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RESUMO

POLICARPO, V. A. Análise de datasets para a detecção de veículos em
imagens aéreas com algoritmos de deep learning e aplicação para a cidade de
São Carlos. 2021. 67p. Monografia (Trabalho de Conclusão de Curso) - Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2021.

Este trabalho tem como objetivo o estudo da detecção de veículos terrestres em imagens
aéreas adquiridas por VANTs, em diferentes cenários, fazendo uso de algoritmos de
aprendizagem profunda. Para isso, replicou-se um algoritmo de detecção em datasets
distintos e avaliou-se os desempenhos das redes neurais treinadas. Ainda, neste trabalho,
foi desenvolvido um dataset novo para a cidade de São Carlos, o SCAID (São Carlos
Aerial Images Dataset), em que foram elaboradas, manualmente, a detecção dos veículos
para classificação, a fim de analisar a aplicação de modelos já treinados em cenários
distintos. Em virtude disso, treinou-se novamente os modelos pré-treinados, com o novo
dataset, a fim de realizar uma transferência da aprendizagem, de modo a avaliar a eficácia
do método. Como resultado, obteve-se uma melhora do desempenho da rede neural na
identificação de veículos nas imagens, ocorrendo isso, tanto para o dataset da cidade de
São Carlos, quanto para imagens aéreas randômicas de veículos adquiridas por VANTs,
quando comparados aos modelos somente replicados, indicando que a performance do
algoritmo pode ser aprimorada com um dataset menor para aplicações específicas dado
um modelo já existente.

Palavras-chave: Visão computacional. Deep learning. Robótica. VANT. Detecção de
veículos.





ABSTRACT

POLICARPO, V. A. Analysis of datasets for the detection of vehicles in aerial
images with deep learning algorithms and application to the city of São
Carlos. 2021. 67p. Monograph (Conclusion Course Paper) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2021.

This work looks for study the detection of ground vehicles in aerial images acquired by
UAVs, in different environments, using deep learning algorithms. To this end, a detection
algorithm was replicated in different datasets and the performance of the trained neural
networks was evaluated. Furthermore, in this work, a new dataset was developed for
the city of São Carlos, Brazil, the SCAID (São Carlos Aerial Images Dataset), in which
the detection of vehicles for classification was done manually, in order to analyze the
application of models already trained in different scenarios. Therefore, the pre-trained
models were trained again with the new dataset, in order to perform a transfer learning
that allows to evaluate the effectiveness of the method. As a result, it was obtained an
improvement of the neural network performance in the identification of vehicles in the
aerial images, occurring this, both for the dataset of the city of São Carlos, and for random
vehicles aerial images acquired by UAVs, when compared to the only replicated models,
indicating that the algorithm performance can be improved with a smaller dataset for
specific applications given an existing model.

Keywords: Computer vision. Deep learning. Robotics. UAV. Vehicle detection.
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1 INTRODUÇÃO

Neste capítulo serão introduzidos os motivos que acarretaram na realização deste
trabalho, apresentando exemplos de uso geral das imagens aéreas e suas aplicações na
área de estudo. Após isso, destacar-se-á os objetivos esperados a serem atingidos durante
o desenvolvimento do trabalho e a estrutura organizacional do mesmo.

1.1 Motivação

Nos dias atuais, com o amplo desenvolvimento da tecnologia, o acesso a veículos
aéreos não tripulados (VANTs), ou popularmente chamados de drones, tem se expandido e
consequentemente, a aquisição de imagens aéreas para diferentes fins tem se popularizado,
uma vez que a capacidade atual permite a obtenção de um elevado número de imagens
com alta qualidade.

Em vista disso, dada a facilidade de acesso dessas ferramentas a locais, antes, de
difícil alcance e de permitir o monitoramento, não mais de modo estacionário, mas de forma
móvel, os VANTs tem sido empregados em diferentes aplicações, como o monitoramento
de plantações para agricultura de precisão, conforme apresentado por (ZHANG; KOVACS,
2012); para a verificação e auxílio de cenários de desastres e resgates; ou ainda, mais
recentemente, para monitoramento em cenário urbano, com a inspeção da condições de
estruturas ou vigilância do tráfego, por exemplo. Estas duas últimas aplicações presentes
em (YAO; QIN; CHEN, 2019), em que destacam-se também, a flexibilidade dos drones
para a utilização com diferentes sensores acoplados.

Posto isso, auxiliado ao desenvolvimento de métodos computacionais para iden-
tificação e classificação de imagens, com o decorrer do tempo, a utilização de machine
learning e, nos dias atuais, de deep learning para aplicações utilizando imagens aéreas
tem aumentado. Em (CARRIO et al., 2017) e (LI et al., 2018), são apresentadas técnicas
utilizando essas ferramentas para o sensoriamento de aplicações como citadas no pará-
grafo anterior, assim como dificuldades encontradas na implementação destas ferramentas,
algumas como sendo a pouca quantidade de imagens já classificadas para treinamento
(datasets) em comparação a outras aplicações utilizando visão computacional. Uma solução
proposta é o emprego de modelos pré-treinados, em que é realizado uma transferência do
aprendizado (transfer learning) de um dataset com mais dados para um dataset menor,
para aplicações específicas.

Em vista disso, neste trabalho será desenvolvido o estudo da identificação de veículos
terrestres em imagens aéreas. Para isso, serão analisados dois datasets contendo imagens
já classificadas de veículos, em cenários distintos, verificando a qualidade do treinamento e
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dos resultados de detecção. Após isso, estudar-se-á a aplicação dos resultados obtidos em
um novo cenário, com um conjunto de imagens aéreas, obtidas por vídeos disponibilizados
em plataformas de vídeos e capturados por drones, da cidade de São Carlos, em São Paulo,
Brasil. Com base no desempenho, será analisado a melhor aplicação para a identificação
de veículos em um cenário novo.

Exposto isso, este trabalho situa-se em aplicações envoltas em cenários urbanos, em
que é possível realizar um controle de tráfego de veículos e identificar possíveis problemas
no fluxo normal para determinada aplicação, explorando, uma possível comunicação do
VANT com uma central de monitoramento.

Uma vez que a análise realizada é variável a depender da aplicação, pode-se ainda,
aqui, avaliar as informações presentes em imagens aéreas e comparar desempenhos de
acordo com parâmetros, como, por exemplo, a altura e inclinação da câmera na obtenção
dos dados e verificar sua influência no treinamento do algoritmo de deep learning, dado que,
para esse tipo de imagens, surgem dificuldades como dimensão e oclusão na identificação
dos veículos. Nesse contexto, uma vez que as imagens de monitoramento de tráfego,
atualmente, são majoritariamente fixas, em rodovias, por exemplo, pode-se justificar a
utilização de drones para aquisição de imagens com parâmetros distintos de modo a
otimizar o desempenho do modelo treinado.

1.2 Objetivos

Este projeto tem como objetivo principal a análise da viabilidade do emprego de
métodos de deep learning para a detecção de veículos em imagens aéreas utilizando um
cenário sem um dataset predefinido para esta aplicação, a cidade de São Carlos. Para isso,
alguns objetivos secundários a serem alcançados são:

• Replicação do treinamento da rede neural artificial de dois datasets apresentados em
artigos.

• Análise e comparação dos resultados dos treinamentos dos datasets aos parâmetros
originais dos artigos.

• Criação de um dataset menor para a cidade de São Carlos, com a obtenção de
imagens aéreas e detecção manual para treinamento e validação das imagens.

• Treinamento da rede neural artificial para o dataset de São Carlos e transfer learning
utilizando o dataset de melhor desempenho anterior.

• Comparação dos resultados no cenário real.
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1.3 Organização textual

Tendo apresentado, de modo geral, a utilização de drones para detecção de objetos
em imagens e a problemática de seu uso para diferentes condições, além do escopo de estudo
deste trabalho, expõe-se a seguir, uma breve descrição dos capítulos e seus conteúdos.

No capítulo 2, aborda-se, de modo mais detalhado, o desenvolvimento dos VANTs
e seus diferentes tipos e aplicações. Após isso, serão apresentados os algoritmos para
detecção de objetos em imagens, explicando, simplificadamente, a teoria envolta em seu
desenvolvimento, assim como as principais arquiteturas utilizadas. Por fim, será realizada
uma revisão dos trabalhos desenvolvidos no decorrer do tempo para a detecção de veículos
em imagens aéreas.

Ademais, no capítulo 3, aborda-se a metodologia aplicada na elaboração deste
trabalho, apresentando os datasets utilizados, assim como uma breve descrição de seu
conteúdo. Em seguida, será apresentado o algoritmo empregado para treinamento, com
uma explicação de seu funcionamento e parâmetros escolhidos, assim como métricas de
desempenho para avaliação dos resultados. Finalmente, descreve-se a elaboração do dataset
para a cidade de São Carlos, apresentando as etapas envolvidas.

Após isso, no capítulo 4, será apresentado o desempenho dos resultados dos treina-
mentos utilizando os datasets, sendo realizada uma discussão acerca dos possíveis motivos
para tais valores. Em seguida, é realizado o mesmo procedimento para o dataset elaborado.

Por fim, no capítulo 5, elenca-se as principais conclusões obtidas a partir dos
resultados analisados e destaca-se observações para elaborações de trabalhos futuros
visando melhorias.
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2 REVISÃO DA LITERATURA

Neste capítulo será apresentado uma revisão da literatura dos campos abordados
neste trabalho. Para isso, inicialmente, serão estudados o uso de VANTs para obtenção de
imagens para visão computacional. Em seguida, serão discutidos conceitos básicos de deep
learning e suas aplicações em visão computacional para processamento de imagens aéreas.
Por fim, será apresentada a evolução e estudos na área de detecção de veículos terrestres
fazendo uso de imagens aéreas aplicando deep learning.

2.1 VANTs e a aquisição de imagens aéreas

A evolução do uso de veículos aéreos não tripulados nos últimos anos tem decorrido
do avanço da tecnologia envolvida em sua construção, como o desenvolvimento de motores
e seus controladores, da capacidade de suas baterias, dos sensores empregados, como
IMU (Inertial measurement unit) e GNSS (Global Navigation Satellite System), e das
ferramentas de sensoriamento, como câmeras e LiDAR (Light Detection and Ranging).
Entretanto, sua origem precede o século XXI, com a construção de sistemas aéreos não
tripulados para uso na 1ª Guerra Mundial, ainda nos primórdios do século XX.

As primeiras documentações que remetem a esses sistemas são os torpedos aéreos
projetados pela Dayton-Wright Airplane Company, o qual explodiria após um tempo
predeterminado. Ainda, em 1917, tem-se o primeiro voo de um avião automático, o Hewitt-
Sperry Automatic Airplane (Figura 1), uma aeronave torpedo sem piloto, cuja função era
carregar explosivos até um alvo (GONZÁLEZ-JORGE et al., 2017).

Figura 1 – Aeronave automática Hewitt-Sperry Automatic Airplane.

Fonte: (GONZÁLEZ-JORGE et al., 2017).

Após isso, o desenvolvimento continuou nas seguintes guerras, como a 2ª Guerra
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Mundial e a Guerra Fria, sendo os sistemas aéreos não tripulados empregados exclusiva-
mente para usos militares. Somente nas últimas duas décadas, ou seja, já no início do
século XXI, teve-se o surgimento e ampliação do uso civil de veículos aéreos não tripulados,
em virtude do barateamento e acesso a sua tecnologia. Com isso, dada a capacidade de
acesso a lugares remotos e da integração com diferentes sensores, seu uso para aquisição
de dados para sensoriamento remoto tem evoluído constantemente, com uso o de câmeras
para obtenção de imagens e sensores lasers para mapeamento 3D, por exemplo.

Posto isso, os VANTs para uso civil são divididos majoritariamente em duas
categorias com relação a aerodinâmica: com asas fixas e com asas rotativas. Para o
primeiro, as vantagens estão numa arquitetura mais simples e manutenção mais fácil,
aliado a uma maior autonomia de voo e, consequentemente, maior área percorrida durante
um voo; enquanto que o segundo possui um controle mais simples e melhor e apresenta
maior capacidade de carga quando comparado a VANTs de asas fixas (RADOGLOU-
GRAMMATIKIS et al., 2020). Um exemplo de cada VANT está presente na Figura
2.

Figura 2 – Categorias de VANTs com relação à aerodinâmica.

(a) VANTs de asas fixas. (b) VANTs de asas rotativas.

Fonte: Adaptado de (RADOGLOU-GRAMMATIKIS et al., 2020).

2.1.1 Aplicações de VANTs para sensoriamento remoto

Com o desenvolvimento dos VANTs e maior facilidade em seu acesso, diversos
campos de pesquisas envolvendo seu uso se expandiram. Atualmente, uma aplicação
consolidada é a agricultura de precisão, com diversas linhas de pesquisas que visam o
aumento da produtividade e qualidade das plantações, tendo seus estudos iniciados na
década de 2000. A opção pelos VANTs para esse sensoriamento se dá pelo baixo custo
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aliado ao amplo território coberto durante o voo, sendo possível analisar alterações nas
plantações em poucas horas.

Algumas das características analisadas das plantações podem ser a biomassa e a
quantidade de nitrogênio, conforme apresentado em (NÄSI et al., 2018) para a otimização
da fertilização do solo utilizando a integração de aspectos espectrais e 3D, fazendo uso
de câmeras multiespectrais, hiperespectrais e de cores para aquisição dos dados; a cor
da vegetação, comumente utilizada para análise fenotípica, como amarelamento devido a
doenças ou para a contagem de plantas em estágio inicial, abordado em (VARELA et al.,
2018); ou, ainda, a temperatura da vegetação e do solo, discutido em (QUEBRAJO et al.,
2018), em que se apresenta uma análise da temperatura de plantações de beterrabas para
controle de temperatura. Nota-se que a agricultura de precisão pode ir além, envolvendo
também o estudo de florestas e árvores, como apresentado em (WALLACE et al., 2016),
tendo-se o uso de VANTs para medição e monitoramento de propriedades de florestas.

Ademais, outras linhas de pesquisa em ascensão que fazem uso do sensoriamento
por meio de VANTs são aplicações em cenários de desastres e regastes e em monitoramento
urbano. Para o primeiro, tem-se a análise de respostas em situações de emergência,
(WALLACE et al., 2016); monitoramento de desastres naturais, como deslizamento de
terra, apresentado por (LUCIEER; JONG; TURNER, 2014); e avaliação pós-desastres,
em que (BENDEA et al., 2008) discute sobre o emprego de VANTs para análise de regiões
afetadas por desastres.

Para o uso de sensoriamento em cenários urbanos, tem o uso de VANTs devido a
alta dinâmica nesses ambientes, o que requer análise constante durante longos períodos
de tempo e amplas áreas de coberturas. Exemplos de estudos realizados são a análise da
pavimentação em perímetros urbanos, abordado em (BRANCO; SEGANTINE, 2015),
em que são utilizados algoritmos de machine learning para detectar defeitos em ruas; a
análise de rachaduras e defeitos em edifícios e infraestruturas, tratado em (PHUNG et al.,
2017); e o controle de tráfego, abordado em (ZHU et al., 2018), por meio da estimativa da
densidade de tráfego utilizando deep learning com redes neurais artificiais detectando e
contando veículos presentes em imagens captadas por VANTs. Nota-se que este último
trabalho citado possui papel semelhante ao que será desenvolvimento no decorrer deste
projeto, com a detecção de veículos terrestres em imagens aéreas.

2.2 Macinhe Learning e Deep Learning

Expostas as utilizações de VANTs para a aquisição de dados, discute-se, agora,
conceitos gerais sobre machine learning e deep learning, tecnologias muito empregadas
para processamento dessas imagens e utilizadas nesse trabalho.
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2.2.1 Machine learning

Machine learning, ou aprendizado de máquina, se refere a algoritmos que buscam
realizar determinadas tarefas por meio da experiência com resultados anteriores que são
avaliadas de acordo com parâmetros de performance (MITCHELL, 1997). Isso ocorre por
meio da predição de modelos com base em dados de entradas fornecidos pelo usuário, a
experiência, que fornecem informações necessárias para o algoritmo estimar a saída, ou
seja, realizar a tarefa, e com isso, por meio das predições realizadas, pode-se calcular o
erro resultante de modo a fornecer novas experiências ao algoritmo a fim de aprimorar sua
predição. Realizando isso de modo repetitivo, a tendência é de que o resultado seja cada
vez melhor e a predição mais precisa.

Em vista disso, os dados de entrada a serem fornecidos ao algoritmo podem ser
disponibilizados de diferentes modos. Dentre eles, destaca-se o modo de aprendizado
supervisionado, empregado neste trabalho, que visa fornecer dados já classificados, como
por exemplo, o uso de datasets contendo imagens categorizadas e com identificações da
presença ou não de objetos, assim como cada classe para cada objeto (MAHESH, 2020).

Posto isso, dois principais parâmetros de performance de algoritmos de machine
learning são a acurácia, que determina a proporção de exemplos com saídas iguais ao
resultado esperado e a perda, que, de modo oposto, indica a proporção de saídas diferentes
ao esperado.

2.2.2 Deep learning e redes neurais artificiais

Com o desenvolvimento da machine learning, diferentes algoritmos de aprendizado
surgiram, dentre eles, tem-se as redes neurais artificiais (LECUN; BENGIO; HINTON,
2015). Esse algoritmo tem seu nome pela sua semelhança e inspiração na rede neural
humana, em que, têm-se diferentes "neurônios", que são as unidades básicas, conectados,
cada um reagindo a uma ligação entre si de modo a determinar uma saída de acordo com
cada resposta apresentada nas suas conexões. Um exemplo de estrutura está presente na
Figura 3, em que, em verde, estão representados os neurônios de entrada; em amarelo, os
neurônios intermediários; e em vermelho, os neurônios de saída.

Cada neurônio pode ser descrito como um conjunto de parâmetros de aprendizagem
que auxiliam o algoritmo a estimar um resultado para determinada saída (SHANMUGA-
NATHAN, 2016). Sua equação básica é dada por:

y =
nX

i

xi · wi + b, (2.1)

onde y representa a saída do neurônio, xi representa a entrada i do neurônio, wi é
o peso atribuído à entrada i, n são as n entradas do neurônio e b é o bias, uma constante
que não depende do valor dos neurônios anteriores. Ainda, pode-se adicionar uma função
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Figura 3 – Exemplo de uma estrutura de uma rede neural artificial.

Fonte: Elaborado pelo autor.

de ativação a essa equação, a qual altera o valor de saída a depender da função adotada.
Com isso, a estrutura básica de um neurônio pode ser representada como mostrado na
Figura 4, em que f representa a função de ativação.

Figura 4 – Estrutura básica de um neurônio.

Fonte: Elaborado pelo autor.

Ainda, em uma rede neural artificial, é possível colocar diversas camadas inter-
mediárias, chamadas de layers, entre a entrada e a saída, porém, com a adição de novos
neurônios, tem-se o acréscimo de novos parâmetros de aprendizado, tornando a rede mais
complexa e requerendo maior poder computacional para execução.

Posto isso, nos últimos anos, com o aumento do poder de processamento de
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dispositivos eletrônicos, pôde-se desenvolver novas redes neurais artificiais contendo diversas
camadas intermediárias, o que acarretou no surgimento das redes neurais profundas, que
são algoritmos contendo diversas camadas de neurônios. Devido a essa evolução, surgiu a
deep learning ou aprendizado profundo, uma subárea da machine learning voltado para
algoritmos mais complexos e que necessitam de maior poder computacional para sua
execução, mimetizando o sistema nervoso humano, com um elevado números de neurônios.

A deep learning tornou-se muita usada em diferentes problemas envolvendo uma
grande quantidade de dados, como para classificação de objetos, uma vez que apresenta
resultados positivos e amplo desenvolvimento no campo de estudo.

2.2.3 Redes neurais convolucionais

As redes neurais convolucionais, chamadas também de Convolutional Neural
Network (CNN), são redes neurais artificiais no ramo da deep learning, empregados
para identificação de traços e, consequentemente, padrões na figura, chamados de fea-
tures. Sua primeira aplicação com sucesso é apresentada em (LECUN et al., 1998), na
identificação visual de escritas em documentos.

O reconhecimento da imagem utilizando CNN é realizado por meio de, majoritaria-
mente, três camadas: a camada convolucional, a camada de pooling e a camada totalmente
conectada (O’SHEA; NASH, 2015). A Figura 5 ilustra uma rede neural convolucional e
suas camadas.

Figura 5 – Estrutura típica de uma rede neural convolucional.

Fonte: Elaborado pelo autor.

A princípio, tem-se a entrada da imagem, que é interpretada como uma matriz de
valores para cada pixel, podendo apresentar profundidade a depender dos canais de cores
que possuir.

Explicando seu funcionamento, a camada inicial, convolucional, atua de modo a
analisar microrregiões, aplicando filtros sobre elas. Com isso, são atribuídos pesos em



37

uma grade de filtro que percorrerá toda a imagem de entrada e o descreverá em uma
nova camada com base nos parâmetros presentes (ALBAWI; MOHAMMED; AL-ZAWI,
2017). A profundidade dessa camada é dada como a quantidade de filtros aplicados. Assim,
pode-se detectar contornos de interesse na imagem, como, por exemplo, a identificação de
uma roda em um veículo e seu padrão circular. Ainda, entre as camadas convolucionais,
pode-se aplicar funções de ativações, como a ReLU (Rectified Linear Unit), um retificador
que retorna somente os valores positivos e zera os demais.

A segunda camada é a de pooling, que possui uma resolução menor que a camada
convolucional anterior e simplifica os dados por meio de uma sumarização dos valores.
Dentre elas, um dos métodos mais utilizados é o de maxpooling, responsável por atribuir,
à camada seguinte, somente o maior valor da região de análise. De modo similar, a área
de pooling definida percorre toda a camada anterior e auxilia na identificação de padrões
dos objetos. A Figura 6 mostra a aplicação do método de maxpooling com unidade de área
de 2 × 2.

Figura 6 – Aplicação da camada de pooling em uma rede neural convolucional.

Fonte: Adaptado de (ALBAWI; MOHAMMED; AL-ZAWI, 2017).

Por fim, na camada totalmente conectada é realizada a classificação dos objetos,
em que são analisadas as características extraídas nas camadas anteriores e definidas as
saídas como as classes dos objetos.

2.3 Detecção de veículos utilizando algoritmos de deep learning

Com a evolução conjunta da utilização de VANTs para sensoriamento remoto
e de algoritmos de deep learning, diversos estudos abordaram a temática da detecção
de veículos em imagens aéreas por meio desses algoritmos. (SRIVASTAVA; NARAYAN;
MITTAL, 2021) apresentam uma pesquisa a respeito dos trabalhos realizados nesta área,
discutindo problemas frequentes encontrados, como tamanho de veículos; oclusão por
objetos, árvores; altas densidades de veículos por imagem; e problemas de iluminação.
Ainda, são abordadas as principais técnicas de deep learning utilizadas nessa problemática,
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assim como métodos para otimização da performance dos algoritmos utilizados e do poder
computacional empregado.

Em (LIU; MATTYUS, 2015), foi proposta uma abordagem de identificação rápida
em que a imagem de entrada passaria por um detector binário de positivos (veículos) e
negativos (cenário de fundo) para identificação primária de objetos e, após isso, os objetos
detectados eram classificados de acordo com suas categorias e orientações, conforme
mostrado na Figura 7. Para isso, foram utilizados o Munich dataset, criados por (LIU;
MATTYUS, 2015), e o presente em (MORANDUZZO; MELGANI, 2014), contendo coleções
de imagens retiradas da Universidade de Trento na Itália, em 2011.

Figura 7 – Estrutura proposta para detecção de veículos e suas orientações.

Fonte: Adaptado de (GONZÁLEZ-JORGE et al., 2017).

Ainda, (DENG et al., 2017) propõem uma arquitetura acoplada de R-CNN (Region-
based Convolutional Neural Network), com uma etapa responsável pela identificação em
tempo real das regiões da imagem que contêm veículos, enquanto a outra etapa é responsável
por classificar o tipo e direção do veículo. Como dataset, seguiu-se o uso do Munich dataset.
A Figura 8 apresenta os resultados obtidos no conjunto de teste.

Em (SOMMER; SCHUCHERT; BEYERER, 2017), é observado que as redes RPN
(Region Proposal Network) empregadas não são adequadas para uso em imagens pequenas,
uma vez que foram desenvolvidas para imagens terrestres, e, para isso, propõe uma nova
rede com alterações. Utilizando os datasets VEDAI e Munich dataset, teve-se uma melhora
nos indicadores de performance ao se realizar as alterações.

De modo similar, (YANG et al., 2018) propõem uma alteração no algoritmo Faster
R-CNN de modo a contornar os problemas apresentados pelo tamanho dos veículos em
imagens aéreas e da pouca distância entre objetos em estacionamentos, por exemplo.
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Figura 8 – Resultado da detecção. A marcação em vermelho indica localização correta;
em verde, falso positivo; e em preto, falso negativo.

Fonte: (DENG et al., 2017).

Para isso, propõe pular a conexão em determinadas camadas da rede de modo a manter
propriedades dos veículos que seriam perdidas devido ao fato de serem pequenos nas
imagens. Ainda, são propostas alterações nas camadas finais de modo a auxiliar na
detecção de objetos distintos em condições em que estão próximos. Os resultados podem
ser observados na Figura 9. Neste trabalho, empregou-se o ITVCD dataset, com imagens
sobre a cidade de Enschede, na Holanda, contendo 228 imagens aéreas.

De modo a realizar a contagem de veículos presentes em imagens, (ZHU et al.,
2018) fizeram uma comparação entre diferentes algoritmos de deep learning de modo a
comparar parâmetros como precisão média, completude e qualidade, indicando melhores
métodos para emprego na detecção de veículos em imagens aéreas. O dataset empregado
foi o UavCT, que continha carros, ônibus e caminhões, com um total de 101.970 frames,
sendo utilizado 17.186 imagens no conjunto final de treino. A Figura 10 apresenta os
resultados de detecção para os diferentes algoritmos analisados no trabalho.

Ademais, em (ZHANG; ZHU, 2019), é proposto um treinamento na detecção de
veículos em imagens infravermelhas utilizando transfer learning para aprimorar a precisão
da rede, uma vez que há poucas amostras. Como resultado, tem-se uma melhora no
desempenho final da rede para identificação dos veículos, conforme mostrado na Figura 11.

Exposto isso, nota-se que a detecção de veículos em imagens aéreas é um campo em
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Figura 9 – Detecção de veículos após alterações propostas.

Fonte: (YANG et al., 2018).

Figura 10 – Detecção de veículos utilizando diferentes algoritmos de deep learning.

Fonte: (ZHU et al., 2018).

desenvolvimento, com estudos recentes expondo novos datasets para utilização e emprego
de diferentes arquiteturas de redes neurais artificiais, assim como métodos utilizados para
obter melhor desempenho dos treinamentos com os datasets, seja com data augmentation
para alterações simples nas imagens de modo a ampliar as amostras de dados ou de métodos
de transfer learning, fazendo um cruzamento entre os modelos treinados, e permitindo
melhor performance e aplicações específicas.
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Figura 11 – Detecção de veículos em imagens infravermelhas utilizando transfer learning.

Fonte: (ZHANG; ZHU, 2019).
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3 DESENVOLVIMENTO

Neste capítulo, aborda-se o desenvolvimento realizado para a execução deste
trabalho. Inicialmente, serão discutidos a escolha dos datasets replicados, descrevendo seus
conteúdos. Após isso, será apresentada a rede neural artificial empregada e seu algoritmos
de identificação, para, em seguida, destacar-se métricas de avaliação de desempenho para
essa rede. Por fim, discute-se a criação de um novo dataset utilizando imagens aéreas da
cidade de São Carlos, em São Paulo, e os métodos empregados na sua elaboração junto à
realização do treinamento da rede neural com seus dados.

3.1 Replicação do treinamento de redes neurais artificiais

Para o desenvolvimento do trabalho, escolheu-se duas redes neurais artificiais,
abordadas em referências distintas, voltadas para a identificação de veículos em imagens
aéreas a fim de replicar seu desenvolvimento e treinamento de modo a analisar o desempenho
da rede e utilizar, posteriormente, em outras etapas do estudo, realizando transfer learning.
Essas redes possuíam, ambas, datasets distintos que serão descritos em seguida, assim
como o desenvolvimento dos algoritmos de cada rede neural artificial.

3.1.1 Dataset VAID

Em (LIN; TU; LI, 2020), tem-se uma análise acerca dos principais algoritmos de
deep learning para identificação de objetos em imagens e de variados datasets contendo
anotações de veículos em imagens aéreas. Ainda, é proposto um novo dataset contendo
imagens de Taiwan, o Vehicle Aerial Imaging from Drone ou VAID. Em sua totalidade,
esse conjunto de dados possui imagens aéreas de, principalmente, três localidades: um
campus universitário, uma área urbana e um subúrbio de regiões ao sul de Taiwan.

Durante o desenvolvimento do artigo, tem-se o uso de demais datasets, o VEDAI,
COCW, DLR-MVDA e KIT-AIS para fins comparativos com o dataset proposto. Aqui,
será trabalhado somente com o VAID para análise de desempenho e fins comparativos
futuramente.

O VAID possui um total de 5.985 imagens e anotações divididas em 7 classes de
veículos: sedan, minibus, truck, pickup, bus, cement truck e trailer, mostradas na Figura
12. A divisão foi feita manualmente e possui algumas particularidades de acordo com o
responsável pela anotação. A classe sedan engloba carros em geral; enquanto que minibus
refere-se a ônibus pequenos e médios, com 21 assentos, veículo mais comum na região
asiática, enquanto que a classe bus refere-se a ônibus maiores, encontrados com maior
frequência no Brasil. A categoria pickup e truck difere-se pelo fato do primeiro não possuir
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cobertura em sua carga traseira, enquanto que o segundo apresenta proteção ou um
contêiner em sua traseira. Por fim, as classes cement truck e trailer representam caminhão
de cimento e caminhões maiores, como tanques e de cascalho, respectivamente.

Figura 12 – Classes presentes no dataset VAID. Da esquerda para a direita: sedan, minibus,
truck, pickup, bus, cement truck e trailer.

Fonte: (LIN; TU; LI, 2020).

As imagens foram capturadas por um drone DJI Mavic Pro durante a gravação de
vídeos com resolução de saída de 2720 × 1530, porém, sua resolução para o dataset foi
reescalada para 1137 × 640 pixels. Durante as filmagens, a altitude do VANT foi mantida
constante em aproximadamente 90 metros a 95 metros, gerando imagens relativamente
padronizadas em questão de pixels para anotações de veículos. A Figura 13 apresenta
exemplos de imagens presentes no dataset VAID.

Figura 13 – Imagens presentes no dataset VAID.

(a) (b)

(c) (d)

Fonte: (LIN; TU; LI, 2020).
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Para analisar o desempenho do dataset, é proposta uma análise utilizando diferentes
arquiteturas de detecção de veículos, são elas: Faster R-CNN modificada, YOLOv4,
MobileNetv3, RefineDet e U-Net. Para replicar o resultado, escolheu-se a arquitetura
que apresentou os melhores desempenhos utilizando o VAID, que foi a YOLOv4, cujo
desenvolvimento será discutido em 3.1.3.

3.1.2 Dataset AU-AIR

Outro dataset que será utilizado neste trabalho é o AU-AIR (BOZCAN; KAYACAN,
2020), um dataset multimodal incluindo imagens de vídeos, anotações de veículos e dados
de sensores para cada frame do vídeo capturado na cidade de Arhus, na Dinamarca. De
modo similar ao VAID, é analisado o desempenho do dataset proposto em diferentes
arquiteturas de deep learning.

Ao todo, o AU-AIR possui 32.823 imagens capturadas por um drone Parrot Bebop
2, com uma resolução de 1920 × 1080 pixels, contendo anotações de 8 classes, que são: car,
van, truck, human, trailer, bicycle, bus e motorbike, classificados manualmente por meio
do serviço Amazon Mechanical Turk. A Figura 14 apresenta uma imagem do dataset com
as anotações e os dados dos sensores.

Figura 14 – Exemplo de imagens e dados presentes no dataset AU-AIR.

Fonte: (BOZCAN; KAYACAN, 2020).
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Possuindo maior variação que o dataset VAID, o AU-AIR possui dados capturados
em aproximadamente 10 metros, 20 metros e 30 metros, com uma inclinação entre 45
graus a 90 graus. A Figura 15 apresenta exemplos de imagens presentes no dataset.

Figura 15 – Imagens presentes no dataset AU-AIR.

(a) (b)

(c) (d)

Fonte: (BOZCAN; KAYACAN, 2020).

Também, a fim de analisar o desempenho do dataset, foram avaliadas duas arqui-
teturas, YOLOv3-Tiny e MobileNetV2-SSDLite, e outros dataset, o COCO. Novamente,
para este trabalho, considerou-se somente o dataset proposto e a arquitetura com melhor
desempenho, que foi a YOLOv3-Tiny, com adaptações em etapas futuras, adequando para
uso em YOLOv4, assim como VAID.

3.1.3 YOLO (You Only Look Once)

O YOLO (You Only Look Once) é um algoritmo de deep learning empregado na
detecção de objetos em imagens, apresentado, inicialmente, em (REDMON et al., 2016),
com destaque para a detecção em tempo real, com elevada capacidade de processamento
e altos indicadores de performance comparados a outros detectores em tempo real. Isso
ocorre devido a unificação dos componentes de identificação em uma única rede neural
artificial, uma rede neural convolucional, e utilização de toda a imagem para predição das
caixas delimitadoras, também chamadas de bounding box, de cada objeto.
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Em suma, no YOLO, a identificação é feita por meio da divisão em uma grade
S × S, em que cada célula é responsável por predizer uma caixa delimitadora B e sua
respectiva confiança na predição. Ainda, é atribuída uma probabilidade condicional C para
a classe em cada célula, de modo que só haja um valor C para uma célula. Com isso, a
predição é dada como um tensor no formato S × S × (B · 5 + C). A Figura 16 mostra um
exemplo do processo de detecção de veículos realizado pelo YOLO.

Figura 16 – Modelo de detecção de objetos realizado pelo YOLO.

Fonte: Modificado de (REDMON et al., 2016).

.

3.1.4 YOLOv4

Com o desenvolvimento dos algoritmos utilizando CNNs, o YOLO teve evoluções
de versões, sendo apresentada, em (BOCHKOVSKIY; WANG; LIAO, 2020), o YOLOv4,
um detector composto por duas partes: a primeira, consistindo da coluna vertebral,
CSPDarknet53, e do pescoço, SPP e PAN; e a segunda, composta pela cabeça, utilizando
versão anterior do YOLO, o YOLOv3. De modo simples, no primeiro estágio, tem-se
um modelo pré-treinado do dataset ImageNet, enquanto o segundo consiste na camada
responsável pela predição de classes e bounding box.
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O CSPDarknet53, (WANG et al., 2020) é uma rede que permite menor uso de poder
computacional com um maior desempenho, utilizando o framework Darknet (REDMON,
2013–2016), escrito na linguagem de programação C, enquanto o SPP (Spatial Pyramid
Pooling), (HE et al., 2015), é uma estratégia de pooling para utilização nas CNNs, de
modo a aprimorar a extração de features das imagens e PAN (Path Aggregation Network),
(LIU et al., 2018), uma rede que permite um fluxo rápido de informações em redes de
segmentação, como classificação de objetos.

3.1.5 Treinamento dos algoritmos

Apresentado isso, escolheu-se o algoritmo YOLOv4 para a detecção de veículos
nas imagens aéreas dos datasets. Uma vez que o VAID originalmente foi treinado nesse
algoritmo, reproduziu-se fielmente seu desenvolvimento, enquanto que, para o AU-AIR,
realizou-se uma adaptação pelo fato do seu treinamento ser realizado em YOLOv3-Tiny.

Inicialmente, para o treinamento, separou-se as imagens em dois conjuntos, um
para treinamento e outro para validação, sendo possível, um terceiro, para teste. Em (LIN;
TU; LI, 2020), a divisão apresentada para o VAID é de 1.512 imagens de treinamento,
1.534 de validação e 2.939 de teste; Em sua aplicação, são utilizadas 3.046 imagens para
treinamento (contabilizando os conjuntos de imagens para treinamento e validação) e
2.939 imagens para validação (tratado como conjunto de teste em VAID) no algoritmo
YOLOv4. Em (BOZCAN; KAYACAN, 2020), a divisão é dada como 30.000 imagens para
treinamento e validação e 2.823 amostras para testes. Uma vez que o dataset possui uma
quantidade elevada de dados, escolheu-se aleatoriamente um conjunto formado por 5.970
imagens de treinamento, 1.592 amostras para validação e 2.388 imagens para o conjunto
de teste.

Ainda, para a realização do treinamento, é necessário definir hiperparâmetros, que,
em suma, servem de ajuste para a detecção dos objetos a depender da aplicação. Aqui,
utilizou-se o padrão empregado em (LIN; TU; LI, 2020), com uma resolução de imagem
de entrada 416 × 416 pixels, em um total de 2.000 etapas, que representam o total de
iterações em que será realizado o treinamento, e o valor de batch de 64, que indica que
serão utilizados 64 exemplos de imagens do conjunto de treinamento por iteração. Por
fim, a taxa de aprendizagem foi de 0,001, e ela é responsável pela taxa de atualização
dos parâmetros da rede neural artificial. Para valores maiores, o treinamento é realizado
de modo mais rápido, porém, com possível menor acurácia; o inverso ocorre para valores
menores de taxa de aprendizagem. Ademais, de modo a otimizar o treinamento, utilizou-se
valores pré-treinados de pesos do algoritmo YOLOv4 com o dataset MSCOCO (Microsoft
Common Objects in Context), um conjutno de imagens para detecção de objetos em larga
escala e amplamente difundido.

Para o processamento utilizou-se um Notebook Dell I15-7559-A10 com um pro-
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cessador Intel Core i5-6300HQ e placa gráfica NVIDIA GeForce GTX 960M com uma
memória dedicada de 4 GB.

3.2 Métricas de comparação de performance

A fim de avaliar o desempenho do treinamento das arquiteturas utilizando os
datasets, empregou-se métricas de desempenho já difundidas em análises estatística e que
são aplicadas a algoritmos que utilizam deep learning. A seguir, serão explicadas cada uma
delas, indicando o cálculo realizado para sua determinação.

3.2.1 Verdadeiro positivo

Verdadeiro positivo, ou, do inglês, True Positive (TP) é uma métrica que indica a
quantidade de objetos identificados que realmente estavam presentes na imagem. Ou seja,
é a quantidade de objetos que o algoritmo previu corretamente. Na Figura 17, a letra A
indica um exemplo de verdadeiro positivo.

Figura 17 – Exemplo de verdadeiro positivo, falso positivo e falso negativo, utilizando
veículos. Em verde, tem-se a caixa delimitadora correta da imagem e em
vermelho, a prevista.

Fonte: Elaborado pelo autor.

3.2.2 Falso negativo

Falso negativo, ou False Negative (FN), é um parâmetro referente a quando o
algoritmo não consegue identificar um objeto presente na imagem, ou seja, ele não define
uma caixa delimitadora para esse objeto. Um exemplo é visto na Figura 17, em que a letra
B mostra um veículo presente na imagem, mas não identificado.



50

3.2.3 Falso positivo

Falso positivo, ou False Positive (FP), indica a quantidade de previsões errada do
algoritmo, em que ele prevê a existência de um objeto, mas que não existe realmente na
imagem. Na Figura 17, a letra C mostra um exemplo dessa ocorrência.

3.2.4 Intersection over Union (IoU)

Para determinar o que é um verdadeiro positivo ou um falso positivo, é necessário
delimitar um parâmetro que seja capaz de identificar o quanto uma caixa delimitadora
satisfaz ao objeto real. Para isso, é definido a métrica Intersection over Union, chamada de
IoU. Para seu cálculo, faz-se a divisão entre a área de interseção das caixas delimitadoras
da predição e da real pela união das duas áreas. Ou seja, a expressão de cálculo é:

IoU = Área de interseção

Área de união
(3.1)

A Figura 18 ilustra esse cálculo.

Figura 18 – Cálculo de IoU.

Fonte: Elaborado pelo autor.

Ainda, para definir-se o que é verdadeiro positivo ou falso positivo, define-se um
valor limitante, em que, acima desse valor, tem-se um TP e, abaixo, tem-se um FP. Em
geral, emprega-se o valor de 0,5, porém esse número pode mudar a depender da aplicação.
Uma vez que ambos os trabalhos envolvendo VAID e AU-AIR utilizam o valor limitante
igual a 0,5, emprega-se também nesse trabalho.

3.2.5 Precisão

Após o cálculo dos parâmetros anteriores, pode-se definir a métrica precisão, que,
como o nome diz, refere-se à precisão do algoritmo. Seu cálculo é feito da seguinte forma:
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Precisão = TP

TP + FP
(3.2)

3.2.6 Recall

De modo complementar à precisão, o recall analisa a quantidade de identificação
de objetos que o algoritmo obteve. Para isso, calcula-se a razão dos verdadeiros positivos
pelo total de objetos na imagem. O cálculo é dado por:

Recall = TP

TP + FN
(3.3)

3.2.7 Mean Average Precision (mAP)

Outra métrica calculada para comparação de desempenho é a precisão média, ou
Average Precision (AP), em que determina-se a acurácia das predições do algoritmo. Em
termos gerais, avalia-se a quantidade de predições feitas e quantidade dessas que estavam
corretas de acordo com a quantidade real de objetos existentes. Seu cálculo é dado pela
razão entre a precisão e o recall, expresso como:

AP = Precisão

Recall
⇒ AP = TP + FP

TP + FN
(3.4)

Calculado, geralmente, tem-se o resultado de AP para cada classe e, com isso,
pode-se determinar a média desses valores para o algoritmo como um todo. Desta forma,
calcula-se a métrica Mean Average Precision (mAP). Em termos de expressão, para um
algoritmo de identificação contendo n classes, tem-se:

mAP =
Pn

i=1 APi

n
(3.5)

3.2.8 F1 score

Outra métrica de desempenho é o F1 score, uma medida estatística voltada para
determinar a acurácia e que envolve o cálculo da média harmônica da precisão e do recall.
A expressão é dada por:

F1 = 2 · Precisão · Recall
Precisão + Recall (3.6)

3.3 SCAID (São Carlos Aerial Images Dataset)

Ainda, com o objetivo de avaliar o desempenho dos algoritmos de deep learning
para identificação de veículos utilizando os datasets citados anteriormente, elaborou-se,
neste projeto, um dataset, com o nome de SCAID (São Carlos Aerial Images Dataset),
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contendo imagens da cidade de São Carlos, no estado de São Paulo, Brasil. Para isso,
utilizou-se vídeos com imagens de regiões urbanas da cidade e de rodovias no seu entorno.

3.3.1 Aquisição das imagens aéreas

A fim de obter as imagens aéreas, utilizou-se três vídeos da plataforma de compar-
tilhamento de vídeos YouTube1 2 3 como fonte dos dados. A partir dos vídeos, capturou-se
frames a cada 0,2 segundos a fim de obter imagens relativamente diferentes entre si. Por
se tratar de fontes distintas, o ambiente, a angulação e a altitude dos drones variaram,
garantindo uma amostra diversa de dados.

As imagens foram utilizadas com resolução de 1920 × 1080 pixels e as anotações
dos veículos foram realizadas no formato para utilização no framework Darknet. Uma
vez que, no projeto, será comparado o desempenho dos datasets no treinamento da
arquitetura, empregar-se-á aquele com melhores métricas de performance e, será adotado
as mesmas classes deste dataset, no caso, o VAID (a discussão do desempenho será realizada
posteriormente no capítulo 4).

3.3.2 Anotações e treinamento

Em vista disso, as classificações foram divididas em sete classes: sedan, minibus,
truck, pickup, bus, cement truck e trailer e, para isso, fez-se uso site Roboflow, em que
foi possível demarcar manualmente as caixas delimitadoras de cada objeto nas imagens e,
com isso, gerar um registro das anotações em formato de texto, indicando 5 parâmetros:

• classe do objeto: referente à classe do objeto;

• x: a posição normalizada horizontal do pixel referente ao centro da caixa delimitadora;

• y: a posição normalizada vertical do pixel referente ao centro da caixa delimitadora;

• largura: a largura normalizada da caixa delimitadora;

• altura: a altura normalizada da caixa delimitadora.

Para o cálculo dos valores normalizados, identificou-se o valor absoluto do pixel ou
valor de dimensão da caixa delimitadora e dividiu-se pelo valor de largura ou altura da
dimensão da imagem a depender do parâmetro a ser calculado (na horizontal ou vertical).

A Figura 19 apresenta algumas das imagens do dataset com as anotações de seus
objetos. Em rosa, tem-se objetos da classe sedan; em amarelo, bus; em azul trailer ; e em
roxo truck.
1 Disponível em: Drone DJI SPARK - São Carlos - SP - BRASIL.
2 Disponível em: (Drone Spark) Sanca Drone - São Carlos.
3 Disponível em: Sobrevoando São Carlos drone Xiaomi FIMI A3.
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Figura 19 – Imagens presentes no dataset proposto neste trabalho.

(a) (b)

(c) (d)

Fonte: Elaborado pelo autor.

Ao todo, o dataset possui 933 imagens divididas em 549 imagens para treinamento,
300 para validação e 84 para teste (aqui, o conjunto de validação e teste é tratado junto,
diferentemente do ocorrido em VAID e AU-AIR que utiliza-se os conjuntos de treinamento
e validação em conjunto). Uma vez que a quantidade de imagens e fonte de dados não era
elevada, algumas classes obtiveram poucas ocorrências e, no caso da classe, cement truck
não houve uma única ocorrência. Entretanto, três principais classes, sedan, bus e truck,
apresentaram diversos objetos. A Tabela 1 apresenta a quantidade de objetos anotados
para cada classe. Uma discussão mais profunda será realizada no capítulo 4.

Tabela 1 – Número de anotações para cada classe no dataset SCAID.
Classes Sedan Minibus Truck Pickup Bus Cement truck Trailer
SCAID 6,546 32 180 316 219 0 31

Fonte: Elaborado pelo autor.

Após a elaboração do dataset, a fim de comparar a performance realizou-se o
treinamento, por 1.000 iterações, do algoritmo YOLOv4 de modo similar ao realizado
com o dataset VAID, utilizando valores de pesos pré-treinados utilizando o MSCOCO de
modo a obter pesos para identificação de veículos nas imagens aéreas. Ainda, calculou-se
também os indicadores de performance do treinamento realizado com o VAID, porém nas
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imagens de validação do dataset de São Carlos.

3.4 Transfer learning

Por fim, para verificar se a performance do algoritmo de deep learning para iden-
tificação de veículos em imagens aéreas pode ser aprimorada por meio da utilização de
redes pré-treinadas, utilizou-se o método de transfer learning, que consiste na utilização
de valores de pesos treinados com outro dataset para aplicação em um outros dados,
geralmente, em menor quantidade.

Em vista disso, foi realizado outro treinamento utilizando os valores de peso
treinados utilizando o dataset VAID, porém com o treinamento realizado sob o dataset
de São Carlos por 1.000 iterações. Uma vez que o VAID possui um maior número de
imagens e um bom desempenho, espera-se, teoricamente, uma melhora da performance
da arquitetura como um todo, uma vez que este método pode ser utilizado para ajuste
fino dos valores de peso para identificação em diferentes cenário não abordados no dataset
original. Desta forma, calculou-se as métricas de performance novamente para o dataset
proposto, em seu conjunto de validação.
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4 RESULTADOS

Neste capítulo, apresenta-se os principais resultados do trabalho, sendo realizadas
discussões acerca das explicações para possíveis desempenhos das redes neurais artificiais.
A princípio, mostra-se os resultados obtidos na replicação dos treinamentos utilizando
datasets já existentes e, em seguida, analisa-se o desempenho na detecção de veículos
utilizando o dataset proposto, o SCAID.

4.1 Replicação dos treinamentos

Inicialmente, realizou-se o treinamento do algoritmo YOLOv4 utilizando o dataset
VAID conforme apresentado em (LIN; TU; LI, 2020), empregando a mesma abordagem
e valores de parâmetros, com um total de 2.000 iterações. Desta forma, pôde-se calcular
as métricas de desempenho, com base no conjunto de validação do VAID, e comparar o
resultado da rede neural treinada com o apresentado no trabalho original. A Tabela 2
apresenta os valores de AP para cada classe, à esquerda para o resultado original descrito
em (LIN; TU; LI, 2020) e à direita para a replicação, assim como o mAP, a precisão, o
recall e o F1 score da rede como um todo.

Tabela 2 – Resultados da replicação do treinamento uti-
lizando o dataset VAID.

Treinamento VAID original Treinamento replicado
Sedan 98,49 % 97,22 %

Minibus 96,04 % 95,15 %
Truck 96,44 % 92,68 %
Pickup 57,25 % 86,96 %

Bus 97,03 % 98,19 %
Cement truck 69,94 % 83,25 %

Trailer 95,45 % 88,75 %
mAP 96,91 % 91,74 %

Precisão 0,94 0,92
Recall 0,97 0,94

F1 score 0,96 0,93

Fonte: Elaborado pelo autor.

Conforme pode-se observar, os resultados obtidos são próximos ao apresentado no
trabalho original, mostrando um desempenho similar apesar do menor número de iterações
em comparação ao recomendado. Ainda, pode-se destacar a consistência e performance do
dataset para o treinamento em YOLOv4, resultando em valores de métricas de performance
elevados, indicando uma boa acurácia e precisão, ao menos, para o uso em aplicações
similares ao do dataset VAID. Um contraponto é o cálculo de mAP no trabalho original,
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uma vez que a soma das precisões médias das classes não resulta no mAP apresentado. Isto
pode ter ocorrido devido a erros no trabalho original, uma vez que, para outros algoritmos,
este apresenta o cálculo de mAP conforme ilustrado aqui.

De modo análogo, aplicou-se o algoritmo YOLOv4 para réplica do treinamento
do AU-AIR realizado em (BOZCAN; KAYACAN, 2020) de modo adaptativo à versão
apresentada, que utilizou YOLOv3-Tiny. Também foram realizadas 2.000 iterações e
os parâmetros de desempenho foram calculados com base no conjunto de validação do
AU-AIR. Em contrapartida ao VAID, os resultados originais do dataset AU-AIR somente
apresentavam cálculos para a precisão média de cada classe e o mAP total da rede,
conforme mostrado na Tabela 3.

Analisando, tem-se, novamente, resultados próximos ao apresentados em (BOZCAN;
KAYACAN, 2020), apesar da modificação do algoritmo de aprendizagem utilizado e do
emprego de menor número de imagens, o que pode explicar, a diferença da precisão média
em algumas classes detectáveis.

Tabela 3 – Resultados da replicação do treinamento uti-
lizando o dataset AU-AIR.

Treinamento AU-AIR original Treinamento replicado
Bicycle 12,34 % 13,71 %

Bus 51,78 % 35,87 %
Car 36,30 % 40,84 %

Human 34,05 % 19,94 %
Motorbike 4,80 % 16,72 %

Trailer 13,95 % 8,55 %
Truck 47,13 % 48,48 %
Van 41,47 % 38,40 %
mAP 30,22 % 27,81 %

Precisão - 0,53
Recall - 0,44

F1 score - 0,48

Fonte: Elaborado pelo autor.

4.2 Comparação dos resultados

Calculada as métricas de performance, pode-se notar que o treinamento realizado
com o dataset VAID possui valores elevados e que indicam um desempenho melhor na
detecção de veículos quando comparado ao dataset AU-AIR. Com o objetivo de identificar
as razões que motivam essa discrepância, inicialmente, será analisada a evolução do mAP
para cada treinamento. Na Figura 20, tem-se que o mAP para o treinamento do VAID
cresce com maior rapidez e com uma desaceleração menor quando comparado ao AU-AIR,
indicando uma possível melhora nas métricas com a continuação do treinamento caso fosse
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realizado. Com isso, o número de iterações não se mostrou um problema para os resultados
apresentados.

Figura 20 – Cálculo do mAP para as iterações no treinamento dos datasets VAID e AU-
AIR.

(a) map VAID. (b) map AU-AIR.

Fonte: Elaborado pelo autor.

Dando continuidade, analisando, agora, o conteúdo das imagens presentes em
cada dataset, conforme já citado anteriormente, o VAID apresenta imagens aéreas mais
padronizadas, com altura bem definida entre 90 e 95 metros e, em sua maioria, a 90º do
solo, enquanto que isso não ocorre para o AU-AIR. Nele, encontram-se imagens variando de
10 a 30 metros e angulações entre 45º e 90º, o que acarreta em objetos, mesmo que sejam de
classes iguais, com características dimensionais distintas. Desta forma, a rede comporta-se
de modo mais complexo, pois características como tamanho de caixa delimitadora para
determinada classe não se aplicam e é necessário a identificação por extração de padrões
mais complexos de cada classe.

Por fim, ao observar as anotações (Figura 21), tem-se outra justificativa para o baixo
valor de desempenho ao utilizar o AU-AIR. Ao visualizar as imagens junta a suas anotações
para utilização em YOLO, nota-se que há diversos problemas recorrentes ao detectar os
objetos. Dentre eles, pode-se citar a demarcação de caixas delimitadoras maiores que os
objetos, o que resulta em extração de características que não são correspondentes aquela
classe, mas sim, do cenário; a presença de objetos sem anotações, o que faz com que a
rede neural, no treinamento, interprete isto como um não objeto e dificulta a identificação
correta do veículo; e a anotações de classes incorretas, que acarreta em complicações
na classificação dos objetos. Exposto isso, todos os comentários apresentados acima, em
conjunto, motivam o baixo desempenho da rede quando treinado com o dataset AU-AIR.

Ainda, de modo a verificar o desempenho de ambas as redes em dados randômicos,
escolheu-se imagens de diferentes fontes com o objetivo de analisar a detecção. As imagens
escolhidas estão apresentadas na Figura 22, em que, nos itens (a) e (b), tem-se imagens do
dataset AU-AIR; em (c) e (d), do VAID; em (d), (e) e (f) do dataset VisDrone; e em (g) e
(h) imagens retiradas da internet.

Conforme mostra a Figura 23, tem-se um bom desempenho do algoritmo treinado
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Figura 21 – Problemas em anotações no dataset AU-AIR.

(a) Caixas delimitadoras maiores e objetos
anotados em conjunto.

(b) Ausência de anotações.

(c) Anotações incorretas. (d) Caixas delimitadoras maiores e ausência
de anotações.

Fonte: Elaborado pelo autor.

Figura 22 – Imagens para teste.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fonte: Elaborado pelo autor.

em VAID na detecção de veículos em diferentes fontes de dados, havendo principais
dificuldades para a classificação de objetos em distâncias pequenas e na detecção em
imagens inclinadas. Isso ocorre devido ao caráter padrão em que o dataset foi construído,
havendo elevada precisão em imagens verticais e que distam de uma altura média entre 80
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e 100 metros. Ao sair dessas condições, a rede possui dificuldades por não conter dados
suficientes, em seu treinamento, para detectar as características desses objetos, porém
consegue, em alguns casos, devido a qualidade das anotações do dataset.

Figura 23 – Detecção de veículos nas imagens de teste com o treinamento em VAID.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fonte: Elaborado pelo autor.

Ademais, tendo apresentado os problemas do AU-AIR, pode-se comprová-los ao
analisar a Figura 24, em que observa-se poucas detecções em imagens fora de seu dataset,
havendo, até mesmo, erros em suas próprias imagens. Destaca-se somente o item (e), que
possui configurações de altura e inclinação similares ao das imagens presentes em AU-AIR,
em que torna possível um maior número de detecção de veículos.

Figura 24 – Detecção de veículos nas imagens de teste com o treinamento em AU-AIR.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fonte: Elaborado pelo autor.

Em vista disso, para prosseguimento do trabalho, escolheu-se o dataset VAID para
realização de transfer learning utilizando o SCAID.
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4.3 Dataset SCAID

Após a escolha do VAID, realizou-se o treinamento do início com o dataset SCAID
e o treinamento a partir dos pesos calculados para o VAID, por 1.000 iterações. Com isso,
pôde-se determinar as métricas de performance apresentadas no Quadro 1, que apresenta
os valores para o treinamento em VAID, SCAID e VAID+SCAID (referente à transfer
learning) no conjunto de validação do SCAID.

Quadro 1 – Parâmetros de desempenho validados no dataset SCAID.
Dataset de treinamento VAID SCAID VAID+SCAID

Sedan 61,89 % 90,35 % 93,83 %
Minibus 0,00 % 11,18 % 65,68 %
Truck 60,03 % 75,63 % 98,64 %
Pickup 0,16 % 35,88 % 57,45 %

Bus 53,01 % 92,95 % 96,16 %
Cement truck* 0,00 % 0,00 % 0,00 %

Trailer 56,90 % 89,18 % 100,00%
mAP 33,14 % 56,46 % 73,11 %
mAP3 58,32 % 86,31 % 92,36 %

Precisão 0,77 0,85 0,90
Recall 0,50 0,86 0,92

F1 score 0,61 0,86 0,91

Fonte: Elaborado pelo autor.

Com isso, observa-se alguns detalhes. A princípio, tem-se três classes com alto
número de anotações em SCAID, sendo sedan, truck e bus, que correspondem ao cálculo
do mAP3, que leva em conta as precisões médias somente dessas classes. Ainda, tem-se a
presença de nenhum objeto da classe cement truck, o que acarretou em um AP de 0,00 %
e a presença de poucas anotações da classe trailer o que pode explicar os altos valores de
AP após o treinamento com SCAID.

Feito isso, nota-se que o algoritmo treinado com o VAID, quando aplicado em
SCAID, possui desempenho inferior ao apresentado anteriormente, isso em virtude das
imagens conterem ambientações diferentes, modelos de veículos distintos, mesmo que
de classes iguais, e alturas e ângulos de captação de imagens variados, o que acarreta
em objetos com caixas de pixels também variáveis. Exposto isso, tem-se uma melhora
do desempenho ao dar continuidade ao treinamento com o SCAID, uma vez que, os
principais problemas elencados são corrigidos ao fornecer novas fontes de dados para o
treinamento do algoritmo. Por fim, comparando os resultados utilizando o SCAID e o
VAID+SCAID, nota-se um desempenho melhor ao realizar transfer learning, uma vez que
pesos relacionados à extração de características das classes dos objetos adquiridas com o
VAID são passadas adiante.

Ademais, na Figura 25, pode-se ver a avaliação do mAP para o treinamento com
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SCAID e VAID+SCAID, em que pode-se observar um melhor desempenho, mesmo que
para iterações menores, ao realizar o método de transfer learning.

Figura 25 – Cálculo do mAP para as iterações no treinamento dos datasets SCAID e
VAID+SCAID.

(a) map SCAID. (b) mAP VAID+SCAID.

Fonte: Elaborado pelo autor.

Em seguida, pode-se analisar, na Figura 26, a aplicação dos resultados de detecção
dos três treinamentos em imagens presentes no conjunto de validação do SCAID. Nota-se
que o método utilizando transfer learning possui melhor identificação dentre os três, unindo
qualidades dos dois datasets, o que auxilia na detecção de maior número de objetos com
maior qualidade na classificação.

Figura 26 – Detecção de veículos no dataset SCAID para os três modelos treinados.

(a) Treinamento com VAID.

(b) Treinamento com SCAID.

(c) Treinamento com VAID+SCAID.

Fonte: Elaborado pelo autor.
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Por fim, de modo a verificar o desempenho do modelo treinado com VAID+SCAID,
pode-se analisar o resultado aplicando o modelo nas imagens de teste apresentadas na
Figura 22. As detecções finais estão presentes na Figura 27, em que se percebe uma
melhora na detecção de veículos como um todo, uma vez que, pelo fato do dataset SCAID
possuir imagens em diferentes visões, corrige-se problemas advindos do padrão apresentado
pelo VAID, como a detecção correta dos veículos presentes no item (a). Em compensação,
há poucas perdas, como a identificação erroneamente de um objeto no item (d). Apesar
disso, o modelo com o método de transfer learning aplicado apresenta melhores resultados
globais, sendo útil, não somente para aplicações específicas, mas para agregar dados e
informações ao modelo final das melhores qualidades apresentadas por cada dataset.

Figura 27 – Detecção de veículos nas imagens de teste com o treinamento em
VAID+SCAID.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fonte: Elaborado pelo autor.
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5 CONCLUSÃO

Este trabalho teve como escopo a abordagem do uso de algoritmos de deep learning
para detecção e classificação de veículos terrestres em imagens aéreas obtidas por VANTs, e
o emprego de diferentes datasets para aplicações. Nesse contexto, por meio dos resultados,
verificou-se que foi possível replicar os treinamentos das redes neurais artificiais utilizando
os datasets VAID e AU-AIR, obtendo resultados próximos aos trabalhos originais.

Ainda, pôde-se criar um dataset contendo imagens da cidade de São Carlos, pos-
suindo imagens e anotações de veículos presentes, em que é permitido a utilização em
projetos futuros, com possibilidade de ampliação, sendo um sucesso no âmbito de resultado
e continuidade.

Por fim, verificou-se a eficácia do método de transfer learning ao realizar o treina-
mento com modelos pré-treinados, possibilitando uma melhora no desempenho da detecção
de veículos para a aplicação na cidade São Carlos. Ademais, também pôde-se notar uma
melhor performance no contexto global do modelo, o que condiz à teoria, uma vez que o
método é empregado também para ajuste fino a fim de obter melhores resultados.

De modo geral, conclui-se que o trabalho obteve sucesso ao analisar dois datasets
distintos e fornecer um novo dataset para uma aplicação específica, o que resultou em uma
melhora no desempenho na detecção de veículos.

Como possíveis aprimoramentos para pesquisas e trabalhos futuros, sugere-se
o emprego de diferentes algoritmos de deep learning para comparação dos datasets e
verificação dos melhores modelos, uma vez que, neste trabalho, somente foi utilizado o
YOLOv4. Ainda, pode-se citar a utilização de métodos para aumento da quantidade
de imagens presentes no dataset proposto, o SCAID, sendo feito, ou por adição manual
de novas imagens, ou por ferramentas de data augmentation, de modo a verificar se o
desempenho do modelo é aperfeiçoado com essas alterações.
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