
 

UNIVERSIDADE DE SÃO PAULO 

FACULDADE DE CIÊNCIAS FARMACÊUTICAS 

Curso de Graduação em Farmácia-Bioquímica 

Análise do papel de Miro-1 sobre a toxicidade da alfa-sinucleína 
em modelo celular da doença de Parkinson. 

Thaís Alexandre Falkembach Andreis 

Trabalho de Conclusão do Curso de 

Farmácia-Bioquímica da Faculdade de 

Ciências Farmacêuticas da 

Universidade de São Paulo. 

Orientadora: 

Profa. Dra. Merari de Fátima 
Ramires Ferrari 

 

 

São Paulo 

2022 



 

Sumário 

1. INTRODUÇÃO............................................................................................................ 7 

2. OBJETIVO ................................................................................................................ 14 

3. MATERIAL E MÉTODOS ......................................................................................... 15 

3.1. Modelo celular de neurodegeneração genética e inibição do gene Miro-1 ......... 15 

3.2. Caracterização dos neurônios ........................................................................... 16 

3.3. Ensaio de MTT .................................................................................................. 16 

3.4. Ensaio de Viabilidade Celular - Calceína AM ..................................................... 16 

3.5. Western Blot ...................................................................................................... 17 

3.6. Células THP-1 ................................................................................................... 17 

3.7. Detecção dos níveis de citocina ......................................................................... 18 

3.8. Produção de Óxido Nítrico ................................................................................. 18 

3.9. Análise estatística .............................................................................................. 18 

4. RESULTADOS ......................................................................................................... 18 

5. DISCUSSÃO ............................................................................................................ 24 

6. CONCLUSÕES......................................................................................................... 25 

7. REFERÊNCIAS ........................................................................................................ 26 
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RESUMO 

ANDREIS, THAIS A F. Análise do papel de Miro-1 sobre a toxicidade na alfa-
sinucleína em modelo celular da doença de Parkinson. 2022. no. 1139-21. 
Trabalho de Conclusão de Curso de Farmácia-Bioquímica – Faculdade de Ciências 
Farmacêuticas – Universidade de São Paulo, São Paulo, 2022. 

Palavras-chave: Doença de Parkinson, mitocôndria, Miro-1, CRISPR/Cas9, alfa-
sinucleína, inflamação 

Introdução: A alfa-sinucleína é responsável pela maturação e liberação de 
vesículas pré-sinápticas. Mutações, como a A30P e a A53T, podem ser bastante 
prejudiciais à viabilidade celular. Uma das principais características da doença de 
Parkinson é a presença de agregados proteicos de alfa-sinucleína, conhecidos 
como corpos de Lewy. A proteína Miro-1 tem papel essencial no transporte 
mitocondrial anterógrado e retrógrado e na mitofagia mediada por PINK1/Parkina. 
Experimentos do nosso grupo de pesquisa observaram que a deleção de Miro-1 
parece proteger da morte leveduras que expressam alfa-sinucleína exógena. Desta 
forma, é relevante avaliar a influência do silenciamento de Miro-1 na 
superexpressão de alfa-sinucleína, tanto na perspectiva da viabilidade celular e 
estresse do retículo endoplasmático, quanto na possível ativação da resposta pró-
inflamatória. 

Objetivo: O objetivo do presente estudo é estabelecer a relação entre os níveis da 
proteína Miro-1 e a toxicidade promovida pela superexpressão da alfa-sinucleína. 
Para isso, avaliou-se os efeitos da diminuição da expressão de Miro-1 em neurônios 
que expressam alfa-sinucleína selvagem (WT) e mutante (A30P e A53T) em relação 
à morte celular, estresse do retículo endoplasmático, mitofagia e resposta 
inflamatória. 

Materiais e métodos: Células SH-SY5Y foram diferenciadas em neurônios 
dopaminérgicos e transfectadas com plasmídeos de alfa-sinucleína selvagem e 
mutante (A30P e A53T), além da utilização da tecnologia CRISPR/Cas9 para 
redução da expressão de Miro-1. A fim de se estudar a viabilidade celular, foram 
realizados ensaio de MTT e de calceína AM. Por meio do Western Blot, foram 
possíveis análises de proteínas como caspase3, XBP-1, CHOP, Bip e ATF6. As 
células THP-1 foram utilizadas para avaliação da inflamação, juntamente com as 
técnicas de quantificação de óxido nítrico e ELISA para TNF-α. Para a análise 
estatística, os resultados foram avaliados por análise de variância (ANOVA), 
adotando o nível de significância de 5% (p≤0,05). 

Resultados: É possível afirmar que a superexpressão de alfa-sinucleína na forma 
selvagem e mutante, principalmente A53T, afeta a viabilidade celular. No entanto, 
o silenciamento da Miro-1 parece proteger as células do estresse e da consequente 
morte celular, como pode-se observar nas marcações de Western Blot e no ensaio 
de MTT e de calceína AM. O aumento na resposta UPR dos grupos CRISPR + 
A30P e CRISPR + A53T pode estar relacionado com o papel essencial que a Miro-



 

1 tem para a célula e o estresse gerado por seu silenciamento. Este aumento pode 
estar associado também à fase inicial dos efeitos da expressão de alfa-sinucleína 
mutante em que há uma regulação compensatória das chaperonas envolvidas no 
correto enovelamento e encaminhamento das proteínas. Além disso, foi possível 
observar que a diminuição de Miro-1 também sugere uma redução na resposta pró-
inflamatória no SNC, protegendo as células da toxicidade gerada pela 
neuroinflamação crônica, presente em pacientes da doença de Parkinson. 

Conclusão: Os resultados apontam para a confirmação da hipótese de que o 
silenciamento da proteína Miro-1, quando há superexpressão da alfa-sinucleína, é 
capaz de proteger a célula do estresse do retículo endoplasmático, da ativação do 
sistema UPR, da neuroinflamação e, posteriormente, da apoptose. 
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1. INTRODUÇÃO 

Doença de Parkinson e a proteína alfa-sinucleína 

Em 1817, o médico britânico James Parkinson descreveu pela primeira vez o 

seguinte conjunto de sinais: “movimento involuntário trêmulo, com força muscular 

diminuída, propensão de curvatura do tronco para frente, com sentidos e intelecto 

permanecendo ilesos” de seis pacientes. Estes sintomas foram chamados na época 

de “paralisia agitante” e atualmente é conhecida como Doença de Parkinson. Sabe-

se que esta é caracterizada pela presença de agregados da proteína alfa-sinucleína, 

também chamados de corpos e neuritos de Lewy, em neurônios dopaminérgicos da 

substância negra. 

A proteína citosólica alfa-sinucleína é responsável pela maturação e liberação 

de vesículas pré-sinápticas, compostas por neurotransmissores, e pode 

desencadear danos funcionais quando apresenta alterações em sua estrutura 

(KOPRICH, 2017; LI, 2021; CARDINALE, 2021). Mutações na alfa-sinucleína 

podem ser bastante prejudiciais à viabilidade celular, dentre elas a Ala30Pro (A30P) 

está associada à disfunção do metabolismo lipídico e a Ala53Thr (A53T) que 

apresenta maior toxicidade e rápido aumento na produção de espécies reativas de 

oxigênio (EROs) (MELO, 2022). A alta expressão da proteína selvagem pode gerar 

má formação, facilitando o acúmulo da alfa-sinucleína em monômeros, fibrilas e 

oligômeros, componentes dos corpos de Lewy. 

Estes agregados prejudicam a função mitocondrial e do retículo 

endoplasmático (RE). Como consequência natural do envelhecimento, há a 

diminuição da autofagia e decorrente excesso de cargas a serem degradadas, as 

mitocôndrias não funcionais se acumulam, causam o aumento da produção de 

EROs e desbalanço da homeostase do cálcio juntamente com o RE, ativando a 

resposta a proteínas mal enoveladas (do inglês, unfolded protein response - UPR). 

Este processo sinaliza para a expressão de chaperonas específicas para o correto 

enovelamento das proteínas e, no caso de manutenção do estresse do RE, há 



 

desencadeamento da morte celular. 

O controle motor é feito por centros encefálicos como os núcleos da base, 

que são compostos pelo corpo estriado, globo pálido interno e externo, substância 

negra e subtálamo. A fim de realizar um movimento, o córtex motor sinaliza aos 

componentes do núcleo da base, que o retornam com duas respostas contrárias - a 

excitatória da via direta e a inibitória, da indireta. A dopamina é essencial nesse 

processo, possibilitando a execução do movimento de forma controlada (figura 1). 

No entanto, nos contextos do envelhecimento e da doença de Parkinson, a morte 

de neurônios dopaminérgicos da substância negra diminui consideravelmente a 

quantidade do neurotransmissor, enviando sinais contrários ao córtex, os quais 

geram o tremor involuntário característico da doença. 

 

Figura 1. Esquema das vias direta e indireta na comunicação entre córtex motor e os núcleos 

da base para realização do movimento. 

Alfa-sinucleína e Estresse do Retículo Endoplasmático 

Para as proteínas serem consideradas funcionais, elas precisam interagir 

com as chaperonas e adquirir certa conformação tridimensional, etapa conhecida 

como enovelamento, o qual ocorre no retículo endoplasmático. Após este processo, 

a proteína recém-formada passa por um controle de qualidade, no qual três 

sensores estão envolvidos: proteína quinase dependente de inositol 1α (IRE1α), 



 

proteína quinase residente no retículo endoplasmático semelhante à PKR (PERK) e 

fator de transcrição 6 (ATF6). Elas são responsáveis por monitorar o ambiente e 

detectar proteínas mal enoveladas, sinalizando-as para a degradação. Caso a 

produção destas malformações seja alta, o RE fica sobrecarregado, o sistema UPR 

é ativado e as três proteínas sensores sinalizam à célula para aumentar a síntese 

de RE. Se o nível permanecer alto, proteínas mal enoveladas começam a ser 

liberadas e há sinalização para sistemas de degradação intracelular, como a 

autofagia (PINTO, 2012). 

A proteína Bip interage com os três sensores citados acima, o que os mantém 

em estado inativo. Com a ativação do sistema UPR, a ligação das proteínas 

reguladoras com a Bip é rompida, por esta ter maior afinidade por proteínas mal 

enoveladas (WALTER, 2011). A cascata da Ire-1 leva à atividade de duas proteínas 

principais: a XBP-1, a qual participa da transcrição de chaperonas e genes ligados 

à degradação de proteínas, e a TRAF-2, responsável por ativar a caspase-12, sinal 

indutor de morte específico para o estresse do RE (NAKAGAWA, 2000). Já a ATF6 

se transloca para o complexo de Golgi e é clivada, na qual o seu fragmento N-

terminal (ATF6f) migra para o núcleo, onde é responsável indiretamente pela 

expressão de genes para chaperonas residentes, como a Bip, e também participa 

da transcrição de XBP-1. Por fim, a via PERK está bastante ligada com a proteína 

CHOP, relacionada com a morte celular pela expressão reduzida do fator 

antiapoptótico Bcl-2, a superexpressão de Bim (fator pró-apoptótico da família Bcl-

2) (DANIAL, 2004) e da indução na expressão do receptor de morte 5 (DR5) 

(CHAUDHARY, 1997). De maneira oposta, células que não expressam a PERK são 

mais suscetíveis à morte celular durante a ativação do sistema UPR (HARDING, 

2000), o que comprova os papéis de sinalização pró-apoptótica, mas também de 

sobrevivência, da via PERK. A figura 2 exemplifica a ação das proteínas 

relacionadas à UPR. 

Na doença de Parkinson, os corpos e neuritos de Lewy, se presentes em 

grande quantidade, podem levar à ativação da resposta UPR e iniciar a morte de 

neurônios da substância negra. Estudos indicam que o estresse do retículo 



 

endoplasmático está presente desde o início da neurodegeneração (MERCADO, 

2013; ROUSSEL, 2013). A redução na expressão de CHOP diminuiu a 

susceptibilidade de neurônios dopaminérgicos a neurotoxinas que induzem a 

doença de Parkinson (SILVA, 2005), enquanto a deficiência de ATF6α apresentou 

resultado contrário (EGAWA, 2011; HASHIDA, 2012). 

Figura 2. Adaptada de Hetz, 2022, Nature Reviews Drug Discovery. Figura representativa das três 

proteínas sensores da resposta UPR. a. IRE1α processa o mRNA do fator de transcrição proteína 

de ligação ao X-box (XBP-1). Ao ser ativado, superexpressa um subgrupo de genes relacionados ao 

enovelamento de proteínas, degradação de proteínas associado ao RE, controle de qualidade de 

proteínas e biogênese de organelas. Também ativa sinais para apoptose, como o fator 2 associado 

ao receptor do fator de necrose tumoral (TRAF2). b. A ativação da via da PERK aumenta a síntese 

de proteínas em geral e também pode promover apoptose, através da proteína homóloga de C/EBP 

(CHOP). c. A ATF6, em situações de estresse do RE, se transfere para o complexo de Golgi, onde 

libera seu domínio citosólico (ATF6f) que controla a superexpressão de genes específicos do 

sistema UPR voltados à degradação de proteínas. 

  



 

Doença de Parkinson e o Sistema Imune 

A resposta inflamatória no sistema nervoso central (SNC) tem grande 

participação das microglias, as quais representam a maior população de células 

imunes residentes, responsáveis por monitorar o ambiente e pelo processo de 

fagocitose. No momento em que padrões moleculares associados a patógenos 

(PAMPs) ou padrões moleculares associados a danos (DAMPs) ativam a microglia, 

ela assume formas ameboides e com largas extensões, sendo então conhecida 

como M1. Este fenótipo possui alto número de moléculas do complexo principal de 

histocompatibilidade 1 e 2 (MHC-I e MHC-II), produz citocinas pró-inflamatórias (IL1, 

IL6 e TNF) e afetam a barreira hematoencefálica, permitindo a infiltração de células 

imunes periféricas (monócitos e células T). As microglias também podem ser 

ativadas e assumir o fenótipo M2, caracterizado por produzir resolvinas e citocinas 

anti-inflamatórias, como a IL4 e IL10. 

Segundo Mayne (2020), o sistema imune no SNC pode atuar como amigo ou 

inimigo, dependendo das condições em que se encontra. Em um indivíduo saudável, 

as células T reguladoras e as Th2 liberam IL-4 e IL-10, os quais aumentam a síntese 

do fator neurotrófico derivado de células gliais (GDNF), conhecido por ser 

neuroprotetor, e redução da ativação da microglia, o que diminui a produção de 

EROs e ativação de NF-kB. Em contraste, com o envelhecimento e em doenças 

neurodegenerativas, há alterações na barreira hematoencefálica, que ocasionam 

maior permeabilidade, e a ativação de microglias aumenta o recrutamento de 

células T para o SNC. Células iPS de mesencéfalo e células T ativadas de pacientes 

mostraram aumento na morte neuronal, associada ao aumento na produção de IL-

17 e de receptores de IL-17. De maneira complementar, o efeito degenerativo foi 

suprimido com o tratamento prévio dos neurônios com anticorpos neutralizantes de 

IL-17 ou do receptor de IL-17, sugerindo o papel das células Th17 na morte neuronal 

da doença de Parkinson (Sommer, 2019).  

A exposição de células neurais a fibrilas de alfa-sinucleína pré-formadas gera 

a liberação de fatores pró-inflamatórios pela microglia, aumentando a atividade 



 

fagocítica e propagação de alfa-sinucleína de maneira similar aos príons (proteínas 

enoveladas corretamente passam a apresentar alterações estruturais quando 

interagem com as formas mal enoveladas) (CHESSELET, 2012; KIM, 2013). De 

modo resumido, a alfa-sinucleína extracelular pode atuar como DAMP e ativar a 

microglia por meio do receptor do tipo toll 2 (TLR2) (LI, 2021; CARDINALE, 2021), 

ao mesmo tempo em que as fibrilas da proteína ativam NF-kB. Estes dois processos 

ativam a microglia e o inflamassoma NLRP3 que, a partir da atividade proteolítica 

da caspase 1, leva à produção das citocinas pró-inflamatórias IL-1 e IL-18 (LI, 2021; 

CARDINALE, 2021). Há também a síntese de alfa-sinucleína truncada, que tende a 

produzir maior quantidade de agregados proteicos, levando a um aumento da 

citotoxicidade pelo excesso de resposta inflamatória (LI, 2021; CARDINALE, 2021), 

conforme ilustrado na figura 3. 

 

Figura 3. Adaptada de Ferreira, 2018, Frontiers. Ação inflamatória da alfa-sinucleína sobre a 

microglia. 

Miro-1 

A proteína Miro-1 está localizada na membrana externa da mitocôndria e 

atualmente pode ser considerada como uma das assinaturas moleculares da 



 

doença de Parkinson (GROSSMAN, 2020). Tem papel essencial no transporte 

mitocondrial anterógrado (do corpo celular para a periferia do axônio) e retrógrado 

(da periferia do axônio para o corpo celular), na comunicação entre retículo 

endoplasmático e mitocôndria (KORNMANN, 2011) e na mitofagia mediada por 

PINK1 e Parkina. O silenciamento de Miro-1 em cultura primária de neurônios de 

camundongos gerou distribuição mitocondrial irregular e a decorrente diminuição na 

complexidade dendrítica (LÓPEZ-DOMÉNECH, 2016). No entanto, a 

superexpressão da proteína levou à degeneração de neurônios dopaminérgicos em 

moscas, provavelmente associado ao atraso na reciclagem de mitocôndrias não 

funcionais pela mitofagia provocada pelo excesso de Miro-1 (LIU, 2012). 

Para preservar os longos axônios e a liberação e reciclagem de 

neurotransmissores (YELLEN, 2018), os neurônios dependem constantemente da 

atividade mitocondrial, visto sua importância para geração de energia celular, 

regulação da homeostase e mediação dos níveis de cálcio intracelular (FRANCO-

IBORRA, 2016). A formação dos agregados proteicos de alfa-sinucleína e o 

aumento de mitocôndrias não funcionais também são responsáveis por levar os 

neurônios dopaminérgicos à morte, além de todos os mecanismos citados 

anteriormente. 

Experimentos do nosso grupo de pesquisa observaram que a deleção da 

Miro-1, embora tóxica para células saudáveis, parece proteger da morte leveduras 

que expressam alfa-sinucleína exógena - mutações A30P e A53T (Figura 4) (MELO, 

2022). Desta forma, é relevante avaliar a influência do silenciamento de Miro-1 no 

contexto da superexpressão de alfa-sinucleína selvagem e exógena, tanto na 

perspectiva da viabilidade celular e estresse do retículo endoplasmático, quanto nos 

possíveis efeitos da ativação da resposta pró-inflamatória. 



 

 

Figura 4. Adaptado de MELO, 2022, Molecular and Cellular Neuroscience. (a) Diluição em 

série de extratos de levedura selvagem (WT) e deleção da proteína Gem (ΔGem), ortólogo da Miro-

1 humana. Células WT que expressam alfa-sinucleína mutante apresentam diminuição no 

crescimento em comparação às células expressando vetor vazio (EV), enquanto células ΔGem 

mostram capacidade de crescimento aumentada. 

 

2. OBJETIVO 

O objetivo do presente estudo é estabelecer a relação entre os níveis da 

proteína Miro-1 e a toxicidade promovida pela superexpressão da alfa-sinucleína. 

Para isso, avaliou-se os efeitos da diminuição da expressão de Miro-1 em neurônios, 

derivados de neuroblastoma, que expressam alfa-sinucleína selvagem (WT) e 

mutante (A30P e A53T) em relação aos seguintes aspectos: 

1) morte celular; 

2) estresse do retículo endoplasmático; 

3) mitofagia; 

4) resposta inflamatória. 

 



 

3. MATERIAL E MÉTODOS 

 O presente estudo utiliza um modelo celular de neurodegeneração a fim de 

entender o papel de Miro-1 nos processos que desencadeiam a morte neuronal. 

Esse desafio será alcançado utilizando as ferramentas detalhadas a seguir. 

3.1. Modelo celular de neurodegeneração genética e inibição do gene 

Miro-1 

Células SH-SY5Y (94030304, Sigma) foram cultivadas em meio de cultura 

DMEM-F12 (Sigma D8437) suplementado com 20% v/v soro fetal bovino (F7524 

Sigma), 100 unidades/litro de penicilina e 100 mg/litro de estreptomicina (P4333 

Sigma). As células permaneceram incubadas a 37°C, com 5% de CO2. 

O gene Miro-1 foi silenciado nessas células pelo método de edição gênica 

CRISPR/Cas9, como protocolo específico descrito previamente (Kanfer et al., 2015). 

O laboratório recebeu a doação do vetor pX330-U6-Chimeric_BB-CBh- hSpCas9 de 

Benoît Kornmann, autor do artigo "Mitotic redistribution of the mitochondrial network 

by Miro and Cenp-F” (KORNMANN, 2015). Desta forma, os plasmídeos já contêm 

as sequências do Cas9, Miro exon 7 e Miro exon 8. A certificação da inibição 

completa do gene Miro-1 em diferentes clones foi aferida por Western Blot. 

A fim de criar um modelo para estudar os mecanismos de toxicidade da alfa-

sinucleína, as SH-SY5Y controles e as células com redução nos níveis da Miro-1 

foram transfectadas com plasmídeos contendo um vetor vazio (Empty Vector - EV), 

um inserto de alfa-sinucleína constitutiva (selvagem ou Wild Type - WT) ou as 

mutações Ala30Pro (A30P) e Ala53Thr (A53T). Os níveis de expressão da alfa-

sinucleína e da Miro-1 foram quantificados por Western Blot. 

As células foram diferenciadas em neurônios adicionando 10μM de ácido 

retinóico ao meio, o qual foi trocado a cada 2 dias por 5 dias, e então as células 

foram mantidas em DMEM suplementado com 10μM de ácido retinóico e 10 ng/ml 

de fator neurotrófico derivado do cérebro (BDNF, do inglês brain-derived 

neurotrophic factor), para promover o crescimento das extensões neurais, por até 

mais 6 dias, ou enquanto forem viáveis (estudos anteriores do laboratório 



 

demonstraram que células SH-SY5Y que expressam Miro-1 começam a morrer 8 

dias após o início da expressão da alfa-sinucleína). 

Os neurônios foram caracterizados por imunocitoquímica empregando-se 

anticorpo anti-MAP2. Foi realizado ensaio de MTT, bem como Western Blot para 

caspase 3, a fim de quantificar a viabilidade celular na presença e ausência de 

expressão de Miro-1 e com expressão das diferentes formas da alfa-sinucleína. 

3.2. Caracterização dos neurônios 

As células foram fixadas com uma solução gelada de paraformaldeído 4% 

seguida de metanol por 1 minuto a cada fixação, e permeabilizadas com Triton X100 

a 0,2% para posterior incubação com o anticorpo primário específico para a MAP-2 

com a intenção de caracterizar a diferenciação dessas células. Secundariamente, 

as células foram incubadas com anticorpos fluorescentes específicos para o 

anticorpo primário possibilitando a visualização dessas proteínas. 

3.3. Ensaio de MTT 

A reação de redução do MTT foi monitorada pela absorbância a 570 nm, o 

que se correlaciona diretamente com o número de células viáveis permitindo então 

a análise quantitativa desse parâmetro (MOSMANN, 1983). 

O ensaio foi conduzido utilizando células plaqueadas em placas de 96 poços, 

as quais foram incubadas com 20µL de MTT (5mg/ml, Sigma) por poço durante 1 

hora em incubadora de CO2. Após incubação, o meio de cultura contendo MTT foi 

descartado, as células solubilizadas com 200µl de DMSO por poço e submetidas a 

análise dos níveis de absorbância (570 nm) utilizando-se de leitor de placas (Epoch, 

Biotek). 

3.4. Ensaio de Viabilidade Celular - Calceína AM 

Células plaqueadas em placas de 96 poços foram incubadas com 20µL de 

Calcein AM (Invitrogen C1430) por 30 minutos à temperatura ambiente. Após a 

incubação, o meio de cultura contendo Calcein AM foi descartado, foram 

adicionados 200µL de PBS por poço e a placa foi submetida à análise dos níveis de 

absorbância (485 nm) utilizando-se espectrofotômetro (Polar Star 2). 



 

3.5. Western Blot 

As células em cultura foram lisadas e homogeneizadas utilizando-se 200μL 

de tampão de lise constituído de NP40, deoxicolato de sódio, SDS, EDTA, EGTA e 

coquetel inibidor de proteases (Sigma). A quantidade de proteína foi analisada pelo 

método de Bradford (BRADFORD, 1976). A curva de calibração foi feita utilizando-

se albumina em quantidade de 0 a 16 µg de proteína por poço. 

As amostras (30µg) das culturas de células foram aplicadas às canaletas do 

gel de poliacrilamida a 12% para fracionamento. Em seguida, as proteínas foram 

transferidas para membrana de nitrocelulose, bloqueada e incubada com os 

seguintes anticorpos primários: anti-caspase3 ativada (para avaliação da morte 

celular), anti-Miro-1 (para certificação da ausência da proteína nos grupos 

submetidos à edição do DNA), anti-alfa-sinucleína (para avaliação de seus níveis 

endógenos bem como para certificação da eficiência da expressão exógena), anti-

CHOP e anti-ATF6 (para avaliação do estresse do retículo endoplasmático), anti-

pink1 e anti-parkina (para avaliação da mitofagia). 

Os anticorpos secundários foram conjugados a uma peroxidase (HRP), a 

incubação das membranas com estes anticorpos foi feita à temperatura ambiente 

durante 45 minutos. As membranas foram então lavadas e a marcação foi revelada 

através de incubação com reagente quimioluminescente (Western Enhancing 

Chemiluminescence Reagent Plus, ECL kit, Perkinelmer, EUA) durante 1 minuto e 

exposição a filme apropriado (Hyperfilm ECL, Amersham Biosciences). 

O controle de loading foi feito pela coloração da membrana com Ponceau 

após a corrida e transferência do gel para a membrana. Os filmes e a membrana 

corada com Ponceau foram quantificados por densitometria óptica usando o 

programa ImageJ (NIH). 

3.6. Células THP-1 

 A linhagem celular monocítica THP-1 (American Type Culture Collection, 

Manassas, VA, EUA) foi mantida a 37ºC e 5% CO2 em meio RPMI 1640 

suplementado com 2 mM L-glutamina, 10% de soro fetal bovino, 

penicilina/gentamicina e 0,05 mM de β-mercaptoetanol (Sigma-Aldrich, MO, EUA). 

A diferenciação para macrófagos foi realizada plaqueando a uma densidade de 5 x 



 

105 células/mL em meio RPMI 1640 suplementado com 50 nM de Phorbol-12-

miristato-13-acetato (PMA) por 72 horas (HAMON, 2018). 

3.7. Detecção dos níveis de citocina 

Após a diferenciação das células THP-1, o meio condicionado (transfecção 

de alfa-sinucleína + CRISPR Miro-1) foi adicionado às células por 48 horas para 

estímulo. Os níveis de citocina foram quantificados pelo ensaio de ELISA sanduíche 

(Enzyme-Linked Immunosorbent Assay) de acordo com as especificações do 

fabricante (B&D). 

3.8. Produção de Óxido Nítrico 

A produção de óxido nítrico nos sobrenadantes das culturas foi medida 

usando o método de Griess, conforme descrito por Ding e colaboradores (1998). 

Resumidamente, 50 µl de sobrenadante foi incubado com 50 µL de reagente de 

Griess (preparado com reagentes da Sigma, St Louis, MO, USP) por 5 minutos em 

temperatura ambiente. A concentração foi determinada medindo a densidade ótica 

(OD) a 550 nm em referência a uma solução padrão de nitrato de sódio (NaNO2). 

3.9. Análise estatística 

Os resultados foram avaliados por análise de variância (ANOVA) usando o 

programa GraphPad Prism para Windows (versão 5.0, GraphPad Software, San 

Diego, Califórnia, USA), adotando o nível de significância de 5% (p≤0,05). Os 

experimentos foram feitos em triplicata (réplicas técnicas) e repetidos pelo menos 3 

vezes (réplicas biológicas). 

 

4. RESULTADOS 

Análise dos níveis de Miro-1 e alfa-sinucleína 

 Os níveis de Miro-1 foram reduzidos conforme pode-se notar na figura 5, 

ilustrando a efetividade da ação da transfecção dos plasmídeos específicos de 



 

CRISPR/Cas. Assim como os níveis de alfa-sinucleína insolúvel aumentaram após 

a transfecção (Figura 5). 

 

Figura 5. Western blot para quantificação dos níveis de miro-1 e alfa-sinucleína. Os lisados celulares 

foram preparados a partir de células SH-SY5Y diferenciadas e transfectadas com alfa-sinucleína e 

CRISPR Miro-1 e analisadas por Western Blot marcando as proteínas Miro-1 (72 kDa) e alfa-

sinucleína (14 kDa). Analisado utilizando o Graphpad, 2 way ANOVA, # p<0.05 comparado com as 

amostras sem CRISPR, * p<0.05 comparado com o EV, Bonferroni post test, n=3. 

Análise do estresse do retículo endoplasmático 

Para a avaliação do estresse do retículo endoplasmático, foram realizadas 

marcações por Western Blot (figuras 6 e 7) para as proteínas: Bip, ATF6, CHOP, 

XBP-1 e caspase 3 (ativada indiretamente pela CHOP e sinaliza célula para 

apoptose). 

As proteínas Bip e XBP-1 não apresentaram diferenças significativas (Figura 

6). Como esperado, os grupos CRISPR + WT, CRISPR + A30P e CRISPR + A53T, 

em relação à CRISPR + EV, mostraram diminuição nos níveis de caspase-3, 



 

enquanto a ATF6 aumentou nos últimos dois grupos e a CHOP teve redução 

considerável no grupo CRISPR + A53T (Figura 7). 

 

Figura 6. Western blot com células SH-SY5Y diferenciadas. Os lisados celulares foram preparados 

a partir de células SH-SY5Y diferenciadas e transfectadas com alfa-sinucleína e CRISPR Miro-1 e 

analisadas por Western Blot marcando as proteínas a. ATF-6 total (90 kDa), ATF-6 clivada (50 kDa) 

e b. XBP1 (52-54 kDa). 30 µg de cada amostra de proteína foi aplicada a cada poço. A quantidade 

de proteína total foi marcada utilizando Ponceau e foi utilizada como controle de loading. Analisado 

utilizando o Graphpad, 2 way ANOVA, Bonferroni post tests, n=2. 

 



 

Figura 7. Western blot com células SH-SY5Y diferenciadas. Os lisados celulares foram preparados 

a partir de células SH-SY5Y diferenciadas e transfectadas com alfa-sinucleína e CRISPR Miro-1 e 

analisadas por Western Blot marcando as proteínas a. ATF-6 total (90 kDa), ATF-6 clivada (50 kDa) 

e b. XBP1 (52-54 kDa). 30 µg de cada amostra de proteína foi aplicada a cada poço. A quantidade 

de proteína total foi marcada utilizando Ponceau e foi utilizada como controle de loading. Analisado 

utilizando o Graphpad, 2 way ANOVA, Bonferroni post tests, n=2. 

 

Estes resultados mostram que a redução na expressão de Miro-1, quando a 

alfa-sinucleína está superexpressa, ativa significativamente a resposta UPR, mas é 

capaz de diminuir o processo de apoptose. 

 

Viabilidade celular 

Melo e colaboradores (2022) observaram que a ausência de Gem1 (ortólogo 

da Miro-1) promove a diminuição do efeito da alfa-sinucleína em leveduras. Para 

investigar se o mesmo ocorre em células humanas, realizou-se o ensaio de MTT, o 

qual é utilizado para quantificar a atividade mitocondrial, visto que a alfa-sinucleína 

interage com a mitocôndria e pode torná-la disfuncional. Foi realizado também 

ensaio de viabilidade celular pelo ensaio da calceína AM que identifica as células 

capazes de metabolizar o reagente (viáveis) tornando-as fluorescentes (JENNER, 

2021). Em ambos os experimentos, o grupo com superexpressão de alfa-sinucleína 

A53T mostrou viabilidade celular bastante reduzida, o que retornou a níveis 

similares ao controle com o silenciamento de Miro-1 (figura 8). 



 

 

Figura 8. Análise dos níveis de viabilidade celular, através dos experimentos de MTT e calceína AM, 

em células SH-SY5Y diferenciadas em neurônios dopaminérgicos e transfectadas com plasmídeos 

de alfa-sinucleína e CRISPR/Cas9 para o silenciamento da proteína Miro-1. 

 

Resposta do sistema imune às transfecções e CRISPR Miro-1 

 A fim de se avaliar a possível ativação dos macrófagos, os meios 

condicionados das células SH-SY5Y diferenciadas, transfectadas e após processo 

de CRISPR foram adicionados às células THP-1. Na figura 9 é possível observar 

que o estímulo por 24 horas não foi suficiente para ativar as células THP-1. Como 

o controle positivo está acima, pode-se concluir que o ELISA em si foi bem-

sucedido, mas que as células não liberaram quantidade suficiente de TNF-α para 

ser detectada pelo método. Uma das hipóteses levantadas é que não haviam muitas 

células nas placas de cultura de SH-SY5Y (confluência menor de 70%), o que pode 

ter liberado pouco estímulo para que a THP-1 se ativasse e produzisse níveis mais 

altos de TNF-α. Outra hipótese é que as células THP-1 possam ser menos sensíveis 

aos estímulos gerados pelas células neuronais derivadas das SH-SY5Y. No 

entanto, as células estimuladas por 48 horas apresentaram respostas acima do 



 

controle negativo, o que pode indicar que a presença dos plasmídeos pode ter 

desencadeado uma resposta basal das células THP-1, já que até o grupo EV 

promoveu aumento na expressão de TNF-α. 

 

Figura 9. Análise do experimento ELISA do meio de cultura de células THP-1 após 24 e 48 horas de 

estímulo com o meio condicionado de células SH-SY5Y após transfecção e CRISPR. Analisado 

utilizando o Graphpad, 2 way ANOVA, Bonferroni post tests, n=2. 

Também foi realizada quantificação de óxido nítrico após estímulo por 24 

horas com os meios condicionados das células SH-SY5Y diferenciadas e 

transfectadas. Ainda que não apresente diferença estatística, é possível ver 

diminuição da síntese de óxido nítrico com a expressão reduzida de Miro-1 (figura 

10). 



 

 

Figura 10. Análise da quantificação da síntese de óxido nítrico, após 24 horas de estímulo com o 

meio condicionado de células SH-SY5Y após transfecção e CRISPR. Analisado utilizando o 

Graphpad, 2 way ANOVA, Bonferroni post tests, n=2. 

5. DISCUSSÃO 

É possível afirmar que a superexpressão de alfa-sinucleína na forma 

selvagem e nas mutações, principalmente A53T, afeta a viabilidade celular. No 

entanto, o silenciamento da Miro-1 parece proteger as células do estresse e da 

consequente morte celular, como pode-se observar nas marcações de Western Blot 

(figura 7a e 7b) e no ensaio de MTT e de calceína AM (figura 8). Essa afirmação 

também corrobora com antigas observações e artigos do laboratório (MELO, 2022) 

que levaram à criação deste projeto. 

O aumento na resposta UPR dos grupos CRISPR + A30P e CRISPR + A53T 

(figura 7c) pode estar relacionado com o papel essencial da Miro-1 para a célula e 

o estresse gerado por sua redução. Este aumento pode estar associado também à 

fase inicial dos efeitos da expressão de alfa-sinucleína mutante, em que há uma 

regulação compensatória das chaperonas envolvidas no correto enovelamento e 

encaminhamento das proteínas. Ressalta-se também que a diminuição da 

expressão de Miro-1 leva à diminuição de depósitos intracelulares de alfa-



 

sinucleína, o que pode estar relacionado à diminuição dos efeitos tóxicos desta 

proteína. 

Além disso, ainda que seja apenas um primeiro resultado, é possível 

observar que a diminuição de Miro-1 também sugere redução da resposta pró-

inflamatória no SNC, protegendo as células da toxicidade gerada pela 

neuroinflamação crônica, presente em pacientes da doença de Parkinson. Sugere-

se a realização de experimentos adicionais utilizando outros modelos celulares para 

o estudo da neuroinflamação. 

 

6. CONCLUSÕES 

Primeiro, gostaria de destacar que os resultados apresentados neste 

trabalho são o conjunto de observações pessoais e de colegas do laboratório. 

Por fim, os resultados apontam para a confirmação da hipótese de que o 

silenciamento da proteína Miro-1, quando há superexpressão da alfa-sinucleína, 

pode proteger a célula do estresse do retículo endoplasmático, da ativação do 

sistema UPR, da neuroinflamação e, posteriormente, da apoptose. 
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