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RESUMO 
 
 
 

DE MATTOS, M. M. Modelo de quantificação de carbono do solo por espectroscopia 

de infravermelho próximo. Trabalho de Graduação – Escola de Engenharia de São 

Carlos, Universidade de São Paulo, São Carlos, 2011. 

 

 
 

A presente monografia apresenta o desenvolvimento de um modelo de 

quantificação de carbono dos solos por espectroscopia de infravermelho próximo, 

utilizando ferramentas estatísticas e matemáticas de calibração multivariada dos 

dados. As amostras de solo pertencem a quatro diferentes localidades submetidas a 

tratamentos e culturas distintas, totalizando em 361. Para tanto foram obtidos 

espectros, com 64 varreduras, de 10.000 a 4.000 cm-1, com resolução espectral de 16 

cm-1 e a calibração do modelo foi realizada adicionando estes espectros e os teores 

de carbono real, obtidos por análise elementar, ajustado por regressão PLS “Partial 

Least Squares” e analisado por PCA “Principal Component Analysis”. A modelação 

retornou uma correlação de 99,74% na predição de carbono, com uma média de erro 

de 5,88%. A partir na análise das componentes principais foi possível observar 

tendências e agrupamentos a partir das características e origem das amostras. 

Portanto calibração multivariada do grupo amostral estudado, analisando a 

concentração de carbono, retornou boas respostas de correlação a partir de dados 

inseridos da espectroscopia de infravermelho próximo (NIRS). 
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ABSTRACT 
 
 

DE MATTOS, M. M. Quantification model of soil carbon by near infrared spectroscopy. 

Undergraduate Work – Escola de Engenharia de São Carlos, Universidade de São 

Paulo, São Carlos, 2011. 

 

 

 

 This paper presents the development of a model for carbon quantification from 

soils by near infrared spectroscopy, using mathematical and statistical tools for 

multivariate calibration data. Soil samples belong to four different locations subjected 

to different treatment and cultures, totaling 361. For both spectra were obtained with 

64 scans, from 10,000 to 4000 cm-1, with spectral resolution of 16 cm-1 and the 

model calibration was performed by adding this spectra and the actual carbon content, 

obtained by elemental analysis, adjusted for PLS regression "Partial Least Squares" 

and analyzed by PCA "Principal Component Analysis." The model returned a 

correlation of 99.74% in carbon prediction, with a mean error of 5.88%. From the 

analysis of main components was possible to observe trends and groupings based on 

the characteristics and origin of the samples. Therefore multivariate calibration of the 

sample investigated, by analyzing the concentration of carbon, returned good answers 

correlation of data entered from the near-infrared spectroscopy (NIRS). 
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1. Introdução 
  

 A crescente preocupação com as alterações climáticas no planeta tem 

fomentado diversos estudos sobre o ciclo do carbono, que presente na forma de 

monóxido de carbono (CO2) e metano (CH4) é considerados uns dos responsáveis 

pelo aquecimento global. A partir da implementação do protocolo de Kyoto (KYOTO 

PROTOCOL, 1997) houve um estimulo para a construção de inventários nacionais de 

carbono no solo e motivação para implementação de projetos que promovam o 

acúmulo de carbono em ecossistemas terrestres (MACHADO, 2002). 

 A biosfera terrestre é um importante componente de reserva de carbono, 

porém a quantificação de seqüestro em ecossistemas terrestres é parcialmente 

restrita pela limitação do acesso ao conhecimento da dinâmica deste estoque de 

carbono em solos (MCCARTY et al, 2002). Portanto o entendimento do fluxo de 

carbono é essencial para descrever este potencial de acúmulo de carbono, em 

distintos solos e culturas agrícolas. Diante disso, o constante monitoramento destes 

diversos ecossistemas torna-se então o ponto de partida para a caracterização e 

quantificação de carbono nos solos e conseqüentemente a ampliação dos inventários 

terrestres de carbono (WATSON et al, 2000). 

 A caracterização dos componentes do solo é um processo complexo devido à 

grande variedade de suas propriedades físicas e químicas, dependem de intensivos 

métodos, consomem tempo e são caros. Assim, o desenvolvimento de procedimentos 

alternativos de baixo custo econômico e ambiental, combinados com precisão e 

acurácia, são altamente necessários. (MACHADO, 2003). 

 A partir desta necessidade, foram surgindo novas tecnologias, que aliadas ao 

avanço da agricultura de precisão abriram um vasto campo de análise de 

substâncias, dentre elas pode ser destacada a espectroscopia de refletância difusa, 

como a espectroscopia de infravermelho próximo (NIRS). Durante as últimas décadas 

esta técnica se tornou um dos métodos dominantes para a análise de produtos 

agrícolas como forragens e grãos, nas quais um grande número de amostras deve 

ser analisado (MILTTELMANN et al., 2005). Além disso, por ser um método de 

analise não destrutiva, simples, rápido e com baixo custo, o NIRS tem mostrado ser 

uma ferramenta conveniente de analise de diversos constituintes do solo, como o 

carbono. 
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 Conjuntamente com este tipo de ferramenta, a análise de dados por técnicas 

matemáticas e estatísticas têm crescido com o avanço dos hardwares e softwares, 

atingindo um ponto bastante sofisticado no interfaceamento de instrumentos aos 

computadores, produzindo uma enorme quantidade de informação, sendo que uma 

das características mais interessantes dos modernos instrumentos é o número de 

variáveis que podem ser medidas em uma única amostra (FERREIRA et al., 1999). 

Assim, esta área de estudos deu origem a Quimiometria, que analisa os dados 

químicos de natureza multivariada, podendo retornar respostas de previsão e 

interpretação de tendências dos dados e também podendo superar problemas 

causados por distorções. Assim a análise de características do solo e quantificação 

de carbono pode ser facilmente estudada com a união da espectroscopia e de 

modelos estatísticos e matemáticos. 

 Entretanto, a maioria dos estudos com NIRS, relacionados com a quantificação 

de carbono em solos são limitados, uma vez que foram estudadas pequenas 

quantidades de amostras e também pela pequena diversidade de tipos de solos. 

Assim, é necessária a ampliação desta área, com a criação de um maior banco de 

dados amostral englobando diversos tipos de solos com a utilização do apoio de 

análises multivariadas por meio de softwares.  

 

 

2. Objetivo 

 

 O objetivo deste estudo é desenvolver um modelo robusto de quantificação de 

carbono nos solos utilizando a análise por espectroscopia de infravermelho próximo e 

tratamento de dados por calibração multivariada, a partir de grupos amostrais de solo 

com diferentes características físico-químicas, submetidos a distintos usos. 
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3. Revisão da Literatura 

  

 3.1. O Carbono do solo e as mudanças climáticas  

 

 Os quatro principais compartimentos de carbono na Terra são: oceanos, 

atmosfera, formações geológicas contendo carbono fóssil e mineral e ecossistemas 

terrestres (biota + solo) (MACHADO, 2005). Na Figura 1 observam-se os diferentes 

compartimentos de carbono na Terra com seus estoques e respectivos fluxos estão 

distribuídos conforme a figura 1: 

 

 

 

Figura 1: Ciclo global do carbono com estoques (em Pg C = 1015 g C) nos diferentes compartimentos 

da Terra e fluxos de carbono (em Pg C ano-1) (Adaptado de LAL, 1999). 

 

 Na Figura 1 constata-se que o maior compartimento de carbono na Terra é 

aquele presente no oceano (38000 Pg C), seguido do compartimento presente nas 

formações geológicas (5000 Pg C). O carbono das formações geológicas consiste de 

4000 Pg C presentes no carvão, 500 Pg C no petróleo e 500 Pg C no gás natural. O 

compartimento de carbono do solo (2500 Pg C) é o maior nos ecossistemas terrestres 

(aproximadamente 4 vezes o compartimento de C da vegetação e 3,3 vezes o 

carbono da atmosfera) e é constituído pelo carbono orgânico (1500 Pg C) e mineral 

(1000 Pg C). O carbono orgânico representa o equilíbrio entre o carbono adicionado 

ao solo pela vegetação e o perdido para as águas profundas e, finalmente, para os 



 12 

oceanos via lixiviação como carbono orgânico dissolvido (0,4 Pg C) ou para a 

atmosfera via atividade microbiana como dióxido de carbono em solos aerados ou 

metano em solos saturados com água (LAL, 1999). Entretanto, pouco se sabe sobre 

valores precisos de perdas de carbono do solo para a atmosfera. 

O ciclo do carbono (C) natural funciona da seguinte forma: o CO2 entra na 

atmosfera a partir da respiração dos animais e vegetais, da decomposição e queima 

das substâncias orgânicas e da atividade dos oceanos. A seguir, volta ao solo através 

da fotossíntese das plantas terrestres. O C na Terra está essencialmente na forma de 

compostos orgânicos e carbonatos ou sob a forma de gás (CO2) na atmosfera. O 

ciclo do C consiste na transferência deste elemento, por meio de queima, respiração, 

reações químicas, para a atmosfera ou para o mar e a sua reintegração na matéria 

orgânica (MO) (GAUDARD, 2007). 

Alguns sistemas naturais constituem grandes reservatórios de C (como o 

oceano), a dinâmica do seu ciclo é, sobretudo, controlada pelos sistemas que têm 

capacidade de trocá-lo ativamente com a atmosfera, como é o caso da vegetação e 

do solo. Por outro lado, a fotossíntese que ocorre nas plantas terrestres é 

responsável pela retenção de C atmosférico no material vegetal e, eventualmente, na 

MO no solo (PACHECO; HELENE, 1990). 

O interesse em estudar o ciclo do carbono e o impacto do dióxido de carbono 

(CO2) e do metano (CH4) antropogênicos no regime climático, especialmente na 

temperatura, já havia sido iniciado no século passado. Durante os anos 80 e 

principalmente desde a primeira conferência do Comitê Assessor Científico do 

Programa Internacional Geosfera-Biosfera (IGBP), realizada em Estocolmo em 1988, 

modelos de circulação global e vários trabalhos locais e regionais surgiram com 

ênfase no efeito estufa de gases traços como CO2, CH4 e N2O5. Naquela época, já 

havia demonstração sobre as conseqüências do incremento do CO2 na atmosfera no 

aumento em cerca de 4 °C na temperatura e na elevação no nível do mar 

(SCHARPENSEEL, 1997). Apesar de no final dos anos 90 ainda ter sido controversa 

a mudança climática causada por gases traços, particularmente pelo CO2, o terceiro 

relatório do Painel Intergovernamental sobre Mudança Climática (IPCC, 2001), após 

rigorosa avaliação da qualidade de estudos recentes sobre o tema, destaca que as 

mudanças no clima ocorrem como resultado tanto da variabilidade interna dentro do 

sistema climático como também de fatores externos naturais e antropogênicos. 
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 A taxa de alteração da concentração de CO2 do período Holoceno (há 10.000 

anos) foi duas vezes menor que o aumento antropogênico de CO2 desde a Revolução 

Industrial, iniciada em 1760 na Inglaterra, até os dias atuais (INDERMUHLE et al., 

1999). O uso crescente de combustíveis fósseis e as mudanças em larga escala do 

uso das terras resultaram no aumento das concentrações de gases de efeito estufa 

na atmosfera, afetando o clima global (BAEDE, et al., 2001). 

O Protocolo de Kyoto, estabelecido em dezembro de 1997, durante a Terceira 

Sessão da Conferência das Partes (COP 3) da Convenção Quadro da ONU para a 

Mudança Climática (UNFCCC), definiu metas de redução nas emissões de gases de 

efeito estufa para a atmosfera. O seu objetivo principal é refrear a velocidade da 

contribuição humana em vista das crescentes concentrações atmosféricas de CO2. e 

o Protocolo reconhece, no seu artigo 3.4, os solos agrícolas como sumidouros de 

gases do efeito estufa. A UNFCCC, por meio do painel intergovernamental de 

mudanças climáticas (IPCC), determinou diretrizes e produziu uma lista de atividades 

que podem lograr a mitigação de gases do efeito estufa, entre as quais o cultivo de 

solos. O IPCC também indica que o maior potencial de seqüestro de carbono por 

meio de técnicas de manejo ocorre nos pastos, isto abre oportunidade de introdução 

de melhores técnicas de manejo em áreas degradadas visando elevar o aporte de 

carbono no solo. Na tabela 1 apresenta a quantificação de estoques de carbono em 

diferentes tipos de vegetação: 
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Tabela 1: Estoque global de carbono na vegetação e no solo (profundidade de 100 cm) 

(Adaptado de WATSON et al, 2000 e CANZIANI et al, 1998) 

 

 

O estoque de C de um solo sob vegetação natural representa o balanço 

dinâmico entre a adição de material vegetal morto e a perda pela decomposição ou 

mineralização. A qualidade do C da vegetação depende muito do clima 

(principalmente temperatura do ar e chuvas), do tipo de vegetação e da fertilidade do 

solo (solos férteis resultam em plantas maiores que contêm mais C a ser depositado 

no solo).  

Os processos de transformação do C são fortemente influenciados pelo clima, 

tipo e qualidade da MO e suas associações químicas e físico-químicas com os 

componentes minerais do solo (MACHADO, 2005). Em solos sob vegetação natural, 

a preservação da MO tende a ser máxima, pois o revolvimento do solo é mínimo, 

sendo o aporte de C nas florestas mais elevado do que em áreas cultivadas. Em 

áreas cultivadas, os teores de MO, via de regra, diminuem, já que as frações 

orgânicas são mais expostas ao ataque de microrganismos, em função do maior 

revolvimento e desestruturação do solo. Os três principais processos responsáveis 

pelo seqüestro de C nos solos são a humificação, agregação e sedimentação, e os 

processos responsáveis pelas perdas de C no solo são: a erosão, decomposição 

volatilização e lixiviação. Um dos fatores que esta sendo enfatizados como o mais 

importante nos processos de seqüestro do C no solo é a agregação do solo realizada 
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pela ação de fungos e substâncias orgânicas proveniente das raízes, outro fator 

observado no Brasil foi a adoção do plantio direto, pois favoreceu a agregação do 

solo (KIEHL, 1979). 

A possibilidade de se utilizar práticas agrícolas conservacionistas como o 

sistema plantio direto para mitigar o aumento de CO2 na atmosfera pelo seqüestro de 

carbono pelo solo obteve consenso internacional. A idéia contida no consenso foi que 

promovendo a adoção de práticas agrícolas com conservação do solo seria possível 

não apenas aumentar a produtividade agrícola como também transformar os solos 

agrícolas em drenos ou sumidouros de CO2 atmosférico. O sistema plantio direto 

(SPD) é um exemplo de uso da terra para a agricultura nas regiões tropicais úmidas e 

subtropicais que propicia segurança alimentar com baixo impacto ambiental, 

principalmente quanto à erosão (perda de solo) e favorecendo o seqüestro de 

carbono no solo (MACHADO, 2004). Seqüestro de carbono no solo significa 

transformar o carbono presente na atmosfera (na forma de CO2) em carbono 

estocado no solo, compondo a matéria orgânica do solo. 

 

 3.2. Caracterização e quantificação do Carbono do Solo 

 

 Para o entendimento completo da dinâmica e seqüestro do carbono nos solos 

é necessária sua eficiente caracterização e quantificação, a avaliação dos diferentes 

compartimentos de carbono no solo e suas dinâmicas são imprescindíveis para a 

identificação de usos e manejos do solo que promovam seu aporte ao solo. Hoje 

estas análises são realizadas por metodologias analíticas convencionais. 

 No Brasil, o procedimento analítico mais utilizado para determinação de 

carbono nos solos é baseado na oxidação da matéria orgânica a CO2 por íons 

dicromatos, em meio fortemente ácido. É também denominado de determinação por 

via úmida, determinação por dicromato ou determinação de carbono Walkley-Black. 

Outra metodologia utilizada é a combustão do carbono, conhecido como método da 

mufla (SEGNINI et al., 2008).  

 Porém estes métodos estão sujeitos a problemas na acurácia da quantificação, 

demandando mais de uma determinação para obter informação sobre carbono 

orgânico e inorgânico, e métodos adicionais são necessários para determinar outras 
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formas de carbono, além de demandarem muito tempo nas análises e ter cara 

manutenção. 

 Um bom método para ser empregado em trabalhos de rotina, que demandam 

uma grande quantidade amostral, deve ser rápidos, práticos, baratos e acessíveis, 

apresentando boas características no que se refere a exatidão, precisão e 

reprodutividade (LUCHESE et al., 2002). Portanto nesta cena a espectroscopia 

aparece como um método conveniente para ser empregado na determinação de 

carbono. 

 A espectroscopia por refletância na região do infravermelho próximo (ATR-

NIRS) é uma técnica não destrutiva, rápida e econômica. Por duas décadas o NIRS 

tem sido utilizado como ferramenta para a caracterização, identificação e 

quantificação de substâncias nas indústrias de polímeros, fármacos, petroquímica 

entre outras, assim como na agricultura de precisão, garantindo a qualidade de grãos 

e do solo (WETSEL, 1983; CREASER; DAVIES, 1988; MURRAY; COWE, 1992; 

WORKMAN, 1996). 

 

 3.3. Análise espectroscopia por infravermelho próximo 

 

 A espectrometria é o processo analítico-instrumental baseado nas 

propriedades de absorção, emissão e reflexão de energia eletromagnética em região 

específica do espectro. Assim, a luz pode interagir de diversas formas com os 

elementos e moléculas, sendo cada faixa de freqüência relacionada com o nível de 

complexidade da matéria devido aos níveis de energia. O termo espectroscopia 

envolve o estudo da interação entre a radiação eletromagnética com a matéria, esta 

característica confere uma correlação entre a absorbância de luz por uma substância 

e a concentração de determinado material em sua composição, permitindo mensurar 

diferentes compostos (PAVIA et al., 1996). 

 A radiação infravermelha promove a alteração dos modos rotacionais e 

vibracionais da molécula e a partir desta característica se observa as oscilações do 

eixo e do ângulo das ligações dos átomos de um agrupamento funcional, assim estes 

grupamentos podem ser identificados no espectro (BARBOSA, 2007). 

 A espectroscopia por refletância difusa oferece um método não destrutivo de 

quantificação de carbono em solos baseado no espectro de reflectância na superfície 
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iluminada do solo. A região do espectro analisada pelo NIRS está no intervalo de 

1000 a 2500 nm. As características dos espectros obtidos são várias bandas e maior 

sinal da vibração de tons e combinação de bandas de H-C, H-N e H-O (MACCARTY 

et al., 2002). 

Além da composição química do material, o espectro de NIR também é 

influenciado por sua estrutura física. O tamanho e forma das partículas, os vazios 

entre as partículas e o arranjo estrutural delas afetam o comprimento da transmissão 

de luz que passa através de uma amostra e influenciam na refletância (WETZEL, 

1983). 

 Entretanto a técnica de NIRS é difícil de ser interpretada diretamente pela 

combinação das suas bandas fundamentais. Como resultado a calibração 

multivariada é necessária para análise quantitativa de amostras. 

  

 3.4. Análise quimiométrica 

  

 As análises químicas têm, com grande freqüência, o objetivo de determinar 

concentrações de compostos químicos em amostras, porém os instrumentos de 

laboratórios não produzem diretamente estas respostas. No caso da espectroscopia, 

os registros são obtidos como absorbância, que dependem dos parâmetros físico e 

químicos das amostras e também de sua estrutura molecular (FERREIRA et al., 

1999) e conjuntamente é necessário o tratamento destes dados obtidos.  

 Neste contexto a análise de dados se torna uma parte essencial em todo 

experimento. Sua inserção nas últimas décadas baseia-se na análise multivariada 

destes dados e deu origem a área da quimiometria, que correlaciona modelos 

estatísticos e matemáticos as variáveis analisadas, simultaneamente (SENA et al., 

2000). 

 Para a calibração de um modelo, é encontrado um algoritmo matemático que 

produz propriedades de interesse a partir dos resultados registrados pelo instrumento 

espectroscópico, como descrito nas etapas da figura 3. 
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Figura 2: Etapas da calibração multivariada a partir de espectros de NIRS. (adaptado de FERREIRA et 

al, 1999). 

 

 O instrumento associado ao algoritmo funciona como um “novo instrumento”, 

onde dados de absorbância e concentração são relacionados retornando como 

resposta informações quantitativas e qualitativas de interesse. Uma vez encontrado 

este algoritmo pode ser usado para prever concentração e caracterizar tendências de 

um grupo amostral, usando a resposta instrumental das mesmas. 

 O processo de calibração consiste em duas etapas: modelagem, que 

estabelece uma relação matemática entre variáveis do conjunto amostral e a 

validação, que otimiza a relação, dando uma descrição mais robusta do componente 

analisado. A figura 4 apresenta um fluxograma esquemático dos métodos de 

calibração. 

 

 

Figura 4: Métodos de calibração de dados espectroscópicos (Adaptado de FERREIRA et al, 1999). 
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Os métodos tradicionais de calibração CLS (método clássico de mínimos 

quadrados) e MLR (regressão linear múltipla), têm suas vantagens e desvantagens 

quando aplicados a problemas químicos. Ambos utilizam toda a informação contida 

na matriz de dados da modelação, isto é, toda a informação espectral, incluindo 

informações irrelevantes (fazem pequena remoção de ruído). O CLS tem como 

principal problema a necessidade de se conhecer as concentrações de cada espécie 

espectroscopicamente ativa no conjunto de calibração, o que em geral é impossível 

nos problemas práticos. Já o método MLR sofre do problema de colinearidade: o 

número de amostras deve exceder o número de variáveis, que por sua vez devem 

fornecer predominantemente informação única. Mais interessante, então, é a 

utilização de algum método que, como o CLS, usa o espectro inteiro para análise, e 

como o MLR, requer somente a concentração do analito de interesse no conjunto de 

calibração. Neste contexto a modelação PCR (Principal Component Regression) e 

PLS (Partial Least Squares) (BEEBE et al, 1998) são consideravelmente mais 

eficientes para lidar com ruídos experimentais, colinearidades e não linearidades. 

Todas as variáveis relevantes são incluídas nos modelos via PCR ou PLS, o que 

implica que a calibração pode ser realizada eficientemente mesmo na presença de 

interferentes, não havendo necessidade do conhecimento do número e natureza dos 

mesmos (BEEBE et al, 2008). Os métodos PCR e PLS são robustos, isto é, seus 

parâmetros praticamente não se alteram com a inclusão de novas amostras no 

conjunto de calibração. Em especial o método PLS tem se tornado uma ferramenta 

extremamente útil e importante em muitos campos da química, como a físico-química, 

a química analítica, a química medicinal, ambiental e ainda no controle de inúmeros 

processos industriais (FERREIRA et al., 1999).  

A metodologia PLS contorna as dificuldades características do PCR, que é 

construído utilizando unicamente as respostas instrumentais sem levar em 

consideração informações provenientes das concentrações, sendo esta uma 

fragilidade do método onde a substância de interesse tem um sinal muito fraco e, 

portanto não influencia nas primeiras componentes principais, fazendo que o um 

número maior delas seja necessário para a construção do modelo (TALHAVINI, 

2003). 

 O método PLS foi desenvolvida por Helman Wold na década de 70, que estima 

simultaneamente as componentes principais em matrizes de determinação, que 
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consiste na regressão entre os escores X e Y, em uma soma de “h” variáveis latentes, 

como descrito abaixo: 

    

X=TP’ + E = S thp’h + E     (Eq.1) 

   Y=UQ’ + F = S uhq’h + F     (Eq.2) 

 

onde T e U são as matrizes de “scores” das matrizes X e Y, respectivamente; P e Q 

são as matrizes de “loadings” das matrizes X e Y, respectivamente; e E e F são os 

resíduos. A correlação entre os dois blocos X e Y é simplesmente uma relação linear 

obtida pelo coeficiente de regressão linear: 

 

   uh = bh th       (Eq.3) 

 

 Para “h” variáveis latentes, sendo que os valores de bh são agrupados na 

matriz diagonal B, que contém os coeficientes de regressão entre a matriz de “scores” 

U de Y e a matriz de “scores” T de X. A melhor relação linear possível entre os 

“scores” desses dois blocos é obtida através de pequenas rotações das variáveis 

latentes dos blocos de X e Y. 

 A matriz Y pode ser calculada de uh, e a concentração de novas amostras 

prevista a partir dos novos “scores”, T*, substituídos na equação abaixo: 

 

   Y = TBQ’ + F      (Eq.4) 

   Y = T*BQ’       (Eq.5) 

 

 Nesse processo é necessário achar o melhor número de variáveis latentes, o 

que normalmente é feito por um procedimento chamado validação cruzada (“cross 

validation”), no qual o erro mínimo de previsão é determinado. Existe ainda a 

diferenciação entre PLS1, em que a regressão é feita para uma variável dependente 

de cada vez (a matriz Y é um vetor coluna), e PLS2, onde todas são calculadas 

simultaneamente (SENA et al, 2000). 

 A base fundamental da maioria dos métodos modernos para tratamento de 

dados multivariados é o PCA (Principal Component Analysis) (MALINOWSKI, 1991), 

que consiste numa manipulação da matriz de dados com objetivo de representar as 

variações presentes em muitas variáveis, através de um número menor de "fatores". 
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É construído então um novo sistema de eixos (denominados rotineiramente de 

fatores, componentes principais, variáveis latentes ou ainda autovetores) para 

representar as amostras, no qual a natureza multivariada dos dados pode ser 

visualizada em poucas dimensões. Esta análise tem como finalidade básica a 

redução de dados a partir de combinações lineares das variáveis originais 

(FERREIRA, 1999). 

A PCA é um método exploratório porque ajuda na elaboração de hipóteses gerais a 

partir dos dados coletados, contrastando com estudos direcionados nos quais 

hipóteses prévias são testadas. Ela é capaz de separar a informação importante da 

redundante. Para esta análise exploratória é de fundamental importância entender 

que os “scores” fornecem a composição das CPs em relação aos objetos (amostras) 

enquanto os “loadings” fornecem essa mesma composição em relação às variáveis. 

Como as CPs são ortogonais, é possível examinar as relações entre os objetos 

através dos gráficos dos “scores” projetados nas primeiras CPs, e entre as variáveis 

através dos gráficos dos “loadings”. Esses gráficos apresentam informações úteis 

sobre tendências subjacentes e características da estrutura dos dados, tais como, 

agrupamentos de objetos ou variáveis e caracterização dos chamados “outliers”, 

amostras mal comportadas, que não se encaixam no modelo.  O estudo conjunto de 

“scores” e “loadings” permite estimar a influência de cada variável em cada objeto. 

(SENA et al, 2000). 

Para a construção de um modelo de predição o mesmo deve ser validado com 

o objetivo de testar sua capacidade de análise considerando portando o número de 

fatores a ser utilizado no modelo, ou seja, seu numero de componentes principais, e a 

detecção de “outliers”, que são amostras que se apresentam fora do padrão do 

modelo, consideradas anômalas. Para a detecção destas amostras outliers é utilizada 

duas grandezas complementares, “leverage”, que é uma medida da influência desta 

amostra no modelo de regressão, e o “residual” onde amostras com alto resíduo de 

Student também são consideradas mal modeladas. 

Amostras com alto “residual” e baixo “leverage” provavelmente tem algum erro 

no valor da concentração e amostras com alto “residual” e “leverage” devem sempre 

ser excluídas da calibração. 

O processo de calibração estará completo e o modelo adequado quando a 

equação selecionada responder com melhores resultados, com baixos erros de 
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predição, “standard error of prediction” (SEP) e maior r² (coeficiente da 

determinação).  

 

 

4. Materiais e métodos 

 

 4.1. Amostras de solo 

 

As amostras de solo são provenientes de quatro diferentes localidades, totalizando 

em 361. Todas foram previamente secas, maceradas e passadas em peneira de 0,5 

mm. Elas estão agrupadas em: 

 

1. amostras de solo do Quênia: o experimento foi conduzido em 3 áreas distintas 

do país, com diferentes tipos de cultivo e vegetação nativa como referência, 

coletados em profundidades de 0 a 2,5, 2,5 a 5, 5 a 10, 10 a 20 e 20 a 30 cm. 

2. amostras de solo de São Carlos: o experimento foi conduzido em vasos, em 

casa de vegetação, com solo proveniente da Fazenda Canchin, em São 

Carlos, SP, Brasil e foram submetidos a diferentes doses de quatro compostos 

orgânicos, de origem agroindustrial e urbana, coletados em profundidades de 

5, 15 e 30 cm. 

3. amostras de solo de Cabrália Paulista: o experimento foi conduzido na ETEC 

Astor de Mattos Carvalho, em Cabrália Paulista, SP, Brasil e foram submetidas 

a tratamentos com dosagens distintas de efluente tratado por biodigestor 

anaeróbio instalado no mesmo local, coletados em profundidades de 0 a 10, 10 

a 20, 20 a 40, 40 a 60, 60 a 80, 80 a 100 cm. 

4. amostras de solo do Peru: o experimento foi conduzido em 6 áreas distintas do 

país, com diferentes tipos de cultivo e vegetação, coletados em profundidades 

de 0 a 2,5, 2,5 a 5, 5 a 10, 10 a 20 e 20 a 30 cm. 

 

Abaixo é possível observar a característica dos solos pertencentes às quatro 

localidades: 
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Tabela 2: amostras de solo do Quênia 

Local Grupo Cultivo/Tratamento Amostras 

Quênia  Área 1 Floresta 1 a 15 

   Chá 16 a 30 

   Café + Eucalipto 31 a 45 

   Café + Eucalipto 46 a 60 

  Área 2 Vegetação Natural 61 a 75 

   Rotação 1 76 a 90 

  Área 3 Rotação 2 91 a 105 

    Vegetação Natural 106 a 120 

 

Tabela 3: amostras de solo de São Carlos 

Local Grupo Cultivo/Tratamento Amostras 

São Carlos L1 

composto de podas de 

árvore 

L1-

5,15,30 

  L2 

composto de podas de 

árvore + esterco bovino 

L2-

5,15,30 

  L3 

composto de podas de 

árvore + bagaço de laranja 

L3-

5,15,30 

  L4 

composto de podas de 

árvore + torta de filtro 

L4-

5,15,30 

  Mineral adubação mineral Mineral  

  Testemunha sem adubação 

 

Testem~1  

 

 

 

Tabela 4: amostras de solo de Cabrália Paulista 

Local Grupo Cultivo/Tratamento Amostras 

Cabrália 

Paulista 
PP pré-plantio 

pp010, 

pp1020, 

pp2040, 

pp4060, 

pp6080, 

pp80100 
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  TEST irrigação com água 

test010, 

test1020, 

test2040, 

test4060, 

test6080, 

test80~1 

  AM 
irrigação com água e 

adubação mineral 

am010, 

am1020, 

am2040, 

am4060, 

am6080, 

am80~1 

  EE 

irrigação com efluente 

tratado de esgoto em 

dosagem equivalente 

ee010, 

ee1020, 

ee2040, 

ee4060, 

ee6080, 

ee80~1 

  E50 

irrigação com efluente 

tratado de esgoto com 50% 

acima da dose recomendada 

e50-010, 

e50-1020, e50-

2040, e50-

4060, e50-

6080, e50-80~1 

  E100 

irrigação com efluente 

tratado de esgoto com 100% 

acima da dose recomendada 

e100-010, 

e100-1~1, 

e100-2~1, 

e100-4~1, 

e100-6~1, 

e100-8~1 

  CS 
cultivo de citrus sem 

irrigação do efluente 

cs010, 

cs1020, 

cs2040, 

cs4060, 

cs6080, cs80~1 

  CC 
cultivo de citrus com 

irrigação do efluente 

cc010, 

cc1020, 

cc2040, 

cc4060, 

cc6080, cc80~1 
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Tabela 5: amostras de solo do Peru 

Local Grupo Cultivo/Tratamento Amostras 

Peru Área 1 Milho 
a1 a  

a20 

    Azeitona 
a21 a 

 a30 

  Área 2 Pastagem 
a31 a  

a48 

    Batata 
a49 a  

a53 

    Pastagem 
a54 a  

a63 

    Uva 
a64 a  

a78 

  Área 3 Abacate 
a79 a 

 a93 

    Pastagem 
a94 a 

a108 

  Área 4 Café 
a109 a 

a124 

    Mata 
a125 a 

a135 

  Área 5 Rotação 1 
a136 a 

a149 

    Rotação 2 
a150 a 

a163 

    Rotação 3 
a164 a 

a178 

  Área 6 Turfas 
a179 a 

189 

 

 

 4.2. Espectroscopia de Infravermelho próximo – NIRS 

 

Em “vials” com 1 cm de diâmetro, foi adicionado aproximadamente 1 g de cada 

amostra (~ 1 cm de altura). As leituras ocorreram no espectrômetro de infravermelho 

próximo da marca PERKIN ELMER, modelo Spectrum 100N, pertencente à Embrapa 
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Instrumentação. Foram obtidos os espectros, com 64 varreduras, de 10.000 a 4.000 

cm-1, com resolução espectral de 16 cm-1. 

 

 4.3. Calibração do modelo 

 

A calibração do modelo de quantificação de carbono em solos foi realizada no 

software Spectrum Quant+, adicionando os espectros obtidos por NIRS e os teores 

de carbono real obtidos por análise elementar no instrumento de CHN, ajustado por 

regressão PLS1, com correção de base por primeira derivada (5 pontos), retirando o 

intervalo com elevado ruído de 10000 a 9800 cm-1. Foram eliminadas quatro 

amostras outliers, 22, 06, 08 e 26, representando 1,53% do total. O número de 

componentes principais utilizado no gráfico foi de 28. 

 

 

5. Resultados e discussão 

  

A partir da calibração do modelo se obteve o valor de correlação (r²), de 

99,74%, entre a porcentagem específica de carbono inserida e a porcentagem 

estimada, como é observado na figura 5. Esta correlação é considerada um ótimo 

resultado de calibração, retornando respostas de predição muito próximas aos 

valores específicos das amostras de carbono analisadas. 
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Figura 5: Carbono estimado vs carbono especificado 

 

A figura 6 mostra a linha limite dada pela regressão multivariada e todos os 

valores acima da linha paralela ao eixo x são considerados outliers. Como algumas 

amostras outliers já foram retiradas do modelo, a nova calibração respondeu com 

bons resultados, não apresentando amostras anômalas.  
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Figura 6: Representação do “Standard Leverage” 

 

 

A figura 7 apresenta a linha limite do espectro de absorbância que pode ser 

caracterizado pela regressão. Picos acima da linha paralela ao eixo x são 

considerados anômalos, e como se observa neste gráfico não há discrepâncias na 

calibração do modelo. 
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Figura 7: Variable Leverage 

 

Na figura 8, são analisadas as componentes principais, PC0 vs PC1. É possível 

observar o perfil dos resultados para cada componente principal, revelando 

tendências e agrupamentos. São observados 3 agrupamentos, com uma grande 

distinção das respostas da concentração de carbono pelas componentes principais. A 

análise da PC1 retorna resultados a partir de características comuns estimadas entre 

as amostras, portanto estes agrupamentos podem mostrar tendências quanto a 

concentração da substância estudada das amostras de solo. 
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Figura 8: Análise de componentes principais. PC0 vs PC1, grupos e tendências no modelo. 

 

As figuras 9, 10 e 11 revelam os três agrupamentos, A B e C, focados 

separadamente. Pode ser observado uma maior homogeneidade na distribuição 

espacial das amostras nas figuras 10 e 11. Quanto à origem das amostras, na figura 

9, onde é apresentado o agrupamento A, há uma grande concentração de amostras 

provenientes de solos do Quênia, onde sub-agrupamentos são encontrados devido a 

grande variedade nas características dos solos analisados, tanto na concentração de 

carbono como nas propriedades físico-químicas, além de estarem submetidos a 

diferentes tipos de culturas agrícolas. Na figura 10, onde é apresentado o 

agrupamento B, são encontrados as amostras de solo de São Carlos, submetidas aos 

diferentes tipos de adubação com resíduos agrícolas, que são observados em um 

próximo ao eixo y, no sub-agrupamento B-1. Já o sub-agrupamento central do gráfico 

tem origem nas amostras do Peru, que como as amostras do Quênia apresentam 

uma diversidade grande em características individuais e quantidade de carbono. Na 

figura 11, onde é apresentado o agrupamento C são encontradas as amostras de 

solo de Cabrália Paulista, tratadas com efluente em diferentes concentrações. 

A 

Agrupamento A 

Agrupamento B 

Agrupamento C 
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 Figura 9: Agrupamento A em PC0 vs PC1. 
 
 
 
 
 

 
Figura 10: Agrupamento B em PC0 vs PC1.  

Sub-agrupamento B-1 

Sub-agrupamento B-2 
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Figura 11: Agrupamento C em PC0 vs PC1.  

 

Na figura 12 são analisadas a primeira e segunda componentes principais, PC2 

vs PC1. Juntas, apresentam uma variância de 67,28%. É possível observar diversos 

agrupamentos, D, E e F na modelação, mostrando tendências de separação em 

outros modelos, ou identificando novos valores necessários para construir grupos. 

Esta resposta do gráfico da primeira componente principal versus a segunda 

componente revela tendências entre as amostras quanto a similaridade dos espectros 

e sua correlação estatística, respondendo quanto as características particulares das 

amostras, a partir da calibração da substância analisada. 

 

C 
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Figura 12: PC1 vs PC2, agrupamentos para possíveis divisões do modelo. 

 
Pode ser observada na figura 13, a distribuição aleatória residual. Esta análise revela 

amostras com alto resíduo de Student, portanto quando estas apresentam grande 

valor no eixo “residual” devem ser excluídas da calibração. Neste procedimento 

nenhuma amostra foi considerada anômala a tendência do modelo. 

 

Agrupamento D 
Agrupamento E 

Agrupamento F 
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Figura 13: Distribuição residual. 

 

A figura 14 representa o resíduo de Student versus “leverage”. Este resultado da 

calibração responde apresentando pontos que podem ser considerados outliers na 

modelagem. Amostras com alto valores de resíduo, ultrapassando a reta paralela ao 

eixo x podem conter erros da concentração de carbono estimada e amostras 

apresentadas acima da reta paralela ao eixo y e x devem ser excluídas do modelo, 

pois são consideradas anômalas. Neste processo de calibração não foi observado 

nenhum dos casos acima, portanto as amostras representam alta correlação pela 

calibração PLS.  
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Figura 14: Avaliação de Outliers. 

 

Para validação da metodologia foram escolhidas ao acaso 49 de 361 amostras, 

13,5% do total, retiradas uma por vez do modelo e utilizando a ferramenta de 

predição (Predict) no software Spectrum Quant+. Assim encontraram-se os valores 

estimados de carbono pelo modelo de regressão, que foram comparados aos valores 

reais de carbono, inseridos na calibração. Foi feita então uma análise matemática, 

como mostra a tabela 6. 

 

Tabela 6: Análise estatística do erro da estimativa de carbono no modelo de regressão 

 

 Média erro % 5,88 

Erro maximo % 32,64 

Erro mínimo % 0,15 

Desvio médio erro  4,17 

Desvio padrão erro 5,78 

% amostras analisadas 13,50 
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Tabela 7: Cálculo da porcentagem de erro da estimativa de carbono no modelo de regressão. 

Amostras 
%C 

modelo 
%C 

referência 
Erro [erro] %erro 

85 0,80 0,71 -0,0954 0,09 13,54 
6 19,26 14,52 -4,74 4,74 32,64 

Cc010 1,13 1,03 -0,10 0,10 10,03 
e50-80~1 0,32 0,39 0,07 0,07 18,20 
Pp2040 0,68 0,60 -0,08 0,08 13,94 

A17 1,35 1,52 0,17 0,17 11,22 
A37 0,72 0,80 0,08 0,08 10,01 

Das 49 amostras submetidas a análise de correlação do valor estimado e 

específico apenas 7 apresentaram erros maiores que 10%, e a média de erro na 

resposta estimada de carbono é de 5,8%, Observa-se que amostras com 

concentrações muito baixas e muito altas de carbono apresentam os maiores erros 

na correlação, como nas amostras 85, 6, cc010, e50-80~1, pp2040, a17, a37, com 

respectivos erros de 0,80%, 19,26%, 1,13%, 0,32%, 0,68%, 1,34%, 0,72%, Isto 

provavelmente se deve a necessidade de maior inserção de amostras com similares 

características ao modelo, ou propondo a divisão em sub-modelos, calibrando o 

modelo separadamente de acordo com tendências de agrupamento ou características 

similares dos solos, em relação a quantidade de carbono, tornando assim o modelo 

mais robusto e preciso,  Nas baixas concentrações o erro tende a ser maior, pois 

estão próximas ao limite de medição do equipamento de análise elementar,  

 Na figura 15 é representada a porcentagem de carbono estimado pelo modelo 

e seus respectivos erros de calibração e na figura 16 um comparativo da 

porcentagem de erro entre a concentração de carbono específico e estimado, em 

relação a média total da porcentagem de erro no grupo amostral estudado,  
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Figura 15: Quantidades de carbono (%) estimados pelo modelo  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 16: Erro no carbono estimado em comparação ao valor de referência (%), 
 

 A calibração multivariada, PLS, do grupo amostral estudado, analisando a 

concentração de carbono, retornou boas respostas de correlação a partir de dados 

inseridos da espectroscopia de infravermelho próximo (NIRS), O modelo se mostrou 

robusto, simples e confiável, como é observado a partir dos resultados da média de 

erro de predição apresentada na tabela 6,  
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 Os gráficos representados pelas análises matemáticas e estatísticas 

mostraram ótimas respostas de calibração, como baixa quantidade de pontos outliers, 

grande homogeneidade da influência individual na modelação, correlação entre a 

concentração de carbono e específica próxima a 100%, componentes principais 

relevando tendências, grupos e sub-grupos, baixos resíduos de Student e capacidade 

de analisar e relacionar amostras de solo com distintas características, de diferentes 

origens e com concentrações de carbono variadas, 

  

 

6. Conclusão 

 

 O desenvolvimento do modelo de quantificação de carbono dos solos, a partir 

da espectroscopia de infravermelho próximo com apoio da regressão estatística PLS, 

respondeu ser uma ferramenta conveniente de predição, Os resultados obtidos com a 

calibração multivariada retornaram altos valores de correlação entre as medidas 

específicas e os dados estimados, 

 O fato de o modelo ter sido construído a partir de um banco de amostras de 

solo com grande variedade em relação a sua origem, suas propriedades, ao tipo de 

cultura e tratamento que foram submetidas e sua concentração de carbono, torna-o 

robusto e passível a menores erros nas estimativas, 

 Portanto, o estudo realizado mostra como são grandes as possibilidades do 

NIRS no desenvolvimento de novas técnicas de predição de carbono, abrindo novos 

caminhos para sua análise rápida, com baixo custo e precisa, Adicionalmente é 

possível também ampliar o uso do equipamento em laboratório, expandindo e 

disseminando a tecnologia com seu uso portátil, que deverá conclusivamente ser uma 

importante ferramenta de quantificação e caracterização dos aportes de carbono no 

ecossistema terrestre,  
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