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RESUMO

DE MATTOS, M. M. Modelo de quantificagdo de carbono do solo por espectroscopia
de infravermelho proximo. Trabalho de Graduagéo — Escola de Engenharia de Sao

Carlos, Universidade de Sao Paulo, Sdo Carlos, 2011.

A presente monografia apresenta o desenvolvimento de um modelo de
quantificacdo de carbono dos solos por espectroscopia de infravermelho préximo,
utilizando ferramentas estatisticas e matematicas de calibracdo multivariada dos
dados. As amostras de solo pertencem a quatro diferentes localidades submetidas a
tratamentos e culturas distintas, totalizando em 361. Para tanto foram obtidos
espectros, com 64 varreduras, de 10.000 a 4.000 cm™, com resolucéo espectral de 16
cm’ ea calibracdo do modelo foi realizada adicionando estes espectros e os teores
de carbono real, obtidos por analise elementar, ajustado por regressdo PLS “Partial
Least Squares” e analisado por PCA “Principal Component Analysis”. A modelagao
retornou uma correlacédo de 99,74% na predi¢gao de carbono, com uma média de erro
de 5,88%. A partir na analise das componentes principais foi possivel observar
tendéncias e agrupamentos a partir das caracteristicas e origem das amostras.
Portanto calibragdo multivariada do grupo amostral estudado, analisando a
concentracdo de carbono, retornou boas respostas de correlagcdo a partir de dados

inseridos da espectroscopia de infravermelho proximo (NIRS).



ABSTRACT

DE MATTOS, M. M. Quantification model of soil carbon by near infrared spectroscopy.
Undergraduate Work — Escola de Engenharia de Sdo Carlos, Universidade de S&o
Paulo, Sao Carlos, 2011.

This paper presents the development of a model for carbon quantification from
soils by near infrared spectroscopy, using mathematical and statistical tools for
multivariate calibration data. Soil samples belong to four different locations subjected
to different treatment and cultures, totaling 361. For both spectra were obtained with
64 scans, from 10,000 to 4000 cm-1, with spectral resolution of 16 cm-1 and the
model calibration was performed by adding this spectra and the actual carbon content,
obtained by elemental analysis, adjusted for PLS regression "Partial Least Squares"
and analyzed by PCA "Principal Component Analysis." The model returned a
correlation of 99.74% in carbon prediction, with a mean error of 5.88%. From the
analysis of main components was possible to observe trends and groupings based on
the characteristics and origin of the samples. Therefore multivariate calibration of the
sample investigated, by analyzing the concentration of carbon, returned good answers

correlation of data entered from the near-infrared spectroscopy (NIRS).
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1. Introducgao

A crescente preocupagdo com as alteragbes climaticas no planeta tem
fomentado diversos estudos sobre o ciclo do carbono, que presente na forma de
monoxido de carbono (CO;) e metano (CH4) € considerados uns dos responsaveis
pelo aquecimento global. A partir da implementagao do protocolo de Kyoto (KYOTO
PROTOCOL, 1997) houve um estimulo para a construgao de inventarios nacionais de
carbono no solo e motivagdo para implementagdo de projetos que promovam o
acumulo de carbono em ecossistemas terrestres (MACHADO, 2002).

A biosfera terrestre € um importante componente de reserva de carbono,
porém a quantificagcdo de sequestro em ecossistemas terrestres € parcialmente
restrita pela limitacdo do acesso ao conhecimento da dindmica deste estoque de
carbono em solos (MCCARTY et al, 2002). Portanto o entendimento do fluxo de
carbono é essencial para descrever este potencial de acumulo de carbono, em
distintos solos e culturas agricolas. Diante disso, o constante monitoramento destes
diversos ecossistemas torna-se entdo o ponto de partida para a caracterizagcado e
quantificacdo de carbono nos solos e consequentemente a ampliacdo dos inventarios
terrestres de carbono (WATSON et al, 2000).

A caracterizagdo dos componentes do solo € um processo complexo devido a
grande variedade de suas propriedades fisicas e quimicas, dependem de intensivos
meétodos, consomem tempo e s&o caros. Assim, o desenvolvimento de procedimentos
alternativos de baixo custo econbémico e ambiental, combinados com precisdo e
acuracia, sao altamente necessarios. (MACHADO, 2003).

A partir desta necessidade, foram surgindo novas tecnologias, que aliadas ao
avangco da agricultura de precisdo abriram um vasto campo de analise de
substancias, dentre elas pode ser destacada a espectroscopia de refletancia difusa,
como a espectroscopia de infravermelho proximo (NIRS). Durante as ultimas décadas
esta técnica se tornou um dos métodos dominantes para a analise de produtos
agricolas como forragens e graos, nas quais um grande numero de amostras deve
ser analisado (MILTTELMANN et al., 2005). Além disso, por ser um meétodo de
analise nao destrutiva, simples, rapido e com baixo custo, o NIRS tem mostrado ser
uma ferramenta conveniente de analise de diversos constituintes do solo, como o

carbono.



Conjuntamente com este tipo de ferramenta, a analise de dados por técnicas
matematicas e estatisticas tém crescido com o avanco dos hardwares e softwares,
atingindo um ponto bastante sofisticado no interfaceamento de instrumentos aos
computadores, produzindo uma enorme quantidade de informagéo, sendo que uma
das caracteristicas mais interessantes dos modernos instrumentos é o numero de
variaveis que podem ser medidas em uma unica amostra (FERREIRA et al., 1999).
Assim, esta area de estudos deu origem a Quimiometria, que analisa os dados
quimicos de natureza multivariada, podendo retornar respostas de previsdo e
interpretacdo de tendéncias dos dados e também podendo superar problemas
causados por distor¢coes. Assim a analise de caracteristicas do solo e quantificagao
de carbono pode ser facilmente estudada com a unido da espectroscopia e de
modelos estatisticos e matematicos.

Entretanto, a maioria dos estudos com NIRS, relacionados com a quantificagcao
de carbono em solos s&o limitados, uma vez que foram estudadas pequenas
quantidades de amostras e também pela pequena diversidade de tipos de solos.
Assim, é necessaria a ampliagcado desta area, com a criagdo de um maior banco de
dados amostral englobando diversos tipos de solos com a utilizagdo do apoio de

analises multivariadas por meio de softwares.

2. Objetivo

O objetivo deste estudo é desenvolver um modelo robusto de quantificacdo de
carbono nos solos utilizando a analise por espectroscopia de infravermelho proximo e
tratamento de dados por calibragdo multivariada, a partir de grupos amostrais de solo

com diferentes caracteristicas fisico-quimicas, submetidos a distintos usos.

10



3. Revisao da Literatura

3.1. O Carbono do solo e as mudancgas climaticas

Os quatro principais compartimentos de carbono na Terra sdo: oceanos,
atmosfera, formagdes geoldgicas contendo carbono fossil € mineral e ecossistemas
terrestres (biota + solo) (MACHADO, 2005). Na Figura 1 observam-se os diferentes
compartimentos de carbono na Terra com seus estoques e respectivos fluxos estao

distribuidos conforme a figura 1:
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Figura 1: Ciclo global do carbono com estoques (em Pg C = 1015 g C) nos diferentes compartimentos
da Terra e fluxos de carbono (em Pg C ano-1) (Adaptado de LAL, 1999).

Na Figura 1 constata-se que o maior compartimento de carbono na Terra é
aquele presente no oceano (38000 Pg C), seguido do compartimento presente nas
formacgdes geoldgicas (5000 Pg C). O carbono das formagdes geoldgicas consiste de
4000 Pg C presentes no carvao, 500 Pg C no petroleo e 500 Pg C no gas natural. O
compartimento de carbono do solo (2500 Pg C) é o maior nos ecossistemas terrestres
(aproximadamente 4 vezes o compartimento de C da vegetacdo e 3,3 vezes o
carbono da atmosfera) e é constituido pelo carbono organico (1500 Pg C) e mineral
(1000 Pg C). O carbono organico representa o equilibrio entre o carbono adicionado

ao solo pela vegetacédo e o perdido para as aguas profundas e, finalmente, para os
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oceanos via lixiviagdo como carbono organico dissolvido (0,4 Pg C) ou para a
atmosfera via atividade microbiana como diéxido de carbono em solos aerados ou
metano em solos saturados com agua (LAL, 1999). Entretanto, pouco se sabe sobre
valores precisos de perdas de carbono do solo para a atmosfera.

O ciclo do carbono (C) natural funciona da seguinte forma: o CO, entra na
atmosfera a partir da respiragdo dos animais e vegetais, da decomposigao e queima
das substancias organicas e da atividade dos oceanos. A seguir, volta ao solo através
da fotossintese das plantas terrestres. O C na Terra esta essencialmente na forma de
compostos organicos e carbonatos ou sob a forma de gas (CO;) na atmosfera. O
ciclo do C consiste na transferéncia deste elemento, por meio de queima, respiragao,
reagdes quimicas, para a atmosfera ou para o mar e a sua reintegragao na matéria
organica (MO) (GAUDARD, 2007).

Alguns sistemas naturais constituem grandes reservatérios de C (como o
oceano), a dinamica do seu ciclo €, sobretudo, controlada pelos sistemas que tém
capacidade de troca-lo ativamente com a atmosfera, como € o caso da vegetacéao e
do solo. Por outro lado, a fotossintese que ocorre nas plantas terrestres é
responsavel pela retencdo de C atmosférico no material vegetal e, eventualmente, na
MO no solo (PACHECO; HELENE, 1990).

O interesse em estudar o ciclo do carbono e o impacto do diéxido de carbono
(CO2) e do metano (CH4) antropogénicos no regime climatico, especialmente na
temperatura, ja havia sido iniciado no século passado. Durante os anos 80 e
principalmente desde a primeira conferéncia do Comité Assessor Cientifico do
Programa Internacional Geosfera-Biosfera (IGBP), realizada em Estocolmo em 1988,
modelos de circulagdo global e varios trabalhos locais e regionais surgiram com
énfase no efeito estufa de gases tragos como CO,, CH4s e N2,Os. Naquela época, ja
havia demonstragédo sobre as consequéncias do incremento do CO, na atmosfera no
aumento em cerca de 4 °C na temperatura e na elevacdo no nivel do mar
(SCHARPENSEEL, 1997). Apesar de no final dos anos 90 ainda ter sido controversa
a mudanca climatica causada por gases tracos, particularmente pelo CO,, o terceiro
relatorio do Painel Intergovernamental sobre Mudanga Climatica (IPCC, 2001), apés
rigorosa avaliagdo da qualidade de estudos recentes sobre o tema, destaca que as
mudanc¢as no clima ocorrem como resultado tanto da variabilidade interna dentro do

sistema climatico como também de fatores externos naturais e antropogénicos.
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A taxa de alteragédo da concentragdo de CO; do periodo Holoceno (ha 10.000
anos) foi duas vezes menor que o aumento antropogénico de CO, desde a Revolugéo
Industrial, iniciada em 1760 na Inglaterra, até os dias atuais (INDERMUHLE et al.,
1999). O uso crescente de combustiveis fésseis e as mudangas em larga escala do
uso das terras resultaram no aumento das concentragdes de gases de efeito estufa
na atmosfera, afetando o clima global (BAEDE, et al., 2001).

O Protocolo de Kyoto, estabelecido em dezembro de 1997, durante a Terceira
Sessao da Conferéncia das Partes (COP 3) da Conveng¢ao Quadro da ONU para a
Mudancga Climatica (UNFCCC), definiu metas de reducdo nas emissdes de gases de
efeito estufa para a atmosfera. O seu objetivo principal é refrear a velocidade da
contribuicdo humana em vista das crescentes concentragdes atmosféricas de CO,. e
o Protocolo reconhece, no seu artigo 3.4, os solos agricolas como sumidouros de
gases do efeito estufa. A UNFCCC, por meio do painel intergovernamental de
mudangcas climaticas (IPCC), determinou diretrizes e produziu uma lista de atividades
que podem lograr a mitigacao de gases do efeito estufa, entre as quais o cultivo de
solos. O IPCC também indica que o maior potencial de sequestro de carbono por
meio de técnicas de manejo ocorre nos pastos, isto abre oportunidade de introdugao
de melhores técnicas de manejo em areas degradadas visando elevar o aporte de
carbono no solo. Na tabela 1 apresenta a quantificagcdo de estoques de carbono em

diferentes tipos de vegetacéo:
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Tabela 1: Estoque global de carbono na vegetacao e no solo (profundidade de 100 cm)
(Adaptado de WATSON et al, 2000 e CANZIANI et al, 1998)

Bioma Area  Estoques de Carbono (Gt de C)
(10° km?) Vegetacio Solos Total
Floresta Tropical 17,6 212 216 428
Floresta Temperada 104 59 100 159
Floresta Boreal 13,7 88 471 559
Savanas Tropicais 22.5 66 264 330
Campos Temperados 12,5 9 295 304
Desertos e semidesertos 45,5 8 191 199
Tundra 9.5 6 121 127
Pantanos 3.5 15 225 240
Terras agricolas 16,0 3 128 131
TOTAL 151,2 466 2011 2477

O estoque de C de um solo sob vegetagdo natural representa o balanco
dinamico entre a adicdo de material vegetal morto e a perda pela decomposi¢ao ou
mineralizagdo. A qualidade do C da vegetagdo depende muito do clima
(principalmente temperatura do ar e chuvas), do tipo de vegetacéo e da fertilidade do
solo (solos férteis resultam em plantas maiores que contém mais C a ser depositado
no solo).

Os processos de transformacao do C sao fortemente influenciados pelo clima,
tipo e qualidade da MO e suas associagdes quimicas e fisico-quimicas com os
componentes minerais do solo (MACHADO, 2005). Em solos sob vegetacao natural,
a preservagao da MO tende a ser maxima, pois o revolvimento do solo € minimo,
sendo o aporte de C nas florestas mais elevado do que em areas cultivadas. Em
areas cultivadas, os teores de MO, via de regra, diminuem, ja que as fragdes
organicas s&o mais expostas ao ataque de microrganismos, em fungdo do maior
revolvimento e desestruturacdo do solo. Os trés principais processos responsaveis
pelo sequestro de C nos solos sao a humificagdo, agregacao e sedimentacao, e os
processos responsaveis pelas perdas de C no solo sdo: a erosdo, decomposicao
volatilizagédo e lixiviagdo. Um dos fatores que esta sendo enfatizados como o mais

importante nos processos de sequestro do C no solo é a agregacgéo do solo realizada
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pela agdo de fungos e substancias organicas proveniente das raizes, outro fator
observado no Brasil foi a adogdo do plantio direto, pois favoreceu a agregagéo do
solo (KIEHL, 1979).

A possibilidade de se utilizar praticas agricolas conservacionistas como o
sistema plantio direto para mitigar o aumento de CO, na atmosfera pelo sequestro de
carbono pelo solo obteve consenso internacional. A idéia contida no consenso foi que
promovendo a adogao de praticas agricolas com conservagao do solo seria possivel
nao apenas aumentar a produtividade agricola como também transformar os solos
agricolas em drenos ou sumidouros de CO, atmosférico. O sistema plantio direto
(SPD) é um exemplo de uso da terra para a agricultura nas regides tropicais umidas e
subtropicais que propicia seguranga alimentar com baixo impacto ambiental,
principalmente quanto a erosdo (perda de solo) e favorecendo o sequestro de
carbono no solo (MACHADO, 2004). Sequestro de carbono no solo significa
transformar o carbono presente na atmosfera (na forma de CO;) em carbono

estocado no solo, compondo a matéria organica do solo.

3.2. Caracterizagao e quantificagcao do Carbono do Solo

Para o entendimento completo da dindmica e sequestro do carbono nos solos
€ necessaria sua eficiente caracterizacao e quantificacdo, a avaliagao dos diferentes
compartimentos de carbono no solo e suas dinamicas sao imprescindiveis para a
identificacdo de usos e manejos do solo que promovam seu aporte ao solo. Hoje
estas analises sao realizadas por metodologias analiticas convencionais.

No Brasil, o procedimento analitico mais utilizado para determinagcdo de
carbono nos solos é baseado na oxidagdo da matéria organica a CO, por ions
dicromatos, em meio fortemente acido. E também denominado de determinag&o por
via umida, determinagédo por dicromato ou determinagdo de carbono Walkley-Black.
Outra metodologia utilizada é a combustdo do carbono, conhecido como método da
mufla (SEGNINI et al., 2008).

Porém estes métodos estado sujeitos a problemas na acuracia da quantificagéo,
demandando mais de uma determinacdo para obter informacdo sobre carbono

organico e inorganico, e métodos adicionais sdo necessarios para determinar outras
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formas de carbono, além de demandarem muito tempo nas analises e ter cara
manutencao.

Um bom método para ser empregado em trabalhos de rotina, que demandam
uma grande quantidade amostral, deve ser rapidos, praticos, baratos e acessiveis,
apresentando boas caracteristicas no que se refere a exatiddo, precisdo e
reprodutividade (LUCHESE et al., 2002). Portanto nesta cena a espectroscopia
aparece como um método conveniente para ser empregado na determinagcdo de
carbono.

A espectroscopia por refletancia na regido do infravermelho proximo (ATR-
NIRS) é uma técnica ndo destrutiva, rapida e econémica. Por duas décadas o NIRS
tem sido utilizado como ferramenta para a caracterizagdo, identificacdo e
quantificacdo de substancias nas industrias de polimeros, farmacos, petroquimica
entre outras, assim como na agricultura de precisao, garantindo a qualidade de graos
e do solo (WETSEL, 1983; CREASER; DAVIES, 1988; MURRAY; COWE, 1992;
WORKMAN, 1996).

3.3. Analise espectroscopia por infravermelho préximo

A espectrometria €& o0 processo analitico-instrumental baseado nas
propriedades de absorgdo, emissao e reflexdo de energia eletromagnética em regiao
especifica do espectro. Assim, a luz pode interagir de diversas formas com os
elementos e moléculas, sendo cada faixa de frequéncia relacionada com o nivel de
complexidade da matéria devido aos niveis de energia. O termo espectroscopia
envolve o estudo da interagdo entre a radiacdo eletromagnética com a matéria, esta
caracteristica confere uma correlagao entre a absorbancia de luz por uma substancia
e a concentracao de determinado material em sua composi¢ao, permitindo mensurar
diferentes compostos (PAVIA et al., 1996).

A radiagao infravermelha promove a alteracdo dos modos rotacionais e
vibracionais da molécula e a partir desta caracteristica se observa as oscilagdes do
eixo e do angulo das ligagbes dos atomos de um agrupamento funcional, assim estes
grupamentos podem ser identificados no espectro (BARBOSA, 2007).

A espectroscopia por refletdncia difusa oferece um método n&o destrutivo de

quantificacdo de carbono em solos baseado no espectro de reflectancia na superficie
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iluminada do solo. A regido do espectro analisada pelo NIRS esta no intervalo de
1000 a 2500 nm. As caracteristicas dos espectros obtidos sdo varias bandas e maior
sinal da vibragao de tons e combinacédo de bandas de H-C, H-N e H-O (MACCARTY
et al., 2002).

Além da composi¢cdo quimica do material, o espectro de NIR também ¢é
influenciado por sua estrutura fisica. O tamanho e forma das particulas, os vazios
entre as particulas e o arranjo estrutural delas afetam o comprimento da transmisséao
de luz que passa através de uma amostra e influenciam na refletancia (WETZEL,
1983).

Entretanto a técnica de NIRS é dificil de ser interpretada diretamente pela
combinacdo das suas bandas fundamentais. Como resultado a calibragao

multivariada € necessaria para analise quantitativa de amostras.

3.4. Analise quimiométrica

As anadlises quimicas tém, com grande frequéncia, o objetivo de determinar
concentracbes de compostos quimicos em amostras, porém os instrumentos de
laboratdrios ndo produzem diretamente estas respostas. No caso da espectroscopia,
os registros sdo obtidos como absorbancia, que dependem dos parametros fisico e
quimicos das amostras e também de sua estrutura molecular (FERREIRA et al.,
1999) e conjuntamente & necessario o tratamento destes dados obtidos.

Neste contexto a analise de dados se torna uma parte essencial em todo
experimento. Sua insercdo nas ultimas décadas baseia-se na analise multivariada
destes dados e deu origem a area da quimiometria, que correlaciona modelos
estatisticos e matematicos as variaveis analisadas, simultaneamente (SENA et al.,
2000).

Para a calibragdo de um modelo, € encontrado um algoritmo matematico que
produz propriedades de interesse a partir dos resultados registrados pelo instrumento
espectroscopico, como descrito nas etapas da figura 3.
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ESPECTROFOTOMETRO ESPECTROS MODELO MATEMATICO

o — = :
'®) - s : . Y
&0 - x| =] | Y

M — voe

AMOSTRAS INSTRUMENTO RESPOSTA

Figura 2: Etapas da calibragdo multivariada a partir de espectros de NIRS. (adaptado de FERREIRA et
al, 1999).

O instrumento associado ao algoritmo funciona como um “novo instrumento”,
onde dados de absorbancia e concentracdo sao relacionados retornando como
resposta informagdes quantitativas e qualitativas de interesse. Uma vez encontrado
este algoritmo pode ser usado para prever concentragao e caracterizar tendéncias de
um grupo amostral, usando a resposta instrumental das mesmas.

O processo de calibragdo consiste em duas etapas: modelagem, que
estabelece uma relagdo matematica entre variaveis do conjunto amostral e a
validagao, que otimiza a relagdao, dando uma descrigdo mais robusta do componente
analisado. A figura 4 apresenta um fluxograma esquematico dos métodos de

calibragao.

Todas as substincias
espectroscopicamente
ativas sfio conhecidas?

Sim Niio
CLS
Produz os espectros puros O niamero
de todos os de varidveis
componentes & pequeno?
como resultado
Sim Nio
MLR/ILS PCR
Niio siio necessdrios PLS
08 ESPECITOS puros

Figura 4: Métodos de calibragao de dados espectroscopicos (Adaptado de FERREIRA et al, 1999).
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Os métodos tradicionais de calibragdo CLS (método classico de minimos
quadrados) e MLR (regresséao linear multipla), tém suas vantagens e desvantagens
quando aplicados a problemas quimicos. Ambos utilizam toda a informagao contida
na matriz de dados da modelagao, isto &, toda a informagédo espectral, incluindo
informagdes irrelevantes (fazem pequena remogdo de ruido). O CLS tem como
principal problema a necessidade de se conhecer as concentracdes de cada espécie
espectroscopicamente ativa no conjunto de calibragdo, o que em geral é impossivel
nos problemas praticos. J4 o método MLR sofre do problema de colinearidade: o
numero de amostras deve exceder o numero de variaveis, que por sua vez devem
fornecer predominantemente informagdo unica. Mais interessante, entdo, € a
utilizacao de algum método que, como o CLS, usa o espectro inteiro para analise, e
como o MLR, requer somente a concentragdo do analito de interesse no conjunto de
calibragdo. Neste contexto a modelagdo PCR (Principal Component Regression) e
PLS (Partial Least Squares) (BEEBE et al, 1998) sdo consideravelmente mais
eficientes para lidar com ruidos experimentais, colinearidades e nao linearidades.
Todas as variaveis relevantes sao incluidas nos modelos via PCR ou PLS, o que
implica que a calibragdo pode ser realizada eficientemente mesmo na presencga de
interferentes, ndo havendo necessidade do conhecimento do numero e natureza dos
mesmos (BEEBE et al, 2008). Os métodos PCR e PLS sao robustos, isto €, seus
parametros praticamente ndo se alteram com a inclusdo de novas amostras no
conjunto de calibragdo. Em especial o método PLS tem se tornado uma ferramenta
extremamente util e importante em muitos campos da quimica, como a fisico-quimica,
a quimica analitica, a quimica medicinal, ambiental e ainda no controle de inUmeros
processos industriais (FERREIRA et al., 1999).

A metodologia PLS contorna as dificuldades caracteristicas do PCR, que é
construido utilizando unicamente as respostas instrumentais sem levar em
consideracao informacdes provenientes das concentragdes, sendo esta uma
fragilidade do método onde a substéncia de interesse tem um sinal muito fraco e,
portanto ndo influencia nas primeiras componentes principais, fazendo que o um
numero maior delas seja necessario para a construgdo do modelo (TALHAVINI,
2003).

O método PLS foi desenvolvida por Helman Wold na década de 70, que estima

simultaneamente as componentes principais em matrizes de determinagao, que
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consiste na regressao entre os escores X e Y, em uma soma de “h” variaveis latentes,

como descrito abaixo:

X=TP'+E = S thph + E (Eq.1)
Y=UQ +F =S uhgh+F (Eq.2)

onde T e U sédo as matrizes de “scores” das matrizes X e Y, respectivamente; P e Q
sdo as matrizes de “loadings” das matrizes X e Y, respectivamente; e E e F sdo os
residuos. A correlacdo entre os dois blocos X e Y é simplesmente uma relagao linear
obtida pelo coeficiente de regresséo linear:

uh = bh th (Eq.3)

Para “h” variaveis latentes, sendo que os valores de bh sdo agrupados na
matriz diagonal B, que contém os coeficientes de regresséo entre a matriz de “scores”
U de Y e a matriz de “scores” T de X. A melhor relacido linear possivel entre os
“scores” desses dois blocos é obtida através de pequenas rotagdes das variaveis
latentes dos blocos de X e Y.

A matriz Y pode ser calculada de uh, e a concentragdo de novas amostras
prevista a partir dos novos “scores”, T*, substituidos na equacgao abaixo:

Y=TBQ +F (Eq.4)
Y = T*BQ’ (Eq.5)

Nesse processo € necessario achar o melhor numero de variaveis latentes, o
que normalmente é feito por um procedimento chamado validagdo cruzada (“cross
validation”), no qual o erro minimo de previsdo €& determinado. Existe ainda a
diferenciacdo entre PLS1, em que a regressao é feita para uma variavel dependente
de cada vez (a matriz Y é um vetor coluna), e PLS2, onde todas sdo calculadas
simultaneamente (SENA et al, 2000).

A base fundamental da maioria dos métodos modernos para tratamento de
dados multivariados € o PCA (Principal Component Analysis) (MALINOWSKI, 1991),
que consiste numa manipulagdo da matriz de dados com objetivo de representar as

variagdes presentes em muitas variaveis, através de um numero menor de "fatores".
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E construido entdo um novo sistema de eixos (denominados rotineiramente de
fatores, componentes principais, variaveis latentes ou ainda autovetores) para
representar as amostras, no qual a natureza multivariada dos dados pode ser
visualizada em poucas dimensbes. Esta analise tem como finalidade basica a
reducdo de dados a partir de combinagbes lineares das variaveis originais
(FERREIRA, 1999).

A PCA é um método exploratério porque ajuda na elaboragdo de hipéteses gerais a
partir dos dados coletados, contrastando com estudos direcionados nos quais
hipoteses prévias sao testadas. Ela é capaz de separar a informacao importante da
redundante. Para esta analise exploratéria € de fundamental importancia entender
que os “scores” fornecem a composi¢cdo das CPs em relagdo aos objetos (amostras)
enquanto os “loadings” fornecem essa mesma composi¢ao em relagéo as variaveis.
Como as CPs sado ortogonais, é possivel examinar as relagdes entre os objetos
através dos graficos dos “scores” projetados nas primeiras CPs, e entre as variaveis
através dos graficos dos “loadings”. Esses graficos apresentam informagdes uteis
sobre tendéncias subjacentes e caracteristicas da estrutura dos dados, tais como,
agrupamentos de objetos ou variaveis e caracterizagdo dos chamados “outliers”,
amostras mal comportadas, que ndo se encaixam no modelo. O estudo conjunto de
“scores” e “loadings” permite estimar a influéncia de cada variavel em cada objeto.
(SENA et al, 2000).

Para a construgdo de um modelo de predicdo o mesmo deve ser validado com
0 objetivo de testar sua capacidade de analise considerando portando o numero de
fatores a ser utilizado no modelo, ou seja, seu numero de componentes principais, € a
deteccdo de “outliers”, que sao amostras que se apresentam fora do padrdo do
modelo, consideradas anémalas. Para a deteccado destas amostras outliers € utilizada
duas grandezas complementares, “leverage”, que € uma medida da influéncia desta
amostra no modelo de regressao, e o “residual’” onde amostras com alto residuo de
Student também séo consideradas mal modeladas.

Amostras com alto “residual” e baixo “leverage” provavelmente tem algum erro
no valor da concentragdo e amostras com alto “residual” e “leverage” devem sempre
ser excluidas da calibragao.

O processo de calibragao estara completo e 0 modelo adequado quando a

equacado selecionada responder com melhores resultados, com baixos erros de
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predicdo, “standard error of prediction” (SEP) e maior r* (coeficiente da

determinacao).

4. Materiais e métodos

4.1. Amostras de solo

As amostras de solo sdo provenientes de quatro diferentes localidades, totalizando

em 361. Todas foram previamente secas, maceradas e passadas em peneira de 0,5

mm. Elas estdo agrupadas em:

1.

amostras de solo do Quénia: o experimento foi conduzido em 3 areas distintas
do pais, com diferentes tipos de cultivo e vegetagcdo nativa como referéncia,
coletados em profundidades de 0 a 2,5,2,5a5,5a 10, 10 a 20 e 20 a 30 cm.
amostras de solo de Sao Carlos: o experimento foi conduzido em vasos, em
casa de vegetagdo, com solo proveniente da Fazenda Canchin, em Sao
Carlos, SP, Brasil e foram submetidos a diferentes doses de quatro compostos
organicos, de origem agroindustrial e urbana, coletados em profundidades de
5,15 e 30 cm.

amostras de solo de Cabralia Paulista: o experimento foi conduzido na ETEC
Astor de Mattos Carvalho, em Cabralia Paulista, SP, Brasil e foram submetidas
a tratamentos com dosagens distintas de efluente tratado por biodigestor
anaerdbio instalado no mesmo local, coletados em profundidades de 0 a 10, 10
a 20, 20 a 40, 40 a 60, 60 a 80, 80 a 100 cm.

amostras de solo do Peru: o experimento foi conduzido em 6 areas distintas do
pais, com diferentes tipos de cultivo e vegetacéo, coletados em profundidades
de0a25,25a5,5a10,10a20 e 20 a 30 cm.

Abaixo é possivel observar a caracteristica dos solos pertencentes as quatro

localidades:
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Tabela 2: amostras de solo do Quénia

Local Grupo Cultivo/Tratamento Amostras
Quénia Area 1 Floresta 1a15
Cha 16 a 30
Café + Eucalipto 31 a45
Café + Eucalipto 46 a 60
Area 2 Vegetagao Natural 61a75
Rotacao 1 76 a 90
Area 3 Rotagao 2 91a 105
Vegetagao Natural 106 a 120
Tabela 3: amostras de solo de Sdo Carlos
Local Grupo Cultivo/Tratamento Amostras
composto de podas de L1-
Séao Carlos L1 arvore 5,15,30
composto de podas de L2-
L2 arvore + esterco bovino 5,15,30
composto de podas de L3-
L3 arvore + bagaco de laranja 5,15,30
composto de podas de L4-
L4 arvore + torta de filtro 5,15,30
Mineral adubacdo mineral Mineral
Testemunha sem adubacéao Testem~1
Tabela 4: amostras de solo de Cabralia Paulista
Local Grupo Cultivo/Tratamento Amostras
pp010,
pp1020,
Cabralia pp2040,
Paulista PP pré-plantio pp4060,
pp6080,
pp80100
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TEST

AM

EE

ES0

E100

CS

cC

irrigagdo com agua

test010,
test1020,
test2040,
test4060,
test6080,
test80~1

irrigagdo com agua e

adubagao mineral

am010,
am1020,
am2040,
am4060,
am6080,
am80~1

irrigagdo com efluente
tratado de esgoto em

dosagem equivalente

ee010,
ee1020,
ee2040,
ee4060,
ee6080,
ee80~1

irrigacao com efluente
tratado de esgoto com 50%

acima da dose recomendada

e50-010,
€50-1020, e50-

2040, e50-

4060, e50-
6080, e50-80~1

irrigacao com efluente
tratado de esgoto com 100%

acima da dose recomendada

e100-010,
e100-1~1,
e100-2~1,
e100-4~1,
e100-6~1,
e100-8~1

cultivo de citrus sem

irrigacao do efluente

¢s010,
¢s1020,
€s2040,
¢s4060,
¢s6080, cs80~1

cultivo de citrus com

irrigacao do efluente

cc010,
cc1020,
cc2040,
cc4060,
cc6080, cc80~1
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Tabela 5: amostras de solo do Peru

Local Grupo Cultivo/Tratamento Amostras
, ala
Peru Area 1 Milho
a20
a21a
Azeitona
a30
. a31a
Area 2 Pastagem
a48
a49 a
Batata
ab3
ab4 a
Pastagem
ab3
ab4 a
Uva
ar8
, a79 a
Area 3 Abacate
a93
a%4 a
Pastagem
a108
, a109 a
Area 4 Café
a124
al125a
Mata
a135
, al136 a
Area 5 Rotagao 1
a149
al150 a
Rotagao 2
a163
al64 a
Rotagao 3
al178
, al79 a
Area 6 Turfas
189

4.2. Espectroscopia de Infravermelho préximo — NIRS
Em “vials” com 1 cm de didmetro, foi adicionado aproximadamente 1 g de cada

amostra (~ 1 cm de altura). As leituras ocorreram no espectrometro de infravermelho

proximo da marca PERKIN ELMER, modelo Spectrum 100N, pertencente a Embrapa
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Instrumentagédo. Foram obtidos os espectros, com 64 varreduras, de 10.000 a 4.000

cm’’, com resolugdo espectral de 16 cm™.
4.3. Calibragao do modelo

A calibragdo do modelo de quantificacdo de carbono em solos foi realizada no
software Spectrum Quant+, adicionando os espectros obtidos por NIRS e os teores
de carbono real obtidos por analise elementar no instrumento de CHN, ajustado por
regressdo PLS1, com corregcédo de base por primeira derivada (5 pontos), retirando o
intervalo com elevado ruido de 10000 a 9800 cm-1. Foram eliminadas quatro
amostras outliers, 22, 06, 08 e 26, representando 1,53% do total. O numero de

componentes principais utilizado no grafico foi de 28.

5. Resultados e discussao

A partir da calibracdo do modelo se obteve o valor de correlagao (r?), de
99,74%, entre a porcentagem especifica de carbono inserida e a porcentagem
estimada, como é observado na figura 5. Esta correlagdo é considerada um 6timo
resultado de calibragdo, retornando respostas de predicdo muito proximas aos
valores especificos das amostras de carbono analisadas.
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Figura 5: Carbono estimado vs carbono especificado

A figura 6 mostra a linha limite dada pela regressao multivariada e todos os
valores acima da linha paralela ao eixo x sao considerados outliers. Como algumas
amostras outliers ja foram retiradas do modelo, a nova calibragdo respondeu com

bons resultados, ndo apresentando amostras anémalas.
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Figura 6: Representacao do “Standard Leverage”

A figura 7 apresenta a linha limite do espectro de absorbancia que pode ser
caracterizado pela regressdo. Picos acima da linha paralela ao eixo x sao
considerados anOmalos, e como se observa neste grafico ndo ha discrepancias na

calibracdo do modelo.
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Figura 7: Variable Leverage

Na figura 8, sdo analisadas as componentes principais, PCq vs PC;. E possivel
observar o perfil dos resultados para cada componente principal, revelando
tendéncias e agrupamentos. Sdo observados 3 agrupamentos, com uma grande
distincao das respostas da concentragédo de carbono pelas componentes principais. A
analise da PC1 retorna resultados a partir de caracteristicas comuns estimadas entre
as amostras, portanto estes agrupamentos podem mostrar tendéncias quanto a

concentragao da substancia estudada das amostras de solo.
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Figura 8: Analise de componentes principais. PCvs PC;, grupos e tendéncias no modelo.

As figuras 9, 10 e 11 revelam os trés agrupamentos, A B e C, focados
separadamente. Pode ser observado uma maior homogeneidade na distribuigao
espacial das amostras nas figuras 10 e 11. Quanto a origem das amostras, na figura
9, onde é apresentado o agrupamento A, ha uma grande concentragdo de amostras
provenientes de solos do Quénia, onde sub-agrupamentos sdo encontrados devido a
grande variedade nas caracteristicas dos solos analisados, tanto na concentragao de
carbono como nas propriedades fisico-quimicas, além de estarem submetidos a
diferentes tipos de culturas agricolas. Na figura 10, onde é apresentado o
agrupamento B, sdo encontrados as amostras de solo de Sao Carlos, submetidas aos
diferentes tipos de adubagdo com residuos agricolas, que sdo observados em um
préximo ao eixo y, no sub-agrupamento B-1. Ja o sub-agrupamento central do grafico
tem origem nas amostras do Peru, que como as amostras do Quénia apresentam
uma diversidade grande em caracteristicas individuais e quantidade de carbono. Na
figura 11, onde é apresentado o agrupamento C sdo encontradas as amostras de

solo de Cabralia Paulista, tratadas com efluente em diferentes concentragdes.
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Figura 9: Agrupamento A em PCyvs PC;.

Figura 10: Agrupamento B em PCyvs PC;.




Figura 11: Agrupamento C em PCqvs PC;.

Na figura 12 sdo analisadas a primeira e segunda componentes principais, PC,
vs PCy. Juntas, apresentam uma variancia de 67,28%. E possivel observar diversos
agrupamentos, D, E e F na modelagdo, mostrando tendéncias de separagdo em
outros modelos, ou identificando novos valores necessarios para construir grupos.
Esta resposta do grafico da primeira componente principal versus a segunda
componente revela tendéncias entre as amostras quanto a similaridade dos espectros
e sua correlagao estatistica, respondendo quanto as caracteristicas particulares das

amostras, a partir da calibracdo da substancia analisada.
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Figura 12: PC, vs PC,, agrupamentos para possiveis divisbes do modelo.

Pode ser observada na figura 13, a distribuigdo aleatéria residual. Esta andlise revela
amostras com alto residuo de Student, portanto quando estas apresentam grande
valor no eixo “residual” devem ser excluidas da calibracdo. Neste procedimento

nenhuma amostra foi considerada anémala a tendéncia do modelo.
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Figura 13: Distribuicao residual.

A figura 14 representa o residuo de Student versus “leverage”. Este resultado da
calibracdo responde apresentando pontos que podem ser considerados outliers na
modelagem. Amostras com alto valores de residuo, ultrapassando a reta paralela ao
eixo x podem conter erros da concentragdo de carbono estimada e amostras
apresentadas acima da reta paralela ao eixo y e x devem ser excluidas do modelo,
pois sdo consideradas an6malas. Neste processo de calibragdo nao foi observado
nenhum dos casos acima, portanto as amostras representam alta correlagao pela

calibragédo PLS.
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Figura 14: Avaliagéo de Outliers.

Para validagdo da metodologia foram escolhidas ao acaso 49 de 361 amostras,

13,5% do total, retiradas uma por vez do modelo e utilizando a ferramenta de

predicao (Predict) no software Spectrum Quant+. Assim encontraram-se os valores

estimados de carbono pelo modelo de regressao, que foram comparados aos valores

reais de carbono, inseridos na calibracdo. Foi feita entdo uma analise matematica,

como mostra a tabela 6.

Tabela 6: Anadlise estatistica do erro da estimativa de carbono no modelo de regresséo

Média erro %

5,88

Erro maximo %

32,64

Erro minimo %

0,15

Desvio médio erro

4,17

Desvio padrao erro

5,78

% amostras analisadas

13,50
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Tabela 7: Calculo da porcentagem de erro da estimativa de carbono no modelo de regresséo.

() 0,
Amostras mcf::lilo re feféicia Erro [erro] | %erro
85 0,80 0,71 -0,0954 | 0,09 13,54
6 19,26 14,52 -4,74 4,74 32,64
Cc010 1,13 1,03 -0,10 0,10 10,03
e€50-80~1 0,32 0,39 0,07 0,07 18,20
Pp2040 0,68 0,60 -0,08 0,08 13,94
A17 1,35 1,52 0,17 0,17 11,22
A37 0,72 0,80 0,08 0,08 10,01

Das 49 amostras submetidas a analise de correlagcdo do valor estimado e
especifico apenas 7 apresentaram erros maiores que 10%, e a média de erro na
resposta estimada de carbono é de 5,8%, Observa-se que amostras com
concentragbes muito baixas e muito altas de carbono apresentam os maiores erros
na correlacdo, como nas amostras 85, 6, cc010, e50-80~1, pp2040, a17, a37, com
respectivos erros de 0,80%, 19,26%, 1,13%, 0,32%, 0,68%, 1,34%, 0,72%, Isto
provavelmente se deve a necessidade de maior inser¢cao de amostras com similares
caracteristicas ao modelo, ou propondo a divisdo em sub-modelos, calibrando o
modelo separadamente de acordo com tendéncias de agrupamento ou caracteristicas
similares dos solos, em relagcdo a quantidade de carbono, tornando assim o modelo
mais robusto e preciso, Nas baixas concentragcdes o erro tende a ser maior, pois
estdo préximas ao limite de medi¢cao do equipamento de analise elementar,

Na figura 15 é representada a porcentagem de carbono estimado pelo modelo
e seus respectivos erros de calibragdo e na figura 16 um comparativo da
porcentagem de erro entre a concentragdo de carbono especifico e estimado, em

relagdo a média total da porcentagem de erro no grupo amostral estudado,
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Figura 15: Quantidades de carbono (%) estimados pelo modelo
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Figura 16: Erro no carbono estimado em comparagéo ao valor de referéncia (%),

A calibracdo multivariada, PLS, do grupo amostral estudado, analisando a
concentracdo de carbono, retornou boas respostas de correlagcdo a partir de dados
inseridos da espectroscopia de infravermelho préximo (NIRS), O modelo se mostrou
robusto, simples e confiavel, como é observado a partir dos resultados da média de

erro de predi¢cao apresentada na tabela 6,
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Os graficos representados pelas analises matematicas e estatisticas
mostraram o6timas respostas de calibragdo, como baixa quantidade de pontos outliers,
grande homogeneidade da influéncia individual na modelacéo, correlagdo entre a
concentracdo de carbono e especifica proxima a 100%, componentes principais
relevando tendéncias, grupos e sub-grupos, baixos residuos de Student e capacidade
de analisar e relacionar amostras de solo com distintas caracteristicas, de diferentes

origens e com concentragdes de carbono variadas,

6. Conclusao

O desenvolvimento do modelo de quantificagdo de carbono dos solos, a partir
da espectroscopia de infravermelho proximo com apoio da regressao estatistica PLS,
respondeu ser uma ferramenta conveniente de predi¢ao, Os resultados obtidos com a
calibragdo multivariada retornaram altos valores de correlagdo entre as medidas
especificas e os dados estimados,

O fato de o modelo ter sido construido a partir de um banco de amostras de
solo com grande variedade em relagdo a sua origem, suas propriedades, ao tipo de
cultura e tratamento que foram submetidas e sua concentracdo de carbono, torna-o
robusto e passivel a menores erros nas estimativas,

Portanto, o estudo realizado mostra como sao grandes as possibilidades do
NIRS no desenvolvimento de novas técnicas de predicdo de carbono, abrindo novos
caminhos para sua analise rapida, com baixo custo e precisa, Adicionalmente é
possivel também ampliar o uso do equipamento em laboratorio, expandindo e
disseminando a tecnologia com seu uso portatil, que devera conclusivamente ser uma
importante ferramenta de quantificacdo e caracterizagcao dos aportes de carbono no

ecossistema terrestre,
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