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Resumo

Este trabalho de conclusdao de curso visa a elaboragdo de uma metodologia para analisar a
robustez de sistemas elétricos de poténcia durante o planejamento da expansao da sua rede de
transmissdo. Tal planejamento se faz necessario para poder satisfazer as exigéncias da crescente
demanda do sistema elétrico. Redes elétricas nao robustas estao vulneraveis a contingéncias na
sua estrutura, os quais podem ocasionar desligamentos de partes do sistema, comprometendo,
assim, o fornecimento adequado de energia elétrica aos consumidores.

O problema tradicional de planejamento da expansdo de redes de transmissdo ndo leva em
consideragao possiveis contingéncias, nao sendo possivel avaliar e melhorar a seguranca do sistema
elétrico. Um novo modelo que considere a vulnerabilidade das novas configuracées do sistema
torna-se necessario para que se possa garantir sua seguranca e robustez.

Além de estudar as metodologias classicas do problema em questdo, baseadas em problemas
lineares inteiros mistos, e sua resolucdo (Método Branch and Bound e Busca Tabu), esse traba-
lho também propde e avalia um novo modelo de otimizacgdo binivel inteiro misto que incorpora
a minimizacao da vulnerabilidade da rede aos modelos classicos de expansao. O estudo deta-
lhado desse novo modelo ird proporcionar modos de avaliar e quantificar a robustez de redes de

transmissao.

Palavras-chave: Planejamento da Expansao de Redes de Transmissao, Robustez de
Sistemas Elétricos, Incerteza, Risco, Programagao Linear Inteira Mista, Programagao

Binivel.



POWER SYSTEM ROBUSTNESS ANALYSIS DURING
TRANSMISSION NETWORK EXPANSION PLANNING

Abstract

This work aims at the development of a methodology to analyze the power systems robustness
during its transmission network expansion planning. This planning is necessary in order to satisfy
the increasing power load. Not-robust networks are vulnerable against deliberate attacks to its
structure, which can cause blackouts and compromise the adequate supply of electricity to the
final consumers.

The traditional transmission network expansion planning problems do not include possible
contingencies in the system. Thus, it is not possible to assess and improve the power system
reliability. A new model that considers the new facilities vulnerability is required so that we can
ensure its reliability and robustness.

Besides studying traditional expansion models, which are based on mixed integer linear
problems, and solve them (using Branch and Bound and Tabu Search Methods), this work also
proposes and evaluates a risk-based bilevel mixed integer optimization model that incorporates
the minimization of the network vulnerability. The detailed study of this new model will provide

ways to assess and quantify the network transmission robustness.

Keywords: Transmission Network Expansion Planning, Power Systems Robustness,

Uncertainty, Risk, Mixed-Integer Linear Programming, Bilevel Programming.



Capitulo 1

Introducao

A rede de transmissdo de energia elétrica é o conjunto de equipamentos responsaveis por
transportar a energia elétrica desde as usinas geradoras até os centros consumidores. Desempenha
um papel muito importante no sistema elétrico de poténcia, ja que universaliza o uso da energia
elétrica, pois pode disponibilizé-la para qualquer centro consumidor.

O bom funcionamento de uma rede de transmissdo é crucial para o atendimento da demanda
da energia elétrica e esta sujeito a diversas modificacoes no sistema, tais como, desligamentos de
equipamentos, aumento de demanda, curtos circuitos, etc.

Além disso, sabe-se que 0 aumento do consumo de energia elétrica é um processo natural no
crescimento econdmico de um pais, pois esse tipo de energia é um dos mais eficientes e praticos
para a utilizacdo. Cabe aos profissionais e pesquisadores da area de sistemas elétricos de poténcia,
garantir as melhores condigdes de fornecimento dessa energia, ndo inibindo o crescimento da
demanda e, consequentemente, o desenvolvimento da nacao.

No Brasil, por exemplo, segundo o estudo da demanda do sistema, que consta no relatério
de Projecao da Demanda de Energia Elétrica para os Proximos 10 Anos (2013-2022), feito pela
Empresa de Pesquisa Energética (EPE) [1], h4 uma previsdo de crescimento do consumo de
energia elétrica de aproximadamente 4% ao ano na proxima década. Segundo também esse
estudo, em 2011, houve um consumo da ordem de 430 TWh de energia elétrica e que no ano de
2022, se prevé um consumo anual de cerca de 670 TWh, correspondendo a um aumento de mais
de 50% da carga.

A projecdo do aumento do consumo de energia elétrica apresentada nesse estudo pode ser

visualizada no grafico da Figura 1.1 a seguir.
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Figura 1.1: Projecao do Consumo de Energia Elétrica no Brasil (Adaptado de [1])

Ja no grafico ilustrado na Figura 1.2, é possivel verificar como se comportard ano a ano o

aumento percentual do consumo de energia.
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Figura 1.2: Projecao do Aumento Percentual Anual do Consumo de Engenharia Elétrica no
Brasil (Adaptado de [1])

Com o crescimento da demanda de energia elétrica vem o compromisso do seu fornecimento
continuo e de qualidade, o qual deve ser assumido pelos profissionais e pesquisadores da area de
sistemas elétricos, com intuito principal garantir a melhor operagao do sistema. Pode-se definir

nesta 4rea de pesquisa, dois tipos de planejamento do sistema elétrico:

e Planejamento da Operacao: no qual visa-se determinar as condicoes de estabilidade
do sistema, além dos ajustes dos controles do circuito de maneira a garantir o melhor

desempenho dos elementos do sistema, balanceando a oferta e a demanda de energia.

No Brasil, esse planejamento é realizado pelo Operador Nacional do Sistema Elétrico (ONS)

em diversos horizontes (curto, médio e longo prazos).

e Planejamento da Expansao: o qual avalia as condi¢oes do sistema elétrico dentro de

um horizonte de planejamento (geralmente longo) e busca realizar modifica¢oes na sua

11



estrutura, objetivando suprir o crescimento da demanda por energia elétrica. Minimiza-se
neste planejamento o custo total de novas instalacoes e de alteracdes de componentes na
rede elétrica. Subdivide-se em planejamento da expansio do sistema de geragdo, que busca
aumentar o nivel de geracao de energia elétrica, e em planejamento da expansao do sistema
de transmissdo, cujo intuito é expandir a drea com acesso A energia elétrica e melhorar o

desempenho da rede existente.

No Brasil, a EPE, vinculada ao Ministério de Minas e Energia (MME), ¢ a responsavel

pela elaboracao de estudos para subsidiar o planejamento da expansao do setor elétrico.

Este trabalho abordara especificamente técnicas de otimizacdo e anélise de robustez durante
o planejamento da expansao do sistema de transmissao.

A maior exigéncia por parte de érgaos reguladores quanto a boa qualidade do fornecimento de
energia elétrica é um papel relevante para a elaboragdo do planejamento de expansdo de sistemas
elétricos. Outro motivo relevante para a expansao do sistema é a ampliacao da area de ocupacio
da rede, possibilitando a conexdo de mais unidades geradoras e mais centros consumidores,
estimulando assim a competitividade pela venda e compra da energia.

Além disso, estudos apontam que a expansdo do sistema de geracao, com o intuito aumentar a
oferta de energia para equilibrar-se com a demanda, sem realizar devidas modificagoes estruturais
e operacionais no sistema de transmissao e distribuicao, pode levar o sistema elétrico a operar em
um estado instavel, préximo ao seu carregamento maximo, no qual a propensdo a desligamentos
¢ relativamente alta [2].

Esse trabalho tem como objetivo principal a elaboracao de uma metodologia para avaliacao da
robustez de um sistema elétrico durante o planejamento da expansdo de sua rede de transmissao.
De maneira geral, busca-se determinar um indice de robustez da rede a partir de um modelo do
problema do planejamento de expansao que minimize a vulnerabilidade da rede.

Segue um resumo de todas as etapas desenvolvidas neste projeto, a titulo de contextualizagao

do problema estudado.

e 12 ETAPA: Com o intuito de verificar a necessidade do planejamento da expansio de redes
de transmissao, foi realizada a modelagem e a determinagdo do fluxo de poténcia estéatico
de sistemas elétricos. Nessa etapa, desenvolveu-se em linguagem C a implementacao do
Método Desacoplado Rapido [3] para resolucao de problemas desse tipo. Utilizou-se o pa-
cote CSparse [4] visando aproveitar as caracteristicas esparsas das matrizes que descrevem

o comportamento do fluxo de poténcia em redes de sistemas elétricos.

Tendo em méaos o programa de célculo de Fluxo de Poténcia, buscou-se determinar o
ponto maximo de carregamento do sistema IEEE 30 Barras, submetendo-o a um aumento

proporcional de carga e geracdo sem alterar a estrutura da sua rede.

e 22 ETAPA: Nessa etapa, estudaram-se os diversos modelos do problema da expansao de
redes de transmissdo, bem como os métodos de resolucao. Como, de maneira simplificada
e concisa, os modelos podem ser escritos sob a forma de problemas lineares inteiros mistos

(PLIM), foram estudados métodos exatos e meta-heuristicos para sua resolugao.

Dentre esses métodos de resolucao, avaliaram-se o Método Branch and Bound e a meta-

heuristica Busca Tabu. Apos realizar a implementacao desses métodos em linguagem C-++,

12



estudaram-se seus desempenhos para a resolucdo do problema tradicional de planejamento

da expansao da rede de transmissao.

3% ETAPA: A incorporagdo da minimizacao da vulnerabilidade da rede de transmissao no
problema de expansdo é proposta nesta terceira etapa. Um novo modelo construido sob os
moldes de um problema de otimizacao binivel inteiro misto é formulado e estudado, com o

intuito de extrair caracteristicas da robustez da rede de transmissao.

Para resolucdo desse novo modelo, se estudou a técnica de decomposicdo de Benders apli-
cada a problemas biniveis. Tal metodologia foi implementada em linguagem C-++, com

chamadas de rotinas de resolugdo de PLIM através da ferramenta de otimizagdo GAMS.

13



Capitulo 2

Analise Estatica de Sistemas Elétricos

O objetivo desse capitulo é, a primeiro momento, detalhar alguns métodos numeéricos para a
determinacao do estado de um sistema energético. Essa tarefa consiste basicamente em encontrar
os valores dos parametros elétricos de cada equipamento da rede. Para tanto, na primeira sec¢ao
serd mostrada a modelagem empregada para representar cada equipamento do sistema e, em
seguida, na segunda secdo, serd formulado o problema de fluxo de poténcia e estudada uma
metodologia para sua resolucao.

Por fim, objetiva-se também abordar conceitos de fluxo de poténcia continuado (FPC) e
detalhar um procedimento empregado para calcula-lo. Com o fluxo de poténcia continuado sera
possivel evidenciar a capacidade de transmissao de uma rede elétrica e, dessa maneira justificar

o planejamento da expansao de redes de transmissao.

2.1 Modelagem do Sistema Elétrico

O sistema elétrico de poténcia pode ser dividido basicamente em trés setores diferentes. O
primeiro é o sistema de geracao, o qual é responsavel por converter a energia nas suas diversas
formas (mecanica, solar, nuclear, etc.) em energia elétrica para ser injetada no sistema elétrico.
Em seguida, essa energia é transportada desde o sistema de geracao até os centros consumidores
através do sistema de transmissao. Ao chegar aos centros consumidores, a energia é entdo
distribuida para os consumidores finais pelo sistema de distribuicao.

Tipicamente esses sistemas utilizam a configuracdo de trés fases para o fornecimento de
energia elétrica. Essa configuracao apresenta a vantagem de a poténcia entregue a cargas balan-
ceadas ser constante ao longo do tempo, nao causando assim danos nos componentes mecanicos
do sistema [5]. Entretanto, por simplicidade, utiliza-se um modelo unifilar para representar um
sistema, elétrico, no qual a poténcia elétrica flui por tnicas linhas. Essa simplificacdo é possivel
sempre quando é assumido que o sistema trifasico esta equilibrado e operando em regime senoidal
permanente.

Abaixo sdo ilustrados na Figura 2.1 os dois modelos de representacdo de um sistema, sendo
o primeiro, Figura 2.1.(a), o modelo convencional de um sistema trifasico e o segundo, Figura
2.1.(b), representa o modelo unifilar simplificado da rede.

Usa-se na literatura a nomenclatura barramento (barra ou nd) para designar um elo entre
os equipamentos da rede. A principal caracteristica de um barramento é a sua impedéancia

desprezivel em relacdo as dos outros elementos da rede.
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Barra Linha Barra
Gerador A - Carga

N - (ﬂ)

® e

Figura 2.1: Modelos Trifasico (a) e Unifilar (b) (Adaptado de [5])

Na modelagem baésica, a cada barra estao associadas quatro variaveis, duas de controle e duas

dependentes. Dada uma barra k, tém-se as seguintes grandezas elétricas como varidveis:
e Vi: magnitude da tensdo nodal;
e 0: dngulo de fase da tensdo nodal;
e P geracao liquida de poténcia ativa;
e (J: injecdo liquida de poténcia reativa.

Na analise de um sistema, dependendo de quais grandezas sao estabelecidas como fixas (va-

ridveis de controle) para uma barra, pode-se classificd-la em trés grupos principais:

e Barras P(@) - s2o barras associadas as cargas. Para esse tipo de barras sao fixos os valores

de poténcia ativa e reativa e necessita-se calcular os valores de V' e 6.

e Barras PV - sdo barras associadas & geragdo, cujos pardmetros para serem calculados sao

0 e @, ja que os valores de poténcia ativa e o médulo da tensdo nodal sdo constantes.

e Barras V60 ou Barras de Referéncia - como o préprio nome ja diz, desempenham a func¢ao
de fornecer uma referéncia angular as outras barras, pois possuem o mddulo e a fase da

tensao nodal constantes. Determinam-se para esse tipo de barras as grandezas P e Q.

Outra fun¢io das barras de referéncia é a de fechamento do balanco de poténcia do sistema,
pois como a modelagem geralmente adotada ndo leva em consideracdo as perdas de transmissao
existentes, ao final da determinacdo do estado da rede, elas estardao embutidas no valor da
poténcia injetada nas barras de referéncia estabelecidas. Devido a esta funcdo esse tipo de barra
também pode ser denominada Barra Swing ou Barra Slack.

Os outros elementos do sistema de energia podem ser divididos em dois grupos quanto as

ligagoes de seus terminais:

e Elementos Barra - Terra: Sao elementos ligados diretamente a uma barra e o né de terra.

Ex: Geradores, Carga e Elementos Shunts.

e Elementos Barra - Barra: Elementos ligados entre duas barras distintas da rede.

Ex: Linhas de Transmissao, Transformadores em-fase e Defasadores.

A Figura 2.2 ilustra um sistema elétrico simplificado e seus elementos:
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Gerador
Transformador

Linha de Transmisso
Carga

Elemento Shunt

Ul W o

Figura 2.2: Esquema de um Sistema Elétrico
O gerador, na modelagem estatica do sistema, é representado apenas como uma injecdo de

poténcia ativa e reativa no sistema. De maneira aniloga, sdo modeladas as cargas do sistema.

Estas sao representadas apenas como consumidores de poténcia ativa e reativa.

N
B

—> Poténcia Ativa
—> Poténcia Reativa

Figura 2.3: Modelo de Geradores e cargas

Os elementos shunts sao modelados como elementos de admitancia constante. Como tipi-
camente sdo banco de capacitores ou banco de reatores ndo apresentam parte resistiva, sendo

representados por uma, susceptancia jbih que injeta ou consome poténcia reativa do sistema.

Figura 2.4: Modelo de Elementos Shunt

2~

Para modelagem de uma linha de transmissdao ¢ usado o Modelo Equivalente m (Figura

2.5). Nesse modelo tém-se uma reatancia shunt j bz}fn do tipo capacitiva e uma impedéancia série

Zkm = Tkm + jka
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+J)(

km= r

km km

Figura 2.5: Modelo Equivalente 7 de Linhas de Transmissao

Nesse modelo, a admitancia série da linha yg,, tem valor inverso ao da impedéncia série zg,,.

Considerando que Yim = Gkm + Jbkm, entao:

Tk , . L, - . .~
® Jkm = 5 - 5— ¢ chamada de condutéancia série da linha de transmissao.
Tkem + Lem
Tk . . L. . .~
® bpm = —— +m 5— ¢ chamada de susceptancia série da linha de transmissao.
r T
km km

Para se determinar o fluxo de poténcia em uma linha de transmissao, primeiramente, determina-
se a corrente I, que flui do barramento k em direcdo ao barramento m. Esta é calculada a

partir das tensées Fi e E,, e dos parAmetros da linha:
Tim = Yo (Bx = Em) + jbim B (2.1)
em que as tensoes nodais Ej e Fy,, sdo escritas nas seguintes formas fasorias:
Ep = Vel ¢ B, = Vel (2.2)

A poténcia que flui da barra £ para a barra m é calculada por Sk, = Eil},,. A partir
do modelo equivalente 7, os fluxos de poténcia ativa e reativa sdo determinados pelas seguintes

expressoes:

Pkm = Re(Skm) = gkak2 — gkakacos(ka) — bkakasen(Hkm) (2.3)
Qkm = Im(Skm) = —(bkm + bZ?n)VkQ + b Vi Vincos(Okm) — gkm Vi Vinsen(Ogm,) (2.4)

em que O, = 0 — 0, é a diferenca angular entre os barramentos k e m e Re(Sk,,) indica a
parte real da poténcia complexa Sk, € Im(Sky,), a parte imaginaria.

A Figura 2.6 a seguir mostra a modelagem de um transformador genérico cuja relacao de
transformacdo é t = ae/®. Esse modelo consiste em um transformador ideal em série com uma
admitancia Ygm,.

A relacdo de transformacao t € a razao entre as tensoes nodais de entrada e saida do trans-

formador, isto é:
E, ~
P — = qel? 2.5
i (25)
Considerando que no transformador ideal ndo ha perdas na poténcia complexa, tem-se a
seguinte relacao:

By, = By(—Ln)’ (2.6)
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Figura 2.6: Transformador Genérico (¢ = ael?)

Reajandando a equagao (2.6) e levando em conta a equagao (2.5), obtém-se a seguinte relagao:

Tom

— 7t* — 7a€—j¢ 2.7
T (2.7)

Uma vez determinada a relagdo entre as correntes, observando a Figura 2.6, pode-se evidenciar
que:

Substituindo a relagdo de transformacao de tensoes (2.5) na equacdo (2.8) acima, obtém-se:
Lk = YemEm — a€®yp Ej, (2.9)

E substituindo a relagdo de transformagao de correntes (2.7) em (2.9), obtém-se:
Tt = —ae %Yy B + a*Yim B (2.10)

Com essas expressoOes para as correntes no transformador, os fluxos de poténcia ativa e reativa
sao determinados conforme determinados para a linha de transmissao e sdo dados pelas expressdes

abaixo:

Py, = gkm(avk)2 - gkm(avk)vmcos<9km + ¢) - bkm(avk)vmsen(ekm + ¢) (2'11)
Qrm = —bkm(aVk)z + bkm(avk)vmcos(ekzm + ¢) - gk:m(avk)vmsen(ekm + ¢> (2'12)

Observe que ao substituir a = 1 e ¢ = 0, obtém-se as formulagdes de fluxo de poténcia ativa e
reativa em linhas de transmissdo. A tnica diferenca esta no fato de que o fluxo de poténcia reativa
em linhas de transmissao dependem ainda do pardmetro shunt jbi’;n, que nao estd presente na

expressao (2.12).

2.1.1 Formulagdo Matricial (I = YFE)

Uma vez modelados os equipamentos do sistema elétrico, necessita-se representar matricial-
mente a relacdo entre as correntes nos ramos e as tensoes dos barramentos de um sistema, a fim
de facilitar a implementacao dos algoritmos de resolucao do problema de fluxo de poténcia.

Seja a injegdo liquida de corrente na barra k denotada por I. Esta pode ser obtida aplicando
a Lei das Correntes de Kirchhoff:

I+ I = kam k=1,--- ,NB (2.13)

meQy
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sendo [ ,jh a corrente que flui o elemento shunt para barra k, NB o numero total de barras do
sistema e (g, o conjunto das barras que estao conectadas ao barramento k.
A corrente Ij,, no ramo que une os nés k e m, seja o ramo uma linha de transmissao ou um

transformador, é dada pela expressao geral:
Iom = (@ Ykm + 3b5) Bk + (—agme 7m) Epy (2.14)

Note que aqui, utilizam-se as notagdes ag,, € Ok, para representar respectivamente o angulo

e a fase da relacao de transformacfo do transformador inserido no ramo k£ — m.

Substituindo a expressao (2.14) na equagao de I pode-se reescrevé-la como:

I, = ]bih + Z (]bilrln +aimykm) Ey + Z (_akmejd)kmykm)Em (2'15)
mEQk mEQk

Na sua forma matricial, a equagao (2.15) acima pode ser escrita como:
I=YFE (2.16)
em que:
e [ & o vetor das injecGes de corrente;

e I é o vetor das tensoes nodais;

e Y = (G + jB é a matriz de admitincia nodal. Sendo G e B matrizes reais denominadas

Matriz de Condutancias e Matriz de Susceptancias, respectivamente.

Analisando a expressao (2.15), os elementos da matriz Y sao dados por:

Ykm = —akm6j¢kmykm (2.17)
Yie = G0+ Y (ibih + Gk Yim) (2.18)
meQ

Considerando Yy, = Grm+jBim € Ej = Vie? O tem-se as seguintes expressoes para os fluxos

de poténcia ativa e reativa numa barra k:

P = WV Z Vin (GrmcosOkm + Brmsenbim) (2.19)
mEQﬁ

Qr = Vi Z Vm(kasenekm—BkmCOSka) (2.20)
mGQﬁ

em que Opy, =0 — 0, € QZ é o conjunto formado pela barra k e por todas as barras do sistema
que estao conectadas a essa barra k.

Essa forma matricial de representar os fluxos de poténcia nos ramos do sistema facilita a
notacdo e auxilia na implementacao dos métodos para resolucao do problema de fluxo de carga,

o qual serd detalhado na préoxima secao.
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2.2 Fluxo de Carga

O calculo do fluxo de carga (ou fluxo de poténcia) de um sistema elétrico consiste na de-
terminacao do estado da sua rede. Isso inclui determinar todos os parametros dos barramentos
e o fluxo de poténcia ativa e reativa em cada um dos seus ramos. Neste trabalho é abordado
a modelagem estatica do sistema elétrico, no qual se modelam as relagbes entre os pardmetros
elétricos a partir de equacdes e inequacdes algébricas. E uma modelagem valida desde que sejam

desconsiderados os efeitos transitérios na rede.

As equagbes algébricas da modelagem estatica sao baseadas nas Leis Equivalentes de Kirchhoff

para sistemas de energia [3]:

e 12 Lei Equivalente de Kirchhoff: As poténcias ativa e reativa injetadas numa barra
do sistema devem ser iguais & soma algébrica das poténcias que fluem pelos componentes

internos do sistema que possuam um dos terminais conectados a essa barra.

e 22 Lei Equivalente de Kirchhoff: Os fluxos de poténcia pelos componentes do tipo

Barra - Barra sao funcoes das tensoes de seus terminais.

Matematicamente:
Pe = Y Pun(Vi,Vin, Ok, 0m) (2.21)
meQy
Qe+ QP (V%) = D Qim(Ve, Vin, Ok, Om) (2.22)
meQy

em que th(Vk) ¢ a poténcia reativa fornecida por elementos shunts da barra k.

A Figura 2.7 mostra a convencdo dos sinais dos fluxos de poténcia utilizada.

Figura 2.7: Convencao de Sinal para fluxos de poténcia ativa e reativa

As restrigoes de desigualdades algébricas na modelagem estética estao relacionadas com as-
pectos construtivos e econémicos da rede. As principais restricées apresentadas sdo as imposicoes

de limites para o nivel de tensdao nas barras PQ) da rede e para a injecdo de poténcia reativa em
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barras do tipo PV.

VMIN < v, < VMAX Para barras PQ (2.23)
QMIN < ), < QMAX Para barras PV (2.24)

A determinacao do estado da rede consiste em encontrar para cada barra os valores dos seus
parametros varidveis, ou seja, calcular P, e Q) para barras V6, calcular Q)i e 6 para barras PV
e calcular Vj e 6 para barras do tipo PQ.

Sejam NVO, NPV e NPQ os numeros de barras do tipo V0, PV e PQ , respectivamente.
Logo, para a determinacao do estado da rede é necessario resolver um sistema de equagdes nao-
lineares de dimensao 2 - (NV@ + NPV + NPQ), ja que para cada barra é necessario determinar 2
parametros.

Esse sistema nao-linear pode ser dividido em dois subsistemas:

Subsistema 1

Determinacgdo dos parametros 6 para as barras PV e PQ, e Vi para as barras PQ. Esse
subsistema consiste em resolver o sistema de equagoes determinado pelas expressoes de fluxo de

poténcia na barra em anélise:

PeP = Vi > Vin(GrmcosOkm + Bmsenyy,) =0 Para barras PQ e PV (2.25)

mGQZ

QL — Vi Z Vi (GrmsenOgm — Brmcosby,) =0 Para barras PQ (2.26)

+
meQ),;

em que P.*" e Q" sao os valores de poténcia ativa e reativa especificados para a barra k.
Note que esse sistema possui 2 - NPQ + NPV equagoes e esse mesmo niimero de incognitas.

Sua resolucao serd obtida através de métodos numeéricos descritos a frente.

Subsistema 2

Calculo dos parametros Py e Qp das barras de referéncia e @ das barras do tipo PV. A
resolucao desse subsistema, cuja dimensao é 2 - NVO + NPV, é mais trivial, pois basta apenas

substituir os valores dos parametros encontrados anteriormente nas equagoes abaixo:

P, =V, Z Vin (GrmcosOkm + Brmsenim,) Para barras de Referéncia (2.27)
mEQZ’

Qr="Vs Z Vi (GrmsenBim — BrmcosOim) Para barras de Referéncia (2.28)
mEQk‘,F

e barras do tipo PV

Apos resolvidos esses dois subsistemas, deve-se verificar as limitagdes encontradas na operacao
do sistema, tais como, a capacidade de suporte de fluxo de poténcia nas linhas e transformadores,
os limites da injegdo de poténcia reativa em barras associadas aos geradores (Barras PV) e os
limites da tensado em barras relacionadas a carga (Barras PQ).

Caso uma dessas restrigoes seja infringida, uma maneira de eliminar esse problema ¢é fixar
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o valor da varidvel que foge dos limites estabelecidos e em seguida resolver os dois subsistemas
novamente com essa nova alteracao.
Serdo apresentados agora em subsectes alguns métodos numéricos para resolugdo do Subsis-

tema 1, o qual pode ser escrito na sua forma matricial:

g(z) =0 (2.29)
em que:
o = [ v ] é o vetor das variaveis;
AP pesP — P(V,0) | | - .. - .
e g(x) = = é a funcdo matricial ndo linear cujas raizes se
AQ QP — Q(V,6)

desejam encontrar.

2.2.1 Fluxo de Carga pelo Método de Newton

O Método de Newton é um dos métodos numéricos mais utilizados para resolucdo de sis-
temas nao-lineares gracas a sua elevada ordem de convergéncia. E um método que obtém a
solucdo iterativamente, gerando o vetor de solugdo xV*! através da expressdo (2.30) mostrada a
abaixo. Uma vez assegurada a convegéncia, essa sequéncia de vetores convergird para a solugao
do sistema.

2 = [T g(a) (2.30)

em que J(zV) é a matriz jacobiana da fungao g(z). No caso do subsistema 1 essa matriz é
dividida em 4 submatrizes (H, M, N, L):

J(AP) O(AP) oP 0P
J(z¥) = g _ a0 ?V - _ % g7 - _ H N (2.31)
Ox 9(AQ) 9(AQ) 0Q 0Q M L
00 ov 00 oV
em que os elementos das submatrizes H, M, N e L sdo determinados pelas expressoes:
0P
Hy,, = 897k = ViVin(GrmsenOyy, — BimcosOim,)
H or,
Hye = Tk _ —VkQBkk — Vi Z Vi (GrmsenOgm — BimcosOkm)
00y,
\ mEQ;
oP,
Ny = # = Vi(GrmcosOrm + BrmsenOim)
N OP;
Ny = FIA = ViGrr + Z Vin (Grmcosbim + BrmsenOim,)
meﬂz
0
My, = aTQk = —ViVin(GrmcosOim + Brmsenbim,)
M 0
My, = ﬁ = _VkQGk:k; + Vi Z Vin (GrmcosOkm + Brmsenbim)
00y,
’mEQk‘,F
0
Ly, = Qs = Vi(Ggmsenbm — BrmcosOim)
L o
Ly, = 8?/: = —VpBr + ZQ+ Vm(kasenka — Bkmcosﬁkm)
L mell,
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Portanto, o algoritmo de resolucao do subsistema 1 descrito pelo método de Newton é:

2.32
2.33
2.34
2.35

APV, 0%) = H(V",0°)A0" + N(V°,0°)AV"
AQ(V,0%) = M(V',0")A0" + L(V*,0")AV"®
0t = 0"+ AGY

(
(
(
VUL = VAV (

)
)
)
)

Apesar de ser bem eficiente e gerar a resposta do subsistema com um numero pequeno
de iteragdes, esse método é computacionalmente custoso para algumas aplicagoes, pois a cada
iteracao a matriz jacobiana é recalculada e dependendo da dimensao do problema requer um
esforgo computacional grande.

Para solucionar esse problema e tornéa-lo mais eficiente, pode-se evitar recalcular a matriz
jacobiana e utilizar a mesma matriz calculada na primeira iteracdo em todas as outras. Dessa
maneira, a convergéncia pode ser comprometida de acordo com o ponto inicial escolhido e caso
ocorra, serd com um namero maior de iteragoes. Contudo os cilculos serdo mais simples, tornando

essa safda mais atrativa para sistemas com dimensoes elevadas.

2.2.2 Fluxo de Carga pelo Método Desacoplado

Outra solugao apresentada em [3| para a simplificacdo de célculos na determinacao da matriz
jacobiana do subsistema apoia-se na informacdo de que as sensibilidades OP/00 e 0Q/0V sao
grandes comparadas com as sensibilidades OP/0V e 0Q /00 para sistemas de extra-alta-tensao
(EAT, maiores que 230 kV) e de ultra-alta-tensao (UAT, maiores que 750 kV).

Essa simplificacao esta contida no Método Desacoplado e consiste em assumir que os ele-
mentos das submatrizes M e N sao nulos e efetuar o desacoplamento das submatrizes jacobianas
H e L. A resolucao do sistema linear é dividido em dois sistemas menores que sdo resolvidos

alternadamente como mostra o algoritmo abaixo:

AP(V®,6Y) = H(V",6°)A6"
0t = 0"+ A
AQ(VY, vy = LV, 0vTHAVY
Vi = VUL AVY

2.36
2.37
2.38

(
(
(
(2.39

)
)
)
)

Note que para calcular o valor de AV ¢ utilizado o vetor §*! encontrado na iteracdo
imediatamente anterior, isso agiliza a convergéncia desse método, tornando-o bem aplicavel. A
Figura 2.8 a seguir mostra o fluxograma proposto em [3| do algoritmo de resolucao do Método

Desacoplado.
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KP=KQ=1
p=qg=0

N|
v

Calcular: AP(V1,67) ‘

Resolver o sistema
AP(VY,0P) = H'AOP

v

Atualizar
Pl = 9P + AQP *
v

‘ Incrementar p |

.

KQ=1

SOLUCAQ
‘ Calcular: AQ(V9,07) ‘ |:‘

Resolver o sistema _
AQ(VY,6P) = ['AVY <::§Eo =

Atualizar
VIt = a4+ AV

!

| Incrementar q |

KP=1

Figura 2.8: Fluxograma do Algoritmo de Método Desacoplado

Uma versao diferente para o calculo de fluxo de poténcia utilizando o método desacoplado
consiste em substituir as matrizes H e L pelas matrizes H' e L' determinadas pelas expres-

soes abaixo que levam em consideragao a matriz diagonal V' cujas entradas sdo os valores das

magnitudes das tensdes nodais do sistema:
H = VH (2.40)
L = vl (2.41)
com
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Vi 0 -~ 0
V=1 . . ) V;: magnitude da tensdo nonéi (i=1,--- ,NB)
0 0 - Vyg

Nessa nova versao os elementos das matrizes de iteracao H' e L' sao dados pelas expressoes:

Hi,, = Vi(GrmsenOim — BimcosOiy,)

Hy, = —Qi/Vik — VB (2.42)
wm = GrmsenOy, — Brmcosim
e = Qi/Vi — Buk (2.43)

As equagoes de iteracOes ficam portanto na forma:

AP/V = H'A# (2.44)
AQ/V = LAV (2.45)

em que AP/V (ou AQ/V) é uma notaciao mais simples para V" !AP (ou V'AQ).
Na préxima subsecgao sera feita uma simplificacao das equacoes (2.42) e (2.43) considerando

algumas caracteristicas de redes de transmissao que operam com faixa de tensoes elevadas.

2.2.3 Fluxo de Carga pelo Método Desacoplado Rapido

Sao caracteristicas de redes de transmissao de EAT e UAT [3]:
® Opm = 0, logo cosbOy,, é proximo de 1;

e By, é consideravelmente maior que G, senbi,;

e ()i tem valor bem menor que BkakQ.

Logo, aplicando essas aproximagoes nas expressoes dos elementos das submatrizes H' e L'

(2.42 e 2.43) obtém-se os seguintes resultados:

H, ~ —VuBim

Hy, ~ —ViB (2.46)
L;wn ~ _Bkm
e ~ —DBuk (2.47)

Assumindo também que as magnitudes das tensdes nodais sejam aproximadamente unitéarias,

as submatrizes H' e L' podem ser aproximadas por

H ~ B (2.48)
L' ~ B (2.49)

25



Essas matrizes B’ e B” dependem exclusivamente de parametros da linha. Esse fato ¢ a
principal vantagem obtida com essas aproximacoes, pois nao hé necessidade de se recalcular as
submatrizes jacobianas a cada iteracdo.

E possivel conseguir melhores desempenhos de resolucio quando se considera a matriz B’
como a matriz de susceptancia do Fluxo de Carga CC [3], desprezando o valor das resisténcias
dos elementos da rede e assumindo by, ~ —1/xp,. Assim os elementos das matrizes B’ e B”

sao dados pelas expressoes:

Bllcm = _x];nlz
NB

By = Y Tp, (2.50)
m=1

B;c/m = _Bkm

By = —Bu (2.51)

em que Ty, ¢ a reatancia série da linha ou transformador e By, ¢ B sdo elementos da matriz

de susceptéancias B da rede.

2.3 Resultados Obtidos

Desenvolveu-se em linguagem C a implementacao do Método Desacoplado Rapido para o
calculo do fluxo estético de poténcia em sistemas elétricos. Utilizou-se o pacote CSparse, criado
e disponibilizado por [4]. Este pacote conta com estruturas de dados para representacao de
matrizes esparsas e suas operacoes.

Para verificar a aplicabilidade do programa desenvolvido, ele foi usado para o calculo de fluxo

de carga da rede IEEE-30 barras e apresentou os seguintes resultados:

1. Estado do Sistema: A Tabela 2.1 apresenta os valores dos parametros de todas as barras
da rede apds 6 iteracdes p e 6 iteragbes ¢ do Método Desacoplado Réapido, com precisao
e=10"°5.

26



Tabela 2.1: Resultado: Estado do Sistema
Numero Tensao Geragao Carga
da Tipo (*) | Médulo Angulo P Q P Q
Barra (pu) () (MW) (MVAR) | (MW) (MVAR)

1 2 1.0600 0.00 131.41 4.75 0.00 0.00
2 1 1.0450 -2.60 40.00 31.56 21.70 12.70
3 0 1.0271 -4.05 0.00 0.00 2.40 1.20
4 0 1.0191 -4.84 0.00 0.00 7.60 1.60
5 1 1.0100 -7.02 50.00 14.90 94.20 19.00
6 0 1.0145 -5.70 0.00 0.00 0.00 0.00
7 0 1.0048 -6.77 0.00 0.00 22.80 10.90
8 1 1.0100 -5.75 27.90 16.92 30.00 30.00
9 0 1.0533 -7.55 0.00 0.00 0.00 0.00
10 0 1.0474 -9.09 0.00 0.00 5.80 2.00
11 1 1.0820 -6.50 10.00 15.00 0.00 0.00
12 0 1.0622 -7.50 0.00 0.00 11.20 7.50
13 1 1.0710 -5.38 30.00 7.28 0.00 0.00
14 0 1.0473 -8.49 0.00 0.00 6.20 1.60
15 0 1.0419 -8.70 0.00 0.00 8.20 2.50
16 0 1.0485 -8.44 0.00 0.00 3.50 1.80
17 0 1.0424 -9.10 0.00 0.00 9.00 5.80
18 0 1.0319 -9.53 0.00 0.00 3.20 0.90
19 0 1.0290 -9.83 0.00 0.00 9.50 3.40
20 0 1.0328 -9.70 0.00 0.00 2.20 0.70
21 0 1.0352 -9.53 0.00 0.00 17.50 11.20
22 0 1.0357 -9.51 0.00 0.00 0.00 0.00
23 0 1.0309 -9.34 0.00 0.00 3.20 1.60
24 0 1.0246 -9.86 0.00 0.00 8.70 6.70
25 0 1.0195 -9.84 0.00 0.00 0.00 0.00
26 0 1.0021  -10.27 0.00 0.00 3.50 2.30
27 0 1.0249 -9.56 0.00 0.00 0.00 0.00
28 0 1.0102 -6.11 0.00 0.00 0.00 0.00
29 0 1.0053  -10.79 0.00 0.00 2.40 0.90
30 0 0.9939  -11.67 0.00 0.00 0.60 1.90

(*) Legenda:

Barra PQ
Barra PV
2 Barra V6

— O
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2. Fluxos de Poténcia Ativa Calculados pelo programa, os fluxos de poténcia ativa podem
ser vistos na Tabela 2.2 a seguir. Note que as linhas com maiores sobrecargas sao a linha
1 (1-2), a linha 2 (1-3) e a linha 5 (2-5).

Tabela 2.2: Resultado: Fluxo de Poténcia Ativa

Numero | Barra | Barra | Poténcia | Poténcia
da Inicio | Fim Ativa Ativa, Perdas
Linha (bi) (bf) (bi—bf) | (bf—hi)
1 1 2 87.567 -86.257 1.310
2 1 3 43.844 -43.034 0.810
3 2 4 26.329 -25.939 0.390
4 3 4 40.634 -40.420 0.214
5 2 5 43.320 -42.468 0.852
6 2 6 34.908 -34.230 0.678
7 4 6 37.692 -37.529 0.163
8 5 7 -1.732 1.732 0.000
9 6 7 24.709 -24.546 0.163
10 6 8 5.008 -5.008 0.000
11 6 9 16.968 -16.968 0.000
12 6 10 11.669 -11.669 0.000
13 9 11 -10.000 10.000 0.000
14 9 10 26.968 -26.968 0.000
15 4 12 21.066 -21.066 0.000
16 12 13 -30.000 30.000 0.000
17 12 14 8.581 -8.581 0.000
18 12 15 20.923 -20.644 0.279
19 12 16 10.362 -10.362 0.000
20 14 15 2.296 -2.296 0.000
21 16 17 6.767 -6.767 0.000
22 15 18 7.662 -7.662 0.000
23 18 19 4.403 -4.403 0.000
24 19 20 -5.109 5.109 0.000
25 10 20 7.381 -7.381 0.000
26 10 17 2.277 -2.277 0.000
27 10 21 15.650 -15.542 0.109
28 10 22 7.529 -7.529 0.000
29 21 22 -1.958 1.958 0.000
30 15 23 7.067 -7.067 0.000
31 22 24 5.519 -5.519 0.000
32 23 24 3.817 -3.817 0.000
33 24 25 0.576 -0.576 0.000
34 25 26 3.544 -3.544 0.000
35 25 27 -2.971 2.971 0.000
36 28 27 16.262 -16.262 0.000
37 27 29 6.189 -6.189 0.000
38 27 30 7.091 -6.930 0.161
39 29 30 3.704 -3.704 0.000
40 8 28 2.895 -2.895 0.000
41 6 28 13.405 -13.405 0.000
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Em seguida, realizaram-se algumas simulagoes para se verificar como se comporta um sistema
elétrico quando ha um aumento na demanda das cargas. A andlise realizada observa a variagao
da média dos mdédulos das tensées nodais da rede quando se imp6e um aumento na poténcia
gerada e consumida.

Esse procedimento é denominado na literatura por Fluxo de Poténcia Continuado (FPC) e
serve para determinar a capacidade de transmissao de poténcia de sistemas elétricos.

Na implementagao desenvolvida foi adicionada uma variavel denominada taza (inicialmente
com valor igual a 1) que, antes de iniciar o calculo de fluxo de poténcia, multiplica os valores de
poténcia ativa e reativa, geradas e consumidas das barras do tipo PQ e PV da rede.

Em seguida, foi criado um processo iterativo que incrementa o valor de taza com um passo
de 0.01 (1%) até o ponto em que o método ndo apresentava convergéncia. A divergéncia foi
atribuida quando o método realizava 100 iteragdes. Assim interrompia-se a incrementacao da
taxa e finalizava-se o programa.

Abaixo é mostrado na Figura 2.9 o grafico obtido para o sistema IEEE-30 barras.
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Figura 2.9: Comportamento da Rede Elétrica IEEE-30 barras em fun¢ao do aumento de demanda
de energia

Verifica-se que o método desacoplado répido desenvolvido converge para valores de taxa
menores e iguais a 3,28. E que no ponto em que ndo h& mais convergéncia a média dos médulos
das tensdes nodais vale 0,871 pu.

Observando qualitativamente o resultado obtido, observa-se que o nivel de tensdo da rede
diminui com o aumento da poténcia demandada pelas cargas. Para conseguir suprir novas cargas
inseridas no sistema de maneira estavel, o sistema elétrico diminui o nivel de tensao nodal da
rede.

Entretanto, essa diminuicao da tensao nodal pode acarretar o desativagao de algumas cargas e
assim gerar um efeito de desligamento geral da rede. Esse efeito pode ser observado aproximando
o grafico da Figura 2.9 por uma relacao polinomial de quarto grau como sugere [2].

Essa aproximacao define duas regices de estabilidade do sistema: a parte superior da curva

ajustada (do ponto A ao ponto C) representa os pontos de operagao estavel do sistema elétrico,
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enquanto que na parte inferior da curva (do ponto D ao ponto C), sdo representados os pontos
de operacao instavel.

Através dessa aproximacao ¢ possivel estimar o ponto de méximo carregamento (PMC) do
sistema, onde um ponto de equilibrio estédvel se funde com um ponto de equilibrio instavel. A
distancia entre o PMC e o ponto de operagao do sistema é chamada de Margem da Estabilidade
do sistema.

O grafico ilustrado na Figura 2.10 mostra o PMC estimado ajustando os dados obtidos pelo

programa a uma relacao de quarto grau.
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Figura 2.10: Estimacao da Margem de Carregamento do Sistema IEEE-30 barras

Nota-se que o ponto de méximo carregamento encontrado ocorre 4 taxa 3,34 e com uma média
de mo6dulos de tensao nodais igual a 0.849 pu. A diferenca entre o PMC (Ponto C) e o ponto em
que o programa desenvolvido ndo apresenta convergéncia (Ponto B) se deve as caracteristicas de
convergéncia do método Desacoplado Rapido na vizinhanga do ponto de maximo carregamento.

A margem de carregamento observada tem valor igual a 2,34 - Pr, ~ 640MW (Pr, ¢ a
poténcia ativa demandada inicialmente para taxa unitaria).

Em seguida verificou-se o comportamento da rede quando retirada a linha com maior car-
regamento que nao esteja conectada a barra de referéncia (Barra 1). Observando a Tabela 2.2,
essa linha é a que liga os barramentos 2 e 5 (Linha 5).

Segue a Figura 2.11 que ilustra o grafico da variacao da média dos modulos das tensoes nodais

com o aumento da taxa de demanda, quando retirada a linha 5 (2-5).
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Figura 2.11: Comportamento da Rede Elétrica IEEE-30 barras sem linha 2-5 em func¢do do
aumento da demanda de energia

Nesse caso a convergéncia ¢ conseguida até a taxa de 3,15 (aproximadamente 96% do valor
limite conseguido para a rede original). Nesse ponto obtém-se uma média dos moédulos das
tensoes com valor 0,862 pu (pouco mais que 98,7% do valor médio dos modulos das tensoes no
ponto de instabilidade da rede original).

Outra analise realizada foi a retirada da linha 1 (entre os barramentos 1 e 2) do problema
original. Essa linha é a que apresentava maior sobrecarga. O resultado pode ser visto na Figura
2.12 abaixo.
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Figura 2.12: Comportamento da Rede Elétrica IEEE-30 barras sem linha 1-2 em fung¢ao do
aumento da demanda de energia

Neste ultimo caso, a divergéncia ocorre ja para taxa igual a 2,21 (pouco mais de 67% da taxa
limite do problema original) e com média de tensdo igual a 0,942 pu. (cerca de 8% a mais em
relacao a média dos modulos das tensdes no ponto de instabilidade).

O grafico mostrado na Figura 2.13 apresenta todas as trés analises realizadas (problema
original, sem linha 5 e sem linha 1). Nota-se que a retirada da linha 1, & qual esta ligada a barra

de referéncia, acarreta uma diminuicao consideravel da margem de estabilidade do sistema.
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2.4 Conclusao

A partir dos resultados obtidos péde-se observar o comportamento que uma rede de sistema
de poténcia apresenta ao aumentar a demanda por energia elétrica. Notou-se que ha uma redugao
do nfvel de tensdao nos nés da rede para manter a estabilidade de operacao. Viu-se também a
existéncia de um ponto de bifurcagdo que determina o limite do aumento da demanda das cargas,
o qual é dado o nome de Ponto Maximo de Carregamento (PMC).

O decréscimo da tensdo com o aumento da demanda é traduzido pelo termo Capacidade de
Transmissao. Quanto maior a capacidade de Transmissao, maior é a sua margem de carregamento
e, portanto, a tensdo diminui mais lentamente com o aumento da carga.

Como pdde ser visto, o aumento do parque de geracao de energia elétrica, sem modificagtes
na estrutura do sistema de transmissdo, ndo garante o bom fornecimento desta energia. Logo
um planejamento da expansao da rede de transmissao torna-se necessario tendo em vista um
horizonte de longo prazo.

No proximo capftulo deste trabalho, serdo abordados os principais modelos deste tipo de

problema, bem como algumas metodologias de resolucao.
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Capitulo 3

Modelos do Problema de Expansao de
Redes de Transmissao de Sistemas

Elétricos

O problema de Planejamento da Expansao de Redes de Transmissao (PERT) na sua forma
tradicional determina em que momento e em quais pontos da rede devem ser realizadas alteragoes
da configuracao (rearranjo ou novas instalagoes). Esse planejamento tem como objetivo garantir
o suprimento de toda demanda prevista num horizonte, minimizando o custo total das alteracoes

realizadas. Esse tipo de problema pode ser classificado em duas classes:

e Planejamento Monoperiodo: Determina a configuracao 6tima da rede em um tnico
instante futuro, ndo se preocupando com o momento em que se realizardo as novas insta-

lagoes.

e Planejamento Multiperiodo: Divide o horizonte de planejamento em diversos periodos

menores e determina para cada um, quais sdo as configuragoes 6timas da rede.

Nesse trabalho apenas se abordara o planejamento estatico da expansao, no qual nao hé
influéncia do tempo de alocacdo de novas instalagoes. A formulacdo matematica basica desse

planejamento classico é a mostrada abaixo

min_f(s, 27 z°) (3.1)
s.a. g(s,z%,2%) =0 (3.2)
se€{0,1} Ve e L° (3.3)

em que:
e 3 funcdo f consiste no custo total de alteracoes do sistema elétrico;

e a varidvel binaria s representa os planos de expansao para o sistema. Sendo sy igual a 1 se
0 equipamento £ é construido e 0 caso contrario. Neste trabalho, dentre os equipamentos

da rede, apenas se estudara a inclusdo ou nao de linhas de transmissao;

e 1° e z¢ denotam as varidveis continuas de decisdo associadas, respectivamente, a rede

elétrica original e a rede elétrica expandida;
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e g(s,z° ¢ = 0 é arestri¢ao de operacao do sistema, a qual relaciona as variaveis de decisao

segundo caracteristicas da rede elétrica;

e LC ¢ o conjunto de linhas candidatas & expansio.

3.1 Modelos classicos do PERT

No que segue, serao apresentados dois dos modelos propostos ao longo das décadas de pesquisa

nessa area: Modelo de Transportes (e Modelo de Transportes Modificado) e Modelo CC.

3.1.1 Modelo de Transportes

Proposto por [6], o Modelo de Transportes considera apenas a capacidade de operagao do
circuito da rede e a implicagdo da Lei de Correntes de Kirchhoff (LCK) nos barramentos do
sistema. Desta maneira, o problema reduz-se a um problema linear inteiro misto (PLIM) e é o

apresentado abaixo:

min Z cksy (3.4)

i * perc
> pY - Z PF+ > Pz_d Vne N (3.5)
9€Gn 0Oo(0)=n 2| R(0)=
G pG
0 < PY < P Vg e @ (3.6)
~PF <Pl <P} vl e L° (3.7)
—SKPZL < PKL < SZPKL \WAS LC (38)
s € {0,1} Ve e L° (3.9)

As varidveis de decisao desse modelo sao:
° PgG: poténcia ativa total injetada pelo gerador g;
° PZL: fluxo de poténcia ativa na linha ¢ da rede elétrica;

e s;: varidvel binaria de decisao de novas instalagoes. Sendo que sy = 1, caso se construa a

linha ¢ e sy = 0, caso contrario.

O objetivo principal do problema tradicional da expansao é a minimizagao do custo total das
novas instalacoes, determinado pela soma dos custos individuais (Cé’: custo de instalacao da linha
¢) de cada linha candidata. No processo de defini¢do do escopo do planejamento da expansao,
devem ser especificados os ramos onde podem ser construidas novas instalacoes e determinados
os custos dessas operagoes. Geralmente, para redes em que as distancias entre os barramentos
sao grandes, admite-se que o custo de instalacao é diretamente proporcional ao comprimento das
linhas.

No modelo, a primeira restri¢ido, Eq. (3.5), impoe o balanco de poténcia ativa em cada bar-
ramento da rede respeitando o conceito de que as barras ndo possuem a capacidade de acumular

poténcia (LCK). Nessa restrigao:

e O conjunto G, contém os indices dos geradores que estdo conectados no barramento n;
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e As funcoes O(¢) e R({) sao, respectivamente, os nos de origem e destino da linha ¢;
e O pardmetro d,, corresponde & demanda de poténcia ativa no barramento n;
e O conjunto N contém todos os indices de barramento.

A segunda restri¢ao desse modelo, Eq. (3.6), é a imposi¢ao dos limites das geracoes. Devido
a restricoes técnicas e econdmicas é estabelecido um limite maximo de geragao ng para cada
unidade geradora g.

As duas restrigoes seguintes, Eqgs. (3.7) e (3.8), compreendem a capacidade méxima de fluxo
de poténcia ativa em cada linha da rede. Sendo que a equagao (3.7) representa a limitagao no
fluxo de poténcia nas linhas da rede original do sistema e a equagao (3.8), nas linhas candidatas.

Segundo o trabalho apresentado em [6], a capacidade maxima de transmissao de uma linha PZL
mantém-se constante para linhas cujo comprimento nao ultrapassa cerca de 80 km (50 milhas),
enquanto que para linhas mais longas esse valor decresce e segue como mostrado na Figura 3.1

a seguir.

100

CAPACIDADE DE FLUXO, MW

Q

0 50 100
DISTANCIA, MILHAS

Figura 3.1: Capacidade Maxima de Fluxo (Adaptado de [6])

Por apresentar varidveis inteiras e continuas, e apenas relacoes lineares entre elas, esse modelo
se enquadra nos moldes de um problema linear inteiro misto. Existem varios métodos de resolucao

deste tipo de problema, os quais so classificados em trés grandes grupos [7]:

e Métodos Exatos (ou Otimos): Sao métodos que determinam a solucio 6tima do problema

linear inteiro.

e Métodos Aproximados: Esse tipo de método nao encontra necessariamente a solucdo 6tima
do problema inteiro, mas garante solucoes subdtimas que distam uma tolerdncia maxima

da solucdo 6tima.

e Métodos Heuristicos: Sao métodos que ndo garantem a solugdo 6tima, mas, de maneira

bem eficiente, determinam solucdes vidveis para um certo critério.

Para aplicacao de técnicas meta-heuristicas na resolucao do problema de planejamento da
expansao de redes de transmissdo, devem ser realizadas algumas modificacbes no Modelo de
Transportes, ji que as técnicas meta-heuristicas estipulam valores para as varidveis sy, logo, nao

é mais necessario minimizar o custo de instalacdo, ja que é fixo dada uma solucao.
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Necessita, entretanto, verificar a factibilidade da solugdo apresentada pelos algoritmos. Dessa
maneira, o0 modelo matematico deve se adequar a esta necessidade e isso é conseguido com a
inser¢ao de variaveis de geracgao artificial (7).

Essas varidveis representam uma geragao complementar de poténcia ativa em cada né do
sistemna. Para forcar a anulacao destas variaveis ficticias, a funcdo objetivo do novo modelo

passa a ser:
min Z Tn (3.10)
P RE
Assim, para a solucao proposta pelo algoritmo da meta-heuristica ser valida, essas varidveis
devem ser nulas e as outras varidveis representardao os valores 6timos para o fluxo de poténcia.
Quando n#o for nula, uma dessas variaveis terda valor maior que zero, indicando que nao ha
configuragdo do fluxo de poténcia capaz de suprir a barra onde estd conectada essa geracgao
artificial.
Apos as alteracGes mencionadas, o modelo passa a ser formulado como abaixo e é denominado
Modelo de Transportes Modificado.

min Y ", (3.11)

PG, PEry N

sa. Y PS— > P+ > Pl=dy—r, VneN (3.12)
geGh, 00()=n ¢|R(£)=n
G pG

0 < PG < P Vg € G (3.13)
o<r, <d, Vn € N (3.14)
-Pl <PF <Pt vl e LO (3.15)
—syP} < PF < s,P} vl e LC (3.16)

Como durante a resolugao utilizando meta-heuristicas, os valores das varidveis sy sao esta-
belecidos, o modelo de transportes modificado é representado por um problema de otimizagdo

linear (PL), pois todas suas varidveis pertencem ao espaco dos nimeros reais.

3.1.2 Modelo CC

O Modelo CC, junto com o Modelo CA, sao modelos que aplicam as duas Leis de Kirchhoff
no sistema elétrico. Entretanto, diferentemente do modelo CA, onde é realizada uma formulacao
muito proxima do problema real, o modelo CC realiza algumas simplificagées na expressao do
fluxo de poténcia ativa entre as linhas da rede de maneira a relacionéd-lo apenas com a abertura
angular entre os barramentos e a reatncia da linha que os une.

Do modelo CA, a expressao que define o fluxo de poténcia ativa entre dois barramentos é a

mostrada abaixo:
PZL = sz cge— Vi - Vi - go - c08(6 — ) — Vi - Vi - bp - sen (9, — dp) (3.17)

em que k= O0(¢) e m = R(¢).
Em sistemas de poténcia, especialmente em sistemas EAT ou UAT, observam-se as seguintes

caracteristicas:

e As tensoes nodais Vi e V;,, sdo proximas de 1 p.u.
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e A componente resistiva das impedéancias das linhas é bem menor que a componente reativa

(re < xy), de modo que gy =~ 0 e by = —1/xy.

e Ags aberturas angulares dp — J,, sao pequenas e portanto, por linearizacdo de Taylor,
sen(0p — Op) = O — Oy

Portanto, ao realizar essas simplifica¢oes em (3.17), obtém-se uma expressao linear em relagao
as varidveis definidas: 5 s

e —
pl==_"7 (3.18)

Ty
A equagdo (3.18) acima pode ser comparada com a expressdo que define a corrente elétrica
que flui em um resistor: a magnitude da corrente I se relaciona com o fluxo de poténcia ativa
PKL7 as tensoes Vi e V,,, se relacionam com os angulos de fase d; e §,, e a resisténcia R do resistor,

com a impedancia zy. Por causa dessa equivaléncia que é dado a nomenclatura Modelo CC.

Abaixo segue o modelo CC completo:

: L
min ¢Sy (3.19)

PS,PF,s0,6n éeZLC ¢
sa. Y PS— Y P+ > Pl=d, VneN (3.20)

e €0(8)=n {|R(6)=n
0< P <P¢ VgeG (3.21)
0<6,<9 Vne N (3.22)
—PF <P} <Pk VleL (3.23)
1

P} = o [60(0) — Or()] Ve e LO (3.24)
Pl =2 {500 — 0 ve e LC 3.25
¢ =, Pow — ore) € (3.25)
se € {0,1} Vi e L¢ (3.26)

Nesse modelo ¢ inserida a restricao de limite das aberturas angulares, Eq. (3.22), que deter-
mina um limite maximo 0 para os valores dos angulos nodais d,, para garantir a condicdo de

Taylor descrita mais acima.

As restri¢oes (3.24) e (3.25) indicam a imposicao da Lei das Tensoes de Kirchhoff (LTK).
Simplesmente impsde a relacido entre os fluxos de poténcia ativa e a abertura angular entre as

barras, entretanto torna o problema nfo linear por conta da multiplicagao das variaveis sy e 6.

Ao suprimir ambas as restri¢oes, retorna-se ao Modelo de Transporte e este pode apresentar
uma solucdo nao aplicavel ao problema real, pois pode requisitar uma abertura angular muito

grande e infactivel para produzir os fluxos de poténcia na rede.

Contudo, pode-se realizar uma modificacao da restricdo nao linear, com a inclusdo de novas

restricdes e novas variaveis. Esse procedimento estd detalhado no Apéndice A e reescreve a
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restricdo nao linear da seguinte maneira:

3.32
3.33

0<80<(1—s0)5 WeelL®
0< < (1—s)5 VeelL®

P = ; (67— o2"] wee L€ (3.27)
320 + 00 =6y W L€ (3.28)
0%+ 5/ = opy  We L (3.29)

0 <029 < 546 vl e LC (3.30)
0<09F <58 vl e LC (3.31)
(3.32)
(3.33)

Observe que a variavel §,, € escrita, de maneira geral, a cada linha ¢, como a soma de duas
novas varidveis (5ZQ e (524. Quando sy = 1, as restri¢oes (3.32) e (3.33) impoem a anulacao das
5@40 e 524R 5?0 e (522}% assumem os valores

variaveis , respectivamente. Dessa forma, as variaveis

dos d,, correspondentes e o fluxo de poténcia fica definido de maneira, correta.
J& quando sy = 0, as restrigoes (3.30) e (3.31) impdem a anulagao das varidveis 6?0 e 5§2R,

respectivamente, e consequentemente, anula-se também o fluxo de poténcia na linha /.

3.2 Otimizagao Inteira

Como mostrado anteriormente, os modelos tradicionais do problema de planejamento da
expansao de redes de transmissao resultam em problemas lineares inteiros mistos, pois na sua
formulagao sao modeladas variaveis inteiras e variaveis reais através de relagoes (equagoes e ine-
quagoes) lineares. Para estudo de técnicas de resolucao desse tipo de problema, nesta se¢ao, serao
apresentados os conceitos basicos da subarea da Pesquisa Operacional denominada otimizagao

inteira [§].

3.2.1 Definicao de Problema Linear Inteiro Misto

Pode-se escrever qualquer problema de otimizacdo linear na seguinte formulagao padrao:

min {c'z} (3.34)
sa. Ax=0b (3.35)
zeR" (3.36)

em que A é denominada Matriz Tecnoldgica do problema e tem dimensées m por n, com m < n,
¢ € chamado vetor de custos e é n-dimensional, b denota o vetor de recursos m-dimensional e x
é o vetor das variaveis de decisao pertencente ao conjunto S = {z € R" : Az = b}, o qual recebe
o nome de regiao factivel.

Se existir z* € S tal que ctz* < clz, Vo € S, entdo diz-se que o problema linear ¢ factivel e
esse vetor x* é chamado solugao 6tima do problema.

Por outro lado, caso nao exista um valor z* € S com a propriedade acima e S # (), entdo
dizemos que o problema é ilimitado. E, por fim, caso S = (), dizemos que o problema &

infactivel.

39



Suponha que seja imposta uma restrigdo de integridade as varidveis, de maneira que a regiao
factivel seja reduzida ao conjunto S = {x € Z" : Ax = b}, em que Z" & o conjunto dos vetores
n-dimensionais com entradas inteiras. Nesse caso o problema linear passa a ser um problema
linear inteiro (PLI).

Seja outra situagdo em que o problema de otimizagdo possua dois tipos de varidveis: um
grupo de varidveis devem assumir apenas valores inteiros enquanto que outro grupo pode assumir
qualquer valor real. A este novo tipo de problema é dado o nome problema linear inteiro misto

(PLIM) e é formulado como abaixo.

min {cd'z+ h'y} (3.37)

s.a. AZE +Gy="b (3.38)
z e RM (3.39)

y € 72 (3.40)

Como observado anteriormente, os modelos tradicionais do problema de PERT resultam em
problemas desse tipo, pois ha varidveis exclusivamente inteiras (novas linhas instaladas) e outras

que assumem valores reais (fluxo de poténcia entre barras, geracao nodal, etc.).

3.2.2 Resolucao de um Problema Inteiro Misto

Diferentemente da resolucdo de problema lineares, nao existem condigoes de otimalidade
explicitas para resolucao de problemas lineares inteiros mistos (PLIM) [8]. Dessa maneira, para
testar se uma solucdo factivel é solucdo 6tima de um problema, é necessario compara-la com
todas as outras solucdes factiveis explicita ou implicitamente. E nesse sentido que trabalham
os métodos de resolugdo, sempre buscando algoritmos eficientes na comparacao das solugoes
factiveis.

Neste trabalho foram estudados e implementados o método Branch and Bound, que estd na
categoria de métodos exatos, e o método Busca Tabu, que é classificado como um método meta-
heuristico. Mais adiante serao apresentados esses estudos e os resultados das implementacoes.

Durante o processo de resolucdo do problema inteiro, esses métodos realizam rotinas de
determinacdo de solugoes 6timas de uma sequéncia de problemas lineares semelhantes. As im-
plementagoes realizadas foram desenvolvidas utilizando a aplicagao do Método Dual Simplex, ja
que essa versao do método simplex mostra-se bem eficiente na resolucao do problema da expansio

de redes de transmissao [9].

3.2.3 Condicao de Otimalidade Implicita

Sabe-se que ndo ha como comprovar a otimalidade de uma solugao factivel de um problema
inteiro sem compara-la com todas as outras solucoes factiveis. Entretanto, pode-se realizar essa
verificacdo de maneira eficiente utilizando o conceito de limitantes.

Seja o problema inteiro

min {c'z} (3.41)
s.a. xesS (3.42)
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em que S é a regido factivel. Pode-se estabelecer um valor limitante superior (w) e um inferior

te* é o valor

(w) para a solugao 6tima do problema. De modo que w < w* < w, onde w* = ¢
minimo da func¢do objetivo do problema linear.

A definicdo desses limites sdo obtidas através de propriedades de problemas lineares. Por
exemplo, suponha que é conhecida uma solucio factivel Z e seu “desempenho” W = ¢!, logo é
possivel eliminar toda porcao da regidao factivel tal que ¢’z > 1. Reduz-se assim o ntmero de
comparacoes a serem feitas para comprovar a otimalidade. Pode-se observar que esse valor w
representa um limitante superior da funcido objetivo.

Para determinacdo de um limitante inferior, serdo feitas antes algumas definicoes.

Definicao 1 (Problema Relaxado) Um problema (PR) w® = min{f(z) : x € T C R"} ¢
uma relazagao do problema (PI) w = min{c(z) : z € X CR"} se:

e X CTe

o f(z) <c(x) para todo v € X
Proposicao 1 Se PR é uma relazacdio de PI entio w > w'.

Demonstacao: Se z* é a solugao 6tima de PI, entao 2* € X CT e w = ¢(z*) > f(z*).
Como z* € T, f(x*) > w® e portanto w > f(z*) > w¥. O

Com esse resultado, consegue-se uma maneira de determinar o valor limitante inferior para
o problema inteiro. Basta encontrar um problema relaxado do problema original e determinar sua
solucao 6tima. Um problema simples que pode ser considerado uma relaxacao de um problema

inteiro é o problema linear definido eliminando suas condi¢es de integridade.

Definigao 2 (Problema Linear Relaxado) Para um problema inteiro min{c'z : x € PNZ"}
em que P = {x € R"™ : Ax = b}, o problema linear relaxzado €é o problema linear
wPt = min{c'z : v € P}.

Obtendo limitantes w e w iguais, é possivel afirmar que a solu¢do em maos é a 6tima global
do problema. Esse resultado define a condicao de otimalidade implicita de uma solugdo factivel
do problema inteiro.

Essa condigao também pode ser aplicada a problemas nfo lineares inteiros [8], porém a
determinacdo dos limitantes é bem mais complexa e isso dificulta a resolugdo desse outro tipo

de problemas.

3.3 Meétodo Branch and Bound

Nesta Secdo serd estudado e analisado o Método Branch and Bound para resolugdo de pro-
blemas lineares inteiros (PLI) e inteiros mistos (PLIM). Tal método foi desenvolvido inicialmente
por [10] em 1960 e desde entdo houve muito aperfeicoamento na estrutura de seu algoritmo. No
artigo de [11], estao sintetizadas as diversas vertentes do Método Branch and Bound.

Trata-se de um método exato de enumeracao, pois avalia todas as possiveis solucoes de um

problema inteiro e determina assim suas solugbes 6timas, que se baseia na ideia de “Dividir
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para Conquistar”: divide o problema inteiro original em pequenos subproblemas mais simples,
tornando a busca pela soluc¢ao inteligente e eficiente.

Para descrever o método, considere o PLIM padrao abaixo:

w = H;}in {c'z} (3.43)

s.a. xesS (3.44)

em que o vetor de varidveis x é particionado em dois vetores xj e xg tais que r;7 € SN Z sao as
variaveis inteiras e xp € S N R, as varidveis reais.
Suponha que esse problema original seja decomposto em vérios subproblemas menores e

menos complexos, vale entdo a seguinte proposicao:

Proposicao 2 Seja S = S1U---U Sk uma decomposicao de S em subconjuntos menores e seja

w* a solugio otima do problema com regido factivel Sy, para k = 1,--- , K. Entdo, a solugdo

dtima global w* = min  w".
k=1, ,K
A enumeracgdo de todos os pontos da regido factivel S do problema inteiro misto original é
invidvel, pois para problemas de grandes dimensoes, o nimero de pontos da regido factivel é bem
grande. Como realizar, entdo, uma busca pelo ponto 6timo de maneira inteligente?
O método Branch and Bound utiliza uma estrutura de dados denominada Arvore Enume-
rativa para auxiliar essa busca. Nessa arvore sdo enumeradas todas as solugbes factiveis do

problema inteiro original, tanto explicitamente quanto implicitamente.

3.3.1 Arvore Enumerativa

Uma arvore, no contexto de linguagem de programacao, é uma estrutura de dados em que
se preserva uma relagdo hieradrquica entre seus elementos. Utilizando uma defini¢ao recursiva,
uma, arvore é formada por um né raiz e suas subarvores descendentes. Uma subarvore, por sua
vez, também é uma Arvore, possui um no raiz com subarvores descendentes. Para completar sua
definicdo, uma arvore pode assumir um valor nulo.

Para exemplificar, observe a ilustracdo na Figura 3.2 abaixo. Ela cousiste em uma arvore
com raiz A com trés subarvores descendentes cujas raizes sao B, C' e D. As subarvores de raizes
B e C nao possuem descendentes, enquanto que a tltima subarvore (com raiz D) possui apenas

um descendente: a subarvore de raiz em FE.
Figura 3.2: Exemplo de uma Arvore
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Usam-se algumas nomenclaturas adicionais referentes a esse tipo de estrutura:
e Ono A épai dosnos B, CeD.

e O nd E é filho do né D.

Os nés B, C e E nao possuem descendentes e por isso sdo denominados nos-folha.
e A arvore mostrada tem altura igual a 3, jA que possui 3 niveis de descendéncia.

Uma arvore enumerativa é uma estrutura do tipo ilustrado acima em que se armazena em
cada n6 um problema linear relaxado. A relacdo de hierarquizacdao na arvore enumerativa é
mantida de maneira que a unido das regides factiveis dos problemas filhos de um né é a sua
propria regiao factivel.

Por exemplo, observe a Figura 3.3 abaixo. O problema linear armazenado no né raiz tem
regido factivel S e seus descendentes S; e So, logo, por se tratar de uma arvore enumerativa,

pode-se afirmar que S = 57 U S5.

, ; .
w = lli}ll {(, a }

Figura 3.3: Arvore Enumerativa

Pela Proposicao 2, a solugdao 6tima de um problema que se encontra num né da arvore
enumerativa é a melhor solu¢do dentre as solucdes 6timas dos subproblemas dos seus nés filhos.
Com o conceito de arvore enumerativa solidificado, é possivel continuar com o detalhamento
do método Branch and Bound. Esse método baseia-se em duas acoes que caracterizam a sua

nomenclatura:

e BRANCH (Ramificagdo): Se o n6 da arvore representar um problema ativo, ou seja, pas-

sivel de se ramificar, realiza-se a separacao em k novos subproblemas.

e BOUND (Poda/Limitacao): Avaliam-se todos os nos ainda nao avaliados e os qualifica

individualmente como ativo ou limitado (podado).

Ao final da execugdo do algoritmo, todos os nos da arvore terdo sido avaliados e dentre eles
estard o né cujo problema associado possui a solucao 6tima problema inteiro original. E claro
que isso é vilido apenas quando existe solugdo étima para o problema original.

Diferentemente dos métodos ndo-exatos de resolucao de problemas lineares inteiros, o método
Branch and Bound, determina com exatidao, salvo erros de arredondamento e a infactibilidade,

a solucao 6tima global do problema original.
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3.3.2 Formulagao Genérica

A formulagdo genérica do Método Banch and Bound para resolugdo de um problema linear

inteiro (PLI) ou inteiro misto (PLIM) consta das seguintes etapas:

1. INICIO DO ALGORITMO: Inicializa a lista de problemas ativos, inserindo o problema

original e faz w = oo.
2. Se a lista estiver vazia, va ao Passo 6.

3. Remova um problema P’ da lista de problemas ativos e resolva o problema linear relaxado

associado.
4. AVALIACAO

(a) Se a regido factivel do problema P for vazia, realiza a PODA por infactibilidade.
Volta para o Passo 2.

(b) Se a solucdo 6tima do PL relaxado w’ for tal que w’ > w, entdo realiza a PODA por
limitacao. Volta para o Passo 2.

(c) Se a parte a:ZI solucdo 6tima do PL relaxado for inteira, entdo atualiza w = w’ e realiza

a PODA por otimalidade. Volta para o Passo 2.

5. Ramifica o problema P’ em k subproblemas e os insere na lista de nos ativos. Volta para

o Passo 2.
6. FIM DO ALGORITMO: Se w < 0o, entao Solucdo Otima foi encontrada.

O método estuda o problema linear relaxado do problema original e determina sua solucgao
6tima. Obviamente se a solucao 6tima do problema linear relaxado for factivel para o problema
original, entdo serd também solucao 6tima do problema inteiro original.

Entretanto caso nao seja solugao factivel para o problema original, existe um elemento :U;k do
vetor x1 da solucao 6tima do problema linear relaxado que nao pertence ao conjunto dos ntimeros
inteiros, ou seja, sua parte fracionaria nao é nula.

Seguindo o algoritmo, é necessario realizar a ramificagao da arvore. Isso indica que se deve
separar a regido factivel do problema original S em k conjuntos Si,--- , Sk, formando k& novos
subproblemas.

Na implementacao realizada, optou-se por dividir a regidao factivel original em dois novos

conjuntos, da seguinte maneira:
Si={reS:z;<|zj|}eSo={reS: x> |zj| +1} (3.45)

em que o operador |z] resulta no maior ntimero inteiro que é menor ou igual a .

Seja o seguinte problema exemplo:

Exemplo 1
w = min {—4z; — 92} 3.46
1,22
s.a. x1 + 329 < 10 3.47

3.48
3.49

2:171 + 3:L‘2 < 15

~—~ o~~~
—_ N~

x1,T2 € Ly
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A solucao 6tima do seu problema linear relaxado é (z1,z2) = (5, 1%) Note que essa solucdo
nao satisfaz as condigoes de integridade do problema original e portanto nao é solugao factivel.
A variavel xo possui valor ndo-inteiro, logo a ramificacao devera ser feita em cima dessa variavel.

Divide-se a regiao factivel do problema original S em dois conjuntos Sy e So, tais que

Si={zxeS:a2<1} e So={zxeS:xy>2} (3.50)

A representacdo dessa separagdo é ilustrada na Figura 3.4 abaixo. Note que essa separag¢io
nao exclui solugbes factiveis do problema original. Dada uma solucao factivel do problema
original, ela pertence ao conjunto 57 ou ao conjunto Ss.

X3

61 + + + + + + + + + + +

8 9 10 11 x1
Figura 3.4: Separacao do Problema Original
As solugdes otimas para os novos subproblemas sdo (z1,z2) = (6,1), com w = —33 para
a regiao Sy e (x1,22) = (4,2), com w = —34 para a regiao So. Ambas solucoes sdo inteiras e

factiveis para o problema original. Observando o valor da funcao objetivo para as duas solugoes,
conclui-se que a solucao (x1,x2) = (4,2) é a 6tima global do problema.

Agora seja um exemplo em que ha mais de uma varidvel com valor 6timo nao inteiro. Qual
delas escolher para realizar a ramificagdo? Realizada a ramificacdo, serdo formados dois no-
vos problemas que serao inseridos na lista de problemas ativos, segundo a formulagao genérica
mostrada no inicio desta Secdo. Qual dos problemas contidos nessa lista deverd se analisado

primeiro? A respostas para essas perguntas serdo apresentadas nas secoes a seguir.

3.3.3 Escolha da Variavel para Ramificagao

Existem varios métodos para escolher sobre que varidvel sera ramificado o problema analisado
[11]. Um primeiro critério é a escolha da varidvel cuja parte fracionéria esta mais proxima de
0,5. Ao escolher uma variavel nesse critério, elimina-se uma grande parte da regido factivel do

problema linear relaxado ap6s a ramificacao.
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Outro processo de escolha é através da estimagdo por pseudocustos. Os pseudocustos de uma
variavel sdo valores que exprimem o quanto incrementa a funcao objetivo quando se aumenta ou
diminui em uma unidade da varidvel. Para cada varidvel x; existem dois tipos de pseudocustos,
um pseudocusto denominado de reducao (P;”) e outro de aumento (Pj+).

A obtencdo desses valores é feita através de estimativas e pode-se utilizar as seguintes ex-

pressoes para estimé-los:

k— k
- _ WpL —Wpp
J
k+ _ .k
pj+ — wPLiuliPL (3.52)
1—f;

em que:

° wf;L é o valor 6timo para o problema relaxado k;

° wé‘ﬁi e wlf;L sao os valores 6timos para os problemas relaxados resultantes do aumento e

diminuicdo, respectivamente, da varidvel x;;

. ff = xj — |z;| é a parte fracionaria do valor da varidvel z; na solugdo 6tima para o

problema relaxado.

A partir desses pseudocustos, escolhe a varidvel x;, tal que

max{max[P; ff, P (1 — f)]} (3.53)
J

A utilizagdo de pseudocustos nem sempre € vantajosa, pois exige a execu¢do de mais calculos
que o critério dito anteriormente. Além disso, a escolha por pseudocustos pode nao diminuir
muito o niamero de problemas lineares na arvore enumerativa final do método Branch and Bound

quando comparada com a escolha por varidvel de parte fracionaria mais proxima de 0,5.

3.3.4 Escolha do Subproblema

No passo 3 da formulacao genérica do Método Branch and Bound, é necessario retirar da
lista de problemas ativos um problema para ser avaliado. A decis@o de escolher que problema
retirar também pode ser levado em conta como um critério de desempenho do método.

Nesse contexto, existem dois tipos de critérios para escolha do subproblema a ser avaliado:

o FIFO (First In First Out): Consiste em tratar a lista como sendo uma estrutura do tipo
Fila, em que sempre é selecionado o primeiro n6 que foi inserido. Dessa maneira realiza-se

uma Busca em Largura na Arvore Enumerativa.

e LIFO (Last In First Out): Diferentemente do critério acima, a lista é considerada como

uma estrutura Pilha, onde é retirado sempre o ultimo elemento inserido. Nesse tipo de

escolha, é feita uma Busca em Profundidade na Arvore Enumerativa.

Para ilustrar os métodos de busca da solugao 6tima do problema através da arvore enumera-

tiva, € mostrada na Figura 3.5 a ordem de avaliacdo dos dois critérios de selecao .
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FIFO Busca em Largura

LIFO Busca em Profundidade

Figura 3.5: Buscas na Arvore Enumerativa

3.4 Estudos de Meta-heuristicas

Serdo apresentados, agora, conceitos e filosofias de alguns métodos meta-heuristicos aplicados
nas diversas areas da matemadtica aplicada e engenharia. O enfoque principal é dado para o
problema de expansdo de redes apresentado até entao, porém serao dadas ideias gerais dos
algoritmos estudados. Compdem outra classe de métodos de resolucdo de problemas inteiros e
inteiros mistos.

As meta-heuristicas sdo técnicas de resolucdo de problemas de otimizagdo largamente empre-

gadas devido a fatores importantes [12], tais como:

e Sao relativamente faceis de serem compreendidas e implementadas, quando comparadas a

técnicas exatas.
e Exigem menos esfor¢os computacionais.
e Apresentam elevada eficiéncia para problemas de médio e grande porte.

Recebem este nome pois surgem de adaptagoes realizadas em métodos heuristicos ja existen-
tes, tornando-os mais robustos e mais inteligentes. Num contexto geral, um método heuristico
é aquele que se baseia em um propoésito de selecao de solugoes e gera um algoritmo capaz de
buscar solugoes boas para um dado problema, sem entretanto garantir a otimalidade.

Antes de apresentar as técnicas meta-heuristicas, serdo apresentadas abaixo algumas defini-

¢Oes importantes para o desenvolvimento desses algoritmos.

Definicdao 3 (Espaco de Busca) Define-se Espago de Busca de um problema, o conjunto de

todas as solucdes candidatas a sua solucao dtima, sendo estas factiveis ou nao.
Os elementos do espaco de busca de um problema sao definidos segundo uma codificacao.

Defini¢ao 4 (Codificagao) Notagao matemdtica para a solugdo candidata G solug¢do dtima de

um problema.

Por exemplo, no caso do problema de expansdo de redes, uma solucdo pode ser definida

usando a notacdo de um vetor de nr posicées, em que nr é o nimero de ramos do sistema,
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que podem receber novas linhas de transmissdo. Cada posicao desse vetor representa o total de
novas linhas que devem ser inseridas, caracterizando assim um plano de expansao. Isso indica

que através da codificagdo, é possivel caracterizar as configuracdes do problema analisado.

Defini¢ao 5 (Configuragao) Dado um problema, uma configuracao € um dos elementos do seu

espaco de busca.

De uma maneira geral, os métodos meta-heuristicos geram uma sequéncia de configuragoes
que tendem a solugdo 6tima do problema aplicado. Partem de uma configuracio inicial e em
seguida busca uma nova configuracao em um subconjunto do Espaco de Busca. Dependendo do
método, esta nova configuragao pode ou nao ser melhor que a configuracdo atual. Segue-se neste
algoritmo até a satisfacdo de um critério de parada.

As configuragdes de uma dada iteragdo sao denominadas Configuragées Correntes. Os méto-
dos Busca Tabu e Simulated Annealing possuem apenas uma configuracdo corrente por iteracao,

enquanto que os Algoritmos Genéticos apresentam um conjunto de configuragoes correntes.

Defini¢dao 6 (Vizinhanca de um Configuracao e Configuracées Vizinhas) Dada uma ite-
racao k do algoritmo meta-heuristico. Ao subconjunto do Espaco de Busca onde serdo procuradas
as configuracoes correntes do iteragio sequinte k + 1, é dado o nome de Vizinhanca da Con-
figuracao Corrente. Cada um de seus elementos é chamado Configuracao Vizinha da

configuracdo atual.

Antes de apresentar as técnicas meta-heuristicas estudadas, serdo introduzidas ainda as ca-
racteristicas de um tipo de método heuristico para resolugao do problema de expansdo de redes
de transmissdo. Devido as suas abordagens, esse método é denominado Algoritmo Heuristico
Construtivo (AHC).

3.4.1 Algoritmo Heuristico Construtivo (AHC)

O Algoritmo Heuristico Construtivo é uma técnica de resolugdo de problemas de expansio
de redes de transmissao altamente empregadas devido & sua facilidade de implementagcao e exigir
pouco esforgo computacional. Apesar dessas caracteristicas, o AHC nem sempre encontra a
solucao 6tima global do problema de expansao, convergindo para um 6timo local, principalmente
para sistemas de médio a grandes portes [13].

Esse tipo de algoritmo parte de uma configuracao original e seguem acrescentando linhas em
ramos escolhidos segundo um critério heuristico. Continua-se nesse processo até se obter uma
solucao factivel para o sistema elétrico, onde todas as cargas sao atendidas e a linhas transportam
poténcia dentro dos seus limites estipulados.

As variedades de algoritmos heuristicos construtivos se diferenciam pela maneira de escolher
o ramo onde serd inserida a linha a cada passo. Para tanto, cada uma das abordagens desse
algoritmo define para os ramos da rede, a cada iteracdo, um Indice de Sensibilidade (IS) ou
indice de desempenho.

Ramos com maiores indices de sensibilidade garantem, a um menor custo, um impacto maior
ao sistema elétrico quando nele é inserido uma nova linha.

O algoritmo heuristico construtivo proposto por [6] formula o problema de expansao segundo

o Modelo de Transportes, entretanto o relaxa eliminando a restri¢do de integralidade das variaveis
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s¢. Resolve-se o problema linear resultante e usa o seguinte critério para determinar o indice de

sensibilidade dos ramos da rede:

IS, = s,P} veeL® (3.54)

Acrescenta-se uma linha no ramo com maior indice de sensibilidade e, em seguida, reformula-
se o problema linear, realizando as devidas mudancas relativas ao acréscimo desta nova linha.
Resolve-se o novo problema formulado e determinam-se novos valores de indices de sensibilidade.
Repete-se esse processo até o ponto em que o problema linear apresenta solucdo s, = 0, V¢ € LC.

Esse AHC foi implementado para gerar uma solugdo inicial para o método meta-heuristico
Busca Tabu, como serd detalhado mais adiante. No que segue serao apresentadas algumas

técnicas de meta-heuristicas estudadas e suas filosofias de resolucdo de problemas.

3.4.2 Swimulated Annealing

Annealing é um processo industrial de recozimento de materiais, solicitado quando necessita-
se eliminar as tensoes presentes na estrutura cristalina dos materiais. Trata-se de um aquecimento
até uma temperatura critica seguido de um resfriamento lento e natural. Nesse processo a
estrutura cristalina do material rearranja-se de maneira a formar uma configuragao de menor
energia livre.

Os principios do algoritmo Simulated Annealing sao baseados na simulagao deste processo
fisico [14]. A busca pela energia minima do sistema assemelha-se ao processo de otimizagao
do problema. A cada iteracao o problema parte para uma nova solucao (nova condi¢do para a
estrutura cristalina) e segue até encontrar-se em uma situa¢ao em que a energia ¢ minima.

A grandeza fisica que controla o processo de recozimento é a temperatura e esta também é
representada no algoritmo Simulated Annealing. Define-se uma variavel, denotada por T, que
controlard o processo de convergéncia do método. Partindo de uma temperatura inicial Tp, ela
se aproxima do valor da temperatura ambiente, T, definindo assim o fim do algoritmo.

A atuacgio da varidavel temperatura no algoritmo é feita através da elaboragdo da probabi-
lidade de escolha. O método Simulated Annealing, assim como os outros métodos heuristicos,
se inicia com uma configuracio inicial para o problema (2°) e gera a partir desta varias outras
configuracoes vizinhas. Para este método em especifico um elevado niimero de vizinhos nao se
transforma em um limitante do método, pois a partir de uma configuracdo atual, escolhe-se ale-
atoriamente um de seus vizinhos z’ para se tornar uma possivel configuracao futura. Para tanto,

a configuracdo candidata deve satisfazer o critério de selecdo:

e Se a configuracao candidata for melhor que a configuragao corrente, ela passa a ser escolhida
como proxima solucdo. Em um problema de minimizacdo é o mesmo que verificar se

f(x%) > f(2'), sendo f(z) a funcio objetivo a ser otimizada.

e Mesmo sendo pior, a configuracdo candidata ainda pode ser escolhida por um critério
probabilistico definido pela temperatura. Quanto mais alta for a temperatura, maior sera
a chance da configuracao pior ser escolhida. Por exemplo, para o mesmo problema de

ICR I ICD)
T

minimizacao, pode-se definir um valor limitante L = e e sortear um ntimero entre 0

e 1 e verificar: se o numero for maior que L, escolhe-se como préxima configuragdo a solugao
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candidata z’, caso negativo, escolhe-se outra configuracdo vizinha para ser candidata a

configuracao corrente.

Esse controle pela temperatura assemelha-se com o processo industrial, j& que a altas tempe-
raturas, o material pode apresentar uma configuracao bem instével para sua estrutura cristalina.
Sendo que a passagem para outra configuracdo nem sempre garante diminuicdo da energia do
sistema.

O algoritmo pode ser entao definido da seguinte maneira:

1. Inicializa as variaveis = 29, T = Ty, k = 0;

2. Gera o conjunto N(x) de vizinhos da configuracdo corrente;
3. Seleciona um vizinho aleatoriamente 2’ no conjunto N (z);

4. Se o vizinho escolhido for melhor que a configuragao corrente ou se, escolhido um valor
. F@0—r@") )
aleatério d entre e 1,0 > e 7T , faz-se x = 2’ e segue para o Passo 5. Caso negativo,

volte ao Passo 3;
5. Incrementa-se k e determina-se a nova temperatura 7' = T'(k).

6. Se o critério de parada for satisfeito, pare. Senao volte ao Passo 2.

Pode-se incluir no algoritmo acima, uma variavel de controle do ntimero méximo de tentativas
para encontrar uma proxima solucao corrente dada uma certa temperatura. Este valor maximo
pode variar também ao longo do algoritino, acelerando assim o processo de convergéncia do
método.

Aplicacoes deste meta-heuristica em problemas de expansdo de redes de transmissao de ener-

gia elétrica podem ser encontradas em [15] e [16].

3.4.3 Algoritmos Genéticos

Os Algoritmos Genéticos sdo métodos meta-heuristicos que se baseiam em conceitos de gené-
tica e de evolucdo natural. Proposto por [17], o Algoritmo Genético implementa dois conceitos
primordiais na evolugao das espécies, a selecao natural e a reproducao sexuada, para resolucao
de problemas complexos de diversas areas.

Inicia-se o algoritmo com uma populagao aleatoria de individuos (configuragoes), obtida de
maneira a garantir uma variedade bem grande entre os individuos para que a selecdo seja eficiente.
Um agente de selecdo natural avalia cada individuo da populacao e determina aqueles mais bem
adaptados, ou seja, as melhores configuraces. Estas ganham o direito de passar para a proxima
geracao suas caracteristicas, através dos operadores genéticos.

Estes operadores devem atender um requisito basico para serem eficientes, que é transmitir
para a proxima geracao de individuos as caracteristicas dos melhores individuos atuais sem gerar
novas configuracdes idénticas, procurando sempre a diversificagdo dos elementos, evitando assim
a convergéncia para um 6timo local. Dentre os operadores, podem ser citados como principais o
operador de recombinacdo e o operador de mutagao.

O operador de recombinacao é responsavel por realizar a troca de material genético entre duas

configuragoes. Pode ser implementado usando técnica de recombinagdo de um simples ponto,
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onde escolhe-se um ponto aleatoriamente no vetor de codificacdo dos individuos-pais e geram-se
novos individuos filhos recombinando as partes obtidas pela separacio dos vetores neste ponto.

A Figura 3.6 descreve este processo de maneira autoexplicativa.

Figura 3.6: Recombinacdo de um Simples Ponto

O operador genético de mutacdo por sua vez é responsavel por modificar as configuracoes
genéticas dos novos individuos gerados pelo operador de recombinagdo, de maneira aleatéria,
alterando uma ou varias entradas do vetor de codificacao. Este operador pode garantir a diver-
sidade dos individuos da nova populagao.

O processo segue até um certo nimero de geragdes, onde se supde que os individuos apre-
sentam caracteristicas marcantes da solugao 6tima do problema. Entao é feita uma busca pelos
individuos e seleciona-se o mais bem adaptado para ser a solucdao 6tima encontrada pelo algo-
ritmo.

Obviamente, esse processo nao garante encontrar a solucdo 6tima global do problema, assim
como as outras técnicas meta-heuristica. Entretanto pode-se estipular um valor limite para a
solugao 6tima, isto é, se em alguma geracao houver um individuo melhor que tal valor, esse pode
ser escolhido como solucao para o problema analisado.

Trabalhos como [18] e [19] apresentam abordagens dessa meta-heuristica para resolucao do

problema de expansao de redes de transmissao de energia elétrica.

3.4.4 Busca Tabu

O método Busca Tabu, diferentemente dos outros dois métodos meta-heuristicos apresentados
anteriormente, nao se baseia em nenhum processo fisico ou biologico. Sua filosofia de resolucao
é baseada exclusivamente em conceitos de inteligéncia artificial. Foi proposta inicialmente por
|20] e fundamenta-se no principio de memoria adaptativa e na exploragao sensivel.

Como outro método meta-heuristico, a Busca Tabu parte de uma configuracdo inicial 20 e
define uma vizinhanga para esta configuracio N(2°) e obtém desta vizinhanga uma nova confi-
guracao que passa a ser a proxima configuragao corrente. Entretanto, ha algumas peculiaridades

deste método:

1. Nem sempre o método escolhe uma solugao melhor que a configuracao corrente. O método
em si busca a menos pior das solugbes vizinhas para serem candidatas & configuracao

corrente.
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2. O conjunto de vizinhos de uma configuracio ndo é definida estaticamente. A cada solugio
corrente, a maneira de se definir a vizinhanca altera. Isso ocorre devido principalmente a

fatores como:

e Proibicao de configuracoes por conta de uma lista Tabu. Para definir um conjunto
de vizinhos de uma configuracao corrente, sdo aplicados alguns atributos, como por
exemplo, aumentar em uma unidade uma posi¢do do vetor da configuragido. Desta
maneira, ao eleger uma solugao corrente, verifica-se a sua procedéncia, isto é, verifica-
se qual atributo foi aplicado para a criacdo da configuragdo escolhida e proibem-se as
proximas configuragdes que surgem da aplicacao deste atributo por um ntmero 7' de

iteracoes do método.

Para melhor explicar esta proibicao de atributos, seja uma solugao corrente x e uma
operagdo V(z) que gere uma nova configuracao vizinha 2/, ou seja, V(x) = 2/. Esta
operacao pode ser, por exemplo, o aumento ou diminuicdo de uma das entradas do
vetor de codificagdo da configuragdo x. Se o algoritmo selecionar x’ como proxima
solucao corrente, entdo a operacao V(x) gerara configuragoes proibidas durante um

namero T de iteragoes.

e Estratégias de Reducao de Vizinhancas. Muitas vezes o método Busca Tabu torna-se
inviavel devido ao tamanho da vizinhanca gerada a cada iteracao ja que este método
avalia cada uma das configuragoes vizinhas. Para contornar este problema existem

técnicas de reducdo de vizinhancas

e Utilizagdo de Configuraces de Elite para gerar novas vizinhangas. Dessa maneira
armazenam-se as melhores soluges ja ocorridas ao longo do algoritmo e as utilizam

sempre para geracao das vizinhancas a cada iteragdo.

e Redefinir a caracteriza¢do da vizinhanca durante a execucdo. Alteragoes na maneira
como sao geradas as novas configuracoes vizinhas podem ser feitas ao longo do algo-
ritmo. Essa abordagem é realizada quando se tem conhecimento do problema a ser

aplicado.

A lista tabu pode em algumas situacSes proibir configuragoes bem atrativas, restringindo
escolhé-las para serem configuracgdes correntes. Devido a esse fato, incorpora-se ao algoritmo um
critério de aspiracao, que, quando é satisfeito, libera uma solucao proibida, tornando-a eleita &
configuragdo menos pior da vizinhanca. Esse critério de aspiracao pode liberar as solugoes que
sejam melhores que a solugdo corrente, por exemplo. Ou mesmo liberar as configuracdes que ja
se apresentou como melhor nas tltimas k), iteracoes do método.

Como afirmado por [20], a incorporacdo de memoria no método o torna mais inteligente
e a busca pela solucdo 6tima torna-se mais eficiente. O algoritmo Busca Tabu mais simples,
denominado Busca Tabu com Memoéria de Curto Prazo, consiste em apenas uma lista tabu de
atributos e um critério de aspiragao.

O algoritmo parte de uma solugdo inicial e busca dentre as solugdes vizinhas a menos pior
que nao esta proibida, ou que estando, satisfaca o critério de aspiracdo. Essa configuracao é
eleita a proxima solugdo corrente do algoritmo e o atributo que a gerou nessa etapa é incluido
na lista tabu. Continua-se o processo até obter uma vizinhanca onde todos os elementos estejam

proibidos e nao satisfazem o critério de aspiracgao.

52



Existem técnicas avancadas que podem ser empregadas para melhorar o desempenho do algo-
ritmo Busca Tabu de meméria de curto prazo [12]|. Dentre elas podem ser citadas Intensificagao
e Diversificagdo, Oscilagao estratégica, uso de Configuracoes de Elite, etc. Outras alteram o tipo
de memoéria incorporada do método, mudando-a para uma abordagem de médio ou longo prazo.
O artigo [21] apresenta uma aplicagdo do método Busca Tabu em problema de expansao de redes
de transmissao de energia elétrica. Nele sao propostas fases de intensificacdo e diversificacao,

além de utilizar conceitos de memoéria de médio a longo prazo.

3.5 Metodologias Empregadas para Resolucao de Problema PERT

Com o intuito de comparar os métodos de resolucao do problema tradicional do planejamento
da expansdo de redes de transmissao, foram implementados o Método Branch and Bound e o
Método Busca Tabu, como ji foi mencionado.

Sao diferentes na forma como abordam a busca pela solu¢do do problema, sendo o primeiro
um método exato que realiza uma busca exaustiva através da regiao factivel do problema, contudo
garante a solugdo 6tima e o segundo, que, apesar de ndo garantir a solugao 6tima do problema,
encontra solucoes boas e de maneira mais rapida.

Seguem as descrigdes das simulagoes realizadas para comparar esses métodos de resolugao.

3.5.1 Meétodo Exato: Método Branch and Bound

Avaliou-se 0 método Branch and Bound tomando como referéncia os dois tipos de abordagem
de selecao dos nos da arvore enumerativa (FIFO e LIFO). Como critério de ramifica¢do dos nos
da arvore foi definido como sendo pela variavel inteira cuja parte fracionaria é a mais préoxima
do valor 0,5.

O algoritmo para resolugao do problema de expansao modelado é o ilustrado no fluxograma
da Figura 3.7.
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Figura 3.7: Fluxograma do Algoritmo Branch and Bound

Foram avaliados dois sistemas elétricos para obtencao dos resultados:

e Sistema com 6 Barras [6] .

e Sistema [EEE 24 Barras com redespacho da geracio.

Os dados das linhas e barras desses sistemas sdo encontrados no Apéndice B.
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3.5.2 Meétodo Meta-heuristico: Busca Tabu

Serdo apresentados os detalhes da aplicacdo do Método Busca Tabu na resolucdo do problema

de planejamento de expansao de redes de transmissao implementada neste trabalho.

Codificacao

2~

A codificagao utilizada para as configuragoes é representada por um vetor de nr posi¢des
inteiras, cujos valores variam de 0 até n™A4X_ Cada posicdo r deste vetor indica o numero de
novas linhas adicionadas ao ramo r do circuito da rede. Este tipo de notacao para os elementos
de busca recebe o nome de codificacao decimal, pois cada entrada do vetor é um niimero inteiro.
Existe outro tipo de notagdo, o qual denomina-se codificacdo bindria, em que os nimeros de
novas linhas inseridas nos ramos sdo representados na sua forma binéaria.

O espaco de busca adotado, portanto, constitui-se no conjunto S definido abaixo.

S={zeZ":0<z; <nM¥X vie{1,... nr}} (3.55)

Caracterizacao da Vizinhanga

Para geracao de vizinhanca optou-se por inserir e retirar linhas de apenas um ramo do circuito
da configuracao corrente. O ntmero maximo de linhas inseridas ou retiradas foi escolhido como
sendo igual a 2. Desta maneira, a partir de uma configuracao corrente, pode-se obter no maximo
2 - nr novas configuragoes vizinhas removendo linhas nos ramos do circuito(nr configuragoes
resultado da remog¢ao de uma linha apenas em cada ramo da configuracao corrente e nr, resultado
da remocao de duas linhas) e no maximo tambeém 2-nr novas configuragoes vizinhas acrescentando
linhas na configuragdo corrente.

Com essas operagdes de geracao de configuracoes vizinhas, pode-se totalizar um nimero

[

méximo de 4 - nr elementos na vizinhanca de uma configuragdo. Obviamente este ntmero

>

dificilmente alcangado devido as limitacoes dos valores do cddigo das solugoes, isto €, nao
possivel retirar linha em ramos com 0 novas linhas inseridas, nem menos, inserir em ramos com
Numae NOvas linhas ja inseridas.

Como caracterfstica do método Busca Tabu, a cada vizinho gerado, é realizada a chamada
do método Dual Simplex para verificar sua factibilidade segundo o Modelo de Transportes Mo-
dificado. Além de verificar a factibilidade, utiliza-se o valor da fun¢ao objetivo para ser incluida
na avaliacdo dos vizinhos de uma configuracao corrente. Para tanto, é determinado para cada

um deles um Valor de Desempenho (VD) definido pela expressao abaixo:
VD = v+ aw (3.56)

em que

v = Z ch sy € o custo total das novas instalacoes proposta pela configuragao.
LeLc

o W= Z rn € 0 valor da fungdo objetivo do problema linear resolvido para verificar a facti-

neN
bilidade da solucao proposta. Este fator interfere proibindo que o método aceite solucGes

infactiveis com baixo custo total de instalacao.
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e « é denominado Fator de Penalidade. Para que seja comparéavel numericamente com o valor

v (custo total de instalacio), esta constante o é determinada pela expressiao o = o/ - ¢ AX
em que ¢MAX ¢ o maior custo individual de instalacdo e o’ é um parametro para o algoritmo
Busca Tabu.

Tratamento de Infactibilidades

Como pode ser observado na secdo anterior, a implementacao realizada considera a opcao de
escolher uma solucao nao factivel para se tornar a solucao corrente. Entretanto ela é penalizada
pelo fator a definido como pardmetro do método.

Outro ponto do método em que se avalia a factibilidade da solugao é durante a verificagao
do critério de aspiracdo, no qual nao se aceitam solucoes infactiveis que estejam proibidas para

se tornarem configuragoes correntes.

Lista Tabu

Ao ser escolhida uma configuracdo proveniente de uma modificacdo do ramo k, seja ela
insercdo ou remocao, proibem-se agoes neste ramos por um ntmero 1" de iteragoes. Este ramo k

é entdo adicionado na lista Tabu do método por T iteracdes.

Critério de Aspiracao

Para apresentar o critério de aspiracdo adotado, o qual permite escolher uma configuracao vi-
zinha proibida para se tornar a solucao corrente da iteracao seguinte, as situacoes serdao separadas
em dois casos:

1° CASO: Solucao Corrente é factivel:

Nesse caso, s0 se aceitard uma configuracao proibida se for a melhor dentre todas configu-
ragoes vizinhas, for factivel e possuir um valor de desempenho (VD) menor que o da solugao
corrente. A principio, esse critério de aspiracdo pode parecer guloso, ji que somente permite
transitar de uma solucao factivel para outra factivel, mas esse pensamento é equivocado, pois
a solucao proibida serd aceita apenas quando for melhor que qualquer outra solugao vizinha,
inclusive as solugoes infactiveis nao proibidas.

2° CASO: Solucao Corrente é infactivel:

Nesse caso aceita-se uma solugdo proibida se esta for factivel e melhor que todas as soluctes
vizinhas. Aceita-se também uma solucao proibida infactivel, para esse caso, quando a solucio
corrente nao apresentar configuragoes vizinhas que nao estejam proibidas, isto é, dada uma
solucao infactivel corrente, transita-se para uma solugdo infactivel, caso todas as solugoes vizinhas

estejam proibidas. Isso garante que o algoritmo nao termine com uma solugdo infactivel.

Determinacao da Configuragao Inicial

A configuracao inicial do método Busca Tabu implementado é a resultante da aplicacao do
Algoritmo Heuristico Construtivo (AHC) no sistema elétrico analisado. Adotando essa técnica
para a determinacdo da configuracao inicial, o método converge mais rapidamente para sua
solucdo 6tima.

Os sistemas elétricos utilizados para simulagio sdo os mesmos utilizados na avaliacao do

método Branch and Bound.
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3.6 Resultados

Seguem os testes realizados para efeito de comparagdo entre os métodos Branch and Bound e
Busca Tabu aplicados na resolucdo do problema de expansao de redes de transmissao de energia

elétrica.

Para cada sistema elétrico analisado, foram simulados os dois métodos numeéricos de resolucao
e calculado o tempo médio de execucao para determinacao da solucao 6tima do problema. Esse

tempo médio é resultado de uma média aritmética de 30 simulagoes para cada algoritmo.

Ambos os métodos encontraram as solucdes 6timas do problema, mostrando-se eficazes na

resolucao do problema de planejamento da expansao.

Para o problema de expansao do sistema de 6 barras, os métodos implementados apresentaram

como solugdo os seguintes valores.

PE =50MW  no_g=3
PY =165MW  nz5=1
PE =545MW  ny =3

Nessa configuracao, o valor 6timo do problema tem custo total $20 000.

Para o sistema IEEE 24 barras, apontaram-se como solucao 6tima para o problema os se-

guintes valores para os montantes de geracao nodais.

PE = 465MW
PS¢ = 576MW
P = T21MW
PGS = 1424MW
PG = 645MW
PG = 465MW
PE = 1200MW
PS = 1200MW
PG = 900MW
PS = 954MW

Quanto aos nimeros de novas instalagdes, obtiveram-se os seguintes valores:
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n3—24 =
ne—10 =

nr-g =
nio-12 =
ni4—16 =
nie—17 =

nie—19 =

e e T = S S S =

nir—18 =

Neste caso o valor 6timo do custo total é $310 000.

Segue na tabela 3.1, os resultados dos testes de célculo de tempo de execucao de cada método.

Tabela 3.1: Tempo de execugao (em ms)
Branch and Bound
Sistema | LIFO FIFO | Busca Tabu
6 Barras 16 £ 6 11+£7 83 £9

24 Barras | 18700 £ 200 | 3260 £ 20 | 89000 £ 1000

Observando os dados da tabela 3.1, conclui-se que o método Busca Tabu néo apresentou
melhoria no desempenho na resolucdao do problema de expansao das redes dos sistemas elétricos
analisados quando comparado com o método exato. O tempo de processamento do método meta-
heuristico chega a ser cerca de 27 vezes maior quando comparado ao método exato (Sistema 24
barras, abordagem FIFO).

O mau desempenho do método meta-heuristico pode ser atribuido a alguns fatores:

e Os sistema elétricos analisados sao relativamente pequenos, sendo que os métodos exatos
se apresentam ainda mais vidaveis que os métodos meta-heuristicos. Testes com sistemas

elétricos maiores sao requeridos para completar esta afirmacao.

e O método Busca Tabu nao esté inteligente o bastante para a resolugdo do problema. Para
avaliar esta possibilidade é possivel alterar a estrutura do método, modificando a maneira

de geragao de vizinhangas e de exploracao dos vizinhos.

e Hi uma exaustiva exploracgao nas vizinhancas das solucoes correntes, ja que a cada iteragdo
avaliam-se todas as solugoes vizinhas da solucao em maos, independentemente se a solucao
vizinha j4 foi avaliada anteriormente. A implementagdo de uma explora¢ao mais inteligente
no espaco de busca do problema, visando diminuir o niimero total de problemas lineares a
serem resolvidos, ird decrescer consideravelmente o tempo de execucdo do método Busca
Tabu.

Entretanto a comparacido realizada dos métodos através do tempo de execucdo ndo é tao
relevante para o problema de planejamento da expansdo de redes de transmissao, pois para este

tipo de projeto o tempo disponivel é grande o suficiente para nao ser caracterizado como um
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limitante. Portanto, de maneira geral, pode-se afirmar que ambos os métodos se mostraram

eficazes na resolucao do problema PERT.
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Capitulo 4

Analise da Vulnerabilidade de Redes de

Transmissao

Esse capitulo ird4 apresentar toda a formulacio matemaética necessaria para definir o novo
modelo do problema de planejamento da expansao de redes de transmissao. Nesse novo modelo,
visa-se incorporar a minimizac¢ao da vulnerabilidade da rede frente a contingéncias que venham
a acontecer nas linhas do sistema.

Na segunda parte do capitulo, serdo apresentados os testes e as simulagoes realizados para

validar o novo modelo proposto.

4.1 Introducao

A energia elétrica carrega consigo uma crucial importancia nos dias de hoje e a interrupgao do
seu fornecimento pode causar grandes desastres econémicos para uma nacao. Além disso, devido
a razoes econdmicas, ambientais e politicas, em varios paises as redes de transmissao nao estdo
sendo devidamente expandidas [22]. Como consequéncia, as redes de transmissdo vém operando
préximas aos seus limites estaticos e dindmicos, aumentando ainda mais sua vulnerabilidade.

Somadas ambas caracteristicas, operacao proxima aos seus limites e a crucial importéncia, as
redes de transmissao (entende-se aqui redes de transmissao e de distribuicao de energia elétrica)
se tornam pontos estratégicos para desligamentos intencionais.

Este trabalho estuda modelos matematicos que incorporam ao Problema de Planejamento de
Expansao de Redes de Transmissao (PERT) uma maneira de mitigar a exposi¢ao a desligamentos

e minimizar a vulnerabilidade da rede elétrica.

4.2 Novo Modelo - Considerando Contingéncias nas Linhas

Considere que no horizonte de planejamento possam existir diferentes cenarios da rede atual,
Figura 4.1. Sendo cada cenario a consequéncia de uma contingéncia na rede de transmissao.
Dessa maneira, a decisdo de expansao da rede esta sujeita a um fator estocéstico.

Por convengao, adota-se a existéncia de um cenério 0 (zero) no qual supde-se que nao havera

nenhuma contingéncia no sistema.
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CENARIO O

CENARIO 1

SISTEMA ATUAL

CENARIO N

Figura 4.1: Horizonte de Planejamento

Para representar matematicamente cada um desses cendrios, serd adotada uma variavel bi-
néria v de dimensao ny,, ntmero de linhas na rede original, tal que, quando o valor vy é igual a
zero, se indica que a linha ¢ sofreu uma contingéncia e precisou ser desligada e vy = 1, caso nao

tenha sido retirada.

Portanto, para um sistema com ny, linhas, existem um total maximo de 2™ cenarios dife-
rentes. Esse ntmero é muito grande para redes reais, contudo, baseando-se em um critério de

seguranca n — K, esse numero de cenéarios é reduzido.

Ao especificar o valor K, diz-se que no méximo K linhas do sistema original serdo desligadas.

Logo, o conjunto de cenarios Vg no critério de seguranca n — K é expresso por:

Neo

VK:{UGBW"ZZWZWO—K} (4.1)
=1

em que B = {0,1}.
Necessita-se avaliar cada um dos planos de expansdo s que o planejador do sistema tem
em maos frente & ocorréncia de todos esses possiveis cendrios. Para isso, um plano s em um

dado cenario definido pela contingéncia v, pode ser avaliado através do corte de carga minimo

necessario para mantém a operacao do sistema.

Denotado por Q(s,v), o corte de carga minimo é determinado resolvendo o seguinte problema

linear:

Q(s,v) = min {Z Adn} (4.2)
neN

Ady,PS P S,
S.a.

S>PE- > Pf+ > Pl=dy—Ad, YneN (4.3)

9€Gn 1o(0)= YR(0)=n
pE = z—j 6oy — Sro)] vl e LO (4.4)
Pk = % Sow) = Sr) e e LS (4.5)
0< P < P¢ Vge G (4.6)
-pl<pl<pt Vle L (4.7)
0<6,<35 Vn e N (4.8)
0 < Ad, < dn Vn e N (4.9)



Esse problema representa a acao que o operador do sistema deverd tomar frente & contingéncia
v e dado que ja foi implantado o plano de expansio s. E possivel ajustar as variaveis de operacio
do sistema de maneira a minimizar a carga nao atendida, ou seja, o corte de carga.

Nesse problema linear, o planejador do sistema pode atuar sobre as seguintes varidveis de

decisdo:

e Ad,: o corte de carga da barra n. Representa o total de carga do n6 n que precisa ser
desligado para que o sistema opere de maneira estavel. Esta varidvel estd diretamente
relacionada com a variavel de geracdo artificial 7, do modelo de transportes modificado

apresentado no Capitulo 3.
° PgG: total de poténcia ativa injetada no sistema pelo gerador g.
° PZL: fluxo de poténcia ativa na linha /.
e J,: angulo de fase da tensao na barra n.

Uma vez avaliado o plano de expansao frente as diversas contingéncias, ou seja, determinadas
os cortes minimos de carga em cada situagdo, como determinar o melhor plano de expansio
dentre os factiveis? A seguir serao apresentadas trés abordagens diferentes para responder a essa

pergunta.

4.2.1 Abordagem da Otimizacao Robusta

Nessa abordagem, para cada plano de expansio s é determinado seu pior desempenho QMAX ()
frente a todos os cendrios. Escolhe-se como sendo o plano 6timo, aquele que apresentar menor
valor para esse pior desempenho.

Matematicamente consiste em resolver o seguinte problema:

min {QM ()} (4.10)
em que
OMAX (5) = max {Q(s,v)} (4.11)
vEVK
e 8* é o conjunto de planos de expansdo que satisfazem @Q(s,1) = 0, isto é, no cenario 0,

representado pelo vetor v = 1, tem-se corte de carga nulo. Além disso, os planos de expansio em
S* devem ser economicamente factiveis, devem estar dentro de orcamento do planejador, isto é

conseguido impondo uma restricdo de custo maximo C% do plano de expansao:

> s <Cf (4.12)
LeLC

4.2.2 Abordagem da Otimizacao Estocastica

Nessa outra abordagem é atribuida uma probabilidade de ocorréncia 7(v) a cada contingéncia
v do conjunto Vi . Em seguida, determinam-se os cortes de carga minimos esperados para cada

plano de expansao s através da expressao:

QPP (s) = > 7(v)- Qs,0) (4.13)

vEVEK

62



A determinacdo do plano 6timo de expansio através da abordagem estocéstica é traduzida

no seguinte problema:

Inin Z m(v) - Q(s,v) (4.14)
vEVEK
Essa abordagem exige a determinagao do valor dessas probabilidades 7(v). Vale lembrar que

sendo 7(v) uma distribui¢ao de probabilidades, as seguintes propriedades devem ser validas:

e 0<7(v)<1 WYveVg

° ZW(U)Zl

vEVK

O trabalho [23] apresenta um modelo de problema linear inteiro misto para estimar essa
distribuicao de probabilidades. Trabalha-se, entretanto, com um espaco de cenarios Vg reduzido,
obtido através de um procedimento de geragdo de cenarios que modela a visao de um estrategista
que pretende causar dano ao sistema elétrico. Dessa maneira sao selecionados apenas os cenarios

que possuem maiores cortes de cargas e com menos linhas desligadas.

4.2.3 Abordagem da Otimizacao por Risco

Esta terceira abordagem atribui um valor de risco R(s) para cada plano de expansdo s e

determina o melhor plano como sendo o com menor valor de risco.

min {R(s)} (4.15)

Antes de propor uma maneira de quantificar os riscos de cada plano de expansdo s, seré
apresentado o conceito de arrependimento da tomada de uma decisao.

Imagine que é necessario tomar uma decisao hoje e o resultado dessa decisao serd influenciada
por um fator estocéstico futuro, a priori, desconhecido. Para melhor compreensdo, toma-se
como exemplo o problema proposto nesse trabalho: o planejador do sistema necessita escolher
um plano de expansdo e o desempenho desse plano dependera da ocorréncia ou nao das futuras
contingéncias.

Suponha que o planejador implantou um plano s e que, em um momento futuro, uma contin-
géncia v tenha ocorrido. O planejador do sistema pode se sentir arrependido da escolha tomada,
caso houvesse um plano de expansao diferente do escolhido que, se fosse implantado, diminuiria
o dano causado ao ocorrer a contingéncia.

Seja A(s,v) uma fungao que descreve o arrependimento que o planejador do sistema tem
ao implantar o plano de expansdo s e ocorrer a contingéncia v. Esse arrependimento pode ser
medido como o quao longe a decisao tomada estd da melhor decisao que seria tomada se tivessem
certeza que a contingéncia v iria ocorrer.

Dado que a contingéncia v ocorreu, a melhor situacao possivel para o planejador do sistema é
aquela em que ha menor corte de carga do sistema. Denotando esse corte por QM (v), pode-se

escrevé-lo como:

QMIN(U) = min {Q(s,v)} (4.16)

seS*
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Note que, nesse caso, a variavel v é fixada e se varia s dentro do conjunto S* para buscar
o plano que minimize o corte de carga. Essa situacao é ficticia, ja que nao ha o conhecimento
prévio da certeza da ocorréncia da contingéncia v.

Logo, pode-se definir o arrependimento de um plano s frente a ocorréncia de uma contingéncia

v como sendo:

A(s,v) = Q(s,v) — QM (v) (4.17)

Definidos os arrependimentos dos planos de expansao s diante de cada cenéario definido pelas
contingéncias v, define-se como sendo o risco R(s) desse plano de expansdo, o valor do seu

arrependimento maximo, como mostrado na expressao abaixo:

R(s) = max A(s,v) (4.18)

vEVEK

Logo, a abordagem por risco para determinagdo do melhor plano expansao é a descrita abaixo:

;161}911 R(s) (4.19)

em que
R(s) = max A(s,v) (4.20)
A(s,v) = Q(s,v) — QM (y) (4.21)

4.2.4 Comparacao entre as Abordagens

Para explicar as diferencas entre essas trés abordagem de problemas probabilisticos, seja o

seguinte exemplo mostrado na Tabela 4.1, retirado de [24].

Tabela 4.1: Exemplo de decisdo sobre evento incerto

Decisao
Cenério | Probabilidade A B C
S 0,10 $100 | $50 | $60
So 0,90 $20 | $50 | $30
Custo Esperado $28 | $50 | $33
Méximo Custo $100 | $50 | $60
Méximo Arrependimento | $50 | $30 | $10

Nesse exemplo, ha dois cendrios futuros possiveis, S7 e So, cada um com certa probabilidade
de ocorréncia, 0,10 e 0,90, respectivamente.

O problema consiste em tomar uma decisao dentre as opcoes existentes (A, B ou C). Para
cada decisfo e cenario existe um custo a ser pago, por exemplo, se é tomada a decisdo A e ocorre
o cenario S1, entao se deve pagar uma quantia de $100. Por outro lado, se ¢ tomada a decisao
C e o cenario Sy ocorre, se deve pagar um total igual a $30.

O primeiro tipo de abordagem, no qual se baseia a Otimizacao Robusta, é aquele que seleciona
a decisdo que causa menor dano no pior caso. Isso significa que para cada decisdo se determina
a maior quantia a se pagar independentemente das probabilidades de ocorréncia de cada cenério

futuro.
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No caso do exemplo, os piores casos para as decisdes A, B e C sao $100, $50, $60, respecti-
vamente. Logo, segundo essa abordagem, a melhor decisdo a ser tomada é a decisdao B.

A segunda abordagem para escolher a melhor decisao, na qual se baseia a Otimizacao Esto-
castica, consiste em determinar a quantia esperada a ser paga a cada uma das decisdes.

Por exemplo, a decisdo A tem um custo esperado de 0,10 - $100(S7) + 0,90 - $20(S3) = $28,
enquanto que a decisao B tem custo esperado de 0,10-$50(S7) +0,90- $50(S2) = $50 e a decisao
C tem custo esperado de 0,10-$60(S1) +0,90-$30(S2) = $33. Assim, sob o ponto de vista dessa
segunda abordagem, a melhor decisdo é a decisao A, ji que possui menor custo esperado.

A ultima abordagem, sob o ponto de vista da Otimizagdo por Risco, atribui a cada deciséo,
um risco a ser tomado e assim se escolhe a decisdo cujo risco é o menor possivel.

Para cada cenario se determina o menor custo a ser tomado, no exemplo, para o cenario Sy o
menor custo a ser pago é $50 e para So, $20. Esses sdo chamados custos ideias para cada cenéario.

O arrependimento de uma decisdo frente a um cenério é calculado como a diferenca entre o
custo a ser pago e o custo ideal do cendario. O risco de uma decisfo passa a ser entao, o valor
maximo de arrependimento da decisao frente a todos os cenarios. No exemplo, o risco da decisdao
A vale max{$100 — $50, $20 — $20} = $50, o risco de B, max{$50 — $50, $50 — $20} = $30 e de
C, max{$60 — $50, $30 — $20} = $10. Para essa abordagem, a melhor escolha é a decisdo C, pois
possul menor risco.

Nota-se que para cada um dos tipos de abordagem, o mesmo problema possui diferentes
solugoes 6timas. A Otimizacao Estocéstica depende muito da distribuicao de probabilidade dos
parametros estudados. No tipo de problema estudado aqui essa distribuicdo nao é facilmente
determinada devido ao fato de existirem poucas amostras reais. Em outras palavras, nao ha
um nimero relativamente grande de ocorréncias do evento para que se possa caracterizar uma
distribuicao de probabilidades de maneira exata.

A Otimizacao Robusta, quando comparada com a otimizacao estocastica, exige menos es-
forco computacional para sua implementacdo. Além disso, ha uma perda da dependéncia das
probabilidades de ocorréncia dos cenérios, isso se torna interessante em casos em que as proba-
bilidades sdo dificeis de serem calculadas. Apesar disso, a otimizacdo robusta se apresenta muito
conservadora e quase sempre gera solugdes 6timas de precos elevados.

A Otimizacao por Risco busca agregar as qualidades de cada uma das outras abordagens.
Elimina-se a dependéncia da distribuicao de probabilidades dos parametros incertos e nao é muito
conservadora na escolha da selecao da melhor solucao.

A partir desse ponto, se aprofundard em um modelo para o problema PERT considerando
a vulnerabilidade da rede, baseando-se em Otimizacao por Risco. De maneira geral se buscara
minimizar uma funcdo objetivo ponderada entre a minimizacao do risco e a minimizacao do

custo, como mostrada na expressao abaixo:

min {(1— 8) - p- R(s) + B C(s)} (4.22)

sES*

Nessa expressdo, o parametro 8 pondera entre os dois objetivos do problema. Assume valores
entre 0 e 1. Quando 8 = 1, se ignora o objetivo de minimizar o risco R(s) dos planos de expanséao
e leva em consideragao apenas a minimizagao do custo C(s), isto ¢, retorna-se ao problema PERT

tradicional.

Por outro lado, quando se pondera 8 = 0, apenas se estd buscando minimizar o risco dos
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planos de expansdo, ignorando, assim, seu custo de instalacao.

Na expressao (4.22), ha também o parametro p, o qual representa o pre¢o da demanda nao
atendida em $/MW. Essa constante auxilia na conversao de demanda nao atendida, representada
pelo risco do plano, em unidade monetéria, com o intuito de comparar ambos os objetivos

(minimizagao de risco e de custo).

4.3 Problema Binivel do Planejamento da Expansao com Restri-

c¢ao de Vulnerabilidade

A abordagem de otimizagdo por risco, como mostrada na se¢do anterior, é descrita por um
problema com quatro niveis de otimizagao. Nessa secdo, serd detalhado o procedimento tomado
para reformular o problema de otimizacdo por risco em um problema com apenas dois niveis de
otimizacao, sendo cada um deles um problema linear inteiro misto.

Para facilitar a notagdo, o problema (4.2)-(4.9), que define o corte minimo de carga Q(s,v)
dado que foi implantado o plano de expansdo s e a ocorreu a contingéncia v, pode ser linearizado

utilizando a técnica descrita no Apéndice A e ser reescrito como o seguinte problema linear:

,v)= min ¢ 4.23
Q(s,v) m%l(lgm)c x (4.23)
em que

M(s,v) ={x e R": A%¢c =b— A% — A’s} (4.24)

Nessa simplificacao:
e r € R™ contempla todas as variaveis reais do problema linear;

o AT ¢ RM*XN AV € RM*XMo ¢ A% € R™*™ec gg0 matrizes que relacionam as varidveis z, v e

s, respectivamente, nas restri¢bes do problema;
e b € R"™ & um vetor constante que representa os recursos do problema;

e ¢ € R" & o vetor de custo das varidveis x. Nesse problema, as varidveis s e v nao tém custo

associado.

De maneira anéloga, o problema que define o corte de carga minimo dada a ocorréncia de

uma contingéncia v, antes denotada por QM (v), pode ser reescrito como:

Q(w)= min =z 4.25
( ) (z,8)EM(v) ( )
em que

M) ={(z,s) e R" x B : A%x + A°s =b— A% e s € §*} (4.26)

Neste ultimo problema, existe a flexibilidade de modificar o plano de expansao s para conse-
guir o menor corte de carga.
Com essa nova notagao, o arrependimento A(s,v) do planejador ao implantar um plano de

expansdo s e ocorrer uma contingéncia v, pode ser denotado por:

A(s,v) = min cx— min & (4.27)
zEM(s,v) (2,8)eM(v)
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Note que para ter distin¢do entre as varidaveis dos dois problemas de otimizacao, utilizou-se
a notacao = e § para representar as varidveis do segundo problema.

O problema (4.27) contém os dois niveis de otimiza¢do mais baixos do problema geral. O
terceiro nivel, de baixo para cima, estd representado na definicdo do risco de um plano de

expansao s, R(s), o qual passa a ser reformulado como:

R(s) = max { min 'z — min ctfc} (4.28)
veEVK (zeM(s,v) (£,8)eM(v)

O primeiro passo para reformular o modelo acima é utilizar-se do Teorema da Dualidade
Forte |7] para reescrever o problema (4.25) de determinacdo de corte minimo de carga na sua
versao dual sobre as variaveis reais x.

O problema primal (4.25) é um problema de minimizagao, com restricoes de igualdade e
variaveis irrestritas. Logo, sua versao dual, serd de maximizagao, com varidveis irrestritas e

restrigdes de igualdade.

Dessa forma, a expressdo para determinar o risco R(s) de um plano de expansdo s passa a
ser:

R(s) = max {max MN(b— A% — A®s) —  min cti‘} (4.29)
vEVEK | AeH (z,8)eM(v)

em que A sdo as variaveis do problema dual e H = {A € R™ : N A” = ¢!} é a sua regido factivel.
Agora, seja a fungao W (v) definida em Vg como sendo W (v) = w*(v) — @*(v). Em que:

MN(b— A% — A%s)},
o w*(v) = I)I\leaa?[{{ s)};

0= g ()
Pela defini¢do acima w*(v) > X{(b— A%v — A%s), VA € H e w*(v) < 'z, V(&, 8) € M(v).

Consequentemente,
W(v) = w*(v) — w*(v) > N(b— A% — A%s) —c'a V(A 2,5) € Hx M(v)  (4.30)
Portanto, sem perda de equivaléncia, a expressao (4.29) pode ser escrita como:

R(s) = max {)\t (b— A% — A%s) — c'i} (4.31)
(v,\,2,8)€EVK XHXM(v

Nesse ponto da reformulagao, conseguiu-se condensar em apenas um nivel de otimizacao todos
0s trés niveis inferiores do problema de otimizagao por risco.

Com esse novo modelo, em apenas um problema de otimizacao, é possivel determinar qual
o arrependimento méximo do plano de expansao s, em que contingéncia v ele ocorre e qual o
plano § que satisfaz a condigao de corte de carga minima.

O problema completo reformulado é o mostrado abaixo:

(Problema do Nivel Superior)

min {(1 —f5)-p- R(s) + 5-C(s)} (4.32)

seS* (4.33)
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(Problema do Nivel Inferior)

R(s) = U{r)\lfg{é {X(b— A% — A%s) — 'z} (4.34)
v e Vg (4.35)

ANeH (4.36)

(z,8) € M(v) (4.37)

Esse problema é classificado como problema de otimizacao binivel. Serdo mostrados a seguir
0s passos para a definicdo completa desse problema. Serd mostrado também que, com lineariza-
¢oes do tipo apresentado no Apéndice A, ambos os niveis de otimizacdo serdo modelados como

problemas lineares inteiros mistos.

4.3.1 Primeira Versao - Problema com 4 niveis nao linear

Essa primeira versdo contém o problema geral como é apresentado. E definido como um
problema com 4 niveis de otimizagao, sendo os niveis 3 e 4 nao lineares devido as multiplicacoes

de varidveis continuas e binarias.

(Nivel 1)
1 . . . L
s el L A ZGZL:C o e
S.a.
SorP- S RPe S RPod meN )
geGn, L|0(£)=n L|R(£)=n
1
PF = —[68) — SR Ve e L (4.40)
Ty
. ﬂ[(;OO(K) — %)l vee L¢ (4.41)
Ly
—PF < P < PE Vie L (4.42)
0< PP < P¢ VgeG (4.43)
0<62<0 Vn e N (4.44)
Z cksy < Ck (4.45)
LeLC
s € {0,1} Ve e L (4.46)

(Nivel 2) - Defini¢ao do Risco

R(s) = max {A(s,v)} (4.47)
Z v =y — K (4.48)
0eLO

v € {0,1} ve e L° (4.49)
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(Nivel 3)

(Nivel 4)

S.a.

S.a.

A(s,v) =

> Py -

9€Gn

Q(v)

e
geGn

- Defini¢cao dos Arrependimentos

Ad, b — oMIN
e m{Z } "W

g e neN

ZPZJFZPZ_ — Ad,

00() ¢|R(0)=
P} = ;[50(3) — OR()]
P} = 2 [50(6) — O]
PP <Pl <Pl
0< PS¢ < P¢
0<4, <6
0<Ad, <d,

- Definicao da Corte de Carga Minimo

= min {ZACLL}

chv‘:P[LaAdn:én; neN

PGO PLO §0 &
Pg s PO, 60, 8

S B+ Y BE=da- Ad,

010(@)=n ¢|R(€)=n
Ptk = W[fsoz I0)
¢ = 7,100 (©)
PL =25, — 6
] W[ o(6) = OR()]
_ ZL < PKL < PZL

0<6,<6
0< ACZ <d,
Z 0 Z PO —
LlO(£)=n LIR(£)=n
. 1
PLO _
(i [500) = %)
ALO _ SL(20
P = o [60(e) — OR(0)]

VneN

vl e LO

Ve e L¢

Vle L
Yge G
Vne N
Vne N

Vne N

vl e LO
vl e LC

Vle L
Yge G
Vne N
Vne N
Vne N

Ve e LO

Ve e LC

Yl eL
Vge G
Vne N

Ve LC

(4.50)
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4.3.2 Segunda Versao - Problema com 4 niveis linear

Para se obter essa segunda versdo, aplica-se a técnica de linearizacdo do Apéndice A nos

niveis 1, 3 e 4 da versdo anterior do problema. Ainda constitui em um problema de 4 niveis de

otimizacao.
(Nivel 1)
min (1-=5)-p-R(s)+0- Z chsy (4.74)
choﬂ PIZLD7 69;: Sty 55005 KGLO
5210, 5790, pT0
S.a.
PO — N P+ > PP=d, VYne N (4.75)
g€Gn €0()=n ¢|R(6)=n
1 o
1
PO = — (6990 — 5210y vee L  (477)
Ty
—pPl < Pl < PE Vle L (4.78)
0< PEY < PC Vge G (4.79)
0<60 <6 Vn e N (4.80)
070 + 6100 = 63, Vee LC (4.81)
P04 510 = 59 VieL¢ (482
0 < 6990 < §sy Vee L  (4.83)
0 <690 <55y Ve L  (4.84)
0 <609 < 6(1 — s) VeeLC  (4.85)
0 < M0 < 6(1 — s¢) Vee LY  (4.86)
Z cksy < Ck (4.87)
LeLC
se € {0,1} vl e L (4.88)
(Nivel 2) - Defini¢ao do Risco
R(s) = max {A(s,v)} (4.89)
Vg
S.a
Y vz - K (4.90)
LeLo
v € {0,1} ve e L° (4.91)
(Nivel 3) - Definigao dos Arrependimentos
A(s,v) = min > Adyp — Qv) (4.92)
PS, Pl Adp, 6n, neN

o R AO AR
5? ) 6? ’ 647, ’ 6(
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S.a.
> PE— > Pf+ Y Pf=d,—Ad,
g€CGn 0Oo(0)=n ¢ R(£)=n

20 — 50"

—P} <P} <P}
0<PY < P¢
0< Ad, <d,

677 + 619 = doq

67" + 67 = b
0 < 6% < dug
0 < 627 < dug

0 <60 < §(1 — )

0 < AR < §5(1 —wy)
0 <699 <35y
0 < d9% < 65,

0 <610 < 5(1 — sp)

0 < MR < 5(1—s)

Pl =

(Nivel 4) - Definicao da Corte de Carga Minimo

Qv) = min ) {Z Aafn}

% D N o
PSPl ADy, 80y 50, 629 nen
A U

5B, 500, 551, POO, PLO,

oo om0 = .

59“ 5? (J7 52;) 0’ 524()0’ 6ZAR0

S A= S B S B =di-ad,
9€Gn 0O(0)=n L R(0)=n
1 . R
2 (§Q0 _ 5QR
xﬁ( ¢ )
_ PZL < PKL < PEL
0< PE<PC
0 < Ad, <d,
37 + 640 = bow
3?}2 + 824]% == 51{([)
0 <699 < by
0 < 6% < by
0 <680 <61 —wy)

0 <6/ < 6(1 —wy)

S.a

pL _
Py =
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VYn e N

Vi e L

Vle L
Vge G
VneN
Vle L
Vle L
Ve e LO
Ve e L
ve e L9
Ve e LO
Ve e LC
Vi e L¢
Vi e L¢
Vi e L¢

VneN

Ve e L

Vle L
Vge G
Vn € N
Vle L
Vle L
vl e L°
Ve e LO
vl e LO
Ve e L°

(4.108)



0 <699 <55
0 <697 <53
0 <680 <51 —4)

0< SAR < 5(1—§g)

POR AN DI AR DY

9€Gn LlO()=n LR(£)=n
A 1
PLO — 50 50
£ = 18 — ko)

RO
i,

0 < 6990 < 53

0 < 6210 < 53
0 < 6100 < 5(1 — 4)
0 < o0 < (1 — 3)

Z CEL§5 < C%

LeL’
sp€40,1}

Ve e L¢
vee L¢
Ve e LY
Ve e LY
Vn e N

vl e L°

Ve LC

VlelL
Vge G
VYn e N
vee LY
Ve e L¢
vee LY
vl e LC
Ve e L¢
vl e L¢

Ve e L¢

4.3.3 Terceira Versao - Problema com 4 niveis e nivel 3 dual nao linear

Nessa terceira versao, substitui-se o problema de nivel 3 da versdao anterior pelo seu corres-

pondente dual. Ainda com 4 niveis de otimizacao, essa nova versdo possui seu nivel 3 ndo linear

devido & multiplicacdo de variaveis binarias e continuas na sua funcao objetivo.

(Nivel 1)
min (1-5)-p-R
PGO PZL07 6n5 St
5?00, 5QR07 6AOO’ 6£ARO
S.a.

2 B0 2, PP ) P

9€Gy, 00(0)= 0R(6)=n

P[0 = @[50( )~ )]

1
PZLO — 7(65200 . 552]%0)

Ly
pL L0 pL
GO pG
0< P/ <P,

0<6)<§
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s)+B- Y cfse

VneN

Ve e LO

vl e LC
Vle L
Vge G
Vne N

(4.138)



5290 4 500 = 0% WLELS
P+ 60 = 8%, Ve L€

0< 69 <ssy,  WLeLC
0< 6@ <ds,  VLeLC
0< 800 <§(1—sy) VLeLY
0< oM <51 —sp) VL€ LY

Z cfse < C%

LeLC
sp € {0,1} Ve e LY

(Nivel 2) - Defini¢ao do Risco

R(s) = max {A(s,v)}

S.a.

ZWZ?%—K

LeLO
v € {0,1} Ve e L°

(Nivel 3) - Definicao dos Arrependimentos

A(s,v) = max Z AN, — Z AL, — Z AG,

ANn, ALy, AGg, ay, neN el geG
Brs Wi Vs €85 €8
®g> Mo, 07, T A5 AL,
MG, AL 1y uis uf s ny

+ > e+ AD) + L= v) (A + AD)]
(eLO

+ 3 [se(pd + 1) + (1= s0)(uf + 1)) § — Q(v)

LeLC
S.a.
A-an - Dn(an - Bn) —Tn
ALe = PEL(ES/ + Eg’)
AG, = PgGgog
an(g) < Pg
Qo) ~ QR = € — € + e
- 571 S 1
> oo+ Z off =4 — Ak
O(6)=n L R()=n
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Vn e N
Vi e L
Vg e G
Vg € G
Vle L
Vne N
Vne N
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R>MZD

B'VULULSDZO

ph B, <0
M ABC AP <

(Nivel 4) -

Qv) = min
PS, PE, AD,, b, 80, 67
8?1%7 5?07 524R PGO PLO

Ve e LO
Ve e L°
Ve e LO
Ve e LO

Ve e LC

v e LC

vl e LC
vl e LC

Definigao da Corte de Carga Minimo

> Ad,

neN

527 852()07 8?1’{07 8?007 s?RD

S.a.

> PS ZPngZPK— — Ad,

g€Gn a1eles

(|R(6)=

P = 1500 om

>

g€Gn

Ly
pL DL pL

G pG

0< PG < P

0 < Ady, < dn
320 + 519 = bo
52"+ 6 = b

0< 5AR<S(1—§3)

Z PLO + Z PLO

00(0)= 0|R(6)=n

P/ = [50( 0 — o)

Ty
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VYn e N

Yl e L

Vle L
Vge G
VneN
Vle L
Vle L
vl e L
ve e L9
ve e L9
ve e L°
Vi e L¢
Ve e L¢
vie L¢
vee L¢
Vn e N

Ve e LO
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A 1 - o
PFO = — (6790 — 6270 vr e LC

x
—P};P}ngf Vel
0< ngo < ng Vge G
0<62<4d VYn e N
07 + 000 =50, WelLf
P R0 = 59, VeeL?
0 <8990 < 53, vl e L€
0 <6970 < 63, vl e L€

0<600<5(1—5) VeelL®
0< o0 <5(1—5) WelL®
Z cks, < Ck
LeLC
3 €{0,1} Vi e L¢

4.3.4 Quarta Versao - Problema com 4 niveis e nivel 3 dual linearizado

Essa quarta versao é o resultado da linarizagdo do nivel 3 da versdo anterior. Ainda possui

4 niveis de otimizacao, porém todos lineares.

(Nivel 1)
min (1—5)'p-R(8)+ﬁ-Zc£sz
Py, PEO, 8, s, teLC
5200, 510, 5100, 50
s.a.

ZPgGO_ Z PR Z PO~ d,

9€Gy, 00(0)=n 0|R(6)=n

1
P} = ;@[58(@ — 00

1 Qoo RO

PO = — (77— 67™)
l

o PKL S PZLO S PEL
GO PG

0 < P&0 < P

0<8)<§
5290 + 57100 = 69,
210 4 GpR0 = 60,

0 <0290 < b,

0
)

0 <690 < s,
0 < 68190 < 5(1 — s¢)
0 < 50 < 5(1 — sp)

Z cksy < Ck
LeLC

sp €40,1}
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vl e LY
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(Nivel 2) - Defini¢ao do Risco

R(s) = max {A(s,v)}

Ve

ZWZWO—K

LeLo
v € {0,1}

S.a.

vl e LO

(Nivel 3)

A(s,v) = max {Z AN,, — Z ALy

ANy, AL, AGyv Qn,y
Bris Vs Vs €15 €05 Pgo
ey U/S)v o’eR7 /\?A: )\?B:
)‘2;)07 )‘?D’ AZAARE,

AC AD A B C D
)‘l 7>‘2 s M s K s g s Mg

neN lel

—DTAG + DT PP AR 070+ 077

geG LeLO

+ > [selpgt + pd) + 1 = so)(uf + )]
LeLc

—9(v)
S.a
AN, = D(on = Bn) =
AL = PHE + )
AGy = PgGgog
AN(g) < g

Oéo(g) - OéR(g) = 6? - 65 + 7y

ap —fn <1
Yool D =
(|0(@)=n | R(@)=n

5
O'? > /\?A + )\KAA - x—m
V4

5
Uf > )\ZQB + )\?B + —my
Xy
UEO > /\?C + )\240
oft > APP + ApP
A?A > v

A?B > v\

Vne N
Vle L
Vge G
Vge G
Ve e L
Vne N
Vne N

vl e L°

Ve e LO

vl e LO
Ve e L9
Ve e LO
Ve e LO
Ve e L9
Ve e L°
Ve e L°
Ve e L°
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M > vA

MP > v\

0
o A
o 2 [y — —Ty
Ty

Uf‘ZMergim
of > g
R>IU‘(P

B ,YU L U L 8020

o ,uB,uC,MDSO

AQA NQB \QC \QD < 0

)\AA7 )\AB7 )\AC’ )\AD < 0

vl e LO
vl e LO

v e LC

v e LC

vl e LC
vl e LC

(Nivel 4) - Definigao da Corte de Carga Minimo

Qv) = min {Z Acin}
ﬁf,ﬁ[L,Aczn,gn,§h 8?05 neN

SQR SAO SAR pPGO PLO

62 ) 5[ ’ 6[ ) Pg ) PZ )
S0 $QO0 $SQRO £A0O0 SARO
Ony 07, 0777, 6790, 65

S.a.

> P¢ ZPK+ZP£—d—Ad

9€Gy, £00(0) 0|R(6)=n

P = 00 - jor)

0 <610 <5(1—wy)
0 <6/ < 6(1 —wy)
0 <899 < b3,
0<§9% < 63
0 <680 <6(1—4)
0< 5AR < 5(1 — %)
S Y B YR
e 20(0)=n ¢|R(£)=n
peLO = ;[50(5) - 3%.(@]
pLo — i( 5Q00 _ o)

Ly
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Vne N

Vle L

Vle L
Vge G
VneN
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VlelL
Ve e LO
Ve e LO
Ve e LO
Ve e LO
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~PF<PM<PF vieL (4.270)
PGO PG

0 < PFO < P Vg e G (4.271)

0<62<4o VYne N (4.272)

07 +6/00 =62, Vel (4.273)

P + 60 = 8, Ve L’ (4.274)

0<69° <53 veeLC (4.275)

0<% <63, veeL® (4.276)

0 <60 <5(1—3) Vel (4.277)

0 <60 <5(1—3) Vel (4.278)

> cfa < Cf (4.279)
LeLC

30 € {0,1} Ve e L¢ (4.280)

4.3.5 Quinta Versao - Problema com 2 Niveis

Esse é a versdo final do modelo proposto, resultado da jungdo dos niveis 2, 3 e 4 da versao

anterior. Esse modelo possui dois niveis de otimizacao lineares e é apresentado abaixo:

(Problema do Nivel Superior - PNS)

min L1=B)-p-R(s)+B- > cfse (4.281)
P70, PEO, &5, se, el
6€QOO7 6ZQRO7 624005 élARU
S.a.
PO N PP+ > PP=d, VneN  (4.282)
geGhn, 2|0(6)=n L R(0)=n

1
Pl = x—z[ég(ﬁ) — 6% Ve IO (4.283)

1
P = ;(55900 — 610 Vee L¢  (4.284)

l
—PF < P < P} Vie L (4.285)
0 < PEY < PS Vge G (4.286)
0<8)<§ VneN (4.287)
07 + 0090 = 59, Ve LC  (4.288)
SF0 + GAR0 = 69, Ve L€ (4.289)
0 <0990 < b, vee LC  (4.290)
0 < 0270 < b, vee LC  (4.291)
0 < 6100 < 5(1 — s¢) Ve L (4.292)
0 < 60 < 5(1 — s¢) Ve L¢  (4.293)
> cfsi < Cf (4.294)

eLC
se € {0,1} Vee LY (4.295)
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R(s) = max
Ve, AN-,L, AL(, AGQ, (0%

U

(Problema do Nivel Inferior - PNI)

{Z AN,, —
By VY,

neN
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L L o R
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AZBAZC) AP NpA AAB, MO,
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geG
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5PO° + 600 = 58, WL ELC (4.347)

P + 610 = 8%, Ve e L€ (4.348)

0<69° <53 veeLC (4.349)

0<6@0 <55  veelLC (4.350)

0 <600 <5(1—3) Vel (4.351)

0 <60 <5(1—5,) WelL® (4.352)

> cfs < OF (4.353)
LeL®

30 € {0,1} Ve e L° (4.354)

Segue abaixo na Figura 4.2, um esquema de todas etapas descritas anteriormente.

12 VERSAO

Problema com 4 niveis
nao linear

» Linearizacdo dos niveis
1.,3¢4
2 VERSAO

Problema com 4 niveis
linear

iL: Transformacio Dual no
—~ nivel 3
32 VERSAO

Problema com 4 niveis
ndo linear (Nivel 3 Dual)

iL Linearizacio do nivel 3

42 VERSAO

Problema com 4 niveis
linear (Nivel 3 Dual)

Agregacio dos niveis 2,
3e4d
52 VERSAO

Problema com 2 niveis
linear

Figura 4.2: Resumo do processo de obtenc¢do do problema PERT de dois niveis

4.4 Metodologia de Solugao

Nessa secao, serd apresentada uma metodologia para a resolucdo e anéalise do novo modelo
proposto na sec@o anterior. Para facilitar a notacgao, pode-se reescrever o modelo proposto da

seguinte maneira:
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(PNS)

min {(1 - §)-p- R(s) + - C(s)} (4.355)
s.a. seS* (4.356)
(PNI)
R(s) = max {G(s,2")} (4.357)
s.a. ol e xt (4.358)

em que z! consiste em todas as variaveis do problema do nivel inferior e 0 X!, seu conjunto de

dominio.

A metodologia de resolugdo proposta consiste na Decomposi¢ao de Benders aplicada a pro-
blemas de otimizacao binivel e foi baseada na empregada por [25]. Essa metodologia constitui-se
na reestruturacao do PNS da seguinte maneira:

(Problema do Nivel Superior Modificado - PNSM)

min{(1-8)-p- O + 8- C(s)} (4.359)
6 > R/(s) (4.360)
seS* (4.361)

onde R/(s) ¢ uma funcao aproximada de R(s) e é reformulada a cada iteragdo do algoritmo.
Inicialmente, assume-se que R/'(s) = 0, Vs € §*. Dessa maneira, a resolugdo do problema
reestruturado acima retornard como solucao 6tima o plano de expansao com menor custo de
implementagao, ja que a varidvel © tendera para o valor zero e o problema se tornara o problema
PERT tradicional. Sera utilizada a denotacdo s(©) para representar esse plano de expanséo.
Uma vez determinado esse plano de expansdo, calcula-se seu risco R(s(o)) através do PNL
Com esse valor, pode-se estimar os riscos das outras variaveis, através de uma aproximacao linear
dessa funcao:
R'(s) = R(s(9) + VR (s . (s — 5(0) (4.362)

em que @Rt(s(o)) é uma aproximacdo do vetor gradiente da funcao risco. O préprio vetor
gradiente da fungdo risco ndo pode ser determinado analiticamente, pois essa fungdo depende da
resolucao de um problema linear inteiro misto para se definida. Entretanto, a aproximacao do
vetor gradiente pode determinada através da seguinte expressao:
~ 0G
VR(s) = —(s) (4.363)
0s
Uma caracteristica importante é que a varidvel s ndo influencia na regiao factivel do PNI.
Isso contribui para a validagao dessa estimativa do vetor gradiente.

Observando a funcdo objetivo G(s, z! ) do PNI da versao binivel do modelo proposto na se¢ao

anterior, Eq. (4.296), essa aproximagao ¢ dada por:
VR!(s) = p* + pf — p& — pP (4.364)
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Voltando ao PNSM, pode-se incluir a restricio © > R(s(0)) + VR!(s()) . (s — 5©)), Vs € S*
e resolvé-lo novamente. Obtém-se um novo plano de expansao 6timo, o qual serd denotado por
s(1). Calcula-se o risco associado a esse plano s(!) e estima-se novamente a funcio risco para os

demais planos, através da seguinte expressao:

R/(s) = max {R(s(j)) + VRN (W) - (s — s@)} (4.365)

Esse processo continua e a cada iteracao é reformulada a funcdo que aproxima o risco dos

planos de expansao através da seguinte formulacao:

R/(s) = jmax {R(s(j)) + VR (s9)) . (s — s(j))} (4.366)

em que k é a iteragdo corrente.

Como condicao de convergéncia, verifica-se se os valores do risco estimado R/(s) e do risco
calculado R(s) da solugao 6tima da iteragdo sao iguais. Caso sejam iguais, essa solugao é a 6tima
global do problema. Ja como condicdo de divergéncia, adota-se um limite maximo &M4X para o
numero de iteragdes do algoritmo.

De forma resumida, as etapas do algoritmo de resolucao sao mostradas abaixo:
1. Inicializar k = 0;

2. Resolver PNSM, com R’(s) = 0 para todo plano s, e obter s¥) ¢ ©(*):

3. Resolver PNI, com s = s, ¢ obter R(s¥)) e VR(s*);

4. Se R(s™®) = ©® parar, SOLUCAO OTIMA ENCONTRADA;

5. Incluir a restricio © > R(s®) + VR!(s())(s — s)) a0 PNSM;

6. Fazer k =k + 1;

7. Se k = EMAX parar, DIVERGENCIA;

8. Resolver PNSM e obter s ¢ ©%):

9. Voltar ao Passo 3.

4.5 Resultados Numeéricos

As formulagoes propostas foram testadas no sistema de 6 barras, cujos dados sdo apresentados
no Apéndice B. As simulacoes foram realizadas utilizando a ferramenta de otimizacao GAMS e

valor 0 foi definido como sendo 7/2 e o preco da energia p como 50$/MW .

4.5.1 Validacao do Problema Binivel

Realizaram-se algumas alteracoes no sistema de 6 barras para poder efetuar a validacao do
modelo binivel proposto. O sistema elétrico de 6 barras modificado possui 6 barras e 10 linhas,
sendo 3 delas no ramo 4-6 e 2 no ramo 3-5. Para melhor estudar esse sistema, se agruparam as
linhas miltiplas, modelando-as como dnicas linhas. O sistema 6 barras modificado é o ilustrado

na Figura 4.3.
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360 MW

40 MW

3 linhas
No 6 No
600 MW 160 MW

Figura 4.3: Sistema 6 Barras Modificado

Esse sistema, como estd, ja supre toda a demanda de energia futura prevista. Os planos de
expansao serdo, portanto, realizados apenas como medida de seguranca e reforco da robustez da
rede elétrica.

Os dados das linhas se encontram na Tabela 4.2. Nela estao destacadas as quatro linhas

candidatas para a expansao do sistema elétrico (linhas 1-3, 2-6, 3-4 e 5-6).

Tabela 4.2: Dados de Linhas - Sistema 6 Barras Modificado
Ramo 1-2 14 15 2-3 24 3-5 4-6 1-8 2-6 3-4 5-0
z¢ (pu.) 040 0,60 0,20 0,20 0,40 0,20/2 0,30/3 0,38 0,30 0,59 0,61
PKL (pu.) 1,00 0,80 1,00 1,00 1,00 2x1,00 3x1,00 1,00 1,00 0,82 0,78
cEL (103$) - - - - - - - 3,8 3,0 5,9 6,1

Fixou-se o valor para o custo maximo como sendo C’% = $16000, com o qual é possivel
inserir no méximo 3 novas linhas. Em seguida resolveram-se varios problemas lineares refentes
4 obtencdo dos cortes de carga minimos QM (v) para cada cenério futuro da rede. O resultado
dessas simulacoes sdao mostrados na Tabela 4.3 a seguir.

Note que, por simplicidade, a tabela mostra apenas os valores de corte de carga para o
critério de seguranga n — 2, isto é, se pressupde que serao desligadas no méaximo 2 linhas do
sistema. Apesar disso, ainda foram estudados os casos para K = 1,2,3,4,5,6 e 7, porém nio

sao apresentados. Consideraram-se, portanto, os 27 = 128 cenérios possiveis do sistema elétrico.
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Tabela 4.3: Carga Nao Atendida Minima para K = 2

Contingéncia Linhas QMIN () | Contingéncia Linhas QMIN ()
v Desligadas  (MW) v Desligadas  (MW)
1 12 78 15 14, 2-3 24,2
P 1-4 0,0 16 1-4, 2-4 3,7
3 1-5 0,0 17 1-4, 3-5 66,1
4 2.3 40,0 18 1-4, 4-6 104,4
5 2.4 3,8 19 1-5, 2-3 40,0
6 3-5 66,9 20 1-5, 2-4 0,0
7 46 100,3 21 1-5, 3-5 162,0
8 12, 14 9,3 92 1-5, 4-6 95,0
9 12, 1-5 0,0 23 93, 24 74,1
10 1-2, 2-3 83,3 24 9-3, 3-5 148,1
1 1-2, 24 40,0 25 9.3, 4-6 150,0
12 1-2, 3-5 76,5 26 94, 3-5 92.4
13 1-2, 4-6 1025 97 9.4, 4-6 94,9
14 1-4, 1-5 0,0 28 3-5, 4-6 218,83

Em seguida foram definidos os planos de expansao factiveis com o or¢amento pré-determinado.

O total de planos de expansao é igual a 15 e sdao os mostrados na Tabela 4.4 abaixo.

Séo

apresentados também cada um de seus arrependimentos maximos, que representam seus riscos

R(s), para diferentes valores de K. Estao destacados os valores 6timos para um dos casos

estudados.

Tabela 4.4: Planos de Expansao

Plano de Linhas R(s) em MW

Expansao Construidas K=1 K=2 K=3 K=4,56,7
51 - 169,7 251,2 2820 282,0
52 5-6 126,1  173,2  204,0 204,0
S3 3-4 149,7 1740 2158 236,1
S4 3-4, 5-6 89,1 105,5 1378 158,1
S5 2-6 97,8 151,2  182,0 182,0
S6 2-6, 5-6 31,2 76,4 104,0 104,0
s7 2-6, 3-4 93,7 113,2 1197 136,1
S8 2-6,3-4,56 194 35,2 41,7 58,1
S9 1-3 149,7 184,8 219,0 270,3
510 1-3, 5-6 109,3 155,7  182,0 192,3
511 1-3, 3-4 149,7 1551  178,0 188,3
512 1-3, 3-4,5-6 88,3 100,0  100,0 110,3
S13 1-3, 2-6 73,1 81,5 119,0 170,3
S14 1-3,2-6,56 13,3 59,3 82,0 92,3
S15 1-3,2-6,3-4 73,1 78,0 81,6 88,3

Vale lembrar que todos esses valores citados até agora foram obtidos resolvendo um total de

1920 problemas lineares diferentes, correspondentes aos 15 planos de expansao e 128 cenérios.

Observando a Tabela 4.4 acima se pode ver que para K = 1 o plano de expansao que possui

o menor risco € o plano si4 (1-3, 2-6, 5-6) enquanto que para os outros casos, K =2,3,4,5,6 e

7, 0 plano sg (2-6, 3-4, 5-6) se apresenta com menor risco.

Pode-se também observar que os critérios de seguranga n—4, n—5, n—6 e n — 7 apresentam

0s mesmo resultados para o problema.
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Por fim, no que segue abaixo na Tabela 4.5, estdo os valores dos arrependimentos A(s,v)

para todos os planos de expansao factiveis e para as contingéncias pertencentes ao conjunto V.

Tabela 4.5: Arrependimentos A(s,v) para K =1

Planos de Contingéncias R(s)

Expansao 0 1 2 3 4 5 6 7
51 00 322 157 40,0 42,0 77,6 1031 169,7 | 169,7
89 197 475 26,9 0,0 125 878 569 126,1 | 126,1
53 17,3 41,3 15,7 40,0 42,0 82,6 122,0 149,7 | 149,7
S4 234 516 302 23 139 89,1 605 722 | 89,1
S5 00 30 100 40,0 425 98 97,8 69,7 | 97,8
56 00 22 00 00 251 50 237 31,3 | 31,3
57 00 07 00 400 374 93 93,7 497 | 937
s8 00 00 00 00 166 45 194 00 | 194
s9 00 322 7,7 40,0 23,0 803 842 149,7 | 1497
S10 17,7 50,1 21,2 81 00 873 592 109,3|109,3
s11 13,0 422 7,7 40,0 23,0 83,6 102,3 149,7 | 149,7
s12 91,1 53,7 246 10,8 00 88,3 639 71,7 | 88,3
s13 00 25 00 400 164 35 73,1 497 | 731
s14 00 19 00 00 38 00 00 13,3 | 133
15 00 03 00 40,0 05 32 73,1 497 | 731

Em posse desses dados, foi modelado o novo problema proposto utilizando o software GAMS
e compararam-se o valores de riscos obtidos através do novo modelo com os dados da tabela
4.5 acima, para cada um dos 15 planos de expansao factiveis. Constatou-se que os valores sido
idénticos, comprovando assim a exatiddo do problema formulado.

Outra validacao realizada foi a do algoritmo de resolucdo proposto. Tal algoritmo foi im-
plementado em linguagem C' ++e dentro de suas subrotinas resolviam-se os problemas lineares
inteiros mistos utilizando a ferramenta GAMS.

A seguir serao mostrados os graficos com a evolucao do algoritmo para a resolucao do pro-
blema de planejamento, considerando os seguintes critérios de seguranca K =1, K =2, K =3
e K=4,5,6eT.

A Figura 4.4 apresenta os graficos dos riscos, estimados e calculados, a cada iteragdo do algo-
ritmo. Note que os valores dos riscos estimados sao sempre inferiores aos seus riscos calculados.
Ao longo do algoritmo, esses valores convergem a um mesmo valor de risco, configurando, assim,

a solucao 6tima do problema.
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Figura 4.4: Evolucao do Algoritmo de Resolucao

Para melhor visualizagdo dos riscos calculados, sao mostrados na Figura 4.5 abaixo os graficos
que descrevem o comportamento desses riscos a cada iteragao.

Os resultados obtidos através dessas simulac¢des sdo iguais aos obtidos passo-a-passo anterior-
mente, concluindo, portanto, que o método é eficaz na resolucao do problema proposto aplicado

ao sistema elétrico teste.
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Figura 4.5: Evolugao do Risco Calculado

4.5.2 Avaliagao do Parametro

Validado o novo modelo proposto, buscou-se avaliar a ponderagdo atribuida entre a minimi-
zac¢ao por risco e a minimizacao por custo. Essa avaliacao é realizada observando o resultado do
problema ao alterar o valor do parametro .

O sistema elétrico estudado nessa etapa foi o Sistema 6 barras original, cujos dados estao
descritos no Apéndice B. Como alternativas de expansdo, optou-se por inserir novas linhas nos
ramos 1-2, 1-4, 1-5, 2-3, 2-4, 2-6, 3-5, 4-6 ou 5-6. Esses ramos sao os que ja possuem linhas na
configuracdo original e os propostos para expansao no artigo [6].

Nos ramos que ja possuem linhas, 0 nimero de novas linhas maximo a ser inserido foi fixado
como sendo 2 linhas. J4 nos ramos que ndo possuem linhas, o nimero maximo de novas linhas
instaladas foi fixado igual a 3.

Resolveu-se o problema proposto para valores de 8, variando de 0 a 1, discretizado por um
passo igual a 0,02. O valor de custo méaximo foi variado também, assumindo os valores $11 000,
$19000 e $27000. E por fim o parametro K do critério de seguranga variou de 1 a 6 linhas.

As Figuras 4.6, 4.7 e 4.8 mostram respectivamente os resultados das simulacoes para o custo
méaximo das instalagoes valendo $11 000, $19 000 e $27 000.
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Figura 4.6: Avaliagdo do Parametro 8 com Ck = $11000

Pode-se observar na Figura 4.6 que quando o limite de custo é igual a $11 000, nao é possivel
estimar o risco e ele é dito ser sempre nulo, ndo importando o valor do pardmetro 3. Isso ocorre
porque, com esse custo maximo como limitacao, existe apenas uma tnica solugao factivel (uma
nova linha entre 3 e 5 e duas novas linhas entre 4 e 6) e ndo havera arrependimento apos a
ocorréncia de uma contingéncia, ji que nao existem mais op¢bes de expansdo. As outras opgoes

de planos de expansio ou ndo garantem o corte de carga nulo no cenario () ou sdo mais caros que

o limite.
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Figura 4.7: Avaliagdo do Parametro 8 com Ck = $19000

Ao aumentar o limite de custo maximo, novos planos de expansao mais caros passam a ser
factiveis e podem garantir uma melhor seguranca ao sistema fazendo com que surja um risco
diferente de zero ao se ponderar a minimizacdo do custo.

Esse fato pode ser notado na Figura 4.7. Observa-se que para 8 = 0,70 e K = 2, o risco
da solucdo 6tima deixa de ser nulo. Nessa situacdo, pode-se afirmar que a ponderagao dada &
minimizacao do risco nao foi suficiente para anulé-lo.

Para K = 1, os valores de risco se mantém nulos para qualquer valor de ponderagao 5. Ja
para os outros valores de K (de 3 a 6), existe risco nao nulo associado as solugdes 6timas a partir
da ponderagao 8 = 0, 86.
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Figura 4.8: Avaliagdo do Parametro 8 com Ck = $27000

A Figura 4.8 é semelhante & Figura 4.7. Isso mostra que para esse problema, com a variagao

do custo méaximo para mais de $19000 néo se alteram os resultados obtidos.

4.6 Conclusao

O modelo tradicional do problema de planejamento de expansao de redes de transmissao nao
leva em consideracao a vulnerabilidade do sistema a eventuais desligamentos, seja ele causado por
fendmenos da natureza, por ataques intencionais ou por manobras de operacao. A incorporacio
da minimizacao dessa vulnerabilidade torna-se necessaria ji que em projetos reais ndo se visa
apenas a minimizacao dos custos de instalagoes.

Esses eventos de contingéncia do sistema sao classificados como incertos e nao-aleatérios, o
que indica que nao se pode modela-los com uma distribuicao de probabilidades conhecida, ja que
nao ha amostras suficientes para sua validacdo [26]. Nesse contexto, a otimizac¢do estocéstica
torna-se inviavel pois possui alta dependéncia dos parametros probabilisticos do problema.

A abordagem de Otimizagao por Risco contorna esse problema de dependéncia das probabi-
lidades de ocorréncia dos eventos incertos. Menos conservador que a Otimizacao Robusta, essa
abordagem busca selecionar os planos de expansao que minimizam os riscos tomados, modelados
através do arrependimento de cada decisao.

Os modelos propostos até entao para o problema de planejamento de expansao de redes de
transmissdo sujeito a desligamentos intencionais necessitam da definicao dos potenciais cenérios
do sistema elétrico [23],[26]. Em outras palavras, esse modelos necessitam da definigao prévia dos
possiveis cendrios futuros do sistema elétricos, resultantes da acao de diversos planos de ataque.

Nesse trabalho buscou-se agregar os planos de ataque como varidveis do problema, a fim
de evitar a determinagdo das piores contingéncias na rede e fazé-la de maneira automatica na
resolucao do novo modelo. Além disso, com esse novo modelo proposto, condensaram-se as varias
etapas das abordagens estudadas do problema de planejamento.

Determinou-se um procedimento de resolucao do modelo proposto usando técnicas de otimi-
zacdo binivel, descritas pelo Método de Decomposi¢ao de Benders [25] e realizou-se a aplicagio
do modelo para sistemas elétricos para validagao desse modelo através da anilise dos resultados.
Verificou-se também a compensagdo, ponderada pelo pardmetro 3, entre o custo de instalacdo e

a minimizacao da vulnerabilidade da rede elétrica.
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Capitulo 5

Indices de Robustez e de

Vulnerabilidade

Nessa etapa do projeto, tentou-se propor uma medida da vulnerabilidade e da robustez dos
sistemas elétricos durante o planejamento da expansdo, baseando-se no novo modelo proposto

no capitulo anterior.

5.1 Definicdo dos Indices

Naturalmente, durante o planejamento da expansao visando & minimizacao do corte de cargas,

a funcao objetivo do modelo é descrito como mostrado abaixo:

min {PPEN . R(s) + C(s)} (5.1)

em que PPEN & o preco de penalizacio do risco R(s) dos planos de expansio, dado em ($/MW).
Nessa formulacao, o corte de carga, representado pelo risco da implantacao do plano, é penalizado
segundo o preco da energia. Tal preco é um dado obtido ou estimado pelo planejador do sistema
e representa o custo da demanda nao atendida, isto é, o quanto que dever ser pago por todos os
MWs da demanda nao atendida ao ocorrer a contingéncia.

Quando esse preco é grande, inevitavelmente serd escolhido um plano de expansdo de risco
nulo. Isso indica que esse plano é o melhor plano frente a todas as contingéncias.

Ao diminuir o prego pela carga nao atendida, o lado do custo da instalagio comega a
apresentar-se mais importante, de modo que, a partir de um preco minimo P]@?f\y , 0 plano

de expansdo escolhido ji ndo possui risco nulo. Essa situacdo é ilustrada na Figura 5.1 abaixo:

R(s*) # 0 I R(s*) = 0

Figura 5.1: Preco de penalizagao minimo
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O valor P]ﬁ%{\/ representa um limite entre a regido em que o risco do plano 6timo nao é nulo
e a regido em que esse risco é nulo.

PPEN ¢ determinado no escopo

Como dito anteriormente, o valor do preco de penalizacao
do projeto de planejamento e independe da escolha do planejador. Dessa maneira, quando uma
rede possui Pﬁ%{}f alto, menor é a chance de determinar um plano com risco nulo. Em outras
palavras, é mais dificil encontrar um plano de expansao que seja 6timo em qualquer cendrio de
contingéncia.

Pode-se relacionar diretamente o valor PAI}%JVV da rede & sua vulnerabilidade. Conveniente-

mente, serd definida a grandeza denominada Indice de Vulnerabilidade (IV) como sendo:

1V = pHEN (5.2)

Reescrevendo a fungdo objetivo, Eq. (4.355), do problema do nivel superior, formulado na

secao anterior, da seguinte forma:

. [1-p
min {ﬁ -p-R(s)+ C(S)} (5.3)
e comparando ambas as expressoes para a fun¢do objetivo (Equagoes (5.3) e (5.1)), é possivel

relacionar os seguintes valores:
PPEN — 1_55 p (5.4)
Avaliando o comportamento do valor do risco R(s*) das soluges 6timas ao alterar o valor de
B, pode-se determinar um ponto Sj;, em que se define a fronteira entre a regido de risco nulo e
a regiao de risco nao nulo.

Dessa forma:

1— im
ply = 1= P, (5.5)
5lim
Ou seja
1-— m
v = 1= fum (5.6)
ﬁlim

De maneira analoga, baseando-se no fato de que os conceitos de vulnerabilidade e de robustez
sdo diretamente inversos, define-se também o Indice de Robustez da rede de transmissio (IR)

como sendo TR = IV~ ou entéo:

Blim

= (1 _ﬁlim) "D

(5.7)

5.2 Resultados Obtidos

Utilizando o programa desenvolvido para resolugao do problema PERT com restrigoes de
vulnerabilidade, realizou-se uma série de simulagoes com o intuito de avaliar a proposta de
definicao dos indices de vulnerabilidade e de robustez.

Essas simulagoes foram descritas no capitulo anterior e seus resultados podem ser visualizadas
nas Figuras 4.6, 4.7 e 4.8.

Observando a Figura 4.6, nota-se que o risco é nulo para qualquer valor escolhido para o

pardmetro 3. Logo, considerando essa simulagdo, o valor de fj;,, nesse caso é igual a 1,0.
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Dessa forma, o Indice de Vulnerabilidade da rede, para C% = $11000 tem valor nulo e,
consequentemente, o Indice de Robustez, tem valor co.

Isso ja é esperado, pois com esse custo maximo estabelecido, o planejador do sistema nao
tem flexibilidade de escolha e hé apenas um tnico plano factivel. Obviamente, nessa situacdo,
nao teria a necessidade de se realizar o planejamento da expansdo, ji que a escolha esté decidida
por conta da limitacao de recursos.

Para o caso em que o custo maximo varia para $19000 e $27 000, o valor de [, altera para
Biim = 0,70 considerando K = 2 e para [, = 0,86 considerando K = 3,4,5 e 6.

Lembrando que foi utilizado prego de $50 para o corte de cada MW de carga, os indices de
vulnerabilidade e de robustez para essas simulagoes obtidos estdo apresentados na Tabela 5.1

abaixo.

Tabela 5.1: Variacio dos Indices de Vulnerabilidade e de Robustez com C% = $19000 e $27 000

K Bim IV ($/MW) IR (kW/$)

1 1,00 0,0 00

p 0,70 21,4 46,67
3,4,5¢6 0,86 8,1 122,86

Observando a Tabela acima, considerando o critério de seguranga n — 2, por exemplo, o
preco da carga nao atendida pode diminuir até $21,4/M W, seu indice de vulnerabilidade, que o
modelo ainda escolherd uma solucdo étima com risco de implantacao nulo.

O indice de robustez pode ser interpretado como a valorizacdo maxima da unidade monetéria
na compensacdo do corte de carga. Isto é ao ocorrer uma contingéncia, é necessario pagar pelo
corte de carga. Quando a unidade monetaria esta mais valorizada que o indice de robustez, por
exemplo, no caso da Tabela 5.1, considerando o critério de seguranca K = 3, quando consegue-se
cobrir mais que 122,86 kW com uma unidade monetéria, compensa-se arriscar e escolher um

plano mais barato a escolher um plano que melhore a seguranca da rede.

5.3 Conclusao

Os indices de vulnerabilidade e de robustez aqui propostos podem ser utilizados em uma
analise prévia da compensacgao da escolha de um plano de expansao com maior seguranca ou de
um plano com menor custo de implantacao.

Uma vez determinados esses indices, é possivel estipular, baseando no estudo do mercado de
energia, quao vulneravel estd a rede em relagdo as contingéncias que nela podem ocorrer.

Esses indices podem ser utilizados também para comparar redes diferentes, considerando mes-
mos critérios de seguranca e mesmo limite de orcamento. Nessa comparagao, pode-se determinar
que rede necessita ser reforcada primeiramente durante o processo de expansao.

Ainda podem ser utilizados por érgios reguladores para determinar o preco da demanda nao
atendida e assim garantir que os planos de expansao realizados prezem pela seguranca da rede e

pelo bom fornecimento de energia elétrica.
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Capitulo 6
Conclusao

Este trabalho abordou diversas areas de estudos de sistemas elétricos de poténcia. Desde de
a modelagem dos seus elementos, & anélise estatica e & definicdo do problema da expansdo da
sua rede de transmissdo.

Este trabalho agregou também conceitos de otimizacao linear inteira mista e de linguagens
de programagdo, areas que consistem em ferramentas essenciais para um engenheiro eletricista
atuante em sistemas de energia.

Observou-se que o planejamento da expansdo de redes de transmissdo se faz necessario devido
ao crescimento da demanda de energia, consequéncia direta do desenvolvimento do pafs. Porém
as técnicas tradicionais de formulag¢ao do problema e determinacado dos planos de expansdo nao
garantem a melhoria da seguranca e da confiabilidade da rede frente as possiveis contingéncias
que venham a ocorrer.

O novo modelo proposto buscou acrescentar a minimizacao da vulnerabilidade das redes a
esses modelos tradicionais. Dessa maneira, a estrutura do problema se alterou e foi inserido um
fator estocédstico na modelagem para representar a ocorréncia de contingéncias.

Essas ocorréncias podem ser consideradas com eventos incertos nao aleatérios, isto €, nao
podem ser representadas adequadamente por uma distribuigdo de probabilidades conhecida [23].
Por esse motivo, adotou-se a abordagem de otimizacao por risco para definir o novo modelo e
incorporar a minimizacao da vulnerabilidade da rede.

Testes e simulacdes foram realizados com o intuito de validar o novo modelo e sua implemen-
tacdo. Através da andlise dos resultados obtidos, pode-se comprovar a aplicabilidade do novo
modelo, satisfazendo assim as expectativas no inicio do projeto.

Por fim, um novo método baseado no preco da demanda nao atendida para a avaliacdo da

robustez da rede pdde ser definido e espera-se que ainda seja aplicado em trabalhos futuros.
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Apéndice A

Linearizacao de Produto entre Variavel

Continua e Variavel Binaria

Dado um produto de uma variavel binaria y € {0,1} e uma variavel continua = € [z, 7],

pode-se encontrar uma formulagao linear equivalente seguindo os seguintes passos:

1. Define-se ¢ como sendo uma nova variavel continua que representa o produto de y por x;

A

2. Define-se 2”4 como sendo uma nova variavel continua satisfazendo = = z% + z4;

3. Introduzem-se as seguintes inequagoes

zy<z9<z.y

z-(1-y)<at<z-(1-y)

Seguindo esses passos, se y assumir valor igual a 0, @ devera ser igual a 0 também para

A sera igual a z.

satisfazer a primeira restricao. Logo, x
Por outro lado, se y assumir valor igual a 1, 2 valera zero para satisfazer a segunda inequacio

e 9 terd o mesmo valor de z.
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Apéndice B

Dados dos Sistemas Elétricos

B.1 Sistema 6 Barras - Garver [6]

Esse exemplo possui seis nos e seis linhas instaladas. A topologia desse sistema, as demandas
nodais e os limites maximos de geracao em cada né sao mostrados na Figura B.1. Os dados de

cada ramo estao mostrados na Tabela B.1.

150 MW
- NO 1
360 MW
40 MW
- NO 4

No 6
E) 600 MW 160 MW

Figura B.1: Sistema de 6 Barras

Tabela B.1: Dados dos Ramos - 6 Barras
Ramo 1-2 1-3 1-4 1-5 1-6 23 24 25 26 3-4 35 36 45 46 56
x; (pu) 0,40 0,38 0,60 0,20 0,68 0,20 0,40 0,31 0,30 0,59 0,20 0,48 0,63 0,30 0,61
E’lL (103$) 4.0 3,8 6,0 2,0 6,8 2,0 4,0 3,1 3,0 5,9 2,0 4.8 6,3 3,0 6,1
PIL (MW) 100 100 80 100 70 100 100 100 100 82 100 100 75 100 78
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B.2 Sistema IEEE 24 Barras

Contém 24 barras e 41 ramos.

Tabela B.2: Dados das Barras - IEEE 24 Barras

Barra 1 2 3 4 5 6 7 8 9 10 11 12
PS(MW) 465 576 0 0 0 0 72 0 0 0 0 0
d (MW) 324 291 540 222 213 408 375 513 525 585 0 0
Tabela B.3: Dados das Barras - IEEE 24 Barras (cont.)
Barra 13 14 15 16 17 18 19 20 21 22 23 24
PC (MW) 1424 0 645 465 0 1200 O 0 1200 900 954 O
d (MW) 795 582 951 300 O 999 543 384 0 0 0 0
Tabela B.4: Dados dos Ramos - IEEE 24 Barras
Nuamero | Ramo | Numero de | Reatéancia Capacidade Custo
Linhas Inicial (pu) de Fluxo (MW) | (103$)
1 1-2 1 0.0139 175 0,3
2 1-3 1 0.2112 175 5,5
3 1-5 1 0.0845 175 2,2
4 2-4 1 0.1267 175 3,3
5 2-6 1 0.1920 175 5,0
6 3-9 1 0.1190 175 3,1
7 3-24 1 0.0839 400 5,0
8 4-9 1 0.1037 175 2,7
9 5-10 1 0.0883 175 2,3
10 6-10 1 0.0605 175 1,6
11 7-8 1 0.0614 175 1,6
12 8-9 1 0.1651 175 4,3
13 8-10 1 0.1651 175 4,3
14 9-11 1 0.0839 400 5,0
15 9-12 1 0.0839 400 5,0
16 10-11 1 0.0839 400 5,0
17 10-12 1 0.0839 400 5,0
18 11-13 1 0.0476 500 6,6
19 11-14 1 0.0418 500 5,8
20 12-13 1 0.0476 500 6,6
21 12-23 1 0.0966 500 13,4
22 13-23 1 0.0865 500 12,0
23 14-16 1 0.0389 500 5,4
24 15-16 1 0.0173 500 2,4
25 15-21 2 0.0490 500 6,8
26 15-24 1 0.0519 500 7,2
27 16-17 1 0.0259 500 3,6
28 16-19 1 0.0231 500 3,2
29 17-18 1 0.0144 500 2,0
30 17-22 1 0.1053 500 14,6
31 18-21 2 0.0259 500 3,6
32 19-20 2 0.0396 500 5,5
33 20-23 2 0.0216 500 3,0
34 21-22 1 0.0678 500 9,4
35 1-8 0 0.1344 500 3,5
36 2-8 0 0.1267 500 3,3
37 6-7 0 0.1920 500 5,0
38 13-14 0 0.0447 500 6,2
39 14-23 0 0.0620 500 8,6
40 16-23 0 0.0822 500 11,4
41 19-23 0 0.0606 500 8,4
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