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RESUMO

ARAÚJO, T. S. Análise de Sistemas Chaveados via Equações Diferenciais e Integrais Generalizadas.

2024. Monografia (Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos, Universidade de

São Paulo, São Carlos, 2024.

Sistemas chaveados desempenham um papel crucial na engenharia elétrica, sendo amplamente empregados

em aplicações como conversores CC-CC, controle de motores e sistemas de automação. Este estudo

apresenta uma análise detalhada desses sistemas utilizando equações diferenciais e integrais generalizadas.

A pesquisa aborda a modelagem matemática por meio de representações em espaço de estados e lógica de

chaveamento, além de explorar modelos específicos, como o modelo médio e o de pequenos sinais. Como

contribuição principal, o trabalho demonstra a equivalência entre sistemas chaveados e sistemas impulsivos,

evidenciando que é possível transformar um no outro de forma bidirecional. Adicionalmente, o estudo inclui

uma análise aprofundada do conversor Boost, um tipo de conversor CC-CC, com foco em suas características

operacionais e sua modelagem matemática. A validação dos modelos teóricos foi realizada por meio de

simulações, comparando os resultados previstos com os obtidos na prática. Os resultados demonstram que a

abordagem proposta descreve eficazmente o comportamento dinâmico dos sistemas chaveados, dispensando

suposições ou linearizações. Esta pesquisa contribui para o avanço do entendimento de técnicas de análise e

modelagem de sistemas chaveados, com aplicações práticas em diversas áreas da engenharia elétrica.

Palavras-chave: Sistemas chaveados. Equações diferenciais impulsivas. Conversor Boost. Modelagem em

espaço de estados.





ABSTRACT

ARAÚJO, T. S. Analysis of Switched Systems Through Generalized Differential and Integral Equations.

2024. Bachelor’s Thesis (Final Graduation Project) – Escola de Engenharia de São Carlos, Universidade de

São Paulo, São Carlos, 2024.

Switched systems play a crucial role in electrical engineering, being widely employed in applications such

as DC-DC converters, motor control, and automation systems. This study presents a detailed analysis of

these systems using generalized differential and integral equations. The research addresses mathematical

modeling through state-space representations and switching logic, in addition to exploring specific models,

such as the average model and the small-signal model. As a main contribution, the work demonstrates the

equivalence between switched systems and impulsive systems, showing that it is possible to transform one into

the other bidirectionally. Additionally, the study includes an in-depth analysis of the Boost converter, a type of

DC-DC converter, focusing on its operational characteristics and mathematical modeling. The validation of the

theoretical models was carried out through simulations, comparing the predicted results with those obtained in

practice. The results demonstrate that the proposed approach effectively describes the dynamic behavior of

switched systems, without requiring assumptions or linearizations. This research contributes to advancing the

understanding of analysis and modeling techniques for switched systems, with practical applications in various

areas of electrical engineering.

Keywords: Switched systems. Impulsive differential equations. Boost converter. State-space modeling.
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1 INTRODUÇÃO

Sistemas chaveados são uma classe de sistemas dinâmicos que alternam entre diferentes subsistemas,

ou modos de operação, ao longo do tempo. O chaveamento entre esses modos pode ser determinado

por um controlador lógico, por condições internas do sistema, ou por eventos externos. Por exemplo, em

conversores de eletrônica de potência, como o conversor Boost, o chaveamento ocorre devido ao controle dos

interruptores (transistores), que alternam entre estados ligados e desligados para regular a saída de tensão.

Esse comportamento dinâmico e abrupto torna os sistemas chaveados amplamente utilizados em aplicações

que exigem alta eficiência e controle preciso, como em fontes de alimentação, controle de motores elétricos e

sistemas de energia renovável[1–4].

1.1 Sistemas chaveados

Sistemas híbridos combinam dinâmicas contínuas e discretas, modelando processos que alternam entre

diferentes estados ou modos de operação. Eles são representados por equações diferenciais para a dinâmica

contínua e por lógicas ou autômatos para as transições discretas.

Em diversas aplicações, o foco está nas propriedades da dinâmica contínua, enquanto a dinâmica discreta

desempenha um papel secundário. Assim, ao invés de estudar a dinâmica discreta em detalhes, é possível

considerar o sistema como composto por várias dinâmicas contínuas, nas quais uma lógica de chaveamento

seleciona uma delas. Esse método permite analisar o comportamento do sistema conforme diferentes lógicas

de chaveamento. Sistemas que envolvem dinâmicas contínuas e chaveamentos entre elas são chamados

sistemas chaveados[5], uma abordagem dos sistemas híbridos que abstrai a dinâmica discreta para enfatizar a

contínua.

Um sistema chaveado pode ser definido matematicamente por[6]

• Um conjunto de índices J ;

• Uma família de funções vetoriais fk : Rn −→ Rn, com k ∈ J e

• Uma função de chaveamento σ : R+ −→ J , que é constante por partes e determina qual dinâmica fk
será ativa em cada instante de tempo.

A dinâmica do sistema é descrita pela equação diferencial

•
x(t) = fσ(t)(x(t)),

em que x(t) ∈ Rn é o estado do sistema.

Um caso simples de um sistema chaveado é abordado no exemplo a seguir.

Exemplo 1 (Controle de temperatura). A temperatura de um ambiente varia de acordo com o seu fluxo líquido

de energia de acordo com a seguinte relação[7]:

C
•

T = q, (1.1)

sendo

• C a capacidade térmica do sistema (ambiente);

• T a temperatura do sistema e

• q o fluxo de energia térmica.

Assumindo que é possível injetar/extrair energia do sistema através de algum controlador de temperatura,

(1.1) torna-se

C
•

T = q + u, (1.2)
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sendo u a energia fornecida ou removida pelo controlador térmico.

Considere que C = 10 kJ ◦C−1, q = −2 kW, u = 5 kW se o controlador estiver no modo aquecedor, e

u = −5 kW quando estiver no modo de resfriamento. Considere também que o controlador esteja no modo

de aquecimento quando T < 20 ◦C, e no modo de resfriamento quando T > 25 ◦C.

Dessa forma, o sistema (ambiente mais controlador térmico) descrito por (1.2) pode ser modelado como

um sistema chaveado a partir de

•
x =

 0.3, se x < 20;

−0.7, se x > 25,

com x = T (valores de x entre 20 e 25 mantêm o último modo de operação do controlador).

A Figura 1 mostra o comportamento da temperatura do ambiente para a condição inicial x(0) = 15.

Figura 1 – Trajetória de x(t), com condição inicial x(0) = 15.

1010 2020 3030 4040 5050 6060 7070 8080 9090 100100
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Fonte: Elaborado pelo autor.

O sinal σ(t), que alterna entre diferentes dinâmicas fk(x), pode ser interpretado de várias maneiras, cada

uma delas é melhor adaptada a um tipo específico de problema ou análise[5]:

(a) Dependente do tempo: Se o sinal σ(t) depender unicamente do tempo, isso significa que o sistema

seguirá um padrão de chaveamento controlado exclusivamente pelo tempo, sem levar em conta o estado

atual do sistema. Este tipo de chaveamento é caracterizado por uma dependência temporal explícita, e

o sinal de chaveamento pode ser descrito como uma função determinística do tempo.

Matematicamente, isso pode ser expresso por uma função σ(t) que varia ao longo do tempo, como

uma onda quadrada ou uma sequência de pulsos com uma frequência ou período pré-determinado.

Nesse caso, o sistema alterna entre suas dinâmicas de acordo com um padrão de tempo predefinido,

por exemplo, alternando de forma periódica entre diferentes dinâmicas em intervalos de tempo fixos.

(b) Dependente do estado: Em alguns casos, o sinal σ(t) pode depender também do estado do sistema

x(t), ou seja, a dinâmica do sistema pode ser alterada em função do valor atual do estado x(t). Isso

implica que o comportamento do sistema pode mudar dependendo de sua condição ou contexto, levando

a uma escolha dinâmica do regime de operação. Por exemplo, se x(t) estiver em uma região específica

do espaço de estados, o sistema pode seguir uma dinâmica diferente em relação a quando x(t) está

em outra região. Esse tipo de chaveamento pode ser usado em sistemas em que a operação do sistema

depende de certos limiares ou condições de operação, como em sistemas de controle adaptativo ou

híbridos.

(c) Com memória: Em algumas situações, o sinal de chaveamento σ(t) pode ter memória, ou seja, o

valor de σ(t) para o instante t pode depender de seu valor em instantes anteriores. Isso significa que o
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sistema pode ter uma dependência de estados passados, e a decisão sobre qual dinâmica seguir não é

apenas uma função do tempo atual ou do estado atual, mas também dos estados anteriores.

A memória pode ser representada matematicamente como uma relação recursiva, como uma função

σ(t) dependente de σ(τ), τ < t, ou até mesmo como um conjunto de informações que descrevem o

histórico de escolhas do sistema.

(d) Controlado ou Autônomo: O sinal σ(t) é escolhido ou modificado pelo projetista do sistema, possi-

velmente com base em uma estratégia de controle. Em sistemas controlados, o chaveamento pode

ser ajustado em tempo real para otimizar a operação do sistema. O controle pode ser feito por um

controlador que determina qual dinâmica fk(x) o sistema deve seguir em função de variáveis de entrada,

condições do sistema ou objetivos de desempenho.

O sinal σ(t) será autônomo se for determinado por uma condição natural ou uma dinâmica inerente ao

sistema, sem intervenção externa. Isso pode ocorrer em sistemas biológicos, naturais ou em sistemas

em que o comportamento do chaveamento é ditado por parâmetros internos ou por interações naturais

no sistema. Nesse caso, σ(t) pode ser governado por leis físicas ou condições ambientais.

O sinal de chaveamento σ(t) em sistemas chaveados é uma ferramenta crucial que determina qual

dinâmica o sistema segue em determinado momento. Ele pode ser dependente do tempo, do estado ou até

mesmo ter memória. Além disso, pode ser controlado por um projetista ou ser autônomo, dependendo da

aplicação. O sinal de chaveamento, portanto, modela a alternância entre dinâmicas de maneira flexível, e sua

escolha e análise dependem do tipo de problema, das características do sistema e dos objetivos de controle.

1.2 Motivação para o estudo

A modelagem de sistemas chaveados é um campo de estudo complexo que busca representar com

precisão sistemas cujas operações alternam entre diferentes modos, dependendo de condições específicas.

Esses sistemas estão presentes em diversas áreas de engenharia, como eletrônica de potência, controle de

processos, telecomunicações e robótica, onde a capacidade de alternar entre diferentes estados operacionais

é fundamental para atender a variados requisitos de desempenho. No entanto, esse comportamento chaveado

gera desafios significativos na modelagem, pois demanda que os modelos sejam capazes de capturar

transições dinâmicas rápidas e efeitos não lineares.

1.2.1 Desafios na modelagem de sistemas chaveados

Uma das principais dificuldades na modelagem de sistemas chaveados está na natureza intrinsecamente

não linear das transições dinâmicas. Quando um sistema alterna de um modo de operação para outro, como

em conversores de potência, ocorrem mudanças abruptas que afetam diretamente variáveis como tensão,

corrente e outras grandezas relevantes. Essa não linearidade introduz complexidade adicional, dificultando

a análise precisa do comportamento do sistema ao longo do tempo[8]. Modelos lineares tradicionais, que

facilitam as análises matemáticas e simulações, geralmente não são capazes de capturar essas mudanças

abruptas com precisão, levando a resultados imprecisos em muitas aplicações práticas.

Outro desafio significativo é o fenômeno de dinâmicas múltiplas em sistemas chaveados. Diferentes modos

de operação podem apresentar dinâmicas distintas, e a transição entre esses modos pode gerar efeitos de

acoplamento que influenciam o comportamento geral do sistema. Em sistemas complexos, o número de

modos pode ser grande, e a frequência das comutações pode ser alta, tornando a modelagem ainda mais

desafiadora. Em sistemas de controle, por exemplo, o controlador deve ser capaz de responder rapidamente a

mudanças de estado e garantir a estabilidade, o que exige uma modelagem detalhada para prever o impacto

de cada transição[9]. No entanto, representar adequadamente todas as possíveis transições e suas respectivas
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dinâmicas em um único modelo é um desafio, tanto em termos computacionais quanto de precisão, resultando

na necessidade de simplificações que podem comprometer a qualidade da modelagem.

Adicionalmente, a transição entre estados também pode ser sensível a perturbações, e falhas na modela-

gem dessa sensibilidade podem levar a projeções de comportamento inconsistentes com o sistema real. Por

exemplo, em um sistema chaveado de controle de motores, mudanças de carga podem alterar drasticamente

o modo de operação[10], e a falta de uma modelagem adequada para esses cenários pode resultar em falhas

operacionais ou degradação do desempenho.

1.2.2 Limitações dos modelos tradicionais

Na modelagem de sistemas chaveados, os métodos tradicionais frequentemente usados, como o modelo

médio e o modelo de pequenos sinais, apresentam limitações significativas[11]. Esses modelos foram desen-

volvidos para simplificar a análise e otimização de sistemas não lineares, especialmente em casos onde os

sistemas têm comportamento predominantemente linear ou variações de baixa amplitude em regime. No

entanto, em sistemas chaveados, que podem ser caracterizados por transições rápidas entre estados de

operação e por dinâmicas não lineares complexas, esses métodos tradicionais podem falhar em capturar o

comportamento real, levando a resultados que, muitas vezes, são insuficientes para garantir um controle e

desempenho precisos.

O modelo médio, um dos métodos mais utilizados, aproxima o comportamento dinâmico do sistema

chaveado ao calcular uma média das variáveis ao longo de um período de chaveamento[12]. Esta técnica

permite simplificar a análise, fornecendo uma visão geral do sistema sem considerar o comportamento exato

de cada estado chaveado. Embora essa abordagem seja útil para reduzir a complexidade e facilitar a análise

em sistemas que operam com mudanças mais suaves, ela não é capaz de representar adequadamente

fenômenos críticos que ocorrem em sistemas chaveados, o que pode comprometer a precisão do controle e

da estabilidade do sistema[12,13].

O modelo de pequenos sinais, outra técnica comum, também apresenta limitações ao lidar com sistemas

chaveados. Este modelo assume que o sistema opera em torno de um ponto de operação estável e lineariza

o comportamento do sistema próximo a esse ponto. Ele é eficiente para prever a resposta do sistema a

pequenas perturbações[12]. Em sistemas chaveados em que as variações são rápidas e não lineares, o modelo

de pequenos sinais falha em representar o comportamento real, pois não consegue capturar as transições

súbitas e o impacto de grandes perturbações[14]. Isso é particularmente problemático em aplicações como a

eletrônica de potência, nas quais as transições entre estados de condução e bloqueio das chaves alteram

significativamente a dinâmica do sistema, exigindo uma modelagem mais robusta que considere esses efeitos.

Além disso, os modelos tradicionais geralmente dependem de suposições simplificadoras que desconside-

ram características importantes dos sistemas chaveados. Por exemplo, para reduzir a complexidade, esses

modelos frequentemente desconsideram a não linearidade intrínseca do sistema, a interação entre diferentes

modos de operação e o acoplamento entre variáveis que se torna mais evidente em sistemas chaveados.

Em muitos casos, esses modelos ignoram o impacto de parâmetros que variam ao longo do tempo, como

a resistência interna dos componentes e efeitos parasitas, que afetam o desempenho do sistema de forma

significativa, especialmente em regimes de alta frequência[15]. Essas simplificações podem resultar em erros

consideráveis na modelagem, levando a projeções que subestimam ou superestimam o comportamento do

sistema, o que compromete a confiabilidade das análises.

Outro fator limitante dos métodos tradicionais é a dificuldade de capturar fenômenos dinâmicos de

transição, como chattering e oscilações transitórias. Como o modelo médio suaviza o comportamento do

sistema ao longo de um ciclo e o modelo de pequenos sinais ignora grandes perturbações, ambos falham

em representar oscilações que ocorrem nas mudanças de estado. Em controladores de chaveamento, por

exemplo, o fenômeno de chattering ocorre quando há alternâncias repetitivas e rápidas entre estados, que
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os modelos tradicionais podem não conseguem capturar de forma precisa[16]. Isso pode causar dificuldades

na implementação de controles e aumentar o desgaste dos componentes, especialmente em sistemas com

chaveamento frequente.

Essas limitações dos modelos tradicionais tornam evidente a necessidade de técnicas de modelagem

mais avançadas para sistemas chaveados. Com a evolução das tecnologias e o aumento da complexidade

dos sistemas, tornou-se essencial explorar métodos que sejam capazes de representar as dinâmicas rápidas

e não lineares desses sistemas. Abordagens como a modelagem híbrida[17], que combina representações

contínuas e discretas, e o uso de modelos adaptativos[18], que ajustam os parâmetros em resposta a mudanças

no sistema, são algumas das técnicas que têm sido empregadas para se tentar resolver os problemas que

os modelos lineares não são capazes de representar. Métodos não lineares permitem uma descrição mais

precisa dos modos de operação e das transições, melhorando a precisão na previsão do comportamento do

sistema.

1.3 Objetivo do trabalho

O objetivo deste trabalho é investigar e analisar a modelagem de sistemas chaveados utilizando equações

diferenciais e integrais generalizadas. Dado o comportamento dinâmico e complexo dos sistemas chaveados,

busca-se desenvolver uma abordagem de modelagem que supere as limitações dos métodos tradicionais,

como o modelo médio e o modelo de pequenos sinais.

Este estudo visa explorar a capacidade dessas técnicas avançadas para capturar de forma precisa as

transições abruptas e as dinâmicas não lineares dos estados do sistema, sem depender de suposições

simplificadoras e linearizações. Especificamente, o trabalho pretende:

1. Apresentar os modelos existentes de sistemas chaveados, abordando as limitações associadas ao uso

de modelos lineares para representar sistemas não lineares e dinâmicos.

2. Aplicar técnicas de equações diferenciais impulsivas e integrais para descrever o comportamento de

sistemas chaveados, investigando como essas ferramentas matemáticas podem melhorar a previsão de

respostas transientes e de regime permanente.

3. Validar os modelos propostos através de simulações com foco em aplicações práticas, como o controle

de um conversores Boost, motor CC e análise de um sistema elétrico de potência, verificando a

capacidade dos novos modelos em descrever o comportamento real dos sistemas chaveados sob

diferentes condições operacionais.

Ao alcançar esses objetivos, o trabalho pretende contribuir para o desenvolvimento de métodos mais robus-

tos de análise e controle de sistemas chaveados, oferecendo uma base teórica sólida para futuras aplicações

em engenharia elétrica, especialmente em contextos que exigem alta precisão e eficiência energética.

1.4 Estrutura do trabalho

Esta monografia está organizada em cinco capítulos, cada um abordando aspectos específicos relaciona-

dos à análise e modelagem de sistemas chaveados via equações diferenciais e integrais generalizadas.

• Capítulo 1 - Introdução. Neste capítulo, são apresentados o contexto e a motivação para o estudo dos

sistemas chaveados, destacando sua relevância em algumas das aplicações da engenharia elétrica.

Além disso, são definidos os objetivos gerais e específicos do trabalho, bem como suas contribuições

esperadas para a área de estudo.
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• Capítulo 2 - Sistemas Chaveados. Este capítulo fornece uma revisão detalhada dos conceitos funda-

mentais dos sistemas chaveados, abordando sua caracterização e principais aplicações. São apresenta-

dos os métodos tradicionais de modelagem, como o modelo médio e o de pequenos sinais, além de

uma discussão sobre suas limitações.

• Capítulo 3 - Equações diferenciais impulsivas. Neste capítulo, é descrita a metodologia utilizada para

a modelagem de sistemas chaveados, utilizando equações diferenciais e integrais generalizadas. São

apresentadas as equações matemáticas desenvolvidas e os passos adotados para formular modelos

precisos que capturam as dinâmicas de sistemas chaveados.

• Capítulo 4 - Aplicações. Este capítulo apresenta as simulações realizadas para validar os modelos

desenvolvidos. São analisados os resultados obtidos, demonstrando o desempenho dos modelos

obtidos através de equações diferenciais impulsivas. Através de gráficos e análises, são demonstradas

as vantagens da abordagem proposta em relação à precisão do comportamento dinâmico dos sistemas.

• Capítulo 5 - Conclusão O último capítulo resume as principais conclusões do estudo, destacando as

contribuições do trabalho para a área de sistemas chaveados.

A estrutura do trabalho foi planejada para guiar o leitor desde os conceitos fundamentais até a análise

prática e teórica dos modelos propostos, proporcionando uma compreensão abrangente da modelagem e

análise de sistemas chaveados na engenharia elétrica. Além disso, os Apêndices contêm informações mais

detalhadas acerca das ferramentas matemáticas utilizadas no Capítulo 3, como as definições das funções

regradas e integral de Henstock-Kurzweil-Stieltjes.
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2 SISTEMAS CHAVEADOS

Por ser o conteúdo base desse texto, este capítulo se dedica à explicação do que são e como funcionam

os sistemas chaveados. Primeiramente, noções básicas, como definições e abordagens adotadas, serão

apresentadas para contextualizar o leitor acerca do assunto. Em sequência, serão apresentados os conceitos

gerais dos conversores CC-CC (Corrente Contínua para Corrente Contínua), que formam uma classe particular

de sistemas chaveados bastante comum na Engenharia Elétrica.

2.1 Noções básicas

Definição 2.1.1 (Sistemas chaveados[5]). A representação em espaço de estados de um sistema chaveado é

dada por

•
x(t) = fσ(t)(x(t), u(t), d(t), t)

ou, sem perda de generalidade, por

•
x = fσ(t)(x, u, d, t),

com

• fk : Rn × Rm × Rp × R −→ Rn sendo uma família de operadores, k ∈ J = {1, 2, . . . , q};

• x(t) ∈ Rn o estado do sistema;

• σ : R+ −→ J o sinal de chaveamento;

• u(t) ∈ Rm uma entrada de controle e

• d(t) ∈ Rp é um sinal externo ao sistema.

Para sistemas autônomos, isto é, sistemas que não dependem explicitamente da variável independente t,

representa-se um sistema chaveado simplesmente por

•
x = fσ(t)(x, u, d).

De forma geral, o sinal de chaveamento é escrito como

σ(t) = ψ(x(t), σ(t−), t) (2.1)

para uma certa lógica de chaveamento ψ : Rn × J ×R −→ J . Cada sistema

•
x = fk(x, u, d, t)

é chamado de subsistema ou modo de operação do sistema chaveado. Já os instantes t de descontinuidade

de fk, para k ∈ J , são chamados de instantes de chaveamento.

O sinal de chaveamento σ(t) é quem dita qual dos subsistemas fk estará ativo entre os instantes de

chaveamento. Como apresentado em (2.1), o sinal de chaveamento pode depender do estado, do tempo e até

mesmo de seu valor anterior; porém, por simplicidade, vamos apenas denotar o sinal de chaveamento por

σ(t).

O sinal externo d(t), normalmente um distúrbio presente na planta (sistema), é algo que foge do escopo

do texto e, por isso, será desconsiderado.

Com respeito à entrada de controle u(t), ela pode ser descrita unicamente como função do tempo

u = λ(t), mas também pode ser considerada como função do estado u = λ(x) (quando o controle envolve

realimentação de estado, por exemplo), ou ainda, pode ser função de ambos os casos anteriores, u = λ(x, t),
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ou sequer estar presente (u = 0). Dito isso, é bastante vantajoso trabalharmos apenas com os casos em

que u = λ(x) ou u = 0, pois, assim, podemos considerar f independente de u. Além disso, por simplicidade,

serão considerados, apenas, os sistemas autônomos, pois as discussões feitas posteriormente podem, a

grosso modo, ser estendidas aos sistemas não-autônomos.

Sendo assim, o restante do texto será, a menos que se diga o contrário, focado apenas nos sistemas

chaveados da forma

•
x = fσ(t)(x).

O exemplo a seguir, elaborado pelo autor, mostra como se resolve um sistema chaveado e, a partir dele,

algumas características básicas de tais sistemas serão discutidas.

Exemplo 2. Dado o sistema chaveado •
x = fσ(t)(x), σ : R+ −→ {1, 2}, com

f1(x) = 0 e f2(x) = −x, (2.2)

considere que a condição inicial do sistema valha x0 = x(0) = 10 e que o sinal de chaveamento seja dado por

σ(t) =

 1, se t < 1

2, se 1 ≤ t < 2
e σ(t+ 2) = σ(t). (2.3)

Pela definição de σ(t), o primeiro modo de operação do sistema é dado por f1. Logo, como a solução

de •
x = 0 é dada por c = cte, pela condição inicial do sistema, segue que x(t) = 10, enquanto o subsistema

f1 continuar ativo. No instante t1 = 1, por (2.3), ocorre o chaveamento e o modo de operação do sistema

passa a ser o f2. Com isso, o estado do sistema até o próximo instante de chaveamento (t2 = 2) é dado pela

solução de •
x = −x nas condições do instante t1, isto é,

•
x = −x,

x(1) = 10;
1 < t ≤ 2.

Figura 2 – Trajetória de x(t), com condição inicial x(0) = 10.
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Fonte: Elaborado pelo autor.

A obtenção da solução da equação acima é bem simples e o leitor não deve ter dificuldade em obter a

expressão

x(t) = 10e−t+1 para 1 < t ≤ 2.
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Já no instante de chaveamento t2 = 2, o sistema volta para o modo f1 e, então, o estado passa a ser dado

pela solução de 
•
x = 0,

x(2) = 10e−1;
2 < t ≤ 3,

que vale x(t) = 10e−1. No instante de chaveamento t3 = 3, o sistema volta para o modo f1 e esse ciclo se

repete infinitamente (ver Figura 2).

Perceba que a resolução de um sistema chaveado baseia-se na solução das infinitas equações diferenciais

•
x = fk(x), k ∈ {1, . . . , q}, t ∈ (tj , tj + 1],

com condição inicial xtj = x(tj). No caso em que os subsistemas são lineares e invariantes no tempo (LTI, na

sigla em inglês), a resolução fica bem mais simples, pois a linearidade nos permite encontrar uma solução de

forma relativamente fácil (utilizando os métodos de resolução no tempo ou frequência estudados em Cálculo)

e a invariância no tempo nos permite utilizar a solução de •
x = fk(x) para t ∈ R+, com uma condição inicial

arbitrária xk(0), para encontrar a solução de •
x = fk(x) para t ∈ (tj , tj + 1], com condição inicial x(tj). Em

outras palavras, se o sistema chaveado for formado por q subsistemas LTI, precisaremos resolver apenas q

equações diferenciais, ao invés de infinitas.

Como forma de recordação[19], considere

• T : Rn −→ Rn um operador que representa um sistema;

• u1(t), u2(t) ∈ Rn sinais de entrada e

• y1(t) = T (u1(t)), y2(t) = T (u2(t)) ∈ Rn sinais de saída do sistema T .

Então um sistema será dito linear, se

T (u1(t) + u2(t)) = T (u1(t)) + T (u2(t)),

e será dito invariante no tempo, se

T (u1(t)) = y1(t) implicar em T (u1(t+ t0)) = y1(t+ t0)

para qualquer t0 ∈ R.

Já que todo sistema da forma

T (x(t)) = βn
dn

dtn
x(t) + · · ·+ β1

d

dt
x(t)

é LTI[19], os subsistemas representados por (2.2) são LTI. Logo, a solução do sistema chaveado descrito pelos

modos (2.2) se resume ao cálculo das soluções dos sistemas
•
x1 = 0,

x1(0) = α,
t > 0 (2.4)

e 
•
x2 = −x2,

x2(0) = β,
t > 0. (2.5)

com α, β ∈ R. Não é difícil concluir que x1(t) = x1(0), t > 0, é a solução de (2.4), enquanto que x2(t) =

x2(0)e
−t, t > 0, é a solução de (2.5). Portanto, se o sistema chaveado estiver no modo fk, k ∈ {1, 2}, em
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t ∈ (tj , tj+1], o estado do sistema será descrito por x(t) = xk(t − tj) pela invariância no tempo, sendo a

condição inicial xk(0) substituída por x(tj), isso é,

x(t) =

 x(tj), se σ(t) = 1 em (tj , tj + 1];

x(tj)e
tj−t, se σ(t) = 2 em (tj , tj + 1];

t > 0, (2.6)

em que tj = 0, 1, 2, . . . e x(0) = x0.

Alguns pontos já podem ser levantados a partir desse simples exemplo. Primeiramente, o estado x do

sistema é uma função contínua apesar do chaveamento, e isso ocorre pela transposição do valor final de

um modo de operação para o valor inicial do subsequente. Tal fenômeno é uma característica importante

dos sistemas chaveados, haja vista que sistemas físicos (sistemas que descrevem comportamentos que

acontecem no mundo real) possuem o estado contínuo no tempo intrinsecamente. Entretanto, note que

sempre nos referimos à solução x(t) dentro de um intervalo (tj , tj+1], que é aberto à esquerda e fechado

à direita, o que essencialmente falando (pensando como engenheiro) não faz diferença, já que o estado é

contínuo. Tal escolha se dá por conta de ferramentas (como o Corolário 3.6.1) utilizadas posteriormente que

assumem a continuidade à esquerda.

Outro ponto a se destacar é o fato de que os instantes de chaveamento tj ∈ {1, 2, . . .} não influenciam

a expressão geral da solução do sistema chaveado, pelo menos quando ele é composto somente por

subsistemas LTI. Com isso, a inserção de controle em tais sistemas (que nesse caso se resume à escolha

da lei σ(t) que determina os instantes de chaveamento) não inutiliza a solução do sistema chaveado sem

controle. O controle apenas redefine os valores dos instante de chaveamento.

Uma última observação a ser abordada aqui é com relação à solução do sistema. Veja em (2.6) que, para

sabermos o valor de x em um determinado instante de tempo ti, não basta somente substituir o valor de ti
na expressão e calculá-la, pois existe uma parcela na expressão geral que depende do último instante de

chaveamento, isso é, x(tj). Do mesmo modo, para descobrirmos o valor de x(tj), precisaremos do valor de x

no instante de chaveamento anterior a tj , e esse processo se repete até chegarmos à condição inicial x(0).

Isso evidencia o quanto os instantes de chaveamento influenciam a resposta final e o quanto dispendioso é

obter, manualmente, o valor de x em um determinado instante ti.

O exemplo acima foi dado como demonstrativo e não possui nenhum significado prático. A partir de agora,

iremos utilizar os conversores CC-CC como nosso sistema chaveado, já que tais circuitos são básicos no

curso de Engenharia Elétrica e possuem várias aplicações.

2.2 Conversores CC-CC

Um conversor CC-CC (CC: Corrente Contínua) pode ser considerado o equivalente CC de um transforma-

dor CA (Corrente Alternada) com uma relação de espiras continuamente variável. Assim como o transformador,

ele pode ser usado para baixar ou elevar uma fonte de tensão CC.

Os conversores CC-CC são amplamente utilizados no controle de tração de motores em automóveis

elétricos, guindastes portuários, empilhadeiras e transportadores de mineração. Eles propiciam um controle

uniforme (suave) de aceleração, alta eficiência e uma resposta dinâmica rápida. Os conversores CC-CC

podem ser utilizados em frenagem regenerativa de motores CC para devolver energia à fonte de alimentação.

Os conversores CC-CC são utilizados em reguladores de tensão CC, e também em conjunto com um indutor

para gerar uma fonte de corrente CC, em especial para os inversores de fonte de corrente. Os conversores

CC-CC também estão presentes na conversão de energia na área da tecnologia de energia renovável[11].

A seguir, vamos descrever o conversor Boost, um tipo de conversor CC-CC utilizado para elevar a tensão

de entrada para um nível de tensão de saída mais alto.
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2.2.1 Conversor Boost

Um conversor CC-CC pode ser utilizado para elevar uma tensão CC. Uma estrutura típica de tal conversor,

chamado de conversor Boost, é apresentada na Figura 3a. Quando a chave Q é fechada e permanece assim

por um tempo T1, a corrente no indutor L cresce, e a energia é armazenada nele. Se a chave for aberta

e permanecer nessa posição por um tempo T2, a energia armazenada no indutor será transferida para a

carga[11].

Figura 3 – Circuito do conversor Boost.
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(a) Diagrama do circuito.
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(c) Modo 2.

Fonte: Elaborado pelo autor.

A ideia por trás do funcionamento dos conversores CC-CC é simples: a fonte transfere energia para um

(ou mais) elemento armazenador de energia (indutor ou capacitor) no modo de operação 1, e essa energia é

transferida para um outro elemento(s) armazenador(es) de energia no modo 2. Após n modos de operação,

tal energia é entregue para a carga.

Olhando para o conversor Boost por essa perspectiva, no modo 1 (Figura 3b) a fonte transfere energia para

o indutor, enquanto o capacitor fornece energia para a carga, e, no modo 2 (Figura 3c), a energia do indutor é

entregue para o capacitor e para a carga, que nesse caso é um resistor. O papel do capacitor, teoricamente,

é de absorver toda oscilação na tensão sobre a carga, para que somente o valor médio seja entregue na

saída. Na prática, o capacitor é o responsável por fornecer energia para a carga enquanto o indutor estiver

recebendo energia da fonte (modo 1), o que implica na diminuição da tensão sobre o capacitor e a carga. Se

o capacitor for grande o suficiente, isto é, se o valor da capacitância for grande, tal queda será bem pequena,

quando comparada com o valor médio da tensão sobre a carga. Por isso, dizemos que a tensão de saída é

idealmente constante. Daí vem o nome conversor CC-CC.

Para conseguirmos entender um pouco melhor como são as formas de onda do circuito Boost, vamos

analisá-lo através de seu modelo médio.

2.2.2 Modelo médio

O modelo médio de um conversor CC-CC fornece as principais informações sobre o funcionamento do

circuito de forma simples e rápida.
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A análise via modelo médio se baseia em duas suposições:

(S1) Circuito em regime permanente;

(S2) Tensão nos capacitores e corrente dos indutores são constantes.

A segunda suposição está levando em conta que, em regime, as variações sobre as variáveis de estado do

circuito (tensão sobre capacitores e corrente em indutores) são muito pequenas quando comparadas com

o valor médio. Para que (S2) seja factível, precisamos de (S1). Com isso, a obtenção do modelo médio do

conversor se resume ao cálculo das tensões sobre os indutores e correntes nos capacitores em cada um dos

modos de operação, como mostrado no exemplo a seguir.

Exemplo 3 (Conversor Boost). O circuito do conversor Boost é apresentado na Figura 3a, cujo primeiro modo

de operação é dado pela Figura 3b. Dadas as Leis de Kirchhoff das Correntes (LKC) e das Tensões (LKT),

que dizem que[20]

(LKC) A soma algébrica das correntes que entram em um nó é igual a zero;

(LKT) A soma algébrica das tensões ao longo de qualquer percurso fechado é zero,

é possível concluir que a tensão v1(t) sobre o indutor e a corrente i2(t) que passa pelo capacitor no modo 1

valem

v1(t) = VE e i2(t) = −i3 = −v2(t)
R

. (2.7)

Por outro lado, por LKC e LKT, a tensão v1(t) sobre o indutor e a corrente i2(t) que passa pelo capacitor

no modo 2 são dadas por

v1(t) = VE − v2(t) e i2(t) = i1(t)− i3(t) = i1(t)−
v2(t)

R
. (2.8)

As equações (2.7) e (2.8) são tudo o que precisávamos encontrar. A partir deste ponto, basta realizarmos

manipulações algébricas sobre tais equações para obtermos todas as informações referentes ao circuito. A

primeira coisa a se fazer é aplicar (S2) em cada uma dessas equações para chegarmos em

Modo 1

 v1(t) = VE ;

i2(t) = −V2
R
,

e Modo 2

 v1(t) = VE − V2;

i2(t) = I1 −
V2
R
,

(2.9)

sendo que

• I1 é o valor constante da corrente que passa pelo indutor e

• V2 é o valor constante da tensão sobre o capacitor.

Sabendo que o valor médio de uma função y(t), não necessariamente periódica, é

1

T

b∫
a

y(t) dt, (2.10)

com T = a − b, por (S1) e pelo princípio da conservação da energia, podemos afirmar que tensão média

sobre o indutor é nula, ou seja,

0 =

Ts∫
0

v1(t) dt =

T1∫
0

VE dt+

Ts∫
T1

(VE − V2) dt

= VEt1 + (VE − V2)(Ts − T1) = VET1 + (VE − V2)T2, (2.11)

sendo
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• Ts o período de chaveamento;

• T1 o tempo em que o circuito permanece no modo 1;

• T2 = Ts − T1 o tempo em que o circuito permanece no modo 2.

Observamos, aqui, que considerar que T1 e T2 variam ao longo do tempo é particularmente desinteressante

no momento. Então, vamos tomá-los fixos por enquanto.

Defina a razão cíclica D ou, do inglês, duty cycle, por

D1 =
T1
Ts
, de modo que D2 = 1−D1 =

T2
Ts
,

para que (2.11) seja reescrita como

0 = VET1 + (VE − V2)T2 = VED1Ts + (VE − V2)D2Ts

= VE(D1 +D2)Ts − V2D2Ts = VETs − V2D2Ts,

ou seja,

V2 =
VE
D2

=
VE

1−D1
. (2.12)

A expressão (2.12) nos fornece uma relação entre a tensão de entrada e a tensão de saída do conversor.

Como 0 ≤ D1, D2 ≤ 1, por (2.12), segue que V2 ≥ VE > 0 e o conversor é, então, um elevador de tensão.

Disso vem o nome conversor Boost. Se pararmos para analisar, já sabíamos que a tensão de saída deveria

ser maior que a da entrada pelo princípio da conservação da energia, já que v1(t) = VE > 0 no modo 1.

Sendo assim, necessariamente v1(t) = VE − V2 < 0 no modo 2 para que seja possível que o valor médio de

v1(t) seja 0.

De forma análoga, segue pelo princípio da conservação da energia, que a corrente média que passa pelo

capacitor vale 0 e, como i2(t) = −V2/R < 0, então, necessariamente, i2(t) = I1 − V2/R > 0, o que também

implica que I1 > 0 (se não fosse possível obter tal conclusão, bastaria fazer o cálculo do valor médio de i2(t)

de forma análoga ao que foi feito acima para v1(t)). Tais conclusões, juntamente com (2.9), nos permitem

esboçar os gráficos de v1(t) e i2(t) (ver Figura 4).

Figura 4 – Formas de onda do conversor Boost.

T1

T2

VE

VE - V2

Ts

v1(t)

t

(a) Tensão sobre o indutor.

Ts

i2(t)

t

T1

T2

(b) Tensão no capacitor.

Fonte: Elaborado pelo autor.

Com relação aos gráficos referentes à corrente no indutor e à tensão no capacitor, poderíamos apenas

nos valer de (S2) e desenhar uma reta em cada um dos casos. Entretanto, (S2) é uma idealização do

comportamento do circuito que, na prática, não acontece. Existe, porém, uma forma de esboçarmos os

referidos gráficos de uma forma mais fidedigna mas, ainda assim, aproximada. Basta saber que a tensão

vL(t) sobre um indutor de indutância L e a corrente iC(t) que passa por um capacitor de capacitância C são

dadas, respectivamente, por

vL(t) = L
d

dt
iL(t) e iC(t) = C

d

dt
vC(t), (2.13)



30

com

• iL(t) sendo a corrente que passa por tal indutor e

• vC(t) a tensão sobre o capacitor[20].

Substituindo-se (2.13) em (2.9), temos

Modo 1

 L
d

dt
i1(t) = VE ;

C
d

dt
v2(t) = −V2

R
,

e Modo 2

 L
d

dt
i1(t) = VE − V2;

C
d

dt
v2(t) = I1 −

V2
R
,

que, ao serem integradas, são dada por

Modo 1

 i1(t) =
VE
L
t+ i1(0);

v2(t) = − V2
RC

t+ v2(0),

e Modo 2

 i1(t) =
VE − V2

L
t+ i1(t1);

v2(t) =

(
I1
C

− V2
RC

)
t+ v2(t1).

(2.14)

A partir de (2.14) e das conclusões obtidas anteriormente (V2 > VE > 0 e I1 > V2/R > 0), é possível

esboçar os gráficos de i1(t) e v2(t) (ver Figura 5).

Figura 5 – Formas de onda do conversor Boost.

t

i1(t)

i1(0)

i1(t1)

I1

DTs Ts

(a) Corrente no indutor.

t

v2(t)

DTs Ts

v2(0)

V2

v2(t1)

(b) Tensão no capacitor.

Fonte: Elaborado pelo autor.

Existe uma informação quanto aos gráficos e suposições feitas que não foi mencionada até então: para que

as formas de onda das Figuras 4 e 5 sejam válidas, o circuito deve estar operando em modo de condução

contínua, isto é, a ondulação na corrente dos indutores e a ondulação na tensão sobre os capacitores deve ser

pequena o suficiente para que elas não fiquem em zero por mais que um intervalo degenerado. Caso contrário,

um ou mais modos de operação apareceriam no circuito e o circuito estaria operando em modo de condução

descontínua. O modo de condução descontínua normalmente ocorre por conta de uma grande ondulação na

corrente de algum indutor de um conversor operando com carga leve e contendo chaves unidirecionais de

corrente. Também verifica-se tal modo de operação quando o conversor está operando com a carga removida.

Em particular, existem certas topologias de conversores que operam no modo de condução descontínua

propositalmente para todas as cargas[21].

Se supusermos que o circuito opera em modo de condução descontínua, mais modos de operação deverão

ser levados em conta, o que só nos dará mais trabalho. No caso do conversor Boost, deseja-se que ele opere

em modo de condução contínua, por isso podemos desconsiderar os casos em que o circuito opera no modo

descontínuo.

O modelo médio do conversor nos permite entender o seu funcionamento de forma geral e, além disso,

também nos permite encontrar os parâmetros de desempenho e definir os valores dos componentes do

circuito, dadas algumas especificações. O cálculo dos valores dos componentes não será apresentado nesse

texto, mas pode ser visto em[11,21]. Apesar desses benefícios proporcionados pelo modelo médio, ele é
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insuficiente se desejamos aplicar controle no conversor, por exemplo. Para tal, normalmente utiliza-se o

modelo de pequenos sinais do conversor.

2.2.3 Modelo de pequenos sinais

O modelo de pequenos sinais baseia-se na substituição de (S2) por

(S2.1) Tensão nos capacitores e corrente dos indutores são valores médios.

Denote por Y m o valor médio de uma grandeza (tensão ou corrente) y(t) e por Y m
1 , Y m

2 o valor de y(t),

representado por grandezas médias, no modo 1 e 2 respectivamente (aqui estamos supondo apenas 2 modos

de operação para ilustração). Segue, então, por (2.10) que

Y m =
1

Ts

b∫
a

y(t) dt = Y m
1

T1
Ts

+ Y m
2

Ts − T1
Ts

= Y m
1

T1
Ts

+ Y m
2

T2
Ts
, (2.15)

com

• Ts sendo o período de chaveamento,

• T1 o tempo em que o circuito permanece no modo 1 e

• T2 = Ts − T1 o tempo em que o circuito permanece no modo 2.

Considerando que T1 pode variar no intervalo [0, Ts] ao longo do tempo (o que essencialmente "quebra" a

periodicidade do chaveamento, mas que será relevado aqui), então o duty cycle

d1(t) =
T1(t)

Ts
(2.16)

agora é uma função de t e, portanto, (2.15) se escreve como

Y m = Y m
1

T1
Ts

+ Y m
2

T2
Ts

= Y m
1 d1(t) + Y m

2 d2(t),

com d2(t) = 1− d1(t). Em particular, para o caso em que y(t) é a tensão sobre um indutor ou a corrente que

passa por um capacitor, segue por (2.13) que

d

dt
iL(t) =

V m
L

L
e

d

dt
vC(t) =

ImC
C
,

ou seja,

d

dt
iL(t) =

V m
L,1

L
d1(t) +

V m
L,2

L
d2(t),

d

dt
vC(t) =

ImC,1

C
d1(t) +

Cm
C,2

C
d2(t),

(2.17)

em que

• V m
L é o valor médio da tensão vL(t);

• V m
L,1 é o valor de vL(t) no modo 1 em termos de valores médios e

• V m
L,2 no modo 2 (o mesmo ocorre para iC(t)).

Agora, adicione a seguinte hipótese

(S3) Existem oscilações nos sinais, mas elas são muito pequenas,
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de modo que, em regime permanente, valham

iL(t) = IL + ĩL(t)

vC(t) = VC + ṽC(t)

vE(t) = VE + ṽE(t)

dk(t) = Dk + d̃k(t),

(2.18)

sendo

• IL, VC , VE , Dk constantes e

• ĩL(t), ṽC(t), ṽE(t), d̃k(t) pequenas oscilações em torno das constantes;

aqui vE(t) é a tensão de entrada. Substituindo (2.18) em (2.17), separando os termos constantes dos

termos que variam no tempo e desprezando os produtos entre duas funções do tempo, obtêm-se relações

provenientes do modelo médio (através das expressões com os termos constantes) e o modelo de pequenos

sinais (através dos termos variantes no tempo)[21].

O que foi dito acima pode parecer difícil, mas é surpreendentemente simples. Resumindo:

• Calcule vL(t) e iC(t) para cada um dos modos de operação do conversor;

• Substitua vL(t) e iC(t) por (2.13);

• Multiplique as equações do modo 1 por d1(t), as do modo 2 por d2(t) e assim por diante;

• Somes as expressões de
•

iL(t) de todos os modos, assim como para •
vC(t);

• Substitua (2.18) nas expressões resultantes;

• Separe as expressões em equações envolvendo somente termos contantes e equações contendo

termos variantes no tempo e

• Nas equações contendo termos variantes no tempo, despreze os produtos entre duas ou mais funções

do tempo.

Para deixar mais claro como seguir as instruções acima, o seguinte exemplo foi elaborado pelo autor.

Exemplo 4 (Conversor Boost). Aplicando o passo a passo descrito anteriormente no conversor Boost, temos,

por (2.7) e (2.8),

Modo 1

 v1(t) = vE(t);

i2(t) = −v2(t)
R

,

e Modo 2

 v1(t) = vE(t)− v2(t);

i2(t) = i1(t)−
v2(t)

R
,

(a diferença com relação às equações (2.7) e (2.8) foi a substituição da tensão de entrada VE por vE(t), já que

agora ela pode ter pequenas oscilações). Substituindo v1(t) e i2(t) por (2.13) e multiplicando as equações do

modo 1 por d1(t) e as do modo 2 por d2(t), obtém-se

Modo 1

 d1(t)
d

dt
i1(t) =

vE(t)

L
d1(t);

d1(t)
d

dt
v2(t) = −v2(t)

RC
d1(t),

e Modo 2

 d2(t)
d

dt
i1(t) =

vE(t)− v2(t)

L
d2(t);

d2(t)
d

dt
v2(t) =

(
i1(t)

C
− v2(t)

RC

)
d2(t)

que, ao serem somadas, se tornam

(d1(t) + d2(t))
d

dt
i1(t) =

vE(t)

L
d1(t)−

vE(t)− v2(t)

L
d2(t);

(d1(t) + d2(t))
d

dt
v2(t) = −v2(t)

RC
d2(t) +

(
i1(t)

C
− v2(t)

RC

)
d2(t),
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ou seja,

d

dt
i1(t) =

vE(t)

L
− v2(t)

L
d2(t);

d

dt
v2(t) =

i1(t)

C
d2(t)−

v2(t)

RC
,

já que d1(t) + d2(t) = 1. Então, ao substituir (2.18) nas expressões acima, chegamos em

d

dt
(I1 + ĩ1(t)) =

VE + ṽE(t)

L
− V2 + ṽ2(t)

L
(D2 + d̃2(t));

d

dt
(V2 + ṽ2(t)) =

I1 + ĩ1(t)

C
(D2 + d̃2(t))−

V2 + ṽ2(t)

RC
,

que, quando separada em equações somente com termos constantes e equações contendo termos variantes

no tempo, nos fornece

d

dt
I1 = 0 =

VE
L

− V2D2

L
;

d

dt
V2 = 0 =

I1D2

C
− V2
RC

, (2.19)

e

d

dt
ĩ1(t) =

ṽE(t)

L
− V2d̃2(t) +D2ṽ2(t) + ṽ2(t)d̃2(t)

L
;

d

dt
ṽ2(t) =

I1d̃2(t) +D2ĩ1(t) + ĩ1(t)d̃2(t)

C
− ṽ2(t)

RC

(2.20)

Basta, agora, desconsiderar os produtos entre funções do tempo em (2.20), baseado em (S3), para

obtermos

d

dt
ĩ1(t) =

ṽE(t)

L
− V2d̃2(t) +D2ṽ2(t)

L
;

d

dt
ṽ2(t) =

I1d̃2(t) +D2ĩ1(t)

C
− ṽ2(t)

RC
,

(2.21)

já que a multiplicação entre dois termos pequenos é mais pequena ainda, podendo assim ser desprezada. Por

último, note que

d2(t) = D2 + d̃2(t) = 1− d1(t) = 1−D1 − d̃1(t) = D2 − d̃1(t),

o que implica em

d̃2(t) = −d̃1(t),

que, por sua vez, permite que (2.21) seja reescrita como

d

dt
ĩ1(t) =

ṽE(t)

L
+
V2d̃1(t) +D2ṽ2(t)

L
;

d

dt
ṽ2(t) = −I1d̃1(t) +D2ĩ1(t)

C
− ṽ2(t)

RC
.

(2.22)

As equações em (2.19) nos fornecem informações que obtemos ao aplicarmos o modelo médio do

conversor, como por exemplo a relação de ganho entre as tensões de entrada e saída utilizando

0 =
VE
L

− V2D2

L
, o que implica em

V2
VE

=
1

D2
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(compare com (2.12)). Além disso, também é possível obtermos a relação entre a corrente do indutor (corrente

de entrada) e a corrente do resistor (corrente da saída) através de

0 =
I1D2

C
− V2
RC

=
I1D2

C
− I3
C
, o que implica em

I3
I1

= D2, (2.23)

com I3 = V2/R sendo o valor constante da corrente que passa pelo resistor (isso também pode ser obtido

pelo modelo médio, basta aplicar o princípio da conservação de energia na corrente que flui pelo capacitor,

assim como foi feito para a tensão sobre o indutor para obtermos (2.12)).

Já as equações em (2.22) formam o modelo de pequenos sinais do conversor Boost. Elas são a represen-

tação linearizada em espaço de estados do conversor Boost e são tipicamente utilizadas na prototipagem de

controladores no domínio da frequência. Apesar da simplicidade de sua obtenção e de sua utilidade, o modelo

de pequenos sinais é ainda uma aproximação do comportamento do circuito e depende muito da veracidade

de (S3) para ser uma boa aproximação. Para que tenhamos o comportamento total e completo do conversor,

precisamos de sua representação completa em espaço de estados.

2.2.4 Modelo em espaço de estados

O modelo em espaço de estados de um conversor normalmente é dado na notação matricial[21]

•
x = Ax+Bu

com

• x(t): vetor de estados (corrente nos indutores e tensão sobre os capacitores);

• A: matriz de coeficientes de estado (pode variar em t);

• u(t): vetor de fontes e

• B: matriz de coeficientes de fonte (pode variar em t).

Ao invés de fazermos a mudança de subsistema quando ocorre o chaveamento, como deveria ser feito

de acordo com a Definição 2.1.1, nós podemos juntar todos os modos de operação do conversor em sua

representação em espaço de estados através das funções

αk(t) =

 1, se o modo de operação ativo for k;

0, caso contrário,

o que nos fornece a representação

•
x = α1A1x+ α1B1u+ . . .+ αnAnx+ αnBnu.

Se cada um dos subsistemas de um conversor CC-CC for formado apenas por fontes e elementos passivos

(resistores, capacitores e indutores), eles serão LTI e poderemos encontrar a resposta analítica do problema,

assim como foi feito no Exemplo 2.

Exemplo 5 (Conversor Boost). A representação em espaço de estados do conversor Boost é, por (2.7), (2.8)

e (2.13), da seguinte forma
•

i1

•
v2

 = α1(t)


0 0

0
−1

RC




i1

v2

+ α1(t)


1

L

0

VE + α2(t)


0

−1

L

1

C

−1

RC




i1

v2

+ α2(t)


1

L

0

VE ,
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ou seja, 
•

i1

•
v2

 =


0

−α2(t)

L

α2(t)

C

−1

RC




i1

v2

+


VE
L

0

 , (2.24)

já que α1(t) + α2(t) = 1.

Quando a chave está ligada (modo 1), α2(t) = 0 e a representação em espaço de estados fica sendo
•

i1

•
v2

 =


0 0

0
−1

RC




iL

vC

+


VE
L

0

 , (2.25)

que é LTI e tem solução dada por 
i1(t) =

VE
L

· t+ i1(0)

v2(t) = v2(0) · exp
(

−t
RC

) (2.26)

com i1(0) e v2(0) sendo as condições iniciais do problema. Já para o caso em que a chave está aberta (modo

2), α2(t) = 1 e, por (2.24), segue que
•

i1

•
v2

 =


0

−1

L

1

C

−1

RC




i1

v2

+


VE
L

0

 , (2.27)

ou ainda, 
•

i1 = − 1

L
v2 +

VE
L

(2.28a)

•
v2 =

1

C
i1 −

1

RC
v2, (2.28b)

que também é LTI.

Vamos, primeiramente, encontrar a expressão de v2(t). Derivando (2.28b) no tempo e substituindo
•

i1 pela

expressão em (2.28a), obtemos

••
v2 =

1

C

•

i1 −
1

RC
•
v2 =

1

C

(
− 1

L
v2 +

VE
L

)
− 1

RC
•
v2,

ou seja,

••
v2 +

1

RC
•
v2 +

1

LC
v2 =

VE
LC

. (2.29)

Para resolver (2.29), vamos calcular a resposta natural vn2 (t) e a resposta forçada vf2 (t). Como recordação,

a solução x(t) de uma equação diferencial linear não homogênea

βn
dn

dtn
x(t) + · · ·+ β1

d

dt
x(t) = g(t)
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é dada por

x(t) = xn(t) + xf (t),

sendo xn(t) a resposta natural, obtida quando g(t) = 0, e xf (t) a resposta forçada, obtida para uma

escolha específica da função g(x)[20].

Com relação ao cálculo da resposta natural vn2 (t), considere

ζ =
1

2RC
e ω0 =

1√
LC

,

de modo que (2.29) seja reescrita como

••

vn2 + 2ζ
•

vn2 + ω2
0v

n
2 = 0

(lembre-se que o 0 do lado direito aparece porque estamos calculando a resposta natural). Quando ζ = ω0, a

solução da equação acima já é bem conhecida[20] e vale

vn2 (t) = (A1 +A2t)e
−ζt, (2.30)

com A1, A2 sendo constantes a serem determinadas através das condições iniciais do circuito.

A resposta forçada vf2 (t) é obtida ao supormos que v2(t) = K1 = cte em (2.29) (tal escolha é feita, pois a

fonte de tensão do circuito é contínua, ou ainda, o lado direito de (2.29) é uma constante). Assim, temos

••

K1 +
1

RC

•

K1 +
1

LC
K1 =

1

LC
K1 =

VE
LC

o que implica que K1 = VE , (2.31)

portanto, vf2 (t) = K1 = VE . Como v2(t) = vn2 (t) + vf2 (t), segue de (2.30) e (2.31) que

v2(t) = (A1 +A2t)e
−ζt + VE . (2.32)

A expressão de A1 sai de (2.32) ao tomarmos t = 0:

v2(0) = A1e
−ζ0 + VE = A1, ou seja, A1 = v2(0)− VE .

Para encontrarmos A2, derivamos (2.32), igualamos tal resultado com (2.28b) e fazemos t = 0,

•
v2(0) = −A1ζ +A2 =

−v2(0)
RC

+
i1(0)

C
, o que implica que A2 = A1ζ −

v2(0)

RC
+
i1(0)

C
.

Seguindo os passos acima para o cálculo de i1(t), obtém-se, para ζ = ω0,

i1(t) = (B1 +B2t)e
−ζt +

VE
R
,

com

B1 = i1(0)−
VE
R

e B2 = B1ζ +
VE − v2(0)

L
.

Resumindo, dadas as condições iniciais vC(0) e iL(0), se ζ = ω0 então:

• Modo 1: A representação em espaço de estados é dada por (2.26), cuja solução será
i1(t) =

VE
L

· t+ i1(0)

v2(t) = v2(0) · exp
(

−t
RC

)
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• Modo 2: A representação em espaço de estados é dada por (2.28), com solução
i1(t) = (B1 +B2t)e

−ζt +
VE
R

v2(t) = (A1 +A2t)e
−ζt + VE

tal que

ζ =
1

2RC
, A1 = v2(0)− VE , A2 = A1ζ −

v2(0)

RC
+
i1(0)

C
,

B1 = i1(0)−
VE
R

e B2 = B1ζ +
VE − v2(0)

L
.

De forma geral, segue, de forma análoga ao Exemplo 2, que

i1(t) =


VE
L

(t− tj) + i1(tj) se d1(t) = 1 em (tj , tj+1];

[B1(tj) +B2(tj)(t− tj)]e
−ζ(t−tj) +

VE
R

se d1(t) = 0 em (tj , tj+1],
t > 0, (2.33)

e

v2(t) =

 v2(tj) · exp
(
−(t− tj)

RC

)
se d1(t) = 1 em (tj , tj+1];

[A1(tj) +A2(tj)(t− tj)]e
−ζ(t−tj) + VE se d1(t) = 0 em (tj , tj+1],

t > 0, (2.34)

com

ζ =
1

2RC
, A1(tj) = v2(tj)− VE , A2(tj) = A1(tj)ζ −

v2(tj)

RC
+
i1(tj)

C
,

B1(tj) = i1(tj)−
VE
R

e B2(tj) = B1(tj)ζ +
VE − v2(tj)

L
,

para j = 0, 1, 2, . . . e tj → ∞ (suposição para frequência de chaveamento finita por simplicidade).

Vamos definir valores para as variáveis de (2.33) e (2.34) para que vejamos o processo de cálculo manual

da resposta do conversor Boost.

Exemplo 6 (Exemplo numérico). Vamos supor que o conversor Boost seja operado por um PWM (Pulse

Width Modulation, da sigla em inglês) de 1 kHz com duty clicle de 50% (na primeira metade do período a onda

fica em 1 e na outra em 0). Dados os valores dos componentes R = 5 Ω, L = 1 H e C = 10 mF, da fonte de

tensão VE = 110 V e as condições iniciais v2(0) = 0 V e i1(0) = 0 A, então

ζ =
1

2RC
= 10 =

1√
LC

= ω0,

o que satisfaz a condição imposta para utilizarmos as equações (2.33) e (2.34). O circuito começa a operar

no modo 1, permanecendo nele até o chaveamento em t = 0.5 ms, logo,
i1(t) = 110 · t

v2(t) = 0

para 0 < t ≤ 0.0005,

com i1(0.0005) = 0.055 A e v2(0.0005) = 0 V. Dentro do próximo período de tempo, ou seja (0.0005, 0.001],

o circuito estará no modo 2. Sendo tj = 0.0005, por (2.33) e (2.34), tem-se

A1(0.0005) = v2(0.0005)− VE = −110;

A2(0.0005) = A1(0.0005)ζ −
v2(0.0005)

RC
+
i1(0.0005)

C
= −110 · 10− 0 +

0.055

0.01
= −1094.5;



38

B1(0.0005) = i1(0.0005)−
VE
R

= 0.055− 110

5
= −21.945;

B2(0.0005) = B1(0.0005)ζ +
VE − v1(0.0005)

L
= −21.945 · 10 + 110− 0

1
= −109.45;

e, então,
i1(t) = [−21.945− 109.45 · (t− 0.0005)]e−10(t−0.0005) + 22

v2(t) = [−110− 1094.5 · (t− 0.0005)]e−10(t−0.0005) + 110

para 0.0005 < t ≤ 0.001,

com i1(0.001) ≈ 0.110 A e v2(0.001) ≈ 0.0041 V.

No terceiro período de tempo, dado por (0.001, 0.0015], o circuito voltará ao modo 1. Por (2.33) e (2.34),

com tj = 0.001, tem-se
i1(t) = 110 · (t− 0.001) + 0.11

v2(t) = 0.0041 · e−20(t−0.001)

para 0.001 < t ≤ 0.0015,

com i1(0.0015) ≈ 0.165 A e v2(0.0015) ≈ 0.00406 V.

Poderíamos continuar repetindo esse procedimento, mas acreditamos ter ficado claro como calcular a

resposta no tempo do circuito. Para ver como fica o gráfico de i1(t) e v2(t), veja a Figura 6.

Figura 6 – Evolução no tempo dos estados do conversor Boost.
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Fonte: Elaborado pelo autor.
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A evolução no tempo dos estados do sistema (Figura 6) indica que o valor em regime da corrente no

indutor está acima de 80 A e que o valor da tensão no capacitor está acima dos V2 = 220 V, também em

regime. Utilizando (2.12) e os valores de VE = 110 V e D = 0.5 mencionados anteriormente, conclui-se que

V2 =
VE

1−D
=

110

0.5
= 220 V,

que é o mesmo valor obtido via simulação e modelo em espaço de estados (pela Figura 6).

Da mesma forma, segue de (2.23) e dos valores mencionados no início deste exemplo, que

I1
=

I3
D2

=
V2

(1−D)R
=

220

0.5 · 5
= 88 A,

estando também de acordo com os valores da Figura 6. Vale ressaltar que os valores escolhidos para os

componentes, frequência de chaveamento e duty cycle são meramente ilustrativos (foram escolhidos apenas

com o intuito de satisfazer a condição ζ = ω0). Uma corrente dessa magnitude passando pelo indutor não

é muito factível (tal valor está atrelado aos valores dos componentes, que foram escolhidos com o objetivo

de simplificar as contas) e, além disso, a pequena oscilação em volta do valor médio visto nos gráficos da

Figura 6 se deve à frequência escolhida (baseada nos componentes). Se, por exemplo, a frequência fosse

100 Hz, a ondulação seria bem maior e seu efeito poderia ser percebido, mesmo sem a ampliação da imagem,

principalmente na tensão neste caso; ver Figura 7.

Figura 7 – Evolução no tempo dos estados do conversor Boost para f = 100 Hz.
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A forma como foi encontrada a solução do conversor Boost no Exemplo 5 se assemelha bastante com o

que se faz para encontrar a solução de equações diferenciais impulsivas. O próximo capítulo apresenta ao

leitor tais equações e faz a ligação dessas com os sistemas chaveados.
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3 EQUAÇÕES DIFERENCIAIS IMPULSIVAS

Uma Equação Diferencial Impulsiva (EDI) possui como estrutura básica

• Uma equação diferencial

•
x = f(x, t), (3.1)

com f : Ω× R+ −→ Rn, sendo Ω ⊂ Rn um conjunto aberto;

• Subconjuntos M(t), N(t) ⊂ Ω, t ∈ R+ e

• Operadores A(t) :M(t) −→ N(t), t ∈ R+.

A interação entre os itens descritos acima ocorre da seguinte forma. Suponha que x(t) = x(t, x0, t0) seja

a solução de (3.1) passando por (x0, t0) ∈ Ω× R+. Então x(t) evolui no tempo até um instante t1 > t0 em

que x(t1) intersepta o conjunto M(t1). Nesse instante de tempo t = t1, o operador A(t) transfere x(t) para

um novo ponto (x+1 , t1) ∈ N(t1), sendo x+1 = A(t1)x1(t1). Desse modo, x(t) = x(t, x+1 , t1) agora evolui no

tempo a partir da condição inicial (x+1 , t1), com t > t1. Do mesmo modo, a solução de (3.1) avança sobre

x(t) = x(t, x+1 , t1) até que ela intercepte novamente o conjunto M(t) em um instante t = t2 > t1 e, de

forma análoga, o operador A(t) transfere a solução x(t) para um ponto (x+2 , t2) ∈ N(t2), x+2 = A(t2)x(t2). A

solução de (3.1) agora é dada por x(t) = x(t, x+2 , t2), t > t2, até que x(t) intercepte novamente M(t) em um

instante t = t3 e, então, o processo se repetirá, caso a solução exista.

A solução x(t), t > t0, descreve uma curva em Rn chamada de curva integral. Os instantes de tempo

t = tk nos quais x(t) intercepta o conjunto M(t) são chamados de momentos de impulso. Assumiremos, a

partir desse ponto, que a solução x(t) da EDI seja contínua à esquerda em tk, k = 1, 2, . . ., isto é,

x(t−k ) = lim
t→t−k

x(t) = x(tk).

Além disso, a solução de uma EDI será:

• Contínua, se a curva integral não interceptar M(t) ou se ela atingir M(t) somente nos instantes de

tempo em que A(t)x(t) = x(t);

• Contínua por partes com uma quantidade finita de saltos, se a curva integral encontrar M(t) em uma

quantidade finita de vezes, sendo que nem todos esses instantes de tempo satisfazem A(t)x(t) =

x(t);

• Contínua por partes com uma quantidade enumerável de saltos, se a curva integral interceptar M(t)

em uma quantidade enumerável de instantes de tempo t tais que A(t)x(t) ̸= x(t)[22].

Poderíamos ainda considerar os casos em que ocorrem infinitos saltos não enumeráveis, mas, para

simplificar, não o faremos (na verdade, uma frequência de chaveamento infinita é um problema para sistemas

físicos e, por isso, evita-se tal situação).

A seguir, são apresentados alguns tipos clássicos de sistemas diferenciais com impulso.

3.1 Sistemas com impulsos em tempos fixados

Tais sistemas são os mais simples e são caracterizados pelo conhecimento prévio dos momentos de

impulso tk, k = 1, 2, . . .. Aqui, {tk} representa uma sequência de tempos tal que tk → ∞ quando k → ∞.

Definição 3.1.1 (Sistemas com impulsos em tempos fixados[22,23]). Dados os momentos de impulsos {tk},

k = 1, 2, . . ., a sequência {A(tk)} será dada por

A(tk) : Ω −→ Ω, x −→ A(tk)x(tk) = x(tk) + Ik(x(tk)),
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em que Ik : Ω −→ Ω é uma aplicação para cada k. Como resultado, o conjunto N(t) também será definido

para os instantes t = tk e N(tk) = A(tk)M(tk). Dessa forma, um sistema com impulsos em tempos

fixados será descrito por 
•
x = f(x, t), t ̸= tk,

∆x = Ik(x), t = tk,
(3.2)

sendo k = 1, 2, . . . e

∆x(tk) = x(t+k )− x(tk) com x(t+k ) = lim
t→t+k

x(t), para k = 1, 2, . . . .

Vemos, de imediato, que uma solução x(t) de (3.2) satisfaz

(i) •
x = f(x(t), t) para t ∈ (tk, tk+1] e

(ii) ∆x(tk) = Ik(x(tk)) para t = tk, k = 1, 2, . . ..

O comportamento da solução é influenciado pelo efeito impulsivo, principalmente sua existência e continui-

dade. Os exemplos a seguir mostram esses comportamentos.

Exemplo 7 (Existência da solução[22]). Considere a EDI dada por
•
x = 0, t ̸= k,

∆x =
1

x− 1
, t = k,

(3.3)

com k = 1, 2, . . .. A equação diferencial •
x = 0 possui solução contínua para todo t, independente do valor

inicial. Porém, para a condição inicial x(0) = 1, o sistema impulsivo de tempos fixados (3.3) só possui solução

x(t) = 1 dentro do intervalo 0 ≤ t ≤ 1, já que Ik(1), k ∈ N, não está definido.

Exemplo 8 (Continuidade da solução[22]). Considere a EDI dada por
•
x = 0, t ̸= k,

∆x = −x
2
, t = k,

(3.4)

com k = 1, 2, . . .. A equação diferencial •
x = 0 possui solução contínua para todo t, independente do valor

inicial. Entretanto, o sistema impulsivo de tempos fixados (3.4) possuirá solução contínua por partes com uma

quantidade enumerável de saltos caso a condição inicial do problema seja x(0) ̸= 0 (ver Figura 8).

Figura 8 – Trajetória de x(t), com condição inicial x(0) = 8.
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Fonte: Elaborado pelo autor.
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3.2 Sistemas com impulsos em tempos variáveis

Diferentemente do que foi apresentado na seção anterior, em que os momentos de impulso eram pré-

determinados, agora, iremos considerar uma função como definidora dos momentos de impulso.

Definição 3.2.1 (Sistemas com impulsos em tempos variáveis[22,23]). Seja {Sk} uma sequência de superfícies

dadas por Sk : t = τk(x), k = 1, 2, . . ., tais que τk(x) < τk+1(x) e τk(x) −→ ∞ quando k −→ ∞. Definimos,

então, um sistema com impulsos em tempos variáveis por
•
x = f(x, t), t ̸= τk(x),

∆x = Ik(x), t = τk(x),
(3.5)

sendo k = 1, 2, . . . e ∆x(tk) = x(t+k )− x(tk).

Algumas situações interessantes podem ocorrer quando consideramos sistemas da forma (3.5). Por

exemplo, diferentes condições iniciais podem levar a soluções com diferentes pontos de descontinuidade.

Também é possível que uma solução atinja a mesma superfície Sk várias vezes, o que é chamado de

fenômeno de pulso. Além disso, diferentes soluções podem assumir o mesmo valor após algum tempo, o

que é conhecido como confluência.

O exemplo a seguir ilustra alguns desses casos.

Exemplo 9 (Sistemas com impulsos em tempos variáveis[22]). Considere a EDI dada por
•
x = 0, t ̸= τk(x), t ≥ 0

∆x = x2 sgn(x)− x, t = τk(x),
(3.6)

com k = 0, 1, 2, . . ., sendo τk(x) = x+ 6k para |x| < 3 e

sgn(x) =


1, se x > 0

0, se x = 0

−1 se x < 0.

(3.7)

Figura 9 – Trajetórias do sistema impulsivo (3.6) para diferentes condições iniciais.
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(a) x0 = 4.
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(b) x0 = 2.
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(c) x0 = 0.8.
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(d) x0 = −0.8.

Fonte: Elaborado pelo autor.
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Para uma condição inicial x(0) = x0 > |3|, a solução nunca atingirá nenhuma das superfície Sk, k =

0, 1, 2, . . ., como mostra a Figura 9a para x0 = 4. Já se x0 = 2, a solução x(t) = 2, t ∈ [0, 2], sofrerá o efeito

impulsivo em t1 = 2, o que resultará em ∆x = 2 e x(t+k ) = 4. Logo, a solução não interceptará mais nenhuma

das superfícies Sk e x(t) = 4 para todo t > 2 (ver Figura 9b).

Se a condição inicial for dada por x0 = 0.8, então a solução x(t) encontrará uma vez cada uma das

superfícies Sk, tk −→ ∞ e x(tk) −→ 0 quando k −→ ∞ (ver Figura 9c). Porém, se x0 = −0.8, a solução

interceptará S1 em um número infinito de tempos tk, k = 0, 1, . . ., sendo que tk −→ 6 e x(tk) −→ 0 quando

k −→ ∞ (ver Figura 9d).

3.3 Sistemas autônomos com impulsos

Agora, iremos considerar sistemas independestes do tempo. Os instantes de chaveamento serão, então,

baseados no estado do sistema.

Definição 3.3.1 (Sistemas autônomos com impulso[22,23]). Seja A :M −→ N um operador, com M,N sendo

conjuntos independentes de t, definido por

Ax = x+ I(x),

sendo I : Ω −→ Ω, Ω ⊂ Rn. Um sistema autônomo com impulsos será definido como
•
x = f(x), x /∈M,

∆x = I(x), x ∈M,
(3.8)

Quando uma solução x(t) de (3.8) atingir o conjunto M em algum tempo t, o operador A transferirá a

solução para algum ponto do conjunto N . O exemplo a seguir apresenta um simples sistema autônomo com

impulsos.

Exemplo 10 (Sistema autônomo com impulsos). Considere a EDI dada por
•
x = 1, x /∈M,

∆x = −2, x ∈M,
(3.9)

com M = {−2, 4} e N = {−4, 2}. Sendo x(t) = t+ x0, x0 = x(0), a solução da equação diferencial •
x = 1,

vemos que a solução nunca interceptará o conjunto M quando x0 > 4. Caso contrário, a solução apresentará

um comportamento periódico a partir do primeiro momento impulsivo (ver Figura 10).

Figura 10 – Trajetórias de x(t) com condição inicial x(0) = 1 (em vermelho) e x(0) = −4 (em azul).
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Fonte: Elaborado pelo autor.
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3.4 Sistemas autônomos impulsivos com retardo

Diferente dos sistemas autônomos com impulsos descritos anteriormente, agora iremos considerar que

existe um atraso embutido no sistema.

Definição 3.4.1 (Sistemas autônomos impulsivos com retardo[24]). Seja A : M −→ N um operador, com

M,N sendo conjuntos independentes de t, definido por

Ax = x+ I(x),

sendo I : Ω −→ Ω, Ω ⊂ Rn, chamado de condição de autossustentação. Um sistema autônomo impulsivo

com retardo será definido como 
•
x = f(x(t)), x(t) /∈M,

∆x(t) = I(x(t)), x(t) ∈M,
(3.10)

sendo

• x(t)(θ) = x(t+ θ) a função memória,

• θ ∈ [−r, 0] o atraso e

• x0 = ϕ a condição inicial do problema,

em que ϕ : [−r, 0] −→ R, r > 0.

Desse modo, tanto o sistema quanto o operador impulsivo estão em função do valor do estado x de θ

instantes de tempo atrás. Quando x atingir o conjunto M , só após um instante de tempo θ que o momento

impulsivo ocorrerá. A notação usual do estado com retardo é xt, mas para não causar confusão com o índice

dos subsistemas, adotamos a notação x(t).

Exemplo 11 (Sistema autônomo impulsivo com retardo). Considere a EDI dada por
•
x = 1, x(t) ̸= 4,

∆x = −2, x(t) = 4,
(3.11)

sendo x(t) = x(t − 1) (aqui M = {4} e N = {2}). Note que foi considerado atraso somente no operador

impulsivo, por simplicidade.

Sendo x(t) = t + x0, x0 = 1, a solução da equação diferencial •
x = 1, vemos que a solução nunca

interceptará o conjunto M quando x0 > 4. Caso contrário, a solução apresentará um comportamento

periódico a partir do primeiro momento impulsivo. Neste caso, por conta do atraso presente no operador

impulsivo, o momento impulsivo só ocorrerá 1 instante de tempo após a interceptação (ver Figura 11).

Comparando a Figura 11 com a 10, conclui-se que poderíamos considerar esse problema simplesmente

como uma EDI autônoma se tomarmos M = {5}.

Figura 11 – Trajetória de x(t) com condição inicial x(0) = 1.

11 22 33 44 55 66 77 88 99

22

44

00

x(t)

t

tt11nn11
pp11NN11 TT11

Fonte: Elaborado pelo autor.
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3.5 Sistemas chaveados e sistemas impulsivos

E. Joelianto e H. Y. Sutarto[25] representam um sistema chaveado usando equações diferenciais impulsivas

lineares. Alguns autores, como Liberzon[26], apresentam uma representação dos sistemas chaveados que

lembra os sistemas impulsivos e, inclusive, utilizam resultados obtidos para sistemas impulsivos no contexto

dos chaveados. Outros, como R. Goebel, R. G. Sanfelice e A. R. Teel[17], apresentam uma formulação unificada

que inclui EDI’s e sistemas chaveados como subclasses dos sistemas híbridos. Existe também aqueles que

juntam os dois para formar um sistema chaveado impulsivo[27,28], que não só muda de subsistema quando

ocorre o chaveamento, mas também impõe um salto no estado. Entretanto, nenhum se dedicou a fazer uma

ligação entre os sistemas chaveados e os sistemas impulsivos utilizando o devido rigor matemático.

O objetivo, aqui, é obter uma formulação inédita e escrever um sistema chaveado através de um sistema

impulsivo, e vice-versa. Para isso, vamos primeiro descrever o que é uma solução de um sistema chaveado.

3.5.1 A resposta de um sistema chaveado

Seja •
x = fσ(t)(x) um sistema chaveado, com σ(t) : R+ −→ J = {1, 2, . . . , q} sendo contínua à esquerda

e fa(x) sendo LTI, para todo a ∈ J . Se σ(t) = m ∈ J dentro de um período (tk, tk+1], a solução x(t) do

sistema chaveado, dentro desse mesmo intervalo de tempo, será, a menos do deslocamento temporal, igual

à solução xm(s) da equação diferencial •
xm = fm(xm) com condição inicial xk = x(tk) dentro do intervalo

0 < s ≤ (tk+1 − tk).

De fato, ao somarmos tk na desigualdade 0 < s ≤ (tk+1 − tk), nós obtemos que tk < s + tk ≤ tk+1.

Como tk < t ≤ tk+1, segue que s = t− tk e, então, •
xm = fm(xm) = fσ(t)(x) =

•
x, se σ(t) = m dentro do

intervalo tk < t ≤ tk+1, sendo xk a condição inicial. Logo,

x(t) = xm(s, xk) = xm(t− tk, xk) para todo tk < t ≤ tk+1,

tal que xm(s, xk) = xm(t) (colocar xk como variável de xm é uma estratégia adotada para deixar explícita

a dependência da solução com relação à condição inicial). Fazendo a extensão para todos os intervalos

(tj , tj+1] em que σ(t) = m, obtém-se

x(t) = xm(t− tj , xj) para todo (tj , tj+1] tal que σ(t) = m.

Agora, defina a função x∗m para todo t > 0 da seguinte maneira:

x∗m(t) =

 xm(t− tk, xk), se σ(t) = m (em (tk, tk+1])

0, caso contrário,
(3.12)

o que nos leva a

x(t) = x(t, x0) =

q∑
i=1

x∗i (t) (3.13)

com x0 = x(0) sendo a condição inicial do sistema chaveado.

Note que foi isso o que fizemos na Seção 2.2.4. Nós descrevemos a solução de cada um dos subsistemas

do conversor Boost para uma condição inicial x0 qualquer e para t > 0. Depois, a solução do sistema

chaveado foi escrita em função dessas soluções dos subsistemas deslocadas no tempo e com a condição

inicial substituída por x(tk), com tk sendo os instantes de chaveamento (ver equações (2.33) e (2.34)), para

k = 0, 1, 2 . . ..

Vamos, agora, obter a solução de um sistema chaveado a partir das equações diferenciais impulsivas.
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3.5.2 Equivalência entre sistemas chaveados e impulsivos

Considere, para cada m ∈ J = {1, 2, . . . , q}, o seguinte sistema impulsivo em tempos fixados
•
ym = fm(ym), t ̸= tk

∆ym = Ik,m(ym), t = tk

com k = 0, 1, 2, . . ., em que t0 = 0 e os operadores de impulsos são dados por

Ik,m(ym) =

 yσ(t)(tk)− ym(tk), se σ(t+k ) = m

yem − ym(tk) caso contrário,

sendo yem um ponto de equilíbrio fixo qualquer de •
ym = fm(ym), σ(t) : R+ −→ J uma função contínua à

esquerda e yσ(t)(tk) = yr(tk) o valor da solução yr(t) de •
yr = fr(yr) em tk, com σ(tk) = r.

Com os operadores de impulsos Ik,m, m = 1, 2, . . ., k = 0, 1, . . ., o valor de ym(t+k ), que é a condição

inicial do intervalo (tk, tk+1], será yσ(t)(tk) quando σ(t+k ) = m e será yem quando σ(t+k ) ̸= m.

Supondo que os momentos impulsivos tk, k = 0, 1, . . ., sejam iguais aos instantes de chaveamento do

sistema chaveado descrito na subseção 3.5.2 e que as funções σ sejam as mesmas, a solução ym(t) do

sistema impulsivo nos intervalos (tk, tk+1], em que Ik,m(ym) = yσ(t)(tk)− ym(tk), será igual à solução xm(t)

do subsistema do sistema chaveado deslocada no tempo de tk quando yσ(t)(tk) = x(tk), com x(t) sendo

a solução do sistema chaveado, e será ym(t) = yem nos demais instantes de tempo (pois yem é ponto de

equilíbrio). Como as funções σ são as mesmas para todos os m e k, a equação diferencial •
ym = fm(ym)

retirada do sistema impulsivo será igual ao modo •
xm = fm(xm) do sistema chaveado, ou seja, xm(t) = ym(t).

Segue, então, que yσ(t)(tk) = yr(tk) = xq(tk) = x(tk) = xk, para σ(t) = r, pois o subsistema ativo do

sistema chaveado será o r. Logo,

ym(t) =

 xm(t− tk, xk), se σ(t+k ) = m

yem caso contrário.

Agora, considere a função

αm(t) =
1

pm

q∏
i=1
i ̸=m

(σ(t)− i), com pm =

q∏
i=1
i ̸=m

(m− i). (3.14)

Se σ(t) = m, então

αm(t) =
1

pm

q∏
i=1
i̸=m

(σ(t)− i) =
1

pm

q∏
i=1
i ̸=m

(m− i) =
pm
pm

= 1,

Entretanto, se σ(t) = r ̸= m, então

αm(t) =
1

pm

q∏
i=1
i ̸=m

(σ(t)− i) =
1

pm
(r − 1) · . . . · (r − r) · . . . · (r − q) = 0.

Logo, αm(t) = 1 quando σ(t) = m, e αm(t) = 0 nas demais situações (note que essa é a mesma função α

definida na seção 2.2.4). Note que também é possível obter a função σ(t) a partir das funções αm(t), já que

σ(t) =

q∑
i=1

i · αi(t). (3.15)
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Exemplo 12 (Exemplo numérico). Seja σ(t) uma função dada por

σ(t) =



1, para 0 ≤ t ≤ 1;

3, para 1 < t ≤ 2;

2, para 2 < t ≤ 3;

3, para 3 < t ≤ 4

(ver Figura 12).

Figura 12 – Gráfico da função σ(t) do Exemplo 12.
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Fonte: Elaborado pelo autor.

Como a imagem de σ(t) é o conjunto {1, 2, 3}, então q = 3. Por (3.14), temos

α1(t) =
1

p1

3∏
i=2

(σ(t)− i) =
(σ(t)− 2)(σ(t)− 3)

(1− 2)(1− 3)
=

(σ(t)− 2)(σ(t)− 3)

2
.

Analisando o valor de α1(t) em cada um dos intervalos de tempo em que σ(t) permanece constante,

temos

α1(t) =



(1− 2)(1− 3)

2
=

2

2
= 1, para 0 ≤ t ≤ 1;

(3− 2)(3− 3)

2
=

0

2
= 0, para 1 < t ≤ 2;

(2− 2)(2− 3)

2
=

0

2
= 0, para 2 < t ≤ 3;

(3− 2)(3− 3)

2
=

0

2
= 0, para 3 < t ≤ 4.

De forma análoga, segue que

α2(t) =



0, para 0 ≤ t ≤ 1;

0, para 1 < t ≤ 2;

1, para 2 < t ≤ 3;

0, para 3 < t ≤ 4

e α3(t) =



0, para 0 ≤ t ≤ 1;

1, para 1 < t ≤ 2;

0, para 2 < t ≤ 3;

1, para 3 < t ≤ 4,

como pode ser visto na Figura 13.
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Figura 13 – Gráfico das funções αm(t), do Exemplo 12.
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Fonte: Elaborado pelo autor.

Agora, supondo que tivéssemos somente as funções αm(t), m = 1, 2, 3, por (3.15), teríamos

σ(t) =



1α1(t) + 2α2(t) + 3α3(t) = 1 · 1 + 2 · 0 + 3 · 0 = 1, para 0 ≤ t ≤ 1;

1α1(t) + 2α2(t) + 3α3(t) = 0 · 1 + 0 · 0 + 3 · 1 = 3, para 1 < t ≤ 2;

1α1(t) + 2α2(t) + 3α3(t) = 0 · 1 + 2 · 1 + 3 · 0 = 2, para 2 < t ≤ 3;

1α1(t) + 2α2(t) + 3α3(t) = 1 · 0 + 2 · 0 + 3 · 1 = 3, para 3 < t ≤ 4.

Voltando para a investigação inicial, basta utilizar as funções αm definidas em (3.14) para obtermos

x∗m(t) = ym(t) · αm(t),

em que x∗m(t) é dado por (3.12) e, daí, por (3.13), segue que

x(t) =

q∑
i=1

x∗i (t) =

q∑
i=1

yi(t) · αi(t). (3.16)

Portanto, é possível encontrar a solução x(t) de um sistema chaveado •
x = fσ(t)(x), σ(t) : R+ −→

J = {1, 2, . . . , q}, com condição inicial x(0) através das soluções yi(t), i = 1, 2, . . . , q, obtidas por meio da

resolução do sistema de EDI’s 


•
y1 = f1(y1), t ̸= tk

∆y1 = Ik,1(y1) t = tk,
...

•
yq = fn(yq), t ̸= tk

∆yq = Ik,q(yq) t = tk,

(3.17)

com operadores de impulsos dados por

Ik,m(ym) =

 yσ(t)(tk)− ym(tk), se σ(t+k ) = m

yem − ym(tk) caso contrário,
(3.18)

k = 0, 1, 2, . . ., para tk ∈ R+, m ∈ J , ym(0) = x(0), para todo m ∈ J .
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Note que também é possível fazer o contrário, isto é, obter a solução do sistema de EDI’s, dado por (3.17)

e (3.18), por meio da solução do sistema chaveado, descrito na subseção 3.5.1. Para isso, basta utilizar

ym(t) =

 x(t), se σ(t+k ) = m

yem, caso contrário.

Uma outra abordagem para representar o sistema de EDI’s seria colocar as funções α para dentro do

sistema e trocar o ponto de equilíbrio por 0:


•
y1 = f1(y1) · α1(t), t ̸= tk

∆y1 = Ik,1(y1) t = tk,
...

•
yq = fn(yq) · αn(t), t ̸= tk

∆yq = Ik,q(yq) t = tk,

com operadores de impulsos dados por

Ik,m(ym) =

 yσ(t)(tk)− ym(tk), se σ(t+k ) = m

−ym(tk), caso contrário.

Além disso, também é possível definirmos um sistema impulsivo estendido da seguinte forma[25]:
•
x = f(x), t ̸= tk

∆x = Ik(x), t = tk, k = 0, 1, 2, . . . ,
(3.19)

em que 
•
x1
•
x2
...
•
xq

 =


f1(x1) 0 · · · 0

0 f2(x2) · · · 0
...

...
. . .

...

0 0 · · · fn(xq)


e

Ik(x) =



Ik,1(x1)

Ik,2(x2)

...

Ik,q(xq)


com Ik,i(xi) =

 xσ(t)(tk)− xi(tk), se σ(t+k ) = i

−xi(tk), caso contrário.

3.6 Equações integrais e sistemas chaveados

A representação do sistema impulsivo via equações diferenciais carrega consigo uma estrutura a mais, o

operador impulsivo. O operador impulsivo é pouco usual quando se trata da representação de sistemas, e é

algo que não existe na representação básica dos sistemas chaveados (Definição 2.1.1).

A ideia, aqui, é utilizar o Corolário 3.6.1 dado a seguir para escrever um sistema chaveado (sistema

impulsivo estendido) na forma de uma equação integral do tipo Volterra (escreveremos simplesmente

EIV), para incorporarmos o operador impulsivo na própria equação integral e, assim, obtermos uma outra

representação, também inédita, para os sistemas chaveados.
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Algumas das ferramentas matemáticas utilizadas no Corolário 3.6.1, como a integral de Henstock-

Kurzweil-Stieltjes, que é uma generalização das integrais de Riemann e Lebesgue, e as noções de funções

regradas, que são funções mais gerais que as contínuas por partes, são pouco usuais na engenharia. Por

isso, a definição e explicação dessas ferramentas foram deixadas para o Apêndice (veja o Apêndice A para

as funções regradas e o Apêndice B para a integral de Henstock-Kurzweil-Stieltjes. Um esboço da prova do

Corolário 3.6.1 é apresentado no Apêndice C.

Corolário 3.6.1.[29]

Sejam m,n ∈ N e T > 0. Assuma que, para cada k ∈ {1, . . . ,m}, tk ∈ [t0, t0 + T ], com t0 ≤ t1 < t2 <

· · · < tm < t0 + T , e Ik : B −→ Rn seja um operador impulsivo tal que I + Ik : B −→ B, em que B ⊂ Rn é

um conjunto aberto e I : B −→ B é o operador identidade. Suponha que f : B × [t0, t0 + T ] −→ Rn seja

Henstock-Kurzweil-Stieltjes integrável com respeito à função regrada g : [t0, t0 + T ] −→ R que é contínua em

cada tk. Defina a função f̃ : B × [t0, t0 + T ] −→ Rn por

f̃(z, t) =

 f(z, t), t ∈ [t0, t0 + T ]\{t1, . . . , tm}

Ik(z), t = tk, k ∈ {1, . . . ,m}.

Além disso, para todo k ∈ {1, . . . ,m}, seja ck ∈ R+ uma constante, com ck ≤ ck+1, e defina g̃ : [t0, t0+T ] −→
R por

g̃(t) =


g(t), t ∈ [t0, t1]

g(t) + ck, t ∈ (tk, tk+1], k ∈ {1, . . . ,m− 1}

g(t) + cm, t ∈ (tm, t0 + T ]

satisfazendo ∆+g̃(tk) = g̃(t+k )− g̃(tk) = 1 para todo k ∈ {1, . . . ,m}. Então x : [t0, t0 + T ] −→ B será uma

função regrada e uma solução da EIV
x(t) = x(t0) +

∫ t

t0

f(x(s), s)dg(s) +
∑

k∈{1,...,m}

Ik(x(tk)), t ∈ [t0, t0 + T ],

x(t0) = x0,

se, e somente se, x for solução da seguinte EIV[29] x(t) = x(t0) +

∫ t

t0

f̃(x(s), s)dg̃(s), t ∈ [t0, t0 + T ],

x(t0) = x0.

Considere o sistema chaveado (3.19) representado na sua forma estendida, com os subsistemas fm
sendo lineares e contínuos, m = 1, 2, . . . , n. Como sabemos, a linearidade de •

xm = fm(xm) implica na

existência da solução que, junto à continuidade, nos leva à Riemann integrabilidade com relação a t. Portanto,

o sistema •
x = f(x) é também Riemann integrável com relação a t. Dito isso, segue que f é Henstock-Kurzweil

integrável com respeito à função g(t) = t, já que a integral de Henstock-Kurzweil é uma extensão da integral

de Riemann. Tomando o conjunto B de forma apropriada, nossas funções f , g e o operador Ik satisfazem as

premissas do Corolário 3.6.1. Sendo assim, considere a função

f̃(x) =

 f(x), t ∈ [t0, t0 + T ]\{t1, . . . , tm}

Ik(x), t = tk, k = 1, . . . ,m,

e a função

g̃(t) =


t, t ∈ [t0, t1]

t+ k, t ∈ (tk, tk+1], k ∈ {1, . . . ,m− 1}

t+m, t ∈ (tm, t0 + T ],
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em que ck = k, k = 1, . . . ,m. Note que, aqui,

∆+g̃(tk) = g̃(t+k )− g̃(tk) = t+ k − (t+ k − 1) = 1,

satisfazendo a condição referente à escolha dos ck. Portanto, a solução do sistema chaveado pode ser obtida

através da solução de  x(t) = x(0) +

∫ t

0

f̃(x(s))dg̃(s), t ∈ [0, T ],

x(0) = x0.
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4 APLICAÇÕES

Os sistemas chaveados são fundamentais em diversas aplicações tecnológicas que demandam controle

eficiente e confiável. Neste capítulo, abordamos exemplos práticos, como:

• O conversor Boost, utilizado para elevar a tensão em sistemas de potência;
• O controle de motores CC, essencial para regulação de velocidade e torque e
• A isolação de falhas em redes elétricas, onde a rápida comutação garante a continuidade e segurança

do fornecimento.

Essas aplicações ilustram a importância e versatilidade dos sistemas chaveados em diversos setores tecnoló-

gicos. Vamos iniciar as aplicações pelo conversor Boost, amplamente explorado neste texto.

4.1 Conversor Boost com controle de dupla malha

A aplicação de conversores CC-CC, como o Boost, em inversores fotovoltaicos é essencial para otimizar a

conversão de energia em sistemas solares. Eles são particularmente úteis para ajustar a tensão de entrada

dos painéis solares, que pode variar significativamente de acordo com condições ambientais como a irradiância

solar e a temperatura. Isso ocorre porque a tensão de saída dos painéis solares nem sempre corresponde à

tensão ideal para o inversor, responsável pela conversão de corrente contínua para corrente alternada usada

na rede elétrica.

Os conversores CC-CC, especialmente aqueles que integram algoritmos de rastreamento do ponto de

máxima potência (MPPT; do inglês Maximum Power Point Tracking), são fundamentais para maximizar a

extração de energia dos painéis. O MPPT ajusta a tensão de entrada para garantir que o sistema opere

sempre no ponto de maior eficiência, considerando as variações de iluminação e temperatura ao longo do dia.

Esses conversores também ajudam a estabilizar a tensão fornecida ao inversor, garantindo uma operação

eficiente e segura mesmo em condições variáveis de operação[30,31].

Para que os requisitos de projeto sejam atendidos e para que a saída do conversor CC-CC esteja sempre

seguindo o valor estipulado pelo algoritmo do MPPT, é necessário que se tenha um controlador atuando sobre

o chaveamento do circuito. No nosso exemplo, iremos aplicar um controle em malha dupla, sendo a malha

externa a de tensão e a interna a de corrente, ver Figura 14.

Figura 14 – Estratégia de controle em cascata para o conversor Boost.
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Boost

Controlador
Interno

Controlador
ExternoReferência +- +-

Malha Interna

Malha Externa

v2 i1

Vref u1e1 u2
PWM

Fonte: Adaptado de Campos e Teixeira[32].

Para a malha externa, vamos controlar a tensão de saída utilizando um PID (Proporcional Integral

Derivativo), que é dado pela seguinte equação integrodiferencial

u1(t) = K
P
e1(t) +K

I

∫ t

0

e1(s) ds+K
D

d

dt
e1(t), (4.1)

sendo[7]
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• e1(t) = vref (t)− v2(t) o erro entre a tensão de referência vref (t) e a de saída v2(t) (ver Figura 3),

• K
P

o ganho proporcional,

• K
I

o ganho integral e

• K
D

o ganho derivativo.

Já para a malha interna, vamos utilizar um ganho proporcional K, de modo que e2(t) = u1(t)− i1(t) e

u2(t) = Ke2(t) = K[u1(t)− i1(t)], (4.2)

que, ao ser inserido no PWM, gera o sinal de controle α1(t) da chave, como mostra a Figura 14.

Desse modo, podemos representar o conversor Boost através de um sistema de EDI’s com impulsos em

tempos variáveis da seguinte forma:


•
x1 = f1(x1), t ̸= τk(u)

∆x1 = Ik,1(x1), t = τk(u),
•
x2 = f2(x2), t ̸= τk(u)

∆x2 = Ik,2(x2), t = τk(u),

(4.3)

com operadores de impulsos dados por

Ik,1(x1) =

 x2(tk)− x1(tk), se α(t+k ) = 1,

−x1(tk) caso contrário;

Ik,2(x2) =

 x1(tk)− x2(tk), se α(t+k ) = 0,

−x2(tk) caso contrário,

(4.4)

com k = 0, 1, 2, . . ., sendo •
x1 = f1(x1) igual a (2.25), •

x2 = f2(x2) igual a (2.27), τk(u) = T (u2 + k) para

0 < u2 ≤ 1 e para um período de chaveamento T . Por 3.16, sabemos que a solução de (4.3) será

x(t) = α1(t)x1(t) + α2(t)x2(t),

sendo α2(t) = 1− α1(t).

Bem, apresentar essa representação para o leitor e deixar por isso mesmo, ficará parecendo que obtê-la é

algo trivial, o que não é necessariamente verdade. Explicaremos alguns pontos sobre a modelagem para que

fique mais claro.

Primeiramente, perceba que estamos levando x1 e x2 para 0 quando Ik,1(x1) = −x1(tk) e Ik,2(x2) =

−x2(tk) em (4.4), respectivamente. E por quê? Não há nenhum motivo em especial. Foi uma escolha arbitrária

para deixar os operadores mais simples. Além disso, a substituição de σ(t) por α1(t) como condição de (4.4)

foi realizada, pois já sabemos quem é α1 (se utilizássemos σ, precisaríamos de (3.15), o que introduziria um

passo a mais sem necessidade).

Outro ponto a ser destacado é que, essencialmente falando, u2 é função de x, já que possui v2 e i1 em

sua expressão, por (4.2) e (4.1), então estamos de acordo com a Definição 3.2.1.

Por fim, fica fácil perceber o motivo da escolha das superfícies τk, k = 0, 1, . . . quando se sabe que o

funcionamento do PWM baseia-se na comparação entre o valor da entrada e uma onda triangular, sendo sua

saída igual a 1 se a entrada for maior ou igual ao valor da onda dente de serra e 0 caso contrário[33,34], ver

Figura 15. Logo, as superfícies τk são, na verdade, a onda dente de serra do PWM (a união das superfícies

forma a onda dente e serra). De fato, como

τ0(u2 = 0) = 0, τ0(u2 = 1) = T
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e como que as superfícies são segmentos de reta, então τ0(u2) = Tu2, para 0 < u ≤ 1. Extrapolando essa

análise para as demais superfícies, chega-se em τk(u2) = T (u2 + k) para 0 < u2 ≤ 1. Unindo todas esses

segmentos de retas formados pelas superfícies, obtém-se a onda dente de serra.

Perceba, por (2.16), que o primeiro instante de chaveamento t0 ocorrerá quando

t0 = Tu2(t0), ou seja, u2(t0) =
t0
T

= d1(t0),

isto é, o sinal de entrada do PWM é o duty cicle. Sendo assim, o que o controle faz é alterar o valor do duty

cicle para que a tensão de saída seja igual ao valor de referência e, como sabemos por (2.12), o valor da

tensão de saída está intrinsecamente atrelado ao valor do duty cicle.

Figura 15 – Lógica do sinal de saída α1 do PWM.

t

1

1

T 2T 3T 4T

Entrada
Dente de Serra

Fonte: Elaborado pelo autor.

O exemplo a seguir simula o funcionamento do circuito com o controlador atuando para manter a tensão

de saída do conversor CC-CC seguindo a referência a ser especificada.

Exemplo 13. Vamos tomar como parâmetro os valores da Tabela 1 para a simulação, que define a referência

da tensão de saída como sendo 200V. Para vermos o controle atuando, em t = 5s, a resistência do resistor foi

abaixada para 25Ω, enquanto que a tensão de entrada foi aumentada para 150V em t = 10 s. Como condição

inicial, foi adotado x0 = [0 0]T para ambos os subsistemas (o T indica transposto). O resultado pode ser

visto na Figura 16.

Tabela 1 – Parâmetros de simulação do conversor Boost com controlador.

Parâmetros Valores

Tensão de entrada 100 V
Tensão de saída 200 V

Indutor 400 µH
Capacitor 100 µF
Resistor 50 Ω

Freq. PWM 20 kHz
K
P

0.0033
K
I

6.43
K
D

0.0027
K 0.0008

Fonte: Adaptado de ADNAN[35].
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Note, pela Figura 16a, que a tensão de saída volta ao patamar de 200V após ambas as perturbações

(variação no valor da resistência e tensão de entrada do conversor), mostrando que o controlador conseguiu

levar a tensão de saída para o valor desejado, mesmo após perturbações no sistema. Quanto à corrente no

indutor, percebe-se que existe uma grande oscilação sobre ela, causada principalmente pelas características

do sistema e do PWM. Poderíamos aumentar a frequência de chaveamento para diminuirmos a oscilação,

mas isso muitas vezes não é possível na prática, por conta do limite físico da chave (transistor).

Figura 16 – Evolução no tempo dos estados do conversor Boost com controle.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

50

100

150

200

250

(a) Tensão no capacitor.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-20

20

40

(b) Corrente no indutor.

Fonte: Elaborado pelo autor.

Esse exemplo mostra que é possível modelar um sistema chaveado controlado sem que seja necessário

inserir a lei de controle dentro da modelagem do sistema. Isso facilita bastante o nosso trabalho, dado que,

uma vez modelado, não é mais necessário refazer o modelo por causa da troca de controlador. Note que a

mesma modelagem apresentada na Seção 2.2.4 foi utilizada aqui, a diferença está nos momentos impulsivos,

que antes eram fixos e agora são variáveis e dependentes do controle.

É natural modelar de um conversor CC-CC como um sistema chaveado, dado a sua forma de funciona-

mento. Entretanto, existem sistemas que, a princípio, não são chaveados, mas que se tornam um, se o método

de controle empregado envolver chaveamento.

4.2 Controle de velocidade de um motor CC

Não há dúvidas de que máquinas elétricas são elementos indispensáveis no mundo contemporâneo,

desde a indústria de processos até aplicações domésticas. Motores elétricos têm muitas vantagens sobre

outros tipos de motores, não se limitando a, mas incluindo: baixo custo, alta densidade de potência, requisitos
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simples de construção e instalação, robustez, versatilidade (pode ser facilmente adaptado a vários tipos

de cargas), alta eficiência e simplicidade de controle. Em relação aos vários tipos de motores elétricos, os

motores de corrente contínua são muito atraentes e amplamente utilizados em aplicações de velocidade

variável[36], devido à facilidade de seu controle.

Uma representação em espaço de estados de um motor CC (Figura 17) é[37]
•

ia

•
ω

 =


− Ra

La
− Kg

La

Km

J
−f
J



ia

ω

+


1

La

0

 va(t), (4.5)

sendo

• ia(t) a corrente de armadura;

• ω(t) a velocidade angular;

• Ra a resistência do circuito de armadura;

• La a indutância do circuito de armadura;

• Kg a constante de força contra-eletromotriz;

• Km a constantes de torque;

• J momento de inércia da carga;

• f o coeficiente de atrito viscoso e

• va(t) a tensão de armadura.

Figura 17 – Circuito equivalente de um motor CC.

MTE - 299

1. INTRODUÇÃO

Motores de corrente contínua (CC) têm significativa importância no desenvolvimento de servomecanismos [1] e,
por essa razão o seu estudo, tanto no que se refere ao desenvolvimento de modelos como a identificação dos seus
parâmetros, merece considerável atenção nas disciplinas de Sistemas de Controle ministradas em diversos cursos de
engenharia. De uma forma geral, ao se arbitrar como excitação a tensão de armadura (supondo a corrente de campo
constante) e como resposta a velocidade angular do motor, o modelo linear adotado é o de um sistema de primeira
ordem [2]. Isto é suficiente em análise e projeto de controladores quando se considera apenas realimentação de saída,
como é o caso dos cursos e laboratórios de um primeiro curso em sistemas de controle [3]. A vantagem de se adotar este
modelo é que a identificação dos parâmetros da função de transferência pode ser feita de forma direta, utilizando-se, por
exemplo, técnicas de resposta em freqüência, resposta ao degrau etc. Contudo, ao se considerar o modelo por variáveis
de estado e o projeto de controladores utilizando realimentação de estados torna-se necessário modelar o motor como
um sistema de segunda ordem. Isto requer que tanto os parâmetros elétricos (resistência e indutância de armadura) como
os mecânicos (momento de inércia e coeficiente de atrito viscoso) e eletromecânicos (constantes de força contra-
eletromotriz e de torque) devem ser identificados. Em geral, a determinação desses parâmetros é feita utilizando-se
ensaios que requerem conceitos específicos de mecânica e de máquinas elétricas, o que torna inviável a sua identificação
em laboratórios de controle. É dentro desta filosofia que neste artigo serão propostos experimentos que levam à
determinação desses parâmetros e que requerem somente conceitos apresentados nas disciplinas de sistemas de controle.

Este artigo está estruturado da seguinte forma. Na seção 2 serão obtidas as equações dinâmicas para um modelo
de segunda ordem de motores CC. Será mostrado ainda que essas equações diferenciais de segunda ordem podem ser
desacopladas, levando a dois sistemas de primeira ordem. A vantagem desta separação é que, técnicas simples de
identificação de sistemas discretos (mínimos quadrados, por exemplo) podem ser utilizadas para a identificação dos
parâmetros das equações envolvidas. Por completude, na seção 3 será, inicialmente, estabelecida uma relação entre os
parâmetros incógnitos de um sistema contínuo de primeira ordem e o correspondente sistema discreto e, em seguida,
será feita uma breve revisão do método dos mínimos quadrados para identificação dos parâmetros da função de
transferência a tempo discreto de um sistema de primeira ordem.  Esta é a chave para o desenvolvimentos dos
experimentos elétricos para identificação dos parâmetros do motor CC a serem propostos na seção 4. A eficácia dos
experimentos será demonstrada na seção 5, onde a metodologia proposta neste artigo será utilizada para identificar os
parâmetros de um motor CC. Ainda nesta seção será feita a validação, comparando-se as respostas do sistema real e do
modelo obtido a uma mesma excitação. Finalmente, as conclusões são apresentadas na seção 6.

2. MODELO DE UMA MÁQUINA DE CORRENTE CONTÍNUA

Nesta seção será obtido um modelo matemático do motor CC controlado pela armadura. Para tanto, considere o
circuito equivalente da Fig. 1, onde Ra  e La  denotam a resistência e indutância do circuito de armadura, J  e f  são o
momento de inércia da carga e o coeficiente de atrito viscoso, v ta ( )  e i ta ( ) representam a tensão e a corrente de
armadura, e t( )  é a força contra-eletromotriz e ω( )t  denota a velocidade angular do motor.

Aplicando-se a lei das tensões de Kirchhoff ao circuito da armadura, obtém-se:

v t R i t L
d
dt

i t e ta a a a a( ) ( ) ( ) ( )= + + .                               (1)

Em seguida, usando-se a lei de Newton para o movimento rotacional, pode-se escrever:

t t t t f t J
d
dt

tm d( ) ( ) ( ) ( )− − =ω ω , (2)

i ta ( ) Ra La

v ta ( ) e t( )
J

f

ω( )t

Figura 1. Circuito equivalente de um motor CC controlado pela armadura
Fonte: BASILIO e MOREIRA[37].

O motor CC por si só não é um sistema chaveado. Entretanto, uma técnica muito comum de controle

da velocidade de um motor CC é a de modular a tensão de armadura va(t) via controlador e PWM, por

exemplo[38], o que torna o sistema (4.5) chaveado.

Dado que já utilizamos a técnica de controle com PWM no exemplo anterior, vamos controlar a velocidade

angular do motor CC utilizando a técnica de sliding mode com retardo.

O sliding mode se destaca pela sua capacidade de lidar com incertezas e não linearidades, proporcionando

desempenho confiável, mesmo em condições adversas[39]. A técnica baseia-se na escolha de uma superfície

de chaveamento s(e), sendo e o erro, cujo sistema deve seguir. Se o erro estiver acima da superfície e se

distanciando dela, o chaveamento ocorre para que o erro vá até a superfície e, caso o erro esteja abaixo da

superfície e esteja se afastando dela, o chaveamento ocorre para que o erro encontre a superfície. Para o

nosso problema, vamos utilizar a superfície[39]

s(e) =
•
e+ e com e = ωr − ω,

em que ωr é o valor de referência da velocidade angular. Desse modo, podemos tomar o sinal de controle por

u(t) =
1

2
[1 + sgn(s(t)(θ))], (4.6)
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sendo st(θ) = s(e(t+ θ)), θ < 0, e sgn dado por (3.7). O objetivo do retardo na lei de chaveamento é impedir

que a frequência de chaveamento cresça indefinidamente, fenômeno esse chamado de chattering[39].

Podemos, então, representar (4.5) em malha fechada com o controlador (4.6) por


•
x1 = f1(x1), s(t) ̸= 0

∆x1 = Ik,1(x1), s(t) = 0,
•
x2 = f2(x2), s(t) ̸= 0

∆x2 = Ik,2(x2), s(t) = 0,

com operadores de impulsos dados por

Ik,1(x1) =

 x2(tk)− x1(tk), se u(t+k ) = 1,

−x1(tk) caso contrário;

Ik,2(x2) =

 x1(tk)− x2(tk), se u(t+k ) = 0,

−x2(tk) caso contrário,

para k = 0, 1, 2, . . ., sendo •
x1 = f1(x1) igual a

•

ia

•
ω

 =


− Ra

La
− Kg

La

Km

J
−f
J



ia

ω

+


1

La

0

Va,
com Va constante, e •

x2 = f2(x2) igual a
•

ia

•
ω

 =


− Ra

La
− Kg

La

Km

J
−f
J



ia

ω

 .
Assim como no caso do conversor Boost, vamos simular o funcionamento do motor CC controlado e alterar

alguns dos valores do modelo durante a simulação para vermos a ação do controlador para manter o sistema

na referência a ser especificada.

Exemplo 14. Assumindo os valores da Tabela 2 para os parâmetros de simulação, θ = −0.001 s, x0 = [0 0]T

como condição inicial para ambos os subsistemas e u(t) = 1, t ∈ [θ, 0], como condição inicial do sinal de

controle, é possível simular a ação do controle sobre o sistema para manter a velocidade angular seguindo a

referência dada, que aqui assumiremos ser ωr = 100 rad/s.

Tabela 2 – Parâmetros de simulação.

Parâmetros Valores

Ra 2.3Ω
La 3.4mH
Kg 0.0453V/rad/s
Km 0.0453V/rad/s
J 3.72×10−5 kgm2

f 5.23×10−5 kgm/rad/s
Va 6V

Fonte: Adaptado de BASILIO e MOREIRA[37].

Para melhor visualizarmos a ação de controle atuando, em t = 2 s, o coeficiente de atrito viscoso f valerá

26.15× 10−5 kgm/rad/s, enquanto que, em t = 5 s, a tensão Va passará a ser 12V, ver Figura 18.
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Figura 18 – Evolução no tempo da velocidade angular do motor CC.
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Fonte: Elaborado pelo autor.

Um ponto a ser destacado, caso não tenha percebido pela Figura 18, é que o controlador empregado não

possui um método para fixar a frequência de chaveamento. Quando o valor de f foi alterado, em t = 2 s, a

frequência de chaveamento, que estava por volta dos 305 rad/s, caiu para 115 rad/s, aproximadamente. Já

em t = 5 s, a frequência aumentou para um valor próximo à 385 rad/s, ver Figura 19.

Figura 19 – Frequência de chaveamento da chave de controle da velocidade angular do motor CC.
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Fonte: Elaborado pelo autor.

A aplicação do sliding mode no controle de velocidade do motor CC transforma o sistema em malha

fechada em um sistema chaveado, mesmo o motor CC não sendo um, ou seja, se fizer sentido para a

aplicação, é possível tornar um sistema não chaveado em um chaveado utilizando técnicas baseadas em

PWM ou sliding mode, por exemplo.

Os exemplos abordados até então trataram de apresentar sistemas chaveados com subsistemas lineares

e simples, e com chaveamento intermitente. Tais exemplos são bastantes didáticos e representam bem a

modelagem e o comportamento dos sistemas chaveados. Entretanto, existem problemas bem mais complexos

que também podem ser estudados a partir da abordagem de sistemas chaveados.

4.3 Tempo de abertura dos disjuntores isoladores de falhas

A estabilidade de sistemas elétricos de potência é fundamental para garantir a operação confiável de

redes de transmissão e distribuição, sendo composta por três fatores principais[40]:

• Tempo (curto, médio ou longo prazo);
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• Variáveis (ângulo, tensão ou frequência);

• Perturbação (grandes, pequenas, previsíveis e/ou imprevisíveis).

Para entender os diferentes tipos de estabilidade em sistemas elétricos de potência, é importante diferenciar

entre estabilidade transitória, estabilidade de tensão e estabilidade a pequenas perturbações. A estabilidade

transitória avalia a capacidade do sistema de manter o sincronismo quando ocorre uma grande perturbação,

como um curto-circuito ou a desconexão súbita de uma linha de transmissão. Essas perturbações exigem

que o sistema reaja rapidamente, e seu comportamento depende das condições de operação e do tempo de

resposta dos controles envolvidos.

A estabilidade de tensão está relacionada à capacidade do sistema de manter níveis adequados de

tensão, principalmente em resposta a variações de carga mais lentas, enquanto a estabilidade a pequenas

perturbações considera oscilações pequenas, em que as equações do sistema podem ser linearizadas para

prever o comportamento após pequenas mudanças. Essas análises são fundamentais para a operação segura

e eficiente dos sistemas de potência, garantindo que o sistema retorne ao estado de equilíbrio de forma

controlada[41].

O modelo dinâmico de um sistema de n geradores, sem amortecimento, que descreve o comportamento

dos ângulos no tempo em função dos parâmetros da rede é[42]
•

δi = ωi

Mi
•
ωi = Pmi

− Pei(δ)
(4.7)

i = 1, 2, . . . , n, com

Pei(δ) = |Ei|2Gii +

n∑
k=1
k ̸=i

Cik sin(δi − δk) +Dik cos(δi − δk)

para

Cik = |Ei||Ek|Bik e Dik = |Ei||Ek|Gik,

sendo, para cada um dos geradores:

• δi o ângulo do rotor em relação a um referencial síncrono;

• ωi a velocidade síncrona;

• Mi a constante de inércia;

• Pmi a potência mecânica fornecida pela turbina;

• Pei a potência elétrica fornecida à rede;

• Ei = |Ei|∠δi é a tensão do gerador e

• Yik = Gik + jBik sendo o elemento ik da matriz de admitância reduzida do sistema.

A análise de estabilidade transitória a grandes perturbações (análise de sincronismo) dos geradores se

resume a descobrir quanto tempo os disjuntores podem demorar para atuarem e isolarem a falta (curto-circuito)

do restante da rede elétrica. Dado que a topologia da rede muda quando em falta e quando em pós-falta, o

que implica na mudança da matriz Y , podemos modelar a rede da seguinte maneira:


•
x1 = f1(x1), t ̸= ta

∆x1 = I1(x), t = ta,
•
x2 = f2(x2), t ̸= ta

∆x2 = I2(x), t = ta,
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com operadores de impulsos dados por

I1(x) = x2(ta)− x1(ta),

I2(x) = x1(ta)− x2(ta),

sendo ta o tempo de abertura dos disjuntores e •
x1 = f1(x1),

•
x2 = f2(x2) iguais a (4.7).

O exemplo a seguir ilustra uma forma de se determinar o tempo máximo de abertura dos disjuntores para

isolar uma falha mantendo o sincronismo entre os geradores.

Exemplo 15. Aqui, iremos analisar o sincronismo de geradores via análise de estabilidade transitória à

ocorrência de um curto-circuito em uma linha de transmissão. O objetivo é descobrir qual o tempo máximo de

abertura dos disjuntores para isolamento da falha que garante a estabilidade (sincronismo) do sistema.

Para tal, considere o sistema de 3 máquinas e 3 geradores da Figura 20. Iremos supor que um curto sólido

trifásico ocorra na linha 1-2 nas proximidades da barra 2, tal que possamos considerar que o curto tenha

ocorrido na própria barra. O que ocorre, então, é uma ligação entre a barra 2 com a barra de referência (terra)

durante a falta e, após a abertura dos disjuntores da linha 1-2, a rede perde a conexão direta que havia antes

entre as barras 1 e 2. A modelagem do sistema em falta e pós-falta, com base na Figura 20, é dada por[42]:

• Em falta:

•

δ1 = ω1
•

δ2 = ω2
•

δ3 = ω3

0.053
•
ω1 = 2.49− 0.7138− 2.09 sin(δ1 − δ3)− 0.485 cos(δ1 − δ3)

0.079
•
ω2 = 4.21

0.318
•
ω3 = 8.20− 9.5468− 2.06 sin(δ3 − δ1)− 0.480 cos(δ3 − δ1)

• Pós-falta:

•

δ1 = ω1

•

δ2 = ω2

•

δ3 = ω3

0.053
•
ω1 = 2.49− 0.9441− 0.28 sin(δ1 − δ2)− 0.078 cos(δ1 − δ2)− 2.47 sin(δ1 − δ3)− 0.63 cos(δ1 − δ3)

0.079
•
ω2 = 4.21− 0.5921− 0.28 sin(δ2 − δ1)− 0.078 cos(δ2 − δ1)− 6.84 sin(δ2 − δ3)− 1.29 cos(δ2 − δ3)

0.318
•
ω3 = 8.20− 9.5468− 2.47 sin(δ3 − δ1)− 0.630 cos(δ3 − δ1)− 6.84 sin(δ3 − δ2)− 1.29 cos(δ3 − δ2)

A condição inicial do sistema em falta é obtida através do fluxo de carga (resolução do circuito para obtenção

dos ângulos das tensões nas barras, que serão os valores dos δ) do sistema pré-falta. Neste caso, temos

ω0 = [0 0 0], pois o sistema está em equilíbrio, e δ0 = [26.8° 26.5° 6.71°] = [0.4677 0.4625 0.1171] rad,

ou seja, x0 = [ω1 ω2 3 δ1 δ2 δ3] = [0 0 0 0.4677 0.4625 0.1171].

A simulação do problema se dará via cálculo numérico, utilizando o método de Runge-Kutta de 4ª ordem,

com passo de integração igual a 0, 002 s. Para melhor visualizar os resultados, vamos alterar o referencial da

sistema para o referencial do centro de ângulo (COA), cuja fórmula é[43]

ω̃i = ωi −
1

MT

n∑
k=1

Miωi, δ̃i = δi −
1

MT

n∑
k=1

Miδi,

sendo MT a soma das constante de inércia.
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Figura 20 – Sistema de 3 barras e 3 geradores.

Fonte: BRETAS e ALBERTO[42].

Os resultados da Figura 21 são relativos ao tempo de abertura de ta = 0.194s, enquanto que os resultados

apresentados na Figura 22 foram obtidos com um tempo de abertura igual a ta = 0.195 s.

Figura 21 – Evolução no tempo dos estados do sistema de 3 barras e 3 geradores para ta = 0.194 s.

1 2 3 4 5 6 7 8 9 10

-10

-5

5

10

(a) Velocidade angular - referência COA.

1 2 3 4 5 6 7 8 9 10

-0.5

0.5

1

1.5

(b) Ângulo - referência COA.

Fonte: Elaborado pelo autor.

Na Figura 21, vemos que os ângulos δ̃ dos geradores estão oscilando em torno da origem, indicando que

eles estão em torno da trajetória do centro de ângulo. Já na Figura 22, percebe-se que o δ̃1 divergiu do trajeto

dos demais geradores, indicando que houve perda de sincronismo entre os geradores. O que conclui-se

através das Figuras 21 e 22 é que o tempo crítico de abertura tcr, que é o máximo tempo de abertura dos

disjuntores que mantém o sistema em equilíbrio, está entre 0.194 e 0.195 s. Vale ressaltar que, para chegar
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no intervalo 0.194 < tcr < 0.195, intervalo esse que também foi obtido por Bretas e Alberto[42], é necessário

utilizar números com mais precisão. Os valores apresentados estão arredondados.

Figura 22 – Evolução no tempo dos estados do sistema de 3 barras e 3 geradores para ta = 0.195 s.
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Fonte: Elaborado pelo autor.

Aqui temos um exemplo de um sistema que em que normalmente não se emprega uma modelagem

utilizando a abordagem dos sistemas chaveados. Apesar da complexidade desse exemplo ser maior quando

comparado com os demais, dado que temos seis variáveis de estado e os subsistemas não são lineares, esse

sistema de 3 barras e 3 geradores é extremamente simples. Tal problema, de estudar a estabilidade transitória

de um sistema elétrico de potência, aparece em sistemas de geração e distribuição extremamente longos e

complexos, como o próprio Sistema Interligado Nacional (SIN) brasileiro, que cobre praticamente todo o país.
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5 CONCLUSÃO

O presente trabalho teve como objetivo analisar sistemas chaveados por meio de uma abordagem

matemática baseada em equações diferenciais e integrais generalizadas. A modelagem e a análise desses

sistemas são fundamentais para a compreensão de diversos dispositivos amplamente utilizados na engenharia

elétrica, como conversores de corrente contínua (CC-CC), motores de corrente contínua (CC), e outros

sistemas de controle e automação. Através de uma abordagem sistemática, foi possível explorar os principais

conceitos teóricos e validar, por meio de simulações, a eficácia dos modelos desenvolvidos.

O modelo médio e o modelo de pequenos sinais baseiam-se em linearizações e suposições simplificadoras,

o que pode levar a uma descrição imprecisa do comportamento dinâmico em condições nas quais os efeitos

não lineares são predominantes, como em mudanças rápidas de carga ou variações abruptas na tensão de

entrada. Isso evidenciou a necessidade de métodos alternativos e mais robustos para capturar a dinâmica

completa dos sistemas chaveados, especialmente em aplicações em que a precisão é essencial.

O estudo das equações diferenciais impulsivas e integrais generalizadas ofereceu uma abordagem

complementar, permitindo uma análise mais detalhada do comportamento dinâmico desses sistemas, sem

depender de suposições lineares. Essa metodologia mostrou-se eficaz na descrição das transições rápidas e

das mudanças abruptas nos estados do sistema, proporcionando uma visão mais realista dos fenômenos

envolvidos. As simulações realizadas confirmaram a capacidade da modelagem de representar de forma

precisa o comportamento tanto transiente quanto em regime permanente dos dispositivos estudados, mesmo

diante de variações nos parâmetros.

A análise realizada contribui para a compreensão dos desafios e das limitações das técnicas tradicionais

de modelagem, sugerindo que a utilização de métodos baseados em equações diferenciais generalizadas

pode oferecer uma alternativa mais robusta para a análise de sistemas chaveados. As descobertas reforçam a

importância de se buscar metodologias que capturem com maior precisão a dinâmica intrínseca dos sistemas,

especialmente em contextos de alta complexidade, como nos conversores de eletrônica de potência.

Os resultados obtidos também reforçam a aplicabilidade das técnicas propostas em diferentes áreas da

engenharia elétrica, como sistemas de potência e eletrônica de potência. A precisão dos modelos desenvol-

vidos oferece uma base sólida para o desenvolvimento de novos dispositivos e sistemas mais eficientes e

robustos. Além disso, o trabalho abre caminho para pesquisas futuras, sugerindo a aplicação das técnicas

estudadas em outros tipos de conversores e sistemas chaveados, bem como a integração com métodos de

controle baseados em chaveamento.

Em conclusão, esta monografia não apenas alcança seus objetivos ao demonstrar a eficácia das técnicas

de modelagem, mas também contribui para o avanço do conhecimento na área de sistemas chaveados. Ao

proporcionar uma base teórica e prática para o estudo desses sistemas, o trabalho oferece recursos valiosos

para engenheiros e pesquisadores que buscam desenvolver soluções inovadoras e eficientes para problemas

complexos em engenharia elétrica.
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APÊNDICE A - FUNÇÃO REGRADA

Definição A.1 (Partição[29]). Seja [a, b] um intervalo compacto de R. O conjunto de pontos d = {t0, t1, . . . , tm}
tais que

a = t0 < t1 < · · · < tm = b

é chamado de partição de [a, b]. Denotaremos por |d| o número de intervalos em que [a, b] é dividido pela

partição d. O conjunto formado por todas as partições d de [a, b] será denotado por D[a,b].

Definição A.2 (Função de Variação Limitada[29]). Seja f : [a, b] −→ Rn uma função e d ∈ D[a,b] uma partição.

A variação de f será dada por

var(f) = varba(f) = sup
d∈D[a,b]

|d|∑
i=1

|f(ti)− f(ti−1)|.

Se var(f) <∞, então f será dita de variação limitada e, nesse caso, escreveremos f ∈ BV ([a, b],Rn).

Definição A.3 (Função Regrada[29]). Seja [a, b] um intervalo compacto de R. Uma função f : [a, b] −→ Rn

será chamada regrada, se os limites laterais

f(t−) = lim
s→t−

f(s), t ∈ (a, b], e f(t+) = lim
s→t+

f(s), t ∈ [a, b),

existirem. O espaço vetorial formado por tais funções regradas f será denotado por G([a, b],Rn). Já o

subespaço de G([a, b],Rn) formado pelas funções contínuas à esquerda será denotado por G−([a, b],Rn).

Note que o espaço das funções contínuas, assim como o espaço das funções de variação limitada, são

subespaços de G([a, b],Rn); ver Figura 23.

Figura 23 – Diagrama de Venn do espaço de G([a, b],Rn).

Funções  de
Variação Limitada

Funções  de
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Contínuas
Funções 

Contínuas

Fonte: Elaborado pelo autor.

Funções contínuas são as mais usuais e o leitor deve ter conhecimento de várias delas. Para não deixar

em branco, podemos citar as funções seno, cosseno, a função constante e a função afim. Já como exemplo

de funções de variação limitada e que também são contínuas, podemos considerar qualquer função contínua,

crescente e limitada. Para exemplos de funções que pertencem ao conjunto das funções de variação limitada,

mas que não estão no conjunto das funções contínuas, basta tomar uma função limitada e crescente que

possui uma descontinuidade de primeira espécie (de salto) em algum ponto. Uma função que é contínua, mas

que não é de variação limitada é a função

f(t) =

 t sin
(
1
t

)
, t ∈ (0, 1]

0 t = 0,
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pois ela é muito oscilatória perto da origem. Por fim, insira alguma descontinuidade na função f(t) definida

acima (como f(0) = 1, por exemplo), para obter uma função regrada (já que seus limites laterais existem) que

não é contínua e nem de variação limitada.
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APÊNDICE B - INTEGRAL DE HENSTOCK-KURZWEIL

Seja [a, b] ⊂ R um intervalo compacto, com a < b. Uma partição marcada de [a, b] é uma coleção finita

de pares D = {(τi, [ti−1, ti]), i = 1, 2, . . . , n} para algum inteiro n > 0, tal que a = t0 < t1 < · · · < tn = b e

τi ∈ [ti−1, ti]. Os elementos τi são chamados de marcas dos subintervalos [ti−1, ti], i = 1, 2, . . . , n, de [a, b].

Qualquer função positiva δ : [a, b] −→ (0,∞) será chamada de calibre de [a, b]. Uma partição marcada

D = {(τi, [ti−1, ti]), i = 1, 2, . . . , n} = {t0, τ1, t1, . . . , tn−1, τn, tn}

será dita δ-fina, se

[ti−1, ti] ⊂ (τi − δ(τi), τi + δ(τi)) (B.1)

para cada i = 1, 2, . . . , n, com δ sendo um calibre de [a, b][44].

Definição B.1 (Integral de Henstock-Kurzweil-Stieltjes[29]). Diremos que uma função f : [a, b] −→ Rm será

Henstock-Kurzweil-Stieltjes integrável com respeito a g, sendo g : [a, b] −→ Rn uma função, ou Henstock-

Kurzweil-Stieltjes g-integrável, se existir uma função F : [a, b] −→ Rm, tal que para todo ϵ > 0, existirá um

calibre δ de [a, b] tal que ∥∥∥∥∥∥
|d|∑
i=1

f(τi)[g(ti)− g(ti−1)]− F

∥∥∥∥∥∥ < ϵ

para toda partição marcada δ-fina de [a, b], D = {t0, τ1, t1, . . . , tn−1, τn, tn}. A função F será chamada de

integral de Henstock-Kurzweil-Stieltjes de f com respeito a g no intervalo [a, b] e será denotada por

F =

∫ a

b

f(t) dg(t). (B.2)

A garantia de que a integral de Henstock-Kurzweil-Stieltjes esteja bem definida segue do lema seguinte.

Lema B.2 (Lema de Cousin[44]). Dado um calibre δ de [a, b], existe uma partição marcada δ-fina de [a, b].

Alguns casos particulares da integral de Henstock-Kurzweil-Stieltjes surgem ao assumirmos certas condi-

ções. Por exemplo, tome g(t) = t na Definição B.1 para (B.2) tornar-se a integral usual de Henstock-Kurzweil∫ a

b

f(t) dt.

Ao invés disso, considere que o calibre δ = cte em (B.2) para obter a integral de Riemann-Stieltjes∫ a

b

f(t) dg(t)

e a integral de Riemann ∫ a

b

f(t) dt,

se também for considerado que g(t) = t (ver Figura 24).

Por outro lado, suponha que f assuma valores reais e tome partições "semi-marcadas" (τi, [ti−1, ti]) no

lugar de (B.1) (a diferença aqui é que não é preciso que ti−1 ≤ τi ≤ ti) para obter a integral de Lebesgue∫ a

b

f(t) dt.
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Figura 24 – Diagrama de Venn referente à integral de Henstock-Kurzweil.
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Fonte: Eric Schechter [45].

De outro modo, ao considerar que g : [a, b] −→ R e f : [a, b] −→ Rm, diremos que a integral em (B.2)

trata-se da Perron–Stieltjes (ou integral vetorial de Henstock-Kurzweil-Stieltjes)∫ a

b

f(t) dg(t).

Funções contínuas e limitadas no intervalo [a, b] são todas Riemann integráveis (em [a, b]). Um exemplo

de função que não é Riemann integrável é a função

f(t) =


1√
t
, t ∈ (0, 1]

0, t = 0,

pois ela não é limitada neste intervalo. Entretanto, f(t) é integrável no sentido da integral imprópria de

Riemann.

Já a função de Dirichlet no intervalo [0, 1]

f(t) =

 1, t ∈ Q

0, caso contrário

é Lebesgue integrável, mas não possui integral imprópria de Riemann, por ser descontínua em todos os

pontos do intervalo.

Como exemplo de função que só é integrável via integral de Henstock-Kurzweil, podemos citar a derivada

da função

f(t) =

 x2 sin
( π
x2

)
, para 0 < t ≤ 1

0, para t = 0,

por conta da f(t) não ser absolutamente contínua[46].
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APÊNDICE C - ESBOÇO DA PROVA DO COROLÁRIO 3.6.1

Aqui será apresentada um esboço da prova do resultado que dá origem ao Corolário 3.6.1. Para a

demonstração completa, consulte[29].

O nosso ponto de partida será o corolário seguinte.

Corolário C.1. Sejam f : [a, b] −→ Rn e g : [a, b] −→ R funções tais que g é regrada e a integral de

Perron-Stieltjes

b∫
a

f(s) dg(s)

existe. Então a função

h(t) =

t∫
a

f(s) dg(s)

é regrada em [a, b] e satisfaz

h(t+) = h(t) + f(t)∆+g(t), t ∈ [a, b)

h(t−) = h(t) + f(t)∆−g(t), t ∈ (a, b]

com

∆+g(t) = g(t+)− g(t) e ∆−g(t) = g(t−)− g(t).

Vale ressaltar que o mesmo vale ao colocar o t no limite inferior da integral. Perceba que se g não possuir

descontinuidade em t, então h(t+) = h(t) = h(t−), como normalmente acontece. Já se g possuir uma

descontinuidade em t, tal descontinuidade será contabilizada através do valor de f(t)∆+g(t) e/ou f(t)∆−g(t),

a depender do tipo de descontinuidade. Pensando na integral em sua concepção inicial, isto é, através de uma

soma de áreas da forma f(τ)[g(ti+1)− g(ti)], como foi apresentado em B.1, intui-se que a área referente ao

instante t não será nula (pelo menos não por conta de g) pois g(t+)− g(t) ̸= 0 e/ou g(t−)− g(t) ̸= 0.

Convencidos de que o Corolário C.1 é válido, é possível provar o próximo lema.

Lema C.2. Seja m ∈ N. Suponha que para cada k ∈ {1, . . . ,m}, tk ∈ [t0, t0 + λ], t0 ≤ t1 < t2 < . . . < tm <

t0 + λ, e g : [t0, t0 + λ] −→ R é uma função regrada, contínua à esquerda em [t0, t0 + λ] e contínua em tk

para todo k. Seja f : [t0, t0 +λ] −→ Rn, n ∈ N∗, uma função qualquer e considere que f̃ : [t0, t0 +λ] −→ Rn

é tal que f̃(t) = f(t) para todo t ∈ [t0, t0 + λ]\{t1, . . . , tm}, e tome g̃ : [t0, t0 + λ] −→ R de modo que g̃ − g

seja constante em cada um dos intervalos [t0, t1], (t1, t2], . . . , (tm−1, tm], (tm, t0 + λ]. Então a integral (de

Henstock-Kurzweil-Stieltjes)

t0+λ∫
t0

f̃(s) dg̃(s)

existirá, e somente se, a integral (de Henstock-Kurzweil-Stieltjes)

t0+λ∫
t0

f(s) dg(s)

existir. Nesse caso, teremos
t0+λ∫
t0

f̃(s) dg̃(s) =

t0+λ∫
t0

f(s) dg(s) +
∑

k∈{1,...,m}
tk<t0+λ

f̃(tk)∆
+g̃(tk).
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Prova: Como g̃ − g é constante nos intervalos [t0, t1], (t1, t2], . . . , (tm−1, tm], (tm, t0 + λ], vale

t1∫
t0

f̃(s) d(g̃ − g)(s) = lim
τ→t+k

tk+1∫
τ

f̃(s) d(g̃ − g)(s) = lim
τ→t+m

t0+λ∫
τ

f̃(s) d(g̃ − g)(s) = 0 (C.3)

com k ∈ {1, . . . ,m− 1}. Sendo assim, pelo Corolário C.1 e por (C.3), segue que

tk+1∫
tk

f̃(s) d(g̃ − g)(s) = lim
τ→t+k

tk+1∫
τ

f̃(s) d(g̃ − g)(s) + lim
τ→t+k

τ∫
tk

f̃(s) d(g̃ − g)(s)

= 0 + f̃(tk)∆
+(g̃ − g)(tk) = f̃(tk)∆

+(g̃ − g)(tk) (C.4)

para k ∈ {1, . . . ,m− 1}. Quando tm ̸= t0 + λ obtém-se, de maneira análoga, que

t0+λ∫
tm

f̃(s) d(g̃ − g)(s) = f̃(tk)∆
+(g̃ − g)(tk), (C.5)

caso contrário, (C.5) será igual a 0.

Juntando (C.3), (C.4) e (C.5) chega-se em

t0+λ∫
t0

f̃(s) d(g̃ − g)(s) =
∑

k∈{1,...,m}
tk<t0+λ

f̃(tk)∆
+g̃(tk) (C.6)

o que prova a existência da integral (de Henstock-Kurzweil-Stieltjes) acima.

Agora, pela continuidade de g nos instantes tk e pela definição de f̃ , segue que

t1∫
t0

f̃(s) dg(s) = lim
τ→t−1

τ∫
t0

f̃(s) dg(s) = lim
τ→t−1

τ∫
t0

f(s) dg(s) =

t1∫
t0

f(s) dg(s);

tk+1∫
tk

f̃(s) dg(s) = lim
σ→t+k
τ→t−k+1

τ∫
σ

f̃(s) dg(s) = lim
σ→t+k
τ→t−k+1

τ∫
σ

f(s) dg(s) =

tk+1∫
tk

f(s) dg(s); (C.7)

t0+λ∫
tm

f̃(s) dg(s) = lim
τ→t+m

t0+λ∫
τ

f̃(s) dg(s) = lim
τ→t+m

t0+λ∫
τ

f(s) dg(s) =

t0+λ∫
tm

f(s) dg(s)

para todo k ∈ {1, . . . ,m− 1}.

Nas igualdades acima, as integrais do lado esquerdo existirão se e somente se as do lado direito existirem.

Consequentemente, obtém-se

t0+λ∫
t0

f̃(s) dg(s) =

t0+λ∫
t0

f(s) dg(s) (C.8)

e a integral (de Henstock-Kurzweil-Stieltjes) da esquerda existirá se, e somente se, a integral (de Henstock-

Kurzweil-Stieltjes) da direita existir e elas terão o mesmo valor. Além disso,

t0+λ∫
t0

f̃(s) dg̃(s) =

t0+λ∫
t0

f̃(s) dg(s) +

t0+λ∫
t0

f̃(s) d(g̃ − g)(s) =

t0+λ∫
t0

f(s) dg(s) +
∑

k∈{1,...,m}
tk<t0+λ

f̃(tk)∆
+g̃(tk)

por (C.8) e (C.6), o que implica o resultado.

Utilizando o Lema C.2, é fácil mostrar o teorema a seguir.
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Teorema C.3. Seja m,n ∈ N. Assuma que, para cada k ∈ {1, . . . ,m}, tk ∈ [t0, t0 + λ], com t0 ≤ t1 < t2 <

· · · < tm < t0 + λ, e Ik : B −→ Rn seja um operador impulsivo tal que I + Ik : B −→ B, em que B ⊂ Rn é

um conjunto aberto e I : B −→ B é o operador identidade. Suponha que f : Rn × [t0, t0 + λ] −→ Rn seja

Henstock-Kurzweil-Stieltjes integrável com respeito à função g ∈ G−([t0, t0 + λ],R) que é contínua em cada

tk. Defina

f̃(y, t) =

 f(y, t), t ∈ [t0, t0 + λ]\{t1, . . . , tm}

Ik(y(t)), t = tk, k ∈ {1, . . . ,m}.

Além disso, para todo k ∈ {1, . . . ,m − 1}, seja ck ∈ R+ uma constante com ck ≤ ck+1 e defina g̃ :

[t0, t0 + λ] −→ R por

g̃(t) =


g(t), t ∈ [t0, t1]

g(t) + ck, t ∈ (tk, tk+1], k ∈ {1, . . . ,m− 1}

g(t) + cm, t ∈ (tm, t0 + T ]

satisfazendo ∆+g̃(tk) = 1 para todo k ∈ {1, . . . ,m}. Então x ∈ G([t0, t0 + λ], B) será uma solução do

problema de valor inicial para a Equação Integral do tipo Volterra-Stieltjes (EIV)
x(t) = x(t0) +

∫ t

t0

f(x(s), s) dg(s) +
∑

k∈{1,...,m}
tk<t

Ik(x(tk)), t ∈ [t0, t0 + λ],

x(t0) = x0,

se, e somente se, x for solução da EIV[29]

 x(t) = x(t0) +

∫ t

t0

f̃(x(s), s) dg̃(s), t ∈ [t0, t0 + λ],

x(t0) = x0.

Prova: Pelo Lema C.2, vale

t∫
t0

f̃(x(s), s) dg̃(s) =

t∫
t0

f(x(s), s) dg(s) +
∑

k∈{1,...,m}
tk<t

f̃(xtk , tk)∆
+g̃(tk).

Logo, pelas definições das funções f̃ e g̃, segue que

t∫
t0

f̃(x(s), s) dg̃(s) =

t∫
t0

f(x(s), s) dg(s) +
∑

k∈{1,...,m}
tk<t

Ik(x(tk)),

provando o resultado.

O Corolário 3.6.1 é obtido de imediato a partir do Teorema C.3.
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