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RESUMO

OTA, R. T. O monitoramento remoto das situacfes de curtos-circuitos em um sistema de
distribuicdo via redes neurais artificiais, considerando diferentes topologias e perfis de carga.
2017. 120f. Trabalho de Conclusdo de Curso, Escola de Engenharia de Sdo Carlos, Universidade de
Séo Paulo, Séo Carlos, SP, Brasil, 2017.

A crescente preocupagdo com a eficiéncia energética, a automatizagcdo e integracdo dos
processos no cenario atual vem sendo caracterizado por um consideravel aumento no ndmero de
equipamentos sensiveis e propicios a gerar problemas de qualidade da energia elétrica. Dessa forma, é
essencial assegurar o fornecimento de energia elétrica dentro dos padrdes de qualidade, que somente
podera ser garantida através de um monitoramento eficaz e continuo das grandezas de interesse, dentre
as quais a tensao trifasica do sistema de distribuicdo em diversos pontos. Nesse contexto, o presente
trabalho de conclusdo de curso visa apresentar um método alternativo de monitoramento remoto
utilizando redes neurais artificiais para estimar os valores das tensdes trifasicas em diversos pontos de
um sistema de distribuig&o, levando em consideracéo diferentes perfis de carga que o sistema possa vir
a apresentar, além da proposta de diferentes topologias e analise de desempenho das redes modeladas,
a fim de se obter resultados cada vez mais precisos. A obtencdo das redes neurais artificiais sera
possibilitada pela modelagem de um sistema de distribuicdo real que fornecera os dados necessarios
para o treinamento e validagdo dos resultados obtidos durante a pesquisa. Os resultados observados
foram satisfatérios e definem a metodologia de treinamento e topologia étima das redes neurais frente
ao problema de qualidade da energia elétrica abordado, demonstrando a viabilidade da aplicacéo desta

tecnologia.

Palavras chave: Sistemas de distribuicdo. Qualidade da energia elétrica. Redes neurais

artificiais. Monitoramento remoto.






ABSTRACT

OTA, R. T. Remote monitoring of short circuits situations in a power distribution system by
using artificial neural networks and considering different topologies and load profiles. 2017.
120p. Term paper. S&o Carlos School of Engineering, University of S&do Paulo, Sdo Carlos, Brazil,
2017.

The growing concern about energy efficiency, automation and integration of processes in the current
scenario has been characterized by a considerable increase in the number of sensitive equipment and
propitious to generate problems of power quality. Thus, it is essential to keep the power quality within
the pre-set standards, which can only be guaranteed through an effective and continuous monitoring of
some physical quantities, like the three-phase voltage of the power distribution system at various
points. In this context, the present research aims to present an alternative method of remote monitoring
by using an artificial neural network (ANN). This system aims to estimate the value of the three-phase
voltage at several points of a power distribution system, considering different load profiles that the
system may present daytime, besides of the proposal of different topologies of ANNs in order to
obtain more accurate results. This research got all the data for the ANNs by the modeling of a power
distribution system, enabling the training and validation of this work. The results were satisfactory and
define the training methodology and optimum topology of the when used in problems of power

quality, showing the possibility of using this technology in the future.

Keywords: Power distribution system. Power quality. Artificial neural networks. Remote

monitoring.






1 INTRODUCAO

O contexto da Qualidade da Energia Elétrica (QEE) engloba qualquer assunto relacionado
com problemas manifestados na tensdo, corrente ou desvio de frequéncia, que resultam em ma
operacdo ou falha de equipamentos dos consumidores (DUGAN et al., 2002). Da prética, tem-se que
as concessionarias devem entregar energia atendendo padres de qualidade que visam regular a
conformidade da onda, o atendimento ao consumidor e a continuidade do fornecimento de energia
(BELISARIO et al., 2003).

A conformidade ocorre quando a forma de onda da tensdo trifasica é entregue da maneira
correta, isto é, uma onda puramente senoidal sem variacdes em sua amplitude e frequéncia. O
atendimento ao consumidor € a relacdo comercial entre as concessionérias e os clientes, considerando
a cortesia, o tempo de atendimento e o respeito aos direitos do consumidor. A continuidade é o quanto
a energia elétrica esta disponivel para o consumidor, neste sentido, a menor quantidade de interrupgdes
deve ser almejada (BELISARIO et al., 2003).

A falta da QEE pode ser caracterizada pela presenga de disturbios (descontinuidades) nos
sinais das tensdes e correntes trifasicas e/ou na frequéncia em observacgdo, decorrentes da interrupgéo
da energia, transitorios oscilatorios e impulsivos, Variagdes de Tensdo de Curta Duragdo (VTCD) e
VariagOes de Tensdo de Longa Duragdo (VTLD), e distorcdo harménica, dentre outros fenémenos
(OLESKOQVICZ, 2007).

Estes problemas podem ter como efeito, dentre outros, a parada de equipamentos, oscilagoes
luminosas, perda de memdria em microprocessadores ou controladores l6gicos programaveis, mau
funcionamento e diminuicdo da vida Util de motores. Destas situacdes, sabe-se da pratica que 0s
prejuizos para os consumidores finais podem ser elevados, principalmente no comércio e industria.

Uma maneira de minimizar os disturbios, ou entende-los melhor, é tendo mais medidas sobre
o Sistema de Distribuicdo (SD) de interesse, garantindo assim mais conhecimento sobre seu
comportamento e podendo se precaver para evitar que tais distirbios ocorram ou se propaguem.
Entretanto, existem varias dificuldades em se fazer um monitoramento continuo e representativo sobre
um SD. Deve-se escolher o que monitorar, 0 equipamento adequado para medicdo, o local de
monitoramento, 0 nimero de medidores, a taxa de amostragem e como armazenar e processar 0S
dados obtidos. Para levantar um histérico frente as VTCD, por exemplo, é necessario um longo
periodo de monitoramento para a obtencdo de andlises representativas (DUGAN et al., 2002),

fazendo-se necesséria a constante evolugdo dos métodos de medigdo e analise do SD.
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1.1 JUSTIFICATIVA DO TRABALHO

Frente ao cenario delineado, um monitoramento remoto via Redes Neurais Artificiais
(RNAS), realizado a partir da Subestacdo de Energia (SE) do sistema, permitird a concessionaria uma
grande economia de recursos humanos e financeiros, visto que ndo serd necessaria a instalacdo de
novos equipamentos em campo, sendo possivel a facil obtencdo das medigdes, processamento e
armazenamento dos dados. Contudo, a dificuldade desse monitoramento via RNA consiste na
obtencéo de uma RNA que indique com precisdo a tenséo eficaz em um ponto remoto e genérico sobre
o SD escolhido e, que, dentre os objetivos desta pesquisa, venha a responder adequadamente frente a
influéncia dos diferentes perfis de carga dos consumidores.

Neste sentido, a presente proposta de pesquisa em analise tem como principal justificativa
a continuidade dos trabalhos de BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014), os
quais ja retrataram a possibilidade e os promissores resultados obtidos no monitoramento remoto das
tensOes trifasicas em diferentes pontos de um SD via RNA. Tomando por base a metodologia,
procedimentos e a comprovacao da generalizagdo observada sobre os modelos neurais ja testados, para
a continuidade da pesquisa, busca-se refinar o contexto de aplicacdo das RNA considerando perfis
distintos de cargas dos consumidores.

Desta maneira, pela consideragdo de diferentes perfis de cargas na metodologia de
monitoramento remoto das tensdes trifasicas a partir da SE via RNA e a investigacdo de diferentes
topologias de rede, acredita-se imprimir a pesquisa até entdo realizada, uma melhor aproximagédo dos

modelos as situacOes reais encontradas nos SD.
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1.2 OBJETIVOS DA PESQUISA

O objetivo da pesquisa € utilizar uma RNA do tipo PMC (Perceptron Multicamadas), devido a
fortes indicios de sua efetividade ja constatados por BOTTURA et al. (2010), CAMARGO (2012) e
LIMA (2014), na obten¢do da tensdo eficaz em um ponto de monitoramento remoto qualquer de um
SD, submetido a diferentes perfis de cargas. Além disso, a presente pesquisa busca investigar a relagdo
do indice de acertos das RNA com sua topologia.

Pela proposicdo, a RNA deve ser robusta e operar adequadamente mesmo na presenca de
diferentes perfis de carga (leve, médio e/ou pesado), frente as possiveis situagcdes de curtos-circuitos
monofasicos, bifasicos, com ou sem o envolvimento da terra, ou trifdsicos, que possam vir a ser
observados sobre o SD. Como para os trabalhos anteriormente referenciados, espera-se obter uma
Unica arquitetura de RNA que possa vir a ser replicada sobre os diversos pontos de monitoramento
remotos no SD e que venha a adequadamente atender as premissas levantadas.

Para isso, diferentes topologias de RNA serdo treinadas com um banco de dados gerado via
simulagdes computacionais dispondo do software Alternative Transients Program (ATP). Por fim,
deseja-se a obtencdo de um procedimento padréo e a verificacdo da eficacia de diferentes topologias
de RNAs frente sua utilizagdo no monitoranto remoto de um SD abrangendo diferentes tipos de faltas
e perfis de carga. Este procedimento devera atender a todas as fases do processo passando pela analise
do sistema e do(s) ponto(s) de monitoramento remoto(s), formatacdo de um banco de dados
representativo, treinamento e teste das mesmas frente as situagfes de curtos circuitos evidenciadas

sobre 0 SD, conclusfes e encaminhamentos finais para atender a qualquer outro SD.

1.3 APRESENTACAO DO DOCUMENTO

O presente trabalho de conclusdo de curso possui mais nove capitulos. O capitulo dois
conta com a apresentacdo do estado da arte das pesquisas sobre redes inteligentes e inteligéncia
artificial aplicadas no setor elétrico. O capitulo trés traz um breve resumo de todo o documento,
apresentando a metodologia utilizada nesta pesquisa. Ja o capitulo quatro inicia um estudo sobre a
variacdo dos perfis de carga durante o dia, segregados por tipos de consumidores. O capitulo cinco
introduz os principais conceitos sobre o funcionamento das redes neurais artificiais. Ja o capitulo seis
faz uma profunda andlise sobre circuitos elétricos, de forma a definir o melhor método de modelagem
das cargas via o software ATP. O capitulo sete define os parametros utilizados nesta pesquisa para a
realizacdo das simulacBes computacionais, além de definir os métodos de abordagem do problema e
iniciar o treinamento das redes neurais. O capitulo oito introduz a etapa de teste das redes neurais de
forma a definir o método de treinamento mais efetivo. Definido o método de abordagem, o capitulo

nove inicia a verificacdo do desempenho das redes frente ao aumento do nimero de neurénios.
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Por fim, o capitulo dez resume todos os resultados obtidos neste trabalho de concluséo de
curso, definindo entdo a melhor topologia e metodologia de treinamento para as RNAs quando

utilizadas para estimar remotamente as tenses trifasicas no sistema de distribui¢do analisado.
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2 ESTUDOS CORRELATOS

Dentro de um SD, o quesito seguranca sempre foi essencial para a manutengdo e operacéo do
sistema como um todo. Para isso, 0 constante desenvolvimento de técnicas de medicéo,
monitoramento, procedimentos e politicas que previnam acidentes e a danificacdo dos equipamentos
sdo de suma importancia. Este desenvolvimento vem ao encontro com a concepgdo das Smart Grids
(redes inteligentes), caracterizando a proxima geracao do SD de energia. Sua utilizagdo, dentre outros
quesitos, torna-se possivel através da instalacdo de sensores e medidores inteligentes, proporcionando
a realizacdo do monitoramento do sistema de forma digital e, consequentemente, uma melhor
conectividade entre a concessionaria e os consumidores, maior automagdo dos sistemas e processos,
aumento da eficiéncia energética, e confiabilidade do sistema de distribui¢do (SINGH et al., 2013).

Entretanto deve-se, antes, entender a complexidade do SD nacional e obter/apontar
ferramentas que possam lidar de forma aceitavel com os problemas j& existentes para a plena evolucao
do SD atual e a real incorporacéo e aceitacdo das redes inteligentes. Neste sentido, a literatura recente
conta com diversas pesquisas gque exploram conceitos no contexto das redes elétricas inteligentes e
propdem alternativas para a realizagdo das medicGes das tensdes trifasicas em um SD, as quais fazem
parte do escopo desta pesquisa.

No artigo de KNAUSS, WARREN e KEARNS (2012) foi abordado o desenvolvimento de um
projeto piloto para testar a eficicia da implantagdo da automacgdo inteligente em um sistema de
distribuicdo. Pela pesquisa, os autores buscaram demonstrar os beneficios da utilizacdo da tecnologia
baseada nas redes elétricas inteligentes. Os sistemas de hardware e software foram desenvolvidos em
laboratorio, sendo automatizados reguladores de tensdo, banco de capacitores, 0 monitoramento da
qualidade da energia, dispositivos e sensores associados, medidores inteligentes e sistemas de
comunicagdo. Do ponto de vista de software, foram utilizados sistemas como: Sistema de Supervisao e
Aquisicdo de Dados (SCADA), Distribution Management System (DMS), Meter Data Management
System (MDMS) e Outage Management System (OMS). Foi projetado e desenvolvido um sistema
analdgico que possibilita a simulagdo em laboratdrio e a eliminacdo automatica de faltas e esquemas
de restauragdo do sistema. Os resultados dos testes realizados demonstraram que investimentos de
larga escala em redes inteligentes podem trazer grandes beneficios para os consumidores e para as
concessionarias, pois os picos de demanda energética podem ser drasticamente reduzidos com a
implementacdo de tecnologias que fornecam informagdes sobre o consumo de energia e de diversos
planos de tarifas em tempo real que fazem com que 0s consumidores mudem seus habitos. Além disso,
0s autores comentam que a confianga no SD pode ser aumentada através do monitoramento constante
e eficiente da tensdo entregue aos consumidores, pois além da questdo relacionada com a falta da
QEE, os mesmos destacam também o problema do crescimento da demanda energética e a

complexidade do SD, ocasionados devido a maior disseminacdo e aderéncia da geracdo distribuida,
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proporcionadas pela Resolucdo Normativa namero 482 da ANEEL (ANEEL, 2012-a). A integracdo do
SD a essa nova forma de producdo de energia contribui de forma significativa para o aumento das
correntes de faltas (FANG et al., 2012). Pelo trabalho, os autores ressaltam que as situagdes de falta
(curtos-circuitos) compdem um dos principais obstaculos para a completa analise do SD e a
implementacéo das redes elétricas inteligentes. Dessa forma, destaca-se a importancia da utilizagdo de
um método robusto para a realizacdo do monitoramento remoto da tensdo trifasica frente as situacGes
de faltas.

Neste contexto, apresenta-se abaixo uma revisdo bibliografica sobre os principais métodos ja
propostos e encontrados até 0 momento para a realizacdo do monitoramento remoto da QEE, com foco
nas tensoes trifasicas, utilizando RNAs.

Em BEZERRA et al. (2001a) foi discutido o desenvolvimento de um protétipo de um
instrumento para 0 monitoramento da QEE de uma concessionaria de energia. Este instrumento
consiste em um microcontrolador 68HC11 que fornece os indices de continuidade de um conjunto de
consumidores. Os dados finais sdo transmitidos através da porta serial do microcontrolador,
possibilitando a analise da tensdo fornecida para verificagdo de sua conformidade com os padrfes de
qualidade conforme Resolucdo n°24 de 27/01/2000 da ANEEL. Para a validacdo dos resultados
obtidos, foi construida uma bancada de laboratdrio para a simulacdo do sistema de distribuigdo real.
Assim, os autores propfem a implementacdo de um microcontrolador dotado de um programa para
analise da QEE, salvo em sua memoria ndo volatil. Entretanto, ndo foram apresentados os métodos
utilizados para obtencdo dos valores de tensdo da rede usados para analise.

No artigo de BEZERRA et al. (2001b) é abordado o monitoramento da QEE em redes de
distribuicdo urbanas. O sistema analisado é constituido de unidades monitoradoras, instaladas nas
entradas dos consumidores classe B mono, bi e trifdsica com o intuito de avaliar os indices de
continuidade estabelecidos pela Resolucdo 024/2000 da ANEEL (ANEEL, 2000). Para isso, foram
utilizados computadores, circuitos e enlaces de comunicagdo, bem como softwares responsaveis pela
aquisicdo, tratamento e transmissdo remota de todas as informagdes. Para realizar a medicdo da QEE
foi utilizado um conjunto de instrumentos, cada um deles ligado a uma Unica unidade consumidora de
energia elétrica. Cada um desses instrumentos foi ligado a um dispositivo concentrador através da
interface RS-485, que por sua vez estava ligado ao computador que possui o software SOFTCOM
(software desenvolvido em Visual Basic 5.0 pela NESC — Ndcleo de Engenharia em Supervisdo e
Controle de Sistemas de Energia, do Departamento de Engenharia Elétrica da UFPA — Universidade
Federal do Pard). A principal funcdo do SOFTCOM ¢é a comunicacdo dos dados entre dois
computadores, determinando quando cada um dos instrumentos deve iniciar 0 monitoramento ou
transmitir seus registros. Assim, os autores propdem a criagdo de uma rede de informagdes interligada
entre os instrumentos medidores e a central de processamento de dados para controle e monitoramento

da QEE em uma rede de distribuicdo urbana.

26



Além do trabalho de BEZERRA et al. (2001 - a), o desenvolvimento de instrumentos para o
monitoramento remoto da tensdo trifasica do sistema elétrico também foi tema abordado por
COLGANO et al. (2009). Neste trabalho, os autores salientaram que os medidores de QEE possuem
duas caracteristicas principais: possuem baixo custo e ndo atendem as especificacbes da ANEEL
(ANEEL, 2009), ou possuem alto custo e preciséo elevada. Assim, foi proposto o desenvolvimento de
um medidor de baixo custo, como ilustrado na Figura 1, que atendesse as especificagdes vigentes de
medicdo de QEE. Para isso, a medicdo de corrente do sistema foi suprimida, mantendo-se apenas 0s
indicadores mais importantes, sendo monitorados os indicadores de tensdo em regime permanente, 0s
harménicos, a flutuacdo de tenséo, o desequilibrio de tensdo, a variacdo de tenséo de curta duragdo e

as interrupcdes de energia.

Figura 1 - Diagrama esquematico para o monitoramento da QEE.
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Fonte: Colgano (2009).

Os componentes do medidor proposto pelos autores séo:

e Fontes CC: utilizam a energia da rede para alimentar o sistema;

o Bateria: alimenta o sistema durante as interrupgdes e afundamentos severos de tens&o;

e Filtragem: conjunto de trés filtros ativos que removem as altas frequéncias do espectro e
eliminam o efeito de aliasing;

e Conversores A/D: conjunto de trés conversores A/D de 12 bits que digitalizam o sinal
filtrado para o processador de sinais;

e Microcontroladores: conjunto de dois micros controladores de baixo custo responsaveis
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pelo processamento dos sinais, calculo dos indicadores em tempo real, gerenciamento do
sistema e comunicacdo com o servidor remoto;

e Memodria: cartdo de memoria do tipo flash responsavel por armazenar os dados medidos
para envio ao servidor remoto; e

e Circuito de comunicacdo: composto por um moédulo de celular que permite a comunicagao
entre o servidor remoto e o medidor através da rede General Packet Radio Services
(GPRS) e internet.

O medidor foi submetido a um conjunto de testes determinados pelos autores com o intuito de
verificar o desempenho do aparelho desenvolvido. Como resultado, o medidor apresentou resultados
satisfatorios, atendendo aos principais requisitos da norma brasileira, principal objetivo dos autores.
Além disso, o baixo custo, quando comparado com outros medidores de QEE existentes, foi alcangado
devido a simplificacdo do hardware do dispositivo. Dessa forma, os autores salientam a possibilidade
de utilizacdo em escala comercial devido a adequacdo dos resultados a norma e o custo inferior aos
outros dispositivos existentes no mercado.

Logo, é possivel observar, conforme os trabalhos citados acima, que a atual literatura conta
com diversos projetos de novos medidores de QEE, cada um com sua caracteristica propria.
Entretanto, o desenvolvimento de novos medidores ndo exclui o fato de que para sua utilizacdo, serd
necessaria sua instalacdo em diferentes pontos do SD, decorrendo em esforgos e gastos financeiros.
Dessa forma, reforca-se aqui a importancia do desenvolvimento de um método robusto para a medigéo
da tensdo trifasica frente aos diferentes tipos de curtos-circuitos que ndo necessitem da instalacdo de
novos medidores. Para isso, assim como mencionado na justificativa desta pesquisa, sera dada
continuidade aos trabalhos de BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014), os quais
verificaram a efetividade da rede do tipo PMC. Entretanto, faz-se necessario uma pesquisa
bibliografica mais profunda sobre os diferentes tipos de redes utilizadas em sistemas de poténcia.

A existéncia e aplicacdo de diversos tipos e modelos de RNAs sdo ressaltados pelas pesquisas
de AGGARWAL et al. (1998), trabalho no qual sdo realizadas analises de aspectos praticos do
desempenho de RNAs em sistemas de poténcia, considerando as diversas arquiteturas, métodos de
treinamento, selecdo dos dados de entrada das RNAs e algoritmos de aprendizagem. Dentre os tipos de
RNAs mais utilizadas na literatura, os autores citam as do tipo PMC rede Kohonen e rede Hopfield,
sendo destacada, de forma geral, a eficiéncia da aplicacdo das redes PMC em sistemas de poténcia,
guando comparada com os demais modelos, devido a alta precisdo associada ao aprendizado
supervisionado. Os autores analisaram o comportamento das RNAs quando submetidas a testes
relacionados as suas aplicagcGes em previsGes de carga, classificacdo de faltas, estabilidade de tenséo
trifasica, entre outros. E necessario ressaltar que, dentre as diversas aplicacdes citadas anteriormente,

serdo discutidas somente aquelas das quais os autores consideraram o uso da rede PMC como mais
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vantajosa, no caso, a aplicacdo em previsao de carga. Dessa forma, sera possivel observar os aspectos
gerais e beneficios que a rede PMC proporciona. Rede esta que sera utilizada durante o
desenvolvimento desta pesquisa.

A utilizacdo de RNAs, mais especificamente, da rede do tipo PMC, para a previsdo de carga
possibilita 0 mapeamento de relages ndo lineares entre os dados de entrada e saida do sistema. Seu
funcionamento consiste em tracar previamente um padrdo das cargas do sistema e prevé outros
padrdes baseado em dados inseridos no sistema, sendo que 0 tempo necessario para a realizacdo dos
treinamentos varia em funcdo da complexidade do problema, volume de dados, estrutura da rede e
parametros utilizados no treinamento. Assim, é possivel ter uma ideia geral do funcionamento da rede
PMC e seus beneficios quando utilizada em sistemas de poténcia, criando mais um motivo para sua
utilizagdo nesta pesquisa.

As pesquisas de POPOVIC et al. (1998) propdem uma nova metodologia para o
monitoramento remoto da tensdo e avaliagdo das margens de estabilidade do sistema elétrico. O
trabalho é desenvolvido utilizando-se quatro estagios de redes do tipo PMC, a saber: (1) Configuracéo
e modelagem do procedimento; (2) Anélise de estabilidade; (3) Reducdo do modelo utilizado; e (4)
Monitoramento e avaliagdo das margens de estabilidade do sistema. Durante o estagio de
aprendizagem das redes, séo utilizados quatro diferentes tipos de RNAs, nomeadas pelos autores de:
UR, NT, NY e NR. A primeira RNA (UR) é do tipo auto organizada e possui a finalidade de reduzir o
vetor de varidveis do sistema. Ja a rede NT é do tipo PMC e visa realizar a deteccdo da topologia do
sistema. NY é uma rede unificada multicamada utilizada para a determinacdo das margens de
estabilidade do sistema, possuindo como entrada o vetor completo de variaveis do sistema. Por fim,
NR é uma rede do tipo PMC que também determina as margens de estabilidade do sistema, com a
diferenca de que nesta Gltima rede é utilizado como entrada do sistema, um vetor reduzido.

Quanto ao método de aprendizagem utilizado, os autores consideram dois algoritmos globais
durante o projeto, nomeados de AY e AR, baseados em uma combinacao das redes NT com NY e NT
com UR e NR, respectivamente. Vale ressaltar que foi constatado pelos autores que o aumento do
nimero de camadas intermedidrias das RNAs aumentava significativamente o tempo de
aprendizagem, mas este mesmo aumento néo foi constatado no quesito de preciséo dos resultados.

O algoritmo AR consiste em seis etapas, sendo que o algoritmo AY consiste das mesmas

etapas descritas no que segue, com excecdo da etapa trés:

e FEtapa 1: consideracdo do valor minimo de carga como valor inicial de entrada do
sistema, determinando o ponto estacionario (x°y°);

o FEtapa 2: linearizagdo do modelo dindmico usando o ponto estacionario obtido na
Etapa 1;

e FEtapa 3: reducdo do sistema através da utilizagdo de uma rede auto-organizada,
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obtendo-se o vetor (Xg,Yr) €, em seguida, aplicando-se o algoritmo Aesops;

e Etapa 4: aplicagdo do algoritmo Qr nos modelos estético e dindmico reduzidos para
determinagdo dos autovalores (A;,V;);

e Etapa 5: determinagdo dos menores autovalores (\¥j); e

o Etapa 6: verificacdo se o valor de carga critico foi atingido para, em seguida, obter a

estabilidade do sistema.

Durante o projeto de pesquisa, o autor utilizou uma rede para a realizagdo da reducdo do
numero de variaveis do vetor de entrada do sistema. Esta caracteristica torna-se interessante por
diminuir o tempo de aprendizagem das outras redes e pode ser visto como um problema de extracéo de
caracteristicas das variaveis. Assim, o método consiste no agrupamento de variaveis suficientemente
semelhantes e separagdo das demais. A varidvel de estado mais proxima do centro de seu grupo é
considerada como representante. Finalmente, ao se agrupar todos os representantes dos grupos
formados, obtém-se o vetor reduzido do sistema (yr). Em testes realizados pelos autores, verificou-se
gue o vetor reduzido representa somente 5% do vetor completo de variaveis do sistema.

Para a verificagdo dos resultados, POPOVIC et al. (1998) consideraram um sistema elétrico

real, obtendo os seguintes resultados:

e As simulagBes que continham apenas varidveis de estado do sistema (6,V) como
entrada das redes apresentaram maior precisdo quando foi utilizado o vetor de entrada
do sistema completo (algoritmo AY) do que o vetor reduzido (método AR);

e Quando utilizado o vetor contendo as poténcias ativa e reativa do sistema (P,Q), a
precisdo adquirida pelos resultados foi semelhante para ambos os métodos; e

e Utilizando-se os vetores de entrada com dados suficientes (V, Pe Q) e (6, V, P e Q),
o algoritmo AR, que utiliza o vetor de entrada reduzido, obteve maior precisdo

guando comparado ao algoritmo AY.

Por fim, a analise do tempo de aprendizagem mostrou que a utilizacdo do algoritmo AR, que
considera o vetor de entrada reduzido, é uma ordem de magnitude (em termos de ms) mais rapido do
gue o algoritmo AY.

O trabalho de NAKAWIRO et al. (2008) também aborda o problema do monitoramento
remoto da estabilidade da tensdo trifasica com a utilizagdo de RNAs. Entretanto, antes de estudar um
tipo de rede e simplesmente comparar os resultados obtidos, os autores optaram por trabalhar
primeiramente com o banco de dados procurando gerar informagdes abrangentes (representativos) e
com a reducdo do vetor de entrada da rede.

Para a formacdo do banco de dados que serd utilizado no treinamento da RNA, NAKAWIRO
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et al. (2008) variaram aleatoriamente as partes real e imaginaria das cargas presentes na simulacdo do
SD de 60% a 120% de seus valores base. Dessa forma, o banco de dados formado considera diferentes
situacOes do SD, pois 0s consumidores ndo constituem cargas constantes para o sistema no decorrer do
dia.

J& a reducdo do vetor de entrada foi realizada através do agrupamento de informagoes
repetitivas e pela escolha dos dados que representam seu grupo como um todo. Segundo o0s autores,
esta abordagem auxiliou na reducao do esforco computacional necessario e foi realizada com o auxilio
de algoritmos de agrupamento de dados, tais como agrupamento baseado na distancia, agrupamento
hierarquico e aprendizado competitivo. Também foram utilizadas técnicas de extracdo de dados, como
a analise de componentes fundamentais.

Realizados os devidos tratamentos com o banco de dado, NAKAWIRO et al. (2008)
optaram pela utilizacdo de uma rede multicamada devido a sua grande utilizagdo em sistemas de
poténcia, sendo construida com uma camada de entrada, uma camada intermediaria e uma camada de
saida. A rede foi treinada com um algoritmo do tipo back-propagation com otimizacao de Levenberg-
Marquardt. Durante a realizagdo dos treinamentos, sempre foi considerado um tempo de parada
precoce com o intuito de evitar que ocorresse 0 excesso de treinamento da rede, conforme indicam os
estudos de TETKO et al. (1995). Vale ressaltar que 0 excesso de treinamento afeta de forma negativa
os resultados finais da rede, pois faz com que o aumento do nimero de iteracbes do treinamento nao
diminua o erro contido na saida do sistema.

Como resultado, os autores salientaram que o tempo de resposta do modelo proposto é
extremamente rapido e os resultados fornecidos pela rede estdo bem préximos dos valores reais,
destacando-se, dessa forma, como um método promissor para aplicagdes em situagdes reais.

Em BOTTURA et al. (2010), apresentou-se a aplicacdo de RNAs como um método
alternativo para o monitoramento da tensdo trifasica em determinado ponto de interesse frente a dois
tipos de curtos-circuitos no SD com o intuito de avaliar a QEE. Para isso, 0s autores utilizaram trés
RNAs do tipo PMC, aplicadas de forma independente nas fases do sistema trifasico. As tensGes e
correntes trifasicas registradas na SE foram utilizadas como pares de entrada e saida das RNAs, sendo
que 70% dos dados foram utilizados para treinamento e os 30% restantes para validacdo dos
resultados. Para a determinagdo do numero de neurdnios presentes em cada RNA foi considerado o
melhor custo beneficio em relacdo ao esforco computacional para possivel aplicacdo do trabalho
proposto pelos autores em uma operagao online. Os autores optaram por utilizar uma RNA composta
por 15 neurbnios na primeira camada oculta, 10 neur6nios na segunda camada oculta e 1 neurénio na
camada de saida. A modelagem do SD foi realizada atraves do software ATP com pardmetros reais
fornecidos por uma concessionaria local. Com a realizacéo dos treinamentos das RNAs, validacGes e
simulacBes necessarias, 0s autores chegaram ao resultado de um indice de precisdo superior a 97%

com uma magnitude de erro inferior a 0,05 p.u. Assim, foi determinada uma RNA para analise da
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tensdo trifsica frente a dois casos de curto-circuito com bom custo-beneficio.

O trabalho de CAMARGO (2012) segue os mesmos objetivos de BOTTURA et al. (2010),
buscando a determinacdo da tenséo fornecida a uma determinada carga do SD monitorado. Para isso, 0
autor também utilizou o software ATP para a modelagem do SD e formatagdo de um banco de dados,
além de trés RNAs para a medicgdo da tensdo trifasica fornecida a determinada carga, sendo uma para
cada fase. Vale comentar que o trabalho de CAMARGO (2012) também demonstrou que uma mesma
topologia pode ser utilizada em diferentes pontos de monitoramento de um mesmo SD. Além disso,
foram utilizados 70% dos dados obtidos através de simulacdes no ATP para treinamento das RNAs e
0s 30% restantes para validacdo dos resultados. Como conclus&o, o autor chegou ao resultado de que
em média 95,24% dos casos apresentam erros inferiores a 0,01 p.u. e 99,14% dos casos apresentam
erros inferiores a 0,05 p.u., implicando em um indice médio de acerto consideravelmente elevado.

Vale colocar que em LIMA (2014) também foi dado continuidade aos dois trabalhos
anteriores, utilizando redes do tipo PMC e o mesmo software para simulagdo. O principal diferencial
da pesquisa foi o estudo da generalizagdo do sistema de medicdo remoto, objetivando sua utilizacdo
mesmo quando o SD estd submetido a quaisquer tipos de faltas, ou seja, foi formado um banco de
dados considerando onze tipos diferentes de faltas, diferentemente dos trabalhos de BOTTURA et al.
(2010) e CAMARGO (2012), onde foram consideradas apenas faltas monofasicas envolvendo a fase
A. Como resultado, o autor concluiu que os erros das saidas das RNA mostraram-se baixos para todos
0s pontos de monitoramento, sendo que de 88,2% a 99,2% dos casos de teste apresentaram erros
inferiores a 0,03 p.u..

Assim como encontrado na literatura até o momento consultada, RNAs sdo comumemnte
utilizadas para a solucdo de diversos problemas, entre eles, o monitoramento da tensdo trifasica e das
margens de estabilidade do SD. Em sistemas de poténcia, foi verificado o destaque das redes do tipo
PMC por diversos autores, reforcando sua importancia no contexto desta pesquisa. Dessa forma,
frente ao atual cendrio vislumbrado na presenca das redes inteligentes e aos principais métodos
encontrados na literatura para 0 monitoramento da tensdo trifasica nos SD, o desenvolvimento desta
pesquisa tem como objetivo dar continuidade aos trabalhos de BOTTURA et al. (2010), CAMARGO
(2012) e LIMA (2014), analisando o uso de RNAs do tipo PMC para o monitoramento da tenséo
trifasica no SD frente a diferentes curtos-circuitos e perfis de carga. A composi¢do destes cenarios sera
utilizada para a simulacdo do SD teste e obtencdo de uma representativa base de dados. Caracteristicas
estas que aproximam ao maximo o modelo proposto para um método que possa ser aplicado em
situacOes reais, possibilitando assim o monitoramento eficiente da tensdo do SD de forma pouco
custosa e, consequentemente, impactando de forma direta nos indices que retratam o fornecimento da

energia com qualidade.
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3 METODOLOGIA DE PESQUISA

As etapas seguidas para a pesquisa como um todo podem ser observadas na Figura 2.

Figura 2 - Etapas seguidas para a metodologia de pesquisa.

Etapa 1: Revisdo Bibliografica

Etapa 2: Estudo do sistema de

distribuicdo modelado

Etapa 3: Geracéo do banco de
dados via ATP

Etapa 4: Estudo e implementacdo
das RNAs

Etapa 5: Treinamento, teste e

validagdo das RNAs

Etapa 6: Anélise dos resultados

Etapa 7: Elaboracéo de relatdrios

Fonte: Autoria propria (2017).



E importante ressaltar que as Etapas 4 e 5 mencionadas acima possuem diversos sub itens
de analise, sendo estes importantes para a caracterizagao da presente pesquisa. Dessa forma, 0s

detalhes de execucéo destas etapas podem ser verificados na Figura 3.

Figura 3 - Detalhes de execucéo das Etapas 4 e 5.

Etapa 4.1: Proposta de 4 metodologias de

treinamento para as RNAS

Etapa 4.2: Escolha da metodologia que proporciona as

maiores taxas de acerto

Etapa 4.3: Justificativa dos resultados com base na atual

literatura

Etapa 5.1: Treinamento de uma RNA com a topologia 6-20-

20-1 com a metodologia escolhida

Etapa 5.2: Aumento gradativo do nimero de neurdnios das

camadas intermediarias das RNAs e realizacdo de novos

treinamentos

Etapa 5.3: Analise do desempenho das respostas dadas

pelas RNAs frente ao aumento de seus neurénios

Fonte: Autoria prépria (2017).

Sendo assim, os capitulos subsequentes a este descrevem de forma detalhada cada etapa

da metodologia definida nas Figuras 2 e 3.
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4 PERFIS DE CARGA CONSIDERADOS

O conhecimento da demanda energética dos consumidores do sistema elétrico brasileiro é
fator de extrema importdncia tanto em questBes investigativas em relacdo ao investimento e
planejamento da tarifacdo (BRASIL, 1985), quanto para uso em simulaces para melhor representar a
efetividade do projeto desenvolvido e aproxima-las de casos reais, sendo este Ultimo parte desta
pesquisa.

Como fato, da operagdo do Sistema Elétrico de Poténcia (SEP), tem-se que a poténcia
fornecida pelas distribuidoras de energia é consumida de forma descontinua durante o dia. Dessa
forma, as cargas envolvidas no SD ndo séo estaticas, fazendo-se necessario o conhecimento dos perfis
de carga dos consumidores. Tais curvas podem ser utilizadas para estimar, por exemplo, 0 aumento
das cargas envolvidas no SD nos horarios de pico para obtengdo dos valores minimos e maximos a
serem utilizados em simulagdes e analises da efetividade do modelo proposto em diversas situacoes.

Neste sentido, de posse de perfis de cargas caracteristicos, pretende-se aprimorar 0s
trabalhos j& desenvolvidos (BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014)),
considerando-se neste, todas as situacfes de curtos-circuitos em diferentes situacdes de operacdo do
sistema.

Como principal objetivo deste tdpico, esta o desenvolvimento de estimativas do consumo
maximo, minimo e médio de energia elétrica dos consumidores (clientes finais) conectados a rede.
Dessa forma, sera possivel a realizacdo de simulagdes que considerem situacfes mais proximas das
reais. Além disso, serdo consideradas as principais pesquisas presentes na literatura sobre este topico.

FRANCISQUINI (2006), por exemplo, leva em consideracdo principalmente a analise
dos consumidores residenciais e comerciais, respondendo por aproximadamente por 25% e 10% do
consumo de energia elétrica do pais, respectivamente.

Os dados disponibilizados pelo Ministério da Ciéncia e Tecnologia (MCT), apresentados
por FRANCISQUINI (2006), apontam que 80% das residéncias possuem refrigeradores, estes
responsaveis por grande parte do consumo total de energia elétrica das residéncias. Além disso, 0
aquecimento de agua realizado através de chuveiros elétricos esta presente em 80% das residéncias. A
poténcia nominal dos chuveiros esti entre 2 e 6kW, responsaveis, também, por grande parte do

consumo total dos consumidores residenciais, conforme pode ser observado na Figura 4.
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Figura 4 — Consumo de energia elétrica de um consumidor residencial especificada por aparelho.
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Fonte: Francisquini (2006).

J& os dados do relatorio da ELETROBRAS (2009) apontam que a refrigeragio é
responsavel por 47% do consumo residencial, considerando o condicionamento ambiental, geladeira e

freezer, conforme mostra a Figura 5 abaixo.

Figura 5 — Consumo final na carga residencial.

Fonte: Eletrobras (2009).

Esta diferenca € resultado do ano de referéncia utilizado para a aquisi¢do dos dados de
consumo residencial. Segundo ELETROBRAS (2009), as curvas de carga média para estes tipos de

consumidores possuem as caracteristicas apresentadas na Figura 6.
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Figura 6 — Curva de carga diaria média no Brasil.
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Fonte: Eletrobras (2009).

Ja segundo FRANCISQUINI (2006), a curva de carga de um consumidor residencial é
caracterizada pela constancia do consumo de energia elétrica no decorrer do dia, elevando-se somente
no fim da tarde, apresentando um pico de demanda, provocado pelo uso do chuveiro elétrico,

conforme apresenta a Figura 7.

Figura 7 — Curva de carga de um consumidor residencial.
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Fonte: Francisquini (2006).

Para os consumidores comerciais, 0 autor caracteriza a curva desta categoria como sendo
constante durante o horario comercial, com uma leve diminui¢cdo durante o horario de almogo e

relativamente baixa fora do horario comercial. Um exemplo de uma curva de carga para um
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consumidor comercial real pode ver verificada na Figura 8.

Figura 8 - Curva de carga de um consumidor comercial.
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Fonte: Francisquini (2006).

Através da andlise estatistica das curvas de carga obtidas pelas concessionarias de
energia, 0 autor gerou diversos outros graficos indicando a média de consumo de energia elétrica para
0s consumidores residenciais e comerciais nos dias Uteis, sdbados e domingos, com seus respectivos
desvios padrfes. As Figuras 9, 10 e 11 representam as curvas de carga para consumidores residenciais
da classe de 301 a 500 kWh.

Figura 9 - Curva de carga de um consumidor residencial nos dias Gteis.

2

—— MNedia
15 1| = Desvio Padr3o F-

z 1
. /\
= Te _A—t-"-wr"—"'_ “' ﬁ\r
D T T T T T T T T
1 3 5 7 9 'I'I 13 15 'I? 19 21 23

Horas

Fonte: Francisquini (2006).
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Figura 10 - Curva de carga de um consumidor residencial aos sabados.
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Fonte: Francisquini (2006).

Figura 11 - Curva de carga de um consumidor residencial aos domingos.
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Fonte: Francisquini (2006).

Ja as Figuras 12, 13 e 14 consistem em curvas de carga de consumidores comerciais da
classe de 301 a 500 kwh.

Figura 12 - Curva de carga de um consumidor comercial em dias Uteis.
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Fonte: Francisquini (2006).
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Figura 13 - Curva de carga de um consumidor comercial aos sabados.
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Figura 14 - Curva de carga de um consumidor comercial aos domingos.
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Fonte: Francisquini (2006).

Por fim, os consumidores industriais respondem por cerca de 60% de toda a energia
elétrica consumida no territorio nacional. Entretanto, as curvas de carga do setor industrial entram em
divergéncia quando se analisa 0 ramo de atividade e sua localizacdo. Dessa forma, FRANCISQUINI

(2006) organizou os perfis de carga por grupos de industrias, conforme verificado na Figura 15.

Figura 15 — Curvas de carga do setor industrial.
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Este agrupamento de dados realizado por FRANCISQUINI (2006) permite a realizacdo
da estimativa do consumo médio, maximo e minimo de energia elétrica, sendo este o foco deste
topico. Dessa forma, é possivel resumir todos os dados analisados nas Tabelas 1 e 2 para a criacdo de

estimativas da porcentagem de variacao das cargas ligadas ao SD para futura utilizacdo nesta pesquisa.

Tabela 1 - Consumo de energia de consumidores residenciais.

Consumidor Residencial

Maximo % do méaximo em Minimo % do minimo em

Dia (kW) relacio a média (KW)  relacioamédia  Media (kW)
Dia util 1,16 209,32 0,3 54,13 0,55
Sabado 1,15 205,97 0,3 53,73 0,56
Domingo 1,15 224,39 0,3 58,54 0,51

Fonte: Adaptado de Francisquini (2006).
Tabela 2 - Consumo de energia de consumidores comerciais.
Consumidor Comercial
. Maximo % do maximo em Minimo % do minimo em s

Dia (kW) relagio amédia  (KW)  relacioamédia  Media (kW)
Dia util 0,90 151,58 0,30 50,53 0,59
Sébado 0,80 174,54 0,30 65,45 0,46
Domingo 0,35 109,37 0,25 78,12 0,32

Fonte: Adaptado de Francisquini (2006).

As Tabelas 1 e 2 acima reinem as informacdes mais relevantes, presente nas pesquisas
de FRANCISQUINI (2006), para o presente trabalho sobre os perfis de carga de consumidores
residenciais e comerciais. E possivel observar que o horéario de ocorréncia das maiores e menores
cargas presentes no SD nédo sdo 0os mesmos para consumidores residenciais e comerciais. Dessa forma,
as cargas a serem simuladas na presente pesquisa devem ser variadas aleatoriamente para obtencéo de
situgdes proximas das reais. Além do método de selecdo das cargas, a tabela também mostra que para
ambos os tipos de consumidores as cargas apresentadas variam entre aproximadamente 50% a 200%
da carga média.

Entretanto, o trecho correspondende a modelagem utilizada neste trabalho contém
somente cargas industriais, logo os perfis de carga comerciais e residenciais pesquisados acima servem
como uma breve pesquisa bibliografica para projetos de pesquisa que desejem dar continuidade ao
presente trabalho, ampliando e verificando a efetividade da metodologia desenvolvida em outras areas

do SD. Assim, torna-se necessario um resumo dos dados mais relevantes sobre a variacdo das cargas
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industriais ao longo do dia, confome mostra a Figura 15. Todos estes dados estdo suscintamente
apresentados na Tabela 3.

Tabela 3 — Consumo de energia de consumidores industriais.

Consumidor Industrial

Tipo Maximo Minimo % do minimo em relagédo

(kW) (KW) a0 maximo
Industria 1 0,25 0,07 30
IndUstria 2 0,275 0,16 58,18
IndUstria 3 0,12 0 0
IndUstria 4 0,25 0 0

Fonte: Adaptado de Francisquini (2006).

E possivel perceber através da Tabela 4 que o perfil de carga do ramo industrial pode ser
dividido em grupos, adquirindo valores de carga minima variaveis, envolvendo valores desde zero, no
caso do fechamento da indUstria em determinados horarios do dia, até valores de aproximadamente de
60% da carga méaxima. Visando a verificacdo da efetividade da utilizacdo dos modelos de RNAs
submetidos a diferentes perfis de carga do SEP, deve-se abranger a maior amplitude de dados do
sistema elétrico que sejam consistentes com a realidade. Desta forma, para a definicdo da carga
minima dos consumidores industriais, sera adotado o valor de 10% da poténcia instalada (valor
maximo de carga) de forma a aproximar-se tanto do grupo de indistrias que fecham em determinado

horario do dia quanto das que funcionam com carga menor do que a maxima.
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5 REDES NEURAIS ARTIFICIAIS

Para um melhor entendimento da metodologia deste trabalho como um todo, a qual estara
fortemente baseada e dependente da aplicacdo de RNAs, serdo apresentados na sequéncia alguns
apontamentos teoricos sobre este procedimento de inteligéncia artificial.

O cérebro humano possui inimeras funcdes, dentre elas, a capacidade de reconhecimento
de padrdes, controle motor, percepcdo, inferéncia, intuicdo, advinhagGes, aprendizagem e tomada de
decisdes.

Assim, a modelagem de uma rede baseada no funcionamento do cérebro humano torna-se
uma medida interessante para a analise de dados. Esses sistemas sdo chamados de redes neurais
artificiais e serdo utilizados para o desenvolvimento da presente pesquisa. Estas redes séo definidas
como uma estrutura de processamento, cuja implementacdo torna-se possivel atraves de dispositivos
eletrbnicos que sdo compostos por varias unidades conectadas entre si, formando uma rede de dados.
Cada unidade apresenta comportamento especifico definido pelo processo de aprendizado no qual foi
submetido, assim como no cérebro humano. Dessa forma, como o funcionamento das RNAs é baseado

no sistema nervoso humano. Entéo, faz-se necessaria uma breve explanacéo desta estrutura.

5.1 SISTEMA NERVOSO HUMANO

O neurdnio é o elemento principal responsavel por toda a capacidade de processamento
de dados do sistema nervoso humano. Sua principal funcdo é a transmissao ou retencdo de impulsos
elétricos e sua estrutura pode ser dividida basicamente em trés partes principais: dendritos, corpo
celular e axénio (HODGKIN et al.,1952).

Os dendritos sdo compostos por varios prolongamentos e ramificacdes, formando a
arvore dendrital. Sua principal funcdo € a de captar os impulsos nervosos. O corpo celular compde a
parte principal do neurénio, responsavel por processar todas as informacGes que chegam através dos
dendritos. J& os axdnios formam a extermidade do neurbnio, reponsaveis por transmitir todos 0s
impulsos elétricos gerados pelo corpo celular para os dendritos do préximo, formando assim uma rede
de dados interconectada entre todo o corpo humano.

Assim, a trasmissdo de dados no sistema nervoso humano comeca pelo recebimento de
impulsos nervosos pelos dendritos, ponderacédo do sinal transmitido através do controle de liberacédo de
neurotransmissores durante a sinapse, processamento da informagdo no corpo celular através do
potencial de ativacdo e propagacao da informacdo através dos axdnios para 0s proximos neur6nios
(HODGKIN et al.,1952).
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5.2 O NEURONIO ARTIFICIAL

As RNAs tem como base de inspiracdo o sistema nervoso humano. Dessa forma, é
necessario, antes de tudo, criar um modelo de neurénio artificial com a mesma capacidade de
processamento de informacdo do neurbnio bioldgico. Para isso, foram utilizados modelos
computacionais inspirados a partir da analise da geracdo e propagacdo de impulsos elétricos pela
membrana celular dos neurénios.

Os neurbnios artificiais fornecem saidas tipicamente continuas e realizam funcGes
simples, como coletar sinais existentes em suas entradas, agrega-los de acordo com sua fungédo
operacional e produzir uma resposta, levando em consideracdo seu limiar de ativacdo inerente (o),
assim como no sistema nervoso humano.

Como representado pela Figura 16, a importancia de cada entrada dos neurdnios

artificiais € modelada através de pesos sinapticos {pi, p... pn}. O peso de cada entrada do neur6nio

artificial {x;} é levado em consideracdo através da multiplicacdo de cada entrada por sua respectiva
ponderagdo {p;}. Dessa forma, todas as entradas sdo multiplicadas por algum fator pré-determinado
pelo neurbnio. J& a saida do corpo celular artificial {u} € determinada pela diferenca do valor
produzido entre o corpo celular e o limiar de ativacdo. A saida final do neurdnio artificial (y) consiste
na aplicacdo de alguma funcao sobre a saida intermediaria {u} (Figura 16).

A adequacdo de uma RNA para a utilizagdo na solucdo de determinado problema é
realizada através de um treinamento que consiste na aplicagdo de algoritmos pré-determinados de
acordo com o0 método a ser implantado, visando ajustar 0s pesos e os limiares dos neurénios artificiais
para que as respostas a determinadas entradas estejam dentro dos valores esperados (DA SILVA et al.,

2010).

Figura 16 — Modelo matemético simplificado de um neurénio artificial
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ativacdo

Fonte: Adaptado de Haykin (2001).

Assim, é possivel modelar o comportamento de cada neur6énio artificial através de duas

expressGes matematicas, representadas pelas Equacdes (1) e (2)
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w= Y @) - 0 (1)
i=1

y =g (2)

Basicamente, a arquitetura geral de uma rede neural artificial pode ser resumida em trés
partes: camada de entrada, camadas intermedidrias e camada de saida (DA SILVA et al., 2010).
Durante o desenvolvimento deste trabalho, sera analisada a possivel utilizacdo de uma
rede do tipo PMC devido as evidéncias do seu desempenho para o problema, ja constatadas por
BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014). Assim, é interessante a realizacdo de

uma breve abordagem sobre seu funcionamento.
5.3 REDE PMC

As redes PMC sdo formadas por camadas de entrada e de saida, com pelo menos uma
camada intermediaria entre elas. A camada de entrada é composta pelos neurfnios artificiais que
representam as variaveis de entrada do sistema, também conhecida como entrada do problema. Ja a
camada intermediéria faz com que o modelo possa ser utilizado em situacdes reais, pois imprime ndo
linearidades no entendimento e solucéo dos problemas a rede. Por fim, a camada de saida representa a
resposta da rede frente ao problema analisado.

Este modelo de RNA utiliza 0 método de aprendizado supervisionado que consiste no
conhecimento prévio dos resultados esperados da rede. Dessa forma, é possivel analisar o erro entre as
respostas fornecidas e desejadas e corrigir 0s pesos dos neurbnios com o intuito de diminuir este erro
até valores aceitaveis. Vale comentar que o processo de ajuste manual dos pesos citados despende
muito tempo pelo fato da existéncia de uma ou mais camadas intermediarias com erro desconhecido,
fazendo-se necesséria a utilizagdo de algoritmos de otimizagdo, como o Backpropagation (BRAGA et
al., 2000).

5.4 UTILIZACAO DAS RNAs VIA SOFTWARE

O Matlab® é um software desenvolvido pela The Math Works, Inc, que permite
representar as solucdes e problemas em linguagem matematica baseados em matrizes, sendo possivel
realizar analises numéricas, construcdo de graficos, operagdes com matrizes e, principalmente, a
implementacdo de RNA, dentre outras. Este software foi designado para o presente trabalho devido a

sua facilidade de gerar e depurar um programa quando comparado com as demais linguagens de
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programacdo. Os principais passos para a implementagdo das RNAs no software (MATSUNAGA, V.
Y.,2012):

e Defini¢do dos dados de entrada e saida;

e Inicializacdo da rede, definido os limites dos padrdes de entrada, o numero de
neurdnios artificiais presentes em cada camada da RNA, a funcdo de transferéncia de
cada camada e o algoritmo de treinamento;

e Definicdo dos pardmetros de treinamento, tais como nimero méaximo de épocas de
treinamento, erro desejado, numero de iteracbes que aparecem na tela, taxa de
aprendizado e tempo maximo para o treinamento;

e Treinamento da rede; e

e Simulagdo da rede.

Contudo, para a realizacdo de todas as etapas, sdo necessarios comandos especificos
determinados pelo software, conforme mostra a Tabela 4.

Tabela 4 — Comandos para a criacdo de uma RNA via Matlab®

Funcéo Comando via software
Criagao de uma nova rede newff
Treinamento da rede train
Simulacéo da rede sim

Fonte: Adaptado de Matrunaga (2012).

As principais funcdes de transferéncia e os algoritmos de aprendizado das RNAs estdo
descritas na Tabela 5 e Tabela 6, respectivamente.

Tabela 5 - Principais func@es utilizadas na implementacdo de RNAs via Matlab®.

Funcéo Descricao
purelin Linear

tansig Tangente Hiperbdlica
logsin Sigméide
satlin Linear com saturagéo

Fonte: Adaptado de Matsunaga (2012).

46



Tabela 6 - Principais algoritmos de treinamento das RNAs.

Algoritmo Tipo de treinamento Backpropagation
trainlm Levenberg-Marquardt
traingd Gradiente decrescente
traingdm Gradiente decrescente com momentum
trangda Gradiente com taxa adaptativa
trangdx Gradiente decrescente com momentum e taxa adaptativa

Fonte: Adaptado de Matsunaga (2012).

Os principais parametros de treinamento que precisam ser definidos no codigo estdo

resumidos na Tabela 7.

Tabela 7 - Descricdo dos parametros de treinamento das RNAs via Matlab®.

Parametro Descricao
net.train.Param.epochs NUmero maximo de épocas de treinamento
net.train.Param.goal Erro desejado
net.train.Param.show NUmero de iteragdes que aparece na tela
net.train.Param.Ir Taxa de aprendizado
net.train.Param.time Tempo maximo (em segundos) para o treinamento

Fonte: Adaptado de Matsunaga (2012).
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6 A SIMULACAO COMPUTACIONAL

Este topico visa introduzir os conceitos sobre circuitos elétricos utilizados nas simulagdes
computacionais, bem como justificar a escolha do tipo de modelagem realizada via o software ATP,
além de apresentar todas as faltas elétricas consideradas no sistema e os pardmetros dos demais

elementos.

6.1 ANALISE DAS CONDICOES DE SIMULACAO

Para o sistema elétrico de poténcia, os consumidores conectados a rede elétrica sdo
reconhecidos como cargas, pois consomem poténcia ativa e reativa fornecida pelo sistema elétrico.
Estas cargas podem ser representadas, em nivel de modelagem, como uma associagao série ou paralelo
de resistores e indutores. Assim, é necessaria uma breve introducéo as caracteristicas de cada arranjo

para a escolha de uma que melhor se adeque melhor ao propésito deste trabalho.

6.1.1 ASSOCIACAO SERIE

A associagdo série de resistores (R) e indutores (L) por fase pode ser representada

esquematicamente pela Figura 17.

Figura 17 — Associacéo série de resistores e indutores.

Fonte: Adaptado de Johnson, Hilburn e Johnson. (1994).

Desenvolvendo-se as equacgdes basicas de circuitos elétricos (JOHNSON et. al, 1994),

tem-se:

S=—r 3)
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Onde,

e S:valor da poténcia aparente do circuito;

R: valor da resisténcia do circuito;

L: valor da indutancia do circuito;

j: operador imaginério;

e w: frequéncia angular do circuito; e

Z: valor da impedancia do circuito.

Entdo, tem-se que a poténcia ativa (P) e reativa (Q) da associacao série sao representadas

pelas Equagdes 5 e 6.

P 4 ,
~ RZ 4+ (wL)? ™
o VRwl 5

O TR ®

E possivel ressaltar que esta associacio, segundo as Equacdes 7 e 8, possui valores de
poténcia ativa dependente tanto de R quanto de L, valendo o mesmo para a poténcia reativa. Ou seja, a
modificacdo dos valores das resisténcias desta associacdo modifica tanto a poténcia ativa quando a

poténcia reativa do sistema.

6.1.2 ASSOCIACAO PARALELO
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A associacdo paralela de resistores e indutores por fase pode ser representada
esquematicamente pela Figura 18.

Figura 18 - Associacdo paralela de resistores e indutores.

Fonte: Adaptado de Johnson, Hilburn e Johnson. (1994).

Desenvolvendo-se as equagdes basicas de circuitos elétricos (JOHNSON et. al, 1994),

tem-se:

S = e 9
S ——le 10
~ R.jwl (10)
R+ jwl
_ v 1
"~ R.jwl (1)
R + jwl
V2R V| jwl
= . (12)
R.jwl R.jwl
.2 .2
W vE (13)
jwl R

Entdo, tem-se que a poténcia ativa e reativa da associacdo paralela sdo representadas
pelas Equacdes (14) e (15).
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P=— (14)

V]2
Q= — — (15)

wl

E possivel ressaltar que esta associacio, segundo as Equacdes (14) e (15), possui valores
de poténcia ativa dependente somente de R, enquanto o valor da poténcia reativa depende somente de
L, facilitando a manipulacéo dos valores das cargas para cada situacao.

6.1.3 FATOR DE POTENCIA

O fator de poténcia (FP) é definido como a relagdo entre a poténcia ativa e aparente,
sendo representada pela Equacdo (16). J& a Figura 19 representa o tridngulo de poténcias,

relacionando a poténcia aparente, poténcia ativa e poténcia reativa.
P 1
S (16)

Figura 19 - Triangulo de poténcias.

P

Fonte: Adaptado de Johnson, Hilburn e Johnson. (1994).

A Figura 19 ilustra o tridngulo de poténcias, onde o angulo ¢ apresentado na Equacéao

(16) refere-se a medida de angulo entre a poténcia ativa (P) e a de poténcia aparente (S). Dessa forma,
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é possivel reescrever a formula do FP na forma da Equacéo (17) para um sistema trifdsico com
frequéncia de 60 Hz, como o sistema analisado no presente trabalho.

FP = cos [Atan (%)] a7

Vale ressaltar que o fator de poténcia indica a circulagdo de poténcia ativa e reativa na
rede, sendo que baixo valores de fator de poténcia de uma carga indicam grandes quantidades de
poténcia reativa requisitada, poténcia esta que nao realiza trabalho Gtil e ocasiona aumento nas perdas
da rede elétrica, quedas e flutuacdes de tensdo nas redes de distribui¢do e limitacdo na capacidade dos
condutores e equipamentos da rede. Dessa forma, a portaria do DNAEE n° 085 foi publicada em 25 de
marco de 1992 e estipulou que o limite minimo do fator de poténcia seria de 0,92 indutivo (ANEEL,
2012b).

6.2 MODELAGEM DO SISTEMA DE DISTRIBUICAO

6.2.1 CARGAS PREVIAMENTE MODELADAS

O sistema de distribuicdo analisado foi previamente modelado no software ATP como
resultado de uma cooperacdo entre o Laboratorio de Sistemas de Energia Elétrica (LSEE) da Escola de
Engenharia Elétrica (EESC-USP) e uma concessionaria de energia regional, sendo ja utilizado para o
desenvolvimento das pesquisas anteriores (BOTTURA et al. (2010), CAMARGO (2012) e LIMA
(2014)).

A modelagem refere-se a dois alimentadores conectados a um transformador,
pertencentes a subestacdo de Boituva. A distribuicdo geogréafica de cada alimentador pode ser

verificada na Figura 20 e Figura 21.
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Figura 20 — Distribuicdo geografica do alimentador 1.
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Fonte: CPFL (2009).

Figura 21 - Distribui¢do geogréafica do alimentador 2.

Fonte: CPFL (2009).
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J& na Figura 22 é possivel observar o diagrama unifilar do sistema elétrico modelado no
software ATP.

Figura 22 — Modelo do diagrama unifilar do SD previamente modelado no ATP.

b W W W W N A S . W W . .
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Fonte: CPFL (2009).

Todas as informacOes referentes as cargas, representadas por uma resisténcia em série
com uma indutancia nas simulacdes, podem ser encontradas na Tabela 18 do apéndice.

E primordial, para o desenvolvimento desta pesquisa, o entendimento da metodologia
utilizada para a obtencdo do SD previamente modelado. Dessa forma, através dos dados fornecidos
pela Tabela 9, é possivel observar que os valores das resisténcias e indutancias utilizadas na
modelagem foram especificados para representar aproximadamente 92% e 0,0000392% da demanda
contratada de poténcia ativa e reativa, respectivamente, conforme apresentado na Tabela 19 do
apéndice.

Assim, a modelagem ja realizada e utilizada em trabalhos anteriores, como os de
BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014), foi realizada considerando-se cargas

equivalentes a aproximadamente 92% da demanda contratada de cada consumidor industrial. Através
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dos valores de resisténcia e indutancia utilizados nas simulagdes, também é possivel concluir que a
poténcia reativa de cada consumidor industrial representa aproximadamente 0,0000392% da demanda
contradada. Este baixo valor de poténcia reativa resulta também em fator de poténcia quase unitério.
Assim, a modelagem jé realizada considera um cenéario quase ideal, onde o fator de poténcia de cada

consumidor aproxima-se do valor unitario.

6.2.2 ANALISE DO SEP PREVIAMENTE MODELADO

Antes de dar continuidade a modelagem e adaptacdo do SEP para os diferentes perfis de
carga apresentados neste trabalho, foi realizada uma analise minuciosa do sistema ja modelado com o
intuito verificar se todas as cargas apresentadas em trabalhos anteriores foram devidamente modeladas
no software ATP.

Durante essa fase da pesquisa, verificou-se a auséncia das seguintes cargas:

e Carga 23;
e Carga representada por corrente de 3A (ao lado da Carga 6); e

e Carga “x” localizada ao lado da Carga 15.
Por fim, detectou-se uma incoeréncia da carga representada por uma corrente de 1A e

nomeada como 7A (ao lado da carga 37).

Todas as situacdes mencionadas estdo marcadas em vermelho na Figura 23.
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Figura 23 — Divergéncias encontradas na modelagem previamente realizada.

a33 A37
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Fonte: Adaptado de CPFL (2009).

Vale ressaltar que as andlises realizadas se baseiam em incoeréncias entre a modelagem e
os valores documentados das cargas. Entretanto, as cargas citadas acima podem ter sido agrupadas e
ndo alteradas nos relatorios de modelagem. Estes detalhes de modelagem séo apresentados neste
topico com o intuito de auxiliar posteriores projetos de pesquisa que venham a utilizar a mesma

modelagem deste trabalho.

6.2.3 CARGAS A SEREM MODELADAS

Através da andlise do SD previamente modelado, foi possivel perceber que o fator de
poténcia das cargas foi proximo de um, situagcdo pouco préxima da realidade, principalmente pelo fato

de tratar-se de cargas industriais. Segundo SILVA (2009), em ramos de atividade industrial e até
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mesmo em edificacbes e complexos comerciais de médio a grande porte, existem quantidades
significativas de equipamentos elétricos que possuem como caracteristica principal uma rapida
dindmica operacional, mudando em um curto intervalo de tempo entre o estado de operacdo em vazio
para o funcionamento em carga plena. Estas cargas apresentam fator de poténcia médio operacional
relativamente baixo, fundamentalmente por consumirem grandes quantidades de energia reativa nos
intervalos de tempo onde ocorre a mudanca de estado. Assim, ressaltando-se o fato de que um dos
objetivos desta pesquisa trata da adequacdo da metodologia apresentada para casos mais proximos da
realidade, todas as cargas utilizadas nas modelagens serdo alteradas para um arranjo em paralelo e
adequadas para a obtengdo de um fator de poténcia equivalente a 0,96, uma vez que o0 minimo exigido
pela ANEEL é de 0,92.

Além da modificagdo das cargas para adequacgdo a um fator de poténcia mais préximo da
realidade das cargas industriais, estas também serdo modificadas na modelagem para uma associagdo
paralelo, pois o arranjo em paralelo de resistores e indutores permite uma manipulagédo de forma direta
nos valores de poténcia ativa e reativa das cargas desejados, apenas modificando os valores de R e L,
respectivamente. Ou seja, o valor de R adotado influenciara somente no valor de P da modelagem € o
valor de L, em Q. Esta facilidade de manipulacdo dos dados das modelagens é de suma importancia
para o trabalho, uma vez que as cargas serdo modificadas para até trés valores diferentes,
representando as variagOes caracteristicas dos perfis das cargas no decorrer de um dia. Vale ressaltar
que esta facilidade de modificacdo de valores ndo poderia ser alcancada caso fosse utilizada uma
associacdo série de resistores e indutores. Dessa forma, todos os dados referentes aos valores médio,
maximo e minimo das novas cargas a serem modeladas pelo software ATP podem ser verificados nas
Tabelas 18, 19 e 20 do apéndice, respectivamente. Além disso, foi adotado o fator de poténcia 0,96
indutivo para todas as cargas.

Os estudos realizados para a determinacdo das novas cargas a serem modeladas sera
apresentado no capitulo 8 deste trabalho, sendo as principais consideracdes adotadas apresentadas na
Tabela 8.

Tabela 8 — Critérios de modelagem das novas cargas

Tipo de carga Poténcia ativa modelada

. 10% da poténcia instalada de
Carga Minima )
cada consumidor

. Valor igual ao da demanda
Carga media ]
contratada de cada consumidor

o Valor igual ao da poténcia
Carga maxima ] ]
instalada de cada consumidor

Fonte: Autoria propria (2017).
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Apos a definicdo dos valores de resisténcia e indutancia a serem utilizados como modelo
equivalente para cada situacdo de perfil de carga, tomou-se o cuidado para que as novas simulacGes
representassem ao maximo o SEP real. Dessa forma, foram adicionados, quando necessario, modelos
de reguladores de tensdo, conforme pode ser observado na Figura 24. Isso foi realizado de forma que
a tensdo no sistema elétrico permaneca sempre entre a faixa de 1,1 p.u. e 0,9 p.u.. A necessidade ou
ndo de se utilizar reguladores de tensao foi verificada através da constante simulacdo do fluxo de carga
do SEP modelado. Normalmente, a regulacdo de tensdo é realizada através de reguladores de tensdo
ou transformadores reguladores, comumente instalados no barramento da subesta¢do, ou também ao
longo das linhas (Manual de Equipamentos elétricos, 2005). Para o presente trabalho, considerou-se a
utilizagdo de transformadores ideais para a realizagdo da regulacdo de tensdo, conforme mostra a

Figura 24.

Figura 24 - Modelo do regulador de tensdo implementado via o software ATP.

[ 7
i/

Fonte: Adaptado do Manual de Equipamentos elétricos (2005).

6.3 SIMULACOES VIA O SOFTWARE ATP

Apos a definicdo do valor de todas as cargas a serem inseridas no SD, é necessario definir
as situacdes das quais o sistema elétrico analisado podera estar submetido no decorrer do tempo,
visando a obtencdo de um modelo préximo da realidade. Para isso, foram considerados diferentes
tipos, impedéancias e angulos de insercéo das faltas, bem como diferentes cargas. Quanto aos tipos de

falta, serdo considerados:

e Faltas monofésicas envolvendo a fase A com conexdo a terra;

e Faltas monoféasicas envolvendo a fase B com conexao a terra;
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¢ Faltas monofésicas envolvendo a fase C com conexao a terra;
o Faltas bifasicas entre as fases A e B;

e Faltas bifasicas entre as fases A e C;

o Faltas bifasicas entre as fases B e C;

e Faltas bifasicas entre as fases A e B com conexao a terra;

e Faltas bifasicas entre as fases A e C com conexao a terra;

o Faltas bifasicas entre as fases B e C com conexao a terra;

e Faltas trifasicas sem a conexdo a terra; e

e Faltas trifasicas com a conexao a terra.

Em relacdo ao tipo de carga conectada, serdo considerados:

e Carga maxima de cada ponto de consumo, adotada como a poténcia instalada;

e Carga minima de cada ponto de consumo, obtida através do estudo de diferentes
perfis de carga de consumidores industriais; e

e Carga média de cada ponto de consumo, obtida através da demanda contratada de

cada ponto.

Ja em relacdo ao angulo de incidéncia da falta, serdo adotados:

e Angulo de incidéncia de 0°; e

e Angulo de incidéncia de 90°.

Em relacdo as impedéancias de falta, serdo adotados os valores de 0, 10, 20, 30 e 40 Q.

Por fim, as faltas serdo inseridas em 20 pontos diferentes do SD, escolhidos de forma a
abranger todo o sistema. A localizacdo exata da subestacéo, dos pontos de insercdo das situacdes de
faltas e de monitoramento pode ser observada na Figura 25, sendo representados pelas seguintes

siglas:
e SE: Subestacéo;

e Mn(n=1,2 3,4,5e6): Pontos de monitoramento; e

e PFn(n=1,2,3,4,.,20): Pontos de aplicagéo das faltas.
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Figura 25 — Posicionamento dos pontos de aplicacdo das situacGes de faltas, monitoramento e da subestagdo de
energia no SD.

Fonte: Adaptado de CPFL (2009).

Para a aplicacdo das faltas, foram utilizadas chaves elétricas no software ATP, definindo-
se 0 instante de tempo no qual ocorre o fechamento e a abertura das mesmas. Além disso, o software
possibilita a escolha de qual chave sera aberta ou fechada, possibilitando a simulagéo de todos os tipos
de falta considerados neste trabalho. Um exemplo desta aplicacdo pode ser verificado na Figura 26,
Figura 27 e Figura 28, onde sdo simuladas faltas monofésicas nas fases A, B e C, respectivamente,

com o envolvimento da terra.

Figura 26 - Exemplo de falta monofésica envolvendo a fase A com conexdo a terra.

Fonte: Adaptado de Stevenson (1974).
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Figura 27 - Exemplo de falta monofasica envolvendo a fase B com conexao a terra.

Fonte: Adaptado de Stevenson (1974).

Figura 28 - Exemplo de falta monofasica envolvendo a fase C com conexdo a terra.

A B C

Fonte: Adaptado de Stevenson (1974).

Através do software ATP foi possivel estabelecer o tempo de fechamento de cada chave,
caracterizando faltas em diferentes angulos de incidéncia. A escolha dos instantes de fechamento e

abertura das chaves foi realizada de forma a atender aos seguintes critérios:

e Fechamento realizado somente quando o SEP est4 em regime; e

e Chaves mantidas fechadas pelo tempo de 1 segundo.

Dessa forma, foram escolhidos os instantes de tempo explicitados na Tabela 9 de forma a

caracterizar os diferentes angulos de incidéncia das faltas.
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Tabela 9 - Tempos de abertura e fechamento das chaves

. o Instante de tempo de Instante de tempo de abertura
Angulo de incidéncia
fechamento das chaves das chaves
0 graus 0,56983 segundos 1,56983 segundos
90 graus 0,57399 segundos 1,57399 segundos

Fonte: Autoria prépria (2017).

Assim, dado que a frequéncia do sistema elétrico modelado é de 60 Hz, o periodo de um
ciclo da forma de onda possui o valor de 0,0166 segundos. Logo, a diferenca de tempo entre o angulo
de incidéncia de zero e noventa graus é de ¥ de ciclo, ou seja, 0,00416 segundos, justificando a
diferenca dos tempos de fechamento das chaves da Tabela 9.

Finalmente, foram considerados 20 pontos de aplicacdo das situacdes de faltas,
submetidos a 11 tipos de falta, 5 valores diferentes de impedancia de falta, 2 angulos de incidéncia da
falta e 3 valores distintos de carga para cada consumidor, totalizando 6.600 casos distintos, conforme
pode ser verificado na Tabela 10.

Tabela 10 - Quantidade de casos por ponto de falta.

Tipo Quantidade (por ponto de falta)
Carga 3
Angulo de incidéncia 2
Impedancia S
Tipos de falta 11
Total de casos por ponto de falta 330
Pontos de falta 20
Total de casos 6.600

Fonte: Autoria propria (2017).

Assim, serdo obtidos valores das tensdes eficazes em 6 pontos diferentes do SEP em
analise, e também valores das correntes e tensdes eficazes na subestacdo, completando o banco de

dados resultante das simulagdes.
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7 APLICACAO E TREINAMENTO DAS REDES NEURAIS
ARTIFICIAIS

Este topico visa apresentar a metodologia utilizada para a obtencdo e formatacdo do
banco de dados e sua respectiva utilizacdo durante a etapa de treinamento das redes neurais artificiais

propostas.

7.1 O BANCO DE DADOS GERADO

Apos a realizagdo de todas as simulagGes referentes aos diferentes perfis de carga e de
falta, foram obtidos 6.600 padrdes para serem utilizados como banco de dados. A saida do software
ATP foi configurada para fornecer como resultado as formas de ondas amostradas das tensdes
trifasicas nos 6 pontos de monitoramento, bem como as formas de ondas das tensdes e correntes
trifasicas da subestagdo. Todos os sinais sdo amostrados por 128 valores por ciclo de onda (60 Hz), ou
seja, cada ciclo da sendide é representado computacionalmente por 128 amostras. Entretanto, o banco
de dados sera formado pelos valores eficazes destas formas de onda. Logo é necesséario um tratamento
prévio destes dados.

A manipulagdo do banco de dados e implementacdo das RNAs seréa realizado via Matlab.
Todavia, o software ATP gera arquivos de saida no formato .pl4, o qual ndo é compativel com o
Matlab. Logo, foi necessaria a implementacdo de um cédigo via Matlab para executar um programa
externo gque converte o arquivo .pl4 em .mat, conforme pode ser verificado no Anexo 1, possibilitando
a facil manipulacdo dos dados gerados.

Com todos os dados convertidos corretamente, realizou-se o recorte das formas de onda
fornecidas pelo software ATP, selecionando-se a parcela da onda que continha os dados mais
significativos para as RNAs, consistindo de 9 ciclos da onda, sendo 3 de pré-falta, e 6 de pos falta,

conforme apresentado na Figura 29.
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Figura 29 — Parcela da forma de onda da tenséo da fase A na subestacdo para o ponto de falta 1 (PF1), a&ngulo de
incidéncia zero graus e falta franca.
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Fonte: Autoria propria (2017).

Apobs o recorte de todas as formas de ondas, foi aplicada uma janela deslizante com

dimensdo de um ciclo, considerando-se um deslocamento de meio ciclo, para o célculo dos valores

RMS, conforme ilustrado na Figura 30.

Figura 30 — Janela deslizante aplicada sobre os sinais.
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Fonte: Autoria prépria (2017).
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Dessa forma, foram obtidos 17 valores RMS para cada forma de onda, sendo seis de pré-
falta e onze de pds falta. Assim, o banco de dados para as RNAs é composto por 6.600 casos, cada
caso contendo 17 valores RMS, resultando em 112.200 pares de entrada e saida.

Para finalizar o tratamento do banco de dados, todos os valores de tenséo e corrente
foram normalizados em relacdo aos valores nominais verificados junto a SE. Estes valores nominais
de tensdo e corrente foram obtidos na SE através da simulag&o do fluxo de carga do SEP modelado em
condic¢Bes nominais de operacdo. Vale ressaltar que foram obtidos 3 valores distintos de valor nominal
para as tensdes e correntes trifasicas, dado que foram simuladas trés situacGes distintas de carga (leve,

média e pesada).

7.2 AFASE DE TREINAMENTO DAS RNAs

Para a aplicacao desta pesquisa, serdo utilizadas inicialmente redes do tipo PMC contendo
6 valores de entrada, 20 neur6nios na primeira camada intermediaria, 20 neurénios na segunda camada
intermediaria e 1 neurdnio de saida (6-20-20-1). Assim como descrito em tépicos anteriores, este tipo
de rede neural foi selecionada devido a comprovacao de sua eficacia e alta precisdo em problemas
relacionados a SEPs segundo estudos de AGGARWAL et al. (1998), e como continuidade aos
trabalhos de BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014).

Através da utilizacdo das RNAs serdo estimados os valores das tensdes trifasicas em seis
diferentes pontos de monitoramento. Entretanto, a RNA selecionada possui somente 1 neurdnio na
camada de saida, conforme ilustra a Figura 31, fazendo-se necessario a utilizacdo de 3 RNAs para a
estimacédo das trés tensdes de um ponto de monitoramento. Dessa forma, serdo implantadas 18 RNAS
com a topologia 6-20-20-1. A Tabela 11 mostra somente as RNAs utilizadas para o ponto de
monitoramento 1 (M1), uma vez que os demais pontos de monitoramento seguem a mesma

formatacéo.
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Figura 31 — Rede neural do tipo 6-20-20-1 para a fase A.

Camadade 12 Camada neural 22 Camada neural Camada neural de
entrada escondida escondida saida

| B——
a “k

Fonte: Adaptado de Haykin (2001).

Tabela 11 - RNAs utilizadas em cada ponto de monitoramento.

Ponto de Entrada da RNA Saida da RNA Topologia da RNA
monitoramento
M1 Valores eficazes das tensdes  Tenséo eficaz da fase 6-20-20-1
e correntes trifasicas da A
subestacao
M1 Valores eficazes das tensGes  Tensdo eficaz da fase 6-20-20-1
e correntes trifasicas da B
subestacdo
M1 Valores eficazes das tensdes  Tensdo eficaz da fase 6-20-20-1
e correntes trifasicas da C
subestacdo

Fonte: Autoria prépria (2017).

7.2.1 METODOS DE ABORDAGEM

Reforcando que o principal objetivo deste trabalho é analisar o desempenho das RNAs
mediante aos diferentes perfis de carga, serdo utilizadas quatro diferentes abordagens para analise, de

forma a se obter o melhor resultado possivel. Os quatro métodos sao:
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e Meétodo 0: Utilizacdo das RNAs ja treinadas por LIMA (2014) para validagdo dos trés

tipos de carga simulados;

e Método 1: Utilizacdo de 70% do banco de dados da carga média para o treinamento e

0 restante para a validacdo;

e Método 2: Utilizacdo de 70% do banco de dados da carga pesada e 70% do banco de

dados da carga leve para o treinamento e o restante para a validacao; e

e Meétodo 3: Utilizacdo de 70% do banco de dados da carga pesada, 70% do banco de

dados da carga média e 70% do banco de dados da carga leve para o treinamento e 0

restante para validacao.

Os métodos de treinamento das RNAs estdo sumarizados na Tabela 12.

Tabela 12 — Banco de dados de treinamento e teste utilizados em cada método.

Banco de dados

Método N Carga Leve Carga Média Carga Pesada
Utilizado
) Redes ja treinadas  Redes ja treinadas ~ Redes j& treinadas
Treinamento
, por LIMA (2014)  por LIMA (2014)  por LIMA (2014)
ero
100% 100% 100%
Teste
(2.200 casos) (2.200 casos) (2.200 casos)
Treinamento - 70% (1.540 casos) -
1 100% 100%
Teste 30% (660 casos)
(2.200 casos) (2.200 casos)
Treinamento 70% (1.540 casos) - 70% (1.540 casos)
2 100% (2.200
Teste 30% (660 casos) 30% (660 casos)
casos)
Treinamento 50% (1.100 casos) - 50% (1.100 casos)
2 - Modificado 100% (2.200
Teste 50% (1.100 casos) 50% (1.100 casos)
casos)
3 Treinamento 70% (1.540 casos) 70% (1.540 casos) 70% (1.540 casos)
Teste 30% (660 casos) 30% (660 casos) 30% (660 casos)

Fonte: Autoria propria (2017).

Apbs a aplicacdo dos quatro métodos de treinamento e teste das RNAs apresentadas, sera

possivel selecionar a melhor metodologia para o contexto da pesquisa aqui apresentada. Dada a

selecdo do melhor método de treinamento, posteriormente sera analisado o efeito do aumento do
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ndmero de neurdnios das camadas intermediarias das RNAs sobre o indice de acertos. Para isso, serdo

treinadas as seguintes topologias de rede:

e 6-20-25-1;
e 6-25-25-1;
e 6-25-30-1;
e 6-30-30-1;
e 6-30-35-1;
e 6-35-35-1; e
e 6-50-50-1.

A proposta de aumento do nimero de neur6nios justifica-se pela premissa do aumento da
complexidade do problema devido a introducéo dos diferentes perfis de carga, quando comparado aos
trabalhos que antecedem este, como as pesquisas de BOTTURA et al. (2010), CAMARGO (2012) e
LIMA (2014). Ressalta-se que esta premissa sera fortificada ou enfraquecida de acordo com o0s

resultados parciais do trabalho, os quais consistem na definicdo do melhor método de treinamento.

7.2.1.1 O TREINAMENTO ATRAVES DO METODO 1

Para 0 método de abordagem 1, o banco de dados referente ao treinamento e validacdo
das redes foi coletado de forma aleatdria do banco de dados. Para isso, embaralhou-se os dados através
de uma funcéo implementada via Matlab®, conforme pode ser verificado no Anexo 2, concretizando a
inexisténcia de dados que possam induzir as RNAs ao erro. O banco de dados original pode ser

observado na Figura 32.

Figura 32 - Tensdo eficaz da fase A da subestacdo para os diferentes tipos de curtos-circuitos considerados.

Tensio eficaz (p.u.)

Numero da amostra

Fonte: Autoria prépria (2017).
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Jé o vetor final de treinamento das RNAs pode ser observado na Figura 33.

Figura 33 — Banco de dados para o treinamento embaralhado, referente a tensdo eficaz da fase A da subestacdo
para o método 1.

Tensdo eficaz (p.u.)
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Fonte: Autoria prépria (2017).

Com o hanco de dados de treinamento selecionado aleatoriamente, foram definidos os

pardmetros de treinamento conforme a Tabela 13.

Tabela 13 - Parametros de treinamento das RNAs.

NUmero de épocas 800
Erro final desejado 10E-6
Funcdo de ativagdo da camada 1 Tangente Hiperbolica
Funcdo de ativagdo da camada 2 Tangente Hiperbolica
Funcdo de ativacdo da camada 3 Linear (Rampa)
Algoritmo de Treinamento Levenberg-Marquardt

Fonte: Lima (2014).
Com os dados acima, realizou-se o treinamento de todas as RNAs. Ou seja, foi realizado

um total de 18 treinamentos para cada método.

7.2.1.2 0 TREINAMENTO ATRAVES DO METODO 2

Para 0 método 2, o banco de dados referente ao treinamento e validagdo das RNAs

também foi coletado do banco de dados inicial referente as cargas leve e pesada. O banco de dados
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original e aquele utilizado para o treinamento das RNAs podem ser observados nas Figuras 34 e 35,

respectivamente.

Figura 34 — Tensdo eficaz da fase A da subestacdo para as cargas leve e pesada.
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Fonte: Autoria prépria (2017).
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Figura 35 - Banco de dados aleatério (embaralhado) para o treinamento, referente a tensdo eficaz da fase A da

subestagdo para 0 método 2.
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Fonte: Autoria prépria (2017).
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7.2.1.3 O TREINAMENTO ATRAVES DO METODO 3

Para 0 método 3, o banco de dados referente ao treinamento e validacdo das RNAs foi
coletado do banco de dados inicial referente as cargas leve e pesada. O banco de dados original e
aquele utilizado para o treinamento das RNAs podem ser observados nas Figuras 36 e 37,
respectivamente.

Figura 36 — Tensdo eficaz da fase A da subestacdo para 0 método 3.
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Fonte: Autoria prépria (2017).

Figura 37 - Banco de dados de treinamento embaralhado, referente a tensdo eficaz da fase A da subestagéo para
0 método 3.
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Fonte: Autoria prépria (2017).
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8 A FASE DE TESTE DAS RNAs

Devido ao grande volume de dados e a semelhanga dos resultados para os diferentes
pontos de monitoramento, serdo apresentadas apenas as tabelas contendo as consolidacdes referentes
ao ponto de monitoramento 1 (M1) de cada método, os quais sao apresentados nas se¢fes de 8.1 a 8.5.
Vale destacar que as analises referentes a cada método consideraram todos os pontos de

monitoramento.

8.1 TESTE ATRAVES DO METODO ZERO

Este topico foi nomeado como método zero, pois serve como elo entre os trabalhos ja
realizados nesta linha de pesquisa e o presente trabalho, dado como continuacdo de BOTTURA et al.
(2010), CAMARGO (2012) e LIMA (2014).

Dessa forma, foi utilizada a melhor topologia definida por LIMA (2014) para testar o
desempenho das RNAs ja treinadas quando submetidas aos diferentes perfis de carga. Vale ressaltar
gue as RNAs treinadas por LIMA (2014) e aqui utilizadas, ndo possuiram nenhum contato com o

banco de dados referente as cargas leve e pesada.

8.1.1 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 1 (M1)

Tabela 14 - Erro das fases A, B e C do ponto de monitoramento 1 para as cargas média, leve e pesada do método
zero.

Erro<0,01 p.u. Erro<0,03 p.u. Erro<0,05 p.u. Erro<0,07 p.u.

Carga Fase
(%) (%) (%) (%)

Média A 2,80 40,99 47,77 56,29
Média B 3,90 59,18 63,70 67,36
Média C 4,57 60,20 64,56 67,49

Leve A 2,94 7,98 42,25 53,38

Leve B 52,15 60,07 62,61 64,89

Leve C 49,19 57,76 60,62 62,98
Pesada A 3,10 8,23 41,79 47,64
Pesada B 0,40 1,26 2,73 3,95
Pesada C 0,66 2,23 3,82 5,44

Fonte: Autoria prépria (2017).

Apbs a utilizacdo das redes ja treinadas foi possivel constatar que o indice de acertos para
o0s dados referentes a carga média permaneceu entre 50% e 60%, inferiores aos resultados obtidos por

LIMA (2014). Esse fato pode ter sido ocasionado devido a uma mudanca durante a fase de modelagem
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do SEP, onde o fator de poténcia adotado foi de 0,96, inferior aos trabalhos anteriores. Dessa forma, o
valor da poténcia reativa das cargas aumentou durante a fase de modelagem, justificando a ligeira
mudanca no banco de dados e redugdo do indice de acertos. Vale ressaltar que esta mudanca foi
realizada visando aproximar-se o fator de poténcia das cargas para casos mais reais.

J& o indice de acertos das cargas pesadas foi extremamente baixo, permanecendo entre
4% e 5%, com excec¢do da fase A do ponto de monitoramento 1, que adquiriu o valor de 47,64%. Esse
fato evidencia a possibilidade da pouca abrangéncia de perfis de carga do banco de dados, uma vez
gue as RNAs por LIMA (2014) foram expostas somente ao caso de carga média. A comprovacao e

andlise destas conclusdes preliminares serdo realizadas ap6s a implantagdo do método 1 a seguir.

8.2 TESTE ATRAVES DO METODO 1

Este topico tem como objetivo mostrar o desempenho e a porcentagem de acerto das
RNAs quando utilizado somente 70% dos dados referentes a carga média para a realizacdo do
treinamento das RNAs. A validacdo é realizada através da apresentagdo dos dados restantes (30% dos
dados da carga média e 70% dos dados das cargas leve e pesada) a RNA treinada.

8.2.1 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 1 (M1)

Para as cargas médias deste conjunto de dados, a RNA referente a fase A apresentou 0s
melhores resultados, sendo 75,03% das saidas com erro menor do que 0,01 p.u., 88,61% das saidas
com erro menor do que 0,03 p.u., 93,96% das saidas com erro menor do que 0,05 p.u. e 96,43% das
saidas com erro menor do que 0,07.

Entretanto, como o método 1 é caracterizado por possuir um banco de dados de
treinamento composto apenas por dados de carga média, os resultados apresentados pelas RNAs para
0s demais casos mostraram-se insatisfatorios.

Para a situacdo de carga leve, a RNA referente & fase A apresentou os melhores
resultados, sendo 4,32% das saidas com erro menor do que 0,01 p.u., 55,06% das saidas com erro
menor do que 0,03 p.u., 58,22% das saidas com erro menor do que 0,05 p.u. e 59,82% das saidas com
erro menor do que 0,07 p.u.

J& para a situacdo de carga pesada, a RNA referente a fase A apresentou os melhores
resultados, sendo 0,40% das saidas com erro menor do que 0,01 p.u., 1,40% das saidas com erro
menor do que 0,03 p.u., 2,33% das saidas com erro menor do que 0,05 p.u. e 3,38% das saidas com

erro menor do que 0,07 p.u.

8.2.2 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 2 (M2)

O ponto de monitoramento 2 mostrou indices de acertos para os dados referentes a carga

média superiores aos indices do ponto de monitoramento 1. Para este conjunto de dados, a RNA
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referente & fase B apresentou os melhores resultados, sendo 75,37% das saidas com erro menor do que
0,01 p.u., 89,78% das saidas com erro menor do que 0,03 p.u., 94,69% das saidas com erro menor do
que 0,05 p.u. e 96,57% das saidas com erro menor do que 0,07.

Entretanto, assim como no ponto de monitoramento 1, verificou-se um baixo indice de
acertos para os demais tipos de carga.

Para a situacdo de carga leve, a RNA referente a fase A apresentou os melhores
resultados, sendo 33,96% das saidas com erro menor do que 0,01 p.u., 50,72% das saidas com erro
menor do que 0,03 p.u., 53,85% das saidas com erro menor do que 0,05 p.u. e 55,52% das saidas com
erro menor do que 0,07 p.u.

Ja para a situacdo de carga pesada, a RNA referente a fase B apresentou os melhores
resultados, sendo 0,79% das saidas com erro menor do que 0,01 p.u., 3,28% das saidas com erro
menor do que 0,03 p.u., 5,90% das saidas com erro menor do que 0,05 p.u. e 7,98% das saidas com

erro menor do que 0,07 p.u.

8.2.3 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 3 (M3)

O ponto de monitoramento 3 mostrou indices de acertos para os dados referentes a carga
média inferiores aos indices do ponto de monitoramento 2. Para este conjunto de dados, a RNA
referente a fase B apresentou os melhores resultados, sendo 74,30% das saidas com erro menor do que
0,01 p.u., 88,89% das saidas com erro menor do que 0,03 p.u., 94,31% das saidas com erro menor do
que 0,05 p.u. e 96,46% das saidas com erro menor do que 0,07.

Entretanto, assim como nos demais pontos de monitoramento, verificou-se um baixo
indice de acertos para os demais tipos de carga.

Para a situacdo carga leve, a RNA referente a fase A apresentou os melhores resultados,
sendo 6,16% das saidas com erro menor do que 0,01 p.u., 53,91% das saidas com erro menor do que
0,03 p.u., 57,75% das saidas com erro menor do que 0,05 p.u. e 60,29% das saidas com erro menor do
que 0,07 p.u.

J& para a situacdo de carga pesada, a RNA referente a fase B apresentou os melhores
resultados, sendo 1,37% das saidas com erro menor do que 0,01 p.u., 4,93% das saidas com erro
menor do que 0,03 p.u., 7,23% das saidas com erro menor do que 0,05 p.u. e 10,24% das saidas com

erro menor do que 0,07 p.u.

8.2.4 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 4 (M4)

O ponto de monitoramento 4 mostrou o0 maior indice de acertos para os dados referentes a
carga média, sendo o maior indice de acertos dentre os pontos de monitoramento anteriores. Para este
conjunto de dados, a RNA referente a fase C apresentou os melhores resultados, sendo 74,60% das
saidas com erro menor do que 0,01 p.u., 89,83% das saidas com erro menor do que 0,03 p.u., 94,43%

das saidas com erro menor do que 0,05 p.u. e 96,95% das saidas com erro menor do que 0,07.
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Entretanto, assim como nos demais pontos de monitoramento, verificou-se um baixo
indice de acertos para os demais tipos de carga.

Para a situacdo de carga leve, a RNA referente a fase C apresentou os melhores
resultados, sendo 6,22% das saidas com erro menor do que 0,01 p.u., 49,60% das saidas com erro
menor do que 0,03 p.u., 54,70% das saidas com erro menor do que 0,05 p.u. e 57,34% das saidas com
erro menor do que 0,07 p.u.

J& para a situacdo de carga pesada, a RNA referente a fase A apresentou os melhores
resultados, sendo 0,47% das saidas com erro menor do que 0,01 p.u., 1,93% das saidas com erro
menor do que 0,03 p.u., 3,76% das saidas com erro menor do que 0,05 p.u. e 5,67% das saidas com

erro menor do que 0,07 p.u.

8.2.5 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 5 (M5)

O ponto de monitoramento 5 mostrou indices de acertos para os dados referentes a carga
média inferiores ao ponto de monitoramento 4. Para este conjunto de dados, a RNA referente a fase C
apresentou os melhores resultados, sendo 74,95% das saidas com erro menor do que 0,01 p.u., 91,49%
das saidas com erro menor do que 0,03 p.u., 94,88% das saidas com erro menor do que 0,05 p.u. e
96,70% das saidas com erro menor do que 0,07.

Entretanto, assim como nos demais pontos de monitoramento, verificou-se um baixo
indice de acertos para 0s demais tipos de carga.

Para a situacdo de carga leve, a RNA referente a fase C apresentou os melhores
resultados, sendo 5,26% das saidas com erro menor do que 0,01 p.u., 58,83% das saidas com erro
menor do que 0,03 p.u., 60,01% das saidas com erro menor do que 0,05 p.u. e 62,22% das saidas com
erro menor do que 0,07 p.u.

J& para a situacdo de carga pesada, a RNA referente a fase C apresentou os melhores
resultados, sendo 0,21% das saidas com erro menor do que 0,01 p.u., 0,91% das saidas com erro
menor do que 0,03 p.u., 1,52% das saidas com erro menor do que 0,05 p.u. e 2,46% das saidas com

erro menor do que 0,07 p.u.

8.2.6 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 6 (M6)

O ponto de monitoramento 6 mostrou indices de acertos para os dados referentes a carga
média superiores aos indices de acertos do ponto de monitoramento 5, mas inferiores ao ponto 4. Para
este conjunto de dados, a RNA referente a fase C apresentou os melhores resultados, sendo 74,59%
das saidas com erro menor do que 0,01 p.u., 89,81% das saidas com erro menor do que 0,03 p.u.,
94,71% das saidas com erro menor do que 0,05 p.u. e 96,71% das saidas com erro menor do que 0,07.

Para a situacdo de carga leve, a RNA referente a fase B apresentou os melhores

resultados, sendo 33,07% das saidas com erro menor do que 0,01 p.u., 54,22% das saidas com erro
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menor do que 0,03 p.u., 57,62% das saidas com erro menor do que 0,05 p.u. e 58,92% das saidas com
erro menor do que 0,07 p.u.

J& para a situacdo de carga pesada, a RNA referente a fase C apresentou 0os melhores
resultados, sendo 0,70% das saidas com erro menor do que 0,01 p.u., 2,83% das saidas com erro
menor do que 0,03 p.u., 4,28% das saidas com erro menor do que 0,05 p.u. e 5,97% das saidas com
erro menor do que 0,07 p.u.

8.2.7 CONCLUSOES PARCIAIS

Através da analise dos resultados acima, é possivel perceber-se que as RNAs nao
apresentam resultados satisfatorios para a determinacao das tensdes trifasicas das cargas pesada e leve
quando treinadas somente com dados referentes as cargas medias.

Esse resultado era esperado, sendo justificado pelo fato de que o conjunto de dados de
treinamento das RNAs ndo representava uma parcela significativa do banco de dados. Segundo
HAYKIN (2009), a capacidade de generalizagdo das RNAs do tipo PMC ¢ influenciada por trés
fatores: (1) tamanho do banco de dados de treinamento da RNA e quéo representativo estes dados sao;
(2) arquitetura da RNA; e (3) complexidade do problema.

Dado que as arquiteturas das RNAs ja foram devidamente testadas e aprovadas por
BOTTURA et al. (2010), CAMARGO (2012) e LIMA (2014), restam dois fatores que podem afetar o
desempenho das mesmas.

Sendo assim, a solugdo para uma melhor representatividade dos dados (item 1 do ultimo

paréagrafo) sera analisada nos proximos topicos através da aplicacdo do método 2.

8.3 TESTE DAS REDES ATRAVES DO METODO 2
8.3.1 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 1 (M1)

Este tdpico busca mitigar os problemas encontrados no método 1, como o baixo indice de
acertos das RNAs para as cargas leve e pesada. Isso sera realizado através da mudanca de abordagem
do treinamento das RNAs dos pontos de monitoramento. Para 0 momento, serdo apresentados dados
de treinamento referentes ao banco de dados das cargas leve e pesada. Essa abordagem baseia-se nos
trabalhos de HAYKIN (2009), os quais justificam a falta de um banco de dados abrangente como
causa da reducdo da capacidade de generalizacdo das RNAs.

Dessa forma, apés a fase de treinamento, o teste das RNAs para o banco de dados
referente as cargas leve e pesada mostrou maior indice de acertos na fase C, sendo 51,22% das saidas
com erro menor do que 0,01 p.u., 73,94% das saidas com erro menor do que 0,03 p.u., 83,89% das
saidas com erro menor do que 0,05 p.u. e 89,27% das saidas com erro menor do que 0,07. Entretanto,

verificou-se um indice de acertos muito baixo para as cargas medias.
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Para a situacdo de carga média, a RNA referente a fase A apresentou os melhores
resultados, sendo 1,48% das saidas com erro menor do que 0,01 p.u., 4,97% das saidas com erro
menor do que 0,03 p.u., 8,71% das saidas com erro menor do que 0,05 p.u. e 14,44% das saidas com
erro menor do que 0,07 p.u.

8.3.2 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 2 (M2)

O ponto de monitoramento 2 mostrou o maior indice de acertos para os dados referentes
as cargas leve e pesada, superior ao indice de acerto do ponto de monitoramento 1. Para este conjunto
de dados, a RNA referente a fase A apresentou os melhores resultados, sendo 45,39% das saidas com
erro menor do que 0,01 p.u., 71,46% das saidas com erro menor do que 0,03 p.u., 84,39% das saidas
com erro menor do que 0,05 p.u. e 90,56% das saidas com erro menor do que 0,07.

Entretanto, verificou-se um baixo indice de acertos para os demais tipos de carga. Para a
situacdo de carga média, a RNA referente a fase C apresentou os melhores resultados, sendo 1,39%
das saidas com erro menor do que 0,01 p.u., 4,38% das saidas com erro menor do que 0,03 p.u., 7,57%
das saidas com erro menor do que 0,05 p.u. e 11,26% das saidas com erro menor do que 0,07 p.u.

8.3.3 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 3 (M3)

O ponto de monitoramento 3 mostrou 0 maior indice de acertos para os dados referentes
as cargas leve e pesada, superior ao indice de acerto dos pontos de monitoramento anteriores. Para este
conjunto de dados, a RNA referente a fase B apresentou os melhores resultados, sendo 53,93% das
saidas com erro menor do que 0,01 p.u., 77,08% das saidas com erro menor do que 0,03 p.u., 86,52%
das saidas com erro menor do que 0,05 p.u. e 90,95% das saidas com erro menor do que 0,07 p.u..

Entretanto, verificou-se um baixo indice de acertos para os demais tipos de carga. Para a
situacdo carga média, a RNA referente a fase C apresentou os melhores resultados, sendo 2,36% das
saidas com erro menor do que 0,01 p.u., 6,43% das saidas com erro menor do que 0,03 p.u., 12,50%

das saidas com erro menor do que 0,05 p.u. e 18,58% das saidas com erro menor do que 0,07 p.u.

8.3.4 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 4 (M4)

O ponto de monitoramento 4 mostrou 0 maior indice de acertos para os dados referentes
as cargas leve e pesada, inferior ao ponto de monitoramento 3. Para este conjunto de dados, a RNA
referente a fase A apresentou os melhores resultados, sendo 50,58% das saidas com erro menor do que
0,01 p.u., 74,82% das saidas com erro menor do que 0,03 p.u., 85,02% das saidas com erro menor do
que 0,05 p.u. e 90,66% das saidas com erro menor do que 0,07.

Entretanto, verificou-se um baixo indice de acertos para os demais tipos de carga. Para a
situacdo carga média, a RNA referente a fase A apresentou os melhores resultados, sendo 2,80% das

saidas com erro menor do que 0,01 p.u., 6,91% das saidas com erro menor do que 0,03 p.u., 10,81%
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das saidas com erro menor do que 0,05 p.u. e 14,53% das saidas com erro menor do que 0,07 p.u.

8.3.5 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 5 (M5)

O ponto de monitoramento 5 mostrou 0 maior indice de acertos para os dados referentes
as cargas leve e pesada. Para este conjunto de dados, a RNA referente a fase A apresentou os melhores
resultados, sendo 51,91% das saidas com erro menor do que 0,01 p.u., 76,17% das saidas com erro
menor do que 0,03 p.u., 83,81% das saidas com erro menor do que 0,05 p.u. e 90,89% das saidas com
erro menor do que 0,07.

Entretanto, verificou-se um baixo indice de acertos para os demais tipos de carga. Para a
situacdo carga média, a RNA referente a fase C apresentou os melhores resultados, sendo 2,26% das
saidas com erro menor do que 0,01 p.u., 6,33% das saidas com erro menor do que 0,03 p.u., 10,29%
das saidas com erro menor do que 0,05 p.u. e 15,26% das saidas com erro menor do que 0,07 p.u..

8.3.6 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 6 (M6)

O ponto de monitoramento 6 também mostrou o maior indice de acertos para 0s dados
referentes as cargas leve e pesada, sendo o melhor dentre todos os anteriores. Para este conjunto de
dados, a RNA referente a fase A apresentou os melhores resultados, sendo 49,82% das saidas com erro
menor do que 0,01 p.u., 76,16% das saidas com erro menor do que 0,03 p.u., 86,93% das saidas com
erro menor do que 0,05 p.u. e 91,59% das saidas com erro menor do que 0,07 p.u..

Entretanto, verificou-se um baixo indice de acertos para os demais tipos de carga. Para a
situacdo carga média, a RNA referente a fase B apresentou os melhores resultados, sendo 1,89% das
saidas com erro menor do que 0,01 p.u., 5,02% das saidas com erro menor do que 0,03 p.u., 7,86% das

saidas com erro menor do que 0,05 p.u. e 13,15% das saidas com erro menor do que 0,07 p.u..

8.3.7 CONCLUSOES PARCIAIS

A anélise dos dados apresentados permite concluir que ap6s a mudanga do tipo de carga
presente no banco de treinamento, o indice de acertos das RNAs para os casos de carga leve e pesada
aumentaram significativamente. Entretanto, é importante destacar que os indices de acerto para as
cargas médias reduziram drasticamente, permanecendo em torno de 10% e 15% (erro menor do que
0,07 p.u.) para a maioria dos pontos de monitoramento. Esse resultado pode mostrar algumas das

caracteristicas das RNAs aqui implementadas, tais como:
¢ Aumento da complexidade do problema abordado;

e Ocorréncia de treinamento excessivo (“‘overtrainning”); e

e Banco de dados pouco representativo.
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As hipoteses acima foram baseadas nos estudos de HAYKIN (2009). Suas pesquisas
afirmam que as RNAs, quando submetidas a um banco de treinamento excessivamente grande, podem
sofrer de “overtrainning”, ou seja, a rede neural passa a “decorar” o padrdo de respostas que deve
fornecer, perdendo sua capacidade de generalizagéo.

Sendo assim, objetivando a busca de resultados mais precisos, seré realizado novamente o
treinamento das RNAs utilizando o método 2 modificado, sendo apresentado e detalhado no item a

seguir.

8.4 TESTE DAS REDES ATRAVES DO METODO 2 MODIFICADO

Este capitulo tem como objetivo verificar os possiveis problemas de “overtrainning” das
RNAs treinadas no presente trabalho. Para isso, o tamanho do banco de dados de treinamento e teste
serd alterado da seguinte forma:

e Banco de dados de treinamento: 50% do banco de dados da carga leve e 50% do
banco de dados da carga pesada;
e Banco de teste: 50% do banco de dados da carga leve, 50% do banco de dados da

carga pesada e 100% do banco de dados da carga média.

8.4.1 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 1 (M1)

Dada a semelhanga entre os resultados referentes aos diferentes pontos de
monitoramento, serdo apresentadas somente as consolidagdes referentes ao M1. As taxas de acerto

referentes a este ponto de monitoramento pode ser verificada na Tabela 15.

Tabela 15 - Erro das fases A, B e C do ponto de monitoramento 1 para as carga média, leve e pesada do método
2 modificado.

Erro<0,01 p.u. Erro<0,03 p.u. Erro<0,05 p.u. Erro<0,07 p.u.

Carga Fase
(%) (%) (%) (%)

Leve e Pesada A 49,76 74,11 85,36 90,46
Leve e Pesada B 50,90 76,36 85,86 91,21
Leve e Pesada C 49,68 72,73 84,56 90,11

Média A 1,65 5,59 9,06 12,53

Média B 1,31 3,97 7,60 10,62

Média C 2,71 7,01 11,16 17,32

Fonte: Autoria propria (2017).

Comparando-se os resultados obtidos com o método 2 é possivel perceber uma baixa

evolucdo no desempenho das RNAs. As cargas médias continuam apresentando resultados pouco
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satisfatorios, mantendo a taxa de acerto em torno de 12% para erros menores do que 0,07 p.u..

8.5. TESTE DAS REDES ATRAVES DO METODO 3

Este ultimo método de abordagem tem como objetivo verificar a possibilidade do
aumento do indice de acertos e desempenho das RNAs quando submetidas a um banco de dados
contendo amostras dos trés tipos de carga (leve, média e pesada). Para isso, 0 banco de dados de

treinamento e teste serd alterado da seguinte forma:

e Banco de dados de treinamento: 70% do banco de dados da carga leve, 70% do banco
de dados da carga pesada e 70% do banco de dados da carga média; e
e Banco de teste: 30% do banco de dados da carga leve, 30% do banco de dados da

carga pesada e 30% do banco de dados da carga média.

8.5.1 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 1 (M1)

O ponto de monitoramento 1 mostrou bons resultados, sendo que o maior indice de
acertos foi para os dados referentes a carga leve. Para este conjunto de dados, a RNA referente a fase
C apresentou os melhores resultados, sendo 47,24% das saidas com erro menor do que 0,01 p.u.,
72,70% das saidas com erro menor do que 0,03 p.u., 86,31% das saidas com erro menor do que 0,05
p.u., e 92,19% das saidas com erro menor do que 0,07 p.u..

Para os demais tipos de carga, a RNA apresentou resultados também satisfatorios,
obtendo-se indice de acertos em torno de 88% para erros menores do que 0,07 p.u. para a carga média
e 80% para a carga pesada.

Todos os dados obtidos via simulacdo para o ponto de monitoramento 1 apresentados

acima podem ser verificado na Tabelas 16.

Tabela 16 - Erro das fases A, B e C do ponto de monitoramento 1 das carga média, leve e pesada do método 3.

Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07

Carga Fase
p.u. (%) p.u. (%) p.u. (%) p.u. (%)

Média A 38,50 58,79 72,70 83,03
Média B 41,57 64,87 80,00 88,17
Média C 41,63 62,77 77,41 88,41

Leve A 45,26 68,12 81,37 88,14

Leve B 47,95 73,80 85,63 91,00

Leve C 47,24 72,70 86,31 92,19
Pesada A 36,04 53,39 65,80 74,20
Pesada B 38,93 58,20 71,96 81,48
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Pesada C 38,11 55,99 69,83 80,73

Fonte: Autoria prépria (2017).

8.5.2 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 2 (M2)

O ponto de monitoramento 2 também mostrou bons resultados, sendo que o0 maior indice
de acertos para os dados referentes a carga leve. Para este conjunto de dados, a RNA referente a fase A
apresentou os melhores resultados, sendo 46,29% das saidas com erro menor do que 0,01 p.u., 73,65%
das saidas com erro menor do que 0,03 p.u., 85,55% das saidas com erro menor do que 0,05 p.u. e
91,73% das saidas com erro menor do que 0,07 p.u..

Para os demais tipos de carga, a RNA apresentou resultados também satisfatorios,
obtendo-se indices de acertos em torno de 85% para erros menores do que 0,07 p.u. para a carga média
e 78% para a carga pesada.

8.5.3 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 3 (M3)

Para o ponto de monitoramento 3 obteve-se o maior indice de acertos até 0 momento para
os dados referentes a carga leve. Para este conjunto de dados, a RNA referente a fase C apresentou o0s
melhores resultados, sendo 45,78% das saidas com erro menor do que 0,01 p.u., 72,86% das saidas
com erro menor do que 0,03 p.u., 84,89% das saidas com erro menor do que 0,05 p.u. e 91,05% das
saidas com erro menor do que 0,07 p.u..

Para os demais tipos de carga, a RNA apresentou resultados também satisfatorios,
obtendo-se indices de acertos em torno de 86% para erros menores do que 0,07 p.u. para a carga média

e 80% para a carga pesada.

8.5.4 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 4 (M4)

Para este conjunto de dados, a RNA referente a fase A apresentou os melhores resultados,
sendo 46,34% das saidas com erro menor do que 0,01 p.u., 71,59% das saidas com erro menor do que
0,03 p.u., 84,89% das saidas com erro menor do que 0,05 p.u. e 91,43% das saidas com erro menor do
que 0,07 p.u..

Para 0s demais tipos de carga, a RNA apresentou resultados também satisfatorios,
obtendo-se indice de acertos em torno de 85% para erros menores do que 0,07 p.u. para a carga média

e 80% para a carga pesada.

8.5.5 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 5 (M5)

Para este conjunto de dados, a RNA referente a fase C apresentou os melhores resultados,

sendo 46,46% das saidas com erro menor do que 0,01 p.u., 71,86% das saidas com erro menor do que
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0,03 p.u., 83,38% das saidas com erro menor do que 0,05 p.u. e 90,53% das saidas com erro menor do
que 0,07 p.u..

Para os demais tipos de carga, a RNA apresentou resultados também satisfatorios,
obtendo-se indice de acertos em torno de 86% para erros menores do que 0,07 p.u. para a carga media
e 80% para a carga pesada.

8.5.6 ANALISE DO DESEMPENHO DA RNA PARA O PONTO 6 (M6)

Para estas situacdes, a RNA referente a fase C apresentou os melhores resultados, sendo
47,35% das saidas com erro menor do que 0,01 p.u., 74,26% das saidas com erro menor do que 0,03
p.u., 85,63% das saidas com erro menor do que 0,05 p.u. e 92,04% das saidas com erro menor do que
0,07p.u..

Para os demais tipos de carga, a RNA apresentou resultados também satisfatorios,
obtendo-se indice de acertos em torno de 85% para erros menores do que 0,07 p.u. para a carga média
e 75% para a carga pesada. Entretanto, houve uma excecdo para a fase A, sendo de 45,93% para erros
menores do que 0,07 p.u..
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9. ANALISE DE DIFERENTES TOPOLOGIAS DE RNAs

Apbés a andlise do desempenho das RNAs frente a diferentes metodologias de
treinamento, é possivel concluir que o método 3, o qual exp6s as RNAs aos diferentes perfis de carga
durante sua fase de treinamento, apresentou os melhores resultados.

Dessa forma, todas as analises posteriores a esta secdo fardo uso da formatacdo do banco
de dados de treinamento apresentada pelo método 3 visando observar a influéncia do aumento do
numero de neurbnios nas camadas intermediarias das RNAs sobre seu desempenho Vale adiantar que
0s demais parametros das RNAs permanecerdo inalterados.

Tendo em vista 0 grande volume de dados com a qual a presente pesquisa conta, a
organizagdo dos resultados e andlises pertinente foi elaborada da seguinte forma:

e Apresentacdo dos dados resultantes das simulacdes; e

e Anadlise gréafica do aumento do desempenho das RNAs.

9.1 TOPOLOGIA 6-20-25-1

A estratégia adotada para a abordagem do problema consiste em aumentar 5 neurénios de
uma camada intermediaria da RNA por vez. Logo, a primeira topologia de RNA a ser analisada conta
com 20 neur6nios na primeira camada intermediaria e 25 neur6nios na segunda camada intermediéria,
permanecendo 0S mesmos seis neurdnios na camada de entrada e um neurdnio na camada de saida (6-
20-25-1). Assim, os resultados obtidos para as cargas leve, média e pesada podem ser observados na

Tabela 23 do apéndice.

9.2 TOPOLOGIA 6-25-25-1

Dando sequéncia as analises, foram adicionados 5 neurbnios na primeira camada
intermedidria. Assim, foram obtidos os resultados para as cargas leve, média e pesada da topologia 6-

25-25-1, apresentados na Tabela 24 do apéndice.

9.3 TOPOLOGIA 6-25-30-1

Na busca por RNAs com melhores desempenhos, foram treinadas e testadas redes com a
topologia 6-25-30-1, obtendo-se os resultados apresentados na Tabela 25 para as cargas leve, média e

pesada do apéndice

9.4 TOPOLOGIA 6-30-30-1

Novamente, aumentou-se 0 numero de neurbnios da primeira camada intermediaria em 5

unidades, obtendo-se para as cargas leve, média e pesada os resultados apresentados na Tabela 26 do
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apéndice.

9.5 TOPOLOGIA 6-30-35-1

mostrados nas Tabela 27 do apéndice.

9.6 TOPOLOGIA 6-35-35-1

pesada mostrados na Tabela 28 do apéndice.

9.7 TOPOLOGIA 6-50-50-1

camadas intermediéarias, o presente trabalho também avaliou a utilizacdo da topologia 6-50-50-1.

A topologia 6-30-35-1 apresentou os resultados para as cargas leves, média e pesada,

Para a topologia 6-35-35-1, foram obtidos os resultados para as cargas leve, média e

No intuito de verificar a resposta das RNAs frente a um grande nimero de neurbnios nas

Entretanto, verificou-se que o tempo necessario para a realizagdo do treinamento das

RNAs via Matlab® aumentou significativamente, demorando doze vezes mais quando comparada

com a topologia proposta no inicio desta pesquisa (6-20-20-1). Dessa forma, tendo em vista a

complexidade das simulagfes computacionais e a semelhanca dos resultados para diferentes pontos de

monitoramento dada uma mesma topologia de rede, foram realizadas validagdes da topologia 6-50-50-

1 somente para os pontos de monitoramento 1 e 2, conforme pode ser observado na Tabela 17 abaixo.

Tabela 17 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-50-50-1.

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 66,09 86,14 92,77 94,91
M1 Leve B 62,71 85,73 92,58 94,75
M1 Leve C 68,68 87,80 93,28 94,98
M2 Leve A 67,07 87,99 93,05 95,18
M2 Leve B 66,12 86,76 92,63 95,10
M2 Leve C 65,87 87,10 92,17 94,69
M1 Média A 64,68 86,48 92,17 95,74
M1 Média B 56,02 80,43 89,79 93,50
M1 Média C 64,62 86,76 93,70 96,20
M2 Média A 64,20 87,15 93,36 95,88
M2 Média B 59,89 84,12 92,07 96,37
M2 Média C 59,77 85,12 92,73 95,51
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M1
M1
M1
M2
M2
M2

Pesada
Pesada
Pesada
Pesada
Pesada

Pesada

O @™ >» O W >»

58,93
52,06
58,80
58,59
57,39
56,28

81,29
75,08
82,07
80,52
79,10
79,18

88,75
84,37
88,18
88,35
86,72
88,11

92,66
88,82
91,77
92,23
91,34
92,31

Fonte: Autoria propria (2017).

9.8 ANALISE DOS RESULTADOS

Apos a apresentacdo dos resultados de simulacéo, é possivel realizar uma analise geral da

influéncia do aumento do namero de neurdnios das camadas intermediarias das RNAs sobre o

desempenho de suas respostas. Para isso, foram calculadas as médias das taxas de acerto de todas as

fases e todos os pontos de monitoramento, obtendo-se a evolucdo da taxa de acertos para um erro

menor do que 0,01 p.u. para cada topologia proposta, conforme pode ser observado na Figura 38.

% das respostas

Figura 38 — Taxas de acertos de cada topologia de RNA para um erro < 0,01 p.u..
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Fonte: Autoria prépria (2017).

Carga Leve

—Carga Média

Carga Pesada

Através da Figura 38 é possivel observar-se que houve um aumento de aproximadamente

20% de acerto para todos os perfis de carga analisados quando comparadas a primeira e Gltima

topologia propostas, sendo elas 6-20-20-1 e 6-50-50-1, respectivamente. A evolucdo da taxa de acertos

para um erro menor do que 0,03 p.u. pode ser observado na Figura 39.
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Figura 39 - Taxas de acertos de cada topologia de RNA para um erro < 0,03 p.u.
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Fonte: Autoria prépria (2017).

O desempenho das redes neurais para o0 erro menor do que 0,03 p.u. também aumentou
por volta de 20% quando comparadas a primeira e Gltima topologia. Entretanto, é possivel perceber
que o aumento do indice de acertos das cargas leves comeca a saturar, ou seja, a melhoria de seu

desempenho frente ao aumento do nimero de neurdnios comeca a reduzir.

Figura 40 - Taxas de acertos de cada topologia de RNA para um erro < 0,05 p.u..
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Fonte: Autoria prépria (2017).

A analise dos erros menores do que 0,05 p.u. confirma as observacdes anteriores, pois 0

aumento do desempenho das RNAs para as cargas leves foi somente de 10% quando comparada a
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primeira e Ultima topologia proposta. Por fim, a anélise dos erros menores do que 0,07 p.u. foram

sumarizados na Figura 41.

Figura 41 - Taxas de acertos de cada topologia de RNA para um erro < 0,07 p.u..
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Fonte: Autoria propria (2017).

Através da analise do grafico relativo as taxas de acerto das redes para erros menores do
que 0,07 p.u. é possivel perceber que a inclinacdo das retas é inferior quando comparada com o0s
demais graficos. Este fato demonstra um menor aumento de desempenho das RNAs frente ao aumento
do namero de neurénios, indicando saturacéo da rede para uma taxa de acertos por volta de 90%. Esta

saturacdo pode ser verificada através da anélise da Figura 42.

Figura 42 — Evolucéo das taxas de acertos das RNA para cada perfil de erro.
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Fonte: Autoria prépria (2017).
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A variagdo brusca de aumento de desempenho entre as duas ultimas topologias ocorre
devido a um aumento de 15 neurdnios nas duas camadas intermediarias ao invés de 5. Este gréfico
mostra de forma mais clara a saturagdo da rede mencionada anteriormente. Note que quanto mais 0s
resultados se aproximam da taxa de acertos de 90%, menor é o aumento do desempenho da rede frente
ao aumento do numero de neurdnios. Entretanto, a porcentagem das respostas com erro menor do que
0,01 p.u. aumentaram significativamente, indicando crescimento do numero das respostas mais
precisas.
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10. CONCLUSOES

Esta pesquisa teve como principal objetivo apresentar um método alternativo de
monitoramento remoto via RNAs para estimar os valores das tensdes trifasicas do SD. A metodologia
seguida permitiu definir o melhor método de treinamento das redes e apresentar o comportamento de
diferentes topologias de RNAs frente a diferentes variacfes de carga no SEP, dado que estes valores
sofrem constante alteracéo no decorrer do dia.

Para isso, foram modelados via o software ATP situacfes de carga pesada, média e leve
do SEP, compondo o banco de dados a ser utilizado pelas RNAs. Como ponto de partida, analisou-se o
comportamento das RNAS ja treinadas em trabalhos anteriores por LIMA (2014), verificando-se nesta
pesquisa 0 baixo indice de acertos para as cargas pesadas, possuindo valor minimo de 0,37% de
acertos para um erro menor do que 0,01 p.u. para o ponto de monitoramento 4 da fase A, e valor
maximo de 47,64% de indice de acertos para um erro menor do que 0,07 p.u. para 0 ponto de
monitoramento 1 da fase C. Para a situacdo de carga média, obteve-se como maior indice de acertos o
valor de 80,07% para um erro menor do que 0,07 p.u. para o0 ponto de monitoramento 5 da fase B.
Esse baixo indice de acertos pode ter sido causado pela baixa abrangéncia de perfis de carga do banco
de dados de treinamento das RNAs apresentadas por LIMA (2014), fator esse caracterizado por
HAYKIN (2009) como um dos principais motivos da perda de capacidade de generalizacdo das
RNAs. Sendo assim, foram treinadas novas RNAs com o banco de dados gerado via o software ATP,
referentes as cargas médias, caracterizando o método 1 de treinamento apresentado no presente
trabalho. Com isso, as RNAs apresentaram resultados semelhantes aos anteriores, 0s quais mostram
um indice de acertos extremamente baixo para 0s casos de carga pesada, possuindo maximo de
10,24% para um erro menor do que 0,07 p.u (M3 - fase B). Ja para os casos de carga média, obteve-se
resultado semelhante em todos os pontos de monitoramento, permanecendo em torno de 96% para um
erro menor do que 0,07 p.u.. Para os casos de carga leve, o maior indice de acertos foi de 62,22% para
um erro menor do que 0,07 p.u. (M5 - fase C).

Os dados apresentados pelas RNA quando treinadas com os casos de carga média foram
semelhantes as respostas das RNAs apresentadas por LIMA (2014) e aqui testadas, reforcando a
possibilidade de falta de representatividade do banco de dados de treinamento. Dessa forma, foram
treinadas novas RNAs utilizando-se os dados das cargas leves e pesadas. Como resultado, o indice de
acertos das cargas médias foi reduzido consideravelmente, adquirindo valor méaximo de 18,58% (M3 -
fase C). Esse fato mostra a possibilidade da ocorréncia de um sobre treinamento (“Overtrainning”),
apresentado também por HAYKIN (2009) como fator que pode reduzir a capacidade de generalizagdo
das RNAs.

Dessa forma, foram treinadas novas RNAs com um banco de treinamento reduzido, mas
ainda contendo valores de carga leve e pesada, caracterizando o método 2 modificado. Essa pequena
mudanca ainda ndo gerou RNAs com indice de acertos satisfatorios, permanecendo os valores

93



semelhantes aos do método citado acima.

Enfim, como tentativa final de aumento do desempenho das RNAs, investigou-se
novamente a possibilidade da RNA n&o estar sendo submetida a um banco de dados representativo.
Logo, definiu-se o terceiro método de treinamento, onde foram utilizados dados referentes aos trés
perfis de carga, sendo 70% de cada um para o treinamento e o restante para a fase de testes. Apos essa
mudanca, as RNA passaram a apresentar indices de acertos aceitaveis, permanecendo em torno de
90% para as cargas leve, 85% para as cargas médias e 80% para as cargas pesadas para um erro menor
do que 0,07 p.u..

Investigou-se também a influéncia do aumento do ndmero de neurdnios das camadas
intermediarias das RNAs sobre o desempenho de suas respostas. Para isso, foram treinadas sete novas
topologias de redes. Dessa forma, foram obtidos indices de acerto para um erro menor do que 0,07 p.u.
por volta de 95% para as cargas leves, 95% para as cargas médias e 91% para as cargas pesadas,
utilizando-se a topologia 6-50-50-1. Entretanto, & importante destacar o tempo de simulagdo
computacional requerido para o treinamento desta rede, sendo 12 vezes superior quando comparada
com a topologia 6-20-20-1. Além disso, a curva de analise do aumento de desempenho da RNA frente
ao aumento do nimero de neurdnios apresentada anteriormente mostra que o indice de acertos para
erros menores do que 0,01 p.u. tendem a melhorar quando utilizados mais neurénios do que a
topologia proposta no presente trabalho, pois a curva de crescimento possui inclinacéo.

Assim, destaca-se novamente a importancia do correto treinamento e escolha da topologia
das RNAs para a obtencdo de resultados satisfatdrios, sendo que este treinamento deve realmente
conter dados representativos do sistema a ser testado e o nimero de neurdnios ser suficiente para
fornecer resultados precisos, dada a complexidade do problema analisado.

Cabe comentar que o presente trabalho foi publicado no XII Conferéncia Brasileiroa
sobre Qualidade de Energia Elétrica (CBQEE) (OTA et al., 2017).

10.1 TRABALHOS FUTUROS

Conforme especificado, a proposta deste trabalho consistia na analise do desempenho de
diferentes topologias RNAs frente aos diferentes perfis de carga do SEP. Através dos dados
apresentados no decorrer desta pesquisa, € possivel perceber a diminuicdo do indice de acertos das
RNAs quando comparado com os trabalhos de LIMA (2014).

A diminui¢&o do indice de acertos das RNAs pode ter sido ocasionada devido ao aumento
da complexidade do problema quando inseridos diferentes tipos de perfis de carga. Sendo assim, as
RNAs com a topologia 6-20-20-1 podem ndo possuir a capacidade de abstracdo necessaria com a
quantidade de camadas intermediarias e neurdnios propostos por LIMA (2014). Sendo assim, a

mudanca da topologia da rede neural para 6-50-50-1 elevou os indices de acerto para cerca de 95%.
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Entretanto, a curva de crescimento do desempenho da rede frente ao aumento do nimero de neurénios
apresentada anteriormente reduz sua inclinacdo significativamente quando as taxas de acerto ficam
préximas de 90%.

Sendo assim, devem ser considerados outros métodos de abordagem do problema para a
obtencdo de resultados mais precisos, dado que o aumento indiscriminado de neurdnios das camadas
intermedidrias das RNAs necessita de grande esforco computacional, muitas vezes indisponivel entre

0s potenciais usuarios desta metodologia de monitoramento remoto.
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APENDICE A — Algoritmo para conversio dos arquivos .pl4 para .mat

CONVERSAO DOS ARQUIVOS .PL4 PARA .MAT

comeco = 'C:\Users\rodolfotakeshi94\Documents\ATPDATA\;
tipo = {"ab0caso’, 'ab90caso', 'abcOcaso’, ‘abc90caso’, ‘abctOcaso, ...
‘abct90caso’, 'abtOcaso’, 'abt90caso’, 'acOcaso’, 'ac90caso’, ...
‘actOcaso','act90caso’, 'atOcaso', 'at90caso', 'bcOcaso’, 'bc90caso’, ...
'betOcaso’, 'bet90caso’, 'btOcaso’, 'bt90caso’, ‘ctOcaso’, 'ct90caso'};
for primCont = 1:1:22 %Percorre todos os casos de falta

for casos_falta=1:10

aux = cat(2,char(tipo(primCont)),int2str(casos_falta),".pl4");

% system(['Pl42mat.exe ' cat(2,comeco,aux)]), %Executa arquivo externo conversao .pl4 .mat
disp(['Pl42mat.exe ' cat(2,comeco,aux)])

end

end
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APENDICE B - Algoritmo para coleta aleatéria dos dados

function [casosTrein casosTest] = f AmostrAleat(nCasos,pTrein)
casos_tot = randperm(nCasos);

casosTrein = casos_tot(1:nCasos*pTrein);

casosTest = casos_tot(nCasos*pTrein+1:nCasos);

end
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APENDICE C — Tabelas complementares

Tabela 18 — Dados das cargas modeladas

Poténcia Demanda o
Consumidores Instalada Contratada Corrente Resistencia L(mH)
(KVA) (kW) ) )
Cargal 700 320 8 4601,19 0,005
Carga 2 75 30 0,75 49079,39 0,055
Carga 3 1000 577 14,42 2552,67 0,003
Carga 4 - 8 0,2 184047,7 0,021
Carga 5 1000 500 12,5 2944,76 0,003
Carga 6 9650 600 15 2453,97 0,003
Carga 7 1000 600 15 2453,97 0,003
Carga 8 - 180 4,5 8179,9 0,092
Carga 9 1000 200 5 7361,91 0,008
Carga 10 425 250 6,25 5889,53 0,007
Carga 11 - 130 3,25 11326,01 0,013
Carga 12 500 150 3,75 9815,88 0,011
Carga 13 - 100 2,5 14723,82 0,017
Carga 14 500 450 11,25 3271,96 0,004
Carga 15 - 170 4,25 8661,07 0,010
Carga 16 225 112 2,8 13146,27 0,015
Carga 17 1000 360 9 4089,95 0,005
Carga 18 - 250 6,25 5889,53 0,007
Carga 19 - 100 2,5 14723,82 0,017
Carga 20 - 120 3 12269,85 0,014
Carga 21 - 67 1,67 22041,64 0,025
Carga 22 500 400 10 3680,95 0,004
Carga 23 360 145 3,62 10168,38 0,011
Carga 24 150 30 0,75 49079,39 0,055
Carga 25 - 300 7,5 4907,94 0,006
Carga 26 175 116 2,9 12692,95 0,014
Carga 27 225 225 5,62 6549,74 0,007
Carga 28 - 100 2,5 14723,82 0,017
Carga 29 500 30 0,75 49079,39 0,055
Carga 30 1000 299 1,75 4927,65 0,006
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Carga 31 225 70 3,5 21034,03 0,024
Carga 32 500 140 2,75 10517,01 0,012
Carga 33 - 110 2,75 13385,29 0,015
Carga 34 300 240 6 6134,92 0,007
Carga 35 112,5 40 1 36810 0,042
Carga 36 300 268 6,7 5494 0,006
Carga 37 150 50 1,25 29448 0,033
Carga 38 1000 593 14,82 2483,8 0,003
Carga 39 225 43 1,08 3424,1 0,039
Carga 40 112,5 180 4,5 8179,9 0,009
Carga 41 1000 310 7,75 4749,6 0,005
Carga 42 2000 1219 30,47 1208,1 0,001
Carga 43 112,5 88 2,2 16732 0,002
Carga 44 500 287 7,17 5133,8 0,006
Carga 45 112,5 58 1,45 25386 0,029
Carga 46 112,5 130 3,25 11326 0,013
Carga 47 1000 694 17,35 21216 0,002
Carga 48 500 255 6,37 5778,6 0,007
Tabela 19 — Poténcia ativa e reativa modeladas.
Poténcia Poténcia
) % da )
Consumidores ativa Demanda reativa
modelada modelada
(KW) Cont. (VAT)

Cargal 294,48 92,02 0,13

Carga 2 27,61 92,02 0,01

Carga 3 530,79 91,99 0,23

Carga 4 7,36 92,02 0,00

Carga5 460,12 92,02 0,20

Carga6 552,14 92,02 0,24

Carga 7 552,14 92,02 0,24

Carga 8 165,64 92,02 0,71

Carga9 184,05 92,02 0,08

Carga 10 230,06 92,02 0,10

Carga 11 119,63 92,02 0,05

Carga 12 138,04 92,02 0,06
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Carga 13
Carga 14
Carga 15
Carga 16
Carga 17
Carga 18
Carga 19
Carga 20
Carga 21
Carga 22
Carga 23
Carga 24
Carga 25
Carga 26
Carga 27
Carga 28
Carga 29
Carga 30
Carga 31
Carga 32
Carga 33
Carga 34
Carga 35
Carga 36
Carga 37
Carga 38
Carga 39
Carga 40
Carga 41
Carga 42
Carga 43
Carga 44
Carga 45
Carga 46
Carga 47
Carga 48

92,02
414,11
156,44
103,07
331,29
230,06

92,02
110,43

61,47
368,10
133,25

27,61
276,07
106,75
206,87

92,02

27,61

15,09
257,67

79,53
101,23
220,86

36,81
246,63

46,01
545,52

3,99
165,64
285,27

1121,63

80,98
263,92

53,37
119,63
638,65
234,48

92,02
92,02
92,02
92,02
92,02
92,02
92,02
92,02
91,75
92,02
91,90
92,02
92,02
92,02
91,94
92,02
92,02
5,05
368,10
56,81
92,02
92,02
92,03
92,02
92,03
91,99
9,29
92,02
92,02
92,01
92,03
91,96
92,02
92,02
92,02
91,95

0,04
0,18
0,07
0,04
0,14
0,10
0,04
0,05
0,03
0,16
0,06
0,01
0,12
0,05
0,09
0,04
0,01
0,01
0,11
0,03
0,04
0,09
0,02
0,11
0,02
0,23
0,02
0,07
0,12
0,48
0,00
0,11
0,02
0,05
0,27
0,10
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Tabela 20 — Valores médios das cargas

Demanda . Poténcia Resisténcia Indutancia
Consumidores Contratada Poténcia ativa reativa por por fase por fase
por fase (kW)

(kW) fase (KVAr) Q) (H)
Cargal 320 106,67 31,11 2829,22 14,86
Carga 2 30 10,00 2,92 30178,37 158,46
Carga 3 577 192,33 56,10 1569,07 8,24
Carga 4 8 2,67 0,78 113168,88 594,24
Carga 5 500 166,67 48,61 1810,70 9,51
Carga 6 600 200,00 58,33 1508,92 7,92
Carga 7 600 200,00 58,33 1508,92 7,92
Carga 8 180 60,00 17,50 5029,73 26,41
Carga 9 200 66,67 19,44 4526,76 23,77
Carga 10 250 83,33 24,31 3621,40 19,02
Carga 11 130 43,33 12,64 6964,24 36,57
Carga 12 150 50,00 14,58 6035,67 31,69
Carga 13 100 33,33 9,72 9053,51 47,54
Carga 14 450 150,00 43,75 2011,89 10,56
Carga 15 170 56,67 16,53 5325,59 27,96
Carga 16 112 37,33 10,89 8083,49 42,45
Carga 17 360 120,00 35,00 2514,86 13,21
Carga 18 250 83,33 24,31 3621,40 19,02
Carga 19 100 33,33 9,72 9053,51 47,54
Carga 20 120 40,00 11,67 7544,59 39,62
Carga 21 67 22,33 6,51 13512,70 70,95
Carga 22 400 133,33 38,89 2263,38 11,88
Carga 23 145 48,33 14,10 6243,80 32,79
Carga 24 30 10,00 2,92 30178,37 158,46
Carga 25 300 100,00 29,17 3017,84 15,85
Carga 26 116 38,67 11,28 7804,75 40,98
Carga 27 225 75,00 21,88 4023,78 21,13
Carga 28 100 33,33 9,72 9053,51 47,54
Carga 29 30 10,00 2,92 30178,37 158,46
Carga 30 299 99,67 29,07 3027,93 15,90
Carga 31 70 23,33 6,81 12933,59 67,91
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Carga 32 140 46,67 13,61 6466,79 33,96
Carga 33 110 36,67 10,69 8230,46 43,22
Carga 34 240 80,00 23,33 3772,30 19,81
Carga 35 40 13,33 3,89 22633,78 118,85
Carga 36 268 89,33 26,06 3378,18 17,74
Carga 37 50 16,67 4,86 18107,02 95,08
Carga 38 593 197,67 57,65 1526,73 8,02
Carga 39 43 14,33 4,18 21054,68 110,56
Carga 40 180 60,00 17,50 5029,73 26,41
Carga 41 310 103,33 30,14 2920,49 15,34
Carga 42 1219 406,33 118,51 742,70 3,90
Carga 43 88 29,33 8,56 10288,08 54,02
Carga 44 287 95,67 27,90 3154,53 16,56
Carga 45 58 19,33 5,64 15609,50 81,96
Carga 46 130 43,33 12,64 6964,24 36,57
Carga 47 694 231,33 67,47 1304,54 6,85
Carga 48 255 85,00 24,79 3550,40 18,64
Tabela 21 — Valores maximos das cargas
Poténcia Poténcia Poténcia o .
Consumidores Instalada  ativa por reativa por Resisténcia por Indutancia
fase (Q) por fase (H)
(kVA) fase (kW)  fase (kVAr)
Cargal 700 224,00 65,33 1347,29 7,07
Carga 2 75 24,00 7,00 12574,68 66,03
Carga 3 1000 320,00 93,33 943,10 4,95
Carga 4 16 5,12 1,49 58943,83 309,50
Carga5 1000 320,00 93,33 943,10 4,95
Carga 6 9650 3088,00 900,67 97,73 0,51
Carga 7 1000 320,00 93,33 943,10 4,95
Carga 8 360 115,20 33,60 2619,73 13,76
Carga9 1000 320,00 93,33 943,10 4,95
Carga 10 425 136,00 39,67 2219,06 11,65
Carga 11 260 83,20 24,27 3627,31 19,05
Carga 12 500 160,00 46,67 1886,20 9,90
Carga 13 200 64,00 18,67 4715,51 24,76
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Carga 14
Carga 15
Carga 16
Carga 17
Carga 18
Carga 19
Carga 20
Carga 21
Carga 22
Carga 23
Carga 24
Carga 25
Carga 26
Carga 27
Carga 28
Carga 29
Carga 30
Carga 31
Carga 32
Carga 33
Carga 34
Carga 35
Carga 36
Carga 37
Carga 38
Carga 39
Carga 40
Carga 41
Carga 42
Carga 43
Carga 44
Carga 45
Carga 46
Carga 47
Carga 48

500
340
225
1000
500
200
240
134
500
360
150
600
175
225
200
500
1000
225
500
220
300
1125
300
150
1000
225
112,5
1000
2000
112,5
500
112,5
112,5
1000
500

160,00
108,80
72,00
320,00
160,00
64,00
76,80
42,88
160,00
115,20
48,00
192,00
56,00
72,00
64,00
160,00
320,00
72,00
160,00
70,40
96,00
36,00
96,00
48,00
320,00
72,00
36,00
320,00
640,00
36,00
160,00
36,00
36,00
320,00
160,00

46,67
31,73
21,00
93,33
46,67
18,67
22,40
12,51
46,67
33,60
14,00
56,00
16,33
21,00
18,67
46,67
93,33
21,00
46,67
20,53
28,00
10,50
28,00
14,00
93,33
21,00
10,50
93,33
186,67
10,50
46,67
10,50
10,50
93,33
46,67

1886,20
2773,83
4191,56
943,10
1886,20
4715,51
3929,59
7038,07
1886,20
2619,73
6287,34
1571,84
5389,15
4191,56
4715,51
1886,20
943,10
4191,56
1886,20
4286,82
3143,67
8383,12
3143,67
6287,34
943,10
4191,56
8383,12
943,10
471,55
8383,12
1886,20
8383,12
8383,12
943,10
1886,20

9,90
14,56
22,01

4,95

9,90
24,76
20,63
36,96

9,90
13,76
33,01

8,25
28,30
22,01
24,76

9,90

4,95
22,01

9,90
22,51
16,51
44,02
16,51
33,01

4,95
22,01
44,02

4,95

2,48
44,02

9,90
44,02
44,02

4,95

9,90
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Tabela 22 — Valores minimos das cargas

Poténcia o Poténcia ~ . Indutancia
Consumidores Instalada Potencia ativa reativa por Resistencia por fase
por fase (KW) por fase (Q)
(kVA) fase (kVAr) H)
Cargal 700 22,40 6,53 13472,87 70,74
Carga 2 75 2,40 0,70 125746,83 660,27
Carga 3 1000 32,00 9,33 9431,01 49,52
Carga 4 16 0,51 0,15 589438,27 3095,00
Cargab 1000 32,00 9,33 9431,01 49,52
Carga 6 9650 308,80 90,07 977,31 5,13
Carga 7 1000 32,00 9,33 9431,01 49,52
Carga 8 360 11,52 3,36 26197,26 137,56
Carga 9 1000 32,00 9,33 9431,01 49,52
Carga 10 425 13,60 3,97 22190,62 116,52
Carga 11 260 8,32 2,43 36273,12 190,46
Carga 12 500 16,00 4,67 18862,02 99,04
Carga 13 200 6,40 1,87 47155,06 247,60
Carga 14 500 16,00 4,67 18862,02 99,04
Carga 15 340 10,88 3,17 27738,27 145,65
Carga 16 225 7,20 2,10 41915,61 220,09
Carga 17 1000 32,00 9,33 9431,01 49,52
Carga 18 500 16,00 4,67 18862,02 99,04
Carga 19 200 6,40 1,87 47155,06 247,60
Carga 20 240 7,68 2,24 39295,88 206,33
Carga 21 134 4,29 1,25 70380,69 369,55
Carga 22 500 16,00 4,67 18862,02 99,04
Carga 23 360 11,52 3,36 26197,26 137,56
Carga 24 150 4,80 1,40 62873,42 330,13
Carga 25 600 19,20 5,60 15718,35 82,53
Carga 26 175 5,60 1,63 53891,50 282,97
Carga 27 225 7,20 2,10 41915,61 220,09
Carga 28 200 6,40 1,87 47155,06 247,60
Carga 29 500 16,00 4,67 18862,02 99,04
Carga 30 1000 32,00 9,33 9431,01 49,52
Carga 31 225 7,20 2,10 41915,61 220,09
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Carga 32 500 16,00 4,67 18862,02 99,04

Carga 33 220 7,04 2,05 42868,24 225,09
Carga 34 300 9,60 2,80 31436,71 165,07
Carga 35 112,5 3,60 1,05 83831,22 440,18
Carga 36 300 9,60 2,80 31436,71 165,07
Carga 37 150 4,80 1,40 62873,42 330,13
Carga 38 1000 32,00 9,33 9431,01 49,52
Carga 39 225 7,20 2,10 41915,61 220,09
Carga 40 112,5 3,60 1,05 83831,22 440,18
Carga 41 1000 32,00 9,33 9431,01 49,52
Carga 42 2000 64,00 18,67 4715,51 24,76
Carga 43 112,5 3,60 1,05 83831,22 440,18
Carga 44 500 16,00 4,67 18862,02 99,04
Carga 45 112,5 3,60 1,05 83831,22 440,18
Carga 46 112,5 3,60 1,05 83831,22 440,18
Carga 47 1000 32,00 9,33 9431,01 49,52
Carga 48 500 16,00 4,67 18862,02 99,04

Tabela 23 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-20-25-1.

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 46,52 75,84 86,99 91,47
M1 Leve B 47,67 72,85 85,14 91,24
M1 Leve C 51,72 78,43 87,92 92,33
M2 Leve A 46,58 74,01 85,75 90,71
M2 Leve B 42,18 67,66 80,57 87,87
M2 Leve C 48,37 75,72 87,34 92,09
M3 Leve A 49,07 74,82 86,24 91,91
M3 Leve B 46,82 74,81 85,56 91,54
M3 Leve C 49,41 73,96 84,10 90,35
M4 Leve A 48,56 74,46 86,59 92,42
M4 Leve B 45,83 75,39 86,94 92,44
M4 Leve C 49,05 74,21 86,36 91,68
M5 Leve A 48,08 74,19 86,43 91,48
M5 Leve B 47,98 73,98 85,53 91,31
M5 Leve C 48,70 75,54 86,79 91,83
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M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5

Leve

Leve

Leve
Média
Média
Média
Média
Média
Média
Meédia
Média
Meédia
Meédia
Meédia
Meédia
Meédia
Média
Média
Média
Média
Média
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada
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47,95
47,27
49,88
38,98
45,27
46,52
40,39
12,47
42,23
43,76
42,49
43,73
44,09
42,04
45,10
41,99
43,96
43,21
43,88
43,44
42,72
40,48
41,63
41,35
39,60
10,22
41,19
41,53
41,38
39,66
41,68
41,57
41,32
42,65
40,68
41,42

73,73
74,57
73,56
67,23
68,27
67,94
62,18
60,62
65,93
65,31
65,61
64,63
66,12
66,90
66,89
63,31
66,81
68,24
66,66
64,22
67,14
61,12
63,49
59,81
58,73
54,29
62,15
58,09
59,25
55,98
61,02
64,83
61,51
59,40
59,38
64,71

84,99
86,93
87,57
79,83
82,20
81,01
78,93
77,05
79,87
78,99
80,63
77,43
80,97
82,28
80,43
78,21
81,49
82,47
79,30
79,56
80,20
71,34
76,66
71,76
71,45
67,26
75,47
70,74
71,76
72,42
73,81
75,37
72,32
72,53
72,74
76,83

91,09
91,84
92,70
86,67
90,16
89,27
85,95
85,12
89,29
87,18
89,07
87,91
88,69
89,61
89,64
87,26
88,72
90,63
88,20
84,46
88,44
81,22
83,90
82,01
79,31
79,41
82,80
80,43
82,64
82,79
81,55
82,35
79,88
80,99
81,85
84,93
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M6 Pesada A 40,57 62,14 74,05 82,01
M6 Pesada B 42,01 61,48 73,66 83,25
M6 Pesada C 43,53 63,98 75,22 83,89

Tabela 24 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-25-25-1.

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 52,45 80,24 88,74 93,26
M1 Leve B 48,68 75,72 86,65 92,25
M1 Leve C 52,92 79,44 88,49 93,33
M2 Leve A 44,59 71,53 85,24 90,21
M2 Leve B 47,33 75,04 88,03 93,74
M2 Leve C 50,85 77,99 88,05 92,64
M3 Leve A 44,09 74,22 86,92 91,56
M3 Leve B 48,40 75,11 86,14 92,20
M3 Leve C 49,28 72,98 85,73 91,26
M4 Leve A 52,42 78,19 89,89 93,63
M4 Leve B 52,36 77,50 88,90 93,80
M4 Leve C 54,36 80,25 88,92 93,63
M5 Leve A 45,11 70,30 85,41 91,16
M5 Leve B 49,16 75,25 85,86 91,34
M5 Leve C 48,89 77,06 88,68 93,36
M6 Leve A 47,14 73,28 85,15 90,93
M6 Leve B 52,93 80,20 88,73 92,87
M6 Leve C 46,58 70,67 82,46 89,31
M1 Média A 47,49 71,24 84,59 91,00
M1 Média B 45,57 68,17 80,80 89,57
M1 Média C 46,94 72,18 84,57 92,10
M2 Média A 40,36 66,56 79,40 88,49
M2 Média B 41,36 64,84 79,59 88,23
M2 Média C 43,84 67,43 80,36 88,70
M3 Média A 45,25 69,14 81,24 89,57
M3 Média B 41,29 65,63 82,06 89,50
M3 Média C 40,14 64,63 78,73 87,04
M4 Média A 46,18 72,00 83,53 90,67
M4 Média B 49,81 73,53 85,23 89,94
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M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6

Média
Média
Média
Média
Média
Média
Média
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada
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48,14
12,97
41,80
45,82
42,14
46,57
17,44
44,87
39,60
42,99
13,65
39,46
42,11
42,55
40,43
14,03
42,74
40,91
42,64
9,60
41,60
41,22
41,64
44,14
11,07

73,71
61,73
65,31
69,41
61,77
69,78
67,15
67,96
62,66
64,91
59,67
59,41
61,68
64,59
61,91
57,55
66,97
64,20
67,73
55,96
61,30
64,72
59,13
63,43
58,94

84,88
77,73
80,00
82,63
77,92
82,88
80,24
78,65
75,12
75,71
71,52
73,26
76,87
76,30
72,88
67,35
79,25
77,00
80,77
69,06
74,33
75,29
73,40
76,79
72,11

91,95
88,81
88,65
89,80
87,71
90,81
89,89
85,60
83,41
82,27
80,12
79,49
83,63
84,11
81,34
76,76
85,17
84,78
85,64
79,12
82,28
84,23
80,96
85,61
81,11

Tabela 25 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-25-30-1

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 49,48 77,50 87,67 92,92
M1 Leve B 50,76 77,15 87,75 92,30
M1 Leve C 52,57 79,04 89,01 94,03
M2 Leve A 51,75 79,30 89,96 93,75
M2 Leve B 52,28 77,87 89,35 93,27
M2 Leve C 52,67 79,80 88,22 93,33
M3 Leve A 52,82 80,02 89,26 93,08
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M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3

Leve
Leve
Leve
Leve
Leve
Leve
Leve
Leve
Leve
Leve
Leve
Média
Meédia
Meédia
Média
Meédia
Média
Média
Média
Média
Média
Média
Média
Média
Média
Média
Média
Média
Média
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada
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53,50
50,37
52,67
53,62
52,67
54,33
54,14
54,98
53,36
54,42
51,96
45,34
45,50
48,51
49,09
45,19
48,85
49,97
48,57
49,2
47,06
47,01
47,35
50,39
49,99
49,64
47,02
47,69
49,03
44,99
43,64
44,32
48,96
42,06
46,70
43,52

81,05
79,55
78,92
80,97
80,54
80,40
80,49
80,66
77,24
78,40
81,06
71,13
68,18
72,82
73,75
69,30
72,23
75,27
72,14
73,42
71,60
73,58
70,94
73,39
74,26
71,57
69,73
72,56
75,11
65,02
63,93
66,66
71,98
66,52
67,44
67,73

90,04
89,79
87,73
89,32
88,45
90,12
90,04
88,46
88,23
88,44
90,53
81,97
82,43
85,46
84,71
83,12
84,03
85,40
84,85
83,89
83,58
85,65
84,07
85,45
85,55
84,72
83,17
85,61
85,86
74,13
75,37
77,54
80,08
78,54
79,92
80,14

94,07
93,11
92,62
93,16
92,96
93,64
93,93
92,77
93,39
93,40
84,54
89,71
89,82
91,27
92,23
90,21
91,28
92,73
90,91
90,96
91,10
92,82
90,17
91,81
90,66
91,42
90,82
91,24
91,37
83,09
82,35
84,27
87,35
84,25
89,61
87,01
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M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6

Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
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43,22
43,77
44,37
44,99
44,18
44,99
45,44
46,58
43,76
43,26
45,74

68,70
69,04
65,83
66,82
67,40
70,73
70,21
68,40
66,81
65,19
68,71

82,44
79,40
76,87
79,88
78,07
81,12
81,40
80,09
78,84
78,46
81,33

86,45
86,32
84,56
87,03
84,67
86,57
86,94
86,18
85,52
86,24
87,37

Tabela 26 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-30-30-1

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 54,36 81,57 90,59 94,44
M1 Leve B 53,03 82,15 89,74 93,88
M1 Leve C 55,46 80,96 89,94 93,66
M2 Leve A 53,34 80,67 89,64 93,11
M2 Leve B 54,08 80,67 89,66 93,71
M2 Leve C 58,19 82,48 90,54 94,01
M3 Leve A 56,08 81,53 90,79 94,26
M3 Leve B 48,76 76,75 86,45 90,67
M3 Leve C 53,48 82,24 89,53 94,44
M4 Leve A 60,02 83,41 90,96 93,96
M4 Leve B 45,43 75,00 86,19 92,12
M4 Leve C 56,62 81,72 89,95 93,51
M5 Leve A 54,16 80,85 89,97 93,33
M5 Leve B 51,84 81,26 89,95 93,29
M5 Leve C 57,34 82,90 90,92 93,67
M6 Leve A 57,32 81,41 91,35 94,22
M6 Leve B 56,64 81,29 89,14 93,45
M6 Leve C 58,04 85,38 91,49 94,38
M1 Média A 48,45 75,48 85,67 92,40
M1 Média B 50,38 72,80 85,71 91,40
M1 Média C 50,26 74,39 86,02 91,18
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M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6

Média
Média
Média
Média
Média
Média
Média
Média
Média
Meédia
Média
Meédia
Meédia
Meédia
Meédia
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada
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48,48
50,56
47,12
49,06
43,04
48,46
51,96
41,49
49,90
49,29
48,65
53,69
51,16
51,06
51,23
48,26
46,36
46,32
44,18
46,80
47,10
45,18
17,61
45,59
51,37
14,99
47,55
48,55
46,08
46,79
50,80
45,93
47,57

72,60
76,74
75,43
72,65
66,76
72,26
77,86
66,43
78,33
75,53
74,91
76,87
78,04
73,48
77,09
73,19
68,45
66,29
66,99
69,70
70,35
67,79
64,73
65,89
73,39
62,04
73,19
70,58
67,06
70,38
71,42
69,82
69,89

86,33
88,23
87,44
85,06
80,01
84,11
88,79
79,43
88,17
88,13
84,65
87,40
87,51
85,51
88,35
80,77
81,61
77,76
79,13
80,89
81,68
80,29
76,73
77,27
82,89
72,62
84,54
80,88
77,98
81,55
83,79
80,96
82,11

92,56
93,11
93,10
91,33
87,71
91,38
93,19
87,08
93,07
92,64
90,64
92,58
93,77
91,74
93,34
87,56
88,23
84,84
84,96
86,21
86,45
87,06
85,56
83,26
88,87
81,08
89,19
88,06
86,79
88,19
88,26
87,12
87,77
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Tabela 27 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-30-35-1

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 57,26 81,63 89,85 94,14
M1 Leve B 59,16 83,55 91,24 94,71
M1 Leve C 58,24 82,99 91,79 94,97
M2 Leve A 53,55 81,26 89,63 93,33
M2 Leve B 57,32 82,64 91,36 94,27
M2 Leve C 58,69 83,77 92,70 95,48
M3 Leve A 51,68 80,28 90,25 93,25
M3 Leve B 55,57 80,79 90,24 93,94
M3 Leve C 56,39 84,08 92,13 94,94
M4 Leve A 56,05 82,19 90,97 94,06
M4 Leve B 57,37 82,96 91,73 94,44
M4 Leve C 54,86 79,70 89,76 93,94
M5 Leve A 52,42 79,46 88,67 92,58
M5 Leve B 54,03 80,79 90,48 94,54
M5 Leve C 57,36 84,46 91,15 94,48
M6 Leve A 53,78 83,09 90,19 94,15
M6 Leve B 56,91 83,52 90,98 94,21
M6 Leve C 58,79 84,05 91,84 95,62
M1 Média A 51,78 77,30 88,41 93,71
M1 Média B 53,66 78,23 87,89 93,10
M1 Média C 52,51 77,80 89,13 93,71
M2 Média A 53,34 78,15 89,53 93,28
M2 Média B 50,24 74,41 86,26 92,61
M2 Média C 49,96 75,63 86,72 91,97
M3 Média A 51,45 76,35 87,65 92,40
M3 Média B 50,27 75,87 87,06 91,71
M3 Média C 51,90 77,20 87,74 93,83
M4 Média A 50,85 77,05 89,13 93,35
M4 Média B 51,87 78,01 88,24 93,36
M4 Média C 53,15 76,22 87,70 93,72
M5 Média A 48,14 73,36 84,47 91,69
M5 Média B 50,29 76,16 87,25 92,30
M5 Média C 51,05 75,48 86,24 92,55
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M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6

Média
Média
Média
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada
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51,65
50,15
53,49
49,58
51,33
50,18
47,21
46,12
47,72
49,31
48,04
49,68
50,10
49,06
51,15
46,03
48,70
47,71
48,49
50,06
50,93

77,17
76,35
78,31
74,46
74,80
71,72
71,17
69,11
71,04
71,29
70,63
72,95
72,30
75,58
73,19
68,98
70,36
71,41
74,01
74,66
74,56

88,79
87,99
88,69
83,11
85,22
83,20
81,16
80,77
80,78
81,97
82,18
81,65
84,05
84,05
83,57
80,66
82,22
81,83
82,06
84,21
83,75

93,92
92,68
92,66
88,79
88,80
88,35
88,02
85,54
86,63
87,12
88,27
87,04
88,22
88,71
88,16
87,04
88,14
87,16
88,51
89,51
89,49

Tabela 28 - Erro das fases A, B e C para as cargas leve, média e pesada da topologia 6-35-35-1

Ponto de Erro<0,01 Erro<0,03 Erro<0,05 Erro<0,07
Monitoramento Carga Fase p.u. (%) p.u. (%) p.u. (%) p.u. (%)
M1 Leve A 58,38 82,82 90,11 94,32
M1 Leve B 56,09 81,80 90,76 93,91
M1 Leve C 56,24 82,73 91,55 94,44
M2 Leve A 56,12 81,98 91,17 94,18
M2 Leve B 57,64 82,03 90,51 94,03
M2 Leve C 59,06 83,35 91,20 94,58
M3 Leve A 59,90 84,21 91,02 94,08
M3 Leve B 57,02 84,04 91,65 94,58
M3 Leve C 57,12 83,83 90,88 94,09
M4 Leve A 58,33 83,71 91,36 94,41
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M4
M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4
M4
M4
M5
M5
M5
M6
M6
M6
M1
M1
M1
M2
M2
M2
M3
M3
M3
M4

Leve
Leve
Leve
Leve
Leve
Leve
Leve
Leve
Média
Meédia
Média
Meédia
Meédia
Meédia
Meédia
Meédia
Média
Média
Média
Média
Média
Média
Média
Média
Média
Média
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada
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47,94
61,86
55,75
58,71
55,60
60,07
56,85
55,91
54,26
52,00
52,63
47,33
50,28
55,35
54,55
51,03
52,08
55,78
17,78
51,56
52,07
52,13
51,17
57,65
52,43
54,09
51,85
49,14
50,43
48,99
47,66
52,06
53,65
51,86
47,57
51,88

72,21
85,95
83,65
82,69
82,47
83,74
83,59
84,00
79,58
77,74
76,35
74,94
76,43
80,23
78,34
75,88
76,86
80,75
67,84
77,24
77,95
79,93
76,87
80,21
79,21
80,00
74,91
71,56
71,42
70,27
70,51
77,48
76,20
75,62
70,78
75,33

86,41
92,27
90,50
91,00
89,59
90,41
92,13
90,96
88,95
86,53
87,93
86,54
87,89
89,28
88,98
87,08
87,76
90,41
82,56
87,80
88,35
88,49
85,44
90,17
89,83
88,66
84,25
82,55
82,85
81,16
82,23
84,75
84,62
83,62
81,35
83,90

92,46
94,94
93,95
94,39
93,57
93,68
95,32
94,41
94,53
92,96
93,25
92,53
92,94
94,43
93,60
93,81
92,63
93,27
89,15
93,26
94,11
93,91
92,46
94,54
93,56
93,35
89,87
87,68
88,21
87,84
87,36
89,39
89,55
88,48
86,76
89,85
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M4
M4
M5
M5
M5
M6
M6
M6

Pesada
Pesada
Pesada
Pesada
Pesada
Pesada
Pesada

Pesada

O ™ >» O T >» O W

13,84
51,27
48,67
51,33
46,33
49,41
50,73
53,25

62,87
72,03
73,58
75,15
70,49
74,51
73,31
75,86

76,09
83,11
83,71
84,05
81,66
84,45
84,05
84,72

82,78
88,57
89,09
89,70
86,88
89,62
88,55
89,69
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