
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

LUCAS FERNANDO COLLOCA

Desenvolvimento de software para análise
da dinâmica longitudinal de aeronaves

SÃO CARLOS
2019

LUCAS FERNANDO COLLOCA

Desenvolvimento de software para análise da dinâmica longitudinal de
aeronaves

Monografia apresentada ao Curso de Engenharia
Aeronáutica, da Escola de Engenharia de São

Carlos da Universidade de São Paulo, como
parte dos requisitos para obtenção do tı́tulo

de Engenheiro Aeronáutico.

Orientador: Prof. Dr. Jorge Henrique Bidinotto

VERSÃO CORRIGIDA

São Carlos
2019

1

2

3

4

5

RESUMO
COLLOCA, L. F. Desenvolvimento de software para análise da dinâmica longitudinal de

aeronaves. 2019. Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de
São Carlos, Universidade de São Paulo, São Carlos, 2019.

Esse trabalho visa implementar leis de controle do movimento longitudinal de aeronaves,
utilizando a linguagem de programação Python versão 3.7.2. O projeto consiste de um mo-
delo matemático, no espaço de estados, que descreve as leis de controle em forma matricial,
cujas equações estão relacionadas por meio de relações diferenciais de primeira ordem. Por
fim, constrói-se um código computacional para implementar as equações que descrevem o mo-
vimento longitudinal de aeronaves.

Palavras-chave: 1. Python. 2. Longitudinal. 3. Matricial.

6

7

Glossário

Arquivo .exe: um arquivo executável usado em sistemas operacionais para abrir programas
de software.

Curto perı́odo: oscilação amortecida em torno do eixo lateral y.

Fugóide: movimento oscilatório do C.G. da aeronave em torno de uma linha de referência.

numpy: biblioteca Python para operações matemáticas.

Pitch: rotação em torno do eixo lateral y.

Prompt de Comando: um interpretador de linha de comando.

Python: linguagem de programação.

Roll: rotação em torno do eixo longitudinal x.

Script: um conjunto de instruções para que uma função seja executada.

tkinter: biblioteca Python para construção de interfaces gráficas do usuário.

Yaw: rotação em torno do eixo normal z.

8

Sı́mbolos

A matriz de estado

B matriz de input

C matriz constante

D matriz constante

g aceleração da gravidade local

h altitude da aeronave

i número imaginário

I matriz identidade

Iy momento de inércia no eixo lateral y

m massa da aeronave

q velocidade angular

t instante de tempo

u(t) matriz de entrada

uk ganho da entrada degrau

Ue velocidade linear no eixo longitudinal x

V matriz de autovetores

V0 velocidade inicial da aeronave

We velocidade linear no eixo normal z

x(t) matriz de estados

y(t) matriz de saı́da

∆u variação de velocidade linear Ue

∆w variação de velocidade linear We

ζ taxa de amortecimento

9

η efeito do profundor

θ ângulo de Pitch

θe ângulo Pitch de equilı́brio

λ autovalor

Λ matriz de autovalores

ν autovetor

τ efeito da propulsão

ω frequência natural não amortecida

10

11

Sumário

1 Introdução 14

2 Modelo Matemático de Movimento Longitudinal 15
2.1 Sistema de Referência . 15
2.2 Equações . 15

2.2.1 Matriz de Estado A . 16
2.2.2 Matriz de input B . 17
2.2.3 Matrizes C e D . 18

2.3 Autovalores e Autovetores . 18
2.3.1 Cálculo dos autovalores . 18
2.3.2 Cálculo dos autovetores . 19

2.4 Frequência Natural Não Amortecida e Taxa de Amortecimento 20
2.4.1 Movimento de Curto Perı́odo . 20
2.4.2 Movimento de Fugóide . 20

2.5 Entrada Degrau . 21
2.6 Entrada Impulso Unitário . 22
2.7 Acréscimo da Resposta de Altitude . 22

3 Código em Python 24
3.1 Interface Gráfica do Usuário . 24

3.1.1 Seleção da Aeronave . 24
3.1.2 Seleção do Tipo de Entrada . 28
3.1.3 Intervalo de Tempo de Análise . 28
3.1.4 Opções para os Resultados . 29

3.2 Compilando o Código . 31

4 Validação 34

5 Conclusões 35

6 Anexos 36
6.1 Controlador.py . 36
6.2 Calculos.py . 41

7 Bibliografia 53

Lista de Figuras

1 Sistema de Referência. Fonte: Bibliografia [1] 15
2 Ângulo Pitch θe de Equilı́brio. Fonte: Bibliografia [1] 17
3 Interface Gráfica do Usuário. Fonte: Autor . 24
4 Local de Armazenamento dos Arquivos de Texto. Fonte: Autor 25
5 Arquivo de Texto com os Dados da Aeronave F-104 Starfighter (unidades no

Sistema Inglês). Fonte: Autor . 26
6 Arquivo de Texto com os Dados da Aeronave B747-100 (unidades no Sistema

Inglês). Fonte: Autor . 27

12

7 Aeronaves Disponı́veis no Software. Fonte: Autor 27
8 Entradas Degrau e Impulso Unitário. Fonte: Autor 28
9 Intervalo de Tempo Padrão de 100 s. Fonte: Autor 28
10 Eixo das Abscissas de 100 s. Fonte: Autor . 29
11 Todos os Resultados em uma Mesma Janela. Fonte: Autor 30
12 Prompt de Comando. Fonte: Autor . 31
13 Comando cd. Fonte: Autor . 31
14 Comando pyinstaller --onefile Controlador.py. Fonte: Autor 32
15 Término da Compilação. Fonte: Autor . 32
16 Pasta dist. Fonte: Autor . 32
17 Arquivo .exe. Fonte: Autor . 33
18 Resultado do software. Fonte: Autor . 34
19 Resultado da bibliografia [I]. Fonte: Bibliografia [I] 35

Lista de Tabelas

1 Relação entre Derivadas Longitudinais - Matriz A. Fonte: Bibliografia [1] . . . 16
2 Relação entre Derivadas Longitudinais - Matriz B. Fonte: Bibliografia [1] . . . 18

13

1 Introdução

O emprego de métodos computacionais vem se mostrando crescente na indústria, sendo
que a tendência é que se perpetue, levando em conta o ganho de eficiência no que se refere
à otimização de tempo e minimização de erros. Nesse contexto, Python é uma linguagem de
programação de alto nı́vel e open source, cujo uso tem aumentado consideravelmente no âmbito
da engenharia.

Dessa maneira, é desenvolvido um software em Python voltado para usuários que desejam
fazer uma análise da dinâmica de movimento longitudinal de aeronaves. O software fornece,
em gráficos, 5 resultados:

- Variação de velocidade longitudinal Ue;
- Variação de velocidade normal We;
- Velocidade angular q;
- Ângulo de pitch θ ;
- Altitude h.

Além dos resultados acima, são dados de saı́da do software, tanto para os movimentos de
curto perı́odo como o de fugóide, a frequência natural não amortecida ω e a taxa de amorteci-
mento ζ .

14

2 Modelo Matemático de Movimento Longitudinal

O objetivo desta seção é trazer uma explicação das equações utilizadas para descrever o mo-
vimento longitudinal de aeronaves. Como referência, foram utilizados os métodos registrados
na bibliografia [1].

Inicia-se com o detalhamento do sistema de referência utilizado.

2.1 Sistema de Referência
O sistema de referência é ilustrado na figura 1, sendo que a convenção de sinais segue o

sentido dos eixos lineares (x, y e z) e de rotação (Roll, Pitch e Yaw):

Figura 1: Sistema de Referência. Fonte: Bibliografia [1]

2.2 Equações
As equações em espaço de estados, que descrevem um sistema linear e dinâmico, são dadas

abaixo:

ẋ(t) = Ax(t)+Bu(t) (1)

y(t) =Cx(t)+Du(t) (2)

As matrizes x(t), u(t) e y(t) são as matrizes de estados, de entrada e de saı́da, respectiva-
mente.

Já as matrizes A, B, C e D são matrizes de constantes, caracterı́sticas de cada aeronave. A
seguir são detalhadas essas matrizes.

15

2.2.1 Matriz de Estado A

A matriz A possui dimensão 4x4 e é dada em termos das derivadas de estabilidade longitu-
dinal, que são caracterı́sticas de cada aeronave, na forma concisa:

A =


xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0



A relação entre as derivadas longitudinais nas formas concisa e dimensional é mostrada na
tabela 1.

Forma Concisa Forma Dimensional Forma Concisa Forma Dimensional

xu
Xu

m
+

XẇZu

m(m−Zẇ)
xq

Xq−mWe

m
+

(Zq +mUe)Xẇ

m(m−Zẇ)

zu
Zu

m−Zẇ
zq

Zq +mUe

m−Zẇ

mu
Mu

Iy
+

ZuMẇ

Iy(m−Zẇ)
mq

Mq

Iy
+

(Zq +mU ˙e)Mẇ

Iy(m−Zẇ)

xw
Xw

m
+

XẇZw

m(m−Zẇ)
xθ −gcos(θe)−

Xẇgsin(θe)

m−Zẇ

zw
Zw

m−Zẇ
zθ

−mgsin(θe)

m−Zẇ

mw
Mw

Iy
+

ZwMẇ

Iy(m−Zẇ)
mθ

−Mẇmgsin(θe)

Iy(m−Zẇ)

Tabela 1: Relação entre Derivadas Longitudinais - Matriz A. Fonte: Bibliografia [1]

Dessa posse da tabela 1, considerando o ângulo pitch θe de equilı́brio (figura 2) e pequenas
perturbações γe, tem-se:

- a velocidade linear Ue, dada por Ue =V0 cos(θe), onde V0 é a velocidade da aeronave;

- A velocidade linear We, dada por We =V0 sin(θe).

16

Figura 2: Ângulo Pitch θe de Equilı́brio. Fonte: Bibliografia [1]

As derivadas longitudinais na forma dimensional serão os inputs fornecidos pelo usuário,
no software.

2.2.2 Matriz de input B

A matriz B possui dimensão 4x2, originalmente:

B =


xη xτ

zη zτ

mη mτ

0 0



Nesse projeto, despreza-se os termos xτ , zτ e mτ , relacionados aos efeitos de propulsão.
Assim, a matriz B resulta em uma matriz 4x1, tal que:

B =


xη

zη

mη

0



Analogamente à matriz A, a relação entre as derivadas longitudinais nas formas concisa e
dimensional é mostrada na tabela 2.

17

Forma Concisa Forma Dimensional

xη

Xη

m
+

XẇZη

m(m−Zẇ)

zη

Zη

m−Zẇ

mη

Mη

Iy
+

MẇZη

Iy(m−Zẇ)

Tabela 2: Relação entre Derivadas Longitudinais - Matriz B. Fonte: Bibliografia [1]

2.2.3 Matrizes C e D

Para o caso do presente trabalho, as matrizes C e D são dadas por:

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



D =


0
0
0
0



2.3 Autovalores e Autovetores
O cálculo dos autovalores e autovetores é necessário para a obtenção das caracterı́sticas do

movimento longitudinal de uma aeronave. Tais valores vêm da equação 3, caracterı́stica da
matriz de estado A:

∆(λ) = |λ I−A| (3)

Onde λ são os autovalores e I é a matriz identidade.

2.3.1 Cálculo dos autovalores

Obtém-se os autovalores de A zerando-se a equação caracterı́stica 3:

|λ I−A|= 0 (4)

As soluções λi da equação 4 são os autovalores de A. Para o caso do projeto, como a matriz
A possui dimensão 4x4, obtém-se 4 autovalores complexos conjugados 2 a 2:

18

λ1 = a+bi (5)

λ2 = a−bi (6)

λ3 = c+di (7)

λ4 = c−di (8)

Com o objetivo de efetuar as operações em forma matricial, cria-se a matriz de autovalores
Λ de dimensão 4x4:

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4



2.3.2 Cálculo dos autovetores

Os autovetores vi (v1, v2, v3, v4), de dimensão 4x1, são correspondentes de cada autovalor
λi, satisfazendo a equação 9:

Avi = λivi (9)

Dessa forma, tem-se que:

[λiI−A]vi = 0 (10)

Os autovetores vi são linearmente independentes.
A matriz de autovetores V , de dimensão 4x4, é formada pelas transpostas dos autovetores

vi:

V =


vT

1
vT

2
vT

3
vT

4


Para o cálculo dos autovetores vi, considerando as matriz Λ de autovalores e V de autoveto-

res, tem-se a equação matricial 11, oriunda da equação 9:

AV =V Λ (11)

O que resulta em uma relação de similaridade:

V−1AV = Λ (12)

Assim, as matrizes A e Λ são similares. Matrizes similares possuem a propriedade de seus
autovalores serem iguais. Assim sendo, os autovalores de A são iguais aos de Λ.

Conforme a bibliografia [I], os autovetores vi são determinados pela relação 13 abaixo, em
função da matriz adjunta Adj:

vi = Ad j[λiI−A] (13)

19

2.4 Frequência Natural Não Amortecida e Taxa de Amortecimento
O comportamento dinâmico do movimento longitudinal de uma aeronave pode ser caracte-

rizado em termos de vários parâmetros, dentre eles:
- Frequência Natural Não Amortecida, calculada tanto para o movimento de curto perı́odo

(ωsp) como para o de fugóide (ωph);
- Taxa de Amortecimento, calculada tanto para o movimento de curto perı́odo (ζsp) como

para o de fugóide (ζph).

Para o caso de um sistema dinâmico subamortecido, a taxa de amortecimento ζ satisfaz a
condição 0 < ζ < 1. Nessa situação, os autovalores do sistema serão complexos conjugados 2
a 2, conforme a subseção 2.3.1.

Nas subseções 2.4.1 e 2.4.2 a seguir, faz-se o estudo do cálculo desses dois parâmetros, tanto
para o movimento de curto perı́odo como para o de fugóide, respectivamente.

2.4.1 Movimento de Curto Perı́odo

Nesse caso, para um perı́odo mı́nimo, tem-se a máxima frequência. Portanto, a frequência
natural não amortecida ωsp é dada pelo máximo valor dentre os módulos das partes imaginárias
dos autovalores:

ωsp = max(|Im(λ1)|, |Im(λ2)|, |Im(λ3)|, |Im(λ4)|) (14)

Para os valores de ωsp e λi que satisfazem a relação 14, a taxa de amortecimento ζsp é dada
em função da parte real de λi e de ωsp:

ζsp =
|Real(λi)|

ωsp
(15)

2.4.2 Movimento de Fugóide

Nesse caso, tem-se a mı́nima frequência. Portanto, a frequência natural não amortecida ωph
é dada pelo mı́nimo valor dentre os módulos das partes imaginárias dos autovalores:

ωph = min(|Im(λ1)|, |Im(λ2)|, |Im(λ3)|, |Im(λ4)|) (16)

Para os valores de ωph e λi que satisfazem a relação 16, a taxa de amortecimento ζph é dada
em função da parte real de λi e de ωph:

ζph =
|Real(λi)|

ωph
(17)

São fornecidas aos usuários do software duas opções de entradas no profundor da aeronave:
- Entrada degrau de magnitude a: uma função que possui valor constante e igual a a para

instantes de tempo t ≥ 0 e valor nulo para t < 0;
- Entrada impulso unitário: uma função em forma de pulso retangular de área unitária. No

limite, a base do retângulo é um intervalo de tempo infinitesimal, que tende a zero, e sua altura
tende ao infinito.

Os métodos matemáticos utilizados para cada uma das entradas acima são detalhados nas
subseções 2.5 e 2.6.

20

2.5 Entrada Degrau
Conforme a bibliografia [I], para uma entrada degrau de ganho constante (em graus), de-

notada por uk, aplicada no instante t0 = 0, a resposta da aeronave y(t) a essa entrada é dada
por:

y(t) =CVeΛt [V−1x(0)+Λ
−1V−1Buk]− [CA−1B−D]uk (18)

A matriz exponencial eΛt é formada pelos autovalores λi da matriz A:

eΛt =


eλ1t 0 0 0
0 eλ2t 0 0
0 0 eλ3t 0
0 0 0 eλ4t


Onde eλ t = e(a+bi)t = eate(bi)t .

Para um número e(bi)t , tem-se a relação:

e(bi)t = cos(bt)+ isin(bt)

E o número e(a+bi)t pode ser escrito como:

e(a+bi)t = eat [cos(bt)+ isin(bt)] (19)

Portanto, a matriz eΛt será implementada em Python de acordo com os valores de autovalo-
res λi a seguir:

eλ1t = eat [cos(bt)+ isin(bt)] (20)

eλ2t = eat [cos(bt)− isin(bt)] (21)

eλ3t = ect [cos(dt)+ isin(dt)] (22)

eλ4t = ect [cos(dt)− isin(dt)] (23)

Considerando condições iniciais nulas (x(0) = 0) e as já definidas matrizes C e D da seção
2.2.3, a resposta à entrada degrau resulta em:

y(t) =VeΛt [Λ−1V−1Buk]− [A−1B]uk (24)

A matriz de saı́da y(t) é uma matriz de dimensão 4x1. Cada linha da mesma fornece 4
respostas, que ajudam a descrever o movimento longitudinal de uma aeronave:

y(t) =


∆u(t)
∆w(t)
q(t)
θ(t)


21

Assim, por exemplo, caso deseja-se obter o ângulo de pitch θ em um determinado instante
de tempo t, toma-se a 4a linha da matriz y(t).

2.6 Entrada Impulso Unitário
Conforme a bibliografia [I], a resposta longitudinal a uma entrada do tipo impulso unitário,

y(t), é dada pela expressão 25:

y(t) =CVeΛtV−1[x(0)+B] (25)

Considerando condições iniciais nulas (x(0) = 0) e a já definida matriz C da seção 2.2.3, a
resposta à entrada impulso unitário resulta em:

y(t) =VeΛtV−1B (26)

Analogamente ao caso da entrada degrau, a matriz y(t) é uma matriz de dimensão 4x1 que
fornece as 4 saı́das:

y(t) =


∆u(t)
∆w(t)
q(t)
θ(t)



2.7 Acréscimo da Resposta de Altitude

Da bibliografia [I], para pequenas perturbações, a variação de altitude ḣ no tempo é dada
pela expressão 27, sendo que foi considerado o sistema de referência da figura 1. Portanto,
soma-se ∆w, ao invés de subtrair:

ḣ =Ueθ −We +∆w (27)

Na condição de pequenas perturbações, pode-se considerar Ue ≈ V0 e We ≈ 0. Portanto, a
relação final de ḣ pode ser aproximada para a expressão 28:

ḣ =V0θ +∆w (28)

Para encontrar o valor da altitude h(t) em um instante de tempo t, de posse de ḣ(t), desenvolve-
se a expressão da derivada da altitude h:

22

ḣ =
dh
dt

(29)

dh = ḣdt (30)

Para um intervalo de tempo infinitesimal ∆t, faz-se a aproximação dt ≈ ∆t, tal que dh≈ ∆h:

∆t = ti+1− ti (31)

∆h = hi+1−hi (32)

Das relações 30, 31 e 32:

hi+1−hi = ḣ(ti+1− ti) (33)

hi+1 = hi + ḣ(t)(ti+1− ti) (34)

Assim, de 34 e 28, em um instante t = ti+1 a altitude da aeronave h(t) = hi+1 é dada por:

hi+1 = hi +[V0θ(ti+1)+∆w(ti+1)](ti+1− ti) (35)

23

3 Código em Python

O procedimento seguido pelo código consiste de duas partes:
- Script Controlador.py: interface gráfica do usuário, onde os dados de entrada são selecio-

nados;
- Script Calculos.py: implementação do modelo matemático construı́do na seção 2, a partir

dos inputs fornecidos na primeira parte. As cinco variáveis (∆u, ∆w, q, θ e h) e os parâmetros ω

e ζ serão os outputs do software. Para maximizar a velocidade de processamento dos cálculos,
utiliza-se a biblioteca numpy.

3.1 Interface Gráfica do Usuário
A interface gráfica foi programada em Controlador.py (anexo), usando a biblioteca tkinter.

O resultado é mostrado na figura 3.

Figura 3: Interface Gráfica do Usuário. Fonte: Autor

Ao usuário, é permitido selecionar:
- a aeronave a ser analisada;
- o tipo de entrada (no caso da entrada degrau é permitido entrar com um ganho diferente de

1o);
- o intervalo de tempo de análise (eixo das abscissas dos gráficos), em segundos;
- a opção de mostrar todos as respostas em uma única janela, ou gerar as respostas em jane-

las separadas.

3.1.1 Seleção da Aeronave

Para esse projeto foram colhidos os dados de 2 aeronaves, a saber:
- F-104 Starfighter: seus dados aerodinâmicos de estabilidade e controle (figura 5) foram

retirados da bibliografia [1];

24

- B747-100: seus dados aerodinâmicos de estabilidade e controle (figura 6) foram retirados
da bibliografia [2].

Os arquivos de texto estão salvos na pasta Aeronaves, conforme a figura 4. Esse endereço
foi programado na segunda parte do código.

Figura 4: Local de Armazenamento dos Arquivos de Texto. Fonte: Autor

25

Figura 5: Arquivo de Texto com os Dados da Aeronave F-104 Starfighter (unidades no Sistema
Inglês). Fonte: Autor

Nesse caso, para a condição de número de Mach = 0.8 e altitude h = 0, tem-se, em unidades
no Sistema Inglês:

- as derivadas de estabilidade na forma dimensional (subseções 2.2.1 e 2.2.2, para as com-
ponentes ∆u, ∆w, q e η do profundor), por serem as fornecidas nas bibliografias [I] e [II];

- os demais inputs (g, m, Iy, θe e V0).

A forma de preenchimento dos arquivos de texto deve seguir exatamente o modelo da figura
5, para que a segunda parte do código consiga interpretar esses dados.

26

Figura 6: Arquivo de Texto com os Dados da Aeronave B747-100 (unidades no Sistema Inglês).
Fonte: Autor

A figura 7 mostra as aeronaves disponı́veis no software.

Figura 7: Aeronaves Disponı́veis no Software. Fonte: Autor

27

3.1.2 Seleção do Tipo de Entrada

O usuário consegue optar por um dos dois tipos de entrada, Degrau ou Impulso Unitário
(figura 8). Conforme a escolha, os métodos descritos nas seções 2.5 e 2.6, respectivamente,
serão executados no script anexo Calculos.py.

Figura 8: Entradas Degrau e Impulso Unitário. Fonte: Autor

3.1.3 Intervalo de Tempo de Análise

O usuário pode escolher o intervalo de tempo em que a análise é feita. Para o valor padrão
de 100 s, o eixo das abscissas mostra esse intervalo, conforme as figuras 9 e 10.

Figura 9: Intervalo de Tempo Padrão de 100 s. Fonte: Autor

28

Figura 10: Eixo das Abscissas de 100 s. Fonte: Autor

3.1.4 Opções para os Resultados

Após clicar no botão Calcular (figura 8), ao usuário é permitido visualizar, além dos parâmetros
ω e ζ , todos os resultados (∆u, ∆w, q, θ e h) em uma mesma janela (figura 11), ou mostrá-los
separadamente.

Caso o usuário escolher a opção Variação de velocidade longitudinal da figura 9, por exem-
plo, o resultado segue conforme a figura 10.

29

Figura 11: Todos os Resultados em uma Mesma Janela. Fonte: Autor

30

3.2 Compilando o Código
Há duas maneiras de executar o código implementado:
- executando o script Controlador.py diretamente no software Python;
- compilando-o para executá-lo em um arquivo .exe.

Para compilar o código no sistema operacional Windows 7, procede-se abrindo o prompt de
comando, conforme ilustrado na figura 12.

Figura 12: Prompt de Comando. Fonte: Autor

Em seguida, é preciso entrar com o comando cd e o caminho correspondente, conforme a
figura 13:

Figura 13: Comando cd. Fonte: Autor

No caso da figura 13 tem-se o caminho da pasta Program, mas o mesmo pode ser adaptado
para o caso desejado.

Após o comando cd, digita-se o comando pyinstaller --onefile Controlador.py, onde o termo
Controlador.py é o nome do script.

31

Figura 14: Comando pyinstaller --onefile Controlador.py. Fonte: Autor

Aguardar a compilação do código até que a mesma finalize, conforme a figura 15.

Figura 15: Término da Compilação. Fonte: Autor

O arquivo .exe estará na pasta dist, conforme as figuras 16 e 17.

Figura 16: Pasta dist. Fonte: Autor

32

Figura 17: Arquivo .exe. Fonte: Autor

33

4 Validação

Para validar os resultados do software, considera-se a análise do ângulo de Pitch, tanto para
o software (figura 18) como para a bibliografia [I] (figura 19):

Figura 18: Resultado do software. Fonte: Autor

34

Figura 19: Resultado da bibliografia [I]. Fonte: Bibliografia [I]

Conclui-se que os resultados de ângulos de Pitch coincidem, além da frequência natural não
amortecida e da taxa de amortecimento, conforme a bibliografia [I], que fornece:

ωsp(rad/s) = 2.1644 (36)

ζsp = 0.206 (37)

ωph(rad/s) = 0.1474 (38)

ζph = 0.1126 (39)

5 Conclusões

O uso da linguagem de programação Python mostra-se eficiente para efetuar operações ma-
temáticas, visto que com o advento da biblioteca numpy a velocidade de processamento de
cálculos aumentou significativamente. Além disso, os resultados fornecidos pelo software são
condizentes com os demonstrados na bibliografia [I].

Assim sendo, tem-se uma linguagem gratuita e de código aberto que pode ser uma alterna-
tiva às ferramentas já existentes.

35

6 Anexos

As duas partes do código (Controlador.py e Calculos.py) estão registradas nas subseções 6.1
e 6.2, respectivamente.

6.1 Controlador.py

Biblioteca "tkinter" - desenvolve interfaces grficas do usurio
from tkinter import *
import tkinter as tk
import tkinter.ttk

Vetor com as aeronaves disponveis
options_airplane = ["F-104 Starfighter","B747-100"]

Vetor com as entradas disponveis
options_input = ["Degrau","Impulso Unitrio"]

Caractersticas da janela
root = Tk()
root.title("Controlador de Movimento Longitudinal") #Ttulo
root.geometry("770x390") #Dimenses

#cone da janela - arquivo "Logo.gif"
icon = PhotoImage(file="C:/Users/Lucas_Fernando/Desktop/Estudos/"+
"TCC/Logo.gif")
root.tk.call(’wm’, ’iconphoto’, root._w, icon)

Formataes de texto utilizadas
fonte_titulo = ("Times New Roman","25","bold")
fontePadrao = ("Times New Roman", "12","bold")

Ttulo de entrada
Opo "anchor="w"" fixa a posio do objeto a esquerda

36

titulo = Label(root, font=fonte_titulo, text="Dados de Entrada",
anchor="w")

Opo "sticky=W" alinha as caixas de texto esquerda
#Comandos "row" e "column" definem, respectivamente, quais as
#linhas e colunas de determinado objeto
titulo.grid(row=0, column=1, sticky=W)
root.grid_columnconfigure(0, minsize=200)

Selecionar aeronave
selec_aeronave = Label(root, font=fontePadrao,
text="Selecione a aeronave: ", anchor="w")
selec_aeronave.grid(row=2, column=0, sticky=W)

#Criar varivel para usar os valores do vetor "options_airplane"
variable_airplane = StringVar(root)

#Valor padro - primeiro elemento do vetor "options_airplane"
variable_airplane.set(options_airplane[0])

#Criar lista dropdown com as aeronaves disponveis
aeronave = OptionMenu(root, variable_airplane, *options_airplane)
aeronave.grid(row=2, column=1, sticky=W)

Selecionar o tipo de entrada
selec_input = Label(root, font=fontePadrao,
text="Selecione o tipo de entrada: ", anchor="w")
selec_input.grid(row=3, column=0, sticky=W)

#Criar varivel para usar os valores do vetor "options_input"
variable_input = StringVar(root)

#Valor padro - primeiro elemento do vetor "options_input"
variable_input.set(options_input[0])

Funo para mostrar/ocultar opo do ganho de entrada degrau,
#caso essa opo for a selecionada
def opcao_degrau(choice):

if choice == "Degrau":
valor_degrau.grid()
texto_degrau.grid()

else:
valor_degrau.grid_remove()
texto_degrau.grid_remove()

37

#Criar lista dropdown com as entradas disponveis
input_1 = OptionMenu(root, variable_input, *options_input,
command=opcao_degrau)
input_1.grid(row=3, column=1, sticky=W)

#Criar varivel de mostrar/ocultar texto de ganho da entrada Degrau
mostrar_ocultar_texto_degrau = StringVar(root)
mostrar_ocultar_texto_degrau.set("Ganho (graus): ")

#Criar varivel de mostrar/ocultar caixa de input de ganho da
#entrada Degrau
mostrar_ocultar_valor_degrau = StringVar(root)

#Valor padro = 1
mostrar_ocultar_valor_degrau.set("1")

texto_degrau = Label(root, font=fontePadrao,
textvariable = mostrar_ocultar_texto_degrau)
texto_degrau.grid(row=3, column=2)

#Criar caixa de texto para valor de ganho da entrada Degrau
valor_degrau = Entry(root, font=fontePadrao, justify="center",
textvariable = mostrar_ocultar_valor_degrau)
valor_degrau.grid(row=3, column=3, sticky=W)

Intervalo de tempo analisado
informar_tempo = Label(root, font=fontePadrao,
text="Informe o intervalo de tempo (s): ", anchor="w")
informar_tempo.grid(row=4, column=0)

#Criar varivel para configurar o intervalo de tempo
intervalo_tempo = StringVar(root)

#Valor padro = 100
intervalo_tempo.set("100")

#Criar caixa de texto para valor de intervalo de tempo
valor_tempo = Entry(root, font=fontePadrao, justify="center",
bd=2, textvariable = intervalo_tempo)
valor_tempo.grid(row=4, column=1, sticky=W)

Interface grfica
titulo_traco = Label(root, font=fonte_titulo,
text="_______________", anchor="w")

38

titulo_traco.grid(row=9, column=1, sticky=W)

#Ttulo de Sada
titulo = Label(root, font=fonte_titulo, text="Gerar Resultados",
anchor="w")
titulo.grid(row=10, column=1, sticky=W)

#Criar varivel de sada
option_selected = StringVar()

#Valor padro = 1
option_selected.set("1")

Funo "gerar_grafico()" - aciona o script "Calculos.py"
def gerar_grafico():

import Calculos

Executar funo "gerar_resultados" do script "Calculos.py"
Calculos.gerar_resultados(variable_airplane.get(),
variable_input.get(),mostrar_ocultar_valor_degrau.get(),
intervalo_tempo.get(),option_selected.get())

Funo "gerar_opcoes_resultados()"
def gerar_opcoes_resultados():

#Cada valor atribudo sua respectiva opo ser usado no
#script "Calculos.py"
#Atribuir valor = 1 opo
result_all = Radiobutton(root, text="Todos os resultados",
value="1", var=option_selected)
result_all.grid(row=13, column=0, sticky=W)

#Atribuir valor = 2 opo
result_u = Radiobutton(root,
text="Variao de velocidade longitudinal", value="2",
var=option_selected)
result_u.grid(row=14, column=0, sticky=W)

#Atribuir valor = 3 opo
result_w = Radiobutton(root,
text="Variao de velocidade normal", value="3",
var=option_selected)
result_w.grid(row=15, column=0, sticky=W)

#Atribuir valor = 4 opo
result_q = Radiobutton(root, text="Velocidade angular",
value="4", var=option_selected)
result_q.grid(row=16, column=0, sticky=W)

39

#Atribuir valor = 5 opo
result_teta = Radiobutton(root, text="ngulo de pitch",
value="5", var=option_selected)
result_teta.grid(row=17, column=0, sticky=W)

#Atribuir valor = 6 opo
result_h = Radiobutton(root, text="Altitude", value="6",
var=option_selected)
result_h.grid(row=18, column=0, sticky=W)

#Criar boto "OK" - aciona a funo "gerar_grafico", com o
#valor da opo j escolhida pelo usurio
button = Button(root, font=fontePadrao,text="OK",
command=gerar_grafico, background = "gray")
button.grid(row=15, column=1, sticky=W)

#Criar boto "Calcular" - aciona a funo "gerar_opcoes_resultados"
button = Button(root, font=fontePadrao,text="Calcular",
command=gerar_opcoes_resultados)
button.grid(row=12, column=0, sticky=W)

root.mainloop() #Encerrar loop de interface grfica

40

6.2 Calculos.py

import os #Usado para concatenar
#diretrios
from collections import defaultdict #Ler arquivo de texto
import numpy as np # Funes matemticas em geral,
#como operaes bsicas com matrizes
from numpy import linalg as LA #Obteno de autovalores e
#autovetores de uma matriz
import math #Pacote de operaes
#matemticas. No caso, o uso de nmeros complexos
import matplotlib.pyplot as plt #Pacote para plotagem de
#grficos
from matplotlib import pyplot as PLT #Permite plotar vrios
#grficos em uma mesma janela

Funo que executa o modelo matemtico de movimento longitudinal
def

gerar_resultados(name_file,tipo_entrada,valor_entrada,intervalo_tempo,
resultado_escolhido):

#Converter o valor de intervalo de tempo de tipo texto
("string") para um tipo numrico (nmero real "float")
intervalo_tempo_final = float(intervalo_tempo)

#Concatenar o nome do arquivo de texto (oriundo de
#"Controlador.py") com a expresso ".txt"
name_file_final = name_file + ".txt"

#Ler dados numricos da aeronave escolhida, a partir dos dados
#do arquivo de texto
path_mine = os.path.join(r"C:/Users/Lucas_Fernando/Desktop/"+
"Estudos/TCC/Aeronaves/", name_file_final)
file_mine = open(path_mine,"r")
data_mine = defaultdict(str)
for line in file_mine:

final_data = line.strip().split("=")
data_mine[final_data[0].strip()] = final_data[1].strip()

g = float(data_mine[’g’])
m = float(data_mine[’m’])
I_y = float(data_mine[’I_y’])
teta_0 = float(data_mine[’teta_e’])
h_0 = float(data_mine[’h_0’])

41

u_0 = float(data_mine[’V_0’])
X_u = float(data_mine[’X_u’])
X_w = float(data_mine[’X_w’])
X_w_ponto = float(data_mine[’X_w_ponto’])
X_q = float(data_mine[’X_q’])
X_eta = float(data_mine[’X_eta’])
Z_u = float(data_mine[’Z_u’])
Z_w = float(data_mine[’Z_w’])
Z_w_ponto = float(data_mine[’Z_w_ponto’])
Z_q = float(data_mine[’Z_q’])
Z_eta = float(data_mine[’Z_eta’])
M_u = float(data_mine[’M_u’])
M_w = float(data_mine[’M_w’])
M_w_ponto = float(data_mine[’M_w_ponto’])
M_q = float(data_mine[’M_q’])
M_eta = float(data_mine[’M_eta’])

U_e = u_0*math.cos(teta_0) #velocidade linear no eixo
#longitudinal x
W_e = u_0*math.sin(teta_0) #velocidade linear no eixo
#normal z

#Matriz (4x4) A (em termos das derivadas na forma dimensional)
A = np.matrix([[(X_u/m)+(X_w_ponto*Z_u/(m*(m-Z_w_ponto))),
(X_w/m)+(X_w_ponto*Z_w/(m*(m-Z_w_ponto))),
((X_q-(m*W_e))/m)+((Z_q+(m*U_e))*X_w_ponto/(m*(m-Z_w_ponto))),
(-g*math.cos(teta_0))-
(X_w_ponto*g*(math.sin(teta_0))/(m-Z_w_ponto))],
[Z_u/(m-Z_w_ponto),Z_w/(m-Z_w_ponto),(Z_q+(m*U_e))/(m-Z_w_ponto),
(-m*g*math.sin(teta_0))/(m-Z_w_ponto)],
[(1/I_y)*(M_u+((M_w_ponto*Z_u)/(m-Z_w_ponto))),
(1/I_y)*(M_w+((M_w_ponto*Z_w)/(m-Z_w_ponto))),
(1/I_y)*(M_q+(M_w_ponto*(Z_q+(m*U_e))/(m-Z_w_ponto))),
(-M_w_ponto*m*g*math.sin(teta_0))/(I_y*(m-Z_w_ponto))],
[0,0,1,0]])

#Autovalores e autovetores de A, respectivamente
autovalores, autovetores = LA.eig(A)

#Obter elementos da matriz de autovalores
#Curto Perodo
lambda_s = autovalores[0]
lambda_s_conj = autovalores[1]

#Fugide
lambda_p = autovalores[2]
lambda_p_conj = autovalores[3]

42

#Inversa da matriz dos autovetores
autovetores_inv = np.linalg.inv(autovetores)

#Inversa da matriz A
A_inv = np.linalg.inv(A)

Curto Perodo
#Frequncia natural no amortecida (rad/s)
ws_sp = max(abs(lambda_s.imag),abs(lambda_p.imag))

if ws_sp == abs(lambda_s.imag):
#Taxa de amortecimento
ratio_sp = abs(lambda_s.real)/ws_sp

if ws_sp == abs(lambda_p.imag):
#Taxa de amortecimento
ratio_sp = abs(lambda_p.real)/ws_sp

#Fugide
#Frequncia natural no amortecida (rad/s)
ws_ph = min(abs(lambda_s.imag),abs(lambda_p.imag))

if ws_ph == abs(lambda_s.imag):
#Taxa de amortecimento
ratio_ph = abs(lambda_s.real)/ws_ph

if ws_ph == abs(lambda_p.imag):
#Taxa de amortecimento
ratio_ph = abs(lambda_p.real)/ws_ph

#Matriz (4x1) B (em termos das derivadas na forma dimensional)
B = np.matrix([[(X_eta/m)+(X_w_ponto*Z_eta/(m*(m-Z_w_ponto)))],
[Z_eta/(m-Z_w_ponto)],
[(M_eta/I_y)+(M_w_ponto*Z_eta/(I_y*(m-Z_w_ponto)))],
[0]])

43

#Matriz (4x4) identidade I
I = np.matrix([[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]])

#Construir matriz (4x4) de autovalores
autovalores_44 = np.matrix([[lambda_s,0,0,0],
[0,lambda_s_conj,0,0],
[0,0,lambda_p,0],
[0,0,0,lambda_p_conj]])

#Inverter matriz de autovalores
autovalores_44_inv = np.linalg.inv(autovalores_44)

Operaes finais
#Mult1
a = np.matmul(autovalores_44_inv,autovetores_inv)
mult1 = np.matmul(a,B)

#Mult2
mult2 = np.matmul(A_inv,B)

Definir as matrizes de resultados
resultados_u = [] #Matriz de resultados u
resultados_w = [] #Matriz de resultados w
resultados_q = [] #Matriz de resultados q
resultados_teta = [] #Matriz de resultados
resultados_h = [] #Matriz de resultados h

#Intervalo de tempo discretizado em n pontos
n=5000
tt = np.linspace(0,intervalo_tempo_final, n)

#Valor de cada intervalo de tempo
delta_t = (intervalo_tempo_final-0)/(n-1)

44

#Criar objeto para criao de grficos
fig = PLT.figure()

Construir um loop que calcula as variveis de interesse em
#intervalos discretizados de tempo
for t in tt:

#Matriz eˆ(lambda*t)
e_lambda_t = np.matrix([[math.exp((lambda_s.real)*t)*
(math.cos((lambda_s.imag)*t)+
(math.sin((lambda_s.imag)*t))*1j),0,0,0],
[0,math.exp((lambda_s_conj.real)*t)*
(math.cos((lambda_s_conj.imag)*t)+
(math.sin((lambda_s_conj.imag)*t))*1j),0,0],
[0,0,math.exp((lambda_p.real)*t)*
(math.cos((lambda_p.imag)*t)+
(math.sin((lambda_p.imag)*t))*1j),0],
[0,0,0,math.exp((lambda_p_conj.real)*t)*
(math.cos((lambda_p_conj.imag)*t)+
(math.sin((lambda_p_conj.imag)*t))*1j)]])

#Ve_lambda
Ve_lambda_t = np.matmul(autovetores,e_lambda_t)

#Para a entrada degrau
Ve_lambda_tmult1 = np.matmul(Ve_lambda_t,mult1)

#Para a entrada impulso unitrio
mult3 = np.matmul(Ve_lambda_t,autovetores_inv)

Se a entrada for a Degrau
if tipo_entrada == "Degrau":

#Converter o valor da entrada degrau de tipo "string"
#para um tipo numrico "float"
valor_degrau_final = float(valor_entrada)

#Vetor de resultados
y_t = valor_degrau_final*np.subtract(Ve_lambda_tmult1,mult2)

Variao de velocidade longitudinal (u) - primeira
#linha de y_t
#Para esse clculo, o ngulo de step convertido de
#graus para radianos
resultados_u.append((math.pi/180)*y_t[0].real)

45

Variao de velocidade normal (w) - segunda linha de
#y_t
#Para esse clculo, o ngulo de step convertido de
#graus para radianos
resultados_w.append(-(math.pi/180)*y_t[1].real)

#Velocidade angular (q) - terceira linha de y_t
#Para esse clculo, o ngulo de step convertido de
#graus para radianos
resultados_q.append((math.pi/180)*y_t[2].real)

#ngulo de pitch () - em graus - quarta linha de y_t
resultados_teta.append(y_t[3].real)

#Altitude (h)
#Derivada da altitude
h_ponto=u_0*(math.pi/180)*y_t[3].real +
(math.pi/180)*y_t[1].real

#Altitude final
if len(resultados_h) == 0:

resultados_h.append(h_0)
else:

resultados_h.append(resultados_h[-1] +
(h_ponto*delta_t))

Se a entrada for a Impulso Unitrio
if tipo_entrada == "Impulso Unitrio":

#Vetor de resultados
y_t = np.matmul(mult3,B)

Variao de velocidade longitudinal (u) -
#primeira linha de y_t
resultados_u.append(y_t[0].real)

Variao de velocidade normal (w) - segunda linha de
#y_t
resultados_w.append(-y_t[1].real)

#Velocidade angular (q) - terceira linha de y_t
resultados_q.append(y_t[2].real)

#ngulo de pitch () - quarta linha de y_t
resultados_teta.append(y_t[3].real)

#Altitude (h)#

46

#Derivada da altitude
h_ponto=u_0*y_t[3].real + y_t[1].real

#Altitude final
if len(resultados_h) == 0:

resultados_h.append(h_0)
else:

resultados_h.append(resultados_h[-1] +
(h_ponto*delta_t))

Exibio grfica
#Exibir todos os resultados
#Valor "1" da funo "gerar_opcoes_resultados()" do script
#"Controlador.py"
if resultado_escolhido == "1":

#Grfico Velocidade Longitudinal u
resultado_final_u = np.array(resultados_u).ravel() #Ajustar
#a matriz para um vetor
ax1 = fig.add_subplot(5,2,1)
ax1.plot(tt,resultado_final_u)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Variao de velocidade longitudinal Δu’)

#Ttulo do grfico
plt.xlabel(’Tempo (s)’) #Eixo x
plt.ylabel(’Δu (ft/s)’) #Eixo y
man = plt.get_current_fig_manager()
man.canvas.set_window_title("Resultados") #Ttulo da janela
#dos grficos
man.window.wm_iconbitmap("C:/Users/Lucas_Fernando/Desktop/"+
"Estudos/TCC/logo.ico") #cone da janela

#Dados de amortecimento
#Curto Perodo
plt.annotate(’Curto Perodo’, weight = "bold",
xy=(1.2, -3.5), xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {sp}$ = " + "%.2f" % ws_sp + " rad/s",
xy=(1.2, -3.8), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{sp}$ = " +
"%.2f" % ratio_sp,
xy=(1.2, -4.1), xycoords=’axes fraction’)

#Fugide
plt.annotate(’Fugide’, weight = "bold", xy=(1.2, -4.6),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {ph}$ = " + "%.2f" % ws_ph + " rad/s",

47

xy=(1.2, -4.9), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{ph}$ = " +
"%.2f" % ratio_ph,
xy=(1.2, -5.2), xycoords=’axes fraction’)

#Grfico Velocidade Normal w
resultado_final_w = np.array(resultados_w).ravel()
ax2 = fig.add_subplot(5,2,2)
ax2.plot(tt,resultado_final_w)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Variao de velocidade normal Δw’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’Δw (ft/s)’)

#Grfico Velocidade Angular q
resultado_final_q = np.array(resultados_q).ravel()
ax3 = fig.add_subplot(5,2,5)
ax3.plot(tt,resultado_final_q)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Velocidade angular q’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’q (rad/s)’)

#Grfico de Pitch
resultado_final_teta = np.array(resultados_teta).ravel()
ax4 = fig.add_subplot(5,2,6)
ax4.plot(tt,resultado_final_teta)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’ngulo de pitch ’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’ (graus)’)

#Grfico de Altitude h
resultado_final_h = np.array(resultados_h).ravel()
ax5 = fig.add_subplot(5,2,9)
ax5.plot(tt,resultado_final_h)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Altitude h’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’h (ft)’)

PLT.show() #Comando para mostrar os grficos

Variao de velocidade longitudinal (u)
#Valor "2" da funo "gerar_opcoes_resultados()" do script
#"Controlador.py"
if resultado_escolhido == "2":

resultado_final_u = np.array(resultados_u).ravel()
ax = fig.add_subplot(2,1,1)

48

ax.plot(tt,resultado_final_u)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Variao de velocidade longitudinal Δu’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’Δu (ft/s)’)
plt.plot(tt,resultado_final_u)
man = plt.get_current_fig_manager()
man.canvas.set_window_title("Resultado")
man.window.wm_iconbitmap("C:/Users/Lucas_Fernando/"+
"Desktop/Estudos/TCC/logo.ico")

#Dados de amortecimento
#Curto Perodo
plt.annotate(’Curto Perodo’, weight = "bold", xy=(0, -0.5),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {sp}$ = " + "%.2f" % ws_sp + " rad/s",
xy=(0, -0.62), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{sp}$ = " +
"%.2f" % ratio_sp,
xy=(0, -0.72), xycoords=’axes fraction’)

#Fugide
plt.annotate(’Fugide’, weight = "bold", xy=(0, -1.0),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {ph}$ = " + "%.2f" % ws_ph + " rad/s",
xy=(0, -1.12), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{ph}$ = " +
"%.2f" % ratio_ph,
xy=(0, -1.22), xycoords=’axes fraction’)

plt.show()

Variao de velocidade normal (w)
#Valor "3" da funo "gerar_opcoes_resultados()" do script
#"Controlador.py"
if resultado_escolhido == "3":

resultado_final_w = np.array(resultados_w).ravel()
ax = fig.add_subplot(2,1,1)
ax.plot(tt,resultado_final_w)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Variao de velocidade normal Δw’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’Δw (ft/s)’)
plt.plot(tt,resultado_final_w)
man = plt.get_current_fig_manager()
man.canvas.set_window_title("Resultado")
man.window.wm_iconbitmap("C:/Users/Lucas_Fernando/"+
"Desktop/Estudos/TCC/logo.ico")

49

#Dados de amortecimento
#Curto Perodo
plt.annotate(’Curto Perodo’, weight = "bold", xy=(0, -0.5),

xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {sp}$ = " + "%.2f" % ws_sp + " rad/s",
xy=(0, -0.62), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{sp}$ = " +
"%.2f" % ratio_sp,
xy=(0, -0.72), xycoords=’axes fraction’)

#Fugide
plt.annotate(’Fugide’, weight = "bold", xy=(0, -1.0),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {ph}$ = " + "%.2f" % ws_ph + " rad/s",
xy=(0, -1.12), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{ph}$ = " +
"%.2f" % ratio_ph,
xy=(0, -1.22), xycoords=’axes fraction’)

plt.show()

Variao de velocidade angular (q)
#Valor "4" da funo "gerar_opcoes_resultados()" do script
#"Controlador.py"
if resultado_escolhido == "4":

resultado_final_q = np.array(resultados_q).ravel()
ax = fig.add_subplot(2,1,1)
ax.plot(tt,resultado_final_q)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Velocidade angular q’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’q (rad/s)’)
plt.plot(tt,resultado_final_q)
man = plt.get_current_fig_manager()
man.canvas.set_window_title("Resultado")
man.window.wm_iconbitmap("C:/Users/Lucas_Fernando/"+
"Desktop/Estudos/TCC/logo.ico")

#Dados de amortecimento
#Curto Perodo
plt.annotate(’Curto Perodo’, weight = "bold", xy=(0, -0.5),

xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {sp}$ = " + "%.2f" % ws_sp + " rad/s",
xy=(0, -0.62), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{sp}$ = " +
"%.2f" % ratio_sp,

50

xy=(0, -0.72), xycoords=’axes fraction’)

#Fugide
plt.annotate(’Fugide’, weight = "bold", xy=(0, -1.0),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {ph}$ = " + "%.2f" % ws_ph + " rad/s",
xy=(0, -1.12), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{ph}$ = " +
"%.2f" % ratio_ph,
xy=(0, -1.22), xycoords=’axes fraction’)

plt.show()

Variao de velocidade angular ()
#Valor "5" da funo "gerar_opcoes_resultados()" do script
#"Controlador.py"
if resultado_escolhido == "5":

resultado_final_teta = np.array(resultados_teta).ravel()
ax = fig.add_subplot(2,1,1)
ax.plot(tt,resultado_final_teta)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’ngulo de pitch ’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’ (graus)’)
plt.plot(tt,resultado_final_teta)
man = plt.get_current_fig_manager()
man.canvas.set_window_title("Resultado")
man.window.wm_iconbitmap("C:/Users/Lucas_Fernando/"+
"Desktop/Estudos/TCC/logo.ico")

#Dados de amortecimento
#Curto Perodo
plt.annotate(’Curto Perodo’, weight = "bold", xy=(0, -0.5),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {sp}$ = " + "%.2f" % ws_sp + " rad/s",
xy=(0, -0.62), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{sp}$ = " +
"%.2f" % ratio_sp,
xy=(0, -0.72), xycoords=’axes fraction’)

#Fugide
plt.annotate(’Fugide’, weight = "bold", xy=(0, -1.0),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {ph}$ = " + "%.2f" % ws_ph + " rad/s",
xy=(0, -1.12), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{ph}$ = " +
"%.2f" % ratio_ph,

51

xy=(0, -1.22), xycoords=’axes fraction’)

plt.show()

#Altitude (h)
#Valor "6" da funo "gerar_opcoes_resultados()" do script
#"Controlador.py"
if resultado_escolhido == "6":

resultado_final_h = np.array(resultados_h).ravel()
ax = fig.add_subplot(2,1,1)
ax.plot(tt,resultado_final_h)
plt.grid(b=True, which=’major’, linestyle=’-’)
plt.title(’Altitude h’)
plt.xlabel(’Tempo (s)’)
plt.ylabel(’h (ft)’)
plt.plot(tt,resultado_final_h)
man = plt.get_current_fig_manager()
man.canvas.set_window_title("Resultado")
man.window.wm_iconbitmap("C:/Users/Lucas_Fernando/"+
"Desktop/Estudos/TCC/logo.ico")

#Dados de amortecimento
#Curto Perodo
plt.annotate(’Curto Perodo’, weight = "bold", xy=(0, -0.5),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {sp}$ = " + "%.2f" % ws_sp + " rad/s",
xy=(0, -0.62), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{sp}$ = " +
"%.2f" % ratio_sp,
xy=(0, -0.72), xycoords=’axes fraction’)

#Fugide
plt.annotate(’Fugide’, weight = "bold", xy=(0, -1.0),
xycoords=’axes fraction’)
plt.annotate("Frequncia natural no amortecida: " +
" $_ {ph}$ = " + "%.2f" % ws_ph + " rad/s",
xy=(0, -1.12), xycoords=’axes fraction’)
plt.annotate("Taxa de amortecimento: " + "$_{ph}$ = " +
"%.2f" % ratio_ph,
xy=(0, -1.22), xycoords=’axes fraction’)

plt.show()

52

7 Bibliografia

[I] COOK, Michael V. Flight Dynamics Principles: A linear systems approach to aircraft
stability and control. 2ed. Oxford: Elsevier. 2007.

[II] ETKIN, Bernard; REID, Lloyd. Dynamics of Flight: Stability and Control. 3ed. Nova
Iorque: John Wiley e Sons. 1996.

[III] Site da comunidade online de programação: https://stackoverflow.com/

53

