
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Pedro Azevedo Coelho Carriello Corrêa

Prova de conceito: Extensão para navegadores web para
identificação de sexualização de menores

São Carlos

2025





Pedro Azevedo Coelho Carriello Corrêa

Prova de conceito: Extensão para navegadores web para
identificação de sexualização de menores

Monografia apresentada ao Curso de
Engenharia Mecatrônica, da Escola de
Engenharia de São Carlos da Universidade
de São Paulo, como parte dos requisitos
para obtenção do título de Engenheiro
Mecatrônico.

Orientadora: Profa. Dra. Maíra Martins da
Silva

São Carlos
2025



AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

 
 
 Azevedo Coelho Carriello Corrêa, Pedro

  824p Prova de conceito: Extensão para navegadores web 
para identificação de sexualização de menores / Pedro 
Azevedo Coelho Carriello Corrêa; orientadora Maíra 
Martins da Silva. São Carlos, 2025.

 
 
Monografia (Graduação em Engenharia Mecatrônica) 

-- Escola de Engenharia de São Carlos da Universidade
de São Paulo, 2025.

 
 
1. Inteligência Artificial . 2. Web Development. 

3. Redes Sociais. 4. Modelos generativos. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

                               1 / 1



FOLHA DE AVALIAÇÃO

/\

Candidato: "?&üt2-o A^-ev&Oo C/o&u+o CM^^ello CC^^-G^

Título:
:^r

'?íW^ T>£ co^c^ro •. £^rÊi^JA^ P.^SA ^A\/'e6A TÏO^LCJ-

w&.fe PAí2A \ Ü^^J"Ï\'FI'£A c'-^ü pe ^ /< uA ^iW ^AO IT^

iUQ\JO^e5-

Trabalho de Conclusão de Curso apresentado à
Escola de Engenharia de São Carlos da

Universidade de São Paulo
Curso de Engenharia hêwn^o^<^x

BANCA EXAMINADORA

Professor jwwu^ .v^ ô /\Ju>—

(Orientador)

Nota atribuída: -^°jü ( ^S^"
~7}

Professor UJa-^ü) aU^í.^

Nota atribuída: sjU

.^ . l ,

\r^\Q Lui<a

Nota atribuída: D^3=

•"yux.^
"')'V^ - i. yutí—

(assinatura)

AC UJ . ^ È^

(assinatura)

l . -..

£>^/R }-^(A9 hl&
(assinatura)

Média: 10/° ( (A-V-

Resultado: Af^v^po

Data: -1A / ^ laa3s

Este trabalho tem condições de ser hospedado no Portal Digital da Bibiioteca da EESC

SIM D NÃO D Visto do orientador ^HO^ ^ ~ ^^- ,AA^



 



AGRADECIMENTOS

Agradeço à minha família, que sempre foi o meu apoio mais importante em todas
as minhas decisões mesmo estando tão longe.

Às minhas avós, que sempre rezam por mim, ficam felizes com minhas conquistas e
são quem eu mais quero dar orgulho.

Aos amigos que fiz na faculdade, por terem tornaram o percurso mais divertido.

E à Manu, por ter me aturado nesses anos de faculdade morando comigo e estado
presente em momentos difíceis.





“I’m not a prophet or a stone-age man
Just a mortal with the potential of a superman”

David Bowie





RESUMO

CORRÊA, P. Prova de conceito: Extensão para navegadores web para
identificação de sexualização de menores. 2025. 73 p. Monografia (Trabalho de
Conclusão de Curso) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2025.

O presente trabalho aborda a crescente problemática da “adultização” e sexualização de
menores nas redes sociais, impulsionada pela busca por engajamento e monetização. O
objetivo principal foi desenvolver uma prova de conceito de uma extensão para navegadores
web, utilizando a arquitetura Manifest V3, capaz de identificar e ocultar automaticamente
conteúdos sexualizados envolvendo crianças na plataforma Instagram. A metodologia
baseou-se na integração de modelos de linguagem multimodais (LLMs) via API REST,
especificamente testando o Gemini 2.5 Flash e as variantes do Llama 4 (Scout e Maverick),
para a análise das postagens. Foram realizados testes sistemáticos de engenharia de
prompt e temperatura para otimizar a acurácia e a revocação da detecção. Os resultados
demonstraram que o modelo Llama 4 Scout apresentou o melhor desempenho, atingindo
95% de acurácia com um tempo médio de resposta inferior a 1,5 segundos. Conclui-se que
a utilização de agentes multimodais é tecnicamente viável e eficaz para mitigar a exposição
a conteúdos impróprios, oferecendo uma ferramenta proativa para a segurança digital de
menores.

Palavras-chave: Inteligência Artificial. Desenvolvimento Web. Redes sociais. Sexualização
infantil. Extensão de navegador. LLMs Multimodais.





ABSTRACT

CORRÊA, P. Proof of concept: Web browser extension for identification of
minor sexualization. 2025. 73 p. Monograph (Conclusion Course Paper) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

This study addresses the growing issue of “adultification” and sexualization of minors
on social networks, driven by the pursuit of engagement and monetization. The primary
objective was to develop a proof of concept for a web browser extension, utilizing the
Manifest V3 architecture, capable of automatically identifying and hiding sexualized
content involving children on the Instagram platform. The methodology was based on the
integration of multimodal Large Language Models (LLMs) via REST API, specifically
testing Gemini 2.5 Flash and the Llama 4 variants (Scout and Maverick), for the analysis
of posts. Systematic testing of prompt engineering and temperature was conducted to
optimize detection accuracy and recall. The results demonstrated that the Llama 4 Scout
model achieved the best performance, reaching 95% accuracy with an average response
time of under 1.5 seconds. It is concluded that the utilization of multimodal agents is
technically viable and effective in mitigating exposure to inappropriate content, offering a
proactive tool for the digital safety of minors.

Keywords: Artificial Intelligence. Web Development. Social Networks. Child Sexualization.
Browser Extension. Multimodal LLMs.





LISTA DE FIGURAS

Figura 1 – Exemplo de detecção em imagem . . . . . . . . . . . . . . . . . . . . . 25
Figura 2 – Exemplos de explicabilidade . . . . . . . . . . . . . . . . . . . . . . . . 27
Figura 3 – Comparação de performance de provedores de IA utilizando mesmo

modelo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figura 4 – Arquitetura completa de uma extensão genérica . . . . . . . . . . . . . 32
Figura 5 – Arquitetura utilizada no projeto . . . . . . . . . . . . . . . . . . . . . . 33
Figura 6 – Aviso de abuso sexual . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figura 7 – Fluxo a partir da atualização da página . . . . . . . . . . . . . . . . . 37
Figura 8 – Fluxo a partir da mutação da página . . . . . . . . . . . . . . . . . . . 37
Figura 9 – Exemplo de erro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figura 10 – Exemplo de postagem sendo analisada . . . . . . . . . . . . . . . . . . 48
Figura 11 – Exemplo de postagem com selo de sem identificação de sexualização . . 49
Figura 12 – Exemplo de postagem censurada . . . . . . . . . . . . . . . . . . . . . 50
Figura 13 – Gráfico de performance do Llama Scout (usando prompt 3) . . . . . . . 56
Figura 14 – Gráfico de performance do Llama Maverick (usando prompt 3) . . . . . 57
Figura 15 – Gráfico de performance do Gemini 2.5 Flash (usando prompt 4) . . . . 58





LISTA DE TABELAS

Tabela 1 – Comparação da performance dos modelos . . . . . . . . . . . . . . . . 26
Tabela 2 – Limites de uso do Llama 4 Scout pela Groq . . . . . . . . . . . . . . . 28
Tabela 3 – Limites do Gemini 2.5 Flash . . . . . . . . . . . . . . . . . . . . . . . . 29
Tabela 4 – Performance com prompt 1 . . . . . . . . . . . . . . . . . . . . . . . . 51
Tabela 5 – Performance com prompt 2 . . . . . . . . . . . . . . . . . . . . . . . . 53
Tabela 6 – Performance com prompt 3 . . . . . . . . . . . . . . . . . . . . . . . . 54
Tabela 7 – Performance com prompt 4 . . . . . . . . . . . . . . . . . . . . . . . . 55
Tabela 8 – Tempo de execução com melhor configuração de temperatura e prompt 57
Tabela 9 – Resumo dos resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . 58





SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1 Contextualização . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Escopo do projeto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Organização do texto . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 REVISÃO BIBLIOGRÁFICA . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Estudos sobre “adultização” nas redes sociais . . . . . . . . . . . . . 23
2.2 Revisão de modelos para detecção de sexualização . . . . . . . . . . 23
2.3 Revisão de modelos para identificação de crianças . . . . . . . . . . 24
2.4 Por que utilizar agente multimodal . . . . . . . . . . . . . . . . . . . 25
2.5 Comparação de APIs multimodais gratuitas disponíveis . . . . . . . 27
2.5.1 Cerebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Groq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Mistral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.4 Gemini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.5 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 DESENVOLVIMENTO . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Metodologia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Manifest V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Uso das APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Etapas de testes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Métricas de performance calculadas . . . . . . . . . . . . . . . . . . . . . 34
3.1.5 Variação da temperatura . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Código . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Background service worker . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Content script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Script para testes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 TESTES E RESULTADOS . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Teste de funcionamento . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Testes de prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Testes de temperatura . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Testes de velocidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



4.5 Resultados gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 CONCLUSÕES E POSSÍVEIS MELHORIAS . . . . . . . . . . . . . 59
5.1 Conclusões da prova de conceito . . . . . . . . . . . . . . . . . . . . . 59
5.2 Melhorias de hipotética implementação na prática . . . . . . . . . . 59

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

APÊNDICES 63

APÊNDICE A – ARQUIVO DO MANIFESTO . . . . . . . . . . . . 65

APÊNDICE B – DOCUMENTAÇÃO DE CHAMADA DAS APIS . 67

APÊNDICE C – ARQUIVO CSS COM OS ESTILOS . . . . . . . . 71



19

1 INTRODUÇÃO

Este capítulo apresenta uma visão geral do trabalho, começando pela contextu-
alização do cenário que motivou a pesquisa, em seguida, é realizada a formulação do
projeto e seus objetivos principais. Também é feita uma delimitação do escopo do projeto,
destacando o que será abordado e o que está fora do alcance deste trabalho. Por fim, é
apresentada a estrutura geral do texto.

1.1 Contextualização

Desde a publicação do vídeo “adultização” (Pereira, 2025) no YouTube do influ-
enciador conhecido como Felca em agosto de 2025, o debate sobre a influência das redes
sociais no comportamento e desenvolvimento de crianças e adolescentes ganhou destaque
na mídia e na sociedade. O vídeo, que aborda a pressão social para que jovens adotem
comportamentos considerados “adultos” precocemente, gerou uma série de discussões sobre
os impactos psicológicos, sociais e educacionais dessa tendência.

No referido vídeo, Felca argumenta que a monetização indiscriminada das redes
sociais tem contribuído para a produção de materiais cada vez mais extremos para garantir
visibilidade e engajamento, o que levou a uma crescente de conteúdos feitos por adultos
envolvendo crianças de maneira imprópria. Como exemplos, no decorrer do vídeo são
levantados casos como podcasts apresentados por crinças sobre empreendedorismo, pais
que abusam dos próprios filhos os forçando a produzir vídeos, e, até mesmo, casos de
adultos que produzem conteúdos com alta carga de sexualização sobre crianças.

Nesses casos de sexualização, além de atrair a visualização de outras crianças, que
ainda não julgam o caráter impróprio do conteúdo, tais vídeos também atraem a atenção
de predadores sexuais, o que naturaliza comportamentos potencialmente criminosos. O
impacto da fala de Felca foi tão grande que, de acordo com a ONG SaferNet, o número de
denúncias de pornografia infantil recebidas pela organização cresceu 114% em uma semana
desde a publicação do vídeo (SaferNet, 2025).

Felca destaca ainda o papel do algoritmo das plataformas digitais, que, priorizando
o maior alcance possível, identifica o gosto dos predadores e o teor sexual das publicações,
promovendo a conexão entre ambos. Nesse cenário, o vídeo de Felca levanta questões
importantes sobre a necessidade de regulamentação das redes sociais, a responsabilidade
dos criadores de conteúdo e a proteção das crianças e adolescentes na era digital.

Diante do debate acendido pelo vídeo denúncia de Felca, mais de 30 projetos de lei
foram propostos na Câmara dos Deputados (Matos, 2025) que tratam desde a proibição da
monetização de conteúdos produzidos por crianças nas redes ou até tipificam como crime



20

o processo de “adultização” citado por Felca. Para viabilizar essas possíveis novas leis,
uma pergunta emerge: a tecnologia conseguiria identificar e sinalizar automaticamente
conteúdos sexualizados envolvendo crianças nas redes sociais?

1.2 Objetivos

O trabalho em questão busca realizar uma prova de conceito, explorando a via-
bilidade de um sistema automatizado para identificar e sinalizar conteúdos sexualizados
envolvendo crianças especificamente no Instagram, exemplificando o quanto a tecnologia
pode ser utilizada para dificultar a conexão entre os predadores e tais conteúdos.

Para atingir os seus objetivos, o projeto visa o desenvolvimento de uma extensão
para navegadores web baseados em Chromium feita em JavaScript utilizando Manifest V3.
Essas ferramentas foram escolhidas por serem amplamente utilizadas no desenvolvimento
de extensões para navegadores. A extensão se comunica no seu backend com a API REST
de modelos Large Language Models (LLMs) para realizar a análise do conteúdo textual
das postagens no Instagram.

Os mesmos modelos LLMs foram testados sistematicamente de maneira isolada, a
partir da extração e classificação manual de postagens e comparação com a classificação
automática feita pelos modelos por um script Python.

Ao final, os objetivos se resumem a:

1. Desenvolver uma extensão funcional para navegadores, incluindo:

a) backend: lógica interna, integração com a página nativa do Instagram e comuni-
cação com o modelo externo

b) frontend: visual responsivo e amigável ao usuário

2. Elaborar prompt de entrada ao modelo que gere boa acurácia na identificação dos
conteúdos.

3. Boa performance na execução da extensão, mantendo a navegação fluida.

1.3 Escopo do projeto

Vale ressaltar que o foco do trabalho está na prova de conceito do sistema, de-
monstrando que a tecnologia pode ser utilizada para mitigar o problema da sexualização
de crianças nas redes sociais, e não na criação de um produto finalizado e pronto para o
mercado.

No caso de um produto final, outros aspectos essenciais deveriam também ser
considerados, como a segurança e a escalabilidade do sistema. Sobre a segurança, destaca-
se a privacidade dos dados dos usuários, já que, atualmente, todas as imagens das postagens



21

analisadas pela aplicação são enviadas para os servidores do Google sob a chave de API
vinculada ao autor desse projeto.

A implementação do produto final não foi pensada em ser concluída pois essa
extensão não foi considerada como tendo um público potencial bem definido: o algoritmo
de usuários comuns que não buscam acessar conteúdos sexualizados naturalmente não
exibe tais postagens, já usuários potencialmente interessados em acessar esses conteúdos
não fariam uso de uma ferramenta que os bloqueia. Assim, o objetivo não é que o produto
seja utilizado por usuários finais, mas sim que sirva como prova de que as Big Techs
podem adotar medidas análogas as desse projeto para dificultar a conexão entre predadores
sexuais e conteúdos sexualizados envolvendo crianças.

Visto isso, a extensão desenvolvida não será disponibilizada nas lojas oficiais de
extensões dos navegadores, se tratando de um protótipo. Porém, o código-fonte JavaScript,
o código Python utilizado para testes e os demais arquivos utilizados nessa tese estão
disponíveis em um repositório público no GitHub1.

1.4 Organização do texto

O restante desta monografia está estruturado em quatro capítulos principais. O
Capítulo 2 apresenta a fundamentação teórica, discutindo o fenômeno da “adultização”,
revisando modelos de detecção existentes e justificando a escolha por agentes multimodais
através de uma comparação técnica entre as APIs disponíveis. O Capítulo 3 descreve o
desenvolvimento da solução, detalhando a arquitetura da extensão via Manifest V3, a
integração com as APIs de LLM e a metodologia criada para os testes sistematizados.
Na sequência, o Capítulo 4 expõe os resultados obtidos, analisando a performance dos
diferentes prompts, o impacto da temperatura e a velocidade de resposta dos modelos.
Por fim, o Capítulo 5 apresenta as conclusões sobre a viabilidade da prova de conceito e
discute possíveis melhorias para uma implementação prática em larga escala.

1 Repositório GitHub do projeto: https://github.com/pecazeco/InstaChildGuard

https://github.com/pecazeco/InstaChildGuard




23

2 REVISÃO BIBLIOGRÁFICA

Aqui é apresentada a fundamentação teórica do trabalho, por meio da análise de
estudos prévios dos temas relevantes para o desenvolvimento do projeto e que embasam a
justificativa das metodologias adotadas.

2.1 Estudos sobre “adultização” nas redes sociais

Atualmente, é amplamente estudado na literatura como as redes sociais impactam o
crescimento de crianças. Em muitos ambientes online, não há restrições realmente eficientes
ao acesso da criança em relação ao de um adulto: elas podem, sem grandes dificuldades,
utilizar ferramentas de buscas livremente, participar de interações sociais, e fazer download
e upload de conteúdos, por exemplo. Esse contato precoce com uma quantidade grande de
informações pode impactar a psicologia e personalidade da criança, levando a problemas
de saúde mental, sentimentos de solidão, violentos ou de indiferença (Zheng, 2022).

O estudo de Yao (2024), realizado na China, analisou 2000 vídeos contendo crianças
retirados de redes sociais como TikTok e Kwai, e outros 2000 contendo adultos. Ao final, o
estudo concluiu não só que ocorre a adultização das crianças, mas também a infantilização
dos adultos. Nessa pesquisa, características identificadas como adultização foram, por
exemplo, roupas reveladoras, e palavras e comportamentos sugestivos. Yao (2024) apontou
como motivo para o fenômeno o rompimento do isolamento entre o virtual e o real,
permitindo que as crianças participem do mundo adulto.

Esses e outros estudos (Orman, 2020; Cabezas, 2022) mostram que de fato é um
consenso na literatura que o consumo e exposição precoce no mundo digital pode impactar
negativamente o desenvolvimento de um ser humano, levando, em alguns casos, a uma
“adultização” acelerada e descontrolada.

2.2 Revisão de modelos para detecção de sexualização

Há uma grande gama de modelos de IA, principalmente redes neurais de aprendizado
profundo, voltadas à identificação de conteúdos sexualmente explícitos 1. Tais modelos
muitas vezes podem ser acessados por APIs e funcionam calculando a probabilidade do
conteúdo passado ser explícito e comparam com um valor limite pré-definido para definir
se trata-se ou não.

Esse tipo de conteúdo comumente é chamado de NSFW (Not Suitable For Work)

1 10 APIs detectoras de conteúdos explicitos: https://www.edenai.co/post/top-10-explicit-con
tent-detection-apis

https://www.edenai.co/post/top-10-explicit-content-detection-apis
https://www.edenai.co/post/top-10-explicit-content-detection-apis


24

e APIs como a da Clarifai2 ou a detecção SafeSearch integrada ao Google Cloud3 foram
treinadas com milhares de imagens e podem analisar a explecitude em relação a diferentes
rótulos além de nudez, como violência, drogas ou médico. Além disso, muitos desses
modelos podem classificar diferentes níveis de nudez, como apenas algo apenas sugestivo ou
totalmete explícito. Porém, a aplicação desse projeto expõe certas limitações e restrições
sobre o uso dessas APIs:

• As postagens do Instagram já passam por um filtro prévio feito por redes neurais
convolucionais (Mohiuddin, 2025), assim conteúdos totalmente explícitos já não irão
aparecer. Portanto, a API utilizada precisa conseguir identificar conteúdos levemente
sugestivos, e não só os totalmente explícitos.

• Já que a ideia não é fazer um produto final que gera alguma renda, restringe-se ao
uso de APIs gratuitas.

• Como o próprio Felca expõe em seu vídeo, muitas vezes os pedófilos enxergam uma
visão destorcida da realidade, vendo interesse em publicações que a olhos normais
não são sugestivos. Isso exige uma precisão na identificação dos conteúdos que torna
conveniente o uso de linguagem natural para comunicação com o modelo.

Limitando-se aos modelos gratuitos, como o nsfw-cateforize.it4 (que possui
cota gratuita de apenas 10 imagens por dia), ou o open source nsfw_image_detection5

(que não diferencia diferentes níveis de nudez) as restrições ficam ainda mais difíceis de
contornar.

2.3 Revisão de modelos para identificação de crianças

O projeto não visa simplesmente identificar a presença de conteúdo sugestivamente
sexual, mas sim identificar isso ligado especificamente a crianças. Portanto, no caso de
seguir a abordagem de redes neurais, seria necessário de alguma forma combinar uma rede
para identificação da explicitude (abordado na seção 2.2) com uma para identificação de
crianças.

Recorrendo à literatura, é difícil encontrar um modelo robusto e confiável trei-
nado especialmente para o reconhecimento de crianças, porém, são amplamente encon-
tradas redes de reconhecimento/detecção de objetos no geral 6. Por exemplo, a API
general-image-recognition7 da Clarify foi treinada com 20 milhões de imagens e é
2 API de NSFW da Clarifai: https://clarifai.com/clarifai/main/models/nsfw-recognition
3 SafeSearch: https://docs.cloud.google.com/vision/docs/detecting-safe-search?hl=pt-br
4 https://nsfw-categorize.it/
5 https://huggingface.co/Falconsai/nsfw_image_detection
6 10 APIs de detecção de objetos: https://www.edenai.co/post/top-10-object-detection-apis
7 https://clarifai.com/clarifai/main/models/general-image-recognition?tab=overview

https://clarifai.com/clarifai/main/models/nsfw-recognition
https://docs.cloud.google.com/vision/docs/detecting-safe-search?hl=pt-br
https://nsfw-categorize.it/
https://huggingface.co/Falconsai/nsfw_image_detection
https://www.edenai.co/post/top-10-object-detection-apis
https://clarifai.com/clarifai/main/models/general-image-recognition?tab=overview


25

capaz de reconhecer 10 mil “conceitos” pré-definidos, como objetos e até temas. APIs de
detecção muitas vezes podem delimitar na imagem os objetos contidos, como mostrado na
Figura 1.

Figura 1 – Exemplo de detecção em imagem

Fonte: https://www.edenai.co/post/top-10-object-detection-apis

Aqui, também há uma certa dificuldade: a delimitação de contexto utilizado para
a rede. Seria necessário utilizar o modelo de detecção de objetos para, de alguma forma,
delimitar a área de análise do de conteúdo explícito.

Por exemplo, em uma imagem pode haver uma pessoa adulta em foco em uma
posição sugestiva e, ao fundo, uma criança passando. Nesse exemplo, os dois modelos
responderiam “sim”, apesar de não haver exatamente sexualização infantil. Por outro lado,
se em uma imagem houverem duas crianças juntas em uma posição sugestiva, se enviarmos
ao segundo modelo as duas crianças separadamente, pode ser que ele não identifique essa
camada de sexualidade da imagem. Portanto, conclui-se que a integração entre diferentes
redes pode se tornar altamente complexa, ainda mais lidando com identificação de sutilezas
implícitas.

2.4 Por que utilizar agente multimodal

Por conta das dificuldades relacionadas à integração entre modelos citada na
seção 2.3 e as dificuldades de ajuste fino expostas na seção 2.2, foi concluído que modelos
multimodais, como Gemini da Google ou GPT da OpenAI seriam mais convenientes para
a aplicação.

Modelos chamados “multimodais” se referem aos que podem receber como entrada
diferentes tipos de arquivos, como vídeos, imagem, áudio e texto. Aqui refere-se especifica-

https://www.edenai.co/post/top-10-object-detection-apis


26

mente aos multimodais Large Language Models (LLM), que são treinados por aprendizado
de máquina auto-supervisionado em uma vasta quantidade de dados e capazes de entender
e responder em linguagem natural.

A capacidade de se comunicar em linguagem natural e o baixo custo são o que fazem
esses modelos serem tão convenientes para esse projeto. Os ajustes para fazer a extensão
identificar as sutilezas mencionadas na seção 2.2 podem ser realizados simplesmente por
meio da passagem de exemplos e explicação em palavras para o LLM, ao invés do ajuste
de parâmetros que seria necessário no caso de lidar-se diretamente com uma rede neural.
Além disso, utilizar unicamente a LLM para identificar adultização resolve o problema da
integração entre modelos.

Mas afinal, é possível atingir uma boa acurácia deixando de escolher ferramentas
específias de detecção de imagem para adotar-se uma ferramenta tão generalista? Em um
estudo de Than, Vong e Yong (2024), foram comparadas as performance de várias LLMs
com as de redes neurais de aprendizado profundo no contexto de detecção de tumores.
As redes neurais convolucionais foram pré-treinadas com milhões de imagens gerais e
então feito um fine-tuning com algumas centenas de imagens médicas. Ao final, de todos
os modelos testados, o que se saiu melhor em todos os critérios foi o Gemini 1.5 Pro
(Tabela 1).

Tabela 1 – Comparação da performance dos modelos

(a) Pré-treinados de aprendizado profundo (b) Multimodais

Fonte: (Than; Vong; Yong, 2024)

No estudo citado, foi concluído que modelos multimodais podem performar até
melhor que redes de aprendizado profundo na falta de dados suficientes de treinamento.
O artigo também destaca a possibilidade de maior explicabilidade via dos multimodais,
que indicam de maneira mais intuitiva como as decisões foram feitas. A Figura 2a mostra
um exemplo dessa explicação em texto, já na Figura 2b foi solicitado ao modelo gerar
um mapa de calor destacando onde o tumor foi detectado. Enfim, como foi demonstrado,
é totalmente possível utilizar modelos multimodais e consiliar uma boa acurácia com a
conveniência de se comunicar com a ferramenta utilizando linguagem natural.



27

Figura 2 – Exemplos de explicabilidade

(a) Explicação em texto
(b) Explicação em imagem

Fonte: (Than; Vong; Yong, 2024)

2.5 Comparação de APIs multimodais gratuitas disponíveis

Como já citado como uma das restrições para o projeto na seção 2.2, vamos nos
limitar às APIs de LLMs gratuitas, ou melhor, que pelo menos oferecem uma margem
de uso gratuito suficiente para a aplicação. Geralmente os limites de uso são dados em
números de solicitações (requests) solicitados e número de tokens utilizados. Nessa seção,
as principais opções encontradas de provedores gratuitos são expostas.

2.5.1 Cerebras

Cerebra8 é uma empresa que fornece uma API com várias opções de modelos open
source. Dentre os modelos, atualmente temos o GPT OSS 120B (feito pela OpenAI), alguns
modelos Llama (feitos pela Meta) e alguns Qwen (Alibaba Cloud).

A Cerebra declara prover a “infraestrutura mais rápida de IA” do mundo. Isso pois
ela possui um processador próprio feito com foco em IA que, segundo ela, é o mais rápido
que existe. Esse destaque pode ser observado no gráfico da Figura 3.

Porém, o que inviabiliza o uso da Cerebras é que, no momento, a sua API REST de
inferência pública não suporta diretamente a entrada de imagens para modelos multimodais.
Embora a Cerebras tenha capacidade e documentação para treinar modelos multimodais
como o LLaVA (que combinam visão e linguagem), a API de inferência e seus SDKs
(Python, Node.js) são focados em modelos de linguagem de texto, como a família LLaMA
8 https://www.cerebras.ai/

https://www.cerebras.ai/


28

Figura 3 – Comparação de performance de provedores de IA utilizando mesmo modelo

Fonte: https://www.cerebras.ai/blog/cerebras-inference-3x-faster

e Qwen.

2.5.2 Groq

Assim como a Cerebra, Groq9 também possui um processador proprietário focado
em IA e fornece uma série de modelos open source. Aqui, são oferecidos ainda mais opções
que a Cerebra, incluindo alguns desenvolvidos pela própria empresa.

No geral, os limites da Groq são bem mais restritivos que os da Cerebra, porém
aqui eles disponibilizam pela API REST acesso a dois modelos multimodais, os Llama 4
Scout e Llama 4 Maverick.

Tabela 2 – Limites de uso do Llama 4 Scout pela
Groq

Categoria Limite por minuto Limite por dia

Solicitações 30 1000

Uso de tokens 30 mil 500 mil
Fonte: Groq

2.5.3 Mistral

A Mistral10 desenvolve os seus próprios modelos, sendo alguns open source e outros
fechados. A performance dos seus modelos não está entre as melhores, mas os limites de
uso são bem generosos. O Mistral Medium 3, por exemplo, possibilita o uso de 500 mil
9 https://groq.com/
10 https://mistral.ai/

https://www.cerebras.ai/blog/cerebras-inference-3x-faster
https://groq.com/
https://mistral.ai/


29

tokens por minuto e até 1 bilhão por dia, tornando essa API uma boa opção caso o uso de
tokens for muito alto.

2.5.4 Gemini

A Google disponibiliza uma API11 para acesso aos seus modelos proprietários,
que são todos códigos fechados. Dentre os modelos do Google que possuem limite de
requisições por minuto suficientemente alto para o projeto, o Gemini 2.5 Flash é o de
melhor performance.

Tabela 3 – Limites do Gemini 2.5 Flash

Categoria Limite por minuto Limite por dia

Solicitações 10 250

Uso de tokens 250 mil -
Fonte: Google

De acordo com a empresa, o Gemini 2.5 Flash é “útil para a maioria das tarefas
complexas, enquanto tem um equilibrio entre qualidade, custo e latência”. Sendo assim, é
voltado para uso geral, rodando de maneira veloz com um desempenho nas respostas não
tão atrás da opção mais avançada do Gemini, a 2.5 Pro (Comanici et al., 2025).

Esse modelo atualmente se posiciona muito bem nos benchmarks quando comparado
a outros focados em uso geral: está na posição mais alta no site MMMU (Yue et al., 2024)
dentre os modelos apresentados nas últimas seções, e o LiveBench (White et al., 2025)
também o coloca entre os melhores, ainda mais comparando com os open source.

2.5.5 Conclusão

Por se tratar de um modelo estado da arte dentro das opções de resposta rápida
e possuir limites aceitáveis, a escolha do uso do Gemini 2.5 Flash foi a natural. No caso
da Mistral, seus limites são bem mais do que o suficiente para a aplicação, mas a sua
performance não é tão boa, logo não foi escolhida. Cerebras foi descartada rapidamente
por não dar acesso por API ao envio de imagens. Já a Groq, apesar de ter restrições mais
severas, dá acesso a dois modelos multimodais e foi considerada para uso. Portanto, os
testes utilizaram os Llama 4 Scout/Maverick disponibilizados pela Groq e o modelo da
Google.

11 https://aistudio.google.com/

https://aistudio.google.com/




31

3 DESENVOLVIMENTO

3.1 Metodologia

No decorrer dessa seção serão definidas as ferramentas utilizadas para implementa-
ção do projeto em si e dos testes realizados.

3.1.1 Manifest V3

Extensões de navegador são pequenos módulos de software que personalizam um
navegador da web. Os navegadores normalmente permitem uma variedade de extensões,
incluindo modificações na interface do usuário, gerenciamento de cookies, bloqueio de
anúncios e scripts e estilos personalizados de páginas da web.

O Manifest V31 (em referência ao arquivo de manifesto contido nas extensões)
é a mais recente grande versão da API de extensões do Chrome e visa modernizar a
arquitetura de extensões e melhorar a segurança e o desempenho do navegador. Ele adota
APIs declarativas para diminuir a necessidade de acesso excessivamente amplo e permitir
uma implementação mais eficiente, substitui páginas de fundo por “Service Workers” com
recursos limitados para reduzir o uso de recursos e proíbe código hospedado remotamente.
A arquitetura completa de uma extensão genérica feita por Manifest V3 pode ser vista na
Figura 4.

A escolha de uso do Manifest V3 se dá pois muitos navegadores suportam essa
API. Basicamente, todos os baseados no projeto Chromium são compatíveis, como Brave,
Microsoft Edge, Opera, Vivaldi e, claro, o Google Chrome. Isso torna o uso dessa API
bastante recomendada.

Para desenvolver uma extensão usando Manifest V3, é necessário criar um manifesto
(manifest.json), arquivo que lista uma série de informações básicas sobre a extensão, e
o navegador o usa realizar as configurações necessárias. O Apêndice A contém o manifesto
elaborado para o projeto, e inclui a versão do Manifest, o nome da extensão, a sua descrição,
os caminhos para os códigos utilizados, as permissões necessárias, os arquivos das imagens
utilizadas e outras informações.

Para essa extensão, os componentes mais importantes são o “Content Script”
(contentScript.js) e o “Background Service Worker” (background.js). O content script
é a parte da extensão que consegue conversar diretamente com o DOM (Document Object
Model) da página que o navegador está acessando, que é basicamente a estrutura em
si do site, ou seja, tudo o que o usuário vê. O content script não é capaz de receber as
1 Mudanças do Manifest V3: https://developer.chrome.com/docs/extensions/develop/migrate

/what-is-mv3?hl=pt-br

https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3?hl=pt-br
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3?hl=pt-br


32

Figura 4 – Arquitetura completa de uma extensão genérica

Fonte: https://youtu.be/TRwYaZPJ0h8?si=2gh3gnVSlcj5LRXF&t=194

permissões mais elevadas requisitadas no manifesto, para isso, ele precisa enviar uma
mensagem para o background service worker, que possui esse privilégio e o retorna com
a informação solicitada. Toda essa aparente complicação a mais garante a segurança da
extensão (Barth et al., 2010). A arquitetura com os componentes utilizados neste projeto
específico está ilustrada na Figura 5.

3.1.2 Uso das APIs

Um exemplo de chamada das APIs REST utilizadas por meio de cURL pode ser
visto no Apêndice B. As chamadas foram adaptadas para o uso em JavaScript, utilizando a
função fetch(), que é nativa da linguagem e permite fazer requisições HTTP assíncronas.

3.1.3 Etapas de testes

Os passos da metodologia adotada para a realização dos testes, respectivos motivos
das decisões tomadas e observações foram as seguintes:

https://youtu.be/TRwYaZPJ0h8?si=2gh3gnVSlcj5LRXF&t=194


33

Figura 5 – Arquitetura utilizada no projeto

Fonte: https://youtu.be/TRwYaZPJ0h8?si=2gh3gnVSlcj5LRXF&t=194 e editado pelo autor

1. Criação de uma conta alternativa no Instagram

• Visando utilizar um algoritmo limpo, sem interferências de histórico ou prefe-
rências pessoais.

• Buscando não contaminar do perfil original do autor.

2. Diminuir o controle de conteúdo sensível nas configurações2 da conta.

3. Identificar e seguir perfis buscando por palavras chave relacionadas a crianças e a
sexualização.

• Perfis que possuem na “bio” avisos falando que o perfil é monitorado por pais
indicam que se trata possivelmente de uma criança.

• O Instagram restringe a busca por termos relacionados a sexualização de crianças
diretamente (Figura 6), logo, é necessário buscar os termos de sexualização e
de crianças separadamente.

2 Configuração de controle de conteúso sensível: https://about.instagram.com/blog/announc
ements/introducing-sensitive-content-control

https://youtu.be/TRwYaZPJ0h8?si=2gh3gnVSlcj5LRXF&t=194
https://about.instagram.com/blog/announcements/introducing-sensitive-content-control
https://about.instagram.com/blog/announcements/introducing-sensitive-content-control


34

4. Navegar pelo feed e curtir e abrir comentários das postagens que tem algum tipo de
sugestão sexual de crianças.

5. Extrair (fazer download) de imagens que aparecerem no feed, avaliando manualmente
se contém ou não sexualização infantil.

• Baixar 20 sendo imagens que contenham sexualização de crianças e 20 sendo
imagens que não contenham, para ter resultados não enviesados.

• Vale destacar que um estudo mais robusto envolveria um número maior de
imagens. A limitação de requisições por dia limitou essa etapa e os resultados
atingidos se mostraram satisfatórios, como será visto no Capítulo 4.

6. Rodar script Python (subseção 3.2.4) desenvolvido para avaliar as imagens baixadas
utilizando o mesmo prompt utilizado na extensão.

• Utilizar scripts possibilita testes sistemáticos, garantindo que os testes serão
realizados sempre sobre as mesmas imagens e de maneira mais ágil do que ficar
navegando no feed e anotando os resultados.

• Nesses testes, são extraídas métricas de performance de cada modelo, como
tempo médio de requisição, precisão e acurácia.

7. Realizar adaptações no prompt do modelo buscando a maior acurácia possível.

8. Repetir os últimos 2 passos até alcançar um resultado satisfatório.

9. Testar alguns valores de temperatura para cada modelo e rodar novamente os testes
até alcançar o melhor valor para cada um.

10. Substituir o conjunto do melhor API + modelo + prompt + temperatura no código
da extensão JavaScript.

3.1.4 Métricas de performance calculadas

Nos testes, a partir do gabarito de cada imagem, a classificação respondida pelo
modelo e o tempo que levou para as respostas, foram calculadas várias métricas relacionadas
à performance.

Assumindo TN : True Negative, TP : True Positive, FN : False Negative e FP : False
Positive, temos as seguintes definições:

Acurácia = TP + TN

TP + TN + FP + FN
(3.1)

Precisão = TP

TP + FP
(3.2)



35

Figura 6 – Aviso de abuso sexual

Fonte: Instagram

Revocação = TP

TP + FN
(3.3)

No caso desse projeto, procura-se principalmente reduzir o número de falsos negati-
vos (FN), já que, por segurança, é melhor a IA tender a censurar do que não censurar.
Assim, prioriza-se o aumento do valor da revocação em relação à precisão, que pode ser
traduzida como “de todos as imagens que deveriam ser classificadas como sim, quantas o
modelo acertou?”.

Para avaliação da velocidade, foram consideradas o tempo médio de requisição,
tempo mínimo, tempo máximo, e variância do tempo. Já para análise da consistência
das respostas, cada modelo classificou cada imagem 2 vezes, e foi calculado de todas as
imagens, qual percentual o modelo retornou a mesma classificação nas duas vezes.

Em um projeto ainda mais robusto, seria também interessante calcular outras
métricas como curva ROC, F1-Score e AUC.

3.1.5 Variação da temperatura

A temperatura é um parâmetro que controla a aleatoriedade da saída de uma
GenAI, balanceando criatividade e coerência. Uma temperatura baixa (perto de 0), cria
saídas mais previsíveis, determinísticas e focadas, enquanto que valores altos (perto ou
acima de 1), aumentam a aleatoriedade e criatividade.

Os LLMs geram texto prevendo a próxima palavra (ou melhor, o
próximo token) de acordo com uma distribuição de probabilidade
[. . .]. O parâmetro temperatura do LLM modifica essa distribuição.
Uma temperatura mais baixa basicamente torna os tokens com
a maior probabilidade de serem selecionados; uma temperatura
mais alta aumenta a probabilidade de um modelo selecionar tokens



36

menos prováveis. Isso acontece porque um valor de temperatura
mais alto introduz mais variabilidade na seleção de tokens do LLM.
Diferentes configurações de temperatura introduzem diferentes
níveis de aleatoriedade quando um modelo de IA generativa produz
texto.3

No caso desse projeto, onde o trabalho é de classificar imagens de maneira binária,
são esperadas saídas mais corretas de temperaturas mais baixas. Porém, como existe
alguma certa subjetividade na nossa classificação, pode ser que o modelo se beneficie de
um aumento na temperatura. Visto isso, inicialmente todos os prompts foram testados
utilizando a temperatura de 0,1. Ao final, escolhido o melhor prompt para cada modelo,
alterações foram feitas na temperatura buscando o melhor resultado possível.

3.2 Código

Em um primeiro momento, a extensão proposta apenas analisa as postagens do
Instagram dispostas no “feed”, e somente as imagens. Não são avaliados os “stories” ou
vídeos, porém, como o foco aqui é a prova de conceito, abranger esses casos seria uma
adaptação de código, pois se o algoritmo funciona bem para a as imagens do feed, é natural
também funcionar para os stories ou vídeos. Além disso, o código foi estruturado deixando
aberturas para ser adaptado à outras abas do Instagram (reels, stories, explore), o que
será explicado na subseção 3.2.2.

A explicação do funcionamento dos códigos desenvolvidos será dividida em quatro
partes: content script, background service worker, frontend, e os scripts de teste utilizados
para validar o funcionamento do backend.

Por conta das limitações de privilégio explicada na subseção 3.1.1, o backend é
dividido entre o content script e o background service worker. Já o frontend tem seus
estilos definidos em um arquivo CSS (Apêndice C) e é injetado através do content script,
que insere código HTML na página do Instagram.

Os trechos de códigos dispostos nessa seção foram resumidos, prezando pela clareza
e objetividade. Mas vale enfatizar que, como já disponibilizado na seção 1.3, o código-fonte
completo do projeto está disponível em um repositório público no GitHub. Partes omitidas
aqui incluem variáveis de configuração, funções auxiliares e trechos intermediários do
código, impressões de console.log() para depuração, tratamentos de erro e demais
partes dispensáveis para o entendimento do funcionamento geral.

A extensão possui dois fluxos principais de execução: o primeiro engatilhado quando
a página atualiza (ele checa as postagens iniciais da página), e o segundo engatilhado
quando novas postagens são carregadas dinamicamente na página (infinite scroll). Ambas
3 O que é temperatura do LLM? - IBM: https://www.ibm.com/br-pt/think/topics/llm-tempe

rature

https://www.ibm.com/br-pt/think/topics/llm-temperature
https://www.ibm.com/br-pt/think/topics/llm-temperature


37

as situações são ilustradas nas Figuras 7 e 8, respectivamente, e serão explicadas na atual
seção.

Figura 7 – Fluxo a partir da atualização da página

Fonte: Elaborado pelo autor

Figura 8 – Fluxo a partir da mutação da página

Fonte: Elaborado pelo autor

3.2.1 Background service worker

A primeira função do background.js é identificar quando a página atualizou e
enviar uma mensagem para o content script contendo a localização atual (feed, stories,
reels, explore, por exemplo) e solicitando que ele cheque quais as postagens que já estão
na página. Essa função pode ser vista no Listing 3.1.

Listing 3.1 – Avisa quando a página atualizou
1 chrome .tabs. onUpdated . addListener (( tabId , changeInfo , tab) => {

2 console .log(" background .js: Pagina atualizou .");

3

4 if (

5 changeInfo . status === " complete " &&



38

6 tab.url &&

7 tab.url. includes ("https :// www. instagram .com")

8 ) {

9 // estamos no instagram

10 let location = tab.url.split(" instagram .com/")[1];

11 if ( location ) {

12 location = location .split("/")[0]; // pegar a primeira

palavra

13 } else {

14 location = ""; // Estamos no feed principal

15 }

16 console .log(" background .js: Enviando localiza ção:", location )

;

17 chrome .tabs. sendMessage (tabId , location );

18 }

19 });

Outro papel do background é receber as URLs das imagens que o content script
identificou na página e fazer a chamada para a API de geração de texto, retornando a
decisão de censura para o content script. O recebimento das URLs é feito pelo ouvinte de
mensagens (Listing 3.2).

Listing 3.2 – Ouvinte de mensagens no background
1 chrome . runtime . onMessage . addListener (( request , sender ,

sendResponse ) => {

2 if ( request .type === " ANALYZE_IMAGE_URL ") {

3 // Chama a função de análise , passando a URL

4 performImageAnalysis ( request .url)

5 .then (( status ) => {

6 sendResponse ({ status : status });

7 })

8 .catch (( error) => {

9 console .error(" background .js: Erro no

performImageAnalysis :", error);

10 sendResponse ({ status : 2 });

11 });

12

13 return true;

14 }

15 });

A chamada à API é feita pelo background pois se a chave de API ficasse no content



39

script, ela ficaria visível em texto puro para qualquer pessoa que inspecionasse o código
da página, assim, a recomendação importar a chave no background, onde ela fica em um
processo separado e isolado, longe dos olhos do usuário comum.

Listing 3.3 – performImageAnalysis()

1 async function performImageAnalysis (imageURL , provider ) {

2 try {

3 // 1. Converte a URL da imagem para base64

4 const imageParts = await resizeImageAndConvertToBase64 (

imageURL , 768, 0.8);

5

6 // 2. Chama a função genérica de API

7 const responseText = await callAIProvider (

8 provider , // " google " ou "groq"

9 imageParts , // base64 da imagem

10 SYSTEM_PROMPT // prompt de entrada do modelo

11 );

12

13 // 3. Verifica resposta para decidir censura

14 const shouldCensor = responseText .trim (). toLowerCase ().

startsWith ("sim");

15 return shouldCensor ? 1 : 0;

16 } catch (error) {

17 console .error(" background .js: Erro crítico na análise:",

error);

18 return 2; // erro

19 }

20 }

O performImageAnalysis() (resumido em Listing 3.3) realiza 3 etapas: redimen-
siona a imagem e a converte para base64; chama uma função genérica que faz a requisição
para a API escolhida (Google ou Groq); faz uma lógica simples a partir da resposta para
decidir se a imagem deve ser censurada ou não, retornando 0 (não censurar), 1 (censurar)
ou 2 (erro) para o content script.

O redimensionamento se dá a fim de economizar tokens, limitando uma largura
máxima de 768 pixels e convertida para base64 com qualidade de 80% antes de ser enviada
para a API.

A função callAIProvider() monta a requisição para a API escolhida da maneira
correta, considerando os detalhes de cada uma, como o endpoint, o formato do corpo
da requisição e o cabeçalho de autenticação, considerando a documentação citada na
subseção 3.1.2. Além disso, ela também trata a resposta, padronizando o retorno para o



40

formato de texto puro, que é utilizado na etapa seguinte de lógica de decisão de censura.

3.2.2 Content script

Assim que o background avisa que a página atualizou, o content script ouve a
mensagem (Listing 3.4) e inicia a verificação das postagens presentes na página.

Listing 3.4 – Ouve que a página atualizou e checa as primeiras postagens
1 chrome . runtime . onMessage . addListener (( message ) => {

2 location = message ;

3 checkEachPost (document , location );

4 });

A função checkEachPost() (Listing 3.5) procura os elementos HTML correspon-
dentes às postagens dentro de um nó fornecido. Quando ele recebe a informação que a
página atualizou, essa função busca pelos elementos na página inteira (nó document), e
chama a função checkElement() para cada uma deles.

Por observação do DOM do Instagram, foi possível identificar que as postagens do
feed atualmente podem ser rastreadas pelos elementos da tag img que possuem o atributo
alt iniciado por “Photo by” ou “Photo shared by”. É difícil encontrar uma forma mais
robusta de identificar as postagens, pois o Instagram utiliza algum framework (como o
React) que cria IDs e classes dinâmicas e aleatórias, sendo sequências de caracteres como
“hcwsLGnMz092209zkAIok0llLz09aLAuU” que podem mudar a qualquer momento.

Listing 3.5 – Função que checa primeiras postagens da página
1 const checkEachPost = (node , location ) => {

2 switch ( location ) {

3 case "": // feed

4 // Pega os filhos desse nó que sao posts

5 let posts = [

6 ... node. querySelectorAll (’img[alt ^=" Photo by"]’),

7 ... node. querySelectorAll (’img[alt ^=" Photo shared by"]’),

8 ];

9 // checa cada post se deve censurar

10 posts. forEach (( img) => checkElement (img , location ));

11 break ;

12

13 case " stories ":

14 break ;

15

16 case "reels":

17 break ;



41

18

19 case " explore ":

20 break ;

21

22 default : // não sabemos onde estamos

23 break ;

24 }

25 };

A função de checar as postagens iniciais foi estruturada em um switch para facilitar
a expansão para outras abas do Instagram, como stories, reels e explore, buscando uma
certa flexibilidade no código. Como já dito, atualmente apenas o feed está implementado,
mas as outras abas podem ser adicionadas futuramente.

Dentro da função checkElement() (Listing 3.6), é verificado se o elemento já
foi analisado anteriormente (para evitar análises repetidas), é esperada a imagem estar
completamente carregada, e então a função processImage() é chamada para analisar a
imagem da postagem. Caso um erro de carregamento ocorra, a função showError() é
chamada para exibir um aviso visual na postagem, o que vai ser explicado na subseção 3.2.3.

Listing 3.6 – Função que checa se o elemento já foi analisado, espera o carregamento e
chama a análise

1 const checkElement = (img , location ) => {

2 // Evita processar a mesma imagem mú ltiplas vezes

3 if (img. dataset . analysisState ) {

4 return ;

5 }

6

7 // Marca a imagem como " analisando "

8 img. dataset . analysisState = " pending ";

9 console .log(" Observado :", img);

10

11 // ’complete ’ = o browser terminou de carregar

12 // ’currentSrc ’ = tem uma fonte de imagem válida

13 if (img. complete && img. currentSrc ) {

14 console .log(

15 " Imagem já carregada , processando imediatamente :",

16 img. currentSrc

17 );

18 processImage (img , location ); // Processa agora

19 } else {

20 const onLoad = () => {



42

21 processImage (img , location );

22 // Limpa os ouvintes

23 img. removeEventListener ("load", onLoad );

24 img. removeEventListener ("error", onError );

25 };

26

27 const onError = () => {

28 console .error(

29 "Erro ao carregar imagem no DOM (src pode estar inválido)

:",

30 img.src

31 );

32 img. dataset . analysisState = "error";

33 showError (img , location ); // Mostra o erro visual

34 // Limpa os ouvintes

35 img. removeEventListener ("load", onLoad );

36 img. removeEventListener ("error", onError );

37 };

38

39 img. addEventListener ("load", onLoad );

40 img. addEventListener ("error", onError );

41 }

42 };

A função processImage() (Listing 3.7) envia a URL da imagem para a função
responsável por chamar o background (checkIfAdultization()), que faz a análise e
retorna a decisão de censura. Ela também é responsável por chamar as funções que montam
o frontend, ativando o visual de carregamento enquanto a análise está em andamento, e,
ao fim, o removendo e mostrando o resultado (censura, selo de verificação ou erro).

Listing 3.7 – Função resumida que envia a imagem para análise e monta o frontend
1 const processImage = async (img , location ) => {

2 /* ... etapas intermedi árias ... */

3

4 showAnalysing (img , location ); // frontend de carregamento

5 const response = await checkIfAdultization ( imageUrl );

6 removeAnalysing (img , location ); // Remove frontend de

carregamento

7 switch ( response ) { // Mostra o resultado

8 case 0:

9 showChecked (img , location );

10 break ;



43

11 case 1:

12 showCensored (img , location );

13 break ;

14 case 2:

15 showError (img , location );

16 break ;

17 default :

18 break ;

19 }

20

21 const elapsedTime = Date.now () - startTime ;

22 const delay = (ms) => new Promise (( resolve ) => setTimeout (

resolve , ms)); // Garante tempo mínimo de 7 segundos

23 if ( elapsedTime < 7000) {

24 await delay (7000 - elapsedTime );

25 return ;

26 }

A processImage() possui uma lógica que garante um tempo mínimo para cada
análise, implementado a fim de não ultrapassar o limite de requisições por minuto. Esse
tempo foi ajustado dependendo do modelo testado, por exemplo, o limite de 10 RPM do
Gemini 2.5 Flash pode ser respeitado com um tempo mínimo de 7 segundos por análise.

A função checkIfAdultization() envia a mensagem para o background, que a
ouve (Listing 3.2), faz a análise e retorna a decisão de censura, como já explicado na
subseção 3.2.1.

Além de checar as postagens dispostas inicialmente, o content script também
observa mudanças no DOM da página, percebendo quando novos nós são carregados ao
rolar a página para baixo. Quando ele identifica esses novos elementos, chama a função
checkEachPost() para verificar se há novas postagens a serem analisadas (Listing 3.8).
Nesse momento, ao invés de passar o nó document para a função checkEachPost() (como
foi feito em Listing 3.4), passa-se apenas os nós que foram adicionados, otimizando o
processo.

Listing 3.8 – Observador de mutações que checa novos posts carregados
1 const observer = new MutationObserver (( mutations ) => {

2 // itera sob cada mutação da pagina

3 mutations . forEach (( mutation ) => {

4 // se a mutação é sobre a lista de filhos da pagina e o

numero é positivo (foram adicionados nós)

5 if ( mutation .type === " childList " && mutation . addedNodes .

length > 0) {



44

6 // itera sobre cada nó adicionado

7 mutation . addedNodes . forEach (( node) => {

8 // Verifica se o nó adicionado é um elemento HTML

9 if (node. nodeType === 1) {

10 checkEachPost (node , location ); // checa os posts dentro

desse nó

11 }

12 });

13 }

14 });

15 });

3.2.3 Frontend

As funções do content script que injetam o frontend na página do Instagram são
showAnalysing() (Listing 3.9), removeAnalysing(), showCensored(), showChecked()
e showError(). Como todas essas funções têm uma lógica relativamente parecida, utiliza-
se aqui a showAnalysing() como exemplo, que é responsável por inserir o visual de
carregamento na postagem que está sendo analisada.

Listing 3.9 – Função que insere o frontend de carregamento na postagem
1 const showAnalysing = (element , location ) => {

2 /* ... etapas intermedi árias ... */

3

4 // Aplica um blur inicial

5 element .style. filter = "blur (10 px)";

6 // Cria o container principal para o loading

7 const analysingContainer = document . createElement ("div");

8 analysingContainer . className = "analysing - container ";

9 // Cria o GIF de loading

10 const loadingGif = document . createElement ("img");

11 loadingGif .src = chrome . runtime . getURL (" images / loading .gif");

12 loadingGif . className = "analysing -gif";

13 // Cria o texto " Analisando ..."

14 const analysingText = document . createElement ("div");

15 analysingText . textContent = " Analisando conteúdo ...";

16 analysingText . className = "analysing -text";

17 // Monta o visual de análise

18 analysingContainer . appendChild ( loadingGif );

19 analysingContainer . appendChild ( analysingText );

20 // Adiciona tudo à página

21 parent . appendChild ( analysingContainer );



45

22 };

As classes CSS utilizadas para estilizar o frontend estão definidas no arquivo
styles.css (Apêndice C).

3.2.4 Script para testes

O script Python desenvolvido para realizar os testes faz as chamadas com base na
documentação oficial de ambas as APIs, conforme mostrado no Apêndice B.

O script lê N vezes todas as imagens de uma pasta específica, faz o mesmo
redimensionamento e otimização de imagem que o content script faz, e então faz a
chamada para a API e modelo escolhidos. Após receber a resposta, o script processa o
texto retornado e guarda uma lista de informações do resultado. Ao final, as informações
sobre todas as imagens são salvas em um arquivo CSV para análise posterior.

O trecho de código responsável por fazer a chamada para a API e processar a
resposta pode ser visto no Listing 3.10. Observa-se que a chamada para cada API é feita
em funções auxiliares separadas, mas o processamento da resposta é igual para ambas.

Listing 3.10 – Chamada e processamento da resposta no script de testes
1 # --- CHAMADA GOOGLE GEMINI ---

2 if AI_PROVIDER == " google ":

3 api_response = callGoogleAPI ( optimized_img )

4 response_time = time.time () - start_time_per_image

5

6 # --- CHAMADA GROQ ---

7 elif AI_PROVIDER == "groq":

8 api_response = callGroqAPI ( optimized_img )

9 response_time = time.time () - start_time_per_image

10

11 # --- PROCESSAMENTO DA RESPOSTA (IGUAL PARA AMBOS) ---

12 try:

13 parts = api_response .split(’;’, 1)

14 contem_pessoa = parts [0]. strip ()

15 justificativa = parts [1]. strip () if len(parts) > 1 else "Sem

justificativa "

16 gabarito = ’Sim ’ if filename .lower (). startswith (’sim ’) else ’

Não’

17 acertou = ’VERDADEIRO ’ if contem_pessoa == gabarito else ’

FALSO ’

18

19 results_list . append ({

20 ’NomeDoArquivo ’: filename ,



46

21 ’Gabarito ’: gabarito ,

22 ’ContemSexualizacao ’: contem_sexualizacao ,

23 ’Descricao ’: justificativa ,

24 ’ResponseTime (s)’: f"{ response_time :.2f}",

25 ’Acertou ’ : acertou ,

26 ’RespostaBruta ’: api_response

27 })

O script também leva em consideração o limite de requisições por minuto de cada
modelo testado (Listing 3.11), forçando esperas entre as chamadas para não ultrapassar
o limite. Como o limite do Gemini 2.5 Flash é de 10 RPM, o script garante um tempo
seguro mínimo de 7 segundos entre cada requisição. Já os modelos Llama oferecidos pela
Groq possuem limite de 30 RPM, então, para ser conservador, o script garante pelo menos
2.5 segundos entre cada requisição.

Listing 3.11 – Espera para respeitar limite de requisições por minuto
1 if AI_PROVIDER == ’google ’:

2 if elapsed_time < 7:

3 time.sleep (7 - elapsed_time )

4 elif AI_PROVIDER == ’groq ’:

5 if elapsed_time < 2.5:

6 time.sleep (2.5 - elapsed_time )

O código lê todas as imagens N vezes para ser analisada a consistência dos resultados.
Se o modelo retornar resultados diferentes para a mesma imagem em execuções distintas,
isso indica que o prompt ainda não está robusto o suficiente.



47

4 TESTES E RESULTADOS

Esse capítulo busca descrever como se deram os testes realizados no modelo e
seus resultados. Primeiramente, foi testado na prática o bom funcionamento da extensão:
como ficou o frontend, fluidez e frequência de erros. Além disso, foram realizados testes
sistematizados (a partir do script da subseção 3.2.4) que armazenaram métricas (3.1.4)
para a comparação dos desempenhos dos modelos.

4.1 Teste de funcionamento

O frontend (3.2.3) final da aplicação consiste na tela de erro (Figura 9), na animação
de carregamento (10), no selo de imagem sem identificação de crianças sexualizadas (11) e
na censura (12).

Figura 9 – Exemplo de erro

Fonte: elaborado pelo autor



48

Figura 10 – Exemplo de postagem sendo analisada

Fonte: elaborado pelo autor

Sobre a fluidez no funcionamento, a animação de carregamento da Figura 10
se mantém na imagem por pouco tempo. Por conta do funcionamento assíncrono das
chamadas da API, as chamadas são feitas muitas vezes antes do usuário ter chegado na
postagem, tornando frequentemente imperceptível o tempo de análise. Porém, vale dizer
que não foi implementada uma maneira de indentificar se a imagem já foi analisada, ou
seja, se o usuário ver mais de uma vez a mesma postagem (descendo e subindo o feed, por
exemplo), pode ser que ele veja a animação de carregamento duas vezes.

Após a devida calibração nos prompts, tratamento de erros e configurações de
segurança das APIs, o número de casos de erros passaram a ser bem raros. Na versão final
do projeto, os testes mostraram que a maior parte das postagens com erro são na verdade
propagandas que possuem configurações de privacidade que impedem que estas sejam
enviadas para as APIs. Porém, há casos raros onde postagens de verdade dão erro, sendo a
maioria infrigementos de alguma política de segurança da GenAI ou do próprio Instagram.

Na prática, postagens com erro representam algo em torno de 1 a cada 100 imagens,
sendo bem mais presentes na API do Gemini do que na do Groq. Como a primeira



49

Figura 11 – Exemplo de postagem com selo de sem identificação de sexualização

Fonte: elaborado pelo autor

é um modelo de código fechado, a Google possui políticas mais rígidas de controle de
prompt, se negando a responder quando identifica um conteúdo mais sensível. Já a Groq,
o número de erros é ainda menor, basicamente só acontecendo quando há algum problema
na comunicação.

Para contornar o problema de erros na API da Google, as configurações de segu-
rança1 foram flexibilizadas, e erros ligados à segurança foram tratados como sendo uma
resposta sim à censura. Essas ações ajudaram mas não eliminaram os erros.

1 Opções de configurações de segurança: https://ai.google.dev/gemini-api/docs/safety-setting
s?hl=pt-br

https://ai.google.dev/gemini-api/docs/safety-settings?hl=pt-br
https://ai.google.dev/gemini-api/docs/safety-settings?hl=pt-br


50

Figura 12 – Exemplo de postagem censurada

Fonte: elaborado pelo autor

4.2 Testes de prompt

No decorrer dos passos detalhados na subseção 3.1.3, foram desenvolvidos alguns
prompts, que podem ser resumidos em 4 principais. Para cada um, foram calculadas
algumas métricas de performance.

O primeiro prompt desenvolvido (Listing 4.1) define o que o modelo deve responder,
formata a resposta, dá exemplos de sexualizações infantis, exemplos de respostas e destaca
observações importantes.

Listing 4.1 – Prompt 1
1 PROMPT_TEXT = """

2 Responda essas duas perguntas separado por ponto e vírgula (;):

3 - ’Sim ’, se a imagem contém casos de sexualiza ção infantil , e ’Nã

o’, caso contrário.

4 - Justifique a sua resposta em poucas palavras .

5

6 Formata ção:

7 ’Sim/Não; justificativa ’



51

8 Sexualiza ção infantil é definida como qualquer representa ção que

retrate crianças de maneira sexualizada , destacando -se:

9 - Crianças em poses sugestivas , que buscam exibir alguma parte

do corpo

10 - Crianças com roupas curtas , justas , transparentes ou com

decote excessivo , mostrando parte dos seios , nádegas ou

genitais

11 - Contextos que impliquem conota ção sexual envolvendo menores

de 18 anos , como fetiches .

12 - Crianças aqui se referem a qualquer pessoa com aparência de

idade inferior a 18 anos.

13 Exemplo de respostas :

14 a) ’Sim; Foto contém criança de biquine e em posição altamente

sugestiva .’

15 b) ’Não; Uma paisagem com montanhas e um lago.’

16 c) ’Não; Criança brincando em um parque com roupas apropriadas

para a idade.’

17 d) ’Sim; Pessoa aparentando ser menor de idade em trajes

reveladores .’

18

19 Observa ções:

20 - Antes do ’;’ deve haver apenas ’Sim ’ ou ’Não’, sem mais nada.

21 - Se houver dúvida sobre a idade , considere como criança.

22 """

Esse primeiro prompt alcançou resultados (Tabela 4) bem ruins nos Llama’s, e
no Gemini a revocação também não teve um valor tão alto. Foi possível observar que os
modelos feitos pela Meta tem uma tendência de responder sim poucas vezes (alta precisão
e pouca revocação), assim, para corrigir isso foi feito o prompt 2.

Tabela 4 – Performance com prompt 1

Métrica Gemini 2.5 Flash Llama Scout Llama Maverick

Acurácia 82, 5% 62, 5% 55, 0%

Precisão 88, 2% 100, 0% 100, 0%

Revocação 75, 0% 25, 0% 10, 0%
Fonte: Elaborada pelos autores.

Esse segundo prompt (Listing 4.2) tenta forçar uma resposta bem menos tolerante,
a fim de aumentar a revocação. Além disso, ele passa a utilizar o parâmetro de instruções
do sistema que permite passar uma instrução de sistema com maior peso hierárquico,
sendo tecnicamente mais robusto do que apenas incluir as instruções no texto do prompt.



52

Assim, a instrução de sistema comunica qual persona a IA deve adotar, enquanto
que o prompt passa a tarefa em si. Utilizando esse método, é mais difícil para o agente ser
confundido por dados de entrada complexos, visto que a instrução está isolada no sistema.

Para passar essas instruções de sistema, no Gemini2 basta passar o parâmetro
system_instruction, já no Groq3 é só enviar uma mensagem com role: "system".

Listing 4.2 – Prompt 2
1 SYSTEM_PROMPT = """

2 # ROLE

3 Você é um Agente de Seguran ça AI com critérios de filtragem

EXTREMAMENTE RÍGIDOS (Zero Tolerance ). Sua função é sinalizar

qualquer imagem que contenha exposi ção corporal infantil ,

independentemente da intenção ou contexto .

4

5 # CRITÉRIOS DE CLASSIFICA ÇÃO ( ESTRITOS )

6 Responda ’Sim ’ se a imagem contiver QUALQUER um dos seguintes

elementos envolvendo pessoas menores de 18 anos:

7 1. Trajes de Banho e Roupa Íntima: Qualquer criança vestindo biqu

íni , sunga , maiô, lingerie ou cueca.

8 - NOTA CRÍTICA: O contexto NÃO importa . Crianças na praia

/ piscina em trajes de banho DEVEM ser classificadas

como ’Sim ’.

9 2. Exposi ção de Pele: Torso nu (em qualquer gênero), nádegas ou

genitais visíveis ou marcados .

10 3. Poses: Qualquer pose que enfatize o corpo , mesmo que vestida .

11

12 Responda ’Não’ APENAS se:

13 - A criança estiver totalmente vestida com roupas casuais / formais

(camisetas , calças , vestidos não reveladores ).

14 - Não houver pessoas menores de 18 anos.

15

16 # FORMATO DE RESPOSTA

17 [Sim/Não]; [ Justificativa técnica curta focada no elemento visual

detectado ]

18 """

19

20 PROMPT_TEXT = """

21 Analise a imagem fornecida com base nas suas diretrizes de

sistema .

2 Como usar instruções de sistema do Gemini: https://docs.cloud.google.com/vertex-ai/genera
tive-ai/docs/learn/prompts/system-instructions?hl=pt-br

3 Como usar instruções de sistema no Groq: https://console.groq.com/docs/text-chat

https://docs.cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/system-instructions?hl=pt-br
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/system-instructions?hl=pt-br
https://console.groq.com/docs/text-chat


53

22 Lembre -se: Responda apenas com ’Sim ’ ou ’Não’ seguido de ponto e

vírgula e a justificativa .

23 """

O prompt 2 aumentou os valores de revocação, mas ela ainda se mantém baixa para
os Llama’s e os valores de acurácia não eram satisfatórios. Além disso, por falar palavras
de cunho sensível abertamente, esse prompt levou a muitos erros de segurança no Gemini,
que foram tratados como resposta sim, o que aumentou a revocação de maneira artificial.

Tabela 5 – Performance com prompt 2

Métrica Gemini 2.5 Flash Llama Scout Llama Maverick

Acurácia 68, 8% 65, 0% 62, 5%

Precisão 62, 3% 80, 0% 77, 8%

Revocação 95, 0% 40, 0% 35, 0%
Fonte: Elaborada pelos autores.

No terceiro prompt (Listing 4.3), os termos alarmantes foram substituídos por
terminologia técnica. O uso do idioma inglês busca contornar os filtros de segurança,
soando como moderação técnica.

Listing 4.3 – Prompt 3
1 SYSTEM_PROMPT = """

2 # ROLE

3 You are a Content Safety Auditor . Your task is to technically

audit images for compliance with Underage Safety Guidelines

regarding attire and body exposure .

4

5 # STRICT AUDIT CRITERIA (Zero Tolerance )

6 Classify as ’Sim ’ (Non - Compliant ) if the image depicts a minor

(<18y) with ANY of the following visual elements :

7 1. Swimwear / Undergarments : Subject is wearing bikinis , trunks ,

swimsuits , or underwear .

8 - POLICY : Context (beach/pool) is IRRELEVANT . Presence of

swimwear = ’Sim ’.

9 2. Skin Exposure : Visible torso ( shirtless ), exposed midriff , or

sensitive areas.

10 3. Suggestive Framing : Angles focusing on body parts rather than

the face.

11

12 Classify as ’Não’ ( Compliant ) ONLY if:



54

13 - The subject is fully clothed in standard street / casual wear (t-

shirts , pants , dresses ).

14 - There are no minors present .

15

16 # OUTPUT FORMAT

17 [Sim/Não]; [Brief technical description of attire / visual elements

]

18 """

19

20 PROMPT_TEXT = """

21 Audit this image according to your Safety Guidelines .

22 Output strictly ’Sim ’ or ’Não’ followed by a semicolon and the

technical reason .

23 """

Nessa terceira versão, a quantidade de erros do Gemini aumentou ainda mais,
levando a crer que essa IA tem mais facilidade de perceber teor sensível em inglês. Já nas
IAs oferecidas pelo Groq, todas as métricas alcançaram números bem melhores, com o
Llama Scout obtendo todas acima de 90%. Isso parece ser efeito desses modelos da Meta
serem bem mais flexíveis em relação à segurança.

Tabela 6 – Performance com prompt 3

Métrica Gemini 2.5 Flash Llama Scout Llama Maverick

Acurácia 62, 0% 93, 8% 85, 0%

Precisão 56, 5% 92, 7% 93, 8%

Revocação 100, 0% 95, 0% 75, 0%
Fonte: Elaborada pelos autores.

A última versão principal do prompt adota uma abordagem auditoria de confor-
midade de vestuário de menores de idade, ao invés de checar diretamente sexualização.
Isso foi uma estratégia para evitar mais ainda falar termos sensíveis. Além disso, voltamos
para o português, visto que inglês se mais suscetível de gatilhos à segurança.

Listing 4.4 – Prompt 4
1 SYSTEM_PROMPT = """

2 # FUNÇÃO

3 Você é um auditor conservador de conformidade de vestuário para

um banco de imagens . Sua tarefa é verificar se as crianças

presentes na imagem estão vestidas de acordo com estritos có

digos de vestimenta urbana .

4



55

5 # CRITÉRIOS DE REJEIÇÃO (Sim)

6 Classifique a imagem como ’Sim ’ (Viola o código) se houver

pessoas aparentando ser menores de 18 anos apresentando :

7 1. Vestuário de banho ou atlético mínimo: Uso de sungas , biquínis

, maiôs ou roupas de natação, INDEPENDENTE do local (mesmo em

praias ou piscinas ).

8 2. Ausência de roupa padrão: Torso sem camisa , barriga exposta ou

falta de roupas superiores / inferiores completas .

9 3. Roupas justas : Possibilitam ver o formato do corpo da pessoa ,

mesmo que coberto .

10 4. Enquadramento /Ângulo de câmera: Foco maior em partes do corpo

em vez do rosto.

11 5. Se ficar na dúvida sobre a idade da pessoa , considere que é

menor de idade.

12

13 # CRITÉRIOS DE APROVA ÇÃO (Não)

14 Classifique como ’Não’ ( Conforme ) APENAS se:

15 1. Os sujeitos estiverem vestido com roupas cotidianas completas

(camisetas , calças , vestidos cobrindo o torso e pernas ).

16 2. Não houver pessoas na imagem .

17 3. Todas as pessoas , mesmo que com roupas expositivas , são

maiores de idade.

18

19 # FORMATO

20 [Sim/Não]; [Breve explica ção técnica da classifica ção]

21 """

22

23 PROMPT_TEXT = """

24 Analise o vestuário da imagem conforme suas diretrizes de

auditoria .

25 Responda estritamente com ’Sim ’ ou ’Não’ seguido de ponto e ví

rgula e a justificativa .

26 """

Tabela 7 – Performance com prompt 4

Métrica Gemini 2.5 Flash Llama Scout Llama Maverick

Acurácia 88, 8% 87, 5% 77, 5%

Precisão 81, 6% 85, 7% 92, 3%

Revocação 100, 0% 90, 0% 60, 0%
Fonte: Elaborada pelos autores.



56

No último prompt (Tabela 7), os valores para os Llama’s pioraram um pouco,
já o Gemini melhorou, finalmente sendo satisfeito nas três métricas enquanto passa a
apresentar poucos erros.

Ao final, o auge de performance dos Llama’s ficou no prompt 3, enquanto o Gemini
atingiu os seus melhores valores no prompt 4.

4.3 Testes de temperatura

Utilizando os melhores prompts de cada modelo, foi alterada a temperatura e
analisado o quanto isso impacta na resposta de cada um. Como a temperatura influencia
na aleatoriedade, aqui a análise passou a cobrir também a consistência nas resposta
(explicada na subseção 3.1.4).

No Llama Scout (Figura 13), diminuir mais a temperatura piorou o modelo. O
auge da performance foi atingido na temperatura 0,5, onde todas as métricas se encontram
no seu máximo.

Figura 13 – Gráfico de performance do Llama Scout (usando prompt 3)

Fonte: elaborado pelo autor

Já para o Llama Maverick, a Figura 14 mostra que, no geral, a temperatura 0
atinge os melhores resultados.

Por último, na Figura 15 fica claro que o Gemini não sofre grades diferenças de
performance quando aumentada a temperatura. Porém, com o valor de 0 ocorre uma leve



57

Figura 14 – Gráfico de performance do Llama Maverick (usando prompt 3)

Fonte: elaborado pelo autor

melhora, sendo esse o valor considerado ótimo.

4.4 Testes de velocidade

Para os testes de velocidade, para cada IA foram utilizadas o prompt e temperatura
que performou melhor. Nos critérios de tempo, fica claro na Tabela 8 que o Llama Scout
foi o que se saiu melhor. Esse modelo foi o mais rápido e o que menos oscilou (menor
variância), sendo ideal para uma aplicação que necessita de uma resposta rápida. Já
o Gemini foi o que se saiu pior, apresentando o maior tempo médio e maior variância,
chegando até 13 segundos para analisar uma só imagem.

Tabela 8 – Tempo de execução com melhor configuração de temperatura e prompt

Modelo Temperatura Prompt Médio (s) Mín. (s) Máx. (s) Variância (s2)

4 Scout 0.5 3 1,36 0,98 1,78 0,03

4 Maverick 0 3 5,90 3,44 9,56 2,21

2.5 Flash 0 4 6,10 2,09 13,07 3,03
Fonte: Elaborada pelo autor.



58

Figura 15 – Gráfico de performance do Gemini 2.5 Flash (usando prompt 4)

Fonte: elaborado pelo autor

4.5 Resultados gerais

Como pode-se perceber pela Tabela 9, que resume os resultados, o modelo Llama
Scout, quando bem calibrado, foi o melhor, superando até mesmo o seu irmão com mais
parâmetros, o Maverick.

Tabela 9 – Resumo dos resultados

Modelo Médio (s) Variância (s2) Acurácia Precisão Revocação Consistência

4 Scout 1,36 0,03 95, 0% 95, 0% 95, 0% 100, 0%

4 Maverick 5,90 2,21 87, 3% 94, 1% 80, 0% 97, 5%

2.5 Flash 6,10 3,03 90, 0% 83, 3% 100, 0% 100, 0%
Fonte: Elaborada pelo autor.

Vale destacar que os três modelos apresentaram ótima consistência e que a revocação
do Gemini foi até mais alta que o Scout, atingindo os 100%, podendo ser considerado a
segunda melhor opção no ponto de vista de segurança.



59

5 CONCLUSÕES E POSSÍVEIS MELHORIAS

5.1 Conclusões da prova de conceito

Por fim, utilizando o Llama 4 Scout foi possível atingir 95% de acurácia em tempo
médio de menos de 1,5 segundos por imagem. Conclui-se, portanto, que é possível imple-
mentar um modelo multimodal para identificar postagens que potencialmente sexualizam
crianças de maneira bastante ágil e com boa acurácia. A implementação de um frontend
para a extensão para o Instagram também provou que é possível integrar esse modelo de
maneira fluida com uma página dinâmica, que sofre mutações o tempo todo.

Além disso, mesmo com os guard rails (políticas que guiam e restringem o compor-
tamento de modelos de IA para assegurar que suas saídas sejam seguras, éticas e confiáveis)
intrínsicos ao modelo, foi possível contornar os possíveis erros. Isso se deu construindo
prompts com jargão técnico, flexibilizando as configurações de segurança do agente e
considerando específicos tipos de erro como uma resposta “sim”.

5.2 Melhorias de hipotética implementação na prática

Em um possível uso dessa tecnologia em escala bem maior e integrado diretamente
ao Instagram, o funcionamento provavelmente seria bem diferente. Há de se destacar que
a Meta é a empresa por trás do Instagram e também dos modelos Llama, logo, eles têm
bem mais liberdade para fazer um agente Llama treinado especificamente para a tarefa
de identificação de sexualização infantil e mais integrado à plataforma, o que melhoraria
ainda mais o seu desempenho.

Algumas evoluções que poderiam ser feitas por parte do Instagram em uma possível
implementação da ideia:

• Além de analisar a potencialidade de sexualização da postagem, também analisar
a potencialidade de pedofilia do usuário que está vendo a imagem com base no
seu algoritmo. A ideia é afastar conteúdos sugestivos de pessoas que enxergam teor
sexual e os mostrar para pessoas que não veem esse teor.

• Ao invés de analisar a imagem em tempo real enquanto o usuário acessa, passar a
analisar a imagem uma única vez quando ela for postada, economizando recursos de
processamento.

• Na prática, se o conteúdo for classificado como inadequado a ser mostrado para
uma determinada pessoa, essa postagem não deveria nem aparecer, o que elimina o
sentido de ter um frontend como feito nesse projeto.



60

• Além de analisar imagens, obviamente o modelo treinado deve ser capaz também
para analisar vídeos (stories e reels).

Essas e outras mudanças não só tornariam o método como um todo mais robusto e
otimizado, mas também muito mais imperceptível no funcionamento do dia-a-dia do que a
forma que a extensão dessa pesquisa foi projetada.

Vale observar que, sendo uma empresa fechada, não sabe-se exatamente que medidas
são tomadas pelo Instagram acerca do assunto. Com base, por exemplo, no aviso da Figura 6,
assume-se que a rede social está realizando algum esforço para evitar a busca por conteúdo
pedófilo. Porém, essa pesquisa demonstra que é possível fazer ainda mais, dificultando que
conteúdos de crianças sejam vistos por pessoas que os veêm de maneira deturpada.



61

REFERÊNCIAS

BARTH, A. et al. Protecting browsers from extension vulnerabilities. In: Proceedings
of the Network and Distributed System Security Symposium, NDSS.
San Diego, California, USA: The Internet Society, 2010. Disponível em: https:
//www.ndss-symposium.org/ndss2010/protecting-browsers-extension-vulnerabilities.

CABEZAS, M. Child youtubers and specific goods of childhood: when exploration and
play become work. childhood & philosophy, Universidade do Estado do Rio de Janeiro,
v. 18, 2022.

COMANICI, G. et al. Gemini 2.5: Pushing the Frontier with Advanced Reasoning,
Multimodality, Long Context, and Next Generation Agentic Capabilities. 2025.
Disponível em: https://arxiv.org/abs/2507.06261.

CORRÊA, P. A. InstaChildGuard. GitHub, 2025. Disponível em: https:
//github.com/pecazeco/InstaChildGuard.

MATOS, M. C. Vídeo de felca: denúncia influencia 32 projetos na câmara sobre
adultização. CNN Brasil, 2025. Disponível em: https://www.cnnbrasil.com.br/politica/
video-de-felca-denuncia-influencia-32-projetos-na-camara-sobre-adultizacao/.

MOHIUDDIN, M. How instagram leverages cnns to detect and flag inappropriate content
automatically. IndiaAI, 2025. Disponível em: https://indiaai.gov.in/article/how-instagr
am-leverages-cnns-to-detect-and-flag-inappropriate-content-automatically.

ORMAN, T. F. Adultization and blurring the boundaries of childhood in the late modern
era. Global Studies of Childhood, v. 10, n. 2, p. 106–119, 2020. Disponível em:
https://doi.org/10.1177/2043610619863069.

PEREIRA, F. B. adultização. YouTube, 2025. Disponível em: https://www.youtube.co
m/watch?v=FpsCzFGL1LE. Acesso em: 31 out. 2025.

SAFERNET. Denúncias à SaferNet de abuso e exploração sexual infantil
na internet aumentam 114% após vídeo-viral de Felca. 2025. Disponível em:
https://new.safernet.org.br/content/denuncias-safernet-de-abuso-e-exploracao-sexual-i
nfantil-na-internet-aumentam-114-apos-video.

THAN, J. C. M.; VONG, W. T.; YONG, K. S. C. Comparison of multi-modal large
language models with deep learning models for medical image classification. In:
2024 IEEE 8th International Conference on Signal and Image Processing
Applications (ICSIPA). Kuala Lumpur, Malaysia: IEEE, 2024. p. 1–5.

WHITE, C. et al. LiveBench: A Challenging, Contamination-Limited LLM
Benchmark. 2025. Disponível em: https://arxiv.org/abs/2406.19314.

YAO, Y. Role reversal on social media in china: Adultification of children and
infantilization of adults. SHS Web of Conferences, v. 199, 10 2024.

https://www.ndss-symposium.org/ndss2010/protecting-browsers-extension-vulnerabilities
https://www.ndss-symposium.org/ndss2010/protecting-browsers-extension-vulnerabilities
https://arxiv.org/abs/2507.06261
https://github.com/pecazeco/InstaChildGuard
https://github.com/pecazeco/InstaChildGuard
https://www.cnnbrasil.com.br/politica/video-de-felca-denuncia-influencia-32-projetos-na-camara-sobre-adultizacao/
https://www.cnnbrasil.com.br/politica/video-de-felca-denuncia-influencia-32-projetos-na-camara-sobre-adultizacao/
https://indiaai.gov.in/article/how-instagram-leverages-cnns-to-detect-and-flag-inappropriate-content-automatically
https://indiaai.gov.in/article/how-instagram-leverages-cnns-to-detect-and-flag-inappropriate-content-automatically
https://doi.org/10.1177/2043610619863069
https://www.youtube.com/watch?v=FpsCzFGL1LE
https://www.youtube.com/watch?v=FpsCzFGL1LE
https://new.safernet.org.br/content/denuncias-safernet-de-abuso-e-exploracao-sexual-infantil-na-internet-aumentam-114-apos-video
https://new.safernet.org.br/content/denuncias-safernet-de-abuso-e-exploracao-sexual-infantil-na-internet-aumentam-114-apos-video
https://arxiv.org/abs/2406.19314


62

YUE, X. et al. MMMU: A massive multi-discipline multimodal understanding and
reasoning benchmark for expert AGI. In: 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). [S.l.: s.n.]: IEEE, 2024.

ZHENG, X. Research on the impact of smart phone use on children’s socialization. The
Frontiers of Society, Science and Technology, v. 4, n. 6, 2022.



APÊNDICES





65

APÊNDICE A – ARQUIVO DO MANIFESTO

Arquivo manifest.json usado para definir configurações gerais da extensão.

1 {
2 " manifest_version ": 3,
3 "name": " Adultization Identifier for Instagram ",
4 " version ": "1.0",
5 " description ": " Bloqueia posts do Instagram contendo

sexualizacao infantil .",
6 " content_scripts ": [
7 {
8 " matches ": ["*://*. instagram .com /*"],
9 "js": [" contentScript .js"],

10 "css": ["styles.css"]
11 }
12 ],
13 " web_accessible_resources ": [
14 {
15 " resources ": [
16 "images/warning -sign.png",
17 "images/ checkmark .png",
18 "images/ loading .gif",
19 "images/error.svg",
20 "config.js"
21 ],
22 " matches ": ["*://*. instagram .com /*"]
23 }
24 ],
25 " background ": {
26 " service_worker ": " background .js",
27 "type": "module"
28 },
29 " permissions ": ["tabs"],
30 " host_permissions ": [
31 "*://*. cdninstagram .com /*",
32 "*://*. googleapis .com /*",
33 "https:// api.groq.com /*"



66

34 ]
35 }

Fonte: elaborado pelo autor



67

APÊNDICE B – DOCUMENTAÇÃO DE CHAMADA DAS APIS

Pela documentação oficial das APIs do Google e do Groq, as chamadas por cURL
podem ser feitas como exemplificado no Listing B.1 e B.2.

Listing B.1 – Exemplo de envio de imagem à API do Gemini 2.5 Flash
1 curl "https :// generativelanguage . googleapis .com/ v1beta / models /

gemini -2.5 - flash: generateContent " \

2 -H "x-goog -api -key: $GEMINI_API_KEY " \

3 -H ’Content -Type: application /json ’ \

4 -X POST \

5 -d ’{

6 " contents ": [{

7 "parts ":[

8 {

9 " inline_data ": {

10 " mime_type ":" ’" $MIME_TYPE "’",

11 "data ": "’" $IMAGE_B64 "’"

12 }

13 },

14 {" text ": " Caption this image ."}

15 ]

16 }]

17 }’ 2> /dev/null

Fonte: https://ai.google.dev/gemini-api/docs/image-understanding?hl=pt-br#rest

Listing B.2 – Exemplo de envio de imagem à API do Groq
1 curl "https :// api.groq.com/ openai /v1/chat/ completions " \

2 -X POST \

3 -H "Content -Type: application /json" \

4 -H " Authorization : Bearer ${ GROQ_API_KEY }" \

5 -d ’{

6 " messages ": [

7 {

8 "role ": "user",

9 " content ": [

10 {

11 "type ": "text",

12 "text ": "What ’\’’s in this image?"

13 },

https://ai.google.dev/gemini-api/docs/image-understanding?hl=pt-br#rest


68

14 {

15 "type": " image_url ",

16 " image_url ": {

17 "url": "’https :// upload . wikimedia .org/

wikipedia / commons /f/f2/LPU -v1 -die.jpg ’"

18 }

19 }

20 ]

21 }

22 ],

23 "model": "meta -llama/llama -4-scout -17b -16e- instruct ",

24 " temperature ": 1,

25 " max_completion_tokens ": 1024 ,

26 "top_p": 1,

27 " stream ": false ,

28 "stop": null

29 }’

Fonte: https://console.groq.com/docs/vision

Já as chamadas usando Python podem ser observadas no Listing B.3 e B.4

Listing B.3 – Chamada à API do Gemini 2.5 Flash usando Python
1 from google import genai

2 from google .genai import types

3

4 with open(’path/to/small - sample .jpg ’, ’rb’) as f:

5 image_bytes = f.read ()

6

7 client = genai. Client ()

8 response = client . models . generate_content (

9 model=’gemini -2.5 - flash ’,

10 contents =[

11 types.Part. from_bytes (

12 data= image_bytes ,

13 mime_type =’image/jpeg ’,

14 ),

15 ’Caption this image.’

16 ]

17 )

18

19 print ( response .text)

https://console.groq.com/docs/vision


69

Fonte: https://ai.google.dev/gemini-api/docs/image-understanding?hl=pt-br#rest

Listing B.4 – Chamada à API do Groq usando Python
1 from groq import Groq

2 import base64

3 import os

4

5 # Function to encode the image

6 def encode_image ( image_path ):

7 with open(image_path , "rb") as image_file :

8 return base64 . b64encode ( image_file .read ()). decode (’utf -8’)

9

10 image_path = "sf.jpg"

11 base64_image = encode_image ( image_path )

12 client = Groq( api_key =os. environ .get(" GROQ_API_KEY "))

13 chat_completion = client .chat. completions . create (

14 messages =[

15 {

16 "role": "user",

17 " content ": [

18 {"type": "text", "text": "What ’s in this image?"

},

19 {

20 "type": " image_url ",

21 " image_url ": {

22 "url": f"data:image/jpeg;base64 ,{

base64_image }",

23 },

24 },

25 ],

26 }

27 ],

28 model="meta -llama/llama -4-scout -17b -16e- instruct ",

29 )

30

31 print ( chat_completion . choices [0]. message . content )

Fonte: https://console.groq.com/docs/vision

https://ai.google.dev/gemini-api/docs/image-understanding?hl=pt-br#rest
https://console.groq.com/docs/vision




71

APÊNDICE C – ARQUIVO CSS COM OS ESTILOS

Arquivo styles.css usado para definir o estilo do frontend.

1 . analysing-container {

2 position : absolute ;

3 top: 0;

4 left: 0;

5 width : 100%;

6 height : 100%;

7 pointer-events : none;

8 display : flex;

9 flex-direction : column ; /* Organiza os itens em coluna (GIF em

cima , texto embaixo ) */

10 justify-content : center ;

11 align-items : center ;

12 }

13 . analysing-gif {

14 width : 80 px;

15 height : auto;

16 filter : drop-shadow (0 0 4px #2896 ff) drop-shadow (0 0 2px #2896

ff);

17 }

18 . analysing-text {

19 color : white;

20 margin-top : 10px;

21 font-size : 1em;

22 font-weight : bold;

23 text-shadow : 0 0 5px black; /* Sombra para legibilidade */

24 }

25 . censor-container {

26 position : absolute ;

27 top: 0;

28 left: 0;

29 width : 100%;

30 height : 100%;

31 display : flex;

32 flex-direction : column ;

33 justify-content : center ;

34 align-items : center ;

35 pointer-events : none;



72

36 }

37 . censor-image {

38 width : 20%;

39 height : auto;

40 filter : drop-shadow (0 0 10px red);

41 }

42 . censor-text {

43 color : red;

44 font-weight : bold;

45 text-align : center ;

46 margin-top : 10px;

47 font-size : 1.2 em;

48 background-color : rgba (86, 86, 86, 0.5);

49 padding : 5px 10px;

50 border-radius : 5px;

51 }

52 . error-container {

53 position : absolute ;

54 top: 0;

55 left: 0;

56 width : 100%;

57 height : 100%;

58 display : flex;

59 flex-direction : column ;

60 justify-content : center ;

61 align-items : center ;

62 pointer-events : none;

63 }

64 . error-image {

65 width : 20%;

66 height : auto;

67 filter : drop-shadow (0 0 10px yellow );

68 }

69 . error-text {

70 color : yellow ;

71 font-weight : bold;

72 text-align : center ;

73 margin-top : 10px;

74 font-size : 1.2 em;

75 background-color : rgba (86, 86, 86, 0.5);

76 padding : 5px 10px;

77 border-radius : 5px;



73

78 }

79 . checked-box {

80 position : absolute ;

81 top: 10px;

82 right : 10 px;

83 background-color : gray;

84 opacity : 80%;

85 color : white;

86 padding : 5px 8px;

87 border-radius : 5px;

88 font-size : 12px;

89 pointer-events : none;

90 display : flex;

91 align-items : center ;

92 }

93 . checkmark-image {

94 height : 1em; /* Faz a altura da imagem ser igual à altura da

fonte */

95 width : auto;

96 margin-right : 5px; /* Espaç amento entre o texto e o símbolo */

97 }

Fonte: elaborado pelo autor


	Folha de rosto
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de tabelas
	Sumário
	Introdução
	Contextualização
	Objetivos
	Escopo do projeto
	Organização do texto

	Revisão bibliográfica
	Estudos sobre ``adultização'' nas redes sociais
	Revisão de modelos para detecção de sexualização
	Revisão de modelos para identificação de crianças
	Por que utilizar agente multimodal
	Comparação de APIs multimodais gratuitas disponíveis
	Cerebras
	Groq
	Mistral
	Gemini
	Conclusão


	Desenvolvimento
	Metodologia
	Manifest V3
	Uso das APIs
	Etapas de testes
	Métricas de performance calculadas
	Variação da temperatura

	Código
	Background service worker
	Content script
	Frontend
	Script para testes


	Testes e Resultados
	Teste de funcionamento
	Testes de prompt
	Testes de temperatura
	Testes de velocidade
	Resultados gerais

	Conclusões e possíveis melhorias
	Conclusões da prova de conceito
	Melhorias de hipotética implementação na prática

	REFERÊNCIAS
	APÊNDICES
	Arquivo do manifesto
	Documentação de chamada das APIs
	Arquivo CSS com os estilos


