
1

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE GEOCIÊNCIAS

MAPEAMENTO DE RISCO EM SÃO SEBASTIÃO E BERTIOGA UTILIZANDO

FERRAMENTAS DE MACHINE LEARNING

TIAGO SATOSHI OBARA

Orientador: Prof. Dr.Vinicius Hector Abud Louro

Coorientador: Tiago Antonelli

SÃO PAULO

2023

2

Resumo

 Movimentos gravitacionais de massa são problemas recorrentes no litoral paulista

causando danos sociais e econômicos, esses eventos estão associados com vários fatores como

a geologia, pedologia, topografia, clima e a vegetação. Como forma de apoio às instituições de

monitoramento e remediação desses danos, como a defesa civil, este trabalho produziu um

mapa de susceptibilidade das regiões de Bertioga e São Sebastião baseado em aprendizado de

máquina (machine learning). Para tal foram utilizados dados de geologia, pedologia,

profundidade do solo, topografia, direção de inclinação de encosta, ângulo de inclinação da

encosta, vegetação e pluviometria acumulada de 72 horas. O aprendizado de máquina foi

aplicado com o método de perceptron multicamadas para realizar a classificação dos dados e

apresentar um mapa de probabilidade de movimentação. O modelo classificou a área de estudo

com probabilidades de deslizamentos chegando a 76% e apresentou uma boa validação com

um f1-score acima de 0,90, mas com uma base de dados mais completa o modelo pode ser mais

acurado.

3

Abstract

 Landslides are a recurring problem on the coast of São Paulo, causing social and

economic damage. These events are associated with several factors such as geology, pedology,

topography, climate and vegetation. As a way of supporting institutions that monitors and

remediates this damage, such as Defesa Civil, this work produced a landslide susceptibility map

of the regions of Bertioga and São Sebastião based on machine learning. To this end, data on

geology, pedology, soil depth, topography, slope, aspect, vegetation and 72-hour accumulated

rainfall were used. Machine learning was applied with the multilayer perception method to

perform data classification and present a landslide probability map. The model classified the

study area with landslide probabilities reaching 76% and presented good validation with an f1-

score above 0.90, but with a more complete database the model can be more accurate.

4

SUMÁRIO

1. INTRODUÇÃO .. 5

1.1. OBJETIVOS .. 5

1.2. ÁREA DE ESTUDO ... 5

1.2.1. Localização .. 5

1.2.2. Geomorfologia ... 6

1.2.3. Geologia ... 8

1.2.4. Pedologia .. 9

1.2.5. Pluviometria ... 12

1.2.6. Vegetação ... 13

2. EMBASAMENTO TEÓRICO .. 13

2.1. Movimentos gravitacionais de massa e os seus agentes .. 13

2.2. Sensoriamento Remoto.. 16

2.3. Aprendizado de máquina e aprendizado profundo .. 21

3. MATERIAIS E MÉTODOS .. 24

3.1. Ferramentas ... 24

3.2. Dados Base .. 25

3.3. Machine Learning.. 31

4. RESULTADOS E DISCUSSÕES ... 37

5. CONCLUSÕES .. 39

6. REFERÊNCIAS BIBLIOGRÁFICAS .. 39

7. ANEXOS .. 42

7.1. Anexo A ... 42

7.2. Anexo B ... 62

5

1. INTRODUÇÃO

 Movimentos Gravitacionais de Massa (MGMs) são fenômenos naturais que atuam para

reequilibrar a encosta, por exemplo um bloco rochoso deslizando para baixo num plano

inclinado. Porém, nos MGMs esse “bloco” é constituído por materiais como solo, rocha e

vegetação que quando atingem uma infraestrutura ou uma pessoa podem causar danos,

prejuízos e, inclusive, óbitos. Segundo Macedo e Sandre (2022), no Brasil, de 1988 a junho

2022 houveram 4146 fatalidades.

 Para prevenir de tais acidentes, trabalhos como o de Pimentel e Santos (2018) e Bitar

(2014) elaboram métodos de mapear as zonas de risco. Em geral, esses trabalhos focam na

elaboração do mapa a partir de dados topográficos, porém os MGMs apresentam outros fatores

como litologia, pedologia, pluviometria e vegetação que também influenciam na estabilidade

das encostas (Guidicini e Nieble, 1984).

 Como o mapeamento de risco apresenta vários fatores a serem considerados, o que

torna as ferramentas de aprendizado de máquina (Machine Learning – ML) boas opções de

avaliação e predição. Isso ocorre pois conseguem trabalhar com bases de dados com grande

dimensionalidade. Diversos trabalhos como Peñafiel e Rojas (2021), Wang et al. (2021), Zydrón

et al. (2022) entre outros analisaram a utilização de diferentes tipos de dados em diferentes tipos

de ML. Neste trabalho o ML será utilizado para classificar áreas com maior propensão de

ocorrer um deslizamento.

1.1. OBJETIVOS

 Este trabalho visa, a partir da elaboração de um modelo de aprendizado de máquina,

automatizar a produção de mapas iniciais de susceptibilidade à deslizamentos e com essa

automatização espera-se identificar de áreas de maior risco para aprofundamento dos estudos e

excursões de campo.

1.2. ÁREA DE ESTUDO

1.2.1. Localização

A área de estudo está delimitada pelos municípios de Bertioga e São Sebastião (Figura

1).

6

Figura 1: Mapa dos limites da área de estudo

1.2.2. Geomorfologia

Segundo a divisão geomorfológica de Almeida (2018) a área de trabalho está inserida

na Província Costeira, contendo a subclassificação de Serrania Costeira - Serra do Mar. Sua

topografia varia do nível do mar até 1315 m (Figura 2), as encostas apresentam direcionamento

principal em NE-SW (nordeste – sudoeste) (Figura 3) e ângulo de inclinação varia de 0º a 70º

(Figura 4).

7

Figura 2: Mapa do Modelo Digital de Elevação

Figura 3: Mapa de Direção das encostas

8

Figura 4

1.2.3. Geologia

A área de trabalho está inserida na Faixa Ribeira, essa que participou do episódio de

colagem do cráton São Francisco com o cráton do Rio de la Plata, cesse evento originou-se na

parte oeste do paleocontinente Gondwana no Neoproterozóico ao Eopaleozóico (Brito Neves e

Cordani, 1991).

 Localmente, a litologia é dividida em três conjuntos (Almeida, 2018; Dias Neto, 2001)

(Figura 5):

1) “Sequências gnáissicos-migmatíticas consistem em ortognaisses e migmatitos com

paleossoma de hornblenda-biotita gnaisse e neossoma de composição granodiorítica.”

2) “Rochas paraderivadas constituídas predominantemente por rochas siltitoargilosas e

subordinadamente, por quartzitos e rochas calcossilicatadas.”

9

3) “Rochas granulíticas predominantemente charnockitos e noritos que ocorrem

associados aos gnaisses oftalmíticos e aos corpos graníticos presentes na área."

Figura 5: Mapa geológico da área de estudo

1.2.4. Pedologia

Utilizando a classificação de pedologia de Rossi (2017), a área de estudo é caracterizada

por Argissolos Amarelos, Argissolos Vermelho-Amarelos, Cambissolos Háplicos,

Espodossolos Humilúvicos, Gleissolos Háplicos, Gleissolos Sálicos, Neossolos Flúvicos,

Neossolos Litólicos, Neossolos Quartzarênicos e Organossolos Háplicos (Figura 6 e Quadro 1).

10

Figura 6: Mapa de pedologia da área de estudo

11

Quadro 1: Tabela dos solos presentes na área de estudo com as descrições de cada tipo (Rossi, 2017).
Unidade de

mapeamento
Classes dos solos Descrição

CX7

CAMBISSOLO

HÁPLICO

Associação de CAMBISSOLO HÁPLICO Tb Distrófico A moderado ou proeminente, textura indiscriminada, bem a

imperfeitamente drenado + NEOSSOLO FLÚVICO e GLEISSOLO HÁPLICO/MELÂNICO, indiscriminados, todos fase

relevo suave ondulado

CX9

Associação de CAMBISSOLO HÁPLICO Distrófico/Eutrófico, t ípico ou latossólico textura argilosa e média, A moderado

e proeminente + ARGISSOLO AMARELO/VERMELHO-AMARELA Distrófica textura média/argilosa e argilosa, não

rochoso e rochoso, ambos fase relevo forte ondulado

CX16

Associação de CAMBISSOLO HÁPLICO Tb A moderado ou proeminente + LATOSSOLO

AMARELO/VERMELHOAMARELO típico ou cambissólico A moderado, ambos Distróficos, textura média ou argilosa,

fase relevo forte ondulado

CX18
CAMBISSOLO HÁPLICO Tb textura média e argilosa, rochoso e não rochoso, fase substrato granitóides, relevo forte

ondulado e ondulado

CX20

Associação de CAMBISSOLO HÁPLICO típico, textura argilosa e média, A moderado e proeminente + ARGISSOLO

AMARELO/VERMELHO-AMARELO textura média/argilosa e argilosa, não rochoso e rochoso, ambos Distróficos, fase

relevo forte ondulado

CX21
Associação de CAMBISSOLO HÁPLICO textura argilosa ou média + NEOSSOLO LITÓLICO textura média, substrato

granitoides, ambos Tb Distrófico A moderado, fase relevo forte ondulado e montanhoso

EK
ESPODOSSOLO

HUMILÚVICO

ESPODOSSOLO HUMILÚVICO/FERRI-HUMILÚVICO Hidromórfico ou não hidromórfico distrófico, fase relevo plano e

suave ondulado

GX2

GLEISSOLO HÁPLICO

Complexo Indiscriminado de GLEISSOLO HÁPLICO ou MELÂNICO com ou sem ocorrência de ORGANOSSOLO, fase

relevo plano

GX4
Grupamento indiscriminado de GLEISSOLO HÁPLICO ou MELÂNICO e CAMBISSOLO HÁPLICO Tb Distrófico A

moderado ou proeminente, textura indiscriminada, bem a imperfeitamente drenado, todos fase relevo plano

GZ GLEISSOLO SÁLICO
Associação de GLEISSOLO SÁLICO ou TIOMÓRFICO + NEOSSOLO QUARTZARÊNICO Hidromórfico sálico, fase

relevo plano

OX3
ORGANOSSOLO

HÁPLICO

Associação de ORGANOSSOLO HÁPLICO + GLEISSOLO HÁPLICO ou MELÂNICO indiscriminados, ambos fase relevo

plano

PA
ARGISSOLO

AMARELO

Associação de ARGISSOLO AMARELO típico, textura arenosa/média e média/média + NEOSSOLO LITÓLICO típico A

moderada textura média e arenosa, substrato arenito, ambos Distróficos, A moderado, fase relevo ondulado

PVA16
ARGISSOLO

VERMELHO-

AMARELO

ARGISSOLO VERMELHO-AMARELO/AMARELO Distrófico latossólico, A moderada textura argilosa ou argilosa/muito

argilosa, fase relevo forte ondulado e ondulado

PVA33

Associação de ARGISSOLO VERMELHO-AMARELO dist rófico típico, A moderado ou proeminente, textura

média/argilosa, pouco profundo + CAMBISSOLO HÁPLICO A moderada textura argilosa + NEOSSOLO LITÓLICO

Eutrófico/Distrófico, textura média substrato sedimentos do Grupo Passa Dois, todos fase relevo ondulado

RL23 NEOSSOLO LITÓLICO
Associação de NEOSSOLO LITÓLICO distrófico típica textura média ou argilosa, com ou em cascalho, fase substrato

granitóides, relevo montanhoso e escarpado + Afloramento rochoso

RQ8
NEOSSOLO

QUARTZARÊNICO

NEOSSOLO QUARTZARÊNICO Hidromórfico ou Órtico típico, sedimentos marinhos atuais, fase relevo suave ondulado

e plano

RY2 NEOSSOLO FLÚVICO
Associação de NEOSSOLO FLÚVICO Psamítico e/ou Tb Distrófico textura média e argilosa, A moderado + GLEISSOLO

Indiscriminado substrato sedimentos fluviais, ambos fase relevo plano

12

1.2.5. Pluviometria

Analisando os hietogramas de Bertioga e São Sebastião (Figura 7 e 8), historicamente,

o período entre dezembro e março é o que mais chove. Isso se deve à presença da Serra do Mar

que atua como uma barreira forçando o ar úmido a ascender, essa massa de ar resfria de forma

adiabática e forma nuvens estratiformes e cumuliformes gerando a precipitação do tipo

orográfico (Tavares, 2009).

Figura 7: Hietograma do pluviômetro E3-040 (Usina Itatinga; latitude 23° 46' 29''S; longitude 46°06' 38''W;

altitude 20 m) no período de 1937 à 2021 (site do Departamento de Águas e Energia Elétrica, acessado

16/11/2023)

13

Figura 8: Hietograma do pluviômetro E2-045 (São Francisco; latitude 23° 46' 00''S; longitude 45°25' 00''W;

altitude 20 m) no período de 1943 à 2023 (site do Departamento de Águas e Energia Elétrica, acessado

16/11/2023).

1.2.6. Vegetação

Utilizando Brito e Oliveira (2008) em conjunto com o arquivo de polígonos de Nalon et

al. (2022), a área de trabalho apresenta vegetações de Floresta Densa Montana, Floresta Densa

Sub Montana, Floresta Densa das Terras Baixas, Formação Arbórea/arbustiva-herbácea de

Várzea e Formação Arbórea/arbustiva-herbácea de Terrenos Marinhos Lodosos (Figura 9).

Figura 9: Mapa de vegetação dos municípios de Bertioga e São Sebastião

2. EMBASAMENTO TEÓRICO

2.1. Movimentos gravitacionais de massa e os seus agentes

Os MGMs podem ser caracterizados como “movimento de solo, rocha e/ou vegetação ao

longo da vertente, sob a ação direta da gravidade.” (Tominaga et al., 2009, p. 27). Esse material

transportado pode atingir infraestruturas e a população criando prejuízos. Por isso, para preveni-

14

los, trabalhos como os de Terzaghi (1950), Varnes (1978), Guidicini e Nieble (1984), Tavares

et al. (2004), Tominaga et al. (2009), Tominaga et al. (2015), Wyllie (2017) e Silva et al. (2022)

estudam os mecanismos e os fatores que influenciam nos MGMs.

 Neste trabalho foi adotado a classificação dos agentes e causas de Guidicini e Nieble

(1984), que apesar de ser antigo ainda se aplica como observado em Tominaga et al. (2009;

2015). Nessa classificação os agentes são separados em predisponentes e efetivos (Quadro 2).

O primeiro atua como fator condicionante ou “pano de fundo” enquanto o segundo atua

diretamente na desestabilização do talude. Dentre os fatores efetivos ainda há a subclassificação

por participação sendo eles os agentes efetivos preparatórios que atuam de forma cumulativa e

os agentes efetivos imediatos que atuam instantaneamente.

Quadro 2: Agentes predisponentes e efetivos de eventos de MGM (Guidicini e Nieble, 1984)

Classificação Elementos

Agentes Predisponentes • Complexo Geológico,

• Complexo Morfológico,

• Complexo Climático-Hidrológico,

• Gravidade,

• Calor Solar,

• Tipo de Vegetação Original

Agentes efetivos Preparatórios • Pluviosidade,

• Erosão pela água ou vento,

• Congelamento e degelo,

• Variação de temperatura,

• Dissolução química,

• Ação de fontes e mananciais,

• Oscilações de nível dos lagos e marés e

do lençol freático,

• Ação humana e de animais, inclusive

desflorestamento.

Imediatos • Chuva intensa,

• Fusão de gelo e neve,

• Erosão,

• Terremotos,

• Ondas,

• Vento,

• Ação do homem

• Etc

 Ainda segundo Guidicini e Nieble (1984), há a classificação de causas internas e

externas. As causas internas são aquelas que desestabilizam o talude através da diminuição da

resistência interna do material sem alterar a geometria do talude, já as causas externas são

15

aquelas que alteram a geometria sem influenciar na resistência interna do material. A partir do

Quadro 2 e dessa classificação das causas foram selecionados o “Complexo Geológico”,

“Complexo Morfológico”, “Tipo de Vegetação Original” e “Pluviosidade”.

 O “Complexo Geológico” foi selecionado para representar a importância das

características geotécnicas da litologia e da pedologia. Na litologia, características como o tipo

de rocha, estruturas (falhas, fraturas, diques etc) e produtos de alteração podem diminuir a

resistência do maciço (Wyllie, 2017). Na pedologia, características como tipo de solo,

granulometria, porosidade, espessura dos horizontes etc podem diminuir a resistência do

maciço (Antunes e Salomão, 2018).

 O “Complexo Morfológico”, altera a geometria sem diminuir a resistência interna do

material. Por exemplo, quando o ângulo de inclinação do talude supera o ângulo de atrito

interno do material, fazendo com que a força cisalhante seja maior que a de atrito interno

(Guidicini e Nieble (1984), Wyllie, (2017)). Para o mapeamento de risco do “Manual de

mapeamento de perigo e risco a movimentos gravitacionais de massa” de Pimentel e Santos

(2018) os dados de topografia são chave para definir as áreas de risco.

 A presença da vegetação aumenta a resistência interna do solo, com cada parte da planta

influenciando de forma diferente o talude (Guidicini e Nieble , 1984; Stokes et al., 2008; Hairiah

et al., 2020):

1) As raízes providenciam ancoragem aumentando a resistência ao cisalhamento e

absorvem a água e sais minerais do substrato diminuindo a pressão hidrostática.

2) Os caules retêm o solo erodido.

3) As folhas interceptam a precipitação e iniciam a evapotranspiração diminuindo a

umidade do solo.

 Outra forma da vegetação contribuir com a estabilização do o talude é com a variedade

vegetal (Stokes et al., 2008):

1) Gramíneas: vegetação que cresce e se recupera rápido, apresenta raízes rasas que

formam uma rede densa protegendo o solo de erosão superficial, algumas espécies

16

apresentam raízes mais profundas que são reconhecidas pela restauração de taludes

erodido.

2) Herbáceas: vegetação que, assim como as gramíneas, apresenta raízes rasas

formando uma rede densa.

3) Arbustivo: vegetação que, dependendo da espécie, apresenta um sistema de raiz com

tensão cisalhante comparável com o das árvores.

4) Arbóreo: vegetação que, dependendo do tipo de solo, tem raízes profundas e

extensas, o que beneficia no reforço do solo em taludes.

 A água influencia na estabilidade do talude através da pressão hidrostática, o que

diminui a resistência interna do material sem alterar a geometria. A “pluviosidade” foi

selecionada visto que a água demora até sair totalmente do solo, em regiões com pluviosidade

alta a água vai se acumulando e desestabilizando o talude (Tavares (2004) e Silva et al. (2022)).

Segundo Tavares (2004) a maioria das ocorrências de deslizamentos no litoral norte estão

associadas com a chuva acumulada de 120 mm no período de três dias (72 horas). Por isso neste

trabalho decidiu-se utilizar um agente efetivo preparatório ao invés do “Complexo Climático-

Hidrológico” e da “Chuva Intensa”.

2.2. Sensoriamento Remoto

Segundo Meneses e Almeida (2012), “Sensoriamento Remoto é uma ciência que visa o

desenvolvimento da obtenção de imagens da superfície terrestre por meio da detecção e

medição quantitativa das respostas das interações da radiação eletromagnética com os materiais

terrestres.”. Tendo em vista a importância da radiação eletromagnética (REM) o estudo do

comportamento dual (modelos ondulatório e corpuscular) dela se torna importante.

 A partir das formulações de Maxwell (1865), quando uma partícula carregada se

movimenta na velocidade da luz são gerados um campo elétrico e um magnético que são

perpendiculares à trajetória da partícula e entre si (Figura 10).

17

Figura 10: Figura apresentando o modelo ondulatório da REM, retirado de Meneses e Almeida (2012)

 Dado o comportamento ondulatório dos campos a equação 1 apresenta a relação entre o

comprimento de onda (λ), a velocidade da luz (c) e a frequência (v).

𝜆 =
𝑐

𝑣
 (𝐸𝑞. 1)

 Em 1901, Planck descobriu que a REM transferia quantidades de energia fixa de um

corpo a outro, essa energia foi denominada de fóton. A partir dessa descoberta o modelo

corpuscular afirma que a energia do fóton, ao interagir com a matéria, é absorvida parcialmente

promovendo a mudança da posição do elétron no orbital ou aumentando a intensidade da

vibração molecular (Meneses e Almeida, 2012). As equações 2 e 3 apresentam a relação entre

a energia (E), constante de Planck (h = 6,624x10-34 Joules*segundos), comprimento de onda

(λ), a velocidade da luz (c) e a frequência (v).

𝐸 = ℎ × 𝑣 (𝐸𝑞. 2)

𝐸 =
ℎ × 𝑐

𝑣
 (𝐸𝑞. 3)

 Segundo Meneses e Almeida (2012), a interação entre a REM e o terreno depende do

comprimento da onda do raio incidente e do tamanho do objeto analisado, por isso os autores

separam a interação entre macroscópica e microscópica. Na interação macroscópica

comprimentos de onda maiores que 3 cm resultam em imagens com menos ruídos, uma vez que

18

evitam a dispersão dos raios em objetos menores (Meneses e Almeida, 2012). As interações

microscópicas seguem o modelo corpuscular, em que as REMs com comprimentos de ondas

diferentes têm sua energia absorvida de forma diferente o que ressalta o contraste entre os

materiais.

 As REMs podem vir de fontes naturais com o Sol e a Terra, mas também podem ser

artificiais. No sensoriamento remoto a principal fonte de REM natural é o Sol uma vez que sua

temperatura, na superfície, é próxima a 6000ºC. A partir da lei de Planck (equação 4) foi obtida

a Figura 11 que apresenta a distribuição de energia de corpos negros a diferentes temperaturas

em diferentes comprimentos de onda (Meneses e Almeida, 2012).

𝐸𝜆 =
2𝜋ℎ𝑐2

𝜆5 [𝑒𝑥𝑝(
𝑐ℎ

𝜆𝐾𝑇
) − 1]

 (𝐸𝑞. 4)

Onde, 𝐸𝜆 = 𝑒𝑛𝑒𝑟𝑔𝑖𝑎 𝑟𝑎𝑑𝑖𝑎𝑛𝑡𝑒 𝑒𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑚𝑒𝑑𝑖𝑑𝑎 𝑒𝑚 𝑊 𝑚−2 𝜇𝑚−1

 ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝑑𝑒 𝑃𝑙𝑎𝑛𝑐𝑘 = 6,6256 × 10−34 𝑊 𝑠2

 𝑐 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑎 𝑙𝑢𝑧 = 2,997925 × 108 𝑚 𝑠−1

 𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝑑𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛 = 1,38054 × 10−23 𝑊 𝑠 𝐾−1

 𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑎 𝑑𝑎 𝑓𝑜𝑛𝑡𝑒 𝐾

Figura 11: Comportamento espectral da Lei de deslocamento de Wien (Meneses e Almeida, 2012).

19

 As REMs de fontes naturais conseguem atingir no máximo comprimentos de onda de

100 micrômetros (Figura 11), por isso para obter REMs de comprimentos de micro-ondas são

utilizadas fontes artificiais. Tendo isso em vista os produtos que utilizam o Sol como fonte

trabalham nas faixas espectrais no visível (0,45 - 0,76 μm), Infravermelho próximo (0,76 - 1,2

μm) e Infravermelho de ondas curtas (1,2 – 3,0 μm); enquanto que o espectro das micro-ondas

(3,0 – 100 cm) é registrado pelos sensores de Detecção de Ondas de Rádio e Posição (Radio

Detection And Ranging – RADAR) (Meneses e Almeida, 2012). Para esses dois tipos de

sensoriamento são utilizados sensores diferentes, respectivamente, os sensores multiespectrais

e os radares de abertura sintética (Synthetic Aperture Radar - SAR).

 Com o sensoriamento multiespectral são realizadas análises composicionais, uma vez

que o comprimento de onda é menor. Das possíveis análises este trabalho utilizou-se a

composição de falsa cor e o índice de vegetação de diferencial normalizada (Normalized

Difference Vegetation Index – NDVI). A composição de falsa cor facilita visualizar o contraste

entre materiais diferentes já o NDVI criado por Rouse Junior et al. (1973) utiliza a equação 5

para calcular um valor que representa a saúde das plantas (Figura 12).

𝑁𝐷𝑉𝐼 =
banda do infravermelho próximo − banda vermelho

banda do infravermelho próximo + banda vermelho
 (𝐸𝑞. 5)

20

Figura 12: Imagem apresentando o contraste entre a vegetação (verde), solo (rosa escuro) e a urbanização (rosa

claro), a composição em cor falsa (SWIR1, NIR e Azul).

 Apesar do SAR conseguir produzir imagens da rugosidade do terreno, é necessário a

utilização da Interferometria de SAR (InSAR) para coletar os valores de elevação. O InSAR

utiliza dois sensores SAR a uma distância (Δx) para criar o efeito de paralaxe o que faz com

que os sinais recebidos tenham fases diferentes (𝛥𝜑) podendo, assim, calcular a elevação (h)

do ponto (Figura 13 e equações 6 a 8) (Meneses e Almeida, 2012).

21

Figura 13: Modelo de imageamento por InSAR (Meneses e Almeida, 2012).

Δ𝜑 = −
4π

λ
 (𝑅2 − 𝑅1) (𝐸𝑞. 6)

𝑅1 = √𝑥1
2 + (𝐻1 − ℎ)2 (𝐸𝑞. 7)

𝑅2 = √(𝑥1 − Δ𝑥)2 + (𝐻1 + Δ𝐻 − ℎ)2 (𝐸𝑞. 8)

Onde, 𝜆 = 𝑐𝑜𝑚𝑝𝑟𝑖𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑜𝑛𝑑𝑎 𝑑𝑎 𝑅𝐸𝑀 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑒

 𝑅1 = 𝑑𝑖𝑠𝑡â𝑛𝑐𝑖𝑎 𝑒𝑛𝑡𝑟𝑒 𝑎 𝑎𝑛𝑡𝑒𝑛𝑎 1 𝑒 𝑜 𝑝𝑜𝑛𝑡𝑜

 𝑅2 = 𝑑𝑖𝑠𝑡â𝑛𝑐𝑖𝑎 𝑒𝑛𝑡𝑟𝑒 𝑎 𝑎𝑛𝑡𝑒𝑛𝑎 2 𝑒 𝑜 𝑝𝑜𝑛𝑡𝑜

 𝐻1 = 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑎 𝑎𝑛𝑡𝑒𝑛𝑎 1

 ℎ = 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑜 𝑝𝑜𝑛𝑡𝑜

 Δ𝐻 = 𝑑𝑖𝑓𝑒𝑟𝑒𝑛ç𝑎 𝑑𝑒 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑎 𝑎𝑛𝑡𝑒𝑛𝑎 1 𝑝𝑎𝑟𝑎 2

 𝑥1 = 𝑑𝑖𝑠𝑡â𝑛𝑐𝑖𝑎 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑒 𝑎 𝑎𝑛𝑡𝑒𝑛𝑎 1 𝑒 𝑜 𝑝𝑜𝑛𝑡𝑜

 Δ𝑥 = 𝑑𝑖𝑠𝑡â𝑛𝑐𝑖𝑎 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑒 𝑎 𝑎𝑛𝑡𝑒𝑛𝑎 1 𝑒 2

2.3. Aprendizado de máquina e aprendizado profundo

Segundo Goodfellow et al. (2016), o aprendizado de máquina (ML – Machine Learning)

é a capacidade da inteligência artificial (IA) adquirir conhecimento extraindo padrões de dados

brutos. Porém para conceitos complexos, como fotos, o aprendizado profundo (DL – Deep

Learning) é utilizado por extrair padrões a partir de representações mais simples (Goodfellow

22

et al., 2016). A Figura 14 exemplifica esse conceito, mostrando que a cada camada oculta é

extraída um padrão mais complexo.

Figura 14: Imagem representando o aumento da complexidade do padrão que cada camada oculta consegue

consegue extrair extraído de Goodfellow et al. (2016).

 Neste trabalho foi utilizado o modelo de perceptron multicamadas (MLP – Multilayer

Perceptron), um modelo de aprendizado profundo que utiliza o perceptron como um neurônio

do modelo. O perceptron criado por Rosenblatt (1958) utiliza o neurônio da biologia como base,

funcionando da seguinte forma (Figura 15):

23

Figura 15 – Figura representando o funcionamento de um Perceptron (extraído de Peñafiel e Rojas (2021))

1) Assim como apresentado na Figura 15, cada perceptron recebe informações de uma ou mais

entradas e realiza uma soma ponderada com o valor de entrada (𝑥𝑖), um peso (𝑤𝑖) e um

valor de limiar (θ) (equação 9).

𝑢 = ∑ (𝑥𝑖 × 𝑤𝑖) + 𝜃 (𝐸𝑞. 9)𝑛
𝑖

2) O resultado u é então inserido em uma função de ativação g(•), essa pode ser do tipo degrau

ou degrau bipolar limitando o resultado entre 0 a 1 e -1 a 1, respectivamente. A equação 10

representa a fórmula final para um perceptron com resultado y.

𝑦 = 𝑔 (∑(𝑥𝑖 × 𝑤𝑖) + 𝜃

𝑛

𝑖

) (𝐸𝑞. 10)

 Ao juntar vários perceptrons, em paralelo, é formada uma camada; ao empilhar várias

camadas é criado uma rede neural artificial que no caso é um MLP, a Figura 16 apresenta a

estrutura básica de um MLP.

24

Figura 16: Arquitetura clássica de um MLP (extraído de Peñafiel e Rojas (2021))

 Os MLPs são considerados redes neurais artificiais profundas feedforward (Goodfellow

et al., 2016), ou seja, são redes neurais artificiais em que a informação propaga no sentido da

camada de entrada para a de saída. Como o MLP é um modelo com aprendizado supervisionado,

quando a informação propaga até a camada de saída é realizado o cálculo do erro a partir de

uma função de custo. Segundo Goodfellow et al. (2016), a função custo para as redes neurais,

nas maiorias dos casos, utiliza a entropia cruzada dos dados de treinamento e as previsões do

modelo.

 Para o aprendizado de modelos de MLPs é utilizado o algoritmo de retropropagação

(Rumelhart et al., 1986). Esse algoritmo utiliza o valor de erro e propaga no sentido contrário

ajustando os valores de peso (𝑤𝑖) diminuindo, assim, o valor do erro.

3. MATERIAIS E MÉTODOS

3.1. Ferramentas

 As ferramentas utilizadas neste trabalho podem ser divididas nas seguintes etapas. Na

primeira etapa foram utilizados o Google Colab (Colab) com o a biblioteca do geemap (Wu,

2020) para a aquisição das imagens de sensoriamento remoto, enquanto o QGIS 3.28.12 foi

utilizado para trabalhar com os dados de imagens e vetores. Na segunda etapa foi utilizado o

25

Colab com a biblioteca scikit-learn (Pedregosa et al., 2011) para o treinamento e teste do modelo

de ML.

 No Colab foram utilizadas outras bibliotecas além das apresentadas, a tabela 1 apresenta

elas e suas funções dentro do trabalho.

Tabela 1: Tabela de todas bibliotecas utilizadas e suas funções utilizadas

Biblioteca Função

OS
Conectar o notebook com o sistema operacional (neste trabalho o google

drive)

Numpy Trabalhar com funções matemáticas e matrizes

Pandas Trabalhar com tabelas

Matplotlib Plotar imagens e gráficos

Geopandas Trabalhar com dados geoespaciais que estão em tabela

Rasterio Trabalhar com rasters

Scikit Learn Trabalhar com ML

Imblearn Trabalhar com bases de dados desbalanceados

ee Trabalhar com a base de dado e as funções do GEE

IPython Plotar tabelas

datetime Trabalhar com datas

geemap Trabalha com a biblioteca ee e apresenta um mapa interativo

3.2. Dados Base

 Como apresentado anteriormente os agentes causadores de MGMs escolhidos foram:

“Complexo Geológico”, “Complexo Morfológico”, “Tipo de Vegetação Original” e

“Pluviosidade”. A Figura 17 apresenta um fluxograma que associa cada dado base com seu

agente correspondente.

26

Figura 17: Fluxograma da correlação entre os agentes escolhidos e os dados correspondentes

 Dentre os dados apresentados na Figura 17 a “Máscara Binária” não representa nenhum

agente, apesar disso ela é necessária para o cálculo da função custo uma vez que representa as

ocorrências de MGMs tornando-se assim o arquivo label, arquivo esse que serve para avaliar

as previsões do modelo.

 Como a etapa seguinte utiliza imagens, todos os dados tiveram que ser retrabalhados,

tendo em vista que cada dado foi produzido de forma diferente. Por isso as etapas para

transformá-los foram diferentes, abaixo estão listados cada dado com as etapas utilizadas:

1) Imagem de geologia (Figura 1): baseado em no mapa de Morais (1999), foi utilizado

o QGIS para georreferenciar o mapa e produzir o arquivo de polígonos, finalmente

nesse arquivo foi utilizado a ferramenta de rasterização do QGIS para transformar

em uma imagem com a resolução de pixels de 125 x 125m.

2) Imagem de pedologia (Figura 2) e Imagem de profundidade de solo (Figura 18): foi

utilizado o arquivo de polígonos de pedologia de Rossi (2017), para a produção da

imagem foi utilizada a ferramenta de rasterização do QGIS para transformar em uma

imagem com a resolução de pixels de 125 x 125m.

27

Figura 18: Mapa de profundidade do solo

3) Imagem de elevação (Figura 3): utilizando o código do anexo A obteve-se a imagem

de elevação anual do satélite Alos Palsar (2011) com resolução de pixels de 30 x

30m.

4) Imagem de direção de inclinação (Figura 4) e Imagem de ângulo de inclinação

(Figura 5): a partir da imagem de elevação obtido anteriormente foram utilizadas as

ferramentas de aspect e slope, respectivamente, para a produção das imagens

(resolução de pixels 30 x 30m).

5) Imagem de pluviometria (Figura 19): Definiu-se as datas de aquisição dos dados

pluviométricos (16/02/2023, 17/02/2023 e 18/02/2023), utilizando-as como filtro

encontrou-se os pluviômetros no site do DAEE (Tabela 2). Os pluviômetros

escolhidos se encontram tanto dentro quanto fora da área de trabalho (Figura 20),

pois os do lado de fora servem para fechar a imagem durante a interpolação

(ferramenta utilizada IDW interpolation do programa QGIS). A resolução de pixels

da imagem foi definida como a de 30 x 30 m.

28

Figura 19: Mapa de distribuição dos pluviômetros

Figura 20: Mapa de Pluviometria acumulada de 72 horas

29

Tabela 2: Tabela de pluviômetros e pluviometria

Município Prefixo Nomes dos pluviômetros X Y Proprietário
Pluviômetro

(18/02)

Pluviômetro

(17/02)

Pluviômetro

(16/02)

Acumulado

(72h)

São Sebastião 354850009A Barra do una -45.764 -23.758 CEMADEN 127.427 2.413 12.158 141.998

São Sebastião 355070405A pontal da cruz -45.404 -23.783 CEMADEN 0.034 0.068 0.088 0.19

São Sebastião 355070409A itatinga -45.414 -23.813 CEMADEN 0 0 - 0

São Sebastião 355070411A juquehy2 -45.722 -23.759 CEMADEN 174.093 2.582 19.948 196.623

São Sebastião 355070414A boicucanga -45.612 -23.777 CEMADEN 84.411 3.748 17.784 105.943

São Sebastião 355070420A praia das cigarras -45.403 -23.732 CEMADEN 23.128 14.784 0.054 37.966

São Sebastião 355070403A jaraguá -45.441 -23.729 CEMADEN 24.901 9.309 9.503 43.713

São Sebastião 355070407A morro do abrigo -45.418 -23.76 CEMADEN 22.488 11.045 1.182 34.715

São Sebastião 355070410A juquehy -45.685 -23.768 CEMADEN 95.451 2.764 22.601 120.816

São Sebastião 355070413A toque toque pequeno -45.531 -23.814 CEMADEN 4.611 1.793 23.324 29.728

São Sebastião 355070418A praia grande -45.415 -23.823 CEMADEN 42.034 5.539 39.081 86.654

Salesópolis 354500101A Ponte Nova -45.972 -23.575 CEMADEN 0 0 0 0

Caraguatatuba 351050003A Rio Claro -45.468 -23.708 CEMADEN 1.653 4.958 11.916 18.527

Caraguatatuba 355070404A Enseada -45.43 -23.723 CEMADEN 39.157 9.081 5.121 53.359

Caraguatatuba 351050015A Fazenda Serra Mar -45.518 -23.661 CEMADEN 0 0 0 0

Biritiba Mirim 1001286
Barragem Biritiba

Montante
-46.088 -23.629 SAISP 0.118 0.016 0.056 0.19

Biritiba Mirim 498 RADAR -45.971 -23.6 SAISP 0.214 0.002 0.106 0.322

Mogi das Cruzes 350660701A Jardim Jungers -46.044 -23.587 CEMADEN 0.074 0.004 0.03 0.108

Santos 354850009A Carvara -46.189 -23.891 CEMADEN 56.335 0.042 21.756 78.133

Guarujá 351870107A morrinhos -46.26 -23.968 CEMADEN 201.825 0.002 10.467 212.294

Guarujá 351870112A pereque3 -46.146 -23.864 CEMADEN 0.006 0.006 0.018 0.03

Guarujá 351870115A pereque -46.186 -23.938 CEMADEN 138.119 4.925 15.029 158.073

Guarujá 354850014A sitio das neves -46.314 -23.881 CEMADEN 0 0 0 0

Guarujá 351870108A jardim da esperança -46.284 -23.959 CEMADEN 166.278 0.002 10.431 176.711

Guarujá 351870114A balnerário pernambuco -46.191 -23.97 CEMADEN 184.074 0.002 33.548 217.624

Guarujá 351870116A pereque 2 -46.164 -23.907 CEMADEN 129.312 0.789 21.757 151.858

Fonte: Departamento de Águas e Energia Elétrica

30

6) Imagem de vegetação (Figura 9): Foram utilizados os polígonos do Nalon et al.

(2022) como base para seguintes limites:

• Infraestruturas,

• Rios,

• Praia e mar,

• Floresta Densa das Terras Baixas.

Já o trabalho do Brito e Oliveira (2008) definiu os seguintes limites:

• Floresta Densa Montana

• Floresta Densa Sub Montana

• Formação Arbórea/arbustiva-herbácea de Várzea

• Formação Arbórea/arbustiva-herbácea de Terrenos Marinhos Lodosos

Por fim, foi utilizada a ferramenta de rasterização do QGIS resolução de pixels de 30

x 30m.

7) Imagem de ndvi (Figura 21): Utilizando o código do anexo A, foi obtido a imagem

do satélite Sentinel 2 (10/02/2023) e com a biblioteca geemap realizou-se o cálculo

de bandas, a imagem final apresenta resolução de pixels de 20 x 20m.

Figura 21: Mapa de NDVI

31

8) Imagem da máscara binária (Figura 22): Utilizando o código do anexo A, foi a obtida

a imagem do satélite Sentinel 2 (01/04/2023) e com a biblioteca geemap realizou-se

a composição de cor falsa (infravermelho de ondas curtas 1, infravermelho próximo

e azul), com essa imagem realizou-se a delimitação das ocorrências. Por fim, foi

utilizada a ferramenta de rasterização com a imagem final apresentando a resolução

dos pixels de 20 x 20m. A máscara binária está apresentada com dimensões

reduzidas, pois só foram registradas as ocorrências nessa área, por conseguinte a

imagem da máscara binária foi a única a ser tratada assim.

Figura 22: Mapa da máscara binária, a área escura representam o local onde não houveram deslizamentos,

enquanto a área branca são as ocorrências.

3.3. Machine Learning

 O Anexo B apresenta o código utilizado para realizar a etapa de ML. Esta etapa foi

separada em duas partes, a primeira de pré-processamento e a segunda de treinamento do

modelo.

32

Devido à concentração de pontos de ocorrência na área central a área de trabalho foi

dividida em três partes iguais para evitar enviesamento, uma vez que as ocorrências registradas

estão concentradas na área central. Por isso os dados de entrada utilizados para treinar o modelo

foram os da área central Figura 23.

Figura 23: Mapa de separação da área de trabalho em treino e total

 Para a etapa de pré-processamento foi necessário conferir alguns metadados das

imagens conforme a Tabela 3. Observando a tabela 3 cada imagem apresenta dimensões e

valores mínimos e máximo dos pixels diferentes. Por isso foram montadas as funções

redimensionarImagem(), normalizarDados() e preparandoDados() que, respectivamente,

redimensionam, normalizam e transformam os dados no formato utilizado para treinar o modelo.

33

Tabela 3: Metadados das imagens com as dimensões e os valores

Dados Largura Altura Proporção
Fator

largura

Fator

altura

Valor

min

Valor

max

Máscara Binária 1637 791 2.07 0.16 0.16 0.00 1.00

Geologia 262 126 2.08 1.00 1.00 1.00 35.00

Pedologia

profundidade
262 126 2.08 1.00 1.00 0.00 7.00

Pedologia 262 126 2.08 1.00 1.00 0.00 17.00

Vegetação 1090 526 2.07 0.24 0.24 1.00 8.00

Topografia 1092 528 2.07 0.24 0.24 0.00 1313.31

Direção de

inclinação
1092 528 2.07 0.24 0.24 0.00 57.15

Ângulo de

inclinação
1092 528 2.07 0.24 0.24 1.94 358.41

Pluviometria

Acumulada 72H
1092 528 2.07 0.24 0.24 39.68 196.55

NDVI 1638 792 2.07 0.16 0.16 0.00 0.93

 Antes de realizar o redimensionamento dos dados foram calculados os fatores de

redimensionamento (Tabela 3, colunas “Fator largura” e “Fator altura”). Com esses valores a

função redimensionarImagem() utiliza a ferramenta Resampling da biblioteca Rasterio para

interpolar e redimensionar as imagens. Porém, as imagens de máscara binária, geologia,

pedologia profundidade, pedologia e vegetação são categóricas, enquanto as de topografia,

direção de inclinação, ângulo de inclinação, pluviometria acumulada 72H e NDVI são contínuas.

Por isso, como a figura 24 apresenta, para os dados categóricos foi utilizado a interpolação por

vizinho mais próximos, já que mantêm os valores originais; enquanto que para os dados

contínuos foi utilizada a interpolação bilinear que evita artifícios que a interpolação por

vizinhos mais próximos gera (Gonzalez e Woods, 2018)

34

Figura 24:Imagem apresentando as diferentes interpolações utilizadas com os dados do trabalho

35

 Antes de normalizar os valores dos pixels os dados que estavam no formato de imagem

foram convertidas em arrays e depois em um ndarray. O array é um formato equivalente a uma

matriz o que facilita realizar operações matemáticas, enquanto o ndarray é o empilhamento das

array formando uma array tridimensional. Neste trabalho o ndarray apresenta 10 arrays

(dimensões) com cada uma apresentando 126 linha e 262 colunas.

 A função normalizarDados(), utiliza a equação 12 como base para normalizar as

imagens.

𝑉𝑎𝑙𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑑𝑜 =
𝑣𝑎𝑙𝑜𝑟 𝑑𝑜 𝑝𝑖𝑥𝑒𝑙 − 𝑣𝑎𝑙𝑜𝑟 𝑚í𝑛𝑖𝑚𝑜

𝑣𝑎𝑙𝑜𝑟 𝑚á𝑥𝑖𝑚𝑜 − 𝑣𝑎𝑙𝑜𝑟 𝑚í𝑛𝑖𝑚𝑜
 𝐸𝑞. 12

 Com os dados normalizados a função preparandoDados() realiza o enfileiramento dos

valores que , como o nome indica, enfileira todas da linhas de cada array (Figura 25) fazendo

com que cada uma tenha dimensões de 1 linha por 33012 colunas.

Figura 25: Imagem que exemplifica o enfileiramento de um ndarray com (2 dimensões e 3 células) para um de

uma dimensão por 6 colunas.

 Após a etapa de pré-processamento foram utilizados as funções separandoTreinoTeste()

e definindoHiperparametros(). A função separandoTreinoTeste() utiliza as ferramentas

RandomUnderSampler e train_test_split. O RandomUnderSampler foi utilizado para

“balancear” os dados, pois retira valores da classe majoritária deixando a proporção de pixels

com ocorrências de MGMs (classe minoritária) igual a de sem ocorrências. O train_test_split

realiza a separação dos dados em treino e teste, neste trabalho foi adotado uma separação de

80% para treino e 20% para teste (Zydrón et al., 2022).

 A função definindoHiperparametros(), utiliza principalmente o GridSearchCV(), mas

para a criação do modelo de MLP o MLPClassifier() é utilizado. O GridSearchCV() é uma

ferramenta da biblioteca scikit learn que testa a combinação de hiper parâmetros de um modelo

com base nos dados inseridos.

36

 Os hiper parâmetros são características do modelo que podem ser selecionadas pelo

usuário. A lista a seguir apresenta os hiper parâmetros que a função GridSearchCV() permite

alterar para o perceptron multicamadas:

• Quantidade de camadas ocultas: intervalo de valores que define a quantidade de

camadas ocultas.

• Quantidade de neurônios por camada oculta: intervalo de valores que define a

quantidade de neurônios por camada oculta.

• Função de ativação: define a função de ativação no perceptron.

• Otimizadores: define o algoritmo que desempenha a melhor performance para atualizar

os pesos do modelo.

• Taxa de aprendizado: define o tipo a taxa em que o modelo atualiza os pesos.

 Neste trabalho os hiper parâmetros escolhidos foram quantidade de camadas ocultas,

quantidade de neurônios em cada camada oculta, funções de ativação, otimizadores, e taxas de

aprendizado, a tabela 4 resume todos os hiper parâmetros e os valores que foram testados.

Tabela 4: Metadados das imagens com as dimensões e os valores.

Hiper parâmetro Valores

Quantidade de camadas ocultas De 1 a 5

Quantidade de neurônios por camada oculta De 10 a 40

Função de ativação Relu

Otimizadores lbfgs, sgd, adam

Taxa de aprendizado Constante ou Adaptativo

 Após o GridSearchCV() testar todas as combinações dos hiper parâmetros, é realizado

um ranqueamento e a melhor combinação é utilizada para treinar o modelo. Seguindo Zydrón

et al. (2022) adotou-se o “f1-score” (equação 15) como método de pontuação, esse método

realiza a média harmônica da precisão (equação 13) e do “recall” (equação 14), que são métodos

para avaliar o modelo utilizando a tabela 5 e os seguintes critérios:

1) Classe 0: pixel que foi classificado como não sendo a ocorrência de MGM.

2) Classe 1: pixel que foi classificado como sendo a ocorrência de MGM.

37

Tabela 5: Matriz de confusão

 Valor da Previsão

Sim Não

V
a
lo

r
re

a
l

S
im

Verdadeiro Positivo (True Positive - TP)

A previsão classificou o pixel como

local suscetível à MGM e houve a

ocorrência do mesmo

Verdadeiro Negativo (True Negative - TN)

A previsão classificou o pixel como local

suscetível à MGM, porém não houve a

ocorrência do mesmo.

N
ã
o

Falso Positivo (False Positive - FP)

A previsão classificou o pixel como

local não suscetível à MGM e houve a

ocorrência do mesmo.

Falso Negativo (False Negative - FN)

A previsão classificou o pixel como local

não suscetível à MGM e não houve a

ocorrência do mesmo.

𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (𝐸𝑞. 13)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (𝐸𝑞. 14)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜
 (𝐸𝑞. 15)

 O modelo com o melhor “f1” utilizou os parâmetros da Tabela 6 e obteve resultados

apresentados na tabela 7.

Tabela 6: Metadados das imagens com as dimensões e os valores

Hiper parâmetro Valores

Quantidade de camadas ocultas 5

Quantidade de neurônios por camada oculta 30

Função de ativação Relu

Tabela 7: Relatório de classificação

Classes Precisão Recall F1-score

0 0,87 1,0 0,93

1 1,00 0,86 0,92

4. RESULTADOS E DISCUSSÕES

Com os parâmetros utilizados obteve-se a Figura 26, o intervalo de probabilidade

calculada pelo modelo apresentou valores entre 0 a 76%. Dentre os dados que foram inseridos

38

no modelo é possível conferir que os dados de topografia e ndvi tiveram grande influência na

modelagem, com o dado de ndvi podendo ser responsável pelas áreas com probabilidades de

50-60% no centro do mapa.

Figura 26: Imagem de Susceptibilidade

 Porém, assim como visto anteriormente o MLP apresenta muitos parâmetros e dentre os

parâmetros que a biblioteca scikit learn oferece existem os estados aleatórios (random states),

esse parâmetro é um gerador de números aleatórios que ao receber um valor (seed) gera um

valor aleatório para iniciar a ferramenta. Os locais em que esse parâmetro é utilizado são no

RandomUnderSampler, train_test_split e no MLP, a presença desse parâmetro em três

ferramentas adicionam aleatoriedade o que pode dificultar para treinar o modelo.

 Outro ponto a ser considerado é sobre o histórico de deslizamentos, inicialmente este

trabalho catalogaria os MGMs que ocorreram entre 2020 a 2022, utilizando as imagens de

satélite (Sentinel 2) em cor falsa cor (SWIR1, NIR e Azul) para destacar a resposta do solo da

vegetação. Porém não puderam ser observados nenhum evento, segundo o sistema integrado da

defesa civil (SIDEC) houveram duas ocorrências no período analisado (Figura 27), elas não

foram possíveis de observar por causa da resolução do pixel que tem 20 x 20 m. Por isso foi

utilizado o evento que ocorreu em 19/02/2023, pois foi um evento com proporções que eram

possíveis observar com a resolução do satélite.

39

Figura 27: Registros de ocorrências de MGMs registrados pelo SIDEC

5. CONCLUSÕES

Neste trabalho a automatização da produção do mapa de susceptibilidade de Bertioga e

São Sebastião foi realizada utilizando o método de MLP, essa ferramenta se mostrou útil para

calcular a probabilidade de ocorrências de MGMs. Porém, devido a concentração de

ocorrências de deslizamentos a modelagem ficou enviesada resultando em áreas com pouco

declive apresentando alta probabilidade de ocorrer um MGM. A inserção de mais dados e dados

mais esparsos devem melhorar o treinamento do modelo permitindo, assim, uma melhor

acurácia desse.

6. REFERÊNCIAS BIBLIOGRÁFICAS

Almeida, F.F.M. de, 2018, Fundamentos Geológicos do Relevo Paulista: Revista do Instituto Geológico,

v. 39, no. 3, doi: 10.33958/revig.v39i3.600.

Antunes, F.S., Salomão, F.X.T., 2018, Solos em Pedologia, in Oliveira, A.M.S, Monticeli, J.J., Geologia

de Engenharia e Ambiental: Associação de Geologia de Engenharia e Ambiental, p.72-85.

Bitar, O.Y., 2014, Cartas de suscetibilidade a movimentos gravitacionais de massa e inundações 1:25.000,

São Paulo: IPT – Instituto de Pesquisas Tecnológicas, ISBN: 978-85-09-00177-3 (IPT).

Brito Neves, B. B. de, & Cordani, U. G. (1991). Tectonic evolution of south america during the late

proterozoic. Precambrian Research, 53(1-2), 23-40. doi:10.1016/0301-9268(91)90004-T

40

Brito, M.C.W de., Oliveira, L.R.C.N. de., 2008, Plano de Manejo do Parque Estadual da Serra do Mar,

São Paulo: IF – Instituto Florestal.

Dias Neto, C.M., 2001, Evolução tectono-termal do Complexo Costeiro (Faixa de Dobramentos Ribeira)

em São Paulo [Tese de Doutorado]: São Paulo, Universidade de São Paulo, Instituto de Geosciências,

doi: 10.11606/T.44.2001.tde-30092013-151641.

Goodfellow, I.J., Bengio, Y., Courville, A., 2016, Deep Learning: MIT Press.

Gonzalez, R.C., Woods, R.E., 2018, Digital Image Processing Global Edition: Pearson, 4º ed., 1022 p.,

ISBN 978-1-292-22304-9.

Guidicini, G., Nieble, C.M., 1984, Estabilidade de taludes naturais e de escavação,Editora Edgard Blucher,

ISBN 978-85-212-0186-1.

Hairiah, K., Widianto, W., Suprayogo, D., Van Noordwijk, M., 2020, Tree Roots Anchoring and Binding

Soil: Reducing Landslide Risk in Indonesian Agroforestry: Land, v. 9, i. 8, doi:

https://doi.org/10.3390/land9080256.

Macedo, E.S. de, Sandre, L.H., 2022, Mortes por deslizamentos no Brasil: 1988 a 2022: Revista

Brasileira de Geologia de Engenharia e Ambiental, v. 12, n. 1, p. 110-117.

Maxwell, J.C., 1865, A Dynamical Theory of the Electromagnetic Field: In Philosophical Transactions of

the Royal Society of London, v. 155, p. 459-512, doi: https://doi.org/10.1098/rstl.1865.0008.

Meneses, P.R., Almeida, T., 2012, Introdução ao Processamento de Imagens de Sensoriamento Remoto:

Brasília: CNPq, ed. 1, v. 1. 256p.

Morais, S.M., 1999, Integração Geológica da Folha Santos SF.23-Y-D: CPRM, 47 p.

Nalon, M.A., Matsukuma, C.K., Pavão, M., Ivanauskas, N.M., Kanashiro, M.M., 2022, Inventário da

cobertura vegetal nativa do Estado de São Paulo, São Paulo: SIMA/IPA, ISBN 978-65-996417-2-5.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V, Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,

Duchesnay, E., 2011, Scikit-learn: Machine Learning in {P}ython: Journal of Machine Learning

Research, v. 12, n. 85, p. 2825-2830.

Peñafiel P.G., Rojas, A.H., 2021, Landslide susceptibility index based on the integration of logistic

regression and weights of evidence: A case study in Popayan, Colombia: Engineering Geology, v. 280,

doi: https://doi.org/10.1016/j.enggeo.2020.105958.

Pimentel, J., Santos, T.D. dos, 2018, Manual de mapeamento de perigo e risco a movimentos

gravitacionais de massa – Projeto de Fortalecimento da Estratégia Nacional de Gestão Integrada de

Desastres Naturais – Projeto GIDES, Rio de Janeiro: CPRM/SGB, 213 p., ISBN: 978-85-7499-448-2.

Rosenblatt, F., 1958, The perceptron: A probabilistic model for information storage and organization in

the brain: Psychological Review, v. 65, no. 6, p. 386–408. https://doi.org/10.1037/h0042519.

https://doi.org/10.3390/land9080256
https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1037/h0042519

41

Rossi, M. 2017. Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto

Florestal, v. 1, p. 105-107, ISBN: 978-85-64808-16-4.

Rouse Junior, J. W., Haas, R. H., Schell, J. A., Deering, D. W., 1973, Monitoring the vernal advancement

and retrogradation (green wave effect) of natural vegetation, Type II, 120 p.

Rumelhart, D., Hinton, G. & Williams, R., 1986, Learning representations by backpropagating errors:

Nature, v. 323, p. 533–536, doi: https://doi.org/10.1038/323533a0.

Silva, A.P. de., Barroso, E.V., Polivanov, H., 2022, Índices pluviométricos críticos para prevenção de

desastres por deslizamentos na cidade de Niterói, RJ: Geologia USP, Série científica, v. 22, n. 3, p. 47-

60. doi: https://doi.org/10.11606/issn.2316-9095.v22-191653.

Stokes, A., Norris, J.E., Van Beek, L.P.H., Bogaard, T., Cammeraat, E., Mickovski, S.B., Jenner, A., Di

Iorio, A., Fourcaud, T., 2008, How vegetation reinforces soil on slopes, in Norris, J.E, Stokes, A.,

Mickovski, S.B., Cammeraat, E., Beek, R., Nicoll, B.C., Achim, A., Slope Stability and Erosion

Control: Ecotechnological Solutions: Springer: Dordrecht, The Netherlands, p. 65–118,

https://doi.org/10.1007/978-1-4020-6676-4_4.

Tavares, R., Neto, J., Tommanselli, J., Pressinotti, M., Santoro, J., 2004, Análise da variabilidade temporal

e espacial das chuvas associada aos movimentos de massa no litoral norte paulista, in Simpósio

Brasileiro de Desastres Naturais, ed. 1, Anais do I SIBRADEN, p. 680-696.

Tavares, R., 2009, Clima, Tempo e desastres, in Tominaga, L.K., Santoro, J., Amaral, R. do, 2009,

Desastres Naturais: conhecer para prevenir, Instituto Geológico, v. 1, ISBN 978-85-87235-09-1, p.

111-146.

Terzaghi, K., 1950, Mechanisms of Landslides, Geotechnical Society of America, Berkeley, p. 83-125.

Tominaga, L.K., Santoro, J., Amaral, R. do, 2009, Desastres Naturais: conhecer para prevenir, Instituto

Geológico, v. 1, ISBN 978-85-87235-09-1.

Tominaga, L.K., Santoro, J., Amaral, R. do, 2015, Desastres Naturais: conhecer para prevenir, Instituto

Geológico, v. 3, ISBN 978-85-87235-09-1.

Varnes, D.J., 1978, Slope Movement Types and Processes, in Schuster, R.L., Krizek, R.J., Eds.,

Landslides, Analysis and Control: Transportation Research Board, Special Report, National Academy

of Sciences, no. 176, p. 11-33.

Wang, H., Zhang, L., Yin, K., Luo, H., Li, J., 2021, Landslide identification using machine learning,

Geoscience Frontiers, v. 12, i. 1, p. 351-364, ISSN 1674-9871.

Wu, Q., 2020, geemap: A Python package for interactive mapping with Google Earth Engine: The Journal

of Open Source Software, v. 5, n. 51, p. 2305. https://doi.org/10.21105/joss.02305.

Wyllie, D.C., 2017, Rock slope engineering: civil application, ed. 5, Editora CRC Press, ISBN

9781498786287.

https://doi.org/10.1038/323533a0
https://doi.org/10.11606/issn.2316-9095.v22-191653
https://doi.org/10.1007/978-1-4020-6676-4_4
https://doi.org/10.21105/joss.02305

42

Zydroń, T., Demczuk, P., Gruchot, A., 2022, Assessment of Landslide Susceptibility of the Wiśnickie

Foothills Mts. (The Flysch Carpathians, Poland) Using Selected Machine Learning Algorithms:

Frontiers in Earth Science, v. 10, doi:10.3389/feart.2022.872192.

7. ANEXOS

7.1. Anexo A

 Código para o download das imagens disponível no GEE

(https://colab.research.google.com/drive/1hhluH4WfFTqA564XUkQNecRSFvGtSJYy?usp=s

haring)

#Instalação do geemap

#instalação da versão 0.16 do ipyleaflet por causa de um erro

na visualização dos mapas do geemap

#https://github.com/gee-community/geemap/issues/1132

%pip install ipyleaflet==0.16

#Pacote necessário para a produção dos mapas

%pip install pygis

#Principal pacote que cria um mapa interativo

%pip install geemap

#Pacote para visualização de imagens

%pip install rasterio

#Importação

import ee #Pacote do earth engine

import pandas as pd #Importar o pacote de trabalho com tabelas

from IPython.display import display

import numpy as np #Importar o pacote de matemática

import os #Importar o pacote para trabalhar com diretórios

#Pacote para trabalhar com datas no python

https://colab.research.google.com/drive/1hhluH4WfFTqA564XUkQNecRSFvGtSJYy?usp=sharing
https://colab.research.google.com/drive/1hhluH4WfFTqA564XUkQNecRSFvGtSJYy?usp=sharing

43

from datetime import date

from datetime import timedelta

from datetime import datetime

#Importar as bibliotecas para plotar as imagens

import matplotlib as mpl

import matplotlib.pyplot as plt

import rasterio

from rasterio.plot import show

import geemap #Pacote para visualização do pacote ee

#Inicialização do geemap e gee

geemap.ee_initialize()

class Propriedades:

 #Função que inicializa a classe e abre a tabela de

propriedades

 def __init__(self, caminho):

 self.caminho_arquivo = caminho

 self.tabela_propriedades =

pd.read_csv(self.caminho_arquivo, index_col = 'propriedade')

 #Função para editar o arquivo de propriedades

 def editPropriedades(self):

 display(self.tabela_propriedades) #Apresentar a tabela

para facilitar a escolha da propriedade e edição dela

 propriedade_alter = input('\nQual das propriedades que

será alterada? ') #Questionamento para decidir qual

propriedade será editada

 #Loop para questionar novamente caso o que foi inserido

não seja uma das propriedades

 while propriedade_alter not in

propriedades.tabela_propriedades.index:

44

 print('\O que foi inserido ou foi digitado errado ou não

faz parte das propriedades')

 propriedade_alter = input('Por favor digite novamente:

')

 lista_propr_alter = [propriedade_alter]

 informacao_alter = input('\nQual a informação nova terá

esta propriedade? ') #Questionamento para decidir a nova

informação que a propriedade terá

 #Alterando o arquivo original para que fique salvo a nova

informação

 self.tabela_propriedades.loc[propriedade_alter]['informaca

o'] = informacao_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 return self.tabela_propriedades

#Classe de para os dados de Google Earth Engine

class Colecao:

 #Função para inicializar a classe e valores

 def __init__(self,caminho_arq_propr):

 self.caminho_arquivo =

caminho_arq_propr

 #O caminho para o arquivo de propriedades

 self.tabela_propriedades =

Propriedades(caminho_arq_propr).tabela_propriedades #A

tabela de propriedades

 self.produto =

self.tabela_propriedades.loc['selec_prod']['informacao']

 #O produto selecionado anteriormente

 self.datas =

self.tabela_propriedades.loc['selec_datas']['informacao']

 #O intervalo de datas selecionados anteriormente

45

 self.area_trabalho =

self.tabela_propriedades.loc['selec_area_trab']['informacao']

 #A área de trabalho selecionado anteriormente

 self.zoom =

self.tabela_propriedades.loc['zoom_desejado']['informacao']

 #O zoom escolhido anteriormente

 self.centro_x =

self.tabela_propriedades.loc['centro_coordenada_X']['informaca

o'] #A longitude para a visualização escolhida

anteriormente

 self.centro_y =

self.tabela_propriedades.loc['centro_coordenada_Y']['informaca

o'] #A latitude para a visualização escolhida

anteriormente

 self.codigo_produto =

self.tabela_propriedades.loc['codigo_produto']['informacao']

#O código do produto GEE escolhido anteriormente

 #Função que apresenta as bandas disponíveis

 def bandasDisponiveis(self):

 #listas com as bandas disponíveis no Sentinel 2

 lista_bandas = ['Aerossol', 'azul', 'verde',

'vermelho','Red Edge 1',

 'Red Edge 2', 'Red Edge 3', 'Infravermelho

próximo',

 'Red Edge 4','Vapor de água',

'Infravermelho de ondas curtas 1',

 'Infravermelho de ondas curtas 2']

 #Criação de uma tabela em que os índices são as siglas

(B1, B2, B3 etc) e a coluna das bandas é composto pela lista

de bandas disponíveis

 self.tabela_bandas = pd.DataFrame(lista_bandas, index =

['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9',

'B11', 'B12'])

46

 return self.tabela_bandas #Retorna a tabela de bandas

disponíveis

 #Função que devolve a lista de bandas utilizadas

anteriormente

 def listarBandas(self):

 if

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'ndvi':

 #Trazer a string das bandas escolhidas anteriormente

 bandas =

self.tabela_propriedades.loc['selec_bandas']['informacao']

 bandas_str = bandas[2:-2]

 lista_bandas = bandas_str.split("', '")

 self.lista_bandas =

lista_bandas #Lista

das bandas utilizadas anteriormente

 return self.lista_bandas #Retorna a lista de bandas

utilizadas anteriormente

 else:

 #Trazer a string das bandas escolhidas anteriormente

 bandas =

self.tabela_propriedades.loc['selec_bandas']['informacao']

 self.lista_bandas =

bandas #Lista

das bandas utilizadas anteriormente

 return self.lista_bandas #Retorna a lista de bandas

utilizadas anteriormente

47

 #Função para alterar o produto de ndvi, falsa cor ou terreno

 def editProduto(self):

 #Apresentando ao usuário qual foi o produto escolhido

anteriormente

 print('\nEste é o atual produto escolhido: ' +

str(self.produto))

 #Pergunta ao usuário para qual produto será alterado

 produto_alter = input('\nVocê deseja alterar para qual

produto?

(ndvi/falsa_cor/terreno/direcao_de_inclinacao_do_terreno/angul

o_de_inclinacao_do_terreno):\n')

 #Loop para respostas fora das opções

 while produto_alter not in

['ndvi','falsa_cor','terreno','direcao_de_inclinacao_do_terren

o','angulo_de_inclinacao_do_terreno']:

 print('\nHouve um erro de digitação')

 produto_alter = input('Por favor, digite novamente: \n')

 #Lista vazia para as bandas a serem selecionadas

 self.bandas = []

 #Condição caso o produto seja ndvi

 if produto_alter == 'ndvi':

 #Bloco que atualiza a tabela e algumas informações

 self.produto = produto_alter

 self.tabela_propriedades.loc['codigo_produto']['informac

ao'] = 'COPERNICUS/S2_SR_HARMONIZED'

 self.tabela_propriedades.loc['selec_prod']['informacao']

= produto_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

48

 #Bloco que altera as bandas para as que o ndvi utiliza e

atualiza a tabela

 self.bandas = ['B4','B8']

 self.tabela_propriedades.loc['selec_bandas']['informacao

'] = self.bandas

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 #Retorna as bandas escolhidas em forma de lista

 return self.bandas

 #Condição caso o produto seja falsa_cor

 elif produto_alter == 'falsa_cor':

 #Atualização da tabela com o produto sendo ndvi

 self.produto = produto_alter

 self.tabela_propriedades.loc['codigo_produto']['informac

ao'] = 'COPERNICUS/S2_SR_HARMONIZED'

 self.tabela_propriedades.loc['selec_prod']['informacao']

= produto_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 #Apresenta a tabela de bandas disponíveis

 display(self.bandasDisponiveis())

 #Loop para montar a composição de falsa cor

 for falsa_cor in ['vermelho', 'verde', 'azul']:

 #Pergunta ao usuário para escolher a banda que

assumirá uma das posições escolhidas no momento

 banda = input('Digite a banda que gostaria que

assumisse a posição do ' + falsa_cor + ' na composição: ')

 #Loop para respostas fora da lista de bandas

disponíveis

 while banda not in self.tabela_bandas.index:

49

 print('Houve um erro na digitação.')

 banda = input('Por favor, digite novamente: ')

 #Adição das bandas na lista

 self.bandas.append(banda)

 #Atualização da tabela

 self.tabela_propriedades.loc['selec_bandas']['informacao

'] = self.bandas

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 return self.bandas #Retorna as bandas escolhidas em

forma de lista

 #Condição para caso terreno seja escolhida

 else:

 #Bloco que atualiza a tabela e as informações do produto

 self.produto = produto_alter

 self.tabela_propriedades.loc['codigo_produto']['informac

ao'] = 'JAXA/ALOS/AW3D30/V3_2'

 self.tabela_propriedades.loc['selec_prod']['informacao']

= produto_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 #Função para mudar o intervalo de data

 def editIntervaloDatas(self):

 #Bloco que recebe as datas utilizadas anteriormente e

informa ao usuário

 self.data_inicial =

self.tabela_propriedades.loc['data_inicial']['informacao']

 self.data_final =

self.tabela_propriedades.loc['data_final']['informacao']

 self.datas = [self.data_inicial, self.data_final]

50

 print('Este é o atual intervalo de data ' +

str(self.datas))

 #Linha para questionar qual das datas devem ser alteradas

 data_alter = input('\nVocê deseja alterar a data inicial,

final ou ambas? (inicial/final/ambas)')

 #Loop para respostas fora do sugerido

 while data_alter not in ['inicial', 'final','ambas']:

 print('\nHouve um erro na digitação')

 data_alter = input('Por favor, digite novamente: ')

 #Condição para alterar a data inicial

 if data_alter == 'inicial':

 #Bloco para alterar a data inicial e atualizar na tabela

de propriedades

 nova_data = input('Digite a nova data no formato YYYY-

MM-DD: ')

 self.data_inicial = nova_data

 self.tabela_propriedades.loc['data_inicial']['informacao

'] = nova_data

 self.datas = [self.data_inicial, self.data_final]

 self.tabela_propriedades.loc['selec_datas']['informacao'

] = self.datas

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 return print('O novo intervalo é de ' + str(self.datas))

 #Condição para alterar a data inicial

 elif data_alter == 'final':

 #Bloco para alterar a data final e atualizar na tabela

de propriedades

 nova_data = input('Digite a nova data no formato YYYY-

MM-DD: ')

 self.data_final = nova_data

 self.tabela_propriedades.loc['data_final']['informacao']

= nova_data

51

 self.datas = [self.data_inicial, self.data_final]

 self.tabela_propriedades.loc['selec_datas']['informacao'

] = self.datas

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 return print('O novo intervalo é de ' + str(self.datas))

 #Condição para alterar ambas as datas

 else:

 nova_data_inicial = input('Digite a nova data inicial no

formato YYYY-MM-DD: ')

 self.data_inicial = nova_data_inicial

 self.tabela_propriedades.loc['data_inicial']['informacao

'] = nova_data_inicial

 nova_data_final = input('Digite a nova data final no

formato YYYY-MM-DD: ')

 self.data_final = nova_data_final

 self.tabela_propriedades.loc['data_final']['informacao']

= nova_data_final

 self.datas = [self.data_inicial, self.data_final]

 self.tabela_propriedades.loc['selec_datas']['informacao'

] = self.datas

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 return print('O novo intervalo é de ' + str(self.datas))

 #def listarDatasPassagem(self):

 #Função para alterara área de trabalho

 def editAreaTrabalho(self):

 #Apresentando a área de trabalho que foi utilizado

anteriormente

 print('A área de trabalho atual é: ' +

str(self.area_trabalho))

52

 #Perguntando ao usuário para qual área de trabalho será

alterado

 area_alter = input('Deseja alterar par qual área de

trabalho: (Bertioga/Sao_Sebastiao/Total/Treino)')

 #Loop para respostas fora do sugerido

 while area_alter not in ['Bertioga', 'São_Sebastião',

'Total', 'Treino']:

 print('\nHouve um erro na digitação')

 area_alter = input('Por favor, digite novamente: ')

 #Condição para área de trabalho sendo Bertioga, alterando

e atualizando a tabela de propriedades

 if area_alter == 'Bertioga':

 self.tabela_propriedades.loc['selec_area_trab']['informa

cao'] = area_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 self.transfAreaTrabalho()

 #Tranformação do caminho da área de trabalho

para uma classe de método geometry do GEE

 return

area_alter

 #Retorna a área de trabalho escolhida como um método do

GEE

 #Condição para área de trabalho sendo São Sebastião,

alterando e atualizando a tabela de propriedades

 elif area_alter == 'Sao_Sebastiao':

 self.tabela_propriedades.loc['selec_area_trab']['informa

cao'] = area_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 self.transfAreaTrabalho()

 #Tranformação do caminho da área de trabalho

para uma classe de método geometry do Google earth Engine

53

 return

area_alter

 #Retorna a área de trabalho escolhida como um método do

GEE

 #Condição para área de trabalho sendo total, alterando e

atualizando a tabela de propriedades

 elif area_alter == 'Total':

 self.tabela_propriedades.loc['selec_area_trab']['informa

cao'] = area_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 self.transfAreaTrabalho()

 #Tranformação do caminho da área de trabalho

para uma classe de método geometry do Google earth Engine

 return

area_alter

 #Retorna a área de trabalho escolhida como um método do

GEE

 #Condição para área de trabalho sendo Treino, alterando e

atualizando a tabela de propriedades

 else:

 self.tabela_propriedades.loc['selec_area_trab']['informa

cao'] = area_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 self.transfAreaTrabalho()

 #Tranformação do caminho da área de trabalho

para uma classe de método geometry do Google earth Engine

 return

area_alter

 #Retorna a área de trabalho escolhida como um método do

GEE

 #Função que transforma a área de trabalho escolhida para

54

 def transfAreaTrabalho(self):

 #Dicionário para as respostas esperadas do usuário e

índice correspondente ao caminho do arquivo kml da área de

trabalho

 dicion_area_trabalho = {'Bertioga':'caminho_at_bertioga',

 'São_Sebastião':'caminho_at_saoseb

ast',

 'Total':'caminho_area_trabalho',

 'Treino':'caminho_at_treino'}

 #Bloco que transforma o arquivo kml para uma geometria do

Earth Explorer e logo em seguida em um método geometry

 ee_geom =

geemap.kml_to_ee(self.tabela_propriedades.loc[dicion_area_trab

alho[self.area_trabalho]]['informacao']) #Transformação da

área de trabalho no tipo ee.Geometry

 ee_geom_met =

ee_geom.geometry()

 #Transformação da área de

trabalho no médoto geometry

 self.area_geom = ee_geom

 self.area_metodo = ee_geom_met

 return self.area_metodo #Retorna o método da área de

trabalho

 #Função que apresenta as informações da coleção em forma de

tabela

 def verInfoColecao(self):

 #Transformando as informações de produto, data e área de

trabalho em uma série do pandas

 lista_info_colecao = [self.produto, self.datas,

self.area_trabalho]

 #Criação da tabela de informações da coleção

 self.tabela_info_colecao =

pd.DataFrame(lista_info_colecao, index=['produto',

55

 'intervalo de datas',

 'area de trabalho'])

 return self.tabela_info_colecao #Retorna a tabela de

coleção

 #Função para editar as informações da coleção

 def editInfoColecao(self):

 #Mostrando a tabela de informações da coleção

 display(self.verInfoColecao())

 #Perguntando ao usuário qual a propriedade que se gostaria

de alterar

 info_colec = input('Qual das propriedades gostaria de

alterar? (produto/intervalo_de_datas/area_de_trabalho)')

 #Loop para respostas fora do sugerido

 while info_colec not in ['produto', 'intervalo_de_datas',

'area_de_trabalho']:

 print('\nHouve um erro na digitação')

 info_colec = input('Por favor, digite novamente: ')

 #Condição para alterar o produto

 if info_colec == 'produto':

 self.editProduto()

 #Condição para alterar o intervalo de datas

 elif info_colec == 'intervalo_de_datas':

 self.editIntervaloDatas()

 #Condição para alterar a área de trabalho

 else:

 self.editAreaTrabalho()

56

 #Função apra montar a coleção GEE

 def montarColecao(self):

 #Pegando a data inicial e a final da tabela de

propriedades

 data_inicial =

self.tabela_propriedades.loc['data_inicial']['informacao']

 data_final =

self.tabela_propriedades.loc['data_final']['informacao']

 if

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'ndvi' or

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'falsa_cor':

 #Bloco que cria a coleção de imagens do GEE utilizando as

informações de produto, intervalo de data, bandas escolhidas e

área de trabalho

 self.colecao = (

 ee.ImageCollection(self.codigo_produto)

 #Código do produto GEE

 .filterDate(data_inicial,

data_final) #Intervalo de

datas

 .select(self.listarBandas())

 #Bandas escolhidas

 .filterBounds(self.transfAreaTrabalho())

 #Área de trabalho no formato de método

geometry

)

 return self.colecao #Retorna a coleção no formato

ee.imageCollection

 else:

 self.colecao = (

57

 ee.ImageCollection(self.codigo_produto)

 #Código do produto GEE

 .filterBounds(self.transfAreaTrabalho())

 #Área de trabalho no formato de método

geometry

)

 return self.colecao #Retorna a coleção no formato

ee.imageCollection

 #Função que transforma a coleção de imagens em uma imagem e

recorta

 def montarImagem(self):

 #Condição para montar a imagem caso o produto escolhido

seja falsa cor

 if

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'falsa_cor':

 colecao =

self.montarColecao()

 #Montando a coleção

 colecao_clip = colecao.map(lambda image:

image.clip(self.transfAreaTrabalho())) #Recortando a imagem

 imagem_clip =

colecao_clip.median()

 #Transformando a coleção de imagem em uma imagem

utilizando uma mediana

 return imagem_clip #Retorna a imagem em falsa cor

recortada

 #Condição para montar a imagem caso o produto escolhido

seja ndvi

 elif

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'ndvi':

58

 #Bloco para montar a coleção, recortar e criar a imagem

 colecao = self.montarColecao()

 colecao_clip = colecao.map(lambda image:

image.clip(self.transfAreaTrabalho()))

 imagem_clip = colecao_clip.median()

 #Bloco para pegar as bandas do vermelho e NIR para

aplicar o cálculo do ndvi

 lista_bandas = self.listarBandas()

 nir = imagem_clip.select(lista_bandas[1])

 verm = imagem_clip.select(lista_bandas[0])

 ndvi = nir.subtract(verm).divide(nir.add(verm))

 return ndvi #Retorna a imagem ndvi

 #Condição para montar a imagem caso o produto escolhido

seja terreno

 elif

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'terreno':

 #Bloco para montar a coleção, recortar e criar a imagem

 colecao = self.montarColecao()

 colecao_clip = colecao.map(lambda image:

image.clip(self.transfAreaTrabalho()))

 colecao_clip = colecao_clip.median()

 elevacao_clip = colecao_clip.select('DSM')

 return elevacao_clip #Retorna a imagem de terreno

recortada

 elif

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'direcao_de_inclinacao_do_terreno':

 #Bloco para montar a coleção, recortar e criar a imagem

 colecao = self.montarColecao()

 colecao_clip = colecao.map(lambda image:

image.clip(self.transfAreaTrabalho()))

59

 colecao_clip = colecao_clip.median()

 elevacao_clip = colecao_clip.select('DSM')

 elevacao_clip.rename('elevation')

 aspect = ee.Terrain.aspect(elevacao_clip)

 return aspect #Retorna a imagem de terreno recortada

 else:

 #Bloco para montar a coleção, recortar e criar a imagem

 colecao = self.montarColecao()

 colecao_clip = colecao.map(lambda image:

image.clip(self.transfAreaTrabalho()))

 colecao_clip = colecao_clip.median()

 elevacao_clip = colecao_clip.select('DSM')

 elevacao_clip.rename('elevation')

 slope = ee.Terrain.slope(elevacao_clip)

 return slope #Retorna a imagem de terreno recortada

 #Função para a visualização das imagens

 def visualizacaoImagem(self):

 #Montando o mapa para a visualização da imagem

 mapa_ee = geemap.Map(center =

(float(self.centro_x), #Longitude em

que estará o centro da visualização

 float(self.centro_y)),

 #Longitude em que estará o centro da

visualização

 zoom =

int(self.zoom)) #Zoom em que

estará a visualização

 #Montando a imagem

 imagem = self.montarImagem()

60

 #Para cada tipo de imagem há uma visualização diferente

 #Definindo os parâmetros para a imagem em falsa cor

 if

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'falsa_cor':

 lista_bandas = self.listarBandas()

 parametros_vis = {

 'min' : 0.0,

 'max' : 6000,

 'bands' : lista_bandas

 }

 #Definindo os parâmetros para a imagem ndvi

 elif

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'ndvi':

 parametros_vis = {

 'palette': [

 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555',

'FCD163', '99B718',

 '74A901','66A000', '529400', '3E8601', '207401',

'056201',

 '004C00', '023B01','012E01', '011D01', '011301'

]

 }

 elif

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'terreno':

 parametros_vis = {

 'min': 0,

 'max': 5000,

 'palette': ['0000ff', '00ffff', 'ffff00', 'ff0000',

'ffffff']

61

 }

 elif

self.tabela_propriedades.loc['selec_prod']['informacao'] ==

'direcao_de_inclinacao_do_terreno':

 parametros_vis = {min: 0, max: 359.99}

 else:

 parametros_vis = {min: 0, max: 89.99}

 #Adicionando a camada de imagem para o mapa de

visualização

 mapa_ee.addLayer(imagem, parametros_vis,'Layer para

conferir')

 return mapa_ee #Retorna o mapa interativo com a imagem

 #FUNÇÃO PARA BAIXAR AS IMAGENS

 def baixarImagem(self):

 #Caminho para cada tipo arquivo

 caminhos_download = {

 'ndvi':self.tabela_propriedades.loc['caminho_ndvi']['i

nformacao'],

 'falsa_cor':self.tabela_propriedades.loc['caminho_cor_

falsa']['informacao'],

 'terreno':self.tabela_propriedades.loc['caminho_mde'][

'informacao'],

 'direcao_de_inclinacao_do_terreno':self.tabela_proprie

dades.loc['caminho_aspect']['informacao'],

 'angulo_de_inclinacao_do_terreno':self.tabela_propried

ades.loc['caminho_slope']['informacao']

 }

 #Nome para o arquivo

62

 nome =

(self.tabela_propriedades.loc['data_inicial']['informacao'] +

'_' + self.tabela_propriedades.loc['selec_prod']['informacao']

+ '.tif')

 #Montando o caminho para o arquivo

 caminho_arq =

os.path.join(caminhos_download[self.tabela_propriedades.loc['s

elec_prod']['informacao']],

 nome)

 #Montando a imagem

 imagem = self.montarImagem()

 #Escala

 escala = {

 'ndvi':125,

 'falsa_cor':20,

 'terreno':30,

 'direcao_de_inclinacao_do_terreno':30,

 'angulo_de_inclinacao_do_terreno':30

 }

 #Baixar a imagem

 geemap.download_ee_image(imagem,

 region =

self.transfAreaTrabalho(),

 filename = caminho_arq,

 crs = 'EPSG:31983',

 scale =

escala[self.tabela_propriedades.loc['selec_prod']['informacao'

]])

7.2. Anexo B

 Código para a produção do mapa de susceptibilidade

(https://colab.research.google.com/drive/1balvrlg54DxpOPoiq_hbsc6oM4Q2bpz6?usp=sharin

g)

https://colab.research.google.com/drive/1balvrlg54DxpOPoiq_hbsc6oM4Q2bpz6?usp=sharing
https://colab.research.google.com/drive/1balvrlg54DxpOPoiq_hbsc6oM4Q2bpz6?usp=sharing

63

#Instalação das bibliotecas

#Instalação das bibliotecas para trabalhar com imagens e

informações espaciais

%pip install rasterio

%pip install geopandas

#Instalação da biblioteca que adiciona uma barra de cores aos

plots

%pip install matplotlib-scalebar

#Instalação das bibliotecas de inteface de usuário

!pip install ipywidgets

To enable `ipywidgets`

!jupyter nbextension enable --py widgetsnbextension

Importar os pacotes

import os #

Biblioteca para trabalhar com o sistema operacional (no caso

google drive)

import numpy as np #

Biblioteca para trabalhar com os dados em forma de matrizes

import pandas as pd #

Biblioteca para trabalhar com tabelas

Bibliotecas para trabalhar com a plotagem das imagens

from numpy import newaxis

import matplotlib as mpl

import matplotlib.pyplot as plt

from IPython.display import display

from matplotlib_scalebar.scalebar import ScaleBar

#import geopandas as gpd

Bibliotecas para trabalhar com imagens

import rasterio

from rasterio.enums import Resampling

64

Bibliotecas para trabalhar com o Machine Learning

from sklearn.model_selection import train_test_split

from imblearn.under_sampling import RandomUnderSampler

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import GridSearchCV

class Propriedades:

 #Função que inicializa a classe e abre a tabela de

propriedades

 def __init__(self, caminho):

 self.caminho_arquivo = caminho

 self.tabela_propriedades =

pd.read_csv(self.caminho_arquivo, index_col = 'propriedade')

 #Função para editar o arquivo de propriedades

 def editPropriedades(self):

 display(self.tabela_propriedades) #Apresentar a tabela

para facilitar a escolha da propriedade e edição dela

 propriedade_alter = input('\nQual das propriedades que

será alterada? ') #Questionamento para decidir qual

propriedade será editada

 #Loop para questionar novamente caso o que foi inserido

não seja uma das propriedades

 while propriedade_alter not in

propriedades.tabela_propriedades.index:

 print('\O que foi inserido ou foi digitado errado ou não

faz parte das propriedades')

 propriedade_alter = input('Por favor digite novamente:

')

 lista_propr_alter = [propriedade_alter]

65

 informacao_alter = input('\nQual a informação nova terá

esta propriedade? ') #Questionamento para decidir a nova

informação que a propriedade terá

 #Alterando o arquivo original para que fique salvo a nova

informação

 self.tabela_propriedades.loc[propriedade_alter]['informaca

o'] = informacao_alter

 self.tabela_propriedades.to_csv(self.caminho_arquivo,

mode='w')

 return self.tabela_propriedades

class Imagens:

 #Função de inicialização

 def __init__(self, caminho):

 self.caminho_propriedades =

caminho

 #O caminho para o arquivo de

propriedades

 self.tabela_propriedades =

Propriedades(caminho).tabela_propriedades

 #A tabela de propriedades

 self.escolhendoTreinoTotal()

 #Cham

ando a função que irá selecionar se os dados trabalhados serão

utilizados

 self.geotiffs = [os.path.join(self.caminho_escolhido,x)

for x in os.listdir(self.caminho_escolhido) if '.tif' in x]

#Linha que lê e lista os arquivos .tif que estão na pasta

 self.tabelaDimensoesImagens()

 #Cha

ma a função que cria a tabela com as dimensões das imagens

66

 #Função que pergunta qual área quer utilizar, treino ou

total

 def escolhendoTreinoTotal(self):

 #Pergunta e dá as escolhas

 self.esc_treino_total = input('Qual será o tipo de imagem?

(treino/total) ')

 #Loop caso a entrada seja diferente do sugerido

 while self.esc_treino_total not in ['treino','total']:

 self.esc_treino_total = input('Parece que houve um erro

de digitação, tente novamente: (treino/total) ')

 #Condições para a escolha

 if self.esc_treino_total == 'treino':

 self.caminho_escolhido =

self.tabela_propriedades.loc['caminho_dados_treino']['informac

ao']

 else:

 self.caminho_escolhido =

self.tabela_propriedades.loc['caminho_dados_total']['informaca

o']

 #Função para descobrir o fator que será utilizado para

redimensionar as imagens

 def fatorRedimensionar(self):

 #Listas vazias para armazenar os valores de altura e

largura das imagens

 lista_fator_larg, lista_fator_altu = [], []

 #Encontrar as dimensões das menores imagens

 menor_larg = self.tabela_imagens.min()['largura']

 menor_altu = self.tabela_imagens.min()['altura']

67

 #Loop para encontrar o valor que será utilizado para

diminuir o tamanho o pixel,

 #a partir da quantidade de pixels atual e da quantidade de

pixels da menor imagem

 for indice in self.tabela_imagens.index:

 #Encontrar as dimensões da imagem

 valor_larg = self.tabela_imagens.loc[indice]['largura']

 valor_altu = self.tabela_imagens.loc[indice]['altura']

 #Cálculo do fator

 fator_larg = menor_larg/valor_larg

 fator_altu = menor_altu/valor_altu

 #Adicionar o fator na lista

 lista_fator_larg.append(fator_larg)

 lista_fator_altu.append(fator_altu)

 #Adicionando as colunas dos fatores na tabela de dimensões

 self.tabela_imagens['fator_largura'] = lista_fator_larg

 self.tabela_imagens['fator_altura'] = lista_fator_altu

 return self.tabela_imagens

 #Função para conferir a proporção das imagens e preparar uma

tabela com essas informações

 def tabelaDimensoesImagens(self):

 #Listas vazias para ir montando as colunas da tabela de

dimensões

 largura, altura, bandas, nome_arq, proporcao,

caminho_imagem = [], [], [], [], [], []

 #Loop para passar por todos as imagens

 for imagem in self.geotiffs:

68

 with rasterio.open(imagem,'r') as src: #Linha para abrir

a imagem como leitura essa ser chamada de src

 #Bloco para ler os dados e transformar em um ndarray

 imagem_np_array =

src.read(1) #Fazer leitura da primeira

banda que tem as informações,

#já que algumas imagens tem a segunda banda como alpha

 mascara_sem_dados = imagem_np_array

<0 #Linha que armazena os valores menores que

zero

 imagem_np_array[mascara_sem_dados] =

np.nan #Linha que transforma os valores menores que

zero em np.nan

 #Linha que trabalha pega os nomes dos arquivos

 nome_arq.append(os.path.basename(imagem).replace('.tif

',''))

 #Bloco que armazena os dados de caminho da imagem,

dimensões, proporção e títulos

 caminho_imagem.append(imagem)

 largura.append(imagem_np_array.shape[1])

 altura.append(imagem_np_array.shape[0])

 proporcao.append(imagem_np_array.shape[1]/imagem_np_ar

ray.shape[0])

 #Linha que cria a tabela com dos dados das imagens

 self.tabela_imagens = pd.DataFrame({'largura':largura,

'altura':altura,

 'proporção':proporcao,

69

 'caminho_imagem':camin

ho_imagem},

 index=nome_arq)

 #Atualização da tabela com o fatores que vão ser

utilizados para redimensionalizar

 self.fatorRedimensionar()

 return self.tabela_imagens #Retorna a tabela com as

dimensões das imagens e o fator para redimensionar elas

 #Função para redimensionar as iamgens

 def redimensionarImagem(self, indice):

 geotif = self.tabela_imagens.loc[indice]['caminho_imagem']

 lista_dados_categoricos =

['Img_MascBin_Treino','Img_Geologia_Treino',

 'Img_Pedologia_Prof_Treino',

'Img_Pedologia_Treino',

 'Img_Vegetacao_Treino','Img_Geo

logia_Total',

 'Img_Pedologia_Prof_Total',

'Img_Pedologia_Total',

 'Img_Vegetacao_Total']

 with rasterio.open(geotif) as dataset:

 if indice in lista_dados_categoricos:

 #Redimensionar o tamanho da imagem utilizando nearest

neighbor

 dataset_dim = dataset.read(

 out_shape = (

 dataset.count,

70

 int(round(dataset.height *

self.tabela_imagens.loc[indice]['fator_altura'])),

 int(round(dataset.width *

self.tabela_imagens.loc[indice]['fator_largura']))

),

 resampling=Resampling.nearest

)

 return dataset_dim

 else:

 #Redimensionar o tamanho da imagem utilizando bilinear

 dataset_dim = dataset.read(

 out_shape = (

 dataset.count,

 int(round(dataset.height *

self.tabela_imagens.loc[indice]['fator_altura'])),

 int(round(dataset.width *

self.tabela_imagens.loc[indice]['fator_largura']))

),

 resampling=Resampling.bilinear

)

 return dataset_dim

 #Função que retira as informações espaciais

 def informEspaciais(self):

 tabela = self.tabela_imagens

 menor_larg = tabela.min()['largura']

 menor_altu = tabela.min()['altura']

 self.menor_dim = tabela.loc[(tabela['largura'] ==

menor_larg) & (tabela['altura'] == menor_altu)]

 geotif =

self.tabela_imagens.loc[self.menor_dim.index[0]]['caminho_imag

em']

71

 with rasterio.open(geotif, 'r') as src:

 self.transform = src.transform

 self.limites = (src.bounds.left,

 src.bounds.right,

 src.bounds.bottom,

 src.bounds.top)

 self.crs = src.crs

 return

 #Lendo os dados dos geotiffs

 def prepararImagens(self):

 self.fatorRedimensionar()

 caminho = self.caminho_escolhido

 dados, nomes = [], []

 for indice in self.tabela_imagens.index:

 dataset = self.redimensionarImagem(indice)

 #Bloco para transformar os valores que não devem ser

contados em np.nan

 mascara_sem_dados = dataset < 0

 dataset[mascara_sem_dados] = np.nan

 dados.append(dataset[0])

 #Assim que tirar os dados sem valores,

adicionar na lista apenas as bandas com valores, já que

algumas imagens apresentam a banda alpha

 nome_arq = caminho + '/' + indice + '.npy'

 np.save(nome_arq, dados)

72

 self.np_stack = np.stack(dados) #Criar uma array 3D no

numpy

 return self.np_stack

 def atualizarTabelaValMinMax(self):

 self.prepararImagens()

 lista_valores_min = []

 lista_valores_max = []

 for array in self.np_stack:

 lista_valores_min.append(np.nanmin(array))

 lista_valores_max.append(np.nanmax(array))

 self.tabela_imagens['valor_min'] = lista_valores_min

 self.tabela_imagens['valor_max'] = lista_valores_max

 return

#Classe para trabalhar com o Machine Learning

class MLP:

 #Função de inicialização

 def __init__(self, caminho):

 self.caminho_propriedades =

caminho #O caminho

para o arquivo de propriedades

 self.tabela_propriedades =

Propriedades(caminho).tabela_propriedades #A tabela de

propriedades

 self.imagens = Imagens(caminho)

 self.tabela_imagens = self.imagens.tabela_imagens

 self.caminho_treino =

self.tabela_propriedades.loc['caminho_dados_treino']['informac

ao']

 self.caminho_total =

self.tabela_propriedades.loc['caminho_dados_total']['informaca

o']

73

 self.empilharArrays()

 #Função que empilha os np arrays dependendo da escolha de

total ou treino

 def empilharArrays(self):

 self.nparrays_treino =

[os.path.join(self.caminho_treino,x) for x in

os.listdir(self.caminho_treino) if '.npy' in x]

 self.nparrays_total = [os.path.join(self.caminho_total,x)

for x in os.listdir(self.caminho_total) if '.npy' in x]

 for array in self.nparrays_treino:

 self.np_stack_treino = np.load(array)

 for array in self.nparrays_total:

 self.np_stack_total = np.load(array)

 return

 #Função que normaliza os dados

 def normalizarDados(self):

 dados_norm = []

 dados_tot_norm = []

 for array in self.np_stack_treino:

 array_norm = (array-np.nanmin(array))/(np.nanmax(array)-

np.nanmin(array))

 dados_norm.append(array_norm)

 self.np_stack_treino_norm = np.stack(dados_norm)

 for array_total in self.np_stack_total:

74

 array_total_norm = (array_total-

np.nanmin(array_total))/(np.nanmax(array_total)-

np.nanmin(array_total))

 dados_tot_norm.append(array_total_norm)

 self.np_stack_total_norm = np.stack(dados_tot_norm)

 return

 #Função que cria um array de "sem dados" (np.nan)

 def mascaraSemDados(self):

 mascara = np.isnan(self.np_stack_treino[0])

 for imagem in self.np_stack_treino[1:]:

 mascara += np.isnan(imagem)

 mascara_total = np.isnan(self.np_stack_total[0])

 for imagem in self.np_stack_total:

 mascara_total += np.isnan(imagem)

 self.mascara_sem_dados = mascara

 self.mascara_sem_dados_total = mascara_total

 return

 #Função que prepara os dados, transformando os dados 2d em

1d e retirando os valores de np.nan

 def preparandoDados(self):

 self.normalizarDados()

 self.mascaraSemDados()

 entrada_np_array = self.np_stack_treino_norm[1:]

 etiqueta_np_array = self.np_stack_treino_norm[0]

 mascara = self.mascara_sem_dados.flatten()

 total_np_array = self.np_stack_total_norm

75

 mascara_total = self.mascara_sem_dados_total.flatten()

 self.entrada_pix =

entrada_np_array.reshape(entrada_np_array.shape[0],entrada_np_

array.shape[1]*entrada_np_array.shape[2]).T

 self.etiqueta_pix = etiqueta_np_array.flatten()

 self.total_pix =

total_np_array.reshape(total_np_array.shape[0],total_np_array.

shape[1]*total_np_array.shape[2]).T

 entrada = self.entrada_pix[~mascara]

 etiqueta = self.etiqueta_pix[~mascara]

 total = self.total_pix[~mascara_total]

 self.entrada = entrada

 self.etiqueta = etiqueta

 self.total = total

 return

 #Função que separa a área de treino em treino e teste com

70% para o treino e 30% para testar

 def separandoTreinoTeste(self):

 self.preparandoDados()

 rus = RandomUnderSampler(random_state=30)

 entrada_amost, etiqueta_amost =

rus.fit_resample(self.entrada, self.etiqueta)

 entrada_treino, entrada_teste, etiqueta_treino,

etiqueta_teste = train_test_split(entrada_amost,

etiqueta_amost, test_size=0.3, random_state=26)

 self.entrada_treino = entrada_treino

 self.entrada_teste = entrada_teste

76

 self.etiqueta_treino = etiqueta_treino

 self.etiqueta_teste = etiqueta_teste

 return

 #Função para criar o modelo

 def criandoModelo(self):

 mlp = MLPClassifier(random_state = 10,

 shuffle = True)

 self.modelo = mlp

 return

 #Função para definir os hiperparâmetros e treinar o modelo

 def definindoHiperparametros(self):

 self.separandoTreinoTeste()

 self.criandoModelo()

 parametros = {

 'hidden_layer_sizes': [(10,1),(20,1),(30,1),(40,1),

 (10,2),(20,2),(30,2),(40,2),

 (10,3),(20,3),(30,3),(40,3),

 (10,4),(20,4),(30,4),(40,4),

 (10,5),(20,5),(30,5),(40,5)],

 'activation': ['relu'],

 'solver': ['lbfgs','sgd','adam'],

 'learning_rate': ['constant','adaptive'],

 }

 GS = GridSearchCV(

 estimator = self.modelo,

 param_grid = parametros,

 scoring =

['accuracy','average_precision','recall','f1'],

77

 refit = 'f1',

 verbose = 4

)

 GS.fit(self.entrada_treino, self.etiqueta_treino)

 self.modelo_atualiz = GS

 self.modelo_param = GS.best_estimator_

 return

 #Função que pega o modelo e testa na área total grando o

mapa de probabilidade

 def criandoImagemProbab(self):

 self.mascaraSemDados()

 self.preparandoDados()

 self.preparandoDados()

 self.definindoHiperparametros()

 self.entrada =

self.total_pix[np.invert(self.mascara_sem_dados_total.flatten(

))]

 self.probab =

self.modelo_atualiz.predict_proba(self.entrada)[:,1]

 array_probab =

np.zeros(shape=self.mascara_sem_dados_total.flatten().shape,

dtype='float32')

 array_probab[np.invert(self.mascara_sem_dados_total.flatte

n())] = self.probab

 array_probab =

array_probab.reshape(self.mascara_sem_dados_total.shape)

 array_probab[self.mascara_sem_dados_total] = np.nan

 self.array_probab = array_probab

 return plt.imshow(array_probab)

78

 #Função gera o relatório da validação f1-score

 def montandoRelatorio(self):

 self.separandoTreinoTeste()

 self.previsao =

self.modelo_atualiz.predict(self.entrada_teste)

 print(classification_report(self.etiqueta_teste,

self.previsao))

 #Função que baixa a imagem de probabilidade

 def baixarImagem(self):

 self.imagens.informEspaciais()

 inf_crs = self.imagens.crs

 inf_transf = self.imagens.transform

 imagem = self.array_probab

 nome = 'probab'

 caminho_down =

self.tabela_propriedades.loc['caminho_download_imagens']['info

rmacao']

 caminho_nome = caminho_down + '/' + nome + '.tif'

 np_imagens = imagem[newaxis,:,:]

 altura = np_imagens.shape[1]

 largura = np_imagens.shape[2]

 quant_bandas = np_imagens.shape[0]

 tipo_dado = np_imagens.dtype

79

 with rasterio.open(caminho_nome, 'w',

 driver = 'GTiff',

 height = altura,

 width = largura,

 count = quant_bandas,

 dtype = tipo_dado,

 crs = inf_crs,

 transform = inf_transf) as down_img:

 down_img.write(np_imagens)

class Visualizar:

 #Função de inicialização

 def __init__(self, caminho):

 self.imagens = Imagens(caminho)

 self.esc_treino_total = self.imagens.esc_treino_total

 self.caminho_propriedades =

caminho

 #O caminho para o arquivo de

propriedades

 self.tabela_propriedades =

Propriedades(caminho).tabela_propriedades

 #A tabela de propriedades

 self.caminho_array = self.imagens.caminho_escolhido

 self.nparrays = [os.path.join(self.caminho_array,x) for x

in os.listdir(self.caminho_array) if '.npy' in x]

 self.empilharArrays()

 #Função para empilhar os np.arrays

 def empilharArrays(self):

 for array in self.nparrays:

 self.np_stack = np.load(array)

 return

80

 #Visualização das imagens

 def verImagensGrupo(self):

 self.imagens.informEspaciais()

 self.imagens.prepararImagens()

 lista_nomes = self.imagens.tabela_imagens.index

 # set some plotting parameters

 mpl.rcParams.update({"axes.grid":True,

"grid.color":"gray",

 "grid.linestyle":'--

','figure.figsize':(10,10),

 'axes.titlesize':'large'})

 #Editando como vai ser a plotagem das imagens

 linhas = (self.np_stack.shape[0]//3)

 figura, eixos = plt.subplots(nrows=4, ncols=3,

figsize=(50,35))

 figura.tight_layout()

 for indice_imagem, indice_eixo in

enumerate(eixos.flatten()):

 if indice_imagem < self.np_stack.shape[0]:

 indice_eixo.imshow(self.np_stack[indice_imagem],

 extent=self.imagens.limites)

 indice_eixo.set(title=lista_nomes[indice_imagem])

 barra_escala = ScaleBar(0.125, 'km', dimension = 'si-

length',

 length_fraction=0.1,location='

lower left')

 indice_eixo.add_artist(barra_escala)

 else:

81

 indice_eixo.axis('off') #Não plota a grade após a

última imagem ser plotada

 return plt.show()

 #Função para visualiza uma única imagem

 def verImagemUnico(self):

 mpl.rcParams.update({"axes.grid":True,

"grid.color":"gray",

 "grid.linestyle":'--

','figure.figsize':(20,20),

 'axes.titlesize':'large'})

 fig, ax = plt.subplots()

 self.imagens.informEspaciais()

 self.imagens.prepararImagens()

 self.imagens.atualizarTabelaValMinMax()

 self.indice_imagem = int(input('Coloque o valor: '))

 self.imagem = self.np_stack[self.indice_imagem]

 nome =

self.imagens.tabela_imagens.index.tolist()[self.indice_imagem]

 ax.imshow(self.imagem,

 extent=self.imagens.limites)

 vmin=self.imagens.tabela_imagens['valor_min'].tolist()[sel

f.indice_imagem]

 vmax=self.imagens.tabela_imagens['valor_max'].tolist()[sel

f.indice_imagem]

 sm =

plt.cm.ScalarMappable(norm=plt.Normalize(vmin=vmin,vmax=vmax))

82

 cbar = fig.colorbar(sm, shrink = 0.40,

spacing='proportional')

 barra_escala = ScaleBar(0.125, 'km', dimension = 'si-

length',

 length_fraction=0.1,location='lowe

r left')

 ax.add_artist(barra_escala)

 ax.set(title = nome)

 plt.show()

 #Função para baixar uma única imagem

 def baixarImagem(self):

 self.verImagemUnico()

 imagem = self.np_stack[self.indice_imagem]

 nome =

self.imagens.tabela_imagens.index.tolist()[self.indice_imagem]

 caminho_down =

self.tabela_propriedades.loc['caminho_download_imagens']['info

rmacao']

 caminho_nome = caminho_down + '/' + nome + '.tif'

 np_imagens = imagem[newaxis,:,:]

 altura = np_imagens.shape[1]

 largura = np_imagens.shape[2]

 quant_bandas = np_imagens.shape[0]

 tipo_dado = np_imagens.dtype

 sistem_coord = self.imagens.crs

83

 transform = self.imagens.transform

 with rasterio.open(caminho_nome, 'w',

 driver = 'GTiff',

 height = altura,

 width = largura,

 count = quant_bandas,

 dtype = tipo_dado,

 crs = sistem_coord,

 transform = transform) as down_img:

 down_img.write(np_imagens)

