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RESUMO

RIOS, J. Comparativo entre Controladores Robusto ℋ2 e ℋ∞ para Sistemas
Lineares com Incertezas Politópicas. 2025. 72 p. Monografia (Trabalho de Conclusão
de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2025.

Um grande desafio na área de controle é a incerteza e seus impactos no desempenho dos
sistemas. Este trabalho teve como objetivo estudar métodos de análise de estabilidade e
de síntese de ganho para sistemas LTI com incertezas modeladas por politopos, bem como
as normas ℋ2 e ℋ∞ como critérios de desempenho, por meio da solução via Desigualdades
Lineares Matriciais (LMIs). Para tal, foram conduzidos experimentos computacionais no
MATLAB, usando Yalmip e SeDuMi para a solução das LMIs. No primeiro experimento,
comparou-se o desempenho da síntese de ganho em dois cenários: estabilidade quadrática
e uma condição de estabilidade afim menos conservadora, aplicando a desigualdade de
Lyapunov. No segundo experimento, realizou-se a síntese de um controlador ótimo e
robusto para um sistema massa-mola. Os resultados do primeiro estudo mostraram maior
eficiência na redução do conservadorismo do problema. No segundo, a síntese de ganho
foi bem-sucedida tanto para o controle ℋ2 quanto para o controle ℋ∞. Conclui-se que a
desigualdade de Lyapunov é fundamental para problemas de análise de estabilidade e de
síntese de ganho em sistemas com incertezas politópicas, e que estratégias baseadas em
LMIs permitem a implementação de controladores robustos de forma eficiente.

Palavras-chave: Controle ótimo; Controle robusto; Desigualdades matriciais lineares;
Estabilidade quadrática; Estabilidade de Lyapunov; Controle ℋ2; Controle ℋ∞.





ABSTRACT

RIOS, J. Comparison Between Robust ℋ2 and ℋ∞ Controllers for Linear
Systems With Polytopic Uncertainties. 2025. 72 p. Monograph (Conclusion Course
Paper) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,
2025.

A significant challenge in the control area is uncertainty and its impacts on system
performance. This work aimed to study methods for stability analysis and gain synthesis
for LTI systems (Linear Time-Invariant systems) with uncertainties modeled by polytopes,
as well as the ℋ2 and ℋ∞ norms as performance criteria, by means of a solution via
Linear Matrix Inequalities (LMIs). To this end, computational experiments were conducted
in MATLAB using Yalmip and SeDuMi to solve the LMIs. In the first experiment, the
performance of gain synthesis was compared under two scenarios: quadratic stability and
a less conservative affine stability condition, both using the Lyapunov inequality. In the
second experiment, an optimal and robust controller was synthesized for a mass-spring
system. The results of the first study showed greater efficiency in reducing the problem’s
conservatism. In the second, the gain synthesis was successful for both ℋ2 control and ℋ∞

control. It is concluded that the Lyapunov inequality is fundamental for stability analysis
and gain synthesis in systems with polytopic uncertainties, and that LMI-based strategies
enable the efficient implementation of robust controllers.

Keywords: Optimal control. Robust control. Linear Matrix Inequality. Quadratic stability.
Lyapunov stability. ℋ2 control. ℋ∞ control.
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1 INTRODUÇÃO

A área de controle é de extrema importância na engenharia. Ela é responsável
por regular processos industriais de diferentes naturezas e complexidades, garantindo
estabilidade e eficiência em seus diversos tipos de sistemas. Em sua teoria, ela consegue
representar, de forma matemática, sistemas ideais e estabilizá-los com controladores
relativamente simples.

Uma das partes mais importantes na área de controle linear é determinar a es-
tabilidade de um sistema. É possível avaliar essa característica por meio de sua matriz
de transição de estados 𝐴, de modo que o sistema será estável se e somente se todos os
autovalores dela tiverem parte real negativa.

Na prática, segundo [Yedavalli 2014], os sistemas podem funcionar de forma dife-
rente, com incertezas nos parâmetros, não linearidades, dinâmicas não modeladas e ruídos
ou imprecisões de medição, o que torna desafiador o projeto de um sistema de controle
nesse cenário. É nesse contexto que surge o controle robusto, no qual se aplicam técnicas
mais complexas, capazes de lidar com as imperfeições do sistema.

Um problema clássico de controle robusto é o da suspensão de um carro. Segundo
[Ebihara, Peaucelle e Arzelier 2015], nesse problema, a matriz 𝐴 do espaço de estados
é composta por diversos parâmetros, como a massa 𝑚 das rodas, a massa 𝑀 do chassi,
a constante elástica 𝑘 da mola, a constante 𝑐 do amortecedor, etc. Nesse exemplo, o
parâmetro 𝑀 é incerto, pois depende, por exemplo, do número de passageiros no carro.
Esse problema pode ser solucionado por meio de um controle robusto, uma vez que a
teoria tradicional de controle não abrange variações nos parâmetros do sistema.

Existem várias técnicas que podem resolver problemas de controle de sistemas com
incertezas. Neste trabalho, as técnicas exploradas baseiam-se na desigualdade de Lyapunov.
Essa desigualdade permite uma abordagem numérica do problema da estabilidade de
sistemas em espaços de estados e permite trabalhar com incertezas de parâmetros, inerentes
a sistemas reais.

Além disso, a própria desigualdade de Lyapunov tem uma importante limitação
em sistemas com incertezas: ela exige que a solução seja uma matriz 𝑃 (𝛼) com dimensão
infinita, obrigando que sejam feitas construções conservadoras dessa matriz para que seja
possível resolver a LMI. Dessa forma, ela nem sempre consegue fornecer um resultado
definitivo tanto no problema da análise da estabilidade de um sistema, quanto na síntese
do ganho em malha fechada.

Uma alternativa para atenuar esse problema, explorada ao longo desse trabalho, é
reduzir o conservadorismo da matriz 𝑃 (𝛼). Teoricamente, para encontrar um ganho que
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estabilize um sistema incerto, basta diminuir infinitamente o conservadorismo de 𝑃 (𝛼) até
que, em algum momento, ele convergirá para a matriz 𝑃 (𝛼) de dimensão infinita. Porém,
na prática, cada aumento do grau de liberdade aumenta significativamente a complexidade
das LMIs utilizadas para resolver o sistema, além de aumentar a quantidade de poder
computacional necessária.

Outro aspecto importante do trabalho é a utilização de normas para melhorar o
desempenho dos controladores em diferentes aspectos. A primeira é a norma ℋ2, relacionada
à energia de um sistema sob uma perturbação muito rápida. A segunda é a norma ℋ∞,
que indica a capacidade do sistema de atenuar a energia de um distúrbio de entrada. Dessa
forma, um controlador ℋ2 tende a produzir respostas que estabilizam o sistema mais
rapidamente, enquanto o ℋ∞ produz respostas que tendem a ter menos efeitos de ruído.

Dessa forma, o objetivo deste trabalho é comparar diferentes abordagens de controle
robusto em sistemas com incertezas. Para isso, realizou-se um conjunto de experimentos
computacionais.

Para fins de comparação, foram utilizados controladores ótimos e robustos com
base nas normas ℋ∞ e ℋ2. Enquanto os controladores ótimos apresentam o menor valor
possível de sua respectiva norma no sistema exato para o qual foram projetados, eles
perdem desempenho em sistemas com incertezas. Enquanto isso, no mesmo sistema com
incertezas, controladores robustos conseguem garantir um nível máximo do valor de suas
respectivas normas.

O primeiro experimento computacional consistiu em testar o aumento da eficiência
ao elevar o grau de liberdade da matriz 𝑃 (𝛼), buscando identificar um ganho de reali-
mentação capaz de estabilizar sistemas politópicos gerados aleatoriamente. Para estar em
conformidade com a teoria de controle robusto, a redução do conservadorismo da matriz
deve aumentar o número de soluções em um problema de síntese de ganho.

O segundo experimento consistiu na comparação do desempenho de um sistema
linear (massa-mola amortecido) com incertezas. Foi realizada a síntese do ganho ótimo e
robusto, aplicando-o ao sistema nominal e comparando o valor resultante com suas normas.
O método utilizado para isso foi também resolver a desigualdade de Lyapunov; porém, de
forma alternativa, que minimiza as normas ℋ2 e ℋ∞ de um sistema.

1.1 Objetivos

A linha do projeto aqui proposto visa desenvolver um comparativo entre estratégias
de controle robusto do tipo ℋ2 e ℋ∞ para sistemas lineares com incertezas politópicas,
com os seguintes objetivos gerais e específicos:
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1.1.1 Objetivo Geral

Desenvolver e avaliar um sistema de controle robusto aplicável a sistemas dinâmicos
lineares com incertezas politópicas.

1.1.2 Objetivos Específicos

• Realizar um estudo detalhado da teoria de controle robusto ℋ2 e ℋ∞ por meio de
LMIs;

• Implementar controladores robustos ℋ2 e ℋ∞ em ambiente de simulação usando
solvers de LMI;

• Aplicar e validar o controlador robusto em modelos de sistemas dinâmicos lineares
com incertezas politópicas por meio de simulações numéricas;

• Avaliar o desempenho entre controladores robustos ℋ2 e ℋ∞ implementados via
LMIs, com o objetivo de identificar os cenários em que cada abordagem é mais
adequada;

• Documentar os resultados e as conclusões obtidas.

1.2 Justificativa do trabalho

A relevância deste trabalho fundamenta-se na ampla gama de aplicações das teorias
de controle robusto. Sistemas que representam problemas reais, em algum grau, sempre
apresentam incertezas que influenciam fortemente o planejamento dos engenheiros que
buscam soluções para esses problemas. Dessa maneira, o estudo de controladores que lidam
com essas incertezas é crucial para toda a cadeia de produção industrial moderna e, por
consequência, para toda a economia.

Dentro desse contexto, técnicas de controle robusto tipicamente apresentam con-
servadorismo em suas soluções. Assim, uma direção possível para as teorias de controle
robusto é buscar soluções menos conservadoras, o que não é um processo trivial.

Adicionalmente, conforme discutido em [Skelton, Iwasaki e Grigoriadis 2013],
embora os problemas de controle robusto sejam complexos e, teoricamente, possuam
dimensões infinitas, podem ser simplificados por meio de relaxações e variáveis de folga.
Assim, as técnicas de controle robusto tornam-se úteis para problemas com incertezas,
transformando-os em problemas de álgebra linear, solucionáveis por meio de algoritmos
numéricos.

Além disso, o foco principal deste trabalho reside na resolução de problemas de
otimização convexa, os quais incorporam LMIs em sua formulação. Assim, os métodos
empregados ao longo deste trabalho podem ser amplamente utilizados como base para
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resolver problemas reais que visem não apenas projetar controladores estáveis, mas também
construí-los para que apresentem o melhor desempenho global.

1.3 Estrutura do trabalho

• Capítulo 1 - Introdução ao tema, contextualizando sua importância, apresentando a
tese sobre a diminuição do conservadorismo, definindo brevemente as normas ℋ2 e
ℋ∞, além de uma descrição dos objetivos deste trabalho.

• Capítulo 2 - Exposição de toda a parte teórica que serviu de alicerce para a realização
dos experimentos computacionais deste trabalho. Assim, este capítulo foi dedicado
a apresentar técnicas de análise e síntese robustas, assim como controladores que
minimizam uma norma, tais como 𝐻2 e ℋ∞.

• Capítulo 3 - Apresentação dos experimentos computacionais, explicação dos pontos
cruciais do código implementado e discussão dos resultados em termos de tempo de
acomodação, sobressinal e normas ℋ2 e ℋ∞.

• Capítulo 4 - Conclusões finais dos resultados obtidos no trabalho. Apontam-se
algumas limitações dos experimentos realizados, bem como se propõem direções para
pesquisas futuras na área.
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2 FUNDAMENTOS TEÓRICOS

2.1 Apresentação Histórica da Área de Sistemas de Controle

Segundo [Ferguson 2015], sistemas de controle com realimentação já são conheci-
dos desde a antiguidade. Um dos primeiros registros foi o relógio de água de Ctecíbio,
apresentado na Figura 1. Ele funcionava com base em um fluxo constante de gotas de
um recipiente A para outro, B, de modo que a altura da coluna de água gotejada no B
servia para medir o tempo. Com o tempo, a coluna de água do recipiente A diminuía,
reduzindo também a velocidade do gotejamento e atrasando o relógio. Para resolver isso,
a Ctecíbio implementou um sistema rudimentar de controle com realimentação: adicionou
um recipiente C com muita água e conectou-o ao topo do recipiente B por meio de uma
mangueira cheia de água, de modo que a água do recipiente C sugasse a do recipiente B à
medida que este perdia água, mantendo o nível da água constante.

Figura 1 – Relógio de Ctecíbio

Fonte: [Wikipedia 2025].

Num período mais recente, segundo [Bennett 2002], a necessidade de controle
decorreu do surgimento de máquinas na Revolução Industrial. Matthew Boulton, em
uma carta de 1788, descreveu a James Watt um mecanismo rudimentar para controlar
a distância entre as pedras de moagem em moinhos de vento e de água. Watt então
percebeu que esse mesmo mecanismo poderia ser adaptado para o controle da velocidade
de motores a vapor, em que um dispositivo mecânico controlava a entrada de calor na
caldeira do motor, de modo a manter a velocidade constante. O grande problema desse
governador é que ele só oferecia controle proporcional, o que fazia com que o sistema nunca
se estabilizasse exatamente na velocidade desejada.
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Ao mesmo tempo em que surgiam avanços práticos para esses governadores, também
surgiam avanços teóricos. J.V. Poncelet e G.B. Airy, em diferentes ocasiões, conseguiram
descrever o funcionamento do governador por meio de equações diferenciais, embora não
conseguissem descrever adequadamente as condições de estabilidade do sistema em tempo
contínuo. Na época, já se sabia que a estabilidade de um sistema era determinada pelo
sinal da parte real das raízes do polinômio característico desse sistema; porém, uma grande
dificuldade era determinar a parte real sem antes determinar a raiz complexa.

Em 1890, segundo [BOYD et al. 1994], Aleksandr Lyapunov publicou um trabalho
sobre o que hoje dá origem à teoria de Lyapunov. Ele descreveu o que ficou conhecido
como a Desigualdade de Lyapunov, a primeira Linear Matrix Inequality (LMI) que poderia
ser usada para analisar a estabilidade de um sistema dinâmico. Além disso, essa LMI
poderia ser resolvida explicitamente.

A partir do século XX, com o avanço tecnológico da eletricidade, surgiram mais
aplicações da teoria de controle. Passou a ser aplicada também em controladores com
realimentação de tensão e corrente, permitindo, assim, o controle de motores elétricos.
Também foram aprimoradas as aplicações para variáveis já controladas, como temperatura,
pressão, velocidade, vazão, etc. Apesar do aumento no número de aplicações do controle,
ainda não havia um arcabouço teórico suficiente, além das equações diferenciais e do
critério de Routh-Hurwitz, o que deixava muitos engenheiros da época confusos quanto a
sistemas estáveis que se tornavam instáveis mesmo com pequenas alterações.

Em 1922, segundo [Bennett 1984], após observar timoneiros operando grandes
embarcações, Nicholas Minorsky formulou uma extensa teoria de sistemas de controle
posicionais, hoje conhecida como controle Proporcional-Integral-Derivativo (PID). Porém,
essa análise acabou não sendo muito difundida na época, além de ainda não existirem
amplificadores lineares e estáveis capazes de converter os sinais de baixa potência de
sensores medidores em sinais de alta potência que possam operar controladores atuadores.

Ainda na década de 20, segundo [Bennett 2002], Harold Stephen Black, visando
resolver alguns problemas nas linhas telefônicas da época, começou a trabalhar na melhoria
dos amplificadores. Ele notou que, ao sacrificar uma parte da amplificação do sinal, de
modo que uma parte da saída fosse realimentada na entrada, era possível reduzir o ruído
no sinal amplificado. Em 1927, ele esboçou um circuito de realimentação negativa, que
foi aprimorado até que, em 1931, já estava sendo utilizado pela AT&T. Durante esses
anos, Black foi muito ajudado por Harry Nyquist, o mesmo que, mais tarde, escreveria o
Teorema de Nyquist. Todos esses trabalhos possibilitaram uma compreensão muito maior
sobre o uso da realimentação negativa e seus benefícios.

Um momento importante no desenvolvimento das teorias de controle ocorreu
durante a Segunda Guerra Mundial. Nela, houve um esforço muito grande em uma tarefa
bem específica relacionada à guerra, como o sistema de miras de baterias antiaéreas. O
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manejo dessas armas exigiu grandes avanços na área, uma vez que envolvia a detecção da
posição futura de um avião, a movimentação do armamento e o cálculo da trajetória da
munição. Toda a operação envolvia até 14 pessoas que tinham de agir de forma coordenada
para garantir o funcionamento adequado do sistema. Durante a guerra, ficou muito claro
que esse sistema era muito lento e inadequado para a guerra, e que era necessário o máximo
de automação possível, de modo que a arma estivesse conectada diretamente ao radar,
exigindo apenas a atuação de um único operador para garantir o funcionamento do sistema.

No MIT, uma solução para esse problema foi o uso de diagramas de blocos para
representar sistemas elétricos e mecânicos, utilizando, assim, o melhor da teoria de controle
tanto no domínio do tempo quanto no da frequência. Em 1943, Albert C. Hall mostrou que,
sendo esses blocos representações de funções de transferência, a resposta em frequência
poderia ser esboçada e o critério de estabilidade de Nyquist poderia ser utilizado; além
disso, o ganho e a defasagem poderiam ser calculados. Esses avanços permitiram a criação
de novos radares e servomecanismos, que alcançaram altas taxas de sucesso na guerra.

Também na década de 40, Lur’e, Postnikov e outros cientistas da União Soviética
buscavam aplicar as inequações de Lyapunov do final do século XIX a sistemas com não
linearidades nos atuadores, obtendo certo sucesso em sistemas pequenos de segunda e
terceira ordem. Devido às limitações de poder computacional da época, não foi possível
testar esses métodos em sistemas maiores.

No início da década de 1960, houve mais um avanço nas aplicações das LMI.
Kalman, Yakubovich e Popov conseguiram reduzir a solução do problema de Lur’e, na
década de 40, a um critério gráfico, o que hoje é conhecido como Lema do Positivo-Real e
todas as suas variações. Esse critério poderia ser utilizado para sistemas de ordem superior
a 3, com a única limitação de que o sistema não pode conter mais de uma não linearidade.

As próximas etapas para o desenvolvimento das teorias sobre LMIs foram a sua
formulação como problemas de otimização convexa, o que tornou possível o uso de
computadores e algoritmos iterativos na sua resolução. Em um paper de 1976, Horisberger
e Belanger mostraram que a existência de uma função quadrática de Lyapunov é um
problema convexo que envolve LMIs. Em 1982, Pyatnitskii e Skorodinskii conseguiram
reduzir o problema de Lur’e, mesmo em casos com mais de uma não-linearidade, a
um problema de otimização convexa envolvendo LMIs, que eles resolveram utilizando o
algoritmo de elipsoide.

Em 1984, segundo [BOYD et al. 1994], houve mais um grande avanço na resolução de
LMIs, com a introdução, por N. Karmarkar, de métodos de pontos interiores. Inicialmente,
Karmarkar visava à aplicação desses métodos à programação linear; apenas em 1988, com
os estudos de Nesterov e Nemirovskii, esses métodos passaram a ter aplicações direcionadas
à resolução de LMI.
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2.2 Definições Matemáticas

2.2.1 Desigualdades Matriciais Lineares

Conforme apresentado em [Strang 2005], dada uma matriz quadrada 𝐴, os seus
autovalores 𝜆 são os valores que satisfazem a equação:

det(𝐴 − 𝜆𝐼) = 0.

Tal definição tem importância central na teoria de controle, uma vez que fundamenta
uma série de outros conceitos-chave nessa mesma área.

Outra definição, especialmente importante nesse campo, refere-se ao problema da
estabilidade. Segundo [Slotine, Li et al. 1991], dado um sistema contínuo modelado por
𝑥̇ = 𝐴𝑥, diz-se que 𝑥(𝑡) converge para 0, isto é, o sistema será Hurwitz estável, ou apenas
estável, se e somente se os autovalores da sua Matriz de Transição de Estados 𝐴 têm parte
real negativa.

Dado o conceito de autovalores, outro ponto crucial a ser introduzido é o das
matrizes (semi)positivas ou (semi)negativas definidas.

Uma matriz 𝐴 será 𝐴 ≻ 0, isto é, positiva definida, caso todos os seus autovalores
tenham parte real positivas. Além disso, uma matriz 𝐴 é 𝐴 ≺ 0, isto é, negativa definida,
se −𝐴 for positiva definida, ou seja:

−𝐴 ≻ 0.

Adicionalmente, uma matriz 𝐴 é 𝐴 ⪰ 0, isto é, semipositiva definida, caso todos os
seus autovalores tenham suas partes reais não negativas. Similarmente, uma matriz 𝐴 é
𝐴 ⪯ 0, isto é, semidefinida negativa, se −𝐴 for semidefinida positiva, ou seja:

−𝐴 ⪰ 0.

Esclarecidos esses conceitos, torna-se possível definir LMIs, que, segundo [BOYD
et al. 1994] são expressões matriciais da seguinte forma:

𝐹 (𝑥) = 𝐹0 +
𝑁∑︁

𝑖=1
𝐹𝑖𝑥𝑖 ≻ 0, (2.1)

em que as matrizes 𝐹𝑖 ∈ 𝑅𝑛×𝑛 são simétricas e conhecidas, e 𝑥𝑖 são as variáveis de
decisão. Também é possível encontrar LMIs descritas como 𝐹 (𝑥) ⪰ 0, e nelas as mesmas
propriedades relacionadas à inequação (2.1) permanecerão válidas.

Com isso, é possível notar que uma LMI constitui, na verdade, uma forma genérica
para uma inequação linear, que tem 𝑛 = 1. Dessa forma, nota-se que resolver analiticamente
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essas desigualdades no caso 𝑛 > 1 torna-se difícil, sendo necessária a utilização de métodos
numéricos, comumente o método dos pontos interiores.

É importante notar também que LMIs são restrições convexas em 𝑥𝑖. O resultado
disso é que problemas de otimização que utilizam esse tipo de expressão matemática
sempre convergem para mínimos ou máximos globais.

Segundo [Oliveira e Peres 2005], é comum representar uma matriz 𝑀 qualquer
dependendo de forma afim de um número 𝑁2 de matrizes 𝑀𝑗 com a estrutura

𝑀(𝛼) =
𝑁2∑︁
𝑗=1

𝛼𝑗𝑀𝑗, sendo
𝑁2∑︁
𝑗=1

𝛼𝑗 = 1 e 𝛼𝑗 ≥ 0, (2.2)

em que 𝛼𝑗 são escalares desconhecidos. Essa estrutura será melhor definida ao
longo de sessões subsequentes.

Além disso, será comum ao longo deste trabalho utilizar o caso particular da
equação (2.1), em que há matrizes 𝐹𝑖 e 𝑥𝑖 dependendo de forma afim de 𝑁2 matrizes
conhecidas 𝐹𝑖,𝑗 e de 𝑁2 variáveis de decisão 𝑥𝑖,𝑗, respectivamente; ou seja:

𝐹 (𝑥) = 𝐸 +
𝑟1∑︁

𝑖=1
𝐹𝑖(𝛼)𝑦𝑖 +

𝑟2∑︁
𝑖=1

𝐺𝑖𝑥𝑖(𝛼) ≻ 0, (2.3)

sendo 𝐺𝑖 e 𝐸 matrizes conhecidas, 𝑦𝑖 variáveis de decisão e 𝑟1 e 𝑟2 o número de
termos que contêm matrizes dependentes de matrizes conhecidas e o número de termos
que contêm matrizes dependentes de variáveis de decisão, respectivamente. Utilizando a
estrutura descrita pela equação (2.2) nas matrizes 𝐹𝑖(𝛼) e 𝑥𝑖(𝛼) da equação (2.3) resultando
em:

𝐹 (𝑥) = 𝐸 +
𝑟1∑︁

𝑖=1

𝑁2∑︁
𝑗=1

𝛼𝑗𝐹𝑖,𝑗𝑦𝑖 +
𝑟2∑︁

𝑖=1
𝐺𝑖

𝑁2∑︁
𝑗=1

𝛼𝑗𝑥𝑖,𝑗 ≻ 0,

que pode ser reorganizado em:

𝐹 (𝑥) = 𝐸 +
𝑁2∑︁
𝑗=1

𝛼𝑗(
𝑟1∑︁

𝑖=1
𝐹𝑖,𝑗𝑦𝑖 +

𝑟2∑︁
𝑖=1

𝐺𝑖𝑥𝑖,𝑗) ≻ 0.

Como, por definição, a soma de todos os 𝛼𝑗 é 1, é possível passar 𝐸 para dentro do
somatório.

𝐹 (𝑥) =
𝑁2∑︁
𝑗=1

𝛼𝑗(𝐸 +
𝑟1∑︁

𝑖=1
𝐹𝑖,𝑗𝑦𝑖 +

𝑟2∑︁
𝑖=1

𝐺𝑖𝑥𝑖,𝑗) ≻ 0.

Se cada termo do somatório em 𝑗 for positivo definido, então 𝐹 (𝑥) também será
positivo definido. Dessa forma, o conjunto de desigualdades formado por:
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{︃
𝛼𝑗(𝐸 +

𝑟1∑︁
𝑖=1

𝐹𝑖,𝑗𝑦𝑖 +
𝑟2∑︁

𝑖=1
𝐺𝑖𝑥𝑖,𝑗) ≻ 0, ∀𝑗 = 1, 2, . . . , 𝑁2 (2.4)

é uma condição suficiente, mas não necessária e suficiente para 𝐹 (𝑥) ≻ 0. Como
𝛼𝑗 ≥ 0, então, para que a equação (2.4) seja atendida, basta que:

{︃
𝐸 +

𝑟1∑︁
𝑖=1

𝐹𝑖,𝑗𝑦𝑖 +
𝑟2∑︁

𝑖=1
𝐺𝑖𝑥𝑖,𝑗 ≻ 0, ∀𝑗 = 1, 2, . . . , 𝑁2, (2.5)

seja verdadeiro.

Sendo assim, dada uma expressão matricial construída conforme a equação (2.3),
a equação (2.5) é uma condição suficiente para que 𝐹 (𝑥) ≻ 0. Essa afirmação também
abrange desigualdades do tipo 𝐹 (𝑥) ⪰, 𝐹 (𝑥) ≺ 0 e 𝐹 (𝑥) ⪯ 0, e será chamada, neste
trabalho, de teorema dos polinômios homogêneos.

Na prática, esse teorema se aplica a situações em que uma matriz 𝑀(𝛼), conforme
a equação (2.2), aparece em uma desigualdade matricial sem ser multiplicada por outros
termos dependentes de 𝛼. Ao empregar o teorema dos polinômios homogêneos nessa
desigualdade, obtém-se uma condição suficiente para sua resolução, expressa por um
conjunto de 𝑁2 desigualdades, todas iguais, com 𝑀(𝛼) substituída pelas 𝑁2 matrizes
conhecidas 𝑀𝑗.

Como essa é uma condição apenas suficiente, mas não necessária, para resolver
𝐹 (𝑥), é possível afirmar que a solução apresenta conservadorismo, uma vez que é apenas
um subconjunto da solução. Mesmo com essa limitação, esse teorema será de grande
utilidade ao longo deste trabalho, pois servirá para transformar um problema de controle
ótimo em um problema de controle robusto, que considera incertezas tanto na análise
quanto na síntese.

Como exemplo simples da aplicação prática desse teorema, considere a desigualdade:

𝐴(𝛼)𝑦 + 𝑦𝐴(𝛼)⊤ + 𝐶𝑥(𝛼) + 𝐷(𝛼) + 𝐸 ≺ 0,

com as matrizes dependentes de 𝛼 construídas conforme a equação (2.2).

Aplicando o teorema dos polinômios homogêneos nessa desigualdade, uma condição
suficiente para resolvê-la é através das LMIs:

{︁
𝐴𝑗𝑦 + 𝑦𝐴⊤

𝑗 + 𝐶𝑥𝑗 + 𝐷𝑗 + 𝐸 ≺ 0, ∀𝑗 = 1, 2, . . . , 𝑁2
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2.2.2 Complemento de Schur

Ao longo deste trabalho, haverá algumas situações em que a desigualdade que
está sendo desenvolvida define um conjunto convexo, mas não é linear, por apresentar
multiplicações entre suas variáveis de decisão. Em tais circunstâncias, uma ferramenta que
permite linearizar esse problema é o complemento de Schur.

Segundo [Souza 2021], seja 𝑀 :

𝑀 =
⎡⎣ Ψ Ω
Ω⊤ Φ

⎤⎦
As seguintes condições são equivalentes:

i) 𝑀 ≻ 0 se e somente se Ψ ≻ 0 e Φ − Ω⊤Ψ−1Ω ≻ 0;

ii) 𝑀 ≻ 0 se e somente se Φ ≻ 0 e Ψ − ΩΦ−1Ω⊤ ≻ 0;

iii) Se Ψ ≻ 0, 𝑀 ⪰ 0 se e somente se Φ − Ω⊤Ψ−1Ω ⪰ 0;

iv) Se Φ ≻ 0, 𝑀 ⪰ 0 se e somente se Ψ − ΩΦ−1Ω⊤ ⪰ 0;

Na prática, o complemento de Schur aumenta o número de linhas e colunas de uma
desigualdade 𝐹 (𝑥) ≻ 0 de modo a eliminar multiplicações por variáveis de decisão desse
problema.

2.2.3 Lema da Projeção

Outra ferramenta que permite eliminar a multiplicação de variáveis de decisão é o
lema da projeção. Segundo [Peres e Oliveira 2024], sendo Φ = Φ⊤ ∈ R𝑛×𝑛, Ω ∈ R𝑚×𝑛 e
Ψ ∈ R𝑟×𝑛, existe um 𝑋 ∈ R𝑟×𝑚 tal que:

Φ + Ω⊤𝑋⊤Ψ + Ψ⊤𝑋Ω ≺ 0, (2.6)

se e somente se:

Ω⊥⊤ΦΩ⊥ ≺ 0 e Ψ⊥⊤ΦΨ⊥ ≺ 0, com ΩΩ.⊥ = 0 e ΨΨ⊥ = 0,

2.3 Noções Básicas de Sistemas de Controle

Uma enorme quantidade de sistemas é modelada por meio de Equações diferenciais
Ordinárias (EDOs) lineares. Segundo [Skelton, Iwasaki e Grigoriadis 2013], é possível
escrevê-los de forma genérica como
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⎧⎨⎩𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑢(𝑡) + 𝐵2𝑤(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡),

(2.7)

Essa estrutura é chamada de representação em que 𝑥(𝑡) ∈ R𝑛 é o vetor de estados,
sendo um estado uma variável dependente do tempo dentro da dinâmica do sistema,
𝑢(𝑡) ∈ R𝑚 é o vetor contendo usualmente as entradas de controle do sistema, 𝑤(𝑡) ∈ R𝑞

também é um vetor contendo entradas, porém essas usualmente representam perturbações
no sistema, 𝑦(𝑡) ∈ R𝑝 é o vetor de saídas e 𝐴, 𝐵1, 𝐵2, 𝐶, 𝐷 são matrizes que dependem
dos parâmetros do sistema.

Dentro da representação em espaço de estados, é possível definir também os
conceitos de malha aberta e de malha fechada. Um sistema em malha aberta é aquele
definido apenas pela estrutura básica da equação (2.7), ou seja, sem que a entrada 𝑢

dependa dos estados ou das saídas do sistema. É possível representar esse sistema a partir
da Figura 2.

Figura 2 – Diagrama de Blocos de um Sistema Genérico em Malha Aberta

∫+B2

B1

D

C

A

+

Fonte: Autoria Própria

Em contrapartida, um sistema em malha fechada é aquele em que a entrada de
controle 𝑢 do sistema, representada pela equação (2.7), é determinada em função dos
estados ou da saída do próprio sistema. No presente trabalho, essa entrada de controle
foi definida como 𝑢 = 𝐾𝑥, em que 𝐾 denomina-se ganho de realimentação de estados ou
ganho em malha fechada. Este conceito será discutido com maior profundidade ao longo
do trabalho. A representação em diagrama de blocos da equação (2.7) é apresentada pela
Figura 3.
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Figura 3 – Diagrama de Blocos de um Sistema Genérico em Malha Fechada

∫+B2

B2

C

A

+

K

D

Fonte: Autoria Própria

2.3.1 Análise com Desigualdade de Lyapunov

Segundo [Khalil e Grizzle 2002], o teorema de Lyapunov diz que um sistema da
forma:

𝑥̇ = 𝐴𝑥,

Com 𝑥 = 0 sendo o seu ponto de equilíbrio, é assintoticamente estável se e somente
se existir uma função 𝑉 (𝑥), contínua e diferenciável, chamada de função de Lyapunov, tal
que:

i) 𝑉 (0) = 0;

ii) 𝑉 (𝑥) > 0, para 𝑥 ̸= 0;

iii) 𝑉̇ (𝑥) < 0, para 𝑥 ̸= 0.

Visando atender a essas condições, pode-se utilizar uma função de Lyapunov na
forma quadrática, ou seja:

𝑉 (𝑥) = 𝑥⊤𝑃𝑥, (2.8)

sendo 𝑃 = 𝑃 𝑇 ≻ 0 (segundo [Chen 1984], isso resulta em 𝑉 (𝑥) > 0). Então, por
construção, a primeira condição também é atendida. Para encontrar os requisitos que
tornam a terceira condição válida, deve-se aplicar a equação (2.8) nela. Dessa forma:
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𝑉̇ (𝑥) = 𝑥̇⊤𝑃𝑥 + 𝑥⊤𝑃𝑥̇. (2.9)

Dado que o sistema é definido por 𝑥̇ = 𝐴𝑥, então:

𝑉̇ (𝑥) = (𝐴𝑥)⊤𝑃𝑥 + 𝑥⊤𝑃𝐴𝑥,

que pode ser reescrita como:

𝑉̇ (𝑥) = 𝑥⊤(𝐴⊤𝑃 + 𝑃𝐴)𝑥 < 0.

Com isso, para que a derivada da função de Lyapunov seja negativa, basta que o
termo entre parênteses seja negativo. Ou seja:

𝐴⊤𝑃 + 𝑃𝐴 ≺ 0, (2.10)

que é a desigualdade de Lyapunov. Dessa forma, um sistema 𝑥̇ = 𝐴𝑥 será estável
se e somente se existir uma matriz 𝑃 = 𝑃 ⊤ ≻ 0 que satisfaça a equação (2.10).

2.3.2 Síntese com Desigualdade de Lyapunov

Para um sistema controlado com realimentação de estados, é utilizado que 𝑢 = 𝐾𝑥,
então:

𝑥̇ = 𝐴𝑥 + 𝐵𝐾𝑥 = (𝐴 + 𝐵𝐾)𝑥.

Aplicando essas condições na equação (2.10), o resultado é:

(𝐴 + 𝐵𝐾)⊤𝑃 + 𝑃 (𝐴 + 𝐵𝐾) ≺ 0.

Devido à presença de produtos entre as variáveis, a desigualdade em questão deixa
de ser uma LMI. Segundo [Peres e Oliveira 2024], para contornar essa não linearidade,
aplica-se a transformação de congruência:

𝑃 −1
(︁
(𝐴 + 𝐵𝐾)⊤𝑃 + 𝑃 (𝐴 + 𝐵𝐾))

)︁
𝑃 −1 ≺ 0.

Omitindo alguns passos intermediários e aplicando as substituições 𝑊 = 𝑃 −1 e
𝑍 = 𝐾𝑊 , então, para que exista um 𝐾 que resolva o problema da síntese do ganho
dado um sistema em espaço de estados definido pelas matrizes 𝐴 e 𝐵, basta que existam
𝑊 = 𝑊 ⊤ ≻ 0 e 𝑍 com:
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𝐴𝑊 + 𝑊𝐴⊤ + 𝐵𝑍 + 𝑍⊤𝐵⊤ ≺ 0,

sendo
𝐾 = 𝑍𝑊 −1.

(2.11)

2.4 Modelagem de Incertezas em Sistemas Dinâmicos

2.4.1 Importância da Modelagem de Incertezas

Toda a teoria de controle apresentada até esse ponto do trabalho apresenta uma
certa limitação: funciona apenas para sistemas exatos. No mundo real, dificilmente se
trabalha com modelos 100% exatos. Sistemas costumam apresentar incertezas nos valores
de seus parâmetros, o que faz com que seja sempre necessário aproximar as equações que
os descrevem.

Em alguns casos, essas aproximações não geram diferenças significativas no fun-
cionamento do modelo teórico em relação ao modelo real. Entretanto, em outros casos,
essas incertezas podem alterar significativamente as respostas do sistema real, podendo
até mesmo desestabilizá-lo.

Dada essa situação, os controladores projetados para sistemas com incertezas
consideráveis devem ser capazes de manter o desempenho mesmo em casos de desvios mais
acentuados dos parâmetros. Para isso, é essencial que haja uma modelagem das incertezas,
de modo a permitir a síntese do ganho corretamente.

Esta seção tem como objetivo definir uma forma de modelar as imprecisões nos
valores dos parâmetros.

2.4.2 Modelagem de Incertezas

O caso mais básico de incerteza é o intervalo em um escalar, no qual se sabe apenas
o intervalo em que se encontra um valor de uma matriz 𝐴 simétrica em relação à origem.
Exemplo:

Dada uma matriz 𝐴:

𝐴(𝜃) =

⎡⎢⎢⎢⎣
𝜃 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ ,

Sabe-se que o parâmetro 𝜃 assume valores entre −50 e +50, ou seja:

𝜃 = [−50, +50],

Então pode-se definir a matriz 𝐴𝑚𝑎𝑥 e 𝐴𝑚𝑖𝑛 como:
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𝐴𝑚𝑎𝑥 =

⎡⎢⎢⎢⎣
+50 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ ,

𝐴𝑚𝑖𝑛 =

⎡⎢⎢⎢⎣
−50 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ ,

Dessa forma, é possível afirmar que a matriz A está entre as matrizes 𝐴𝑚𝑎𝑥 e 𝐴𝑚𝑖𝑛.

Outro tipo de incerteza é a afim. Nesse caso, o parâmetro incerto não precisa ser
simétrico em relação à origem. Exemplo:

Dada uma matriz 𝐴:

𝐴(𝜃) =

⎡⎢⎢⎢⎣
𝜃 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ ,

Sabe-se que o parâmetro 𝜃 assume valores entre 90 e 110, ou seja:

𝜃 = [90, 110].

Então pode-se definir a matriz 𝐴𝑚𝑎𝑥 e 𝐴𝑚𝑖𝑛 como:

𝐴𝑚𝑎𝑥 =

⎡⎢⎢⎢⎣
110 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ ,

𝐴𝑚𝑖𝑛 =

⎡⎢⎢⎢⎣
90 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎦ .

Dessa forma, é possível afirmar que a matriz A está compreendida entre as matrizes
𝐴𝑚𝑎𝑥 e 𝐴𝑚𝑖𝑛.

Agora, para definir matematicamente essa situação, serão introduzidas as variáveis
𝛼1 e 𝛼2. Elas irão representar o quão próximo o valor real da matriz 𝐴 está do seu valor
máximo ou mínimo. Além disso, todos os 𝛼𝑛 formam uma soma convexa, ou seja:

𝛼1 + 𝛼2 = 1.

Então, a equação que representa a matriz 𝐴 com incerteza afim é:
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𝐴(𝛼) = 𝛼1𝐴𝑚𝑖𝑛 + 𝛼2𝐴𝑚𝑎𝑥.

Avançando um pouco nesse tópico, é possível definir incertezas politópicas ao voltar
ao exemplo da incerteza afim. Quando se tem apenas um parâmetro variando, a matriz A
do sistema pode ser representada por um segmento de reta:

Figura 4 – Representação de 𝐴(𝛼) com 1 parâmetro incerto

𝐴𝑚𝑖𝑛 𝐴(𝛼) 𝐴𝑚𝑎𝑥

Fonte: Autoria Própria

Esse segmento de reta é denominado politopo. Suas extremidades correspondem às
matrizes A, com os valores máximos e mínimos do parâmetro de variância. Caso haja dois
parâmetros variando, então a forma geométrica será um quadrilátero:

Figura 5 – Representação de 𝐴(𝛼) com 4 vértices

𝐴1
𝐴2

𝐴3
𝐴4

𝐴(𝛼)

Fonte: Autoria Própria.

Em que cada vértice corresponde a uma combinação dos máximos e mínimos dos
parâmetros, e a matriz 𝐴(𝛼) pode ser qualquer ponto dentro desse politopo. Esse exemplo
com 2 parâmetros variando (4 vértices) pode ser representado pela equação:

𝐴(𝛼) = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼3𝐴3 + 𝛼4𝐴4,

sendo 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 1.

Assim, a cada parâmetro com incerteza adicionado, o número de vértices do politopo
gerado é multiplicado por 2.

Segundo [Ebihara, Peaucelle e Arzelier 2015], pode-se definir o domínio de incerteza
através de um simplex na forma:

Λ𝑁 =
{︂

𝛼𝑖 ∈ R𝑁 :
𝑁∑︁

𝑖=1
𝛼𝑖 = 1 e 𝛼𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑁

}︂
.
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Figura 6 – Ilustração de um Simplex Unitário em 𝛼1, 𝛼2 e 𝛼3

Fonte: Autoria Própria.

Sendo assim, um politopo é definido como o subespaço vetorial gerado pelos seus
vértices, com 𝛼𝑛 ∈ Λ𝑁 , podendo ser representado pelas equações:

𝐴(𝛼) =
𝑁∑︁

𝑖=1
𝛼𝑖𝐴𝑖, (2.12)

sendo 𝑁 é o número de vértices do polítopo. Além disso, a soma de todos os 𝛼𝑖 é 1.

É possível expandir essa visão para sistemas com incertezas nas matrizes 𝐵1, 𝐵2, 𝐶

e 𝐷, que podem ser causadas por incertezas nos atuadores ou sensores, de forma semelhante
à (2.12):

(𝐴, 𝐵1, 𝐵2, 𝐶, 𝐷)(𝛼) =
𝑁∑︁

𝑖=1
𝛼𝑖(𝐴𝑖, 𝐵1,𝑖, 𝐵2,𝑖, 𝐶𝑖, 𝐷𝑖). (2.13)

2.5 Controle Robusto via LMI

2.5.1 Análise de Estabilidade Robusta via LMI

Segundo [BOYD et al. 1994], a análise de estabilidade em sistemas com incertezas
modeladas por politopos, conforme a equação (2.12), difere da realizada em sistemas sem
incertezas. Em sistemas onde a matriz 𝐴 é modelada através de 𝐴(𝛼) a equação (2.10)
não pode ser utilizada diretamente para essa análise. Nesse contexto, a desigualdade de
Lyapunov assume a seguinte forma:

𝐴(𝛼)⊤𝑃 + 𝑃𝐴(𝛼) ≺ 0,

𝑃 = 𝑃 ⊤ ≻ 0.
(2.14)

Assim, para que um sistema modelado por meio de 𝐴(𝛼) seja estável, a desigual-
dade (2.14) deve ser válida para todo 𝛼 ∈ Λ𝑁 , de modo que, em todos os pontos do
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politopo, haja autovalores com parte real negativa. A figura 7 ilustra a nuvem de autovalo-
res de um sistema modelado por meio de um politopo. Na figura, todos os autovalores são
posicionados no plano-𝑠, sendo verdes os que, em um determinado ponto, têm parte real
negativa. Caso pelo menos um deles tenha uma parte real positiva, o sistema é instável.
Sendo assim, o sistema da figura 7 é instável.

Figura 7 – Nuvem de Autovalores de Politopo Instável Hipotético
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Lugar	das	Raízes	do	Politopo

Fonte: Autoria Própria.

Para encontrar uma solução para esse problema, é necessário e suficiente que, para
cada valor de 𝐴(𝛼) dentro do polítopo, exista uma 𝑃 diferente que resolva (2.14), ou seja,
a matriz 𝑃 também depende de parâmetros, ou seja, 𝑃 (𝛼). Assim, a LMI (2.14) pode ser
fórmulada de forma genérica como:

𝐴(𝛼)⊤𝑃 (𝛼) + 𝑃 (𝛼)𝐴(𝛼) ≺ 0,

𝑃 (𝛼) = 𝑃 (𝛼)⊤ ≻ 0.
(2.15)

Como o politopo 𝐴(𝛼) tem infinitos pontos, para que ele seja estável, é necessário e
suficiente que também haja infinitos 𝑃 (𝛼), o que torna o problema impossível de resolver.

Para contornar essa questão, uma possível solução é flexibilizar o problema. Isso
é feito definindo uma construção de 𝑃 (𝛼) e testando se essa construção atende à de-
sigualdade (2.15). Um problema para esse tipo de abordagem reside no fato de que,
frequentemente, resulta no produto de variáveis de decisão no problema, o que exige
algumas manipulações algébricas para contornar essa questão. Além disso, essa abordagem
tende a gerar soluções apenas suficientes para o problema, mas não necessárias.

2.5.2 Estabilidade Quadrática

Diante desse contexto, uma possível construção para a matriz 𝑃 (𝛼) consiste em
adotar sua versão quadrática, ou seja,
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𝑃 (𝛼) = 𝑃. (2.16)

Nesse caso, assim como na equação (2.10), a matriz 𝑃 é construída como uma
matriz constante. Esse cenário com 𝑃 constante é chamado de Estabilidade Quadrática

Dessa forma, substituindo as equações (2.16) e (2.12) nas LMIs (2.15), o resultado
é:

(︃
𝑁∑︁

𝑖=1
𝛼𝑖𝐴

⊤
𝑖

)︃
𝑃 + 𝑃

(︃
𝑁∑︁

𝑖=1
𝛼𝑖𝐴𝑖

)︃
≺ 0.

Dada essa formulação para o problema, é possível aplicar o teorema dos polinômios
homogêneos, resultando em:

{︁
𝐴⊤

𝑛 𝑃 + 𝑃𝐴𝑛 ≺ 0, ∀𝑛 = 1, 2, . . . , 𝑁, (2.17)

Em que 𝑃 é uma matriz simétrica e positiva definida, que deve ser encontrada
como condição apenas suficiente, mas não necessária e suficiente, para que o politopo
formado por todos os 𝐴𝑛 seja estável para 𝛼 ∈ Λ𝑁 .

2.5.3 Síntese em Controle Robusto via LMI

Para um sistema definido por:

⎧⎨⎩𝑥̇ = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥 + 𝐷𝑢.

No qual 𝐴, 𝐵, 𝐶 e 𝐷 são polítopos de 𝑛 vértices. Sendo 𝑢 = 𝐾𝑥, esse sistema pode
ser reescrito como:

⎧⎨⎩𝑥̇ = (𝐴 + 𝐵𝐾)𝑥,

𝑦 = (𝐶 + 𝐷𝐾)𝑥.

O problema da síntese consiste em encontrar um ganho 𝐾 que estabilize o sistema.
Para isso, será substituída a equação (2.13) na equação (2.11), ou seja:

𝐴(𝛼)𝑊 (𝛼) + 𝑊 (𝛼)𝐴(𝛼)⊤ + 𝐵(𝛼)𝑍 + 𝑍⊤𝐵(𝛼)⊤ ≺ 0.

De forma análoga ao problema da análise da estabilidade, o da síntese também
exige uma matriz 𝑊 (𝛼) de infinitos pontos como condição suficiente para a síntese do
ganho. É importante ressaltar que, por ser uma variável de folga, 𝑍 depende de 𝛼; não é
uma condição necessária para solucionar a desigualdade.
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Além disso, a matriz de ganho é dada por 𝐾 = 𝑍𝑊 −1, o que dificulta a construção
de 𝑊 (𝛼). Assim, visando à simplificação do problema, a matriz 𝑊 (𝛼) será definida como
𝑊 constante. Caso 𝑊 (𝛼) não fosse construída como uma matriz constante, seria necessário
introduzir mais variáveis de folga, de modo que 𝐾 dependesse apenas delas.

Então, utilizando o teorema dos polinômios homogêneos, o conjunto de LMIs que é
suficiente para solucionar o problema da síntese é:

{︁
𝐴𝑖𝑊 + 𝑊𝐴⊤

𝑖 + 𝐵𝑖𝑍 + 𝑍⊤𝐵⊤
𝑖 ≺ 0, 𝑖 = 1, 2, . . . , 𝑛. (2.18)

Sendo 𝑊 e 𝑍 as variáveis, 𝑊 simétrica e positivamente definida, e 𝑍 = 𝐾𝑊 . Dessa
forma, o ganho 𝐾 pode ser determinado por 𝐾 = 𝑍𝑊 −1.

Um detalhe importante sobre as LMIs, tanto no problema de análise quanto no de
síntese, é que, quando utilizadas, são suficientes para resolver o problema, mas não são
necessárias. Ou seja, mesmo nos casos em que as LMIs não têm solução, o sistema não
será necessariamente instável.

Segundo [Peres e Oliveira 2024], uma possível forma de lidar com isso é reduzir
o conservadorismo das matrizes 𝑃 (𝛼). Uma forma de diminuir esse conservadorismo é
considerando 𝑃 (𝛼) como um somatório convexo de vários 𝑃𝑖 na forma:

𝑃 (𝛼) =
𝑁∑︁

𝑖=1
𝛼𝑖𝑃𝑖. (2.19)

Essa construção para 𝑃 (𝛼) é chamada de afim, e problemas de análise ou síntese
que a utilizem são chamados de problemas com estabilidade afim.

Com isso, surgem duas questões: a primeira refere-se ao valor de ganho, que é
obrigatoriamente constante e depende diretamente da matriz 𝑃 (𝛼) ou de sua dual 𝑊 (𝛼).
Ao construir 𝑃 (𝛼) conforme a equação (2.19), para realizar a síntese do ganho é necessário
introduzir variáveis de folga, de modo que o valor do ganho dependa apenas delas.

Além disso, ao definir 𝑃 (𝛼) afim, passam a existir produtos de matrizes dependentes
de 𝛼, o que impossibilita a aplicação do teorema dos polinômios homogêneos. Para lidar
com esse problema, será necessário reescrever a desigualdade de Lyapunov de modo que
a matriz 𝑃 (𝛼) não esteja em produto matricial com nenhuma das matrizes 𝐴(𝛼), 𝐵(𝛼),
𝐶(𝛼) ou 𝐷(𝛼).

Para chegar a esta LMI, é necessário, primeiramente, utilizar uma versão dual da
(2.10) em um sistema com realimentação de estados, ou seja, 𝐴 = 𝐴 + 𝐵𝐾. Utilizando a
seguinte transformação de congruência:

𝑃 −1(𝐴⊤𝑃 + 𝑃𝐴)𝑃 −1 ≺ 0,
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E depois aplicando a substituição 𝑊 = 𝑃 −1:

𝐴𝑊 + 𝑊𝐴⊤ ≺ 0,

que pode ser reescrito como:

⎡⎣ 𝐼

𝐴⊤

⎤⎦⊤ ⎡⎣ 0 𝑊

𝑊 0

⎤⎦⎡⎣ 𝐼

𝐴⊤

⎤⎦ ≺ 0. (2.20)

Além disso, a outra LMI da Desigualdade de Lyapunov refere-se à matriz 𝑊 , que
deve ser positiva definida, uma vez que essa matriz é definida como a matriz inversa de 𝑃 ,
ou seja:

𝑊 ≻ 0,

Que pode ser reescrita como:

−2𝜉𝑊 ≺ 0,

sendo 𝜉 um escalar positivo com valor fixado. Com isso, é possível transformar essa
desigualdade em:

⎡⎣ 𝜉𝐼

−𝐼

⎤⎦⊤ ⎡⎣ 0 𝑊

𝑊 0

⎤⎦⎡⎣ 𝜉𝐼

−𝐼

⎤⎦ ≺ 0. (2.21)

Com as equações (2.20) e (2.21) reescritas, é possível aplicar o Lema da Projeção.
Para isso, as matrizes Φ, Ω e Ψ são escritas como:

Φ =
⎡⎣ 0 𝑊

𝑊 0

⎤⎦ , Ω = [𝐴⊤ − 𝐼], Ψ =
[︁
𝐼 𝜉𝐼

]︁
.

Substituindo na equação (2.6):

⎡⎣ 0 𝑊

𝑊 0

⎤⎦+
⎡⎣ 𝐴

−𝐼

⎤⎦𝑋
[︁
𝐼 𝜉𝐼

]︁
+
⎡⎣ 𝐼

𝜉𝐼

⎤⎦𝑋⊤[𝐴⊤ − 𝐼] ≺ 0.

Desenvolvendo essa equação:

⎡⎣ 𝐴𝑋 + 𝑋⊤𝐴⊤ 𝜉𝐴𝑋 − 𝑋⊤ + 𝑊

𝜉𝑋⊤𝐴⊤ − 𝑋 + 𝑊 −𝜉𝑋 − 𝜉𝑋⊤

⎤⎦ ≺ 0.

É importante notar que atender a essa LMI é condição necessária e suficiente para
solucionar o problema de análise de um sistema sem incertezas; ou seja, trata-se de outra
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forma de expressar a desigualdade de Lyapunov. Agora, utilizando que 𝐴 = 𝐴 + 𝐵𝐾 e
aplicando que 𝑍 = 𝐾𝑋, de forma equivalente a (2.11), o problema da síntese em sistemas
sem incertezas também pode ser solucionado através da LMI:

⎡⎣𝐴𝑋 + 𝑋⊤𝐴⊤ + 𝐵𝑍 + 𝑍⊤𝐵⊤ 𝑊 − 𝑋⊤ + 𝜉𝐴𝑋 + 𝜉𝐵𝑍

𝑊 − 𝑋 + 𝜉𝑋⊤𝐴⊤ + 𝜉𝑍⊤𝐵⊤ −𝜉𝑋 − 𝜉𝑋⊤

⎤⎦ ≺ 0, (2.22)

sendo 𝐾 = 𝑍𝑋−1.

Em um sistema com incertezas politópicas, as matrizes 𝐴 e 𝐵 podem ser modeladas
pela equação (2.13). Substituindo-as na equação (2.22):

⎡⎣𝐴(𝛼)𝑋 + 𝑋⊤𝐴(𝛼)⊤ + 𝐵(𝛼)𝑍 + 𝑍⊤𝐵(𝛼)⊤ 𝑊 − 𝑋⊤ + 𝜉𝐴(𝛼)𝑋 + 𝜉𝐵(𝛼)𝑍
𝑊 − 𝑋 + 𝜉𝑋⊤𝐴(𝛼)⊤ + 𝜉𝑍⊤𝐵(𝛼)⊤ −𝜉𝑋 − 𝜉𝑋⊤

⎤⎦ ≺ 0.

Utilizando o teorema dos polinômios homogêneos, o problema da síntese do ganho
com estabilidade quadrática em sistemas com incertezas politópicas é resolvido de forma
apenas suficiente pelas LMIs:

⎡⎣𝐴𝑖𝑋 + 𝑋⊤𝐴⊤
𝑖 + 𝐵𝑖𝑍 + 𝑍⊤𝐵⊤

𝑖 𝑊 − 𝑋⊤ + 𝜉𝐴𝑖𝑋 + 𝜉𝐵𝑖𝑍

𝑊 − 𝑋 + 𝜉𝑋⊤𝐴⊤
𝑖 + 𝜉𝑍⊤𝐵⊤

𝑖 −𝜉𝑋 − 𝜉𝑋⊤

⎤⎦ ≺ 0, 𝑖 = 1, 2, . . . , 𝑁,

sendo 𝐾 = 𝑍𝑋−1.

Conforme discutido anteriormente, é possível aumentar as chances de sucesso do
problema de síntese ao reduzir o conservadorismo, ou seja, ao modelar 𝑊 como uma soma
convexa de 𝑁 matrizes 𝑊𝑖. Na prática, em vez da matriz 𝑊 procurada ser solução da
LMI para todas as combinações convexas das matrizes 𝐴 e 𝐵, agora cada combinação
dessas matrizes terá um 𝑊 diferente, gerado por uma combinação convexa de 𝑊𝑖.

Cabe ressaltar que, devido à introdução de variáveis de folga através do lema da
projeção, agora o ganho não é dado pela multiplicação de 𝑊 (𝛼) com outras matrizes, o
que possibilita utilizar essa LMI para síntese com estabilidade afim.

Dessa forma, aplicando a equação (2.19) para 𝑊 e a equação (2.13) para 𝐴 e 𝐵 na
equação (2.22):

⎡⎣𝐴(𝛼)𝑋 + 𝑋⊤𝐴(𝛼)⊤ + 𝐵(𝛼)𝑍 + 𝑍⊤𝐵(𝛼)⊤ 𝑊 (𝛼) − 𝑋⊤ + 𝜉𝐴(𝛼)𝑋 + 𝜉𝐵(𝛼)𝑍
𝑊 (𝛼) − 𝑋 + 𝜉𝑋⊤𝐴(𝛼)⊤ + 𝜉𝑍⊤𝐵(𝛼)⊤ −𝜉𝑋 − 𝜉𝑋⊤

⎤⎦ ≺ 0.

Utilizando o teorema dos polinômios homogêneos, o problema de síntese de controle
robusto com estabilidade afim em sistemas com incertezas politópicas é resolvido de forma
apenas suficiente pela LMI:
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⎡⎣𝐴𝑖𝑋 + 𝑋⊤𝐴⊤
𝑖 + 𝐵𝑖𝑍 + 𝑍⊤𝐵⊤

𝑖 𝑊𝑖 − 𝑋⊤ + 𝜉𝐴𝑖𝑋 + 𝜉𝐵𝑖𝑍

𝑊𝑖 − 𝑋 + 𝜉𝑋⊤𝐴⊤
𝑖 + 𝜉𝑍⊤𝐵⊤

𝑖 −𝜉𝑋 − 𝜉𝑋⊤

⎤⎦ ≺ 0, 𝑖 = 1, 2, . . . , 𝑁,

(2.23)
sendo 𝐾 = 𝑍𝑋−1.

2.5.4 Solvers Utilizados

Para solucionar as LMIs ao longo desse trabalho, foram desenvolvidos códigos
no software Matrix Laboratory (MATLAB). Além disso, esses códigos baseiam-se em 2
toolboxes: Yet Another LMI Parser (YALMIP) [Lofberg 2004] e Self-Dual Minimization
(SeDuMi) [Sturm 1999]. O YALMIP tem funções que tratam as LMIs como variáveis, o
que as declara da mesma forma como são escritas. Já o SeDuMi funciona complementando
o YALMIP, com funções que permitem resolver as LMIs escritas no formato do YALMIP
utilizando o método dos pontos interiores.

2.6 Controle Robusto ℋ2

Dado um sistema representado pelas equações de espaço de estados:

⎧⎨⎩𝑥̇ = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥,
(2.24)

Segundo [Skelton, Iwasaki e Grigoriadis 2013], sua norma ℋ2 pode ser definida
como a energia da sua resposta ao impulso, ou seja:

‖𝐺‖2
2 =

∫︁ ∞

0
Tr
(︁
𝑔(𝑡)⊤𝑔(𝑡)

)︁
𝑑𝑡, (2.25)

sendo 𝑔(𝑡) a resposta do sistema ao impulso.

Mas essa não é uma forma muito prática de calcular o valor dessa norma. Para obter
um método mais conveniente, deve-se voltar à equação (2.24). A solução desse sistema é :

𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) +
∫︁ ∞

0
𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏.

Como se trata da resposta ao impulso unitário, as condições iniciais desse sistema
são nulas, ou seja:

𝑥(𝑡) =
∫︁ ∞

0
𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏.

Como 𝑢(𝑡) = 𝛿(𝑡) e 𝛿(𝑡) = 0 para 𝑡 ≥ 0, então:
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𝑥(𝑡) = 𝑒𝐴𝑡𝐵.

Voltando para a equação (2.24):

𝑔(𝑡) = 𝑦(𝑡) = 𝐶𝑥(𝑡) = 𝐶𝑒𝐴𝑡𝐵, ∀𝑡 ≥ 0. (2.26)

Aplicando a equação (2.26) na equação (2.25), então outra definição possível para
a norma ℋ2 é:

‖𝐺‖2
2 =

∫︁ +∞

0
Tr
(︁
𝐶𝑒𝐴𝑡𝐵𝐵⊤𝑒𝐴⊤𝑡𝐶⊤

)︁
𝑑𝑡 = Tr

(︂
𝐶
∫︁ +∞

0
𝑒𝐴𝑡𝐵𝐵⊤𝑒𝐴⊤𝑡𝑑𝑡𝐶⊤

)︂
.

Como o Gramiano de Controlabilidade é dado por:

𝑊𝑐 =
∫︁ +∞

0
𝑒𝐴𝑡𝐵𝐵⊤𝑒𝐴⊤𝑡𝑑𝑡,

Então, é possível calcular a norma ℋ2 de um sistema através de:

‖𝐺‖2
2 = Tr

(︁
𝐶𝑊𝑐𝐶

⊤
)︁
, (2.27)

sendo que esse gramiano é a solução da equação matricial:

𝐴𝑊𝑐 + 𝑊𝑐𝐴
⊤ + 𝐵𝐵⊤ = 0.

É possível reescrever essa equação como um problema de otimização, ou seja:

min
𝑃 =𝑃 ⊤>0

Tr(𝐶𝑃𝐶⊤),

sujeito a: 𝐴𝑃 + 𝑃𝐴⊤ + 𝐵𝐵⊤ ⪯ 0.

Segundo [Axler 2024], utilizando a propriedade circular do traço, o problema fica:

min
𝑃 =𝑃 ⊤>0

Tr(𝐶⊤𝑃𝐶),

sujeito a: 𝐴𝑃 + 𝑃𝐴⊤ + 𝐵𝐵⊤ ⪯ 0,

podendo, assim, ser resolvido por meio de LMIs, sendo que, na solução ótima,
𝑃 = 𝑊𝑐 e ‖𝐺‖2

2 = Tr(𝐶⊤𝑃𝐶).

Analogamente, pode-se calcular a norma ℋ2 também pelo Gramiano de Observabi-
lidade através de:
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min
𝑃 =𝑃 ⊤>0

Tr(𝐵⊤𝑃𝐵),

sujeito a: 𝐴⊤𝑃 + 𝑃𝐴 + 𝐶⊤𝐶 ⪯ 0,
(2.28)

e na solução ótima 𝑃 = 𝑊𝑜 e ‖𝐺‖2
2 = Tr(𝐵⊤𝑃𝐵).

Dada a definição da norma ℋ2 , uma maneira possível de interpretá-la é que
comumente existe uma certa relação entre o tempo de estabilização do sistema ao impulso
e o valor da norma ℋ2, de modo que sistemas com maiores valores da norma ℋ2 tendem a
demorar mais para atingirem o regime permanente. Dessa forma, projetar um controlador
que busque minimizar a norma ℋ2 possivelmente reduzirá o tempo de convergência do
sistema em malha fechada.

O controle ℋ2 é uma vertente do controle que busca minimizar a energia da saída
de um sistema em resposta a um impulso, ou seja, a norma ℋ2 do sistema. Isso é feito
por meio da determinação de um ganho de realimentação que minimize a norma ℋ2. O
resultado disso é que um controlador ℋ2 tende a minimizar o tempo de estabilização da
saída do sistema.

Para esse problema da síntese do ganho ℋ2 em um sistema conforme a equação
(2.7), foi utilizado novamente que 𝑢 = 𝐾𝑥, ou seja:

⎧⎨⎩𝑥̇(𝑡) = (𝐴 + 𝐵1𝐾)𝑥 + 𝐵2𝑤,

𝑦(𝑡) = (𝐶 + 𝐷𝐾)𝑥,
(2.29)

Sendo 𝑤 uma entrada exógena do sistema, que, no contexto da síntese do ganho ℋ2,
foi adotada como uma função de impulso. Esse problema é muito semelhante ao da análise,
porém, as matrizes 𝐴, 𝐵 e 𝐶 se tornaram (𝐴 + 𝐵1𝐾), 𝐵2 e (𝐶 + 𝐷𝐾), respectivamente,
ou seja:

Ã = 𝐴 + 𝐵1𝐾, B̃ = 𝐵2, C̃ = 𝐶 + 𝐷𝐾. (2.30)

Substituindo essas equações na equação (2.28), então o novo problema de otimização
foi formulado através de:

min
𝑃 =𝑃 ⊤>0

Tr(𝐵⊤
2 𝑃𝐵2),

sujeito a:

(𝐴 + 𝐵1𝐾)⊤𝑃 + 𝑃 (𝐴 + 𝐵1𝐾) + (𝐶 + 𝐷𝐾)⊤(𝐶 + 𝐷𝐾) ⪯ 0.

A desigualdade matricial desse problema apresenta multiplicações de variáveis
(𝐾⊤𝑃 , 𝑃𝐾, etc.), portanto, não é mais um problema com LMIs. Dessa forma, segundo
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[Peres e Oliveira 2024], é necessário reescrever esse problema com o Complemento de Schur
utilizando:

Ψ = (𝐴 + 𝐵1𝐾)⊤𝑃 + 𝑃 (𝐴 + 𝐵1𝐾), Ω = (𝐶 + 𝐷𝐾)⊤, Φ = 𝐼.

Assim, com o item iv) do Complemento de Schur, o problema pode ser reescrito
como:

min
𝑃 =𝑃 ⊤>0

Tr(𝐵⊤
2 𝑃𝐵2),

sujeito a:⎡⎣ (𝐴 + 𝐵1𝐾)⊤𝑃 + 𝑃 (𝐴 + 𝐵1𝐾) (𝐶 + 𝐷𝐾)⊤

(𝐶 + 𝐷𝐾) −𝐼

⎤⎦ ⪯ 0,

que também não é um problema com LMIs devido novamente à existência de
produto de variáveis (𝐾⊤𝑃 e 𝑃𝐾). Por isso será utilizada a seguinte transformação de
congruência:

⎡⎣𝑃 −1 0
0 𝐼

⎤⎦⎡⎣(𝐴 + 𝐵1𝐾)⊤𝑃 + 𝑃 (𝐴 + 𝐵1𝐾) (𝐶 + 𝐷𝐾)⊤

𝐶 + 𝐷𝐾 −𝐼

⎤⎦ ⎡⎣𝑃 −1 0
0 𝐼.

⎤⎦ ⪯ 0

Desenvolvendo todas as multiplicações e introduzindo as variáveis 𝑍 = 𝐾𝑃 −1 e
𝑊 = 𝑃 −1, o problema de otimização pode ser escrito como:

min
𝑊 =𝑊 ⊤>0

Tr(𝐵⊤
2 𝑊 −1𝐵2),

sujeito a:⎡⎣𝑊𝐴⊤ + 𝐴𝑊 + 𝑍⊤𝐵⊤
1 + 𝐵1𝑍 𝑊𝐶⊤ + 𝑍⊤𝐷⊤

𝐶𝑊 + 𝐷𝑍 −𝐼

⎤⎦ ⪯ 0.

Nessa formulação, há um problema: a matriz inversa de 𝑊 . Essa matriz inversa é
extremamente ineficaz no método para encontrar a solução desse problema. Para eliminá-la,
será criada uma nova variável 𝑋:

𝑋 ⪰ 𝐵⊤
2 𝑊 −1𝐵2,

que pode ser reorganizada como:

𝑋 − 𝐵⊤
2 𝑊 −1𝐵2 ⪰ 0. (2.31)
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Assim, é possível reescrever esse problema em termos do complemento de Schur.
Para isso, será utilizado que:

Ψ = 𝑋, Ω = 𝐵⊤
2 , Φ = 𝑊.

Então, utilizando o item iv) do Complemento de Schur, a equação (2.31) pode ser
reescrita como:

⎡⎣𝑋 𝐵⊤
2

𝐵2 𝑊

⎤⎦ ⪰ 0.

Com isso, o problema da síntese do controle ℋ2 ótimo pode ser reescrito como:

min Tr(𝑋),
sujeito a:

𝑋 = 𝑋⊤, 𝑍, 𝑊 = 𝑊 ⊤ ≻ 0,⎡⎣𝑋 𝐵⊤
2

𝐵2 𝑊

⎤⎦ ⪰ 0,

⎡⎣𝐴𝑊 + 𝑊𝐴⊤ + 𝑍⊤𝐵⊤
1 + 𝐵1𝑍 𝑊𝐶⊤ + 𝑍⊤𝐷⊤

𝐶𝑊 + 𝐷𝑍 −𝐼

⎤⎦ ⪯ 0,

e, na solução ótima: ‖𝐺‖2
2 = tr[𝑋], 𝐾 = 𝑍𝑊 −1.

(2.32)

É importante ressaltar que, dada a convexidade do problema, em que não há
mínimos locais, é impossível haver outro ganho 𝐾 que minimize ainda mais a norma ℋ2

para esse sistema especificamente; por isso, esse ganho é chamado de ganho ótimo. Como
o ganho é ótimo apenas no sistema fixado, pode-se afirmar que o ganho ótimo de um
sistema depende dos parâmetros desse sistema fixo.

Em sistemas com incertezas modeladas por meio de politopos, deve-se aplicar a
equação (2.13). Nesse caso, a matriz 𝑊 passa a depender de parâmetros, tornando-se
então 𝑊 (𝛼). Assim, o problema pode ser reescrito como:

min Tr(𝑋),
sujeito a:

𝑋 = 𝑋⊤, 𝑍, 𝑊 (𝛼) = 𝑊 (𝛼)⊤ ≻ 0,⎡⎣ 𝑋 𝐵2(𝛼)⊤

𝐵2(𝛼) 𝑊 (𝛼)

⎤⎦ ⪰ 0,

⎡⎣𝐴(𝛼)𝑊 (𝛼) + 𝑊 (𝛼)𝐴(𝛼)⊤ + 𝑍⊤𝐵1(𝛼)⊤ + 𝐵1(𝛼)𝑍 𝑊 (𝛼)𝐶(𝛼)⊤ + 𝑍⊤𝐷(𝛼)⊤

𝐶(𝛼)𝑊 (𝛼) + 𝐷(𝛼)𝑍 −𝐼

⎤⎦ ⪯ 0.
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Diante disso, o problema passa a ter dimensão infinita, em que cada um dos infinitos
pontos do politopo possui sua própria matriz 𝑊 (𝛼) que minimiza a norma ℋ2 nesse ponto.
Como o ganho calculado deve ser constante e depende diretamente de 𝑊 (𝛼), adotou-se o
caso de estabilidade quadrática, ou seja, com 𝑊 (𝛼) = 𝑊 .

Sendo assim, utilizando o teorema dos polinômios homogêneos, o problema de
síntese de controle robusto com minimização da norma ℋ2 em sistemas com incertezas
politópicas deve ser reescrito como:

min Tr(𝑋),
sujeito a:

𝑋 = 𝑋⊤, 𝑍, 𝑊 = 𝑊 ⊤ > 0,⎡⎣ 𝑋 𝐵⊤
2,𝑖

𝐵2,𝑖 𝑊

⎤⎦ ⪰ 0 ∀𝑖 = 1, . . . , 𝑁,

⎡⎣𝐴𝑖𝑊 + 𝐵1,𝑖𝑍 + 𝑊𝐴⊤
𝑖 + 𝑍⊤𝐵⊤

1,𝑖 𝑊𝐶⊤
𝑖 + 𝑍⊤𝐷⊤

𝑖

𝐶𝑊 + 𝐷𝑍 −𝐼

⎤⎦ ⪯ 0, ∀𝑖 = 1, . . . , 𝑁,

e ‖𝐺‖2
2 ≤ tr[𝑋], 𝐾 = 𝑍𝑊 −1,

(2.33)

sendo 𝑁 o número de vértices do politopo.

É importante destacar que, como esse problema de otimização é suficiente apenas
para a síntese do ganho robusto, o valor da norma ℋ2 passa a ser o custo garantido. Isso
quer dizer que, em um sistema em malha fechada com um controlador robusto ℋ2, sua
norma ℋ2 será menor que a norma garantida em qualquer ponto do politopo.

De maneira análoga ao desenvolvido na subseção 2.5.3, é possível reduzir a norma
garantida por meio da redução do conservadorismo do problema, adotando 𝑊 (𝛼) com
estabilidade afim. Para isso, seria necessário encontrar uma formulação equivalente à
equação (2.33) que não dependa diretamente de 𝑊 (𝛼), mas apenas de variáveis de folga.
Assim, 𝑊 (𝛼) teria maior grau de liberdade e se aproximaria de 𝑊 (𝛼) ótima, resultando
em um ganho robusto mais próximo do ganho ótimo em todos os pontos do polítopo.

2.7 Controle Robusto ℋ∞

Dado um sistema representado pelas equações de espaço de estados:

⎧⎨⎩𝑥̇ = 𝐴𝑥 + 𝐵2𝑤,

𝑦 = 𝐶𝑥,
(2.34)

Sendo 𝑤 uma entrada de perturbação. Segundo [Skelton, Iwasaki e Grigoriadis
2013], sua norma ℋ∞ pode ser definida como:
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‖𝐺‖∞ = max
𝜔∈R

𝜎max(𝐺(𝑗𝜔)). (2.35)

Ou seja, a norma ℋ∞ de um sistema é igual ao seu maior valor singular da função
de transferência da entrada 𝑤 para a saída 𝑦, e este é dado por:

𝜎𝑖(𝐺(𝑗𝜔)) =
√︁

𝜆𝑖(𝐺(𝑗𝜔)*𝐺(𝑗𝜔)).

Com isso, uma forma de visualizar o valor da norma ℋ∞ é por meio do seu
diagrama de Bode. Para sistemas Single-Input Single-Output (SISO), a sua norma ℋ∞

será simplesmente o valor pico do diagrama de Bode; para sistemas Multiple-Input Multiple-
Output (MIMO), a sua norma ℋ∞ será o maior valor pico entre todas as suas curvas
de valores singulares. As Figuras 8 e 9 (sistema MIMO com 2 entradas e 2 saídas)
exemplificam ilustrativamente essa definição.

10-1 100 101 102
!	(rad/s)

10-1

100

101

|G
(j!
)|

Diagrama	de	Magnitude	SISO	—	ilustração	da	||G||1

||G||1	=	3.4727

|G(j!)|
Norma	H1

Figura 8 – Norma ℋ∞ em um Sistema Siso - Exemplo Ilustrativo

Nesse caso, a sua norma ℋ∞ é igual a 3,4727.
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Diagrama	de	Valores	Singulares	(MIMO)	—	ilustração	da	||G|| 1

||G||1	=	11.9898

<1
<2
Norma	H1

Figura 9 – Norma ℋ∞ em um Sistema com 2 Entradas e 2 Saídas - Exemplo Ilustrativo

Nesse caso, a sua norma ℋ∞ é igual a 11,9898.

Voltando à equação (2.24), no contexto da análise no controle ℋ∞, a entrada 𝑢

será substituída por um ruído 𝑤 ∈ ℒ2, ou seja, com energia finita. Assim:

‖𝑤‖2
2 =

∫︁ ∞

−∞
𝑤(𝑡)⊺𝑤(𝑡)𝑑𝑡 < ∞.

Dada a definição da norma ℋ∞ da equação (2.35), então também pode-se definir a
norma ℋ∞ como o menor valor de 𝛾 para o qual vale:

‖𝑦(𝑡)‖2
2 < 𝛾2‖𝑤(𝑡)‖2

2,

que é equivalente a:

𝑦(𝑡)⊤𝑦(𝑡) − 𝛾2𝑤(𝑡)⊤𝑤(𝑡) < 0.

Somando esta equação com a condição iii) do teorema de Lyapunov, o resultado é:

𝑉̇ + 𝑦(𝑡)⊤𝑦(𝑡) − 𝛾2𝑤(𝑡)⊤𝑤(𝑡) < 0. (2.36)

Essa desigualdade restringe ainda mais a matriz 𝑃 da função de Lyapunov, uma
vez que 𝑉̇ deve ser ainda mais negativa para minimizar a norma ℋ∞ do sistema.

Substituindo a equação (2.9) na equação (2.36):

𝑥̇⊤𝑃𝑥 + 𝑥⊤𝑃𝑥̇ + 𝑦(𝑡)𝑇 𝑦(𝑡) − 𝛾2𝑤(𝑡)⊤𝑤(𝑡) < 0,
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que pode ser reescrita como:

⎡⎣ 𝑥

𝑤

⎤⎦⊤ ⎡⎣ 𝐴⊤𝑃 + 𝑃𝐴 + 𝐶⊤𝐶 𝑃𝐵 + 𝐶⊤𝐷

𝐵⊤𝑃 + 𝐷⊤𝐶 𝐷⊤𝐷 − 𝛾2𝐼

⎤⎦⎡⎣ 𝑥

𝑤

⎤⎦ < 0,

ou seja:

⎡⎣ 𝐴⊤𝑃 + 𝑃𝐴 + 𝐶⊤𝐶 𝑃𝐵 + 𝐶⊤𝐷

𝐵⊤𝑃 + 𝐷⊤𝐶 𝐷⊤𝐷 − 𝛾2𝐼

⎤⎦ ≺ 0,

Sendo sua norma ℋ∞ dada por ‖𝐺‖∞ < 𝛾.

Essa desigualdade ainda não é uma LMI: contém o termo 𝛾2. Para transformá-la
em uma LMI, será utilizado que 𝜇 = 𝛾2, ou seja:

⎡⎣𝐴⊤𝑃 + 𝑃𝐴 𝑃𝐵

𝐵⊤𝑃 −𝜇𝐼

⎤⎦−

⎡⎣𝐶⊤

𝐷⊤

⎤⎦ (−𝐼)
[︁
𝐶 𝐷

]︁
≺ 0.

Também será aplicado o Complemento de Schur, o que, segundo [Peres e Oliveira
2024], facilitará a obtenção da LMI do problema da síntese com minimização da norma
ℋ∞. Então, a desigualdade pode ser reorganizada como:

⎡⎣𝐴⊤𝑃 + 𝑃𝐴 𝑃𝐵

𝐵⊤𝑃 −𝜇𝐼

⎤⎦−

⎡⎣𝐶⊤

𝐷⊤

⎤⎦ (−𝐼)
[︁
𝐶 𝐷

]︁
≺ 0.

Dessa forma:

Ψ =
⎡⎣𝐴⊤𝑃 + 𝑃𝐴 𝑃𝐵

𝐵⊤𝑃 −𝜇𝐼

⎤⎦ , Ω =
⎡⎣𝐶⊤

𝐷⊤

⎤⎦ , Φ = −𝐼.

Então, aplicando o Complemento de Schur:

⎡⎢⎢⎢⎣
𝐴⊤𝑃 + 𝑃𝐴 𝑃𝐵 𝐶⊤

𝐵⊤𝑃 −𝜇𝐼 𝐷⊤

𝐶 𝐷 −𝐼

⎤⎥⎥⎥⎦ ≺ 0,

sendo sua norma ℋ∞ dada por ‖𝐺‖∞ <
√

𝜇.

Essa LMI pode ser reescrita como um problema de otimização que, no limite,
acontecerá que ‖𝐺‖∞ = √

𝜇, ou seja:



51

min 𝜇,

sujeito a:
𝜇, 𝑃 = 𝑃 ⊤ ≻ 0⎡⎢⎢⎢⎣

𝐴⊤𝑃 + 𝑃𝐴 𝑃𝐵 𝐶⊤

𝐵⊤𝑃 −𝜇𝐼 𝐷⊤

𝐶 𝐷 −𝐼

⎤⎥⎥⎥⎦ ≺ 0

e, na solução ótima ‖𝐺‖∞ = √
𝜇.

(2.37)

Agora, para o problema da síntese, de forma similar a como esse problema foi
abordado com a norma ℋ2, será utilizado um sistema conforme a representação em espaço
de estados (2.29). Nessa situação, quando forem aplicadas as condições dadas por (2.30)
no problema (2.37), ocorre multiplicação de variáveis. Com isso, a próxima etapa é realizar
uma transformação de congruência para que, em passos futuros, haja a eliminação dessa
bilinearidade, ou seja:

⎡⎢⎢⎢⎣
𝑃 −1 0 0

0 𝐼 0
0 0 𝐼

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝐴⊤𝑃 + 𝑃𝐴 𝑃𝐵 𝐶⊤

𝐵⊤𝑃 −𝜇𝐼 𝐷⊤

𝐶 𝐷 −𝐼

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑃 −1 0 0

0 𝐼 0
0 0 𝐼

⎤⎥⎥⎥⎦ ≺ 0,

A desigualdade final é expressa por:

⎡⎢⎢⎢⎣
𝑃 −1𝐴⊤ + 𝐴𝑃 −1 𝐵 𝑃 −1𝐶⊤

𝐵⊤ −𝛾2𝐼 0
𝐶𝑃 −1 0 −𝐼

⎤⎥⎥⎥⎦ ≺ 0.

Para finalmente transformar essa desigualdade em uma LMI, serão aplicadas as
condições (2.30). Além disso, serão aplicadas as substituições 𝑊 = 𝑃 −1 e 𝑍 = 𝐾𝑃 −1, ou
seja:

⎡⎢⎢⎢⎣
𝑊𝐴⊤ + 𝐴𝑊 + 𝑍⊤𝐵⊤

1 + 𝐵1𝑍 𝐵2 𝑊𝐶⊤ + 𝑍⊤𝐷⊤

𝐵⊤
2 −𝜇𝐼 0

𝐶𝑊 + 𝐷𝑍 0 −𝐼

⎤⎥⎥⎥⎦ ≺ 0.

Dessa forma, o problema da síntese com minimização da norma ℋ∞ é dado pelo
problema de otimização:
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min 𝜇

sujeito a:
𝜇, 𝑍 𝑊 = 𝑊 ⊤ ≻ 0⎡⎢⎢⎢⎣

𝑊𝐴⊤ + 𝐴𝑊 + 𝑍⊤𝐵⊤
1 + 𝐵1𝑍 𝐵2 𝑊𝐶⊤ + 𝑍⊤𝐷⊤

𝐵⊤
2 −𝜇𝐼 0

𝐶𝑊 + 𝐷𝑍 0 −𝐼

⎤⎥⎥⎥⎦ ≺ 0

e, na solução ótima ‖𝐺‖∞ = √
𝜇, 𝐾 = 𝑍𝑊 −1.

(2.38)

Como o ganho é ótimo apenas no sistema fixado, então, de forma idêntica à
equação (2.6), pode-se afirmar que o ganho ótimo de um sistema é dependente dos
parâmetros desse sistema fixado.

E, novamente, em sistemas com incertezas modeladas por meio de politopos, deve
ser aplicada a equação (2.13). Pelos mesmos argumentos desenvolvidos na seção 2.6, o
problema pode ser reescrito como:

min 𝜇

sujeito a:
𝜇, 𝑍, 𝑊 (𝛼) = 𝑊 (𝛼)⊤ ≻ 0⎡⎢⎢⎢⎣

𝑊 (𝛼)𝐴(𝛼)⊤ + 𝐴(𝛼)𝑊 (𝛼) + 𝑍⊤𝐵1(𝛼)⊤ + 𝐵1(𝛼)𝑍 𝐵2(𝛼) 𝑊 (𝛼)𝐶(𝛼)⊤ + 𝑍⊤𝐷(𝛼)⊤

𝐵2(𝛼)⊤ −𝜇𝐼 0
𝐶(𝛼)𝑊 (𝛼) + 𝐷(𝛼)𝑍 0 −𝐼

⎤⎥⎥⎥⎦ ≺ 0.

Com isso, esse problema passa a ter dimensão infinita novamente, o que exige
que a matriz 𝑊 (𝛼) seja quadrática. Aplicando o teorema dos polinômios homogêneos, o
problema de síntese de controle robusto com minimização da norma ℋ∞ em sistemas com
incertezas politópicas deve ser reescrito como:

min 𝜇,

sujeito a:
𝜇, 𝑍 𝑊 = 𝑊 ⊤ ≻ 0⎡⎢⎢⎢⎣

𝑊𝐴⊤
𝑖 + 𝐴𝑖𝑊 + 𝑍⊤𝐵⊤

1,𝑖 + 𝐵1,𝑖𝑍 𝐵2,𝑖 𝑊𝐶⊤
𝑖 + 𝑍⊤𝐷⊤

𝑖

𝐵⊤
2,𝑖 −𝜇𝐼 0

𝐶𝑖𝑊 + 𝐷𝑖𝑍 0 −𝐼

⎤⎥⎥⎥⎦ ≺ 0, ∀𝑖 = 1, . . . , 𝑁,

e 𝐾 = 𝑍𝑊 −1, ‖𝐺‖∞ ≤ √
𝜇,

(2.39)

Sendo 𝑁 o número de vértices do politopo.
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É importante destacar que, como esse problema de otimização é suficiente apenas
para a síntese do ganho, o valor da norma ℋ∞ passa a ser chamado de norma ℋ∞ garantida.
Isso quer dizer que, em um sistema em malha fechada com um controlador robusto ℋ∞,
sua norma ℋ∞ será menor que a norma garantida em qualquer ponto do politopo. Essa
norma deixa de ser igual e passa a ser apenas menor ou igual a √

𝜇.

Além disso, visando reduzir a norma ℋ∞, tal como foi apresentada na seção 2.6,
é necessário reduzir o conservadorismo por meio da adoção de 𝑊 (𝛼) afim. Deve ser
encontrada também uma forma equivalente da (2.39) cujo ganho não dependa diretamente
de 𝑊 (𝛼), mas apenas de variáveis de folga.
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3 EXPERIMENTOS COMPUTACIONAIS: ANÁLISE COMPUTACIONAL DOS
MÉTODOS

3.1 Experimento 1: Redução do Conservadorismo

Conforme visto anteriormente, em sistemas sujeitos a incertezas politópicas, a
desigualdade de Lyapunov e suas diversas formulações equivalentes representam condições
apenas suficientes, mas não necessárias, para a síntese do ganho de realimentação de
estados. Isso implica que, mesmo nos casos em que a síntese do ganho não é bem-sucedida,
ainda pode existir um ganho capaz de estabilizar o sistema. Para encontrar esse ganho,
reduzir o conservadorismo do problema e, mais especificamente, na matriz 𝑃 , por meio da
equação (2.19), pode ser possível estabilizar o sistema.

O primeiro experimento consiste em testar a tese de que reduzir o conservadorismo
da matriz 𝑃 na equação (2.18) aumenta as chances de as LMIs realizarem a síntese do
ganho do sistema.

Primeiramente, foi implementada uma função em MATLAB que gera um politopo
a partir de um valor de 𝛾, parâmetro que representa o nível de instabilidade do sistema.

Depois, foi desenvolvido outro código que implementa as equações (2.18) e (2.23)
utilizando as toolboxes YALMIP e SeDuMi, recebendo como entrada um politopo. O script
avaliou se o problema pôde ser resolvido para cada politopo gerado e, com isso, calculou-
se qual percentual desses politopos foi estabilizado. O percentual calculado referiu-se a
diferentes níveis de instabilidade desse politopo, conforme a variação do parâmetro 𝛾, que
será explicado mais adiante nesta seção.

Para finalizar, os resultados da estabilidade quadrática foram comparados aos da
estabilidade afim.

3.1.1 Parâmetro 𝛾

Ao gerar politopos aleatórios no MATLAB, a abordagem mais imediata é utilizar
apenas o comando randn(). Entretanto, essa estratégia não se mostra adequada, uma
vez que tal função gera números aleatórios segundo uma distribuição normal, resultando
em perda de precisão quanto à distância da parte real de seus autovalores em relação à
origem.

Visando atingir a precisão necessária para o experimento, foi definido o parâmetro
𝛾. Durante a simulação, o valor de 𝛾 determinou a maior distância da origem da parte
real dos autovalores de todas as matrizes 𝐴𝑛 de um politopo.

Para utilizar esse parâmetro, inicialmente, foi gerado um politopo aleatório com
o comando randn(), e, em seguida, empregou-se a função eig() em todas as matrizes
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𝐴𝑛 dos vértices do politopo. Depois, foi denotado por 𝛽 o maior valor da parte real entre
todos os autovalores dos vértices. Após essa etapa, realizou-se, em cada vértice, a operação

𝐴𝑛 = 𝐴𝑖𝑛𝑖𝑐𝑖𝑎𝑙
𝑛 + (𝛾 − 𝛽)𝐼, (3.1)

de modo que a maior parte real de um autovalor do politopo passasse a valer 𝛾. Ao longo
da simulação, 𝛾 variou entre 0 e 0.2.

3.1.2 Função de Síntese do Ganho

A implementação da rotina de síntese do ganho apresentou baixa complexidade,
uma vez que as toolboxes YALMIP e SeDuMi tornam a formulação e a resolução das LMIs
um processo bastante direto. Assim, a síntese do ganho foi realizada por meio da aplicação
das equações (2.18) e (2.23), para 𝑃 (𝛼) quadrática e 𝑊 (𝛼) afim, nos politopos gerados
pela equação (3.1).

3.1.3 Resultados da Simulação

Comparando os desempenhos das estabilidades quadrática e afim nos 1000 politopos
avaliados:

Figura 10 – Comparativo na Eficácia entre a Estabilidade Afim e a Quadrática
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Fonte: Autoria Própria

Ao analisar o gráfico gerado, é possível notar a melhora da eficácia da desigualdade
de Lyapunov após a redução do conservadorismo do problema. Para todos os valores de 𝛾 a
efetividade da equação (2.23) foi superior em relação à equação (2.18), conforme esperado.

Além disso, percebe-se que, para ambos os tipos de estabilidade, o percentual de
sistemas estáveis diminui, mesmo com pequenas variações do valor de 𝛾. Essa rápida queda
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pode ter origem na estrutura das matrizes 𝐴𝑛 e 𝐵𝑛, que têm todos os seus termos variando
em todos os seus vértices.

3.2 Experimento 2: Sistema Massa-Mola

3.2.1 Formulação do Problema

O segundo experimento teve como objetivo apresentar uma abordagem prática dos
conceitos de normas ℋ2 e ℋ∞. O problema escolhido para isso foi o sistema massa-mola
amortecido, com 3 molas conectadas em 2 blocos e em 2 paredes, conforme o esquema a
seguir:

Figura 11 – Esquema Ilustrativo do Sistema Massa-Mola Amortecido

𝑚1 𝑚2

𝑥1 𝑥2

𝑘1 𝑘2 𝑘3

Fonte: Autoria Própria

Esse sistema foi escolhido devido à sua tendência a se estabilizar, mesmo sem uma
entrada de controle, uma vez que ele atende às 3 condições do teorema de Lyapunov.
Nesse sistema, a força que a resistência do ar exerce nos blocos faz com que sempre haja
dissipação da energia, de forma que ela sempre seja positiva e tenda a 0, além do problema
ter, por construção, suas condições iniciais nulas. Assim, sendo o sistema intrinsecamente
estável, há uma grande margem para minimizar sua norma ℋ2 ou ℋ∞ com uma entrada
de realimentação de estados.

Segundo [Ogata 2010], as equações que definem o sistema massa-mola amortecido
são:

⎧⎪⎨⎪⎩𝑚1𝑥̈1 = −𝑘1𝑥1 − 𝑘2(𝑥1 − 𝑥2) − 𝑏(𝑥̇1 − 𝑥̇2) + 𝑢,

𝑚2𝑥̈2 = −𝑘3𝑥2 − 𝑘2(𝑥2 − 𝑥1) − 𝑏(𝑥̇2 − 𝑥̇1).

Sendo os estados 𝑥1 e 𝑥2 as distâncias dos blocos 1 e 2 até seus respectivos pontos
de equilíbrio (m), a entrada 𝑢 a força aplicada no bloco 1 (N), 𝑚1 e 𝑚2 as massas dos
blocos (kg), 𝑘1, 𝑘2 e 𝑘3 as constantes elásticas (N/m), e 𝑏 o coeficiente de amortecimento
viscoso (kg/s). Aplicando as substituições 𝑥4 = 𝑥2, 𝑥3 = 𝑥1 e reorganizando as equações,
esse sistema pode ser reescrito como:
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⎡⎢⎢⎢⎢⎢⎢⎣
𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

− (𝑘1+𝑘2)
𝑚1

− 𝑏
𝑚1

𝑘2
𝑚1

𝑏
𝑚1

0 0 0 1
𝑘2
𝑚2

𝑏
𝑚2

− (𝑘2+𝑘3)
𝑚2

− 𝑏
𝑚2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥1

𝑥2

𝑥2

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
1

𝑚1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦𝑢. (3.2)

Além disso, foi modelado o valor da entrada exógena 𝑤, que representa um ruído
na força aplicada ao bloco 2 e deve ser ℒ2. A matriz 𝐵2, que determina como essa entrada
ruidosa vai afetar os estados do sistema, foi igual a matriz 𝐵1, ou seja, 𝐵2 =

[︁
0 1

𝑚1
0 0

]︁⊤
.

Então, a equações (3.2) podem ser reescritas como:

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

− (𝑘1+𝑘2)
𝑚1

− 𝑏
𝑚1

𝑘2
𝑚1

𝑏
𝑚1

0 0 0 1
𝑘2
𝑚2

𝑏
𝑚2

− (𝑘2+𝑘3)
𝑚2

− 𝑏
𝑚2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥1

𝑥2

𝑥2

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0
1

𝑚1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦𝑢 +

⎡⎢⎢⎢⎢⎢⎢⎣
0
1

𝑚1

0
0

⎤⎥⎥⎥⎥⎥⎥⎦𝑤. (3.3)

Nesse experimento, a saída 𝑦 são os próprios valores de 𝑥1 e 𝑥2, ou seja:

𝑦 =
⎡⎣1 0 0 0
0 0 1 0

⎤⎦𝑥. (3.4)

Uma grande limitação inerente à saída 𝑦 refere-se à ausência de um termo de
transmissão direta 𝐷. Como consequência, realizar a síntese de ganho com as matrizes
da saída 𝑦 não penalizará valores elevados na entrada de realimentação. Dessa forma,
visando a um melhor condicionamento do problema, define-se a saída fictícia 𝑧, que possui
a matriz 𝐷. Ela foi utilizada durante as sínteses dos ganhos que aconteceram ao longo do
experimento computacional 2 substituindo a entrada 𝑦 e foi dada por:

𝑧 =
⎡⎣1 0 0 0
0 0 1 0

⎤⎦𝑥 +
⎡⎣0, 1

0

⎤⎦𝑢. (3.5)

Com isso, o sistema massa-mola amortecido simulado ao longo deste experimento
computacional foi modelado por meio das equações (3.3) e (3.5).

O sistema utilizado neste experimento apresenta incertezas intervalares nas massas
dos blocos. Assim, os valores dos parâmetros com incertezas são definidos como:

𝑚1 ∈ [0, 5 , 1, 5] 𝑒 𝑚2 ∈ [0, 5 , 1, 5],

e os parâmetros sem incertezas foram definidos como:



59

Tabela 1 – Parâmetros do Sistema Massa-Mola Amortecido

Parâmetro Valor Unidade
Constante da Mola 1 (𝑘1) 10 N/m
Constante da Mola 2 (𝑘2) 10 N/m
Constante da Mola 3 (𝑘3) 10 N/m
Constante de amortecimento (𝑏) 1 N·s/m

Fonte: Autoria própria.

Como nesse sistema existem parâmetros com incertezas intervalares, a melhor
forma de modelá-lo foi através de politopos. Sendo o número de parâmetros incertos igual
a 2, então os politopos de cada matriz terão 4 vértices cada, ou seja:

Σ(𝑚max
1 , 𝑚max

2 ), Σ(𝑚max
1 , 𝑚min

2 ), Σ(𝑚min
1 , 𝑚max

2 ), e Σ(𝑚min
1 , 𝑚min

2 ), (3.6)

no qual as matrizes que representam o sistema através das equações de espaços de estados
foram definidas conforme a equação (2.13).

Diante dessa formulação dos vértices do politopo, pode-se realizar uma análise
inicial da estabilidade. Para isso, foram sorteadas 1000 combinações de 𝛼, gerando, assim,
1000 matrizes 𝐴 diferentes. Após isso, foram obtidos e plotados, no plano 𝑠, os autovalores
de cada uma dessas matrizes. Para as matrizes 𝐴 que tem todos os autovalores com parte
real negativa, ou seja, são estáveis, todos os seus autovalores foram plotados na cor verde,
caso contrário, todos os autovalores da matriz 𝐴 foram plotados em vermelho.

Figura 12 – Nuvem de Autovalores do Sistema Massa-Mola Amortecido

Fonte: Autoria Própria
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Analisando a nuvem de autovalores do sistema sem controle de realimentação
de estados, foi possível notar, pela ausência de autovalores em vermelho, que todas as
combinações sorteadas de 𝐴(𝛼) foram estáveis, reforçando que o sistema massa-mola
amortecido utilizado nesse experimento computacional é estável para qualquer combinação
de seus vértices.

3.2.2 Síntese do Ganho - Controle ℋ2

Após a formulação do problema, a etapa seguinte consistiu em análises do sistema
com realimentação de estados por meio do software MATLAB, implementando códigos
para a resolução de LMIs e a plotagem dos resultados. Essas LMIs realizam a síntese do
ganho para o politopo minimizando uma norma ℋ2 ou ℋ∞. A síntese foi tanto para o
caso robusto quanto para o caso ótimo, visando comparar os dois controladores.

Antes de realizar as simulações, foi necessário definir a função 𝑤 empregada no
modelo, que serviu como entrada do sistema em malha fechada. Como a norma ℋ2 refere-se
a resposta do sistema ao impulso unitário, então a entrada 𝑤 adotada foi justamente como
a função impulso unitário.

Para começar, foi estabelecido um sistema de referência, chamado sistema nominal,
construído pela aplicação dos valores médios de 𝑚1 e 𝑚2 e dos demais parâmetros fixos na
equação (3.3). Utilizando esse sistema nominal, foi implementado um código em MATLAB
que realizou a síntese do ganho do controlador ótimo ℋ2 por meio da equação (2.6),
encontrando o ganho ótimo 𝐾𝑜𝑝𝑡 = [−5.589 −0.597 −4.100 −0.186].

Depois, para o controle robusto ℋ2, foi implementado no código em MATLAB o
sistema dado por (3.6), aplicado à equação (2.33), com sua equação de saída sendo também
a saída 𝑧 e seus vértices em 𝐶 e 𝐷 constantes. A partir dessa equação, também foi obtido
o valor da norma ℋ2 garantida. Esse valor é asseguradamente maior que o da norma ℋ2

para qualquer ponto dentro do politopo em malha fechada, com o ganho robusto. O ganho
robusto encontrado foi 𝐾 = [−20.420 −8.989 29.756 −4.162].

Então, foram calculadas as normas ótima e robusta ℋ2 no sistema nominal em
malha fechada com o valor do ganho obtido tanto no caso ótimo quanto no caso robusto.
Para tal, utilizou-se a equação (2.28).

Além disso, para a avaliação do controlador robusto, foi calculada a norma ℋ2 para
1000 pontos do politopo também através da equação (2.28), correspondentes às combinações
dos valores dos vértices definidos em (3.6), ou seja, para distintas combinações de 𝑚1 e
𝑚2.

Plotando a norma ℋ2 garantida, a norma ℋ2 para o sistema nominal em malha
fechada com os ganhos ótimo e robusto e a norma ℋ2 de 1000 combinações dentro do
polítopo, o resultado foi:
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Figura 13 – Comparação entre as Normas ℋ2 Ótima, Robusta e Garantida
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Fonte: Autoria Própria

Ao analisar o gráfico, observou-se que o valor da norma ℋ2 garantida foi o maior
entre todos os sistemas, conforme o previsto. O valor da norma do controlador ótimo foi
menor do que o da norma do controlador robusto para o sistema nominal, o que também
está correto por conta do conservadorismo presente na equação (2.33), mais especificamente
na construção da matriz 𝑊 . Além disso, um controlador ótimo atuando no sistema exato
para o qual ele foi projetado, por definição, sempre terá a solução com a menor norma
possível. E por último, todas as normas dos 1000 sistemas sorteados estão menores que
a norma garantida, de forma que todo o gráfico esteja em concordância com a teoria de
controle.

O código também plota as saídas do sistema nominal, tanto para o controlador
ótimo quanto para o robusto, para melhor visualização da diferença de desempenho. A
resposta dos dois controladores ao impulso foi:
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Figura 14 – Resposta ao Impulso do Sistema Massa-Mola Amortecido com os Controladores
ℋ2 Ótimo e Robusto

Ao analisar visualmente o gráfico, é possível notar diferenças nas respostas de cada
controlador. A primeira delas refere-se ao tempo de subida, que é maior para o controlador
robusto do que para o ótimo, e a resposta ao impulso do sistema com o controlador ótimo
ainda apresentou uma certa oscilação de baixa amplitude antes de convergir definitivamente.
A segunda diferença refere-se ao sobressinal, que é muito maior no controlador robusto.
Com isso, a norma ℋ2 do controlador ótimo apresenta valor menor em comparação à do
controlador robusto, uma vez que a elevada intensidade do sobressinal deste último possui
maior impacto sobre o valor da norma do que o maior tempo na convergência observada na
resposta do controlador ótimo, resultando, em um desempenho globalmente mais favorável
para este.

Essas diferenças no sobressinal das duas respostas podem ser justificadas pelos
maiores valores na matriz de ganho robusto em relação ao ótimo, o que leva a valores mais
elevados na entrada 𝑢 do sistema, aumentando o sobressinal.

3.2.3 Síntese do Ganho - Controle ℋ∞

No caso do controle ℋ∞, os experimentos foram realizados novamente no MATLAB
de forma análoga aos experimentos de controle ℋ2, com algumas diferenças pontuais que
serão explicadas ao longo desta subseção.

A primeira diferença foi quanto à entrada exógena 𝑤 empregada no modelo. Para
os experimentos com a norma ℋ∞, a entrada ruidosa precisou ser um sinal com energia
finita, definida como:

𝑤(𝑡) = 𝑒−0,5𝑡𝑠𝑒𝑛(10𝑡). (3.7)
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Figura 15 – Entrada Ruidosa 𝑤(𝑡) em Função do Tempo
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Fonte: Autoria Própria

Para começar, novamente foi estabelecido um sistema chamado sistema nominal,
cujos valores de 𝑚1 e 𝑚2 foram fixados nos seus valores médios e aplicados às equações (3.3)
e (3.5). Para a realização da síntese do ganho desse sistema, o ganho ótimo foi utilizado a
equação (2.38), encontrando 𝐾𝑜𝑝𝑡 = [5.13 −15.76 −22.84 −24.40].

Depois, para o controle robusto ℋ∞, foi implementado no código em MATLAB
um sistema dado por (3.6), aplicado agora à equação (2.39). Devido à tendência de con-
troladores robustos baseados na norma ℋ∞ gerarem matrizes de ganho cujos elementos
apresentam módulos muito elevados, foi adicionada a LMI 𝜇 ≥ 1 para limitar os efeitos
desse fenômeno (sem a utilização dessa limitação em 𝜇, o ganho encontrado foi 𝐾 =
[−2, 46𝑒+09 −9, 20𝑒+08 2, 47𝑒+09 −5, 24𝑒+08]). Através da resolução desse conjunto

de LMIs foi obtido o ganho do controlador robusto 𝐾 = [−74, 81 −17, 47 104, 27 −14, 41],
além do valor da norma ℋ∞ garantida.

Com o valor do ganho obtido tanto no caso ótimo quanto no caso robusto, utilizou-
se, desta vez, a equação (2.37) para simular a diferença de desempenho, em termos da
norma ℋ∞, entre o controlador robusto e o ótimo no sistema real.

De forma semelhante aos experimentos com a norma ℋ2, foi implementado no
código o cálculo da norma ℋ∞ para 1000 combinações distintas dos valores dos vértices
definidos em (3.6).

Plotando a norma ℋ∞ garantida, a norma ℋ∞ ótima, a norma ℋ∞ robusta para o
sistema real e a norma ℋ∞ dos 1000 sistemas simulados, o resultado foi:
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Figura 16 – Nuvem de Autovalores do Sistema Massa-Mola

Analisando o gráfico, é possível notar que o valor da norma ℋ∞ garantida, limitada
inferiormente, foi o maior entre todos os sistemas, conforme o previsto. O valor do
controlador ótimo foi menor, mesmo que bem próximo, que o do controle robusto, o que
também está correto por conta do conservadorismo presente na equação (2.33), mais
especificamente na construção da matriz 𝑊 . E por último, todas as normas dos 1000
sistemas sorteados estão menores que a norma garantida, de forma que todo o gráfico
esteja em concordância com a teoria de controle.

O código em MATLAB também plotou as saídas do sistema nominal, tanto para o
controlador ótimo quanto para o robusto, de modo a tornar mais visível a diferença de
desempenho. A resposta dos dois controladores ao sinal representado pela equação (3.7)
foi:
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Figura 17 – Resposta ao Ruído ℒ2 do Sistema Massa-Mola Amortecido com os Controla-
dores ℋ∞ Ótimo e Robusto
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Fonte: Autoria Própria

A plotagem das saídas corrobora os resultados apresentados no gráfico anterior,
que indicam um melhor desempenho do controlador ótimo em relação ao robusto na malha
fechada do sistema nominal, em termos da norma ℋ∞. Para a saída 1, verificou-se um
tempo de acomodação semelhante nos dois controladores; entretanto, o sobressinal do
controlador robusto foi mais de 3 vezes maior do que o do controlador ótimo.

Já para a saída 2, o controlador ótimo apresentou desempenho pior do que o
robusto, com um tempo de acomodação consideravelmente maior e um sobressinal cerca de
2 vezes mais acentuado. No agregado, o desempenho do controlador ótimo, visto a partir
dos valores de sua saída, ainda foi melhor quando comparado ao controlador robusto.
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4 CONCLUSÃO

4.1 Conclusões Gerais

O presente trabalho teve como objetivo explorar o uso de Desigualdades Matriciais
Lineares (LMIs) para a síntese e a análise de sistemas, com ou sem minimização de norma.
Para isso, empregou-se o software MATLAB para implementar códigos que resolvessem
essas LMIs.

Este Trabalho de Conclusão de Curso pode ser dividido em dois experimentos
computacionais principais: o primeiro utilizou a desigualdade de Lyapunov para a estabili-
zação de sistemas com incertezas modeladas por meio de politopos. Testou-se a tese de
que diminuir o conservadorismo no problema, através da transformação da sua matriz 𝑃

constante em 𝑊 (𝛼) = ∑︀𝑁
𝑛=1 𝛼𝑛𝑊𝑛, aumentaria as chances da desigualdade de Lyapunov

realizar a síntese do ganho no sistema.

Essa proposição foi avaliada por meio da implementação de um código no MATLAB
que testou qual o percentual de um conjunto de 1000 sistemas instáveis, modelados através
de politopos nas suas matrizes 𝐴 e 𝐵, que conseguiram ser estabilizados por meio da
desigualdade de Lyapunov com 𝑃 quadrático e com 𝑊 (𝛼) afim, comparando a eficácia
entre os tipos de estabilidade.

Conforme esperado, o percentual de sistemas estabilizados no caso de 𝑊 afim foi
sempre maior do que o de 𝑃 quadrático. Além disso, à medida que o autovalor máximo
dos vértices dos politopos aumentava, observava-se também uma queda no percentual de
sistemas estabilizados.

A segunda parte dos experimentos computacionais envolvia a aplicação das desi-
gualdades de Lyapunov ao estudo das normas ℋ2 e ℋ∞ de forma prática. Diante disso, foi
utilizado um sistema massa-mola amortecido com incertezas nos valores das massas dos
blocos, visando à comparação entre os controladores ótimos e robustos.

Para as duas normas diferentes, foram fixados os valores das massas dos blocos,
criando um sistema nominal que permitiu a síntese dos ganhos dos controladores ℋ2 e
ℋ∞ ótimos. Adicionalmente, por meio do sistema composto pelos 4 vértices do polítopo,
foi realizada a síntese do ganho robusto, bem como a determinação dos valores das duas
normas garantidas para os controladores ℋ2 e ℋ∞.

Além disso, calcularam-se os valores das normas ℋ2 e ℋ∞ para o mesmo sistema
nominal fixado na síntese do controlador ótimo, mas em relação à saída fictícia 𝑧. Esse
cálculo foi feito tanto para o ganho do controlador ótimo quanto para o ganho do controlador
robusto, em ambos os tipos de norma.
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Os valores dessas normas foram condizentes com a teoria de controle, uma vez que
as normas ℋ2 e ℋ∞ garantidas foram as maiores; as normas dos controladores robustos
vieram logo depois, e o menor valor foi o das normas dos controladores ótimos.

Além disso, foram sorteadas 1000 combinações diferentes dos vértices do politopo
do sistema-massa mola, e para todas elas foram calculadas suas normas ℋ2 e ℋ∞ quando
aplicados o ganho ótimo e o ganho robusto Para todos os pontos do politopo, a norma ℋ2

com o controlador robusto foi menor que a norma garantida.

4.2 Limitações, Desafios e Sugestões de Trabalhos Futuros

Devem ser mencionadas as limitações deste estudo, bem como sugestões para
futuros estudos. No primeiro experimento computacional, foi avaliada apenas a síntese do
sistema com incertezas politópicas, sem avaliar qualitativamente os controladores. Para dar
continuidade aos tópicos levantados neste estudo, podem ser realizados novos experimentos
computacionais em uma grande quantidade de politopos.

Nesse sentido, um possível trabalho pode ser feito por meio do sorteio de 1000
politopos já estáveis e da síntese de um controlador robusto, com minimização da norma
ℋ2 e/ou ℋ∞, tanto para 𝑃 quadrático quanto para 𝑃 afim. Neste estudo, haveria também
a comparação entre os valores médios das normas antes e depois da redução do conserva-
dorismo do problema, mostrando que essa redução deve resultar em controladores com
melhor desempenho em relação aos valores calculados pelas suas normas.

Ainda nessa mesma linha de pensamento, pode ser fixada a matriz 𝐵, e para
a matriz 𝐴, o número de valores fixados, com todos os outros valores da matriz sendo
aleatórios, aumenta de 0 até 𝑛 · 𝑛, com a matriz 𝐴 tendo 𝑛 linhas e colunas. Nesse cenário,
pode-se calcular a eficiência da síntese em função do número de valores incertos na matriz
𝐴.

Tratando agora das limitações do Experimento Computacional 2, a primeira delas
é que o sistema massa–mola considerado será sempre estável para quaisquer valores de
seus parâmetros, o que favorece o controlador ótimo. Caso existissem pontos instáveis no
politopo, o ganho obtido pelo controlador ótimo talvez não fosse suficiente para estabilizá-lo.
Nesse sentido, seria interessante repetir todos os procedimentos do experimento 2, porém
utilizando um sistema que não seja intrinsecamente estável.

Outra limitação deste trabalho, presente em ambos os experimentos computacionais,
refere-se ao tipo de sistema adotado, que se limitou a sistemas LTI. Nesse sentido, para dar
continuidade a este estudo, seria relevante repetir alguns dos procedimentos do trabalho
em um sistema não linear, como, por exemplo, em um sistema de pêndulo invertido ou em
um sistema com variação temporal de parâmetros, como no lançamento de foguete.

E, por fim, um estudo sobre problemas de rastreamento de referência, visando
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minimizar uma norma, também pode gerar resultados enriquecedores. Este estudo po-
deria, inclusive, utilizar um sistema massa-mola amortecido para realizar procedimentos
semelhantes aos que foram realizados neste trabalho.
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