Sintaxe da Lógica Proposicional

A sintaxe de uma linguagem lógica consiste em um conjunto de símbolos e regras usadas para

combiná-los e formar fórmulas (ou “sentenças”) [14]. Os seguintes elementos compõem o alfabeto da

Lógica Proposicional :

● Símbolos de pontuação : (e)

● Valores-verdade : (verdadeiro) e (falso) ⊤ ⊥

● Variáveis proposicionais : , x , ... , x 1 2 x n

● Átomos : (variável) , , x ⊤ ⊥

● Literais : (um átomo ou sua negação) , ￢a a

● Conectivos :

(negação), ∧ (conjunção), ∨ (disjunção), → (implicação, se ... então), ↔ (se somente se ...) ￢

● Fórmulas: (um átomo ou , ￢f , f ∧ f , f ∨ f , f → f , f ↔ f a 1 1 2 1 2 1 2 1 2

conectivos aplicados à fórmulas)

26

Note que nem toda combinação de símbolos da linguagem é válida, assim damos o nome de

fórmula bem formada (fbf) àquelas que seguem as seguintes regras de formação indutiva:

1. Toda proposição isolada p é uma fbf

2. Se p é uma fbf, então também é uma fbf p¬

3. Se p e q são fbfs então são fbfs p), (p), (p) e (p) (⋁ q ⋀ q → q ↔ q

Podemos classificar os conectivos em relação a quantos argumentos o mesmo utiliza. O

conectivo de negação necessita de um único termo (unário), enquanto os outros necessitam de ¬)(

dois (binário).

Algumas fórmulas podem ser decompostas, então caso G ocorra sintaticamente em F dizemos

que G é subfórmula de F. Considera-se que toda fórmula é subfórmula de si mesma.

Ademais, é possível definir uma ordem para as subfórmulas : precede caso seja F 1 F 2 F 1

sub fórmula de . F 2

2.1.3. Semântica da Lógica Proposicional

A semântica de uma lógica é aquilo que fornece seu significado [14], que em Lógica

Proposicional é dado pelos valores constantes e . Assim, para se determinar o significado de uma ⊤ ⊥

fórmula é preciso avaliá-la dentro de um contexto, que recebe o nome de interpretação da fórmula, e

corresponde a um conjunto de valores a serem atribuídos às variáveis das fórmulas [14], únicos para

variável proposicional. Caso uma interpretação I de uma fórmula F resulte em verdadeiro, dizemos

que a mesma satisfaz a fórmula.

De maneira compacta, podemos reformular utilizando os seguintes símbolos :

 ⊨ F (a interpretação I satisfaz a fórmula f) I

 ⊭ F (a interpretação I falsif ica a fórmula f) I

Supondo uma fórmula , uma possível interpretação é: ∧ q ∨ ¬q F : p → p

 p ↦ ⊥, q ↦⊥} I : {

27

Por outro lado, se uma fórmula F é satisfazível por todas as possíveis interpretações I, diz-se

que a fórmula é válida. Podemos então omitir I e escrever apenas . Note que são características F ⊨

duais : uma fórmula F só é válida se sua negação não for satisfazível. F ￢

Uma tabela-verdade oferece a maneira mais simples de verificar se uma interpretação satisfaz

ou mesmo valida uma fórmula, e para construí-la utilizamos como ponto de partida as tabelas-verdade

dos conectivos.

 Tabela 1. Tabela-verdade dos conectivos proposicionais

p q p¬ p ⋀ q p ⋁ q p → q

 p ↔ q

 ⊥ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤

 ⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥

 ⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥

 ⊤ ⊤ ⊥ ⊤ ⊤ ⊤ ⊤

 Fonte: elaborada pelo autor

Note também que, se uma fórmula F contém n proposições, então existem possíveis 2n

interpretações. Como o número de linhas cresce exponencialmente com o de variáveis, a construção de

tabelas-verdade torna-se um método ineficiente.

Para verificar se uma interpretação satisfaz (ou não) uma fórmula, aplica-se um conjunto de

regras para manipular os símbolos apresentados anteriormente. No caso da Lógica Proposicional, o

cálculo utiliza as seguintes regras:

1. ⊨ ⊤ I

2. ⊭ ⊥ I

3. ⊨ x se e somente I[x] ⊤ (I atribui ⊤ à x) I =

4. ⊨ ¬F se e somente se I ⊭ F I 1 1

5. ⊨ F ∧ F se e somente se I ⊨ F e I ⊨ F I 1 2 1 2

6. ⊨ F ∨ F se e somente se I ⊨ F ou I ⊨ F I 1 2 1 2

28

7. ⊨ F → F se e somente se I ⊭ F ou I ⊨ F I 1 2 1 2

8. ⊨ F ↔ F se e somente se I ⊨ F e I ⊨ F , ou I ⊭ F e I ⊭ F I 1 2 1 2 1 2

Suponha a seguinte fórmula e a interpretação . p ∧ q ∨ ¬ q F : → p p ↦ ⊤, q ↦ ⊥ } I : {

Substituindo os valores fornecidos em I pode-se facilmente montar uma tabela verdade para avaliar F ,

e verificar que a mesma é satisfeita por I :

 Tabela 2. Tabela-verdade parcial da fórmula p ¬ q F : ⋀ q → p ⋁

p q q ¬ ∧ q p ∨ ¬ q p F

 ⊤ ⊥ ⊤ ⊥ ⊤ ⊤

 Fonte: elaborada pelo autor

Contudo, para determinar se F é válida é necessário completar a tabela com todos as possíveis

combinações de p e q :

 Tabela 3. Tabela-verdade completa da fórmula p ¬ q F : ⋀ q → p ⋁

p q q ¬ ∧ q p ∨ ¬ q p F

 ⊥ ⊥ ⊤ ⊥ ⊤ ⊤

 ⊥ ⊤ ⊥ ⊥ ⊥ ⊤

 ⊤ ⊥ ⊤ ⊥ ⊤ ⊤

 ⊤ ⊤ ⊥ ⊤ ⊤ ⊤

 Fonte: elaborada pelo autor

Pode-se assegurar, portanto, que F é válida.

Uma alternativa para avaliar a validade de uma fórmula consiste em tomar uma abordagem

sintática, provando-se por dedução ou refutação, a partir de regras de inferência. Regras de inferência

29

relacionam as premissas (ou antecedentes) com as deduções (ou consequentes), separando-as com uma

linha vertical, com as premissas acima da linha e as conclusões abaixo [14].

Assim, partindo da semântica dos conectivos, podemos estabelecer as seguintes regras (note

que dependendo da premissa, é necessário fazer considerar cada caso separadamente):

● e I ⊭ F
I ⊨ ¬F

I ⊨ F
I ⊭ ¬F

● e I ⊨ F ⋀ G
I ⊨ F I ⊨ G

I ⊭ F ⋀ G
I ⊭ F ∣ I ⊭ G

● e I ⊨ F ⋁ G
I ⊨ F ∣ I ⊨ G

I ⊭ F ⋀ G
I ⊭ F I ⊭ G

● e I ⊨ F → G
I ⊭ F ∣ I ⊨ G

I ⊭ F → G
I ⊨ F I ⊭ G

● e I ⊨ F ↔ G
I ⊨ F⋀ G ∣ I ⊭ F ⋁ G

I ⊭ F ↔ G
I ⊨ F ⋀ ¬G ∣ I ⊨ ¬F ⋀ G

● (contradição) ⊥
I ⊨ F I ⊭ F

Considere a seguinte fórmula . Para estabelecer a validade de F primeiro ∧ q ∨ ¬q F : p → p

assumimos que ela é inválida , ou seja, existe uma interpretação I que satisfaz a fórmula. Em ⊭ F I

seguida, utilizando as regras de inferência para construir argumentos [14] :

1. premissa ⊭ p ∧ q ∨¬q I → p

2. utilizando 1 e a semântica de ⊨ p ∧ q I →

3. utilizando 1 e a semântica de ⊭ p ∧ ¬q I →

4. utilizando 2 e a semântica de ⊨ p I ∧

5. utilizando 3 e a semântica de ⊭ p I ∨

Observando 4 e 5, pode-se concluir que temos uma contradição, e a prova pode ser encerrada,

comprovando que é, de fato, válida. F¬

2.1.4. Sintaxe da Lógica de Primeira Ordem

A Lógica de Primeira Ordem estende a Proposicional com predicados, funções e

quantificadores [14]. Com isso, ganha-se expressividade para fórmulas cujas variáveis podem ser

números inteiros, reais, arrays , vetores de bits , entre outros.

O alfabeto da Lógica de Primeira Ordem é formado por:

● Símbolos de pontuação : (e)

● Variáveis : , ,x y z

● Constantes : , ,a b c

30

● Predicados : , ,p q r

● Variáveis proposicionais (predicados de aridade 0) : , ,P Q R

● Funções: , ,f g h

● Conectivos proposicionais: ￢, ∧ , ∨, → , ↔

● Quantificadores : , ∀ ∃

● Átomos : , , p (predicados) ⊥ ⊤

● Literais : átomos ou sua negação

● Fórmulas : literais, aplicação de conectivos à fórmulas, aplicação de quantificadores à

fórmulas

As funções adicionam expressividade ao permitir o uso de domínios que não sejam apenas os

valores-verdade e . Podem variar na quantidade de argumentos que utilizam (aridade), sendo que ⊥ ⊤

as de aridade 0 podem ser vistas como constantes. Dessa maneira, pode-se trabalhar com domínios de

interesse como naturais, inteiros e reais.

Predicados, assim como as funções, variam em relação à aridade, mas quando avaliados

mapeiam valores para o domínio booleano.

As fórmulas em Lógica de Primeira Ordem também seguem uma regra indutiva na definição

de fórmulas bem formadas e expandem aquelas da Lógica Proposicional:

1. Todo literal é uma fbf l

2. A aplicação dos conectivos às fbfs é uma fbf

3. A aplicação dos quantificadores a uma fbf é uma fbf

Os quantificadores universal () e existencial () podem ser vistos como operadores que ∀ ∃

aplicam um predicado em todo um domínio. O quantificador universal somente retorna caso todos ⊤

os elementos do domínio validem o predicado, já o quantificador existencial retorna caso pelo ⊤

menos um elemento do domínio valide o predicado.

2.1.5. Semântica da Lógica de Primeira Ordem

Com a adição de funções, pode-se trabalhar com diversos domínios além do booleano, assim é

necessário incluir o domínio da interpretação. Trata-se de um conjunto não-vazio de valores como DI

inteiros, dias da semana, etc. Podendo ser finitos, como um baralho de 52 cartas, ou incontavelmente

finito como os números reais [14].

31

Assim, uma interpretação é um par formado pelo domínio e atribuições (), D ,)I : (I αI DI αI

mapeando constantes, funções e predicados para elementos, funções e predicados do domínio . DI

Considerando a fórmula , podemos ver que ela é composta de F : x + y > z → y > z − x

símbolos , os quais são escolhidos para dar uma intuição sobre o significado proposto para a , ,+ − >

fórmula. Note que a mesma pode ser reescrita como . (f (x,),) (y, (z,)) F ′ : p y z → p g x

Portanto, se considerarmos:

● DI = ℤ

● ↦ + , ↦ , > , ↦ 13 , y ↦ 42 , z ↦ 1 } αI = { + ℤ − −ℤ > ↦ ℤ x ℤ ℤ ℤ

Podemos avaliar se a interpretação I satisfaz a fórmula F avaliando recursivamente os termos

das fórmulas e utilizando as mesmas regras da Lógica Proposicional :

1. pois ⊨ x I + y > z [x] + 42 1 αI + y > z = 13ℤ ℤ ℤ >ℤ ℤ

2. pois ⊨ y I > z − x [y] 1 13 αI > z − x = 42ℤ >ℤ ℤ −ℤ ℤ

3. a partir de 1, 2 e a semântica de ⊨ F I →

No caso de fórmulas que contêm quantificadores, consideramos variantes da interpretação,

denotando por a variante de I na qual para algum , e utilizamos as ◁ { x ↦ v } J : I [x]αJ = v v ∈ DI

seguintes regras:

1. se e somente se para todo ⊨ ∀x. F I , I ◁ { x ↦ v }⊨ F v ∈ DI

2. se e somente se existe de maneira que ⊨ ∃x. F I v ∈ DI ◁ { x ↦ v }⊨ F I

Apesar da introdução dos quantificadores, iremos restringir a atenção para fragmentos não

quantificados de alguma teoria T de primeira ordem.

Uma teoria de primeira ordem é um par composto de uma assinatura , um conjunto de Σ

constantes, símbolos de funções e predicados, e o conjunto de axiomas , um conjunto de fórmulas A

nas quais só aparecem elementos presentes em , e que fornece o significado de seus símbolos [14]. Σ

Dessa maneira, pode-se definir a validade e satisfatibilidade de uma F construída a partir de Σ

em relação a uma teoria T observando se toda interpretação I que satisfaz os axiomas de T também A

satisfaz F (validade), ou se existe pelo menos uma interpretação I que satisfaz F (satisfatibilidade).

32

2.1.6. Formas Normais

Existem três formas normais (canônicas) de se representar fórmulas em Lógica Proposicional

e Lógica de Primeira Ordem, variando em relação ao modo como os conectivos são utilizados.

A Negation Normal Form (NNF) ou Forma Normal da Negação requer que apenas os

conectivos , sejam utilizados, e negações só aparecem em literais. Por exemplo ¬ , ∨ ∧

 está escrita em NNF. (¬P ∨ ¬(P ∧ Q)) F : ¬

Pode-se transformar uma fórmula F em uma equivalente F’ utilizando as seguintes regras

recursivamente, da esquerda para a direita, onde o símbolo representa equivalência [14]: ⇔

1. ¬F ¬ ⇔ F

2. ⊤ ¬ ⇔ ⊥

3. (De Morgan) (F ∧ F) ⇔ ¬F ∨ ¬F ¬ 1 2 1 2

4. (De Morgan) (F ∨ F) ⇔ ¬F ∧ ¬F ¬ 1 2 1 2

5. → F ⇔ ¬F ∨ F F 1 2 1 2

6. ↔ F ⇔ (F → F) ∧ (F → F) F 1 2 1 2 2 1

A Disjunctive Normal Form (DNF) ou Forma Normal Disjuntiva é formada por disjunções de

conjunções de literais, isto é . ⋀ l ⋁i j i,j

Por exemplo, está escrita em DNF. Q ∧ R) ∨ (Q ∧ R) ∨ (Q ∧ R) ∨ (Q ∧ R) F : (1 1 1 2 2 1 2 2

A conversão para DNF consiste em primeiro transformá-la em NNF e em seguida aplicar as

seguintes regras de equivalência, também da esquerda para a direita:

1. F ∨ F) ∧ F ⇔ (F ∧ F) ∨ (F ∧ F) (1 2 3 1 3 2 3

2. ∧ (F ∨ F) ⇔ (F ∧ F) ∨ (F ∧ F) F 1 2 3 1 2 1 3

Dualmente, temos a Conjunctive Normal Form (CNF) ou Forma Normal Conjuntiva, que

consiste em uma conjunção de disjunções , onde cada bloco de disjunção é chamado de ⋁ l ⋀i j i,j

cláusula. Por exemplo , está em CNF e e são suas Q ∨ Q) ∧ (Q ∨ Q) F : (1 2 2 3 Q ∨ Q) (1 2 Q ∨ Q) (2 3

cláusulas.

As regras de equivalência para converter uma fórmula F em CNF, utilizadas após a conversão

para NNF, são :

1. F 1 ∧ F) ∨ F ⇔ (F ∨ F) ∧ (F ∨ F) (1 2 3 1 3 2 3

2. ∨ (F ∧ F) ⇔ (F ∨ F) ∧ (F ∨ F) F 1 2 3 1 2 1 3

33

SAT/SMT solvers utilizam CNFs como formato padrão de entrada. Apesar de ser possível

converter uma fórmula arbitrária para DNF, e esse ser um formato no qual decidir a satisfatibilidade

pode ser feito em tempo linear [15], a transformação pode aumentar exponencialmente o tamanho da

fórmula.

Por outro lado, a conversão em CNF utilizando o método de transformação de Tseiting [16]

aumenta o tamanho da fórmula linearmente, através da adição de novas variáveis.

34

2.2. Procedimentos de Decisão

2.2.1. Introdução

O problema de se verificar a satisfatibilidade de uma fórmula proposicional é comumente

abreviado para SAT . Programas que implementam procedimentos para resolver esse problema são

chamados SAT solvers . Caso a fórmula utilize uma teoria T de primeira ordem, os solvers recebem o

nome de SMT (Satisfiability Modulo Theories) . Esta seção se dedica a explorar maneiras

(procedimentos) para solucionar essas duas versões do problema.

Existem algumas propriedades que gostaríamos que tais procedimentos tivessem. A primeira

(soundness) é que, dada uma fórmula arbitrária válida, o procedimento sempre retorne “válida”. A

segunda (completeness) requer que o procedimento garantidamente termine. Assim, os procedimentos

que apresentam as duas propriedades para qualquer fórmula de uma teoria T são chamados de

procedimentos de decisão. [17] aponta que existe uma confusão enraizada na literatura, já que

assume-se que um procedimento não necessariamente termine, enquanto um algoritmo sim, de modo

que faria mais sentido chamar de “algoritmo de decisão”.

Apesar de sempre buscarmos utilizar procedimentos completos, isso nem sempre é possível.

Por outro lado, em vários casos práticos, procedimentos incompletos acabam terminando [17]. A

figura abaixo, extraída de [17] ilustra um procedimento de decisão como um engenhoso e complexo

processo que, no final das contas, decide se uma fórmula (representada pelas fitas à direita) é decidível

ou não.

 Fig. 1. Ilustração de um Procedimento de Decisão

35

 Fonte: [17, p. VIII]

2.2.2. Procedimento de Davis-Putnam (DPP)

O primeiro procedimento surge em um manuscrito não publicado para a Agência Nacional de

Segurança americana (NSA) [18], no qual Davis e Putnam sugerem os seguintes princípios, assumindo

uma fórmula em CNF:

1. Regra da cláusula unitária: caso exista uma cláusula contendo um único literal (l),

remova todas as cláusulas contendo l , e todos os literais . l¬

2. Regra do literal puro: caso um literal l apareça em alguma cláusula mas a sua negação

 não, remova todas as cláusulas contendo l . l¬

3. Regra da resolução: caso duas cláusulas contenham um mesmo literal v , mas divirjam

em relação à sua polaridade, remova o literal e forme uma nova disjunção a partir dos

outros literais restantes, isto é , substitua

v ∨ l ∨ l) ∧ (¬v ∨ l ∨ l) (1 2 3 4

 por

 l ∨ l ∨ l ∨ l) (1 2 3 4

As regras devem ser aplicadas recursivamente até que não haja mais cláusulas, o que significa

que a fórmula é satisfatível, ou até derivar a cláusula vazia, no qual a fórmula é insatisfatível.

Esse procedimento, apesar de ter soundness , não é completo, e além disso a regra da resolução

acaba utilizando muita RAM quando implementada [18], uma forte restrição na época.

36

2.2.3. Davis-Putnam-Logemann-Loveland (DPLL)

Em 1962, os programadores Logemann e Loveland foram contratados por Davis e Putnam

para trabalhar no algoritmo, e forneceram sugestões mais eficientes para o cálculo da satisfatibilidade.

O resultado, comumente referenciado por DPLL, se tornou a base para solvers modernos.

A sugestão dos programadores foi restringir o uso da resolução para o caso de cláusulas

unitárias, o qual recebeu o nome de Boolean Constraint Propagation (BCP). Suponha que em uma

fórmula F exista uma cláusula unitária (l) e que também exista uma cláusula C na qual l aparece como

, assim, pode-se substituir a cláusula C pelo subconjunto que não contém . Isto é: l¬ l¬

 C[⊥]
l C[¬l]

Suponha que . Pode-se aplicar BCP nas primeiras duas P) ∧ (¬P ∨ Q) ∧ (R ∨ ¬Q ∨ S) F : (

cláusulas :

Q
P (¬P ∨ Q)

Que resulta em . Podemos continuar aplicando BCP : ′ (Q) ∧ (R ∨ ¬Q ∨ S) F :

R ∨ S
Q (R ∨ ¬Q ∨ S)

Resultando em . ′′ (R ∨ S) F :

Caso a fórmula não seja reduzida para ou , basta escolher uma variável x e aplicar BCP ⊥ ⊤

para as atribuições e . O algoritmo pode ser expresso em pseudocódigo como [19]: ↦⊤ x ↦ ⊥ x

Entrada: fórmula proposicional em CNF

Saída: “SAT” caso a fórmula for satisfatível, “UNSAT” caso contrário

 DPLL(F):
F '= BCP(F) (1)
IF F' = RETURN "SAT" (2) ⊤

 IF F ' = RETURN "UNSAT" (3) ⊥
 X = CHOOSE(VARS(F')) (4)
 RETURN DPLL(F ' ∧ X) || DPLL(F' ∧ X) (5) ¬

37

O DPLL pode ser compreendido como uma busca em uma árvore binária, cujas ramificações

são atribuições dos valores e para cada variável na fórmula. Caso uma atribuição termine em um ⊤ ⊥

modelo que não satisfaz a fórmula, o algoritmo volta um nível de decisão e atribui um outro valor. A

figura a seguir ilustra a árvore gerada durante a execução do DPLL para uma fórmula composta pelas

seguintes cláusulas :

● ¬x ∨ ¬x ∨ ¬x ∨ x) C1 = (2 3 4 5

● ¬x ∨ ¬x ∨ x) C2 = (1 5 6

● ¬x ∨ x) C3 = (5 7

● ¬x ∨ ¬x ∨ ¬x) C4 = (1 6 7

● ¬x ∨ ¬x ∨ x) C5 = (1 2 5

● ¬x ∨ ¬x ∨ x) C6 = (1 3 5

● ¬x ∨ ¬x ∨ x) C7 = (1 4 5

● ¬x ∨ x ∨ x ∨ x ∨ x ∨ ¬x) C8 = (1 2 3 4 5 6

As setas cheias representam atribuições definidas pela função CHOOSE , enquanto as setas

pontilhadas representam deduções realizadas pela função BCP . Os nós vermelhos representam ramos

da busca cujo modelo representa uma contradição, isto é, não satisfaz a fórmula. Já o nó verde

representa um modelo que de fato satisfaz a fórmula.

38

 Fig. 2 - Ilustração da execução do algoritmo DPLL .

 Fonte: Adaptado de [21]

2.2.4. Conflict-Driven Clause Learning

Em alguns casos, o algoritmo DPLL pode acabar perdendo tempo buscando em ramos que

inevitavelmente irão falhar. Isso ocorre porque, ao encontrar um conflito, nenhuma informação é

extraída e ele só desfaz um nível de decisão.

Pode-se construir um grafo a partir das decisões tomadas em cada nível e as implicações

provocadas pelo BCP, e, através dele, identificar novas implicações que ajudarão a guiar o processo de

busca, como proposto em [20].

39

Considere uma fórmula em CNF composta pelas mesmas cláusulas do exemplo anterior [21].

Como não há nenhuma cláusula unitária, não podemos utilizar BCP, assim escolhemos uma variável e

atribuímos um valor, por exemplo , e associamos ao nível de decisão 1 na forma . ↦⊤ x1 @1 x1 = ⊤

Essa decisão não gera nenhuma cláusula para utilizar BCP, assim continua-se com uma nova

atribuição . @2 x2 = ⊤

Observe que a segunda decisão faz com que a cláusula se torne unitária, implicando que a C5

variável . Após isso, a cláusula também se torna unitária, de modo que . O @2 x5 = ⊤ C2 @2 x6 = ⊤

mesmo ocorre em , implicando . Até o momento temos o seguinte grafo de implicação: C3 @2 x7 = ⊤

 Fig. 3. Grafo de implicação parcial. Adaptado de [21]

Fonte:. Adaptado de [21]

Contudo, atribuindo , e implica que a cláusula não é @1 x1 = ⊤ @2 x6 = ⊤ @2 x7 = ⊤ C4

satisfeita, ou seja, ocorreu um conflito.

 Fig. 4. Grafo de implicação com conflito.

40

 Fonte: Adaptado de [21]

 Em vez de simplesmente voltar em um nível de decisão, é possível analisar as cláusulas

envolvidas no conflito partindo-se da cláusula envolvida no mesmo, nesse caso. Assim, visitam-se C4

as variáveis implicadas via BCP no nível de decisão atual (2, no caso) mantendo dos antecedentes

(cláusulas incidentes) as variáveis atribuídas em níveis de decisão anteriores ao mais recente através

da aplicação da regra de resolução (ver seção 2.2.2), repetindo o processo até que a decisão mais

recente seja visitada [22].

Dessa maneira, aplicando resolução nas cláusulas e obtemos a cláusula intermediária: C4 C3

(¬x ∨ ¬x ∨ ¬x)1 5 6

(¬x ∨ ¬x ∨ ¬x) (¬x ∨ x)1 6 7 5 7

Em seguida. aplica-se resolução entre a cláusula intermediária e , obtendo: C2

(¬x ∨ ¬x)1 5

(¬x ∨ ¬x ∨ ¬x) (¬x ∨ ¬x ∨ x)1 5 6 1 5 6

Como só resta um literal no nível de decisão 2, e possui o nível de decisão mais alto, x1

volta-se ao nível de decisão 1, desfazendo as decisões do nível 2, e aplica-se a nova cláusula

aprendida:

 ¬x ∨ ¬x) C9 = (1 5

Como , para satisfazer segue que . A partir disso, uma série de @1 x1 = ⊤ C9 x5 = ⊥

propagações são realizadas:

41

Fig. 5. Grafo de implicação final após propagações.

Fonte: Adaptado de [21]

Assim, conclui-se que a fórmula é satisfatível com a interpretação:

 { x ↦⊤, x ↦⊥, x ↦⊥, x ↦⊥, x ↦⊥, x ↦⊥ } I : 1 2 3 4 5 6

A figura a seguir ilustra a execução do algoritmo CDCL, note como o mesmo evita

percorrer vários ramos devido ao aprendizado de cláusulas.

 Fig. 6 - Ilustração da execução do algoritmo CDCL

.

Fonte: Adaptado de [21].

42

Seja F uma fórmula proposicional em CNF, V um conjunto de tuplas associando x ,) (i vi

variáveis e valores ou . O algoritmo, em pseudocódigo é [22] : ⊤ ⊥

Entrada: fórmula proposicional F , interpretação V

Saída: SAT ou UNSAT

 CDCL(F, V):
 IF BCP(F,V) = "CONFLICT" THEN RETURN "UNSAT" (1)
 dl 0 (nível de decisão) (2) ←

 WHILE(NOT AllVariablesAssigned(F)) (3)
 DO (x,v) = PickBranchingVariable(F,V) (4)
 dl dl + 1 (5)
 v v ∪ { (x,v) }
 IF BCP(F,V) = "CONFLICT" (6)
 THEN = ConflictAnalysis(F,V) (7) β
 IF < 0 THEN RETURN "UNSAT" (8) β
 ELSE Backtrack(F,V,) (9) β
 dl (10) ← β
 RETURN "SAT" (11)

Onde AllVariablesAssigned simplesmente verifica se já foram atribuídos valores para as

variáveis e PickBranchingVariable faz o mesmo papel de Choose do DPP. ConflictAnalysis

corresponde ao processo de identificar as causas do conflito, analisando as decisões feitas a partir do

grafo de implicação, gerando novas cláusulas e o nível de decisão para o qual deve se retornar, que é

realizado por Backtrack .

43

2.2.5. DPLL(T)

Apesar dos diversos avanços nos algoritmos, resolver problemas utilizando SAT é uma tarefa

difícil, pois codificações eficientes não são triviais, o formato que os solvers recebem como entrada é

feito especialmente para eles (o que dificulta a sua interpretação por parte das pessoas), e, além disso,

a expressividade é baixa, o que induz a erros [23].

Uma solução, introduzida por [24], é estender o algoritmo DPLL (ou CDCL) para incorporar

um procedimento de decisão de uma teoria T de primeira ordem como Aritmética Linear de Inteiros,

Reais, Arrays, vetores de bits, etc.

Substituindo-se as cláusulas que contêm funções de outras teorias por variáveis

proposicionais, a fórmula é primeiro analisada por um SAT solver, e, em seguida, o solver específico

de cada teoria é invocado para verificar a consistência da cláusula de acordo com sua teoria.

Assim como no CDCL, a arquitetura DPLL(T) inclui ações como propagação (semelhante à

BCP) e análise de conflitos, a partir das quais são geradas novas cláusulas que guiam o processo de

busca.

Considere a Teoria da Aritmética Linear de Inteiros (LIA - Linear Integer Arithmetic), cuja

assinatura é composta por e cada interpretação avalia as funções no , , , , , , ℤ } ΣLIA = { + − < ≤ > ≥

sentido usual (isto é, 1+1=2, 1 < 0 = falso, etc). Os seguintes exemplos ilustram a semântica de uma

interpretação [25] : x ↦ 7, y ↦ 1 } I = {

● já que resulta em , que resulta em ⊨ x y I > + 5 y xI > I + 5 7 > 6 ⊤

● já que resulta em , que resulta em ⊭ y 0 I − x > 0 yI − xI > − 6 > 0 ⊥

Seja , o exemplo a seguir x ∨ x) ∧ (x ∨ x) ∧ ¬(x) F : (+ 1 > 0 + y > 0 < 0 + y > 4 + y > 0

ilustra uma execução do solver instanciado com DPLL(LIA) :

O primeiro passo é fazer o codificação dos literais em termos de variáveis proposicionais:

A ∨ B) ∧ (C ∨ D) ∧ (¬B) F ′ : (

Onde , , e . A = x + 1 > 0 B = x + y > 0 0 C = x < D = x + y > 4

Seguindo o que ocorre no DPLL e CDCL, o próximo passo consiste em aplicar BCP, a qual

atua no literal , unitário, implicando que . Consequentemente, a primeira cláusula B¬ @1 B = ⊥

também se torna unitária, implicando . Como não há mais nada que possa ser deduzido via @1 A = ⊤

BCP, decide-se . @2 C = ⊤

44

Uma vez decidido o valor proposicional, é preciso verificar a satisfatibilidade das atribuições

até o momento em relação à LIA com o contexto até o momento, o qual identifica que : e x + 1 > 0

 não podem ser verdadeiros ao mesmo tempo. Portanto, adiciona-se a cláusula à 0 x < ¬A ∨ ¬C) (

fórmula e se reinicia o processo, já que só houve uma decisão. Assim, temos:

A ∨ B) ∧ (C ∨ D) ∧ (¬B) ∧ (¬A ∨ ¬C) F ′′ : (

Novamente se aplica BCP, deduzindo que e . Em vez de cair no mesmo @1 B = ⊥ @1 A = ⊤

erro, agora a nova cláusula se torna unitária, implicando . A cláusula também se @1 C = ⊥ C ∨ D) (

torna unitária, implicando . Resta agora verificar a satisfatibilidade da fórmula em relação à @1 D = ⊤

LIA .

Dessa vez são os literais e que não podem ser verdadeiros ao mesmo (x) ¬ + y > 0 x + y > 4

tempo, o que implica em uma nova cláusula . Contudo, como só houve trabalho feito via ¬B ∨ D) (

BCP e nenhuma decisão foi tomada, não havendo outro nível de decisão para o qual retornar,

conclui-se que fórmula é LIA-UNSAT .

O procedimento de decisão utilizado para verificar a satisfatibilidade de uma fórmula- LIA é

uma variação do algoritmo Simplex , o qual não necessita de uma função objetivo por não se tratar de

um problema de otimização e, através da adição de novas variáveis, transforma o sistema de entrada

numa forma normal composta de [17]:

● Igualdades da forma: x . . . a x 0 a1 1 + + n n =

● Limites superiores e inferiores: (opcionais) li ≤ x i ≤ ui

Note que qualquer restrição linear do tipo , onde pode ser convertida L ⊙ R { , , } ⊙ ∈ ≤ ≥ =

para a forma mencionada.

 Assim como no método Simplex comum, constrói-se um tableau para verificar a

satisfatibilidade dos limites impostos e manipular operações de pivotação. As variáveis originais do

sistema são chamadas de básicas, enquanto aquelas adicionadas durante a transformação são chamadas

de não-básicas.

O algoritmo pode então ser visto como [17]:

45

Entrada: um sistema linear de restrições S

Saída: SAT ou UNSAT

1. Transformar o sistema para a forma normal

 e xA = 0 l s ⋀i = 1...m i ≤ i ≤ lm

onde são as variáveis não-básicas s ... si m

2. Construir o tableau de A

3. Determinar uma ordem fixa das variáveis

4. Caso nenhuma variável básica viole os limites, retorna SAT . Caso contrário escolhe-se a

primeira variável básica que apresenta violação xi

5. Busca-se uma variável não-básica para pivotar com , caso não exista, retorna UNSAT xj xi

6. Pivota-se e xi xj

7. Ir para o passo (4)

46

2.2.6. Otimizações

Além do aumento na velocidade de busca, fornecido pelo algoritmo CDCL, outras abordagens

e sugestões foram feitas no início dos anos 2000 para tornar os solvers mais competitivos. As

otimizações partem da observação que os solvers gastam, na prática, cerca de 90% do tempo efetuando

BCP [26].

A partir disso, duas melhorias foram propostas, uma no campo da estrutura de dados utilizada

pelos solvers e a utilização de heurística no momento de se escolher uma variável à qual nenhum valor

ainda foi atribuído.

No campo da estrutura de dados, a técnica conhecida como Two-Watched Literals [26] propõe

utilizar um contador por cláusula que informa a quantos literais atribuiu-se o valor . Assim, se uma ⊥

cláusula contém N literais, visita-se a mesma apenas quando o número de literais cair de N-2 para ⊥

N-1 . Para isso, escolhem-se dois literais (ainda não atribuídos valor), garantindo que até que um ⊥

deles seja atribuído o valor , não existem mais do que N-2 literais , ⊥ ⊥

Essa técnica torna o processo de se reatribuir valores à variáveis mais rápido, pois os literais

observados não precisam ser modificados quando ocorre uma mudança do nível de decisão atual para

um anterior (backtrack) .

Já no campo da heurística, a técnica conhecida como VSIDS (Variable State Independent

Decay Sum) propõe manter um contador para cada literal de cada polaridade, inicializando em 0.

Quando uma cláusula é adicionada, o contador de cada um dos literais presente nela é incrementado e,

no momento de se decidir o próximo literal, escolhe-se aquele com maior valor, enquanto

periodicamente se divide os contadores por uma constante. A idéia é tentar satisfazer os conflitos mais

recentes, especialmente porque, em problemas difíceis, as cláusulas conflitantes dominam o problema

em número de literais.

Além disso, eventuais deleções de cláusulas (para evitar sobrecarga de memória) e

reinicializações (mantendo parte das informações adquiridas previamente) também se mostraram boas

estratégias para desenvolver solvers mais eficientes.

47

48

2.3. Radio Link Frequency Assignment Problem (RLFAP)

Segundo [27], o problema de alocação de frequências (Frequency Assignment Problem, FAP)

ocorre em diferentes tipos de comunicações sem-fio, as quais têm que lidar com o fato de que o

espectro de frequências é um recurso finito. Portanto, faz-se necessário balancear o reúso do espectro

sem incorrer em perda de qualidade de comunicação por conta de interferências.

Segundo [28], tais interferências são influenciadas por:

● Potência dos transmissores

● Sensitividade dos receptores

● Ganho das antenas

● Distância

● Condições climáticas

● Frequências utilizadas

○ Restrição co-canal

○ Restrição de canal adjacente

○ Restrição co-local

Consideremos que, com exceção das frequências utilizadas, a maioria dos fatores não possam

ser influenciados, focaremos a análise do problema nas restrições às escolhas de frequências utilizadas.

A restrição de co-canal ocorre quando não se pode alocar um mesmo canal para certos pares

de células ao mesmo tempo, enquanto na restrição de canal adjacente, canais muito próximos não

devem ser alocados simultaneamente. Finalmente, a restrição co-local estabelece que deve haver uma

separação mínima entre dois canais alocados em uma mesma célula.

Tais restrições são utilizadas no contexto de uso militar de rádios de comunicação [29], no

qual o FAP consiste em um conjunto X de links de rádio, para os quais, a cada deve-se , i ∈ X

escolher uma frequência a partir de um conjunto finito disponível para cada transmissor. Assim, f i Di

para cada par de links as restrições podem ser dos tipos: i,)(j

f f ∣ ∣ i − j > dij

f f ∣ ∣ i − j = δij

Onde representa uma distância mínima para se evitar interferência co-local, e é definida dij δij

por restrições tecnológicas dos transmissores.

 Dadas as restrições, pode-se investigar:

1. A viabilidade de se respeitar todas as restrições

2. Minimizar a máxima frequência utilizada, caso seja viável respeitar todas as restrições

49

3. Minimizar o número de frequências diferentes usadas, caso seja viável respeitar todas as

restrições

4. Maximizar a viabilidade, atribuindo custos às violações de restrições, os quais devem ser

minimizados

A figura abaixo ilustra uma rede com 6 antenas [30], cada uma representada com seu

identificador e seu conjunto de frequências (embaixo). Os aparelhos celulares representam os links

com os canais alocados e os raios entre as antes indica a distância mínima de separação para as

frequências usadas por duas antenas.

 Fig. 7. Ilustração de uma rede com seus conjuntos de frequência e restrições

Fonte: [30].

Esse é o contexto que serve de base para os experimentos apresentados nos capítulos

seguintes, deixando claro desde já que o trabalho se ateve especialmente no item 1 acima, a satisfação

de todas as restrições.

50

51

3. Materiais e Métodos

3.1. Conjunto de Dados

O CELAR (Centro de Eletrônica do Exército Francês) construiu um conjunto de dados para o

problema RLFAP a partir de dados de redes reais, como parte do projeto EUCLID CALMA

(Combinatorial Algorithms for Military Applications) [29], e pode ser encontrado em [31].

O conjunto é composto por três instâncias nas quais são fornecidas as variáveis, o conjunto do

domínio das frequências, as restrições na forma ou , bem como os f ∣ d ∣ i − f j > ij f ∣ δ ∣ i − f j = ij

critérios a serem otimizados e os custos para cada violação:

● CELAR: 11 instâncias

● GRAPH: ou Generating Radio link Assignment Problems Heuristically [32], são 14 instâncias

geradas a partir das características presentes na CELAR como os domínios das frequências e

proporção de links e restrições

● SUBCELAR : 5 sub-instâncias extraídas a partir da instância CELAR 6, possui tamanho

reduzido mas igual dificuldade, sendo ideal para benchmarking

Cada instância possui quatro arquivos:

● var.txt : associa as variáveis (links) a seus domínios;

● dom.txt : fornece a definição dos domínios;

● ctr.txt : fornece as restrições e os índices de mobilidade, que vão de 0 a 4, onde 0 significa que

a restrição deve ser respeitada, enquanto as mobilidades 1-4 apresentam um aumento dos

custos;

● cst.txt : fornece os custos associados a cada índice de mobilidade.

52

3.2. Codificação do problema

A codificação utilizada foi baseada em [33], e pode ser quebrada em duas partes:

● domínios, isso é, codificar que f i ∈ Di

● restrições ou f ∣ d ∣ i − f j > ij f ∣ δ ∣ i − f j = ij

Os domínios podem ser vistos como uma união disjunta de quatro subdomínios:

2 14m ∣ 1 ≤ m ≤ 11} {2 14m ∣ 18 ≤ m ≤ 28} { + +

 8 14m ∣ 29 ≤ m ≤ 39} {8 14m ∣ 46 ≤ m ≤ 56} { + +

Assim, foram utilizadas duas variáveis, uma proposicional , para representar se é ti f i

ou não, e um número inteiro para representar , obtendo : mod 14 2 mi mod 14 f i

 → (1 ≤ m ≤ 11 ∨ 18 ≤ m ≤ 28) ti i i

 t → (29 ≤ m ≤ 39 ∨ 46 ≤ m ≤ 56) ¬ i i i

A codificação das restrições é feita analisando, para cada caso, se e são ou ti tj mod 14 2

não. Supondo que seja e que não, temos: ti tj

 2 14 m 8 14 m ∣ k ∣ + i − − j >

que após manipular se torna:

t ∧ ¬t) → (m − m ≥ ⌊(k) 14⌋ 1 ∨ m − m ≤ ⌈() 14)⌉ 1) (i j i j + 6 / + i j − k + 6 / −

 Fazendo o mesmo para o caso , obtemos todos os outros casos: f ∣ δ ∣ i − f j = ij

¬t ∧ t) → (m − m ≥ ⌊(k) 14⌋ 1 ∨ m − m ≤ ⌈() 14)⌉ 1) (i j i j − 6 / + i j − k − 6 / −

t ∧ t) → (m − m ≥ ⌊ k 14 ⌋ 1 ∨ m − m ≤ ⌈ 14 ⌉ 1) (i j i j / + i j − k/ −

 ¬t ∧ ¬t) → (m − m ≥ ⌊ k 14⌋ 1 ∨ m − m ≤ ⌈ 14 ⌉ 1) (i j i j / + i j − k/ −

t ∧ ¬t) → (m − m ⌊(k) 14⌋ 1 ∨ m − m ⌈() 14)⌉ 1) (i j i j = + 6 / + i j = − k + 6 / −

53

¬t ∧ t) → (m − m ⌊(k) 14 ⌋ 1 ∨ m − m ⌈() 14 ⌉ 1) (i j i j = − 6 / + i j = − k − 6 / −

t ∧ t) → (m − m ⌊ k 14 ⌋ 1 ∨ m − m ⌈ 14 ⌉ 1) (i j i j = / + i j = − k/ −

t ∧ t) → (m − m ⌊ k 14 ⌋ 1 ∨ m − m ⌈ 14 ⌉ 1) (i j i j = / + i j = − k/ −

54

3.3. Z3 SMT Solver

O Z3 [34], da Microsoft Research , é um solver condecorado [35, 36], que se tornou

open-source em 2015, e suporta as principais teorias, como Aritmética de Inteiros, Reais, Funções

Não-Interpretadas, Arrays , Vetores de bits , tipos de dados algébricos, entre outros, podendo ser obtido

em [37].

 Internamente na Microsoft, o Z3 é utilizado na verificação de software como drivers para o

sistema operacional Windows e na geração de casos de testes[38]. No campo da biologia, o Z3 é

utilizado na análise e síntese de redes regulatórias genéticas [39]. De maneira semelhante, ele também

é usado na análise e síntese de compostos químicos [40].

Apesar de escrito em C++ , o solver pode ser utilizado a partir de diversas linguagens como

Python, C, Java, C# e OCaml .

Neste trabalho, utilizou-se a interface em Python em execução em um sistema Intel Core

i7-7700HQ @ 2.80 GHz e 16 GB de memória RAM , com Sistema Operacional Ubuntu 18.04.

O Z3 oferece duas classes básicas de solvers . Um Solver pode ser instanciado com uma lógica

(QF_LIA - Quantifier-Free Linear Arithmetic) ou não (ficando o Z3 responsável por identificar a

melhor opção). A outra classe é a Optimize , na qual pode-se incluir pesos para as cláusulas

adicionadas, as quais serão automaticamente minimizadas.

Para adicionar cláusulas, basta usar os métodos assert e assert_soft , o qual recebe um peso

(por padrão é 1) e um id , o qual pode ser utilizado para agrupar ou separar objetivos. Uma vez

adicionadas as cláusulas, utilizam-se os métodos check e model para, respectivamente, verificar se as

fórmula final é satisfatível (ou não), e obter o modelo encontrado

As variáveis são instanciadas a partir de funções como Bool , Int , Real, Array , etc, as quais

recebem um nome como argumento.

Os exemplos que seguem foram retirados do tutorial do Z3 [41] e de [42], sendo o último uma

extensa e diversa coleção de problemas discutidos em detalhe.

 Suponha o seguinte conjunto de equações lineares:

1. x 2y 1 3 + − z =

2. x 2y 4z 2 − + = − 2

3. y z − x + 2
1 − = 0

Pode-se facilmente codificar o problema usando Z3:

from z3 import *
x = Real('x')
y = Real('y')
z = Real('z')
s = Solver ()

55

s.add (3 *x + 2 *y - z == 1)
s.add (2 *x - 2 *y + 4 *z == -2)
s.add(-x + 0.5 *y - z == 0)
print (s.check())
print (s.model())

O qual, após executado, retorna:

sat
[z = -2 , y = -2 , x = 1]

Para o próximo exemplo, é bom recordar que, para verificar se uma fórmula F é válida, basta

provar sua negação é inválida. Assim, podemos usar o Z3 para provar o teorema de De Morgan. F¬

from z3 import *

s = Solver()
a,b = Bools('a b')
de_morgan = And(a,b) == Not(Or(Not(a),Not(b)))

s.add(Not(de_morgan))
print(s.check())

Que retorna:

unsat

Suponha agora que queremos otimizar a soma de dois números inteiros, x e y , com as

restrições de que e : x < 2 y − x < 1

from z3 import *

s = Optimize()
x,y = Ints('x y')

s.add(x < 2)
s.add(y - x < 1)

s.maximize(x+y)

print(s.check())

print(s.model())
print(s.model().evaluate(x + y))

56

Na última linha, utilizamos o próprio modelo gerado pelo solver para avaliar a função custo,

que nos retorna:

sat
[y = 1 , x = 1]
2

Retornando ao RLFAP, suponha que estejamos iterando sobre uma lista de restrições

(presentes nos arquivos ctr.txt), na qual cada restrição possui os links (first_var) e (second_var) , f i f j

o operador (operator) utilizado (ou), bem como a distância (deviation) e os custos (costs). > =

Assumindo que as restrições com operador (=) não possuem mobilidade, pode-se codificar o problema

da seguinte maneira:

from z3 import *
from math import ceil, floor

s = Optimize()

for ctr in Ctrs:
 # declarando as variáveis
 ti = Bool('t_%d' % ctr.first_var)
 tj = Bool('t_%d' % ctr.second_var)
 mi = Int('m_%d' % ctr.first_var)
 mj = Int('m_%d' % ctr.second_var)
 k = ctr.deviation

 # codificando o domínio de Fi
 # ti → (1 ≤ mi ≤ 11 ∨ 18 ≤ mi ≤ 28)
 # ¬ti → (29 ≤ mi ≤ 39 ∨ 46 ≤ mi ≤ 56)
 s.add(Implies(
 ti,
 Or(And(1 <= mi, mi <= 11), And(18 <= mi, mi <= 28)))
)

 s.add(Implies(
 Not(ti), Or(And(29 <= mi, mi <= 39), And(46 <= mi, mi <= 56)))
)

 # codificando o domínio de Fj
 s.add(Implies(
 tj,

57

 Or(And(1 <= mj, mj <= 11), And(18 <=m j,mj <= 28)))
)

 s.add(Implies(
 Not(tj),
 Or(And(29 <= mj, mj <= 39), And(46 <= mj, mj <= 56)))
)

Note que utilizamos o método add para adicionar cláusulas que devem ser

respeitadas (hard constraints). Já para adicionar as restrições e seus custos:

if ctr.operator == '>' :

 weight = costs[ctr.weight]

 # (ti ∧ ¬tj)
 s.add_soft(
 Implies(And(ti, Not(tj)), Or(mi - mj >= math.floor((k+ 6)/ 14) +
1 ,
 mi - mj <= math.ceil((-k+ 6)/ 14) -1)),
 weight
)
 # (¬ti ∧ tj)
 s.add_soft(
 Implies(And(Not(ti), tj), Or(mi - mj >= math.floor((k -6)/ 14) + 1 ,
 mi - mj <= math.ceil((-k -6)/ 14) -
1)),
 weight
)

 # (ti ∧ tj)
 s.add_soft(
 Implies(And(ti,tj) , Or(mi - mj >= math.floor(k/ 14) + 1 ,
 mi - mj <= math.ceil(-k/ 14) -1)),
 weight
)

 # (¬ti ∧ ¬tj)
 s.add_soft(
 Implies(And(Not(ti), Not(tj)), Or(mi - mj >= math.floor(k/ 14) + 1 ,
 mi - mj <= math.ceil(-k/ 14) -1)),
 weight)

58

59

4. Resultados

O Z3 foi utilizado com todas as instâncias do grupo GRAPH, e seus resultados são expostos na

tabela a seguir, os dados sobres as instâncias são encontrados em [29].

Tabela 4 - Resultados obtidos pela verificação das instâncias GRAPH

Instância No. de
variáveis

No. de
restrições

Realizável? Resposta Z3 Tempo (s)

GRAPH-1 200 1134 Sim SAT 0,157

GRAPH-2 400 2245 Sim SAT 0,924

GRAPH-3 200 1134 Sim SAT 1,274

GRAPH-4 400 2244 Sim SAT 87,94

GRAPH-5 200 1134 Não UNSAT 0,056

GRAPH-6 400 2170 Não UNSAT 0,127

GRAPH-7 400 2170 Não UNSAT 0,118

GRAPH-8 680 3757 Sim SAT 10,601

GRAPH-9 916 5246 Sim SAT 99,081

GRAPH-10 680 3907 Sim SAT 65,958

GRAPH-11 680 3757 Não UNSAT 0,304

GRAPH-12 680 4017 Não UNSAT 0,404

GRAPH-13 916 5273 Não UNSAT 0,631

GRAPH-14 916 4638 Sim SAT 6,848

Fonte: Elaborada pelo autor, adaptado de [29]

Pode-se notar que em muitos casos, o Z3 consegue definir a satisfatibilidade de maneira

extremamente rápida, no resto ainda apresenta um bom desempenho, dada a dificuldade intrínseca do

problema em questão.

A figura a seguir apresenta uma parte das restrições presentes na instância GRAPH-1 ,

levando-se em consideração apenas a variável de número 1, e ilustra suas conexões com outras

60

variáveis. É importante esclarecer que trata-se apenas de uma ilustração, não apresentando nenhuma

informação relativa a disposição topológica da rede em questão.

 Fig. 8 - Ilustração das restrições relativas à variável 1 da instância GRAPH-1

Fonte: Elaborada pelo autor, adaptada de [29].

A execução pelo Z3 resultou em e , o que significa que a frequência alocada t1 = ⊥ 9m1 = 4

foi . A tabela a seguir indica os valores encontrados para as variáveis ilustradas na figura 94 Hz f 1 = 6

anterior, mostrando que de fato as restrições foram respeitadas.

61

 Tabela 5 - Restrições e valores encontrados pelo Z3

Variável tj mj Tipo da restrição d i j f j ∣ ∣ f 1 − f j

2 ⊥ 32 = 238 456 238

38 ⊤ 22 > 7 310 384

41 ⊥ 35 > 5 498 196

46 ⊥ 29 > 7 414 280

113 ⊥ 36 > 9 512 182

198 ⊤ 19 > 46 268 426

199 ⊥ 38 > 19 540 54

200 ⊥ 56 > 21 792 98

 Fonte: Elaborada pelo autor.

Como o aumento do número de variáveis aumenta exponencialmente o espaço de soluções a

ser percorrido, é de se esperar que o tempo aumente muito. Contudo, na prática, conjuntos de dados

reais envolvidos em casos industriais costumam apresentar uma estrutura que é explorada pelo

maquinário dos solvers .

As figuras a seguir, provenientes da competição SAT 2013 [43] , ilustram essa diferença

estrutural presente em conjuntos de dados de casos industriais, em contraste com conjuntos de dados

gerados aleatoriamente.

62

 Fig. 9 - Estrutura de um conjunto de dados industrial [43].

 Fig. 10 - Estrutura de um conjunto de dados gerado aleatoriamente [43].

63

64

5. Conclusões

O presente trabalho teve como objetivo explorar os conceitos de SAT e SMT, fornecendo o

fundamento teórico sobre lógica necessário para entender como modelar problemas e passando pela

evolução dos principais algoritmos utilizados. Uma aplicação básica foi utilizada no contexto de

engenharia discutida e realizada, na qual o Z3 SMT Solver mostrou um bom desempenho na solução

da maioria das instâncias.

Apesar da vasta literatura existente sobre o tema, a principal dificuldade encontrada está na

codificação de problemas em termos de Lógica Proposicional e de Primeira Ordem, a qual geralmente

requer conhecimento íntimo do sistema abordado e necessitam de perícia por parte do usuário para

gerar fórmulas que sejam eficientes. O mesmo pode ser dito sobre as implementações de SAT e SMT

solvers , as quais requerem um profundo conhecimento nos métodos e abordagens mais eficientes para

possibilitar uma interação satisfatória a nível de uso industrial. Assim, a utilização de tais técnicas é

mais comumente encontrada em grandes empresas, com porte suficiente para manter grupos

especializados na área, como Amazon , Intel e Microsoft , ou em empresas de pequeno porte com

membros da academia como Barcelogic [7].

Deve-se enfatizar, contudo, que nem todo problema é viável de ser abordado pelos meios

expostos neste trabalho. Não apenas por conta da complexidade computacional (NP-Completo) mas

também porque necessita que haja um procedimento de decisão (completo ou não) eficiente para os

domínios de problemas de interesse.

Contudo, trata-se de uma área madura e promissora, a qual tem ganhado cada vez mais espaço

na indústria e continua com um alto fluxo de publicações. A existência de competições certamente

colaboram na divulgação e padronização de formatos e métricas para comparar diferentes solvers a

partir de problemas reais.

Como trabalhos futuros, uma das linhas que podem ser exploradas é lidar com os objetivos de

minimizar a frequência máxima, minimizar o número de frequências diferentes e minimizar os custos

associados com as restrições que não foram respeitadas, como se propõe em [29]. Trata-se da variante

chamada MAX-SAT e MAX-SMT [44], na qual deve-se satisfazer o maior número de cláusulas

possíveis.

65

66

6. Referências

[1] ROIG, I. A. Solving Hard Industrial Combinatorial Problems with SAT . 2013. 160 p.

Ph.D. Thesis - Technical University of Catalonia, Barcelona, España, 2013. Disponível em:

< https://pdfs.semanticscholar.org/a13b/6a182357eca93ffbeff8abccb2208a76859e.pdf >. Acesso em: 3

nov. 2019.

[2] KAIVOLA, R. et al. Replacing Testing with Formal Verification in Intel ® CoreTM i7

Processor Execution Engine Validation. In: Bouajjani A., Maler O. (eds) Computer Aided

Verification. CAV 2009 . Lecture Notes in Computer Science, vol 5643. Springer, Berlin, Heidelberg,

2009. Disponível em: < https://is.muni.cz/el/1433/jaro2010/IA159/um/intel.pdf >. Acesso: em 3 mai.

2019.

[3] NICELY, T. Pentium FDIV flaw FAQ . < http://www.trnicely.net/pentbug/pentbug.html >.

Acesso em: 3 nov. 2019.

[4] BJORNER, N. SMT Solvers for Testing, Program Analysis and Verification at Microsoft.

11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing ,

Timisoara, 2009, p.15. Disponível em:

< http://barbie.uta.edu/~xlren/Z3/SMTsolversforTesting,Program%20AnalysisandVerificationatMicros

oft.pdf >. Acesso em: 3 nov. 2019.

[5] BACKES, J. et al. Semantic-based Automated Reasoning for AWS Access Policies using

SMT. 2018 Formal Methods in Computer Aided Design (FMCAD) , Austin, Texas, 2018, p.1-9 .

Disponível em: < https://ieeexplore.ieee.org/document/8602994 >. Acesso em: 3 nov. 2019.

[6] EIT DIGITAL. Automated Reasoning: satisfiability . Acesso em: 3 nov. 2019.

< https://www.coursera.org/learn/automated-reasoning-sat/ >.

[7] BARCELOGIC. Barcelogic - Efficiency, simplified . < https://barcelogic.com/en/ >. Acesso

em: 3 nov. 2019.

[8] COOK, S. A. The complexity of theorem-proving procedures. Proceedings of the third

annual ACM symposium on Theory of computing , 1971. p.151-158. Disponível em:

< https://www.cs.toronto.edu/~sacook/homepage/1971.pdf >. Acesso em: 3 nov. 2019.

[9] SAT COMPETITIONS. The International SAT Competitions Web Page .

< http://www.satcompetition.org >. Acesso em: 3 nov. 2019.

[10] SMT-COMP. SMT-COMP 2019 . < https://smt-comp.github.io/ >. Acesso em: 3 nov. 2019.

[11] MALIK, S.; ZHANG, L. Boolean Satisfiability From Theoretical Hardness to Practical

Success. Communications of the ACM , v. 52, n. 8, p. 76-82, August., 2009. Disponível em:

< http://www.cs.toronto.edu/~chechik/courses18/csc410/p76-malik.pdf >. Acesso em: 3 mar. 2019.

67

[12] SHANNON, C. E. A symbolic analysis of relay and switching circuits . 1937. 72 p.

M.S. Thesis - Dept. of Elect. Eng, MIT, Cambridge, MA, USA, 1937. Disponível em:

< https://dspace.mit.edu/handle/1721.1/11173 >. Acesso em: 3 nov. 2019.

[13] BOOLE, G. The Mathematical Analysis of Logic, Being an Essay towards a Calculus

of Deductive Reasoning, Londres, Barclay, & Macmillan, 1847. Disponível em: < http://www.

gutenberg.org/ebooks/36884 >. Acesso em: 3 nov. 2019.

 [14] BRADLEY, A. R.; MANNA, Z. The Calculus of Computation: Decision Procedures

with Applications to Verification , 1st ed. Heidelberg: Springer, 2007.

[15] GOMES, C. P.; KAUTZ, H.; SABHARWAL, A.; SELMAN, B. Satisfiability Solvers.

In: Handbook of Knowledge Representation , 1st ed., F. van Harmelen, V. Lifschitz and B. Porter,

Eds. Elsevier Science, 2008, p. 89-122.

[16] PRESTWITCH, S.CNF Encodings. In: BIERE, A.; HEULE, M.; VAN MAREEN, H.;

WALSH, T. Handbook of satisfiability . 1st. ed. Amsterdam. IOS Press, 2009, p. 75-93.

[17] KROENING, D.; STRICHMAN, O. Decision Procedures: An Algorithmic Point of

View. 1st ed. Springer-Verlag, 2008.

 [18] FRANCO, J; MARTIN, J. A History of Satisfiability. In: BIERE, A.; HEULE, M.; VAN

MAREEN, H.; WALSH, T. Handbook of satisfiability . 1st. ed. Amsterdam. IOS Press, 2009, p. 3-55.

[19] TORLAK, E. A Primer on Boolean Satisfiability . Acesso em: 5 out. 2019. < https://homes

.cs.washington.edu/~emina/blog/2017-06-23-a-primer-on-sat.html >

[20] MARQUES-SILVA, J. P.; SAKALLAH, K. A. GRASP: A new search algorithm for

satisfiability. International Conference on Computer Aided Design , p. 220-227, Nov. 1996.

Disponível em: < https://www.cs.cmu.edu/~emc/15-820A/reading/grasp_iccad96.pdf >. Acesso em: 6

mai. 2019.

[21] GRITMAN, A.; HA, A.; QUACH, T.; WENGER, D. Conflict Driven Clause Learning .

< https://cse442-17f.github.io/Conflict-Driven-Clause-Learning/ >. Acesso em: 17 set. 2019.

[22] MARQUES-SILVA, J.; LYNCE, I.; MALIK, S. Conflict-Driven Clause Learning SAT

Solvers. n: BIERE, A.; HEULE, M.; VAN MAREEN, H.; WALSH, T. Handbook of satisfiability .

1st. ed. Amsterdam. IOS Press, 2009, p. 131-150.

[23] BERRE, D. L. Introduction to SAT - History, Algorithms, Practical considerations .

203 slides. Disponível em: < http://satsmt2014.forsyte.at/files/2014/07/SAT-introduction.pdf >. Acesso

em: 29 out. 2019.

[24] NIEUWENHUIS, R.; OLIVERAS, A.; TINELLI, C. Abstract DPLL and Abstract DPLL

Modulo Theories. In: BAADER F.; VORONKOV, A. (Eds) Logic for Programming, Artificial

Intelligence, and Reasoning. LPAR 2005 . Lecture Notes in Computer Science, vol 3452. Springer,

68

Berlin, Heidelberg. Disponível em < http://web.stanford.edu/class/cs357/NOT04.pdf >. Acesso em: 4

nov. 2009.

[25] REYNOLDS, A. SMT Solvers for Verification and Synthesis . 275 slides. Disponível

em: < https://homepage.cs.uiowa.edu/~ajreynol/VTSA2017/ >. Acesso em: 10 jul. 2019.

[26] MOSKEWICZ, N. M. et al. Chaff: engineering an efficient SAT solver. Proceedings of

the 38th Design Automation Conference , 2001. p.530-535. Disponível em: < https://www.princeton.

edu/~chaff/publication/DAC2001v56.pdf >. Acesso em: 2 set. 2019

[27] KOSTER, A. M. C. Frequency assignment : models and algorithms . Universiteit

Maastricht, 1999. Disponível em: < https://cris.maastrichtuniversity.nl/portal/files/1339014/guid-

1dc820d2-1556-4f4e-8024-80a9dea10058-ASSET1.0.pdf >. Acesso em: 2 set. 2019.

 [28] AUDHYA, G.K. et al. A survey on the channel assignment problem in wireless

networks. Wireless Communication and Mobile Computing , vol 11, n.5, p.583-609, Mai. 2011.

Disponível em: < https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcm.898 >. Acesso em: 12 set.

2019.

 [29] CABON, B.; GIVRY, S.; LOBJOIS, L.; SCHIEX, T.; WARNERS, J. P. Radio link

frequency assignment, Constraints , v. 4, n. 1, p. 79-89, 1999. Disponível em: < http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.14.8545&rep=rep1&type=pdf >. Acesso em: 5 jun. 2019.

[30] DIAS, B. R. C.; RODRIGUES, R. de F.; MACULAN FILHO, N. Alocação de canais em

redes celulares sem fio: algoritmos e modelos teóricos em grafos e escalonamento. Anais do XLIV

Simpósio Brasileiro de Pesquisa Operacional , 2012. Disponível em: < http://www.din.uem.br/

sbpo/sbpo2012/pdf/arq0007.pdf >. Acesso em: 5 jun. 2019.

[31] SCHIEX, T. The CELAR Radio Link Frequency Assignment Problems . < http://www7.

inra.fr/mia/T/schiex/Doc/rlfap.shtml >. Acesso em: 12 jun. 2019.

[32] BENTHEM, H. P. V. GRAPH - Generating Radio link frequency Assignment

Problems Heuristically , Delft University of Technology, 1995. Disponível em: < https://www.

researchgate.net/publication/2757325_GRAPH_-_Generating_Radio_link_frequency_Assignment_Pr

oblems_Heuristically >. Acesso em: 11 jun. 2019.

[33] NIEUWENHUIS, R.; OLIVERAS, A. On SAT Modulo Theories and Optimization. In:

BIERE, A.; GOMES, C.P. (Eds) Theory and Applications of Satisfiability Testing - SAT 2006 . SAT

2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. Disponível em:

< https://www.cs.upc.edu/~oliveras/espai/papers/sat06.pdf >

[34] DE MOURA, L.; BJORNER, N. Z3: An Efficient SMT Solver. Tools and Algorithms

for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol

4963. Springer, Berlin, Heidelberg, 2008. Disponível em: < https://www.researchgate.net/publication/

225142568_Z3_an_efficient_SMT_solver >. Acesso em: 19 out. 2019.

69

[35] MICROSOFT. Z3 wins 2015 ACM SIGPLAN Award . < https://www.microsoft.com/

en-us/research/blog/z3-wins-2015-acm-sigplan-award/ >. Acesso em: 3 nov. 2019.

[36] DE MOURA, L.; BJORNER, N. The inner magic behind the Z3 theorem prover. < https:/

/www.microsoft.com/en-us/research/blog/the-inner-magic-behind-the-z3-theorem-prover/ > . Acesso

em: 3 nov. 2019.

[37] DE MOURA, L.; BJORNER, N. The Z3 Theorem Prover . < https://github.com/Z3Prover

/z3 >. Acesso em: 3 nov. 2019.

[38] DE MOURA, L.; BJORNER, N. Applications of SMT solvers to Program Verification .

< https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-smt-application-cha

pter.pdf >. Acesso em: 12 out. 2019.

[39] PAOLETTI, N. et al. Analyzing and Synthesizing Genomic Logic Functions. In:

BIERE,A.; BLOEM, R. (Eds). Computer Aided Verification (Lecture Notes in Computer

Science),.Cham: Springer, 2014, p. 343-357. Disponível em: < https://www.microsoft.com/en-us/rese

arch/wp-content/uploads/2014/07/pyhwk14.pdf >. Acesso em: 1 nov. 2019.

[40] FAGERBER, R.; FLAMM, C.; MERKLE, D.; PETERS, P. Exploring Chemistry using

SMT. In: MILANO, M. (Ed). Principles and Practice of Constraint Programming (Lecture Notes

in Computer Science), M. Milano, Eds. Hidelberg: Springer, 2012, p. 900-915. Disponível em:

< https://www.tbi.univie.ac.at/newpapers/pdfs/TBI-p-2012-8.pdf >. Acesso em: 3 nov. 2019.

[41] MICROSOFT. Getting Started with Z3: A Guide . < https://rise4fun.com/Z3/tutorial/

guide >. Acesso em: 11 set. 2019.

[42] YURICHEV, D. SAT/SMT by Example . < https://yurichev.com/SAT_SMT.html >. Acesso

em: 11 jul. 2019.

[43] NEWSHAM, Z.; LINDSAY, W.; GANESH, V.; LIANG, J.H.; FISCHMEISTER, S.;

CZARNECKI, K. SATGraf: Visualizing the Evolution of SAT Formula Structure in Solvers. In:

HEULE, M.; WEAVER, S. (Eds). Theory and Applications of Satisfiability Testing -- SAT 2015 .

SAT 2015. Lecture Notes in Computer Science, vol 9340. Springer, Cham.

[44] MARQUES-SILVA, J. MaxSAT and Related Optimization Problems. 145 slides.

Disponível em: < https://es-static.fbk.eu/events/satsmtschool12/slides/1x04_SS12.pdf >. Acesso em: 3

nov. 2019.

70

