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RESUMO

RIOS, J. Comparativo entre Controladores Robusto H, e H,, para Sistemas
Lineares com Incertezas Politépicas. 2025. 72 p. Monografia (Trabalho de Conclusao
de Curso) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos,
2025.

Um grande desafio na area de controle é a incerteza e seus impactos no desempenho dos
sistemas. Este trabalho teve como objetivo estudar métodos de analise de estabilidade e
de sintese de ganho para sistemas LTI com incertezas modeladas por politopos, bem como
as normas Ho e Ho, como critérios de desempenho, por meio da solugao via Desigualdades
Lineares Matriciais (LMIs). Para tal, foram conduzidos experimentos computacionais no
MATLAB, usando Yalmip e SeDuMi para a solucao das LMIs. No primeiro experimento,
comparou-se o desempenho da sintese de ganho em dois cenarios: estabilidade quadratica
e uma condicao de estabilidade afim menos conservadora, aplicando a desigualdade de
Lyapunov. No segundo experimento, realizou-se a sintese de um controlador 6timo e
robusto para um sistema massa-mola. Os resultados do primeiro estudo mostraram maior
eficiéncia na reduc¢ado do conservadorismo do problema. No segundo, a sintese de ganho
foi bem-sucedida tanto para o controle Hs quanto para o controle H.,. Conclui-se que a
desigualdade de Lyapunov é fundamental para problemas de analise de estabilidade e de
sintese de ganho em sistemas com incertezas politopicas, e que estratégias baseadas em

LMIs permitem a implementacao de controladores robustos de forma eficiente.

Palavras-chave: Controle 6timo; Controle robusto; Desigualdades matriciais lineares;
Estabilidade quadratica; Estabilidade de Lyapunov; Controle Hsy; Controle H..






ABSTRACT

RIOS, J. Comparison Between Robust H; and H,, Controllers for Linear
Systems With Polytopic Uncertainties. 2025. 72 p. Monograph (Conclusion Course
Paper) - Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos,
2025.

A significant challenge in the control area is uncertainty and its impacts on system
performance. This work aimed to study methods for stability analysis and gain synthesis
for LTT systems (Linear Time-Invariant systems) with uncertainties modeled by polytopes,
as well as the Hy and H,, norms as performance criteria, by means of a solution via
Linear Matrix Inequalities (LMIs). To this end, computational experiments were conducted
in MATLAB using Yalmip and SeDuMi to solve the LMIs. In the first experiment, the
performance of gain synthesis was compared under two scenarios: quadratic stability and
a less conservative affine stability condition, both using the Lyapunov inequality. In the
second experiment, an optimal and robust controller was synthesized for a mass-spring
system. The results of the first study showed greater efficiency in reducing the problem’s
conservatism. In the second, the gain synthesis was successful for both H, control and H.,
control. It is concluded that the Lyapunov inequality is fundamental for stability analysis
and gain synthesis in systems with polytopic uncertainties, and that LMI-based strategies

enable the efficient implementation of robust controllers.

Keywords: Optimal control. Robust control. Linear Matrix Inequality. Quadratic stability.
Lyapunov stability. Ho control. H, control.
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1 INTRODUCAO

A area de controle é de extrema importancia na engenharia. Ela é responsavel
por regular processos industriais de diferentes naturezas e complexidades, garantindo
estabilidade e eficiéncia em seus diversos tipos de sistemas. Em sua teoria, ela consegue
representar, de forma matematica, sistemas ideais e estabiliza-los com controladores

relativamente simples.

Uma das partes mais importantes na area de controle linear é determinar a es-
tabilidade de um sistema. E possivel avaliar essa caracteristica por meio de sua matriz
de transicao de estados A, de modo que o sistema serd estavel se e somente se todos os

autovalores dela tiverem parte real negativa.

Na prética, segundo [Yedavalli 2014], os sistemas podem funcionar de forma dife-
rente, com incertezas nos parametros, nao linearidades, dindmicas nao modeladas e ruidos
ou imprecisoes de medicao, o que torna desafiador o projeto de um sistema de controle
nesse cendrio. E nesse contexto que surge o controle robusto, no qual se aplicam técnicas

mais complexas, capazes de lidar com as imperfei¢oes do sistema.

Um problema classico de controle robusto é o da suspensao de um carro. Segundo
[Ebihara, Peaucelle e Arzelier 2015], nesse problema, a matriz A do espago de estados
é composta por diversos parametros, como a massa m das rodas, a massa M do chassi,
a constante elastica k da mola, a constante ¢ do amortecedor, etc. Nesse exemplo, o
parametro M é incerto, pois depende, por exemplo, do niimero de passageiros no carro.
Esse problema pode ser solucionado por meio de um controle robusto, uma vez que a

teoria tradicional de controle nao abrange variacoes nos parametros do sistema.

Existem varias técnicas que podem resolver problemas de controle de sistemas com
incertezas. Neste trabalho, as técnicas exploradas baseiam-se na desigualdade de Lyapunov.
Essa desigualdade permite uma abordagem numérica do problema da estabilidade de
sistemas em espacos de estados e permite trabalhar com incertezas de parametros, inerentes

a sistemas reais.

Além disso, a prépria desigualdade de Lyapunov tem uma importante limitacao
em sistemas com incertezas: ela exige que a solucao seja uma matriz P(«) com dimensao
infinita, obrigando que sejam feitas construgoes conservadoras dessa matriz para que seja
possivel resolver a LMI. Dessa forma, ela nem sempre consegue fornecer um resultado
definitivo tanto no problema da analise da estabilidade de um sistema, quanto na sintese

do ganho em malha fechada.

Uma alternativa para atenuar esse problema, explorada ao longo desse trabalho, é

reduzir o conservadorismo da matriz P(«). Teoricamente, para encontrar um ganho que
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estabilize um sistema incerto, basta diminuir infinitamente o conservadorismo de P(«) até
que, em algum momento, ele convergira para a matriz P(a) de dimensao infinita. Porém,
na pratica, cada aumento do grau de liberdade aumenta significativamente a complexidade
das LMIs utilizadas para resolver o sistema, além de aumentar a quantidade de poder

computacional necessaria.

Outro aspecto importante do trabalho é a utilizagdo de normas para melhorar o
desempenho dos controladores em diferentes aspectos. A primeira é a norma H,, relacionada
a energia de um sistema sob uma perturbagao muito rapida. A segunda é a norma H,
que indica a capacidade do sistema de atenuar a energia de um disttrbio de entrada. Dessa
forma, um controlador H, tende a produzir respostas que estabilizam o sistema mais

rapidamente, enquanto o H., produz respostas que tendem a ter menos efeitos de ruido.

Dessa forma, o objetivo deste trabalho é comparar diferentes abordagens de controle
robusto em sistemas com incertezas. Para isso, realizou-se um conjunto de experimentos

computacionais.

Para fins de comparacgao, foram utilizados controladores 6timos e robustos com
base nas normas H., e Ho. Enquanto os controladores 6timos apresentam o menor valor
possivel de sua respectiva norma no sistema exato para o qual foram projetados, eles
perdem desempenho em sistemas com incertezas. Enquanto isso, no mesmo sistema com
incertezas, controladores robustos conseguem garantir um nivel méaximo do valor de suas

respectivas normas.

O primeiro experimento computacional consistiu em testar o aumento da eficiéncia
ao elevar o grau de liberdade da matriz P(«), buscando identificar um ganho de reali-
mentacao capaz de estabilizar sistemas politépicos gerados aleatoriamente. Para estar em
conformidade com a teoria de controle robusto, a redugao do conservadorismo da matriz

deve aumentar o nimero de solugoes em um problema de sintese de ganho.

O segundo experimento consistiu na comparagao do desempenho de um sistema
linear (massa-mola amortecido) com incertezas. Foi realizada a sintese do ganho 6timo e
robusto, aplicando-o ao sistema nominal e comparando o valor resultante com suas normas.
O método utilizado para isso foi também resolver a desigualdade de Lyapunov; porém, de

forma alternativa, que minimiza as normas Hy e Ho, de um sistema.

1.1 Objetivos

A linha do projeto aqui proposto visa desenvolver um comparativo entre estratégias
de controle robusto do tipo Hs e Ho, para sistemas lineares com incertezas politopicas,

com os seguintes objetivos gerais e especificos:
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1.1.1 Objetivo Geral

Desenvolver e avaliar um sistema de controle robusto aplicavel a sistemas dinamicos

lineares com incertezas politdpicas.
1.1.2  Objetivos Especificos

e Realizar um estudo detalhado da teoria de controle robusto Hs e H., por meio de
LMIs;

o Implementar controladores robustos Hs e H, em ambiente de simulacao usando
solvers de LMI;

e Aplicar e validar o controlador robusto em modelos de sistemas dindmicos lineares

com incertezas politépicas por meio de simula¢gdes numeéricas;

e Avaliar o desempenho entre controladores robustos Hs e H., implementados via
LMIs, com o objetivo de identificar os cendarios em que cada abordagem é mais

adequada;

e Documentar os resultados e as conclusoes obtidas.

1.2 Justificativa do trabalho

A relevancia deste trabalho fundamenta-se na ampla gama de aplica¢bes das teorias
de controle robusto. Sistemas que representam problemas reais, em algum grau, sempre
apresentam incertezas que influenciam fortemente o planejamento dos engenheiros que
buscam solugoes para esses problemas. Dessa maneira, o estudo de controladores que lidam
com essas incertezas é crucial para toda a cadeia de producao industrial moderna e, por

consequéncia, para toda a economia.

Dentro desse contexto, técnicas de controle robusto tipicamente apresentam con-
servadorismo em suas solugoes. Assim, uma direcao possivel para as teorias de controle

robusto é buscar solu¢des menos conservadoras, o que nao é um processo trivial.

Adicionalmente, conforme discutido em [Skelton, Iwasaki e Grigoriadis 2013],
embora os problemas de controle robusto sejam complexos e, teoricamente, possuam
dimensoes infinitas, podem ser simplificados por meio de relaxacoes e variaveis de folga.
Assim, as técnicas de controle robusto tornam-se tteis para problemas com incertezas,
transformando-os em problemas de dlgebra linear, solucionaveis por meio de algoritmos

numéricos.

Além disso, o foco principal deste trabalho reside na resolugao de problemas de
otimizacao convexa, os quais incorporam LMIs em sua formulacao. Assim, os métodos

empregados ao longo deste trabalho podem ser amplamente utilizados como base para
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resolver problemas reais que visem nao apenas projetar controladores estaveis, mas também

construi-los para que apresentem o melhor desempenho global.

1.3

Estrutura do trabalho

Capitulo 1 - Introdugao ao tema, contextualizando sua importancia, apresentando a
tese sobre a diminui¢ao do conservadorismo, definindo brevemente as normas H, e

Ho, além de uma descricao dos objetivos deste trabalho.

Capitulo 2 - Exposicao de toda a parte tedrica que serviu de alicerce para a realizacao
dos experimentos computacionais deste trabalho. Assim, este capitulo foi dedicado
a apresentar técnicas de analise e sintese robustas, assim como controladores que

minimizam uma norma, tais como Hy e H.

Capitulo 3 - Apresentacao dos experimentos computacionais, explicagdo dos pontos
cruciais do cédigo implementado e discussao dos resultados em termos de tempo de

acomodacao, sobressinal e normas Hs e H .

Capitulo 4 - Conclusoes finais dos resultados obtidos no trabalho. Apontam-se
algumas limitacoes dos experimentos realizados, bem como se propoem dire¢oes para

pesquisas futuras na area.
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2 FUNDAMENTOS TEORICOS

2.1 Apresentacdo Histérica da Area de Sistemas de Controle

Segundo [Ferguson 2015], sistemas de controle com realimentagao ji sdo conheci-
dos desde a antiguidade. Um dos primeiros registros foi o relégio de agua de Ctecibio,
apresentado na Figura 1. Ele funcionava com base em um fluxo constante de gotas de
um recipiente A para outro, B, de modo que a altura da coluna de dgua gotejada no B
servia para medir o tempo. Com o tempo, a coluna de agua do recipiente A diminuia,
reduzindo também a velocidade do gotejamento e atrasando o relégio. Para resolver isso,
a Ctecibio implementou um sistema rudimentar de controle com realimentacgao: adicionou
um recipiente C com muita agua e conectou-o ao topo do recipiente B por meio de uma
mangueira cheia de dgua, de modo que a adgua do recipiente C sugasse a do recipiente B a

medida que este perdia dgua, mantendo o nivel da dgua constante.

Figura 1 — Reldgio de Ctecibio

Fonte: [Wikipedia 2025].

Num periodo mais recente, segundo [Bennett 2002], a necessidade de controle
decorreu do surgimento de maquinas na Revolug¢ao Industrial. Matthew Boulton, em
uma carta de 1788, descreveu a James Watt um mecanismo rudimentar para controlar
a distancia entre as pedras de moagem em moinhos de vento e de agua. Watt entao
percebeu que esse mesmo mecanismo poderia ser adaptado para o controle da velocidade
de motores a vapor, em que um dispositivo mecanico controlava a entrada de calor na
caldeira do motor, de modo a manter a velocidade constante. O grande problema desse
governador é que ele s6 oferecia controle proporcional, o que fazia com que o sistema nunca

se estabilizasse exatamente na velocidade desejada.
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Ao mesmo tempo em que surgiam avancos praticos para esses governadores, também
surgiam avangos teéricos. J.V. Poncelet e G.B. Airy, em diferentes ocasioes, conseguiram
descrever o funcionamento do governador por meio de equagoes diferenciais, embora nao
conseguissem descrever adequadamente as condigoes de estabilidade do sistema em tempo
continuo. Na época, ja se sabia que a estabilidade de um sistema era determinada pelo
sinal da parte real das raizes do polinomio caracteristico desse sistema; porém, uma grande

dificuldade era determinar a parte real sem antes determinar a raiz complexa.

Em 1890, segundo [BOYD et al. 1994], Aleksandr Lyapunov publicou um trabalho
sobre o que hoje da origem a teoria de Lyapunov. Ele descreveu o que ficou conhecido
como a Desigualdade de Lyapunov, a primeira Linear Matrix Inequality (LMI) que poderia
ser usada para analisar a estabilidade de um sistema dinadmico. Além disso, essa LMI

poderia ser resolvida explicitamente.

A partir do século XX, com o avanco tecnoldgico da eletricidade, surgiram mais
aplicacoes da teoria de controle. Passou a ser aplicada também em controladores com
realimentacao de tensdo e corrente, permitindo, assim, o controle de motores elétricos.
Também foram aprimoradas as aplicagoes para variaveis ja controladas, como temperatura,
pressao, velocidade, vazao, etc. Apesar do aumento no nimero de aplicagoes do controle,
ainda nao havia um arcabougo tedrico suficiente, além das equacoes diferenciais e do
critério de Routh-Hurwitz, o que deixava muitos engenheiros da época confusos quanto a

sistemas estaveis que se tornavam instaveis mesmo com pequenas alteragoes.

Em 1922, segundo [Bennett 1984], apds observar timoneiros operando grandes
embarcagoes, Nicholas Minorsky formulou uma extensa teoria de sistemas de controle
posicionais, hoje conhecida como controle Proporcional-Integral-Derivativo (PID). Porém,
essa analise acabou nao sendo muito difundida na época, além de ainda nao existirem
amplificadores lineares e estaveis capazes de converter os sinais de baixa poténcia de

sensores medidores em sinais de alta poténcia que possam operar controladores atuadores.

Ainda na década de 20, segundo [Bennett 2002, Harold Stephen Black, visando
resolver alguns problemas nas linhas telefonicas da época, comegou a trabalhar na melhoria
dos amplificadores. Ele notou que, ao sacrificar uma parte da amplificacdo do sinal, de
modo que uma parte da saida fosse realimentada na entrada, era possivel reduzir o ruido
no sinal amplificado. Em 1927, ele esbogou um circuito de realimentacao negativa, que
foi aprimorado até que, em 1931, ja estava sendo utilizado pela AT&T. Durante esses
anos, Black foi muito ajudado por Harry Nyquist, o mesmo que, mais tarde, escreveria o
Teorema de Nyquist. Todos esses trabalhos possibilitaram uma compreensao muito maior

sobre o uso da realimentacao negativa e seus beneficios.

Um momento importante no desenvolvimento das teorias de controle ocorreu
durante a Segunda Guerra Mundial. Nela, houve um esfor¢o muito grande em uma tarefa

bem especifica relacionada a guerra, como o sistema de miras de baterias antiaéreas. O
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manejo dessas armas exigiu grandes avancos na area, uma vez que envolvia a deteccao da
posicao futura de um aviao, a movimentagao do armamento e o calculo da trajetéria da
muni¢ao. Toda a operacao envolvia até 14 pessoas que tinham de agir de forma coordenada
para garantir o funcionamento adequado do sistema. Durante a guerra, ficou muito claro
que esse sistema era muito lento e inadequado para a guerra, e que era necessario o maximo
de automagao possivel, de modo que a arma estivesse conectada diretamente ao radar,

exigindo apenas a atuacao de um tnico operador para garantir o funcionamento do sistema.

No MIT, uma solugao para esse problema foi o uso de diagramas de blocos para
representar sistemas elétricos e mecanicos, utilizando, assim, o melhor da teoria de controle
tanto no dominio do tempo quanto no da frequéncia. Em 1943, Albert C. Hall mostrou que,
sendo esses blocos representacoes de fungoes de transferéncia, a resposta em frequéncia
poderia ser esbogada e o critério de estabilidade de Nyquist poderia ser utilizado; além
disso, o ganho e a defasagem poderiam ser calculados. Esses avangos permitiram a criagao

de novos radares e servomecanismos, que alcancaram altas taxas de sucesso na guerra.

Também na década de 40, Lur’e, Postnikov e outros cientistas da Unido Soviética
buscavam aplicar as inequagoes de Lyapunov do final do século XIX a sistemas com nao
linearidades nos atuadores, obtendo certo sucesso em sistemas pequenos de segunda e
terceira ordem. Devido as limitagoes de poder computacional da época, nao foi possivel

testar esses métodos em sistemas maiores.

No inicio da década de 1960, houve mais um avanco nas aplicagoes das LMI.
Kalman, Yakubovich e Popov conseguiram reduzir a solu¢ao do problema de Lur’e, na
década de 40, a um critério grafico, o que hoje é conhecido como Lema do Positivo-Real e
todas as suas variagoes. Esse critério poderia ser utilizado para sistemas de ordem superior

a 3, com a unica limitacao de que o sistema nao pode conter mais de uma nao linearidade.

As préximas etapas para o desenvolvimento das teorias sobre LMIs foram a sua
formulacdo como problemas de otimizagao convexa, o que tornou possivel o uso de
computadores e algoritmos iterativos na sua resolu¢ao. Em um paper de 1976, Horisberger
e Belanger mostraram que a existéncia de uma funcao quadratica de Lyapunov é um
problema convexo que envolve LMIs. Em 1982, Pyatnitskii e Skorodinskii conseguiram
reduzir o problema de Lur’e, mesmo em casos com mais de uma nao-linearidade, a
um problema de otimizacao convexa envolvendo LMIs, que eles resolveram utilizando o

algoritmo de elipsoide.

Em 1984, segundo [BOYD et al. 1994], houve mais um grande avango na resolugao de
LMIs, com a introducao, por N. Karmarkar, de métodos de pontos interiores. Inicialmente,
Karmarkar visava a aplicacao desses métodos a programacao linear; apenas em 1988, com
os estudos de Nesterov e Nemirovskii, esses métodos passaram a ter aplicagoes direcionadas

a resolucao de LMI.
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2.2 Definicoes Matematicas
2.2.1 Desigualdades Matriciais Lineares

Conforme apresentado em [Strang 2005], dada uma matriz quadrada A, os seus

autovalores A sao os valores que satisfazem a equacao:

det(A — ) =0.

Tal definicao tem importancia central na teoria de controle, uma vez que fundamenta

uma série de outros conceitos-chave nessa mesma area.

Outra definicao, especialmente importante nesse campo, refere-se ao problema da
estabilidade. Segundo [Slotine, Li et al. 1991], dado um sistema continuo modelado por
& = Az, diz-se que x(t) converge para 0, isto é, o sistema serd Hurwitz estével, ou apenas
estavel, se e somente se os autovalores da sua Matriz de Transicdo de Estados A tém parte

real negativa.

Dado o conceito de autovalores, outro ponto crucial a ser introduzido é o das

matrizes (semi)positivas ou (semi)negativas definidas.

Uma matriz A sera A = 0, isto é, positiva definida, caso todos os seus autovalores
tenham parte real positivas. Além disso, uma matriz A é A < 0, isto é, negativa definida,

se —A for positiva definida, ou seja:

—A > 0.

Adicionalmente, uma matriz A é A > 0, isto é, semipositiva definida, caso todos os
seus autovalores tenham suas partes reais nao negativas. Similarmente, uma matriz A é

A =0, isto é, semidefinida negativa, se —A for semidefinida positiva, ou seja:

—A>0.

Esclarecidos esses conceitos, torna-se possivel definir LMIs, que, segundo [BOYD

et al. 1994] sao expressoes matriciais da seguinte forma:

N

i=1
em que as matrizes F; € R™"™ sao simétricas e conhecidas, e x; sao as varidaveis de
decisdo. Também ¢é possivel encontrar LMIs descritas como F'(z) > 0, e nelas as mesmas

propriedades relacionadas a inequagao (2.1) permanecerao validas.

Com isso, é possivel notar que uma LMI constitui, na verdade, uma forma genérica

para uma inequacao linear, que tem n = 1. Dessa forma, nota-se que resolver analiticamente
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essas desigualdades no caso n > 1 torna-se dificil, sendo necessaria a utilizagdo de métodos

numéricos, comumente o método dos pontos interiores.

E importante notar também que LMIs sao restrigoes convexas em z;. O resultado
disso é que problemas de otimizagao que utilizam esse tipo de expressao matematica

sempre convergem para minimos ou maximos globais.

Segundo [Oliveira e Peres 2005], é comum representar uma matriz M qualquer

dependendo de forma afim de um nimero N, de matrizes M; com a estrutura

N2 N2
M(a)=> a;M;, sendo Y a;=1 e a;>0, (2.2)
j=1 J=1

em que «; sao escalares desconhecidos. Essa estrutura serd melhor definida ao

longo de sessoes subsequentes.

Além disso, serda comum ao longo deste trabalho utilizar o caso particular da
equagado (2.1), em que hé matrizes F; e x; dependendo de forma afim de N, matrizes

conhecidas Fj ; e de Ny varidveis de decisao xz; ;j, respectivamente; ou seja:

F(x)=FE+ i Fi(a)y; + i Gizi(a) = 0, (2.3)

i=1

sendo GG; e E matrizes conhecidas, y; varidveis de decisao e r; e ro 0 nimero de
termos que contém matrizes dependentes de matrizes conhecidas e o niimero de termos
que contém matrizes dependentes de varidveis de decisao, respectivamente. Utilizando a

estrutura descrita pela equacao (2.2) nas matrizes F;(«) e z;(a) da equagao (2.3) resultando

em:
r1 Na T2 No
FPlx)=E+3) > ajFy+> Gi) ajay; =0,
i=1j=1 i=1  j=1
que pode ser reorganizado em:
No 1 To
F(ZL‘) =F + Z Oéj(z F’i7]’yi + Z GiZL‘iJ’) > 0.
=1 i=1 i=1
Como, por definigao, a soma de todos os «; ¢ 1, ¢ possivel passar F para dentro do
somatorio.

No 1 T2
F(l’) = Z CKj(E —+ Z F’i,jyi -+ Z Gil’iJ) = 0.
j=1 i=1 i=1

Se cada termo do somatério em j for positivo definido, entdo F'(x) também serd

positivo definido. Dessa forma, o conjunto de desigualdades formado por:
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1 T2
{&j(E+ZE7jyi+ZGi$i7j) -0, Vj=1,2,..., N (24)
i=1 =1

¢ uma condicao suficiente, mas nao necessaria e suficiente para F(z) > 0. Como

a; > 0, entdo, para que a equagao (2.4) seja atendida, basta que:

T1 T2
{E +> Fyi+ > Gy =0, Vj=1,2...,No, (2.5)

=1 =1

seja verdadeiro.

Sendo assim, dada uma expressdao matricial construida conforme a equagao (2.3),
a equacao (2.5) é uma condigao suficiente para que F'(x) > 0. Essa afirmac¢io também
abrange desigualdades do tipo F(z) =, F(z) < 0 e F(z) < 0, e serd chamada, neste

trabalho, de teorema dos polinémios homogéneos.

Na pratica, esse teorema se aplica a situagdes em que uma matriz M («), conforme
a equagao (2.2), aparece em uma desigualdade matricial sem ser multiplicada por outros
termos dependentes de a. Ao empregar o teorema dos polinémios homogéneos nessa
desigualdade, obtém-se uma condicao suficiente para sua resolucdo, expressa por um
conjunto de N, desigualdades, todas iguais, com M («) substituida pelas N, matrizes

conhecidas M;.

Como essa ¢ uma condicao apenas suficiente, mas ndo necessaria, para resolver
F(z), é possivel afirmar que a solu¢ao apresenta conservadorismo, uma vez que é apenas
um subconjunto da solugao. Mesmo com essa limitacao, esse teorema serda de grande
utilidade ao longo deste trabalho, pois servird para transformar um problema de controle
otimo em um problema de controle robusto, que considera incertezas tanto na andlise

quanto na sintese.

Como exemplo simples da aplicagao pratica desse teorema, considere a desigualdade:

Ala)y +yA(a)" + Cx(a) + D(a) + E < 0,
com as matrizes dependentes de « construidas conforme a equagao (2.2).

Aplicando o teorema dos polinémios homogéneos nessa desigualdade, uma condigao

suficiente para resolvé-la é através das LMIs:

[Ajy+yA] + Ca; + D+ E <0, Vj=12... N,
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2.2.2  Complemento de Schur

Ao longo deste trabalho, haverd algumas situagoes em que a desigualdade que
estd sendo desenvolvida define um conjunto convexo, mas nao é linear, por apresentar
multiplicagoes entre suas varidveis de decisao. Em tais circunstancias, uma ferramenta que

permite linearizar esse problema é o complemento de Schur.

Segundo [Souza 2021], seja M:

v Q
Qr e

As seguintes condigoes sao equivalentes:

i) M =0 seesomentese ¥ =0e®— QN0 - 0;
ii) M = 0 se e somente se ® = 0e ¥ —Qd71QT = 0;
iii) Se U = 0, M = 0 se e somente se & — QT U1 = 0;
iv) Se ® > 0, M > 0 se e somente se W — Qd1QT > 0;
Na pratica, o complemento de Schur aumenta o ntimero de linhas e colunas de uma

desigualdade F'(z) > 0 de modo a eliminar multiplica¢oes por varidveis de decisao desse

problema.

2.2.3 Lema da Projecao

Outra ferramenta que permite eliminar a multiplicacao de variaveis de decisao é o
lema da projecdo. Segundo [Peres e Oliveira 2024], sendo ® = &' € R, Q € R™" e
U e R™" existe um X € R™™ tal que:

P+QXTU+UTXQ <0, (2.6)

se e somente se:

QLTPO <0 e THTOUE <0, com QQt=0 e VI =0,

2.3 Nocoes Basicas de Sistemas de Controle

Uma enorme quantidade de sistemas ¢ modelada por meio de Equacgoes diferenciais
Ordinérias (EDOs) lineares. Segundo [Skelton, Iwasaki e Grigoriadis 2013], é possivel

escrevé-los de forma genérica como
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Ax(t) + Byu(t) + Baw(t),

(2.7)
Cx(t) + Du(t),

—_——
< &
— ~—~
~+
N— S~—
il

Essa estrutura é chamada de representagao em que z(t) € R™ é o vetor de estados,
sendo um estado uma variavel dependente do tempo dentro da dinamica do sistema,
u(t) € R™ ¢é o vetor contendo usualmente as entradas de controle do sistema, w(t) € R?
também é um vetor contendo entradas, porém essas usualmente representam perturbagoes
no sistema, y(t) € R? é o vetor de saidas e A, By, By, C, D sao matrizes que dependem

dos parametros do sistema.

Dentro da representagao em espaco de estados, é possivel definir também os
conceitos de malha aberta e de malha fechada. Um sistema em malha aberta é aquele
definido apenas pela estrutura béasica da equagao (2.7), ou seja, sem que a entrada u
dependa dos estados ou das saidas do sistema. E possivel representar esse sistema a partir

da Figura 2.

Figura 2 — Diagrama de Blocos de um Sistema Genérico em Malha Aberta

Y
o

Fonte: Autoria Propria

Em contrapartida, um sistema em malha fechada é aquele em que a entrada de
controle u do sistema, representada pela equagao (2.7), é determinada em fungao dos
estados ou da saida do proéprio sistema. No presente trabalho, essa entrada de controle
foi definida como u = Kz, em que K denomina-se ganho de realimentagao de estados ou
ganho em malha fechada. Este conceito serd discutido com maior profundidade ao longo
do trabalho. A representagdo em diagrama de blocos da equacao (2.7) é apresentada pela

Figura 3.
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Figura 3 — Diagrama de Blocos de um Sistema Genérico em Malha Fechada

l w(t)

By

6, (1) J‘ 2, ] O

u(t)

Fonte: Autoria Propria

2.3.1 Analise com Desigualdade de Lyapunov

Segundo [Khalil e Grizzle 2002], o teorema de Lyapunov diz que um sistema da
forma:
T = Ax,

Com z = 0 sendo o seu ponto de equilibrio, é assintoticamente estavel se e somente
se existir uma fungao V' (z), continua e diferencidvel, chamada de fungao de Lyapunov, tal

que:

ii) V(x) >0, para z # 0;

iii) V(z) <0, para x#0.

Visando atender a essas condig¢oes, pode-se utilizar uma fun¢do de Lyapunov na

forma quadratica, ou seja:

V(z) =z Pz, (2.8)

sendo P = PT = 0 (segundo [Chen 1984], isso resulta em V(z) > 0). Entdo, por
construgao, a primeira condi¢ao também ¢é atendida. Para encontrar os requisitos que

tornam a terceira condicao vélida, deve-se aplicar a equagao (2.8) nela. Dessa forma:
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V(z)=i"Px+ 2 Pi. (2.9)

Dado que o sistema ¢ definido por & = Ax, entao:

V(x) = (Az)" Pz + 2" PAx,

que pode ser reescrita como:

V(z)=2 (AP + PA)x < 0.

Com isso, para que a derivada da funcao de Lyapunov seja negativa, basta que o

termo entre parénteses seja negativo. Ou seja:

ATP+ PA <0, (2.10)

que é a desigualdade de Lyapunov. Dessa forma, um sistema & = Az serd estavel

se e somente se existir uma matriz P = P' = 0 que satisfaca a equacio (2.10).

2.3.2 Sintese com Desigualdade de Lyapunov

Para um sistema controlado com realimentacao de estados, é utilizado que u = Kz,

entao:

&t =Ax+ BKz = (A+ BK)zx.

Aplicando essas condigoes na equagao (2.10), o resultado é:

(A+BK)"P+ P(A+ BK) <0.

Devido a presenca de produtos entre as variaveis, a desigualdade em questao deixa
de ser uma LMI. Segundo [Peres e Oliveira 2024], para contornar essa nao linearidade,

aplica-se a transformacao de congruéncia:

P~ ((A+ BK)"P+ P(A+ BK))) P~' <0.

Omitindo alguns passos intermedidrios e aplicando as substituicoes W = P~! e
Z = KW, entao, para que exista um K que resolva o problema da sintese do ganho

dado um sistema em espaco de estados definido pelas matrizes A e B, basta que existam
W=WT">0eZ com:
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AW +WAT"+BZ+Z"B" <0,
sendo (2.11)
K=272w

2.4 Modelagem de Incertezas em Sistemas Dinamicos

2.4.1 Importancia da Modelagem de Incertezas

Toda a teoria de controle apresentada até esse ponto do trabalho apresenta uma
certa limitagao: funciona apenas para sistemas exatos. No mundo real, dificilmente se
trabalha com modelos 100% exatos. Sistemas costumam apresentar incertezas nos valores
de seus parametros, o que faz com que seja sempre necessario aproximar as equagoes que

os descrevem.

Em alguns casos, essas aproximagoes nao geram diferencas significativas no fun-
cionamento do modelo teérico em relacao ao modelo real. Entretanto, em outros casos,
essas incertezas podem alterar significativamente as respostas do sistema real, podendo

até mesmo desestabilizé-lo.

Dada essa situacao, os controladores projetados para sistemas com incertezas
consideraveis devem ser capazes de manter o desempenho mesmo em casos de desvios mais
acentuados dos parametros. Para isso, ¢ essencial que haja uma modelagem das incertezas,

de modo a permitir a sintese do ganho corretamente.

Esta secao tem como objetivo definir uma forma de modelar as imprecisoes nos
valores dos parametros.
2.4.2 Modelagem de Incertezas

O caso mais bésico de incerteza ¢é o intervalo em um escalar, no qual se sabe apenas
o intervalo em que se encontra um valor de uma matriz A simétrica em relagao a origem.

Exemplo:

Dada uma matriz A:

0 a2 a3
A<9): Q21 A2z Q23]

31 a3z ass

Sabe-se que o parametro 6 assume valores entre —50 e +50, ou seja:

0 = [—50, +50],

Entao pode-se definir a matriz A,,q. € A como:



34

+50 12 a13
Aoz = Q21 Q22 A23| ,

| @31 a32 (33

=50 a2 a3

Apin = Q21 Q22 A23|,

31 a2 A33

Dessa forma, é possivel afirmar que a matriz A estd entre as matrizes A,qz € Amin.

Outro tipo de incerteza é a afim. Nesse caso, o pardmetro incerto nao precisa ser

simétrico em relagdo a origem. Exemplo:

Dada uma matriz A:

0 a2 a
A(Q): a21 Qg2 A23]

a31 32 Q33

Sabe-se que o parametro # assume valores entre 90 e 110, ou seja:

6 = [90, 110].

Entao pode-se definir a matriz A,,q; € A, cOMo:

110 12 Q13
Aoz = Q21 Q22 A23|,

a31 32 Aas3

90 12 Q13

Apin = Q21 Ag22 (23

31 Aazz ass

Dessa forma, é possivel afirmar que a matriz A estd compreendida entre as matrizes
Amam € Amm

Agora, para definir matematicamente essa situacdo, serao introduzidas as varidveis
a1 e ay. Elas irdo representar o quio préximo o valor real da matriz A esta do seu valor
maximo ou minimo. Além disso, todos os «, formam uma soma convexa, ou seja:

Oél+012:1.

Entao, a equagao que representa a matriz A com incerteza afim é:
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A(O./) - alAmin + Q/QAmaac‘

Avancando um pouco nesse tépico, é possivel definir incertezas politopicas ao voltar
ao exemplo da incerteza afim. Quando se tem apenas um parametro variando, a matriz A

do sistema pode ser representada por um segmento de reta:

Figura 4 — Representacao de A(«) com 1 parametro incerto
Amin A(Oc) Amaw
o — 06— 0

Fonte: Autoria Prépria

Esse segmento de reta é denominado politopo. Suas extremidades correspondem as
matrizes A, com os valores maximos e minimos do parametro de variancia. Caso haja dois

pardmetros variando, entao a forma geométrica serd um quadrilatero:

Figura 5 — Representagao de A(«) com 4 vértices

As
Ay

Ay
Ay

Fonte: Autoria Prépria.

Em que cada vértice corresponde a uma combinacao dos maximos e minimos dos
parametros, e a matriz A(«) pode ser qualquer ponto dentro desse politopo. Esse exemplo

com 2 pardmetros variando (4 vértices) pode ser representado pela equagio:

A(Oé) = OélAl + OéQAQ + a3A3 + 054144,
sendo o + as + az + a4 = 1.
Assim, a cada pardmetro com incerteza adicionado, o nimero de vértices do politopo
gerado é multiplicado por 2.

Segundo [Ebihara, Peaucelle e Arzelier 2015], pode-se definir o dominio de incerteza

através de um simplex na forma:

N
AN:{OQERNI Zalzleazzo,Vz:l,,N}

i=1
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Figura 6 — Ilustracao de um Simplex Unitario em oy, as e a3

Simplex

o
04
]

Fonte: Autoria Prépria.

Sendo assim, um politopo é definido como o subespago vetorial gerado pelos seus

vértices, com «, € Ay, podendo ser representado pelas equagoes:

Am%=%ﬁ%h (2.12)

sendo N é o nimero de vértices do politopo. Além disso, a soma de todos os «; é 1.

E possivel expandir essa visao para sistemas com incertezas nas matrizes By, By, C

e D, que podem ser causadas por incertezas nos atuadores ou sensores, de forma semelhante
a (2.12):
N
(A7 Bla 327 Ca D)(Oé) = Z Oéi(Aia Bl,ia BZ,@'7 C’i7 Dz) (213)

i=1

2.5 Controle Robusto via LMI
2.5.1 Anadlise de Estabilidade Robusta via LMI

Segundo [BOYD et al. 1994], a andlise de estabilidade em sistemas com incertezas
modeladas por politopos, conforme a equagao (2.12), difere da realizada em sistemas sem
incertezas. Em sistemas onde a matriz A é modelada através de A(a) a equacao (2.10)
nao pode ser utilizada diretamente para essa analise. Nesse contexto, a desigualdade de

Lyapunov assume a seguinte forma:

A(Q)TP + PA(a) <0,

(2.14)
P=P"~0.

Assim, para que um sistema modelado por meio de A(«a) seja estével, a desigual-

dade (2.14) deve ser vélida para todo o € Ay, de modo que, em todos os pontos do
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politopo, haja autovalores com parte real negativa. A figura 7 ilustra a nuvem de autovalo-
res de um sistema modelado por meio de um politopo. Na figura, todos os autovalores sao
posicionados no plano-s, sendo verdes os que, em um determinado ponto, tém parte real
negativa. Caso pelo menos um deles tenha uma parte real positiva, o sistema ¢é instavel.

Sendo assim, o sistema da figura 7 é instavel.

Figura 7 — Nuvem de Autovalores de Politopo Instavel Hipotético

5 Lugar das Raizes do Politopo
. T

o
o
T

eixo imaginario(jw)
o
T

-0.5—

15 ! ! ! ! -~ !
5 4 3 2 - 0 1
eixo real (o)

Fonte: Autoria Prépria.

Para encontrar uma solugdo para esse problema, é necesséario e suficiente que, para
cada valor de A(«) dentro do politopo, exista uma P diferente que resolva (2.14), ou seja,
a matriz P também depende de pardmetros, ou seja, P(«). Assim, a LMI (2.14) pode ser

formulada de forma genérica como:

A(a)"P(a) 4+ P(a)A(a) <0,

(2.15)
P(a) = P(a)" = 0.

Como o politopo A(«) tem infinitos pontos, para que ele seja estavel, é necessério e

suficiente que também haja infinitos P(«), o que torna o problema impossivel de resolver.

Para contornar essa questao, uma possivel solucao ¢é flexibilizar o problema. Isso
é feito definindo uma construcao de P(«) e testando se essa construgao atende a de-
sigualdade (2.15). Um problema para esse tipo de abordagem reside no fato de que,
frequentemente, resulta no produto de variaveis de decisao no problema, o que exige
algumas manipulagdes algébricas para contornar essa questao. Além disso, essa abordagem

tende a gerar solugdes apenas suficientes para o problema, mas nao necessarias.

2.5.2 Estabilidade Quadratica

Diante desse contexto, uma possivel construgdo para a matriz P(«) consiste em

adotar sua versao quadratica, ou seja,
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P(a) = P. (2.16)
Nesse caso, assim como na equacao (2.10), a matriz P é construida como uma
matriz constante. Esse cenario com P constante é chamado de Estabilidade Quadratica

Dessa forma, substituindo as equagoes (2.16) e (2.12) nas LMIs (2.15), o resultado

<§: O%'AZT> P+P (ﬁ: oziAZ) < 0.

i=1 i=1
Dada essa formulacao para o problema, é possivel aplicar o teorema dos polindmios

homogéneos, resultando em:

{AlP+PA, <0, Yn=12. N, (2.17)

Em que P é uma matriz simétrica e positiva definida, que deve ser encontrada
como condi¢do apenas suficiente, mas nao necessaria e suficiente, para que o politopo

formado por todos os A,, seja estavel para o € Ay.

2.5.3 Sintese em Controle Robusto via LMI

Para um sistema definido por:

i = Ar + Bu,
y = Cz + Du.

No qual A, B, C' e D sao politopos de n vértices. Sendo u = Kx, esse sistema pode

ser reescrito como:

{j: = (A + BK)z,
y=(C+ DK)z.

O problema da sintese consiste em encontrar um ganho K que estabilize o sistema.

Para isso, serd substituida a equagao (2.13) na equagao (2.11), ou seja:

Al@)W(a) + W(a)A(a)" + B(a)Z +Z"B(a)" < 0.

De forma analoga ao problema da andlise da estabilidade, o da sintese também
exige uma matriz W (a) de infinitos pontos como condi¢ao suficiente para a sintese do
ganho. E importante ressaltar que, por ser uma variavel de folga, Z depende de a; nio é

uma condicao necessaria para solucionar a desigualdade.
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Além disso, a matriz de ganho é dada por K = ZW ™!, o que dificulta a construcao
de W(a). Assim, visando a simplificacdo do problema, a matriz W («a) sera definida como
W constante. Caso W («) ndo fosse construida como uma matriz constante, seria necessario

introduzir mais variaveis de folga, de modo que K dependesse apenas delas.

Entao, utilizando o teorema dos polindmios homogéneos, o conjunto de LMIs que é

suficiente para solucionar o problema da sintese é:

{[AW+WA] + Bz +2"B] <0, i=12..n (2.18)

Sendo W e Z as variaveis, W simétrica e positivamente definida, e Z = KW. Dessa

forma, o ganho K pode ser determinado por K = ZW 1.

Um detalhe importante sobre as LMIs, tanto no problema de anélise quanto no de
sintese, é que, quando utilizadas, sdo suficientes para resolver o problema, mas nao sao
necessarias. Ou seja, mesmo nos casos em que as LMIs ndao tém solugao, o sistema nao

serd necessariamente instavel.

Segundo [Peres e Oliveira 2024|, uma possivel forma de lidar com isso ¢é reduzir
o conservadorismo das matrizes P(«). Uma forma de diminuir esse conservadorismo é

considerando P(«) como um somatério convexo de varios P; na forma:

P(a) = iaiPZu (2.19)

Essa construgao para P(a) é chamada de afim, e problemas de andlise ou sintese

que a utilizem sao chamados de problemas com estabilidade afim.

Com isso, surgem duas questoes: a primeira refere-se ao valor de ganho, que é
obrigatoriamente constante e depende diretamente da matriz P(«) ou de sua dual W («).
Ao construir P(«) conforme a equagao (2.19), para realizar a sintese do ganho é necessério

introduzir variaveis de folga, de modo que o valor do ganho dependa apenas delas.

Além disso, ao definir P(a) afim, passam a existir produtos de matrizes dependentes
de a, o que impossibilita a aplicagao do teorema dos polinémios homogéneos. Para lidar
com esse problema, serd necessario reescrever a desigualdade de Lyapunov de modo que
a matriz P(«) nao esteja em produto matricial com nenhuma das matrizes A(«), B(«),
C(a) ou D(a).

Para chegar a esta LMI, é necessario, primeiramente, utilizar uma versao dual da
(2.10) em um sistema com realimentacio de estados, ou seja, A = A + BK. Utilizando a

seguinte transformacao de congruéncia:

PYATP+PAP <0,
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E depois aplicando a substituicio W = P!

AW +WAT <0,

que pode ser reescrito como:

-
1

AT

0 w
W 0

1

il <0 (2.20)

Além disso, a outra LMI da Desigualdade de Lyapunov refere-se a matriz W, que
deve ser positiva definida, uma vez que essa matriz é definida como a matriz inversa de P,

ou seja:

W =0,

Que pode ser reescrita como:

—2W <0,

sendo £ um escalar positivo com valor fixado. Com isso, é possivel transformar essa

desigualdade em:

NI ED 2

Com as equagoes (2.20) e (2.21) reescritas, é possivel aplicar o Lema da Projegao.

Para isso, as matrizes ®, {2 e ¥ sdo escritas como:

0o W
w0

— CQ=[AT -1, =1 ¢

Substituindo na equacao (2.6):

[ow
+

W 0

X1 eI+ II XT[AT -1 <0

—1

Desenvolvendo essa equacao:

AX + XTAT  ¢AX - XT+W
EXTAT — X4+ W —eX —€XT

E importante notar que atender a essa LMI é condigdo necessaria e suficiente para

solucionar o problema de analise de um sistema sem incertezas; ou seja, trata-se de outra
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forma de expressar a desigualdade de Lyapunov. Agora, utilizando que A = A 4+ BK e
aplicando que Z = K X, de forma equivalente a (2.11), o problema da sintese em sistemas

sem incertezas também pode ser solucionado através da LMI:

AX+X"AT"+BZ+Z"BT W—XT—l-fAX—I—fBZ
W—X+¢XTAT +62TBT _EX —EXT
sendo K = ZX L.

<0, (2.22)

Em um sistema com incertezas politopicas, as matrizes A e B podem ser modeladas

pela equagao (2.13). Substituindo-as na equagao (2.22):

A)X + XTA()" + B(a)Z +Z"B(a)T W —=XT +¢A(0)X +£B(a)Z

W—X+EXTA(@)T +€Z27B(a)T —£X —€£XT <0

Utilizando o teorema dos polinémios homogéneos, o problema da sintese do ganho
com estabilidade quadratica em sistemas com incertezas politépicas é resolvido de forma

apenas suficiente pelas LMIs:

AX+XTAT +B,Z+2Z"B] W —XT +€AX +¢BZ
W—X+¢XTA +¢27B] X —eXT

sendo K = ZX L.

Conforme discutido anteriormente, é possivel aumentar as chances de sucesso do
problema de sintese ao reduzir o conservadorismo, ou seja, ao modelar W como uma soma
convexa de N matrizes W;. Na pratica, em vez da matriz W procurada ser solugao da
LMI para todas as combinacoes convexas das matrizes A e B, agora cada combinagao

dessas matrizes tera um W diferente, gerado por uma combinacao convexa de W;.

Cabe ressaltar que, devido a introdugao de variaveis de folga através do lema da
projegao, agora o ganho nao é dado pela multiplicacdo de W («) com outras matrizes, o

que possibilita utilizar essa LMI para sintese com estabilidade afim.

Dessa forma, aplicando a equagao (2.19) para W e a equagdo (2.13) para A e B na
equagao (2.22):

A()X + XTA(Q)T + B(a)Z + Z"B(a)T W(a) = XT +A(a)X +EB(a)Z
W(a) = X +XTA(a)T + 627 B(a)T X —eXT

Utilizando o teorema dos polindmios homogéneos, o problema de sintese de controle
robusto com estabilidade afim em sistemas com incertezas politépicas é resolvido de forma

apenas suficiente pela LMI:
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AX+XTAT + BZ+ ZTB] W, = XT +€AX +¢BZ|
W — X +¢XTA +€27B] X — X7

sendo K = ZX 1.

2.5.4 Solvers Utilizados

Para solucionar as LMIs ao longo desse trabalho, foram desenvolvidos codigos
no software Matrix Laboratory (MATLAB). Além disso, esses c6digos baseiam-se em 2
toolboxes: Yet Another LMI Parser (YALMIP) [Lofberg 2004] e Self-Dual Minimization
(SeDuMi) [Sturm 1999]. O YALMIP tem fungoes que tratam as LMIs como varidveis, o
que as declara da mesma forma como sao escritas. Ja o SeDuMi funciona complementando
o YALMIP, com fungoes que permitem resolver as LMIs escritas no formato do YALMIP

utilizando o método dos pontos interiores.

2.6 Controle Robusto #5

Dado um sistema representado pelas equacoes de espago de estados:

i = Az + Bu,
(2.24)

y = Cu,

Segundo [Skelton, Iwasaki e Grigoriadis 2013], sua norma H, pode ser definida

como a energia da sua resposta ao impulso, ou seja:

G138 = [~ T{g(t)g(0)) dt, (2.25)

sendo ¢(t) a resposta do sistema ao impulso.

Mas essa nao é uma forma muito pratica de calcular o valor dessa norma. Para obter

um método mais conveniente, deve-se voltar a equacao (2.24). A soluc¢do desse sistema é :

(t) = +/ A=) Bu(r)dr.

Como se trata da resposta ao impulso unitario, as condigoes iniciais desse sistema

sao nulas, ou seja:

z(t) = /OO A=) Bu(r)dr.
0

Como u(t) = d(t) e 6(t) = 0 para t > 0, entao:
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z(t) = e B.

Voltando para a equagio (2.24):

g(t) =y(t) = Cx(t) = Ce™B, Vt>0. (2.26)

Aplicando a equagao (2.26) na equagao (2.25), entao outra defini¢ao possivel para

a norma Hoy €é:

+00 “+o00
G = [ Te(ce BT CT) dt = Te(C [T BB ).
0 0
Como o Gramiano de Controlabilidade é dado por:

+o00
W, — / A BBTA L,
0

Entao, é possivel calcular a norma H, de um sistema através de:

IG|I3 = T{Ccw.CT), (2.27)

sendo que esse gramiano ¢ a solucao da equagao matricial:

AW,.+W.A" + BB" = 0.

E possivel reescrever essa equagao como um problema de otimizacao, ou seja:

min  Tr(CPCT),

P=PT>0

sujeito a: AP+ PA"T + BB' <0.

Segundo [Axler 2024], utilizando a propriedade circular do trago, o problema fica:

min  Tr(C' PC),

P=PT>0
sujeito a: AP + PA" + BBT < 0,

podendo, assim, ser resolvido por meio de LMIs, sendo que, na solucao 6tima,
P=W.e|G|3=Te(CTPOC).

Analogamente, pode-se calcular a norma Hs também pelo Gramiano de Observabi-

lidade através de:
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min  Tr(B'PB),
P=PT>0 (2.28)
sujeitoa: A'P+PA+CTC =<0,

e na solugio 6tima P =W, e ||G||3 = Tr(B' PB).

Dada a definicao da norma H, , uma maneira possivel de interpreta-la é que
comumente existe uma certa relagdo entre o tempo de estabilizacao do sistema ao impulso
e o valor da norma Hs, de modo que sistemas com maiores valores da norma H, tendem a
demorar mais para atingirem o regime permanente. Dessa forma, projetar um controlador
que busque minimizar a norma H, possivelmente reduzira o tempo de convergéncia do

sistema em malha fechada.

O controle Hy é uma vertente do controle que busca minimizar a energia da saida
de um sistema em resposta a um impulso, ou seja, a norma Hs do sistema. Isso é feito
por meio da determinacao de um ganho de realimentacao que minimize a norma Hs. O
resultado disso é que um controlador H, tende a minimizar o tempo de estabilizagao da

salda do sistema.

Para esse problema da sintese do ganho Hs em um sistema conforme a equacao

(2.7), foi utilizado novamente que u = Kz, ou seja:

{:‘c(t) = (A+ BiK)z + Baw, (2.29)

y(t) = (C+ DK)z,
Sendo w uma entrada exdgena do sistema, que, no contexto da sintese do ganho Hs,
foi adotada como uma funcao de impulso. Esse problema é muito semelhante ao da analise,

porém, as matrizes A, B e C se tornaram (A + B1K), By e (C' + DK), respectivamente,

ou seja:

A=A+BK, B=B, C=C+DK. (2.30)

Substituindo essas equagoes na equagao (2.28), entao o novo problema de otimizagao

foi formulado através de:

min  Tr(B, PBy),

P=PT>0
sujeito a:
(A+ BiK)'P+ P(A+ B,K) + (C + DK)"(C + DK) < 0.

A desigualdade matricial desse problema apresenta multiplicagoes de variaveis

(KT P, PK, etc.), portanto, ndo é mais um problema com LMIs. Dessa forma, segundo
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[Peres e Oliveira 2024], é necessario reescrever esse problema com o Complemento de Schur

utilizando:

U= (A+BK)'P+PA+BK), Q=(C+DK)', &=1I

Assim, com o item iv) do Complemento de Schur, o problema pode ser reescrito

COomao:

in Tr(B,) PB
PEPT>0 H(B, PBz),

sujeito a:

(A+ BIK)"P+ P(A+ B,K) (C+ DK)' <0
(C + DK) —I -

que também nao é um problema com LMIs devido novamente a existéncia de

produto de varidveis (K" P e PK). Por isso serd utilizada a seguinte transformacao de

congruéncia:
Pt 0| |(A+ BLK)"P+ P(A+ B K) (C+DK)"| |P™' 0 <0
0 I C+ DK —1 0 I.|

Desenvolvendo todas as multiplicacoes e introduzindo as varidveis Z = KP~! e

W = P~! o problema de otimizacdo pode ser escrito como:

i T (B, W™ 'B
o H(B, 2);

sujeito a:

WAT + AW + Z"B] + Bi.Z WCT +Z"D"

=< 0.
CW +DZ —I N

Nessa formulacao, ha um problema: a matriz inversa de W. Essa matriz inversa é
extremamente ineficaz no método para encontrar a solucao desse problema. Para elimina-la,

sera criada uma nova variavel X:

X = B, W 'By,

que pode ser reorganizada como:

X - B, W™'B, = 0. (2.31)
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Assim, é possivel reescrever esse problema em termos do complemento de Schur.

Para isso, sera utilizado que:

=X, Q=B,, ®=W.

Entéo, utilizando o item iv) do Complemento de Schur, a equagao (2.31) pode ser

reescrita como:

X BJ]
By W

= 0.

Com isso, o problema da sintese do controle H, 6timo pode ser reescrito como:

min Tr(X),
sujeito a:
X=X", Z W=WT=o,
X BJ
By, W
AW + WA+ Z"Bl + B Z WCT+Z"DT
CW +DZ —1
e, na solugdo 6tima: ||G|5 = tr[X], K =2ZW.

=0, (2.32)

=<0

Y

E importante ressaltar que, dada a convexidade do problema, em que nio h4
minimos locais, é impossivel haver outro ganho K que minimize ainda mais a norma H,
para esse sistema especificamente; por isso, esse ganho é chamado de ganho 6timo. Como
o ganho é 6timo apenas no sistema fixado, pode-se afirmar que o ganho 6timo de um

sistema depende dos parametros desse sistema fixo.

Em sistemas com incertezas modeladas por meio de politopos, deve-se aplicar a
equagao (2.13). Nesse caso, a matriz W passa a depender de pardmetros, tornando-se

entdo W(a). Assim, o problema pode ser reescrito como:

min Tr(X),
sujeito a:
X=X", Z W()=W()" >0,
X 1%@1}
By(a) W(a) |~
A()W(a) + W(a)A(a)T + Z"Bi(a)" + Bi(a)Z W(a)C(a)" + Z"D(a) "
Cla)W(a)+ D(a)Z —I -
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Diante disso, o problema passa a ter dimensao infinita, em que cada um dos infinitos
pontos do politopo possui sua prépria matriz W («) que minimiza a norma Hs nesse ponto.
Como o ganho calculado deve ser constante e depende diretamente de W (), adotou-se o

caso de estabilidade quadréatica, ou seja, com W (a) = W.

Sendo assim, utilizando o teorema dos polinémios homogéneos, o problema de
sintese de controle robusto com minimizacao da norma Hs em sistemas com incertezas

politépicas deve ser reescrito como:

min Tr(X),
sujeito a:
X=X", Z W=W'">o,
X Bj,
21 =0 Vi=1,...,N, (2.33)
By
AW + By, Z+ WA +27B], WCT + 27D/
T PLe WA+ 2L S T
CW +DZ —I

e |G <tl[X], K=2zWw",

sendo N o ntmero de vértices do politopo.

E importante destacar que, como esse problema de otimizagao é suficiente apenas
para a sintese do ganho robusto, o valor da norma H, passa a ser o custo garantido. Isso
quer dizer que, em um sistema em malha fechada com um controlador robusto Hs,, sua

norma Hs sera menor que a norma garantida em qualquer ponto do politopo.

De maneira analoga ao desenvolvido na subsecao 2.5.3, é possivel reduzir a norma
garantida por meio da reducao do conservadorismo do problema, adotando W («) com
estabilidade afim. Para isso, seria necessario encontrar uma formulacao equivalente a
equacgao (2.33) que nao dependa diretamente de W («a), mas apenas de varidveis de folga.
Assim, W (a) teria maior grau de liberdade e se aproximaria de W («) étima, resultando

em um ganho robusto mais préximo do ganho 6timo em todos os pontos do politopo.

2.7 Controle Robusto #H.,

Dado um sistema representado pelas equacoes de espaco de estados:

T = Azr + Byw,
{ ’ (2.34)

y = Cu,

Sendo w uma entrada de perturbacao. Segundo [Skelton, Iwasaki e Grigoriadis

2013], sua norma H., pode ser definida como:
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1Gllo0 = max o (G (jw)). (2.35)

Ou seja, a norma H,, de um sistema ¢é igual ao seu maior valor singular da funcao

de transferéncia da entrada w para a saida y, e este é dado por:

0:(G(jw)) = Y A(Gjw)*G(jw)).

Com isso, uma forma de visualizar o valor da norma H,, é por meio do seu
diagrama de Bode. Para sistemas Single-Input Single-Output (SISO), a sua norma H
sera simplesmente o valor pico do diagrama de Bode; para sistemas Multiple-Input Multiple-
Output (MIMO), a sua norma H., serd o maior valor pico entre todas as suas curvas

de valores singulares. As Figuras 8 e 9 (sistema MIMO com 2 entradas e 2 saidas)

exemplificam ilustrativamente essa defini¢ao.

Diagrama de Magnitude SISO — ilustragao da ||G||Do

10'F 1
lilall _ =3.4727
—|G(w)l 1
— — .Norma H)C
100 |- E
3
=
o
107 r B
L L L L Lol L L Ll i,
107" 10° 10' 102

w (rad/s)

Figura 8 — Norma H., em um Sistema Siso - Exemplo [lustrativo

Nesse caso, a sua norma H., € igual a 3,4727.
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Diagrama de Valores Singulares (MIMO) — ilustracao da ||G|| o

el =11.9898
101 b
74

= 2
3 — — .Norma H
=y o
o
s 10°F
3
=
©
>
S
)
3 107
£ £
7

102 e =

t . . L . . L . . . . T\f»:
10! 100 10’ 10°

w (rad/s)

Figura 9 — Norma H,, em um Sistema com 2 Entradas e 2 Saidas - Exemplo [lustrativo

Nesse caso, a sua norma H., € igual a 11,9898.

Voltando & equagao (2.24), no contexto da andlise no controle H,, a entrada u

sera substituida por um ruido w € L, ou seja, com energia finita. Assim:

|| = /_Z w(t)Tw(t)dt < oo,

Dada a defini¢do da norma H,, da equagao (2.35), entdao também pode-se definir a

norma H., como o menor valor de v para o qual vale:

ly@l3 < lw®)]3,

que é equivalente a:

y() " y(t) = *w(t) "w(t) < 0.

Somando esta equagao com a condicao iii) do teorema de Lyapunov, o resultado é:

V 4+ y(t) Ty(t) — y2w(t) Tw(t) < 0. (2.36)

Essa desigualdade restringe ainda mais a matriz P da fun¢dao de Lyapunov, uma

vez que V' deve ser ainda mais negativa para minimizar a norma H., do sistema.

Substituindo a equacao (2.9) na equagao (2.36):

" Pr + 2" Pi+y(t)Ty(t) — y*w(t) "w(t) < 0,
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que pode ser reescrita como:

¥

.
ATP+PA+CTC PB+C'D

B'P+D'C  D'D-+2I

ou seja:

B'P+D'C  D'D-—+2I

ATP+PA+CTC PB+CTD] <0

Sendo sua norma H, dada por [|G||e < 7.

Essa desigualdade ainda nao é uma LMI: contém o termo 2. Para transformé-la

em uma LMI, serd utilizado que p = 72, ou seja:

CT
DT

ATP+PA PB
B'P  —ul

(-I)[c D] =0.

Também serd aplicado o Complemento de Schur, o que, segundo [Peres e Oliveira
2024], facilitara a obtenc¢ao da LMI do problema da sintese com minimiza¢ao da norma

Ho. Entao, a desigualdade pode ser reorganizada como:

ATP+ PA PB cT
- (-1)|c D] =0
B'P —ul DT
Dessa forma:
ATP+PA P T
= + B , Q= ¢ , d=-—1I.
B'P —ul DT

Entao, aplicando o Complemento de Schur:

ATP+PA PB CT
B'P  —ul DT| =<0,
C D I

sendo sua norma H., dada por ||G|lo < (/1.

Essa LMI pode ser reescrita como um problema de otimizacao que, no limite,

acontecerd que |G|l = /I, ou seja:
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min /i,
sujeito a:
p, P=PT =0
ATP+PA PB CT (2.37)
BTP —ul DT| <0
C D -1

e, na solugdo 6tima  ||G||c = /1.

Agora, para o problema da sintese, de forma similar a como esse problema foi
abordado com a norma H,, serd utilizado um sistema conforme a representacao em espago
de estados (2.29). Nessa situagao, quando forem aplicadas as condigoes dadas por (2.30)
no problema (2.37), ocorre multiplicagao de varidveis. Com isso, a proxima etapa é realizar
uma transformagao de congruéncia para que, em passos futuros, haja a eliminacao dessa

bilinearidade, ou seja:

Pt 0 0| |ATP+PA PB CT||P! 0
0 I 0 B™P —ul DT 0 I 0|=<0,
0 0 I C D - 0

A desigualdade final é expressa por:

PYAT+ APt B pPiCT
BT -0 < 0.
cpt 0 —1I

Para finalmente transformar essa desigualdade em uma LMI, serao aplicadas as
condigoes (2.30). Além disso, serao aplicadas as substituigoes W = P~te Z = KP~!, ou

seja:

WAT + AW +Z"B] +B.Z By, WCT+Z'D'
By —pl 0 =< 0.
CW+DZ 0 —1I

Dessa forma, o problema da sintese com minimiza¢ao da norma H., ¢ dado pelo

problema de otimizacao:
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min p
sujeito a:
p, Z W=W"%=0
WA + AW+ Z"Bl +BZ By WC'+Z'DT (2.38)
By —pl 0 <0
CW+DZ 0 -/

e, na solugdo 6tima  ||Gllo = /i, K =2ZW™ "

Como o ganho é 6timo apenas no sistema fixado, entao, de forma idéntica a
equagao (2.6), pode-se afirmar que o ganho 6timo de um sistema é dependente dos

parametros desse sistema fixado.

E, novamente, em sistemas com incertezas modeladas por meio de politopos, deve
ser aplicada a equagao (2.13). Pelos mesmos argumentos desenvolvidos na segao 2.6, o

problema pode ser reescrito como:

min p
sujeito a:
w, Z, W(a)=W()" =0
W(a)A(a)" + A(a)W (o) + Z"Bi(a)" + Bi(a)Z By(a) W(a)C(a)" + Z"D(a)’
By(a)' —pl 0 =< 0.
Clao)W(a)+ D(a)Z 0 —1

Com isso, esse problema passa a ter dimensao infinita novamente, o que exige
que a matriz W («) seja quadratica. Aplicando o teorema dos polindémios homogéneos, o
problema de sintese de controle robusto com minimizagao da norma H,, em sistemas com

incertezas politopicas deve ser reescrito como:

min f,
sujeito a:
w, Z W=WT"=0
WAT + AW + 2Bl + Bi,Z By, WC] +Z27D] (2.39)
B], —ul 0 <0, Vi=1,...,N,
C;W + D, Z 0 —1

e K=2W" |Glsx< Vi

Sendo N o ntimero de vértices do politopo.
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E importante destacar que, como esse problema de otimizacdo é suficiente apenas
para a sintese do ganho, o valor da norma H,, passa a ser chamado de norma H ., garantida.
Isso quer dizer que, em um sistema em malha fechada com um controlador robusto H..,
sua norma H., serd menor que a norma garantida em qualquer ponto do politopo. Essa

norma deixa de ser igual e passa a ser apenas menor ou igual a /.

Além disso, visando reduzir a norma H,, tal como foi apresentada na secao 2.6,
¢ necessario reduzir o conservadorismo por meio da adogao de W(«a) afim. Deve ser
encontrada também uma forma equivalente da (2.39) cujo ganho nao dependa diretamente

de W («), mas apenas de varidveis de folga.
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3 EXPERIMENTOS COMPUTACIONAIS: ANALISE COMPUTACIONAL DOS
METODOS

3.1 Experimento 1: Reducao do Conservadorismo

Conforme visto anteriormente, em sistemas sujeitos a incertezas politdpicas, a
desigualdade de Lyapunov e suas diversas formulagoes equivalentes representam condigoes
apenas suficientes, mas nao necessarias, para a sintese do ganho de realimentagao de
estados. Isso implica que, mesmo nos casos em que a sintese do ganho nao é bem-sucedida,
ainda pode existir um ganho capaz de estabilizar o sistema. Para encontrar esse ganho,
reduzir o conservadorismo do problema e, mais especificamente, na matriz P, por meio da

equagao (2.19), pode ser possivel estabilizar o sistema.

O primeiro experimento consiste em testar a tese de que reduzir o conservadorismo
da matriz P na equagdo (2.18) aumenta as chances de as LMIs realizarem a sintese do

ganho do sistema.

Primeiramente, foi implementada uma funcdo em MATLAB que gera um politopo

a partir de um valor de ~, parametro que representa o nivel de instabilidade do sistema.

Depois, foi desenvolvido outro c6digo que implementa as equagoes (2.18) e (2.23)
utilizando as toolboxes YALMIP e SeDuMi, recebendo como entrada um politopo. O script
avaliou se o problema pode ser resolvido para cada politopo gerado e, com isso, calculou-
se qual percentual desses politopos foi estabilizado. O percentual calculado referiu-se a
diferentes niveis de instabilidade desse politopo, conforme a variacdo do parametro =, que

serd explicado mais adiante nesta secao.

Para finalizar, os resultados da estabilidade quadratica foram comparados aos da

estabilidade afim.

3.1.1 Parametro v

Ao gerar politopos aleatorios no MATLAB, a abordagem mais imediata é utilizar
apenas o comando randn(). Entretanto, essa estratégia nao se mostra adequada, uma
vez que tal fungao gera ntimeros aleatérios segundo uma distribuicao normal, resultando
em perda de precisao quanto a distancia da parte real de seus autovalores em relagao a

origem.

Visando atingir a precisao necessaria para o experimento, foi definido o pardmetro
~. Durante a simulacao, o valor de v determinou a maior distancia da origem da parte

real dos autovalores de todas as matrizes A, de um politopo.

Para utilizar esse parametro, inicialmente, foi gerado um politopo aleatorio com

o comando randn(), e, em seguida, empregou-se a fun¢do eig() em todas as matrizes



56

A,, dos vértices do politopo. Depois, foi denotado por 5 o maior valor da parte real entre

todos os autovalores dos vértices. Apds essa etapa, realizou-se, em cada vértice, a operacao

Ap = A4 (y = B (3.1)

de modo que a maior parte real de um autovalor do politopo passasse a valer 7. Ao longo

da simulacao,  variou entre 0 e 0.2.

3.1.2 Funcao de Sintese do Ganho

A implementagao da rotina de sintese do ganho apresentou baixa complexidade,
uma vez que as toolboxes YALMIP e SeDuMi tornam a formulacao e a resolugao das LMIs
um processo bastante direto. Assim, a sintese do ganho foi realizada por meio da aplicacao
das equagdes (2.18) e (2.23), para P(«) quadratica e W («) afim, nos politopos gerados
pela equagao (3.1).

3.1.3 Resultados da Simulacao

Comparando os desempenhos das estabilidades quadratica e afim nos 1000 politopos

avaliados:

Figura 10 — Comparativo na Eficdcia entre a Estabilidade Afim e a Quadratica
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Fonte: Autoria Propria

Ao analisar o grafico gerado, é possivel notar a melhora da eficicia da desigualdade
de Lyapunov apos a reducao do conservadorismo do problema. Para todos os valores de v a

efetividade da equacao (2.23) foi superior em relagdo a equagao (2.18), conforme esperado.

Além disso, percebe-se que, para ambos os tipos de estabilidade, o percentual de

sistemas estaveis diminui, mesmo com pequenas variacoes do valor de . Essa rapida queda
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pode ter origem na estrutura das matrizes A,, e B,,, que tém todos os seus termos variando

em todos os seus vértices.

3.2 Experimento 2: Sistema Massa-Mola
3.2.1 Formulagao do Problema

O segundo experimento teve como objetivo apresentar uma abordagem pratica dos
conceitos de normas Hs e Ho. O problema escolhido para isso foi o sistema massa-mola
amortecido, com 3 molas conectadas em 2 blocos e em 2 paredes, conforme o esquema a

seguir:

Figura 11 — Esquema Ilustrativo do Sistema Massa-Mola Amortecido
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Fonte: Autoria Prépria

Esse sistema foi escolhido devido a sua tendéncia a se estabilizar, mesmo sem uma
entrada de controle, uma vez que ele atende as 3 condigoes do teorema de Lyapunov.
Nesse sistema, a forca que a resisténcia do ar exerce nos blocos faz com que sempre haja
dissipacao da energia, de forma que ela sempre seja positiva e tenda a 0, além do problema
ter, por construcao, suas condigoes iniciais nulas. Assim, sendo o sistema intrinsecamente
estavel, ha uma grande margem para minimizar sua norma H, ou H., com uma entrada

de realimentacao de estados.

Segundo [Ogata 2010], as equagdes que definem o sistema massa-mola amortecido

sao:

midy = —kixy — ka(xy — 29) — b(&1 — T2) + u,

MaoZy = —ksTy — I€2(I2 — x1) — b(l"g — j:l).

Sendo os estados x; e w9 as distancias dos blocos 1 e 2 até seus respectivos pontos
de equilibrio (m), a entrada u a forca aplicada no bloco 1 (N), m; e my as massas dos
blocos (kg), ki1, ks e k3 as constantes elasticas (N/m), e b o coeficiente de amortecimento
viscoso (kg/s). Aplicando as substituigoes x4 = 29, x3 = 21 e reorganizando as equagoes,

esse sistema pode ser reescrito como:



58

1 0 1 0 0 1 0
. _ (k1tk2) b k b : L
T2 = 1ml2 mi m21 mi z1 4+ |™ |y (32)
it‘g 0 0 0 1 To 0

Além disso, foi modelado o valor da entrada exdgena w, que representa um ruido

na forga aplicada ao bloco 2 e deve ser L5. A matriz By, que determina como essa entrada
s

ruidosa vai afetar os estados do sistema, foi igual a matriz By, ou seja, By = [O m% 0 O} .

Entéao, a equagoes (3.2) podem ser reescritas como:

T 0 1 0 0 a3 0 0
; _(kaitka) b ko b : 1 1
T2l _ 1m1 : mi m21 my 11 4™ g 4| ™ . (3.3)
T3 0 0 0 1 To 0 0
7 ko b _(katks) b | | 0 0
4 ma mao ma m2 2

Nesse experimento, a salda y sao os proprios valores de x; e o, ou seja:

1000
= . 3.4
Y [O 01 0] ! (3:4)

Uma grande limitagdo inerente a saida y refere-se a auséncia de um termo de
transmissao direta D. Como consequéncia, realizar a sintese de ganho com as matrizes
da saida y nao penalizara valores elevados na entrada de realimentagao. Dessa forma,
visando a um melhor condicionamento do problema, define-se a saida ficticia z, que possui
a matriz D. Ela foi utilizada durante as sinteses dos ganhos que aconteceram ao longo do

experimento computacional 2 substituindo a entrada y e foi dada por:

1000 0,1
z = T+ u. (3.5)
0010 0
Com isso, o sistema massa-mola amortecido simulado ao longo deste experimento

computacional foi modelado por meio das equagoes (3.3) e (3.5).

O sistema utilizado neste experimento apresenta incertezas intervalares nas massas

dos blocos. Assim, os valores dos parametros com incertezas sao definidos como:

mi€10,5,1,5] e mpe[0,5, 1,5,

e os parametros sem incertezas foram definidos como:
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Tabela 1 — Parametros do Sistema Massa-Mola Amortecido

Parametro Valor Unidade
Constante da Mola 1 (k) 10 N/m
Constante da Mola 2 (k) 10 N/m
Constante da Mola 3 (k3) 10 N/m
Constante de amortecimento (b) 1 N-s/m

Fonte: Autoria prépria.

Como nesse sistema existem parametros com incertezas intervalares, a melhor
forma de modela-lo foi através de politopos. Sendo o niimero de pardmetros incertos igual

a 2, entao os politopos de cada matriz terao 4 vértices cada, ou seja:

S(my™,my™),  S(my™,my™),  S(myTmy™), e N(mi™ my™),  (3.6)

no qual as matrizes que representam o sistema através das equacoes de espagos de estados

foram definidas conforme a equagao (2.13).

Diante dessa formulacao dos vértices do politopo, pode-se realizar uma anélise
inicial da estabilidade. Para isso, foram sorteadas 1000 combinagoes de «, gerando, assim,
1000 matrizes A diferentes. Apds isso, foram obtidos e plotados, no plano s, os autovalores
de cada uma dessas matrizes. Para as matrizes A que tem todos os autovalores com parte
real negativa, ou seja, sao estaveis, todos os seus autovalores foram plotados na cor verde,

caso contrario, todos os autovalores da matriz A foram plotados em vermelho.

Figura 12 — Nuvem de Autovalores do Sistema Massa-Mola Amortecido
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Fonte: Autoria Propria
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Analisando a nuvem de autovalores do sistema sem controle de realimentacao
de estados, foi possivel notar, pela auséncia de autovalores em vermelho, que todas as
combinagoes sorteadas de A(a) foram estaveis, reforcando que o sistema massa-mola
amortecido utilizado nesse experimento computacional é estavel para qualquer combinagao

de seus vértices.

3.2.2 Sintese do Ganho - Controle Ho

Apoés a formulagao do problema, a etapa seguinte consistiu em analises do sistema
com realimentacao de estados por meio do software MATLAB, implementando cédigos
para a resolucao de LMIs e a plotagem dos resultados. Essas LMIs realizam a sintese do
ganho para o politopo minimizando uma norma Hs ou H... A sintese foi tanto para o

caso robusto quanto para o caso 6timo, visando comparar os dois controladores.

Antes de realizar as simulagoes, foi necessario definir a funcdo w empregada no
modelo, que serviu como entrada do sistema em malha fechada. Como a norma H, refere-se
a resposta do sistema ao impulso unitario, entao a entrada w adotada foi justamente como

a funcao impulso unitéario.

Para comecar, foi estabelecido um sistema de referéncia, chamado sistema nominal,
construido pela aplicacao dos valores médios de my e mso e dos demais parametros fixos na
equagao (3.3). Utilizando esse sistema nominal, foi implementado um c6digo em MATLAB
que realizou a sintese do ganho do controlador 6timo Hsy por meio da equagao (2.6),
encontrando o ganho 6timo K., = [-5.589 —0.597 —4.100 —0.186].

Depois, para o controle robusto Hs, foi implementado no cédigo em MATLAB o
sistema dado por (3.6), aplicado & equagao (2.33), com sua equagao de saida sendo também
a salda z e seus vértices em C' e D constantes. A partir dessa equacao, também foi obtido
o valor da norma Hs garantida. Esse valor é asseguradamente maior que o da norma H,
para qualquer ponto dentro do politopo em malha fechada, com o ganho robusto. O ganho
robusto encontrado foi K = [-20.420 —8.989 29.756 —4.162].

Entao, foram calculadas as normas 6tima e robusta Hs no sistema nominal em
malha fechada com o valor do ganho obtido tanto no caso étimo quanto no caso robusto.

Para tal, utilizou-se a equagao (2.28).

Além disso, para a avaliacao do controlador robusto, foi calculada a norma H, para
1000 pontos do politopo também através da equacao (2.28), correspondentes as combinagoes
dos valores dos vértices definidos em (3.6), ou seja, para distintas combinagoes de m; e

mo.

Plotando a norma H, garantida, a norma H, para o sistema nominal em malha
fechada com os ganhos 6timo e robusto e a norma Hy de 1000 combinag¢oes dentro do

politopo, o resultado foi:
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Figura 13 — Comparacéo entre as Normas H, Otima, Robusta e Garantida
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Fonte: Autoria Prépria

Ao analisar o grafico, observou-se que o valor da norma H, garantida foi o maior
entre todos os sistemas, conforme o previsto. O valor da norma do controlador 6timo foi
menor do que o da norma do controlador robusto para o sistema nominal, o que também
esta correto por conta do conservadorismo presente na equacao (2.33), mais especificamente
na construcao da matriz W. Além disso, um controlador 6timo atuando no sistema exato
para o qual ele foi projetado, por definicdo, sempre terda a solu¢cao com a menor norma
possivel. E por tltimo, todas as normas dos 1000 sistemas sorteados estao menores que
a norma garantida, de forma que todo o grafico esteja em concordancia com a teoria de

controle.

O codigo também plota as saidas do sistema nominal, tanto para o controlador
otimo quanto para o robusto, para melhor visualizacao da diferenca de desempenho. A

resposta dos dois controladores ao impulso foi:
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Figura 14 — Resposta ao Impulso do Sistema Massa-Mola Amortecido com os Controladores
Ho Otimo e Robusto

Ao analisar visualmente o grafico, é possivel notar diferencas nas respostas de cada
controlador. A primeira delas refere-se ao tempo de subida, que é maior para o controlador
robusto do que para o 6timo, e a resposta ao impulso do sistema com o controlador 6timo
ainda apresentou uma certa oscilagao de baixa amplitude antes de convergir definitivamente.
A segunda diferenga refere-se ao sobressinal, que é muito maior no controlador robusto.
Com isso, a norma Ho do controlador étimo apresenta valor menor em comparagao a do
controlador robusto, uma vez que a elevada intensidade do sobressinal deste tltimo possui
maior impacto sobre o valor da norma do que o maior tempo na convergéncia observada na
resposta do controlador 6timo, resultando, em um desempenho globalmente mais favoravel

para este.

Essas diferencas no sobressinal das duas respostas podem ser justificadas pelos
maiores valores na matriz de ganho robusto em relagao ao 6timo, o que leva a valores mais

elevados na entrada u do sistema, aumentando o sobressinal.

3.2.3 Sintese do Ganho - Controle H .,

No caso do controle H,, os experimentos foram realizados novamente no MATLAB
de forma analoga aos experimentos de controle Hs, com algumas diferencas pontuais que

serao explicadas ao longo desta subsecao.

A primeira diferenca foi quanto a entrada exdégena w empregada no modelo. Para
os experimentos com a norma H.., a entrada ruidosa precisou ser um sinal com energia

finita, definida como:

w(t) = e "sen(10t). (3.7)
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Figura 15 — Entrada Ruidosa w(t) em Fungao do Tempo
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Fonte: Autoria Prépria

Para comecar, novamente foi estabelecido um sistema chamado sistema nominal,
cujos valores de m; e my foram fixados nos seus valores médios e aplicados as equagoes (3.3)
e (3.5). Para a realizagdo da sintese do ganho desse sistema, o ganho étimo foi utilizado a
equagao (2.38), encontrando K,y = [5.13 —15.76 —22.84 —24.40].

Depois, para o controle robusto H,, foi implementado no cédigo em MATLAB
um sistema dado por (3.6), aplicado agora a equagao (2.39). Devido & tendéncia de con-
troladores robustos baseados na norma H,., gerarem matrizes de ganho cujos elementos
apresentam moédulos muito elevados, foi adicionada a LMI 4 > 1 para limitar os efeitos
desse fenomeno (sem a utilizagdo dessa limitacdo em p, o ganho encontrado foi K =

[—2,46e+09 —9,20e+08 2,47e+09 —5,24e+08]). Através da resolucao desse conjunto
de LMISs foi obtido o ganho do controlador robusto K = [—-74,81 —17,47 104,27 —14,41],

além do valor da norma H,., garantida.

Com o valor do ganho obtido tanto no caso 6timo quanto no caso robusto, utilizou-
se, desta vez, a equagado (2.37) para simular a diferenca de desempenho, em termos da

norma H,., entre o controlador robusto e o 6timo no sistema real.

De forma semelhante aos experimentos com a norma H,, foi implementado no
c6digo o célculo da norma H., para 1000 combinacoes distintas dos valores dos vértices
definidos em (3.6).

Plotando a norma H., garantida, a norma H., 6tima, a norma H,, robusta para o

sistema real e a norma H., dos 1000 sistemas simulados, o resultado foi:
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Figura 16 — Nuvem de Autovalores do Sistema Massa-Mola

Analisando o grafico, é possivel notar que o valor da norma H., garantida, limitada
inferiormente, foi o maior entre todos os sistemas, conforme o previsto. O valor do
controlador 6timo foi menor, mesmo que bem proximo, que o do controle robusto, o que
também estd correto por conta do conservadorismo presente na equagao (2.33), mais
especificamente na construcao da matriz W. E por dltimo, todas as normas dos 1000
sistemas sorteados estdo menores que a norma garantida, de forma que todo o grafico

esteja em concordancia com a teoria de controle.

O codigo em MATLAB também plotou as saidas do sistema nominal, tanto para o
controlador 6timo quanto para o robusto, de modo a tornar mais visivel a diferenca de
desempenho. A resposta dos dois controladores ao sinal representado pela equagao (3.7)

foi:
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Figura 17 — Resposta ao Ruido £, do Sistema Massa-Mola Amortecido com os Controla-
dores H., Otimo e Robusto
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Fonte: Autoria Prépria

A plotagem das saidas corrobora os resultados apresentados no grafico anterior,
que indicam um melhor desempenho do controlador 6timo em relacdo ao robusto na malha
fechada do sistema nominal, em termos da norma H.,. Para a saida 1, verificou-se um
tempo de acomodacao semelhante nos dois controladores; entretanto, o sobressinal do

controlador robusto foi mais de 3 vezes maior do que o do controlador 6timo.

Ja para a saida 2, o controlador 6timo apresentou desempenho pior do que o
robusto, com um tempo de acomodacgao consideravelmente maior e um sobressinal cerca de
2 vezes mais acentuado. No agregado, o desempenho do controlador 6timo, visto a partir

dos valores de sua saida, ainda foi melhor quando comparado ao controlador robusto.
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4 CONCLUSAO

4.1 Conclusoes Gerais

O presente trabalho teve como objetivo explorar o uso de Desigualdades Matriciais
Lineares (LMIs) para a sintese e a andlise de sistemas, com ou sem minimizac¢ao de norma.
Para isso, empregou-se o software MATLAB para implementar codigos que resolvessem
essas LMIs.

Este Trabalho de Conclusao de Curso pode ser dividido em dois experimentos
computacionais principais: o primeiro utilizou a desigualdade de Lyapunov para a estabili-
zacao de sistemas com incertezas modeladas por meio de politopos. Testou-se a tese de
que diminuir o conservadorismo no problema, através da transformagao da sua matriz P
constante em W (a) = Zf:/:l a,W,,, aumentaria as chances da desigualdade de Lyapunov

realizar a sintese do ganho no sistema.

Essa proposicao foi avaliada por meio da implementagao de um cédigo no MATLAB
que testou qual o percentual de um conjunto de 1000 sistemas instaveis, modelados através
de politopos nas suas matrizes A e B, que conseguiram ser estabilizados por meio da
desigualdade de Lyapunov com P quadrético e com W («) afim, comparando a eficacia

entre os tipos de estabilidade.

Conforme esperado, o percentual de sistemas estabilizados no caso de W afim foi
sempre maior do que o de P quadratico. Além disso, & medida que o autovalor maximo
dos vértices dos politopos aumentava, observava-se também uma queda no percentual de

sistemas estabilizados.

A segunda parte dos experimentos computacionais envolvia a aplicacao das desi-
gualdades de Lyapunov ao estudo das normas Hs e H,, de forma pratica. Diante disso, foi
utilizado um sistema massa-mola amortecido com incertezas nos valores das massas dos

blocos, visando a comparagao entre os controladores 6timos e robustos.

Para as duas normas diferentes, foram fixados os valores das massas dos blocos,
criando um sistema nominal que permitiu a sintese dos ganhos dos controladores H, e
Hoo 6timos. Adicionalmente, por meio do sistema composto pelos 4 vértices do politopo,
foi realizada a sintese do ganho robusto, bem como a determinacao dos valores das duas

normas garantidas para os controladores Hy e Hoo.

Além disso, calcularam-se os valores das normas H, e Ho, para o mesmo sistema
nominal fixado na sintese do controlador 6timo, mas em relacao a saida ficticia z. Esse
calculo foi feito tanto para o ganho do controlador 6timo quanto para o ganho do controlador

robusto, em ambos os tipos de norma.
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Os valores dessas normas foram condizentes com a teoria de controle, uma vez que
as normas Hsy e H., garantidas foram as maiores; as normas dos controladores robustos

vieram logo depois, e o menor valor foi o das normas dos controladores 6timos.

Além disso, foram sorteadas 1000 combinagoes diferentes dos vértices do politopo
do sistema-massa mola, e para todas elas foram calculadas suas normas H, e H,, quando
aplicados o ganho 6timo e o ganho robusto Para todos os pontos do politopo, a norma Hs

com o controlador robusto foi menor que a norma garantida.

4.2 Limitacoes, Desafios e Sugestdes de Trabalhos Futuros

Devem ser mencionadas as limitacoes deste estudo, bem como sugestoes para
futuros estudos. No primeiro experimento computacional, foi avaliada apenas a sintese do
sistema com incertezas politépicas, sem avaliar qualitativamente os controladores. Para dar
continuidade aos tépicos levantados neste estudo, podem ser realizados novos experimentos

computacionais em uma grande quantidade de politopos.

Nesse sentido, um possivel trabalho pode ser feito por meio do sorteio de 1000
politopos ja estaveis e da sintese de um controlador robusto, com minimizag¢ao da norma
Hs e/ou Hoo, tanto para P quadratico quanto para P afim. Neste estudo, haveria também
a comparacao entre os valores médios das normas antes e depois da redugao do conserva-
dorismo do problema, mostrando que essa redugao deve resultar em controladores com

melhor desempenho em relagao aos valores calculados pelas suas normas.

Ainda nessa mesma linha de pensamento, pode ser fixada a matriz B, e para
a matriz A, o nimero de valores fixados, com todos os outros valores da matriz sendo
aleatorios, aumenta de 0 até n - n, com a matriz A tendo n linhas e colunas. Nesse cenario,

pode-se calcular a eficiéncia da sintese em funcdo do niimero de valores incertos na matriz

A.

Tratando agora das limitagoes do Experimento Computacional 2, a primeira delas
¢é que o sistema massa—mola considerado serd sempre estavel para quaisquer valores de
seus parametros, o que favorece o controlador 6timo. Caso existissem pontos instaveis no
politopo, o ganho obtido pelo controlador 6timo talvez nao fosse suficiente para estabiliza-lo.
Nesse sentido, seria interessante repetir todos os procedimentos do experimento 2, porém

utilizando um sistema que nao seja intrinsecamente estavel.

Outra limitacao deste trabalho, presente em ambos os experimentos computacionais,
refere-se ao tipo de sistema adotado, que se limitou a sistemas LTI. Nesse sentido, para dar
continuidade a este estudo, seria relevante repetir alguns dos procedimentos do trabalho
em um sistema nao linear, como, por exemplo, em um sistema de péndulo invertido ou em

um sistema com variacao temporal de parametros, como no lancamento de foguete.

E, por fim, um estudo sobre problemas de rastreamento de referéncia, visando
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minimizar uma norma, também pode gerar resultados enriquecedores. Este estudo po-
deria, inclusive, utilizar um sistema massa-mola amortecido para realizar procedimentos

semelhantes aos que foram realizados neste trabalho.
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