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RESUMO

Ariza, V. M. P. Aprendizado Profundo Aplicado à Classificação de Doenças
Foliares do Milho. 2023. 52p. Monografia (MBA em Inteligência Artificial e Big
Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos, 2023.

A busca pelo desenvolvimento de modelos inteligentes capazes de resolver problemas
complexos é cada vez mais recorrente em diversas áreas. Uma delas é a agricultura, onde
as doenças são uma grande preocupação, principalmente pelas perdas de produtividade,
impacto social e ecológico que podem causar. Assim, o emprego da tecnologia no auxílio
à tomada de decisão pode ser um grande aliado no acompanhamento do cultivo, e,
consequentemente, no sucesso da colheita. O Aprendizado Profundo é uma subárea do
Aprendizado de Máquina que tem obtido casos de sucesso no desenvolvimento de modelos
inteligentes, se destacando na detecção e classificação de imagens, por meio da utilização
de Redes Neurais Convolucionais. Neste contexto, o presente trabalho tem como objetivo
avaliar modelos baseados em Aprendizado Profundo para classificar doenças foliares do
milho, por meio da análise de regiões em imagens da folha. A metodologia envolveu a
utilização de Transferência de Aprendizagem, com a aplicação das Redes Neurais ResNet50
e VGG19 em um subconjunto de dados público com 3.838 imagens de folhas, divididas em
quatro classes. Os resultados indicaram acurácia máxima de 98,31% utilizando a Rede
Neural VGG19 e técnicas de aumentação de dados.

Palavras-chave: Aprendizado Profundo; Redes Neurais Convolucionais; Transferência de
Aprendizagem; Agricultura; Doenças Foliares.





ABSTRACT

Ariza, V. M. P. Deep Learning Applied to Corn Leaf Disease Classification. 2023.
52p. Monograph (MBA in Artificial Intelligence and Big Data) - Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2023.

The search for the development of intelligent models capable of solving complex problems
is increasingly common in various fields. One of them is agriculture, where diseases are
a major concern, mainly due to the potential loss of productivity and their social and
ecological impact. Thus, the use of technology to aid decision-making can be a great ally
in monitoring crops and, consequently, ensuring successful harvests. Deep Learning is a
subfield of Machine Learning that has achieved successful cases in developing intelligent
models, particularly in image detection and classification, through the use of Convolutional
Neural Networks. In this context, the present work aimed to evaluate Deep Learning-
based models for classifying corn leaf diseases by analyzing regions in leaf images. The
methodology involved the use of transfer learning, applying the ResNet50 and VGG19
Neural Networks to a subset of publicly available data with 3.838 leaf images, divided
into four classes. The results indicated a maximum accuracy of 98,31% using the VGG19
Neural Network and data augmentation techniques.

Keywords: Deep Learning; Convolutional Neural Networks; Transfer Learning; Agricul-
ture; Foliar Diseases.
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1 INTRODUÇÃO

A agricultura é um setor fundamental na economia global, e a produção saudável de
culturas é essencial para garantir a segurança alimentar. No entanto, a saúde das plantações
pode ser afetada por diversas doenças, que podem ser causadas por patógenos como vírus,
bactérias e fungos. A identificação precoce dessas doenças é fundamental para prevenir
sua disseminação e garantir uma produção saudável. Além disso, a detecção correta e o
tratamento adequado ajudam a evitar o uso excessivo de pesticidas e o desperdício de
recursos.

É conhecido que a maioria das doenças que afetam as plantações gera alguma
manifestação visível em suas folhas (BARBEDO, 2013). Porém, a identificação incorreta e
o consequente uso equivocado de pesticidas podem causar o desenvolvimento de resistência
a longo prazo dos patógenos, reduzindo severamente a capacidade de reversão. Assim, é
importante o desenvolvimento de métodos que ajudem na identificação da doença e em um
tratamento rápido e eficaz, evitando o desperdício de recursos e alcançando uma produção
saudável (SLADOJEVIC et al., 2016).

Atualmente, os métodos de detecção de doenças em plantas são, muitas vezes,
baseados em observação visual e análise laboratorial. No entanto, esses métodos podem ser
caros, demorados e, em muitos casos, exigem a presença de especialistas ou infraestrutura
laboratorial que não estão disponíveis em todas as regiões (BOCK et al., 2010). A análise
de imagem por meio de métodos computacionais pode ser uma alternativa viável para
a detecção rápida e precisa de doenças foliares no campo, o que pode contribuir para a
eficiência no manejo e prevenção de doenças nas plantações. Neste contexto, o presente
trabalho tem como objetivo avaliar modelos baseados em Aprendizado Profundo para
classificar doenças foliares da cultura do milho, utilizando regiões de imagens de folhas
doentes e saudáveis para o treinamento. Espera-se que este estudo possa contribuir para
o avanço das pesquisas na detecção precoce de doenças em plantações, permitindo um
tratamento mais rápido e eficaz e, assim, ajudando a garantir uma produção saudável e
sustentável.

1.1 Justificativa

O diagnóstico de doenças em plantas com base na observação das folhas pode ser
uma tarefa desafiadora mesmo para especialistas experientes, devido ao grande número de
espécies de plantas e problemas fitopatológicos. Isso pode levar a conclusões equivocadas e
tratamentos ineficazes, resultando em danos às plantações (FERENTINOS, 2018). Assim,
o desenvolvimento de sistemas automatizados de diagnóstico de doenças de plantas, que
utilizam tecnologias como Inteligência Artificial (IA) e Aprendizado de Máquina (AM),
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pode ser útil para os agricultores. Esses sistemas têm o potencial de identificar com
precisão as doenças presentes nas plantas, permitindo a detecção precoce e a prevenção da
disseminação, além de economizar tempo e recursos (SLADOJEVIC et al., 2016).

No entanto, há desafios a serem superados para melhorar esses sistemas como, por
exemplo, a necessidade de um banco de dados de imagens abrangente que cubra uma
variedade maior de doenças, bem como a avaliação dos modelos em culturas específicas
(MOHANTY; HUGHES; SALATHÉ, 2016; SLADOJEVIC et al., 2016; FERENTINOS,
2018). Isso evidencia a necessidade de pesquisas na área, a fim de aprimorar a eficiência e
a precisão do diagnóstico de doenças de plantas, o que pode beneficiar os agricultores e
contribuir para a sustentabilidade da agricultura (YANG; GUO, 2017).

1.2 Estrutura do trabalho

O conteúdo deste trabalho está dividido em mais cinco capítulos. No capitulo 2 são
abordados os conceitos fundamentais utilizados no desenvolvimento do estudo, como Redes
Neurais Artificais (RNA), Redes Neurais Convolucionais (CNN), Aprendizado Profundo,
Transferência de Aprendizagem e uma breve descrição de algumas doenças foliares do
milho.

Em seguida, no capítulo 3, são apresentados alguns trabalhos da literatura rela-
cionados a aplicação de Aprendizado Profundo na classificação de doenças foliares em
plantas.

No capítulo 4 sobre a metodologia, são descritos o conjunto de dados, as técnicas,
as métricas de avaliação e as ferramentas utilizadas no desenvolvimento dos modelos.

Os resultados obtidos foram apresentados no capítulo 5. Nesta sessão foi feita a
avaliação dos modelos treinados.

Por fim, no capítulo 6, são apresentadas as conclusões e considerações finais sobre
o estudo.
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2 FUNDAMENTAÇÃO TEÓRICA

Esta seção apresenta os conceitos fundamentais relacionados as RNAs, Aprendizado
Profundo, Transferência de Aprendizagem e doenças foliares do milho.

2.1 Redes Neurais Artificiais

As RNAs são modelos computacionais de IA inspirados na estrutura neural do
cérebro humano que adquirem conhecimento por meio da experiência. Neste contexto, é
importante entender o funcionamento básico dessa estrutura a fim de facilitar a compreensão
do funcionamento de uma RNA.

O sistema nervoso é composto por uma rede de neurônios que formam o cérebro,
responsável por receber informações e tomar decisões. Essa rede é formada por neurônios
interconectados, o que permite a comunicação entre eles. Essa comunicação é realizada por
meio de impulsos elétricos que produzem uma substância neurotransmissora, transmitida do
corpo celular para o axônio. Em síntese, segundo Cintra (2018), os principais componentes
de um neurônio são os dendritos, o corpo celular, o axônio e as sinapses, conforme
representado na Figura 1.

Figura 1 – Representação do neurônio biológico.
(FACELI et al., 2011)

Os dendritos são responsáveis por receber estímulos vindos de outros neurônios.
O corpo celular, por sua vez, coleta e combina informações vindas de vários dendritos.
O axônio é responsável por transmitir estímulos entre as células, enquanto as sinapses
permitem a transmissão das informações entre os neurônios (CINTRA, 2018).

As RNAs, baseadas no modelo biológico, são compostas por unidades de proces-
samento organizadas em uma ou mais camadas, conectadas por diversas conexões que
possuem pesos para armazenar o conhecimento adquirido e medir a entrada recebida por
cada neurônio na rede (BRAGA; LUDERMIR; CARVALHO, 2000).
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Assim, além das camadas de entrada e saída, as RNAs podem apresentar camadas
intermediárias, conhecidas como camadas ocultas. Nelas, os neurônios recebem valores de
saída de neurônios da camada anterior e enviam seus valores de saída para os terminais
de entrada dos neurônios da camada posterior, formando um modelo de processamento
de informação complexo e adaptativo. O objetivo do treinamento da RNA é encontrar
os pesos ideais para que a rede possa realizar uma determinada tarefa de forma eficiente
(FACELI et al., 2011). A Figura 2 representa uma RNA Multilayer Perceptron (MLP),
ilustrando a utilização de duas camadas ocultas.

Figura 2 – MLP com duas camadas ocultas.
(FACELI et al., 2011)

Conforme Faceli et al. (2011), as RNAs são amplamente utilizadas para resolver
problemas complexos devido às suas vantagens, como a capacidade de tolerar dados com
ruído e a natural capacidade de serem paralelizáveis, o que pode acelerar o processo
computacional. Elas ainda são capazes de aprender e se adaptar a partir dos dados de
entrada, o que as tornam adequadas para tarefas de reconhecimento de padrões, classificação
e previsão.

2.2 Redes Neurais Convolucionais e Aprendizado Profundo

O Aprendizado Profundo é uma técnica de AM baseada em RNAs com múltiplas
camadas, conhecidas como Redes Neurais Profundas. Cada camada dessa rede é responsá-
vel por extrair características dos dados de entrada e transformá-los em representações
abstratas. Essas camadas permitem que a rede aprenda características hierárquicas com-
plexas a partir de dados brutos, permitindo que as RNAs realizem tarefas cada vez mais
sofisticadas, como a classificação de imagens (GOODFELLOW; BENGIO; COURVILLE,
2016).

As Redes Neurais Convolucionais - do inglês, Convolutional Neural Networks (CNN)
- usadas na extração de característica de imagens, possuem uma arquitetura base que as
diferem de outros modelos de RNAs, como por exemplo a Rede Neural MLP. A MLP é
comumente usada para recursos de aprendizado simultâneo e classificação de dados. A
principal limitação com o seu uso em imagens é que o número de neurônios pode ser muito
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alto, mesmo para arquiteturas rasas. A ideia básica por trás das CNNs é criar uma solução
para reduzir o número de parâmetros, permitindo que uma rede seja mais profunda com
menos parâmetros (YAMASHITA et al., 2018).

As CNNs, propostas pelos pesquisadores LeCun, Bengio et al. (1995), são redes
que realizam operação de convolução em pelo menos uma de suas camadas, aplicando
filtros para extrair características locais dos dados ao qual são aplicadas. Uma CNN possui
pelo menos três componentes básicos: camada de convolução, pooling e camada totalmente
conectada. A Figura 3 ilustra a arquitetura de uma CNN (LECUN; BENGIO et al., 1995).

Figura 3 – Camadas de uma CNN.
(LECUN; BENGIO et al., 1995)

A camada de convolução é responsável por extrair características relevantes das
imagens por meio da aplicação de filtros, ou kernels. Esses filtros são projetados para
detectar padrões específicos nas imagens, como bordas, texturas e formas, e a aplicação
repetida desses filtros em diferentes partes da imagem resulta em uma representação rica e
hierárquica das características da imagem (YAMASHITA et al., 2018). A Figura 4 ilustra
uma camada de convolução com a aplicação de um filtro 3x3.

Figura 4 – Aplicação de filtro 3x3 em uma camada de convolução.
(YAMASHITA et al., 2018)

Já a camada de pooling tem como função reduzir a dimensionalidade das caracte-
rísticas extraídas pela camada de convolução, o que torna o processo de treinamento da
rede mais eficiente. Isso é feito por meio da aplicação de uma operação de agregação em
uma região local da imagem, que resulta em uma única representação daquela região. Esse
processo reduz a quantidade de informação na rede, tornando-a mais eficiente e ajudando
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a evitar problemas de overfitting (YAMASHITA et al., 2018). A Figura 5 ilustra uma
operação de max pooling.

Figura 5 – Operação de max pooling em uma camada de pooling
. (YAMASHITA et al., 2018)

Por fim, a rede totalmente conectada é a última camada das CNNs e é responsável
por realizar a classificação dos dados de entrada após a extração das características
relevantes pelas camadas anteriores. Nessa camada, as características são transformadas
em uma representação vetorial unidimensional e passadas por uma ou mais camadas
densas, que realizam uma combinação linear das características para gerar as saídas da
rede (YAMASHITA et al., 2018). A Figura 6 ilustra a camada totalmente conectada,
última etapa para a classificação de imagens.

Figura 6 – Rede totalmente conectada.
Autor, 2023

O processo de aprendizagem ocorre por meio do ajuste dos pesos das conexões
entre as camadas. Os pesos são inicializados aleatoriamente e a rede é alimentada com um
conjunto de dados de treinamento pré processado, envolvendo geralmente o redimensiona-
mento e normalização das matrizes de imagens. Durante o treinamento, a CNN realiza a
propagação dados de entrada para frente, passando-os pelas camadas convolucionais e de
pooling para extrair características das imagens. As características são então alimentadas
nas camadas totalmente conectadas para produzir a saída final. Ao calcular a diferença
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entre as saídas previstas e as saídas esperadas, a CNN usa uma função de perda que
mede a diferença entre as previsões e os rótulos reais. Em seguida, a retropropagação é
usada para calcular o gradiente da função de perda em relação aos pesos da rede. Com
o gradiente calculado, um algoritmo de otimização, como o Stochastic Gradient Descent
(SGD), ajusta gradualmente os pesos da rede para minimizar a função de perda. Esse
processo é repetido muitas vezes, usando um conjunto de treinamento rotativo para evitar
overfitting. O objetivo da aprendizagem é minimizar a diferença entre as saídas previstas
pela rede e as saídas esperadas. Obtendo um desempenho satisfatório para o cenário
aplicado, a CNN pode ser usada para fazer previsões em novas imagens.

O processo de treinamento de uma CNN pode ser computacionalmente intensivo
para conjuntos grandes e complexos, no entanto, uma vez treinada, a rede é capaz de
classificar novas imagens com rapidez e precisão, tornando-a uma ferramenta útil em
diversas aplicações. Além disso, é possível a utilização de técnicas como a Transferência
de Aprendizagem, que permitem reutilizar parte do conhecimento adquirido durante o
treinamento em outras tarefas, o que pode melhorar o desempenho da rede.

2.3 Transferência de Aprendizagem

A Transferência de Aprendizagem é uma estratégia utilizada no Aprendizado
Profundo na qual modelos pré-treinados são empregados como ponto de partida para
novos modelos. O aprendizado de uma RNA aplicada em tarefas de visão computacional
geralmente requer uma grande quantidade de dados, mas nem sempre é possível obter
acesso a conjuntos de dados extensos o suficiente para treinar os modelos. Nessa abordagem,
os modelos pré-treinados são utilizados como extratores de características de imagens,
eles são submetidos a grandes conjuntos de imagens pertencentes a diferentes classes. A
Transferência de Aprendizagem permite aproveitar esse conhecimento prévio em tarefas
relacionadas, reduzindo a quantidade de parâmetros e acelerando o tempo de treinamento
(YOSINSKI et al., 2014).

Neste estudo essa estratégia será aplicada ao copiar as primeiras "n"camadas da
rede de origem para para as primeiras "n"camadas da rede de destino. As camadas restantes
da rede de destino terão neurônios com pesos inicializadas aleatoriamente e serão treinadas
para a tarefa de classificação, conforme ilustrado na Figura 7.
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Figura 7 – Exemplo de aplicação da Transferência de Aprendizagem.
Autor, 2023

Quando o conjunto de dados de destino é significativamente menor que o conjunto
de dados base, como é o caso desse estudo, a Transferência de Aprendizagem pode ser
uma ferramenta poderosa para permitir o treinamento, evitando o overfitting (YOSINSKI
et al., 2014).

2.4 Doenças foliares do milho

Nos últimos anos as doenças têm se tornado uma grande preocupação por parte de
técnicos e produtores envolvidos no agronegócio do milho. A evolução das doenças do milho
está relacionada, entre outros fatores, à evolução do sistema de produção desta cultura,
bem como modificações ocorridas no sistema de produção, que resultaram no aumento
da produtividade da cultura (COSTA; CASELA; COTA, 2021). Dentre as doenças que
atacam a cultura do milho estão a Ferrugem Comum, a Cercosporiose e a Helmintosporiose
ou Mancha de Turcicum, que serão utilizadas no escopo deste estudo.

A Ferrugem Comum é caracterizada pela formação de pústulas. As pústulas da
Ferrugem Comum apresentam formato circular a alongado e coloração castanho clara a
escuro, que se acentua à medida em que as pústulas amadurecem e se rompem, liberando
os uredósporos, que são os esporos típicos do patógeno (COSTA; CASELA; COTA, 2021).
A Figura 8 ilustra uma folha com a doença Ferrugem Comum.
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Figura 8 – Ferrugem Comum.
(HUGHES; SALATHé, 2014)

A Cercosporiose é caracterizada por manchas de coloração cinza, predominante-
mente retangulares, com as lesões paralelas às nervuras. A Figura 9 ilustra uma folha com
a doença Cercosporiose (COSTA; CASELA; COTA, 2021).

Figura 9 – Cercosporiose.
(HUGHES; SALATHé, 2014)

Por fim, a Mancha de Turcicum se caracteriza por lesões necróticas, elípticas. A
coloração do tecido necrosado varia de cinza a marrom e, no interior das lesões, observa-se
intensa esporulação do patógeno, onde as primeiras lesões aparecem geralmente nas folhas
mais velhas (COSTA; CASELA; COTA, 2021). A Figura 10 ilustra uma folha com a
doença Mancha de Turcicum.
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Figura 10 – Mancha de Turcicum.
(HUGHES; SALATHé, 2014)

Neste estudo serão avaliados modelos computacionais para classificar as plantas
saudáveis e doentes, indicando a classe da doença pertencente.
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3 TRABALHOS RELACIONADOS

Devido a característica da manifestação visual de doenças em plantas, a utilização
de Aprendizado Profundo por meio de CNNs vem obtendo resultados promissores na
detecção e classificação de imagens para a identificação de doenças foliares.

Mohanty, Hughes and Salathé (2016), treinaram modelos baseados em CNN (Goo-
gLeNet e AlexNet) para identificar 14 espécies de culturas e 26 doenças utilizando um
conjunto de dados público de imagens de folhas de plantas, atingindo uma acurácia de
99,35% ao aplicar a Transferência de Aprendizagem com a rede GoogLeNet. No entanto,
ao testar o modelo em imagens capturadas em condições diferentes da base de teste, a
acurácia foi de 31%.

Sladojevic et al. (2016), utilizaram CNNs para reconhecer e classificar 13 tipos
diferentes de doenças em 4 espécies de plantas a partir da imagem de suas folhas, alcançando
acurácia média de 96,3%.

Liu et al. (2017), utilizaram CNNs derivadas de AlexNet para detectar doenças
de folhas de macieira, usando um conjunto de dados de 13.689 imagens, atingindo uma
acurácia média de 97,62%.

Ferentinos (2018), comparou modelos de CNNs para a classificação de doenças
de plantas usando imagens de folhas saudáveis e doentes, aplicando as redes AlexNet,
GoogLeNet, VGG16, Overfeat e AlexNetOWTBn. O melhor modelo (VGG16) obteve
acurácia de 99,53%. Porém, a acurácia foi reduzida para 65,69% quando treinado com
imagens coletadas em campo e testado com imagens de laboratório.

Zhang et al. (2018) propôs modelos derivados do GoogLeNet e Cifrar10 para
classificar oito tipos de doenças foliares do milho. Foram utilizadas 500 imagens coletadas
de diferentes fontes. Com a aplicação de técnicas de aumentação de dados e o ajuste de
hiperparâmenteos, o melhor modelo (GoogLeNet) atingiu uma acurácia máxima de 98,9%.

Waheed et al. (2020) propôs uma arquitetura otimizada de CNN densa (DenseNet)
para a classificação de doenças foliares do milho. Utilizou-se no estudo um conjunto de
12.332 imagens, coletadas de diversas fontes, referentes a 4 classes. Após a aplicação de
técnicas de aumentação de dados, o modelo proposto atingiu uma acurácia de 98,06%.

Nos estudos relacionados, a Transferência de Aprendizagem tem sido amplamente
utilizada. No entanto, o teste de alguns modelos em culturas específicas foi pouco explorado.
Além disso, a falta de conjuntos de imagens diversificados, limita a classificação quando
aplicado a imagens distintas do conjunto de treinamento.

Este estudo propõe-se a avaliar modelos alternativos de CNNs utilizando Transfe-
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rência de Aprendizagem, a fim de identificar aquele que apresenta melhor capacidade de
generalização em doenças que afetam a cultura do milho.
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4 MATERIAIS E MÉTODOS

4.1 Proposta

O estudo consiste em avaliar o desempenho na classificação de doenças em imagens
de folhas da cultura do milho, utilizando duas arquiteturas de CNNs: VGG19 e ResNet50.
Para isso, serão realizados experimentos com um conjunto de dados composto por imagens
de folhas de plantas com diferentes doenças foliares.

Para treinar os modelos, será aplicada a técnica de Transferência de Aprendizagem,
que consiste em utilizar arquiteturas de RNAs pré-treinadas em bases de dados com
grandes conjuntos de imagens e aproveitar os pesos aprendidos durante esse treinamento,
conforme explicado na seção 2.3.

O primeiro modelo será construído com base na arquitetura VGGNet, originalmente
proposta por Simonyan and Zisserman (2014). A VGG19, uma das variações da VGGNet,
é uma rede neural profunda composta por 19 camadas, organizadas em uma sequência de
camadas convolucionais com filtros de tamanho 3x3 e por operações de maxpooling. Após
cada camada convolucional, é aplicada a função de ativação ReLU. A cada duas camadas
convolucionais ocorre uma operação de maxpooling, e o número de filtros é duplicado após
cada uma dessas operações. É importante destacar que a VGG foi pioneira ao utilizar
filtros menores, de dimensão 3x3, em cada camada convolucional.

O segundo modelo terá como base a rede ResNet. A ResNet é uma arquitetura que
tem como principal característica a incorporação de blocos residuais, que são módulos
especiais adicionados às camadas convolucionais padrão. Esses blocos residuais permitem
que a ResNet aprenda resíduos ou diferenças entre os recursos extraídos em cada camada.
A ResNet utiliza conexões de atalho, onde o gradiente é diretamente retropropagado para
camadas anteriores (HE et al., 2016). A variação utilizada será a ResNet50, que possui 50
camadas.

4.2 Conjuntos de Dados

O subconjunto utilizado foi proveniente do conjunto de dados PlantVillage Dataset
(HUGHES; SALATHé, 2014), que contém aproximadamente 54 mil imagens rotuladas
de folhas de plantas saudáveis e infectadas. Para o estudo, foram selecionadas imagens
relacionadas a doenças do milho, divididas em quatro classes (Saudável, Ferrugem Comum,
Cercosporiose e Mancha Turcicum), totalizando 3.838 imagens. As imagens foram separadas
na proporção de 80% para treinamento e 20% para validação e teste, conforme mostrado
na Tabela 1.
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Categoria Número de Imagens Treinamento Validação/Teste

Saudável 1162 930 232

Ferrugem Comum 1192 953 239

Cercosporiose 509 406 103

Mancha Turcicum 975 778 197

Total 3838 3067 771

Tabela 1 – Número de imagens do subconjunto de dados.
Autor, 2023

As imagens foram capturadas em condições diferentes de luminosidade, contraste e
base de fundo. A Figura 11 ilustra o conteúdo do conjunto de dados, enquanto a Figura 12
ilustra a distribuição dos níveis de intensidade de uma das classes do conjunto de dados.

Figura 11 – Amostra de imagens do conjunto de dados.
(HUGHES; SALATHé, 2014)

Figura 12 – Amostra de histogramas de imagens do conjunto de dados.
Autor, 2023

Por fim, foram aplicadas estratégias de aumentação de dados, por meio da rotação
e espelhamento do conjunto de imagens de treinamento.
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4.3 Métricas de Avaliação

Para avaliar os modelos de classificação, foram utilizadas as métricas de acurácia,
precisão, revocação e perda.

A acurácia mede a capacidade do modelo de classificar corretamente as instâncias
em todas as classes, enquanto a precisão mede a proporção de classificações corretas para
a classe positiva. Por sua vez, a revocação mede a proporção de instâncias da classe de
interesse corretamente classificadas pelo modelo. As equações (4.1), (4.2) e (4.3) mostram
as definições matemáticas para cada uma das métricas utilizadas neste estudo.

Acurácia = V P + V N

V P + V N + FP + FN
(4.1)

Precisão = V P

V P + FP
(4.2)

Revocação = V P

V P + FN
(4.3)

Nas equações acima, VP, VN, FP e FN correspondem aos valores verdadeiros
positivos, verdadeiros negativos, falsos positivos e falsos negativos, respectivamente.

A perda representa a diferença entre as saídas do modelo e as saídas esperadas. O
objetivo é minimizar o valor da perda, o que significa que o modelo está fazendo previsões
mais precisas. Neste estudo a perda foi calculada por meio do Erro Quadrático Médio
(EQM), definido na equação (4.4).

EQM =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.4)

Ainda, a fim de analisar a assertividade de classificação dos modelos para cada
uma das classes, foram geradas matrizes de confusão.

A matriz de confusão é uma tabela que apresenta as classificações corretas e
incorretas feitas pelo modelo para cada classe. Ela nos permite visualizar de forma mais
detalhada o desempenho do modelo em cada classe de interesse, ajudando a identificar
possíveis padrões de erros de classificação. As células da matriz de confusão são preenchidas
com os valores de VP, VN, FP e FN, conforme ilustrado na Figura 13.
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Figura 13 – Exemplo de uma matriz de confusão
Autor, 2023

Também foram gerados mapas de atributos a fim de avaliar visualmente as principais
regiões da imagem que os modelos aprenderam a distinguir durante o treinamento. A
Figura 14 ilustra os mapas de atributos de uma camada convolucional em uma imagem de
folha doente.

Figura 14 – Exemplo de geração de mapas de atributos.
Autor, 2023

Os mapas de atributos podem ser usados para interpretar o funcionamento de uma
RNA e ajudar a entender como ela está tomando suas decisões.

Como cada camada de convolução apresenta diferentes quantidades de filtros,
selecionou-se os aqueles com os maiores valores dentro de cada camada convolucional,
representando as maiores ativações. As imagens geradas foram normalizadas para o
intervalo entre 0 e 1, onde 1 representa o maior valor possível.
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4.4 Tecnologias

Para o desenvolvimento dos modelos, foram utilizadas as bibliotecas Tensorflow,
Keras e bibliotecas auxiliares, como Sklearn, OpenCV, Pandas, Numpy, Matplotlib, Seaborn
e PIL. O ambiente de desenvolvimento utilizado para o treinamento dos modelos foi o
Google Colaboratory. O Google Colaboratory é um ambiente de Jupyter Notebook que opera
totalmente na nuvem, ele é pré empacotado com algumas das bibliotecas utilizadas no
estudo, como o Tensorflow e o Keras (GOOGLE. . . , ). As especificações do ambiente são
mostradas na Tabela 2.

Nome Especificação

CPU Intel(R) Xeon(R) CPU @ 2.20GHz

GPU Tesla T4 16GB

SO Linux Ubuntu 22.04.2

Linguagem Python 3.10.6

Tabela 2 – Especificações do ambiente de desenvolvimento.
(GOOGLE. . . , )

A escolha do ambiente foi motivada pela disponiblização de recursos de hardware
especializado para a aceleração do treinamento dos modelos.

4.5 Configuração e Treinamento

Os modelos foram desenvolvidos com base nas arquiteturas VGG19 e ResNet50,
conforme mencionado na seção 4.1.

O conjunto de 3.830 imagens foi redimensionado para 256x256 pixels, normalizado
e submetido a técnicas de aumentação de dados, por meio da rotação (em até 40º) e
espelhamento horizontal. Os pesos pré-treinados no conjunto de dados ImageNet foram
empregados, e duas camadas totalmente conectadas foram adicionadas, cada uma com 64
neurônios. Além disso, entre as duas camadas totalmente conectadas, foi adicionada uma
camada de dropout com uma taxa de 0,25. Por fim foi adicionada uma camada de saída
com a aplicação da função softmax para 4 classes.

Ao longo de 50 épocas de treinamento, ajustou-se somente os pesos das camadas
totalmente conectadas. A taxa de aprendizado de 0,01 foi utilizada nas primeiras 10 épocas,
posteriormente sendo reduzida a uma taxa de aproximadamente 20% do valor a cada
época, até que atingisse o valor mínimo de 0,00001, com o otimizador SGD. Os parâmetros
utilizados são mostrados na Tabela 3. Os demais parâmetros mantiveram-se nos valores
padrão fornecidos pela biblioteca Keras.
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Parâmetros VGG19 Resnet50

Épocas de treinamento 50 50

Tamanho do lote 32 32

Taxa de aprendizagem 0,01, com decaimento 0,01, com decaimento

Otimizador SGD SGD

Tamanho da imagem 256x256x3 256x256x3

Aumentação de dados Sim Sim

Tabela 3 – Parâmetros utilizados no treinamento dos modelos.
Autor, 2023

A seleção dos parâmetros foi fundamentada em um procedimento sistemático de
experimentação empírica, onde diversas combinações foram avaliadas a fim de determinar
a configuração que proporcionasse o melhor desempenho.
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5 RESULTADOS E DISCUSSÕES

Neste capítulo, são apresentados e discutidos os resultados obtidos no estudo,
abrangendo o desempenho de classificação dos modelos e a visualização dos mapas de
atributos.

5.1 Comparação do desempenho dos modelos de classificação

Utilizou-se para o treinamento um subconjunto de imagens da base de dados Plant
Village, especificamente relacionadas à cultura do milho. Para essa etapa, foi adotada uma
divisão de 80% das imagens para treinamento e 20% para validação e teste, conforme
mencionado na seção 4.2.

A Figura 15 ilustra a evolução da taxa de perda ao longo das 50 épocas de
treinamento para os modelos VGG19 (15a) e ResNet50 (15b). Em ambas as arquiteturas,
observa-se uma queda acentuada de perda nas etapas iniciais do treinamento, tornando-se
mais gradual por volta da 20ª época. Observa-se ainda que, o modelo baseado na arquitetura
ResNet50, atingiu um valor de perda menor durante o treinamento em comparação com
o modelo baseado na arquitetura VGG19. No entanto, ao avaliar o desempenho na base
de teste, o modelo ResNet50, exibiu um valor de perda maior, o que elevou a amplitudo
entre o valor de perda no treinamento e o valor de perda no teste. Isso pode indicar que, o
modelo VGG19 obteve uma melhor capacidade de generalização.

(a) VGG19 (b) ResNet50

Figura 15 – Histórico de perda por época
Autor, 2023

A curva de acurácia dos modelos, como demonstrado na Figura 16, apresenta
comportamento semelhante, aumentando até a vigésima época e mantendo-se estável a
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partir desse ponto. Nota-se ainda que, a rede VGG19 (16a) demonstra um desempenho
superior na base de teste, quando comparada ao modelo ResNet50 (16b). A maior acurácia
obtida na base de teste foi por meio da rede VGG19, chegando a 98,31%, frente a 97,80%
da ResNet50.

(a) VGG19 (b) ResNet50

Figura 16 – Histórico de acurácia por época
Autor, 2023

A fim de analisar a assertividade de classificação dos modelos para cada uma das
classes, foram geradas matrizes de confusão.

Observa-se na matriz de confusão (Figura 17) que os modelos classificaram correta-
mente todas as amostras para as classes Ferrugem do Milho e Saudável. Para as demais
classes observa-se que houve falsos positivos. Esses falsos positivos, caracterizados por
erros de classificação entre essas duas categorias, sugerem a que o modelo considerou que
há características visuais semelhantes entre as doenças Mancha Cercospora e Mancha de
Turcicum. Observa-se também que a classe Mancha Cercospora apresenta uma quantidade
substancialmente menor de amostras de dados, o que pode ter contribuído para o menor
desempenho na classificação.

Alguns estudos destacam a escassez de conjuntos de dados de imagens de plantas
suficientemente abrangentes que possibilitem uma boa generalização. Essa constatação
ressalta a necessidade de aprimorar a diversidade e a representatividade do conjunto de
dados para melhorar a capacidade de generalização dos modelos de classificação. A inclusão
de mais exemplos e variações nas condições de captura das imagens pode fornecer uma
base mais sólida para o treinamento dos modelos e melhorar seu desempenho em cenários
reais.
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(a) VGG19 (b) ResNet50

Figura 17 – Matriz de confusão
Autor, 2023

Ao analisar as demais métricas de avaliação, evidencia-se que ambos os modelos não
apenas exibem uma acurácia elevada, mas também demonstram um padrão semelhante de
precisão e revocação. Isso indica que ambos modelos são capazes de classificar as instâncias
na base de dados utilizada. A VGG19 apresenta pequena vantagem em termos de acurácia,
registrando 98,31%, em comparação com os 97,80% da ResNet50. O mesmo se repete
para as métricas de precisão e revocação média. A ResNet50 apresentou uma precisão
de 96,75% e revocação de 97,00%, enquanto a VGG19 apresentou valores de precisão e
revocação de 97,75% e 97,25%, respectivamente, conforme mostrado na Tabela 4.

Métrica / Modelo VGG19 ResNet50

Acurácia 98,31% 97,80%

Precisão 97,75% 96,75%

Revocação 97,25% 97,00%

Tabela 4 – Comparativo de acurácia, precisão e revocação dos modelos VGG19 e ResNet50.
Autor, 2023

A análise das matrizes de confusão reforçou os desafios em distinções entre doenças
visualmente similares, sugerindo oportunidades de aprimoramento do conjunto de dados.

5.2 Visualização dos mapas de atributos

Para visualizar as regiões utilizadas pelas redes para distinguir áreas doentes em
imagens e classificar as doenças, realizou-se a obtenção dos mapas de atributos, como
descrito na Seção 4.3.
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As Figuras 18 e 19 ilustram as visualizações dos mapas de atributos da rede VGG19
e ResNet50, respectivamente, para uma imagem que contém sintomas da doença Ferrugem
Comum. Em cada camada convolucional, selecionou-se o mapa com os maiores valores de
ativação da rede. As visualizações dos mapas de calor revelaram que os sintomas visuais são
identificados e destacados frente o restante da folha, principalmente nas primeiras camadas
convolucionais da rede. No entanto, observa-se que, devido a diminuição da resolução,
os últimos mapas de atributos tendem a apresentar visualizações com menos nitidez nas
ativações das áreas dos sintomas. Isso indica que, como esperado, as primeiras camadas
capturaram características mais perceptíveis ao humano, como bordas e texturas, enquanto
as camadas posteriores desenvolveram uma representação mais abstrata e complexa das
características da imagem.

Figura 18 – Mapas de atributos VGG19 para a doença Ferrugem Comum.
Autor, 2023

Figura 19 – Mapas de atributos ResNet50 para a doença Ferrugem Comum.
Autor, 2023
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O mesmo é observado nas Figuras 20 e 21, que ilustram as visualizações dos mapas
de atributos para uma imagem que contém sintomas da doença Cercospora, e nas Figuras
22 e 23, que ilustram as visualizações dos mapas de atributos para uma imagem que
contém sintomas da doença Mancha Turcicum, onde as regiões doentes são destacadas das
demais regiões da folha. Observa-se ainda que a nervura principal da folha também recebe
detaque nos mapas.

Figura 20 – Mapas de atributos VGG19 para a doença Cercosporiose.
Autor, 2023

Figura 21 – Mapas de atributos ResNet50 para a doença Cercosporiose.
Autor, 2023



46

Figura 22 – Mapas de atributos VGG19 para a doença Mancha Turcicum.
Autor, 2023

Figura 23 – Mapas de atributos ResNet50 para a doença Mancha Turcicum.
Autor, 2023

Para uma imagem da classe Saudável, os mapas de atributos exibem maior homo-
geneidade e não apresentam regiões de ativação contrastantes, exceto pela ativação na
nervura principal da folha, como nas demais classes. As Figuras 24 e 25 ilustram os mapas
de atributos para uma folha saudável.
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Figura 24 – Mapas de atributos VGG19 para uma folha saudável.
Autor, 2023

Figura 25 – Mapas de atributos ResNet50 para uma folha saudável.
Autor, 2023

Os mapas de atributos mostraram que ambas as redes treinadas foram capazes de
identificar as características discriminativas em pontos correspondentes as doenças nas
folhas do milho. Observou-se convergência das características identificadas pelas redes com
as regiões afetadas pelas doenças foliares do milho. Observou-se ainda que a nervura da
folha foi considerada importante para o modelo, trabalhos futuros podem concentrar-se
em treinar os modelos com imagens que representam apenas a região doente da folha a
fim de avaliar os mapas de atributos gerados pela rede.
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6 CONCLUSÕES

Com o objetivo de classificar doenças foliares da cultura do milho, foram desenvol-
vidos dois modelos, usando como base as arquiteturas VGG19 e ResNet50. Os resultados
indicaram que ambas as redes obtiveram desempenhos similares, com a VGG19 alcançando
98,31% de acurácia em comparação com 97,80% da ResNet50. Os resultados mostraram que
que a rede baseada na arquitetura VGG19 apresentou melhor capacidade de generalização.

A visualização dos mapas de atributos das redes, reforçou a capacidade dos modelos
em discernir os pontos de manifestação das doenças em contraste com o restante da folha,
onde as ativações relacionadas as áreas afetadas pela doença foram mais evidentes nas
primeiras camadas de convolução.

Assim, conclui-se que a utilização das arquiteturas VGG19 e ResNet50 por meio
da Transferência de Aprendizagem podem ser uma alternativa viável para a classificação
de doenças foliares na cultura do milho. No entanto, é importante ressaltar a necessidade
da construção de conjuntos de dados abrangentes e representativos para aprimorar ainda
a capacidade de generalização desses modelos, visando uma detecção precisa e uma
aplicabilidade mais abrangente na detecção e classificação de doenças nas plantações de
milho.

Trabalhos futuros podem se concentrar na obtenção bases de dados mais abrangen-
tes, com diferentes formas de manifestão das doenças, possibilitando o desenvolvimento de
modelos mais robustos para detectar e classificar as doenças do milho em campo.
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