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RESUMO

ARAUJO, T. S. Analise de Sistemas Chaveados via Equacées Diferenciais e Integrais Generalizadas.
2024. Monografia (Trabalho de Conclusao de Curso) — Escola de Engenharia de S&o Carlos, Universidade de
Sao Paulo, Sao Carlos, 2024.

Sistemas chaveados desempenham um papel crucial na engenharia elétrica, sendo amplamente empregados
em aplicagdes como conversores CC-CC, controle de motores e sistemas de automagao. Este estudo
apresenta uma analise detalhada desses sistemas utilizando equagdes diferenciais e integrais generalizadas.
A pesquisa aborda a modelagem matematica por meio de representagées em espaco de estados e logica de
chaveamento, além de explorar modelos especificos, como o modelo médio e o de pequenos sinais. Como
contribuigcdo principal, o trabalho demonstra a equivaléncia entre sistemas chaveados e sistemas impulsivos,
evidenciando que é possivel transformar um no outro de forma bidirecional. Adicionalmente, o estudo inclui
uma anédlise aprofundada do conversor Boost, um tipo de conversor CC-CC, com foco em suas caracteristicas
operacionais e sua modelagem matematica. A validagdo dos modelos tedricos foi realizada por meio de
simulagdes, comparando os resultados previstos com os obtidos na pratica. Os resultados demonstram que a
abordagem proposta descreve eficazmente o comportamento dindmico dos sistemas chaveados, dispensando
suposigoes ou linearizagbes. Esta pesquisa contribui para o avango do entendimento de técnicas de andlise e
modelagem de sistemas chaveados, com aplicagbes praticas em diversas areas da engenharia elétrica.

Palavras-chave: Sistemas chaveados. Equagdes diferenciais impulsivas. Conversor Boost. Modelagem em
espaco de estados.






ABSTRACT

ARAUJO, T. S. Analysis of Switched Systems Through Generalized Differential and Integral Equations.
2024. Bachelor’s Thesis (Final Graduation Project) — Escola de Engenharia de Sao Carlos, Universidade de
Sao Paulo, Sao Carlos, 2024.

Switched systems play a crucial role in electrical engineering, being widely employed in applications such
as DC-DC converters, motor control, and automation systems. This study presents a detailed analysis of
these systems using generalized differential and integral equations. The research addresses mathematical
modeling through state-space representations and switching logic, in addition to exploring specific models,
such as the average model and the small-signal model. As a main contribution, the work demonstrates the
equivalence between switched systems and impulsive systems, showing that it is possible to transform one into
the other bidirectionally. Additionally, the study includes an in-depth analysis of the Boost converter, a type of
DC-DC converter, focusing on its operational characteristics and mathematical modeling. The validation of the
theoretical models was carried out through simulations, comparing the predicted results with those obtained in
practice. The results demonstrate that the proposed approach effectively describes the dynamic behavior of
switched systems, without requiring assumptions or linearizations. This research contributes to advancing the
understanding of analysis and modeling techniques for switched systems, with practical applications in various
areas of electrical engineering.

Keywords: Switched systems. Impulsive differential equations. Boost converter. State-space modeling.
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1 INTRODUCAO

Sistemas chaveados sdo uma classe de sistemas dindmicos que alternam entre diferentes subsistemas,
ou modos de operagao, ao longo do tempo. O chaveamento entre esses modos pode ser determinado
por um controlador I6gico, por condigdes internas do sistema, ou por eventos externos. Por exemplo, em
conversores de eletronica de poténcia, como o conversor Boost, o chaveamento ocorre devido ao controle dos
interruptores (transistores), que alternam entre estados ligados e desligados para regular a saida de tensao.
Esse comportamento dindmico e abrupto torna os sistemas chaveados amplamente utilizados em aplicagoes
que exigem alta eficiéncia e controle preciso, como em fontes de alimentagao, controle de motores elétricos e

sistemas de energia renovavel"™,

1.1 Sistemas chaveados

Sistemas hibridos combinam dindmicas continuas e discretas, modelando processos que alternam entre
diferentes estados ou modos de operacao. Eles sao representados por equagdes diferenciais para a dinamica
continua e por loégicas ou autbmatos para as transi¢coes discretas.

Em diversas aplicagdes, o foco esta nas propriedades da dindmica continua, enquanto a dindmica discreta
desempenha um papel secundario. Assim, ao invés de estudar a dinamica discreta em detalhes, é possivel
considerar o sistema como composto por varias dindmicas continuas, nas quais uma légica de chaveamento
seleciona uma delas. Esse método permite analisar o comportamento do sistema conforme diferentes légicas
de chaveamento. Sistemas que envolvem dindmicas continuas e chaveamentos entre elas sdo chamados
sistemas chaveados®™, uma abordagem dos sistemas hibridos que abstrai a dindmica discreta para enfatizar a
continua.

Um sistema chaveado pode ser definido matematicamente porI6I

+ Um conjunto de indices J;

+ Uma familia de fungbes vetoriais f;, : R®™ — R", comk € J e

» Uma funcao de chaveamento o : R, — 7, que é constante por partes e determina qual dinamica fy,
sera ativa em cada instante de tempo.

A dinamica do sistema é descrita pela equagéao diferencial
L(t) = for (x(t)),

em que z(t) € R™ é o estado do sistema.
Um caso simples de um sistema chaveado é abordado no exemplo a seguir.

Exemplo 1 (Controle de temperatura). A temperatura de um ambiente varia de acordo com o seu fluxo liquido
de energia de acordo com a seguinte relagaco 7.

CT =g, (1.1)
sendo

« C' a capacidade térmica do sistema (ambiente);
« T a temperatura do sistema e
* ¢ o fluxo de energia térmica.

Assumindo que é possivel injetar/extrair energia do sistema através de algum controlador de temperatura,

(1-1) torna-se

CT =q+u, (1.2)
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sendo u a energia fornecida ou removida pelo controlador térmico.

Considere que C = 10kJ°C™!, ¢ = —2kW, u = 5 kW se o controlador estiver no modo aquecedor, e
u = —5 kW quando estiver no modo de resfriamento. Considere também que o controlador esteja no modo
de aquecimento quando T < 20 °C, e no modo de resfriamento quando T > 25 °C.

Dessa forma, o sistema (ambiente mais controlador térmico) descrito por pode ser modelado como
um sistema chaveado a partir de

. 0.3, sex < 20;
xr =
—0.7, sex > 25,
comx =T (valores de x entre 20 e 25 mantém o ultimo modo de operagdo do controlador).
A Figura mostra o comportamento da temperatura do ambiente para a condigdo inicial z(0) = 15.

Figura 1 — Trajetéria de x(t), com condig&o inicial 2(0) = 15.

25

20

15¢

10

A 4

0 10 20 30 40 50 60 70 80 90 100

Fonte: Elaborado pelo autor.

O sinal o(t), que alterna entre diferentes dindmicas fx(z), pode ser interpretado de varias maneiras, cada
13l.

uma delas é melhor adaptada a um tipo especifico de problema ou anélise™"
(a) Dependente do tempo: Se o sinal o(t) depender unicamente do tempo, isso significa que o sistema
seguird um padrao de chaveamento controlado exclusivamente pelo tempo, sem levar em conta o estado
atual do sistema. Este tipo de chaveamento é caracterizado por uma dependéncia temporal explicita, e

o sinal de chaveamento pode ser descrito como uma fungao deterministica do tempo.

Matematicamente, isso pode ser expresso por uma fungéo o(t) que varia ao longo do tempo, como
uma onda quadrada ou uma sequéncia de pulsos com uma frequéncia ou periodo pré-determinado.
Nesse caso, 0 sistema alterna entre suas dinamicas de acordo com um padrao de tempo predefinido,
por exemplo, alternando de forma periddica entre diferentes dindmicas em intervalos de tempo fixos.

(b) Dependente do estado: Em alguns casos, o sinal o(t) pode depender também do estado do sistema
z(t), ou seja, a dindmica do sistema pode ser alterada em fungao do valor atual do estado (). Isso
implica que o comportamento do sistema pode mudar dependendo de sua condi¢do ou contexto, levando
a uma escolha dindmica do regime de operagdo. Por exemplo, se x(t) estiver em uma regido especifica
do espago de estados, o sistema pode seguir uma dindmica diferente em relagdo a quando x(t) esta
em outra regido. Esse tipo de chaveamento pode ser usado em sistemas em que a operagao do sistema
depende de certos limiares ou condigdes de operagao, como em sistemas de controle adaptativo ou
hibridos.

(c) Com meméria: Em algumas situagdes, o sinal de chaveamento o(t) pode ter meméria, ou seja, o
valor de o(t) para o instante ¢ pode depender de seu valor em instantes anteriores. Isso significa que o



19

sistema pode ter uma dependéncia de estados passados, e a decisao sobre qual dindmica seguir ndo é
apenas uma funcao do tempo atual ou do estado atual, mas também dos estados anteriores.

A memdria pode ser representada matematicamente como uma relagao recursiva, como uma fungéo
o(t) dependente de o (1), 7 < ¢, ou até mesmo como um conjunto de informagdes que descrevem o
histérico de escolhas do sistema.

(d) Controlado ou Auténomo: O sinal o(t) é escolhido ou modificado pelo projetista do sistema, possi-
velmente com base em uma estratégia de controle. Em sistemas controlados, o chaveamento pode
ser ajustado em tempo real para otimizar a operagcao do sistema. O controle pode ser feito por um
controlador que determina qual dindmica fx(x) o sistema deve seguir em fungdo de variaveis de entrada,
condi¢des do sistema ou objetivos de desempenho.

O sinal o(t) ser& autbnomo se for determinado por uma condi¢éo natural ou uma dinédmica inerente ao
sistema, sem intervengao externa. Isso pode ocorrer em sistemas bioldgicos, naturais ou em sistemas
em que o comportamento do chaveamento é ditado por parametros internos ou por interagdes naturais
no sistema. Nesse caso, o(t) pode ser governado por leis fisicas ou condigdes ambientais.

O sinal de chaveamento o(¢) em sistemas chaveados é uma ferramenta crucial que determina qual
dindmica o sistema segue em determinado momento. Ele pode ser dependente do tempo, do estado ou até
mesmo ter memoaria. Além disso, pode ser controlado por um projetista ou ser auténomo, dependendo da
aplicagao. O sinal de chaveamento, portanto, modela a alternancia entre dindmicas de maneira flexivel, e sua
escolha e analise dependem do tipo de problema, das caracteristicas do sistema e dos objetivos de controle.

1.2 Motivacao para o estudo

A modelagem de sistemas chaveados é um campo de estudo complexo que busca representar com
precisao sistemas cujas operagdes alternam entre diferentes modos, dependendo de condigbes especificas.
Esses sistemas estao presentes em diversas areas de engenharia, como eletrénica de poténcia, controle de
processos, telecomunicagoes e robética, onde a capacidade de alternar entre diferentes estados operacionais
é fundamental para atender a variados requisitos de desempenho. No entanto, esse comportamento chaveado
gera desafios significativos na modelagem, pois demanda que os modelos sejam capazes de capturar
transi¢cdes dinamicas rapidas e efeitos nao lineares.

1.2.1 Desafios na modelagem de sistemas chaveados

Uma das principais dificuldades na modelagem de sistemas chaveados esté na natureza intrinsecamente
nao linear das transi¢des dindmicas. Quando um sistema alterna de um modo de operagéo para outro, como
em conversores de poténcia, ocorrem mudancgas abruptas que afetam diretamente variaveis como tensao,
corrente e outras grandezas relevantes. Essa néao linearidade introduz complexidade adicional, dificultando
a analise precisa do comportamento do sistema ao longo do tempo'gl. Modelos lineares tradicionais, que
facilitam as andlises matematicas e simulagdes, geralmente nao sao capazes de capturar essas mudancas
abruptas com precisao, levando a resultados imprecisos em muitas aplicagdes praticas.

Outro desafio significativo é o fendmeno de dindmicas mdultiplas em sistemas chaveados. Diferentes modos
de operagao podem apresentar dindmicas distintas, e a transigao entre esses modos pode gerar efeitos de
acoplamento que influenciam o comportamento geral do sistema. Em sistemas complexos, o nimero de
modos pode ser grande, e a frequéncia das comutagdes pode ser alta, tornando a modelagem ainda mais
desafiadora. Em sistemas de controle, por exemplo, o controlador deve ser capaz de responder rapidamente a
mudancas de estado e garantir a estabilidade, o que exige uma modelagem detalhada para prever o impacto
de cada transigéo'g'. No entanto, representar adequadamente todas as possiveis transicées e suas respectivas
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dindmicas em um Unico modelo é um desafio, tanto em termos computacionais quanto de precisao, resultando
na necessidade de simplificagdes que podem comprometer a qualidade da modelagem.

Adicionalmente, a transigao entre estados também pode ser sensivel a perturbagdes, e falhas na modela-
gem dessa sensibilidade podem levar a proje¢des de comportamento inconsistentes com o sistema real. Por
exemplo, em um sistema chaveado de controle de motores, mudangas de carga podem alterar drasticamente
0 modo de operagéo“o', e a falta de uma modelagem adequada para esses cenarios pode resultar em falhas
operacionais ou degradacao do desempenho.

1.2.2 Limitagbes dos modelos tradicionais

Na modelagem de sistemas chaveados, os métodos tradicionais frequentemente usados, como o modelo
médio e 0 modelo de pequenos sinais, apresentam limitagdes significativas'”'. Esses modelos foram desen-
volvidos para simplificar a analise e otimizagéao de sistemas nao lineares, especialmente em casos onde o0s
sistemas tém comportamento predominantemente linear ou variagées de baixa amplitude em regime. No
entanto, em sistemas chaveados, que podem ser caracterizados por transi¢cdes rapidas entre estados de
operagao e por dindmicas nao lineares complexas, esses métodos tradicionais podem falhar em capturar o
comportamento real, levando a resultados que, muitas vezes, sédo insuficientes para garantir um controle e
desempenho precisos.

O modelo médio, um dos métodos mais utilizados, aproxima o comportamento dindmico do sistema

12 e .
12 Esta técnica

chaveado ao calcular uma média das variaveis ao longo de um periodo de chaveamento
permite simplificar a analise, fornecendo uma viséo geral do sistema sem considerar o comportamento exato
de cada estado chaveado. Embora essa abordagem seja util para reduzir a complexidade e facilitar a analise
em sistemas que operam com mudangas mais suaves, ela ndo é capaz de representar adequadamente
fendbmenos criticos que ocorrem em sistemas chaveados, o que pode comprometer a precisao do controle e
da estabilidade do sistemal™®"3,

O modelo de pequenos sinais, outra técnica comum, também apresenta limitagdes ao lidar com sistemas
chaveados. Este modelo assume que o sistema opera em torno de um ponto de operagao estavel e lineariza
o comportamento do sistema proximo a esse ponto. Ele € eficiente para prever a resposta do sistema a
pequenas perturbagées“z'. Em sistemas chaveados em que as variagdes sao rapidas e nao lineares, o modelo
de pequenos sinais falha em representar o comportamento real, pois ndo consegue capturar as transicoes
subitas e o impacto de grandes perturbagées'ml. Isso é particularmente problematico em aplicagées como a
eletrénica de poténcia, nas quais as transigdes entre estados de condugao e bloqueio das chaves alteram
significativamente a dinamica do sistema, exigindo uma modelagem mais robusta que considere esses efeitos.

Além disso, os modelos tradicionais geralmente dependem de suposic¢des simplificadoras que desconside-
ram caracteristicas importantes dos sistemas chaveados. Por exemplo, para reduzir a complexidade, esses
modelos frequentemente desconsideram a néo linearidade intrinseca do sistema, a interagao entre diferentes
modos de operacao e o acoplamento entre variaveis que se torna mais evidente em sistemas chaveados.
Em muitos casos, esses modelos ignoram o impacto de parametros que variam ao longo do tempo, como
a resisténcia interna dos componentes e efeitos parasitas, que afetam o desempenho do sistema de forma
significativa, especialmente em regimes de alta frequéncia“s'. Essas simplificagdes podem resultar em erros
consideraveis na modelagem, levando a projegdes que subestimam ou superestimam o comportamento do
sistema, o0 que compromete a confiabilidade das analises.

Outro fator limitante dos métodos tradicionais é a dificuldade de capturar fendmenos dinamicos de
transicao, como chattering e oscilagdes transitérias. Como o modelo médio suaviza o comportamento do
sistema ao longo de um ciclo e 0 modelo de pequenos sinais ignora grandes perturbagdes, ambos falham
em representar oscilagdes que ocorrem nas mudangas de estado. Em controladores de chaveamento, por
exemplo, o fenbmeno de chattering ocorre quando ha alternancias repetitivas e rapidas entre estados, que



21

os modelos tradicionais podem nao conseguem capturar de forma precisa'16'. Isso pode causar dificuldades
na implementacao de controles e aumentar o desgaste dos componentes, especialmente em sistemas com
chaveamento frequente.

Essas limitagbes dos modelos tradicionais tornam evidente a necessidade de técnicas de modelagem
mais avangadas para sistemas chaveados. Com a evolugao das tecnologias e o aumento da complexidade
dos sistemas, tornou-se essencial explorar métodos que sejam capazes de representar as dinamicas rapidas
e nao lineares desses sistemas. Abordagens como a modelagem hibrida™?, que combina representagdes
continuas e discretas, e o uso de modelos adaptativos'18', que ajustam os parametros em resposta a mudangas
no sistema, sédo algumas das técnicas que tém sido empregadas para se tentar resolver os problemas que
os modelos lineares ndo sao capazes de representar. Métodos nao lineares permitem uma descrigao mais
precisa dos modos de operacao e das transigoes, melhorando a precisdo na previsdao do comportamento do
sistema.

1.3 Objetivo do trabalho

O objetivo deste trabalho é investigar e analisar a modelagem de sistemas chaveados utilizando equagdes
diferenciais e integrais generalizadas. Dado o comportamento dindmico e complexo dos sistemas chaveados,
busca-se desenvolver uma abordagem de modelagem que supere as limitagdes dos métodos tradicionais,
como o modelo médio e o modelo de pequenos sinais.

Este estudo visa explorar a capacidade dessas técnicas avangadas para capturar de forma precisa as
transicoes abruptas e as dindmicas nao lineares dos estados do sistema, sem depender de suposicoes
simplificadoras e linearizagdes. Especificamente, o trabalho pretende:

1. Apresentar os modelos existentes de sistemas chaveados, abordando as limitagées associadas ao uso
de modelos lineares para representar sistemas nao lineares e dinamicos.

2. Aplicar técnicas de equagdes diferenciais impulsivas e integrais para descrever o0 comportamento de
sistemas chaveados, investigando como essas ferramentas matematicas podem melhorar a previsao de
respostas transientes e de regime permanente.

3. Validar os modelos propostos através de simulagdes com foco em aplicagdes praticas, como o controle
de um conversores Boost, motor CC e analise de um sistema elétrico de poténcia, verificando a
capacidade dos novos modelos em descrever o comportamento real dos sistemas chaveados sob
diferentes condi¢des operacionais.

Ao alcangar esses objetivos, o trabalho pretende contribuir para o desenvolvimento de métodos mais robus-
tos de analise e controle de sistemas chaveados, oferecendo uma base teérica sélida para futuras aplicagoes
em engenharia elétrica, especialmente em contextos que exigem alta precisao e eficiéncia energética.

1.4 Estrutura do trabalho

Esta monografia esta organizada em cinco capitulos, cada um abordando aspectos especificos relaciona-
dos a analise e modelagem de sistemas chaveados via equagoes diferenciais e integrais generalizadas.

« Capitulo 1 - Introducao. Neste capitulo, sdo apresentados o contexto e a motivagao para o estudo dos
sistemas chaveados, destacando sua relevancia em algumas das aplicagdes da engenharia elétrica.
Além disso, sao definidos os objetivos gerais e especificos do trabalho, bem como suas contribuigcdes
esperadas para a area de estudo.
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Capitulo 2 - Sistemas Chaveados. Este capitulo fornece uma revisdo detalhada dos conceitos funda-
mentais dos sistemas chaveados, abordando sua caracterizagao e principais aplicagdes. Sao apresenta-
dos os métodos tradicionais de modelagem, como o modelo médio e o de pequenos sinais, além de
uma discussao sobre suas limitagées.

Capitulo 3 - Equacoes diferenciais impulsivas. Neste capitulo, é descrita a metodologia utilizada para
a modelagem de sistemas chaveados, utilizando equagdes diferenciais e integrais generalizadas. Sao
apresentadas as equagdes matematicas desenvolvidas e os passos adotados para formular modelos
precisos que capturam as dinamicas de sistemas chaveados.

Capitulo 4 - Aplicacoes. Este capitulo apresenta as simulagdes realizadas para validar os modelos
desenvolvidos. Sao analisados os resultados obtidos, demonstrando o desempenho dos modelos
obtidos através de equagbes diferenciais impulsivas. Através de graficos e andlises, sdo demonstradas
as vantagens da abordagem proposta em relagéo a precisao do comportamento dindmico dos sistemas.
Capitulo 5 - Conclusao O ultimo capitulo resume as principais conclusdes do estudo, destacando as
contribuigdes do trabalho para a area de sistemas chaveados.

A estrutura do trabalho foi planejada para guiar o leitor desde os conceitos fundamentais até a analise

pratica e tedrica dos modelos propostos, proporcionando uma compreensao abrangente da modelagem e
anadlise de sistemas chaveados na engenharia elétrica. Além disso, os Apéndices contém informagdes mais
detalhadas acerca das ferramentas matematicas utilizadas no Capitulo 3, como as definicées das fungdes

regradas e integral de Henstock-Kurzweil-Stieltjes.
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2 SISTEMAS CHAVEADOS

Por ser o conteldo base desse texto, este capitulo se dedica a explicagcao do que sdo e como funcionam
os sistemas chaveados. Primeiramente, nogbes basicas, como definicdes e abordagens adotadas, seréo
apresentadas para contextualizar o leitor acerca do assunto. Em sequéncia, serdo apresentados os conceitos
gerais dos conversores CC-CC (Corrente Continua para Corrente Continua), que formam uma classe particular
de sistemas chaveados bastante comum na Engenharia Elétrica.

2.1 Nocoes basicas

Definicao 2.1.1 (Sistemas chaveados'sl). A representacdo em espaco de estados de um sistema chaveado é
dada por

&(t) = fow (x(t), ult),d(t), 1)

ou, sem perda de generalidade, por

T = frr(t) (SL’, u, da t)v
com

e fr: R" x R™ x RP x R — R™ sendo uma familia de operadores, k € J = {1,2,...,q};
 z(t) € R™ o estado do sistema;

« 0 : Ry — J o sinal de chaveamento;

* u(t) € R™ uma entrada de controle e

* d(t) € RP é um sinal externo ao sistema.

Para sistemas autdbnomos, isto &, sistemas que nao dependem explicitamente da variavel independente ¢,
representa-se um sistema chaveado simplesmente por

&= fou(z,u,d).

De forma geral, o sinal de chaveamento € escrito como
o(t) = ¢(x(t),o(t”),t) (2.1)
para uma certa logica de chaveamento ¢ : R™ x J x R — J. Cada sistema
& = fr(z,u,d,t)

€ chamado de subsistema ou modo de operagao do sistema chaveado. J& os instantes ¢ de descontinuidade
de fx, para k € J, sdo chamados de instantes de chaveamento.

O sinal de chaveamento o(t) € quem dita qual dos subsistemas fj, estara ativo entre os instantes de
chaveamento. Como apresentado em (2.1}, o sinal de chaveamento pode depender do estado, do tempo e até
mesmo de seu valor anterior; porém, por simplicidade, vamos apenas denotar o sinal de chaveamento por
o(t).

O sinal externo d(t), normalmente um distUrbio presente na planta (sistema), é algo que foge do escopo
do texto e, por isso, sera desconsiderado.

Com respeito a entrada de controle u(t), ela pode ser descrita unicamente como fungdo do tempo
u = A(t), mas também pode ser considerada como fungdo do estado u = A(x) (quando o controle envolve
realimentagédo de estado, por exemplo), ou ainda, pode ser fungdo de ambos os casos anteriores, u = A(z, ),
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ou sequer estar presente (v = 0). Dito isso, é bastante vantajoso trabalharmos apenas com os casos em
que u = A\(x) ou u = 0, pois, assim, podemos considerar f independente de u. Além disso, por simplicidade,
serdo considerados, apenas, 0s sistemas autdnomos, pois as discussoes feitas posteriormente podem, a
grosso modo, ser estendidas aos sistemas nao-autdbnomos.

Sendo assim, o restante do texto sera, a menos que se diga o contrario, focado apenas nos sistemas
chaveados da forma

T = fa(t)(x)'

O exemplo a seguir, elaborado pelo autor, mostra como se resolve um sistema chaveado e, a partir dele,
algumas caracteristicas basicas de tais sistemas serao discutidas.

Exemplo 2. Dado o sistema chaveado & = f,(;)(x), 0 : Ry — {1,2}, com
fi(z) =0 e fa(z) = —x, (2.2)
considere que a condigo inicial do sistema valha xo = x(0) = 10 e que o sinal de chaveamento seja dado por

1, set<1
o(t) = e o(t+2)=o(t). (2.3)
2, sel<t<?2

Pela definigao de o (t), o primeiro modo de operagao do sistema é dado por f,. Logo, como a solugdo
de & = 0 é dada por c = cte, pela condigao inicial do sistema, segue que x(t) = 10, enquanto o subsistema
f1 continuar ativo. No instante t; = 1, por (2.3), ocorre o chaveamento e o modo de operagdo do sistema
passa a ser o fo. Com isso, o0 estado do sistema até o proximo instante de chaveamento (to = 2) é dado pela
solugdo de & = —x nas condigbes do instante t., isto &,

1<t<2.

Figura 2 — Trajetéria de x(t), com condigdo inicial 2(0) = 10.

A x(t)

Fonte: Elaborado pelo autor.

A obtengdo da solucdo da equacdo acima é bem simples e o leitor ndo deve ter dificuldade em obter a
expressao

x(t) =10e "t para 1<t<2.
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Ja no instante de chaveamento t; = 2, o sistema volta para o modo f, e, entao, o estado passa a ser dado
pela solugao de

T =0,

2 <t<3,
2(2) = 10e71;

que vale x(t) = 10e~!. No instante de chaveamento t3 = 3, o sistema volta para o0 modo f, e esse ciclo se
repete infinitamente (ver Figura[3).

Perceba que a resolugao de um sistema chaveado baseia-se na solugao das infinitas equacdes diferenciais
"f:fk(l'), kE{l,...,q}, t€(tj,tj+1],

com condigéo inicial x;; = x(t;). No caso em que os subsistemas s&o lineares e invariantes no tempo (LTI, na
sigla em inglés), a resolugao fica bem mais simples, pois a linearidade nos permite encontrar uma solucéo de
forma relativamente f&cil (utilizando os métodos de resolu¢éo no tempo ou frequéncia estudados em Calculo)
e a invariancia no tempo nos permite utilizar a solugédo de & = fi(x) para ¢t € R, com uma condigao inicial
arbitréria x(0), para encontrar a solugéo de & = fi(x) parat € (t;,t; + 1], com condig&o inicial z(¢;). Em
outras palavras, se o sistema chaveado for formado por ¢ subsistemas LTI, precisaremos resolver apenas g
equagbes diferenciais, ao invés de infinitas.
Como forma de recordacao™, considere

T :R” — R”™ um operador que representa um sistema;
« up(t),uz(t) € R™ sinais de entrada e
« y1(t) = T(ui(t)), y2(t) = T(uz(t)) € R™ sinais de saida do sistema 7.

Entdo um sistema sera dito linear, se
T(ur(t) + ug(t)) = T(ur(t)) + T(uz(t)),
e sera dito invariante no tempo, se
T(ui(t)) =y1(t) implicarem T(ui(t+t9)) = y1(t+ to)

para qualquer tg € R.
Ja que todo sistema da forma
a

d
Calt) o+ Bl

T(x(t)) = Bn

é LTI, os subsistemas representados por (2.2) sao LTI. Logo, a solugdo do sistema chaveado descrito pelos
modos (2.2) se resume ao célculo das solugdes dos sistemas

1 =0,
t>0 (2.4)
21(0) = «,
e
Tog = —To,
? ? t>0. (2.5)
.1?2(0) = 67

com «, 8 € R. Nao é dificil concluir que =1 (t) = z1(0), t > 0, é a solugdo de (2.4), enquanto que z2(t) =
z2(0)et, t > 0, € a solugdo de (2.5). Portanto, se o sistema chaveado estiver no modo fi, k € {1,2}, em
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t € (t;,t;41], o estado do sistema sera descrito por z(t) = zx(t — t;) pela invaridncia no tempo, sendo a
condigdo inicial =4 (0) substituida por z(¢;), isso é,

t»7 seo(t)=1em t7t+1’
x(t) = x(t;) (t) (tj,t; ] £>0, 26)
z(tj)et ™t seo(t)=2em (tjt; +1];

emquet; =0,1,2,... e z(0) = xo.

Alguns pontos j& podem ser levantados a partir desse simples exemplo. Primeiramente, o estado = do
sistema é uma funcéo continua apesar do chaveamento, e isso ocorre pela transposicdo do valor final de
um modo de operagao para o valor inicial do subsequente. Tal fenbmeno é uma caracteristica importante
dos sistemas chaveados, haja vista que sistemas fisicos (sistemas que descrevem comportamentos que
acontecem no mundo real) possuem o estado continuo no tempo intrinsecamente. Entretanto, note que
sempre nos referimos a solugéo z(t) dentro de um intervalo (¢;,t,41], que é aberto & esquerda e fechado
a direita, o que essencialmente falando (pensando como engenheiro) nao faz diferenga, ja que o estado é
continuo. Tal escolha se dé& por conta de ferramentas (como o Corolario [3.6.7) utilizadas posteriormente que
assumem a continuidade & esquerda.

Outro ponto a se destacar € o fato de que os instantes de chaveamento ¢; € {1,2,...} ndo influenciam
a expressao geral da solugdo do sistema chaveado, pelo menos quando ele é composto somente por
subsistemas LTIl. Com isso, a insercao de controle em tais sistemas (que nesse caso se resume a escolha
da lei o(t) que determina os instantes de chaveamento) n&o inutiliza a solugdo do sistema chaveado sem
controle. O controle apenas redefine os valores dos instante de chaveamento.

Uma ultima observagao a ser abordada aqui é com relagdo a solugao do sistema. Veja em que, para
sabermos o valor de z em um determinado instante de tempo ¢;, ndo basta somente substituir o valor de ;
na expressao e calcula-la, pois existe uma parcela na expressao geral que depende do Ultimo instante de
chaveamento, isso é, z(t;). Do mesmo modo, para descobrirmos o valor de z(t;), precisaremos do valor de
no instante de chaveamento anterior a ¢;, e esse processo se repete até chegarmos a condigao inicial z(0).
Isso evidencia o quanto os instantes de chaveamento influenciam a resposta final e o quanto dispendioso é
obter, manualmente, o valor de x em um determinado instante ¢;.

O exemplo acima foi dado como demonstrativo e ndo possui nenhum significado pratico. A partir de agora,
iremos utilizar os conversores CC-CC como nosso sistema chaveado, ja que tais circuitos sao basicos no
curso de Engenharia Elétrica e possuem vérias aplicagoes.

2.2 Conversores CC-CC

Um conversor CC-CC (CC: Corrente Continua) pode ser considerado o equivalente CC de um transforma-
dor CA (Corrente Alternada) com uma relagdo de espiras continuamente variavel. Assim como o transformador,
ele pode ser usado para baixar ou elevar uma fonte de tenséo CC.

Os conversores CC-CC sao amplamente utilizados no controle de tragdo de motores em automéveis
elétricos, guindastes portuarios, empilhadeiras e transportadores de mineragao. Eles propiciam um controle
uniforme (suave) de aceleragéo, alta eficiéncia e uma resposta dindmica rapida. Os conversores CC-CC
podem ser utilizados em frenagem regenerativa de motores CC para devolver energia a fonte de alimentagao.
Os conversores CC-CC sao utilizados em reguladores de tensdo CC, e também em conjunto com um indutor
para gerar uma fonte de corrente CC, em especial para os inversores de fonte de corrente. Os conversores

z ~ ~ . . . . 7 11
CC-CC também estéo presentes na conversao de energia na area da tecnologia de energia renovavel ™.

A seguir, vamos descrever o conversor Boost, um tipo de conversor CC-CC utilizado para elevar a tensao
de entrada para um nivel de tensédo de saida mais alto.
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2.2.1 Conversor Boost

Um conversor CC-CC pode ser utilizado para elevar uma tensdo CC. Uma estrutura tipica de tal conversor,
chamado de conversor Boost, é apresentada na Figura[3al Quando a chave () é fechada e permanece assim
por um tempo 77, a corrente no indutor L cresce, e a energia € armazenada nele. Se a chave for aberta
e permanecer nessa posi¢ao por um tempo 75, a energia armazenada no indutor sera transferida para a
carga'”'.

Figura 3 — Circuito do conversor Boost.

R oo o Wil I I N

- L ;

i1(t) iiQ(t) ZS(t)i

Vg —— +KQ __cC R ()
(a) Diagrama do circuito.
) o1 (t) . vi(t)
+ HN\LN\ + e N\LN\ +
i1(t) lZQ(t) Zi(t)i i1 () ilz(t) 75(t>i
Vg — e R§ va(t) Vg — e R§ va(t)
(b) Modo 1. (c) Modo 2.

Fonte: Elaborado pelo autor.

A ideia por tras do funcionamento dos conversores CC-CC é simples: a fonte transfere energia para um
(ou mais) elemento armazenador de energia (indutor ou capacitor) no modo de operagéo 1, e essa energia é
transferida para um outro elemento(s) armazenador(es) de energia no modo 2. Apés n modos de operacgao,
tal energia é entregue para a carga.

Olhando para o conversor Boost por essa perspectiva, no modo 1 (Figura[3b) a fonte transfere energia para
o indutor, enquanto o capacitor fornece energia para a carga, e, no modo 2 (Figura[3c), a energia do indutor é
entregue para o capacitor e para a carga, que nesse caso € um resistor. O papel do capacitor, teoricamente,
é de absorver toda oscilagao na tensao sobre a carga, para que somente o valor médio seja entregue na
saida. Na pratica, o capacitor é o responsavel por fornecer energia para a carga enquanto o indutor estiver
recebendo energia da fonte (modo 1), o que implica na diminui¢gdo da tenséo sobre o capacitor e a carga. Se
o capacitor for grande o suficiente, isto é, se o valor da capacitancia for grande, tal queda sera bem pequena,
quando comparada com o valor médio da tensao sobre a carga. Por isso, dizemos que a tensao de saida é
idealmente constante. Dai vem o nome conversor CC-CC.

Para conseguirmos entender um pouco melhor como sao as formas de onda do circuito Boost, vamos
analisa-lo através de seu modelo médio.

2.2.2 Modelo médio

O modelo médio de um conversor CC-CC fornece as principais informagdes sobre o funcionamento do
circuito de forma simples e rapida.
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A andlise via modelo médio se baseia em duas suposicoes:

(S1) Circuito em regime permanente;

(S2) Tensao nos capacitores e corrente dos indutores sao constantes.

A segunda suposic¢ao esté levando em conta que, em regime, as variagdes sobre as variaveis de estado do
circuito (tens&o sobre capacitores e corrente em indutores) sdo muito pequenas quando comparadas com
o valor médio. Para que (S2) seja factivel, precisamos de (S1). Com isso, a obtengdo do modelo médio do
conversor se resume ao calculo das tensdes sobre os indutores e correntes nos capacitores em cada um dos
modos de operac¢ao, como mostrado no exemplo a seguir.

Exemplo 3 (Conversor Boost). O circuito do conversor Boost é apresentado na Figura[34, cujo primeiro modo
de operacéo é dado pela Figura[3bl Dadas as Leis de Kirchhoff das Correntes (LKC) e das Tensées (LKT),
que dizem que“?

(LKC) A soma algébrica das correntes que entram em um no é igual a zero;

(LKT) A soma algébrica das tensdes ao longo de qualquer percurso fechado é zero,

é possivel concluir que a tensdo vy (t) sobre o indutor e a corrente i (t) que passa pelo capacitor no modo 1
valem

U1 (t) =Vg e ig(t) = —i3=— . (27)

Por outro lado, por LKC e LKT, a tensdo v:(t) sobre o indutor e a corrente i»(t) que passa pelo capacitor
no modo 2 s&o dadas por
va(t)
R
As equagoes e sdo tudo o que precisavamos encontrar. A partir deste ponto, basta realizarmos
manipulagdes algébricas sobre tais equagdes para obtermos todas as informagdes referentes ao circuito. A

vi(t)=Ve —va(t) e ia(t) =1d1(t) —is(t) =di1(t) — (2.8)

primeira coisa a se fazer é aplicar (S2) em cada uma dessas equagoes para chegarmos em

vi(t) = Vi, vi(t) = Ve — Va;
Modo 1 - 7@ e Modo 2 SO E (2.9)
12 - TR 12 =11 R’

sendo que

« I é o valor constante da corrente que passa pelo indutor e
« V5 é o valor constante da tensdo sobre o capacitor.

Sabendo que o valor médio de uma fungao y(t), ndo necessariamente periddica, é

b
% /y(t) dt, (2.10)

comT = a — b, por (S1) e pelo principio da conservagdo da energia, podemos afirmar que tensdo média
sobre o indutor é nula, ou seja,

Ts

T
vi(t)dt = /VE dt+/(VE —Va)dt
0

T

o
I
o\ﬁ

=Vgti1 + (Vg = Vo)(Ts —Th) = VET1 + (Vg — Vo)1, (2.11)

sendo
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« T o periodo de chaveamento;
« T1 o tempo em que o circuito permanece no modo 1;
« T, =T, — T otempo em que o circuito permanece no modo 2.

Observamos, aqui, que considerar que Ty e T variam ao longo do tempo é particularmente desinteressante
no momento. Entdo, vamos toma-los fixos por enquanto.
Defina a razao ciclica D ou, do inglés, duty cycle, por
T 15
Dy = —, de modo que Dy=1—-Dy = —,
1 T. q 2 1 T.
para que (2.11) seja reescrita como

0=VaTi + (Vs — Va)To = Vg Di Ty + (Vig — Vo) DoT,
=Ve(D1 + D2)Ts — VoDoTs = VET, — VoD, T,

ou sgja,
Vi Vi

=== . 212
Dy 1-D; (2.12)
A expressao (2.12) nos fornece uma relagao entre a tensao de entrada e a tensdo de saida do conversor.

Como 0 < Dy,D5 < 1, por (2.12), segue que V, > Vi > 0 e o conversor é, entao, um elevador de tensao.

Disso vem o nome conversor Boost. Se pararmos para analisar, ja sabiamos que a tensdo de saida deveria

Va

ser maior que a da entrada pelo principio da conservagao da energia, ja que v1(t) = Vg > 0 no modo 1.
Sendo assim, necessariamente v (t) = Vg — Vo < 0 no modo 2 para que seja possivel que o valor médio de
v1(t) seja 0.

De forma analoga, segue pelo principio da conservagdo da energia, que a corrente média que passa pelo
capacitor vale 0 e, como i»(t) = —V5 /R < 0, entdo, necessariamente, i5(t) = I; — Vo /R > 0, 0 que também
implica que I, > 0 (se ndo fosse possivel obter tal conclus&o, bastaria fazer o calculo do valor médio de i (t)
de forma andloga ao que foi feito acima para v+ (t)). Tais conclusées, juntamente com (2.9), nos permitem
esbogar os gréficos de v (t) e ix(t) (ver Figura[4).

Figura 4 — Formas de onda do conversor Boost.

MV, (1) i(t)
Ve —
T V,
R
t T
T 5
) >
VQ TZ
R 1
T, )
R ] S .
T, )
(a) Tensédo sobre o indutor. (b) Tenséo no capacitor.

Fonte: Elaborado pelo autor.

Com relagdo aos graficos referentes a corrente no indutor e a tensdo no capacitor, poderiamos apenas
nos valer de (S2) e desenhar uma reta em cada um dos casos. Entretanto, (S2) é uma idealizagdo do
comportamento do circuito que, na pratica, ndo acontece. Existe, porém, uma forma de esbogcarmos os
referidos gréficos de uma forma mais fidedigna mas, ainda assim, aproximada. Basta saber que a tensdo
vy, (t) sobre um indutor de induténcia L e a corrente ic(t) que passa por um capacitor de capacitancia C' sdo
dadas, respectivamente, por

w(t)=LZinlt) e iclt) = CZve(), (2.13)
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com

* i1,(t) sendo a corrente que passa por tal indutor e
- ve(t) a tensdo sobre o capacitor?.

Substituindo-se (2.13) em (2.9), temos

d
L%il(t) VE, L%Zl(t) = VE ‘/2,
Modo 1 e Modo 2
c Lo,y = 12 clpwy-n-2
dt R’ dt 'R’

que, ao serem integradas, sao dada por

. Ve — Vo,
Z.1(75) = %t+i1(0); Z1(t> = %t"-ll(tl);
Modo 1 . e Modo 2 P (2.14)
vz(t)z—R—ét—H/g(O), va(t) = (C{—Ré>t+v2(t1).

A partir de (2.14) e das conclusées obtidas anteriormente (Vo > Vg > 0e1; > Vo/R > 0), é possivel
esbogar os gréficos de i1 (t) e v2(t) (ver Figural5).

Figura 5 — Formas de onda do conversor Boost.

£ 4

DTg Ts DTy T

(a) Corrente no indutor. (b) Tens&o no capacitor.

Fonte: Elaborado pelo autor.

Existe uma informagao quanto aos gréaficos e suposigoes feitas que nao foi mencionada até entéo: para que
as formas de onda das Figuras[4] e [5] sejam validas, o circuito deve estar operando em modo de condugéo
continua, isto é, a ondulagao na corrente dos indutores e a ondulagdo na tensao sobre os capacitores deve ser
pequena o suficiente para que elas ndo figuem em zero por mais que um intervalo degenerado. Caso contrario,
um ou mais modos de operagao apareceriam no circuito e o circuito estaria operando em modo de conducgao
descontinua. O modo de condugédo descontinua normalmente ocorre por conta de uma grande ondulagdo na
corrente de algum indutor de um conversor operando com carga leve e contendo chaves unidirecionais de
corrente. Também verifica-se tal modo de operagéo quando o conversor esta operando com a carga removida.
Em particular, existem certas topologias de conversores que operam no modo de condugao descontinua
propositalmente para todas as cargasI21 |

Se supusermos que o circuito opera em modo de condugao descontinua, mais modos de operagao deverao
ser levados em conta, o que s6 nos dara mais trabalho. No caso do conversor Boost, deseja-se que ele opere
em modo de condugao continua, por isso podemos desconsiderar 0s casos em que o circuito opera no modo
descontinuo.

O modelo médio do conversor nos permite entender o seu funcionamento de forma geral e, além disso,
também nos permite encontrar os pardmetros de desempenho e definir os valores dos componentes do
circuito, dadas algumas especificagdes. O célculo dos valores dos componentes ndo sera apresentado nesse
texto, mas pode ser visto emt 21, Apesar desses beneficios proporcionados pelo modelo médio, ele é
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insuficiente se desejamos aplicar controle no conversor, por exemplo. Para tal, normalmente utiliza-se o
modelo de pequenos sinais do conversor.

2.2.3 Modelo de pequenos sinais

O modelo de pequenos sinais baseia-se na substituicdo de (S2) por
(S2.1) Tensao nos capacitores e corrente dos indutores sdo valores médios.

Denote por Y™ o valor médio de uma grandeza (tensdo ou corrente) y(t) e por Y{™, Y3™ o valor de y(t),
representado por grandezas médias, no modo 1 e 2 respectivamente (aqui estamos supondo apenas 2 modos
de operagao para ilustragcdo). Segue, entao, por (2.10) que

T, — Ty T b

b
1 T 1
Ts/y(t)dt 1 Ts+ 2 T 1 Ts+ 2 0 ( )

com

» T, sendo o periodo de chaveamento,
« T1 o tempo em que o circuito permanece no modo 1 e

« Ty =T, — T1 o tempo em que o circuito permanece no modo 2.

Considerando que T3 pode variar no intervalo [0, 7s] ao longo do tempo (o que essencialmente "quebra” a
periodicidade do chaveamento, mas que sera relevado aqui), entdo o duty cycle

(2.16)

agora é uma funcéo de ¢ e, portanto, (2.15) se escreve como

T T
Y=Y A = YI() + Y] (1),

com do(t) = 1 — dy(t). Em particular, para o caso em que y(t) é a tensdo sobre um indutor ou a corrente que
passa por um capacitor, segue por (2.13) que

d. . vpr d Iz
airt == & guelh="1
ou seja,
() = —prdi(t) + —F2da(2),
d m - (2.17)
_tcn C,2
v (t) = —5-di(t) + —==da(t),
em que

« V™ é o valor médio da tensao vy (t);
« V™ é o valor de v, (t) no modo 1 em termos de valores médios e

» V", no modo 2 (o mesmo ocorre para ic (t)).
Agora, adicione a seguinte hipdtese

(S3) Existem oscilagdes nos sinais, mas elas sao muito pequenas,
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de modo que, em regime permanente, valham

(2.18)

sendo

e I1,, Ve, Vg, Dy constantes e
« ir(t), 5 (t), o (t), dy(t) pequenas oscilagdes em torno das constantes;

aqui vg(t) é a tensdo de entrada. Substituindo em (2.17), separando os termos constantes dos
termos que variam no tempo e desprezando os produtos entre duas fungdes do tempo, obtém-se relagbes
provenientes do modelo médio (através das expressdes com os termos constantes) e o modelo de pequenos
sinais (através dos termos variantes no tempo)'z”.

O que foi dito acima pode parecer dificil, mas é surpreendentemente simples. Resumindo:

* Calcule vy, (t) e ic(t) para cada um dos modos de operagédo do conversor;

* Substitua vy, (t) e ic(t) por (2.13);

+ Multiplique as equagdes do modo 1 por d; (t), as do modo 2 por d»(t) e assim por diante;
+ Somes as expressoes de i, (¢) de todos os modos, assim como para o¢ (t);

+ Substitua nas expressoes resultantes;

- Separe as expressdes em equagdes envolvendo somente termos contantes e equagdes contendo
termos variantes no tempo e

» Nas equagbes contendo termos variantes no tempo, despreze os produtos entre duas ou mais fungdes
do tempo.

Para deixar mais claro como seguir as instrugées acima, o seguinte exemplo foi elaborado pelo autor.

Exemplo 4 (Conversor Boost). Aplicando o passo a passo descrito anteriormente no conversor Boost, temos,

por @7) e 2.8),

v1(t) = vg(t); v1(t) = vg(t) — va(t);
Modo 1 e Modo 2
() = -2, () = ia(0) - 20,

(a diferenga com relagao as equagées (2.7) e foi a substituicdo da tensdo de entrada Vg porvg(t), ja que
agora ela pode ter pequenas oscilagdes). Substituindo v1(t) e ia(t) por (2.13) e multiplicando as equagées do
modo 1 por dy(t) e as do modo 2 por d»(t), obtém-se

() () = "2 0 () in(r) = 2020 )
Modo 1 d ) e Modo2 d i) vat)
d1(t)£vz(t) = —U;,C di (1), dz(t)%vz(t) = ( 10 - ]2%0 ) da(t)

que, ao serem somadas, se tornam

(di(t) + dg(t))%il(t) _ vg(t)

(@ (1) + da(0) Lon(t) = — 2D ) (““) - “2“)) da(t),
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ou seja,
d . wp(t)  wa(t) _
a0 =T e
Doty = W) - 2210

ja que dy(t) + da(t) = 1. Entdo, ao substituir (2.18) nas expressées acima, chegamos em

_ Ve Jrf’E(t) _ Vo +{)Q(t) (D2 +(Z2(t))'

d <
%(114—21(75)) = L L

d . L+t - Va + D(2)
@(‘/2 +02(t)) = T(DQ +da(t)) — —TRC

que, quando separada em equagbes somente com termos constantes e equagbes contendo termos variantes

no tempo, nos fornece

d Ve  VoDs d I, D, |
—h=0=—~— ; —Vo=0= - 55 2.1
al'=V=71 L’ #2== "¢ " we (219)
e
ig (1) = up(t) Vada(t) + Daiia(t) + o (t)da(t)
a N T L L :
~ ~ (2.20)
i{, () = Iids(t) + Doty (t) + i1(t)da(t) 3 0o (t)
e 2V C RC
Basta, agora, desconsiderar os produtos entre fungées do tempo em (2.20), baseado em (S3), para
obtermos
4z )= Up(t)  Vady(t) + Daa(t).
e T L L ’
) (2.21)
i{) (t) _ IldQ(t) +DZZ‘l(t) N 172(75)
e >V C RC’

ja que a multiplicagdo entre dois termos pequenos é mais pequena ainda, podendo assim ser desprezada. Por

ultimo, note que
dy(t) = Dy +da(t) =1 —dy(t) =1 — Dy —dy(t) = Dy — dy (t),

0 que implica em
da(t) = —di (t),

que, por sua vez, permite que (2.21) seja reescrita como

%%1(75) _ ﬁEL(t) N Vad (1) 2D252(t);
) (2.22)
4oty = ) Z Dain(t) 6;(3

dt

As equagbes em (2.19) nos fornecem informagdes que obtemos ao aplicarmos o modelo médio do
conversor, como por exemplo a relagao de ganho entre as tensdes de entrada e saida utilizando

O*@fVQD2 o que implica em —in
T [ oduemp Ve Dy
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(compare com (2.12)). Além disso, também é possivel obtermos a relagao entre a corrente do indutor (corrente
de entrada) e a corrente do resistor (corrente da saida) através de

LD V LD I I
12 2 =12 3 0 que implica em —3:D2, (2.23)

0= """~ I,

com I3 = V5 /R sendo o valor constante da corrente que passa pelo resistor (isso também pode ser obtido
pelo modelo médio, basta aplicar o principio da conservagao de energia na corrente que flui pelo capacitor,
assim como foi feito para a tensdo sobre o indutor para obtermos (2.12)).

Ja as equagdes em formam o modelo de pequenos sinais do conversor Boost. Elas sdo a represen-
tacao linearizada em espaco de estados do conversor Boost e séo tipicamente utilizadas na prototipagem de
controladores no dominio da frequéncia. Apesar da simplicidade de sua obtengao e de sua utilidade, o modelo
de pequenos sinais é ainda uma aproximagao do comportamento do circuito e depende muito da veracidade
de (S3) para ser uma boa aproximacao. Para que tenhamos o comportamento total e completo do conversor,
precisamos de sua representagdao completa em espaco de estados.

2.2.4 Modelo em espaco de estados

O modelo em espaco de estados de um conversor normalmente é dado na notagao matricial!
Z = Az + Bu
com

« z(t): vetor de estados (corrente nos indutores e tensdo sobre os capacitores);
» A: matriz de coeficientes de estado (pode variar em t);
« u(t): vetor de fontes e

* B: matriz de coeficientes de fonte (pode variar em t).

Ao invés de fazermos a mudanga de subsistema quando ocorre 0 chaveamento, como deveria ser feito
de acordo com a Definigdo [2.1.1] nés podemos juntar todos os modos de operagdo do conversor em sua
representacéo em espacgo de estados através das fungdes

t) 1, se o modo de operagéo ativo for k;
(677 =
0, caso contrario,

0 que nos fornece a representagéo
T=oAix+o1Biu+ ... +a, Az + o, Bhu.

Se cada um dos subsistemas de um conversor CC-CC for formado apenas por fontes e elementos passivos
(resistores, capacitores e indutores), eles serdo LTI e poderemos encontrar a resposta analitica do problema,
assim como foi feito no Exemplo 2]

Exemplo 5 (Conversor Boost). A representacdo em espago de estados do conversor Boost é, por (2.7), (2.8)
e (2.13), da seguinte forma

1 —1 1
11 0 0 7;1 Z 0 T 11 Z
= al(t) + O[l(t) VE + (t) + Qo (t) VE,
—1 1 -1
V2 0 % V2 0 6 % V2 0
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ou seja,
—ag(t . Vi
21 0 z( ) 11 TE
= + , (2.24)
. ao(t -1
V2 26(' ) % (%) 0

jaque ay(t) + as(t) = 1.
Quando a chave esta ligada (modo 1), as(t) = 0 e a representacdo em espago de estados fica sendo

. ) V
11 0 0 1L TE
= + , (2.25)
-1
j 0 — 0
(%) RC (e
que é LTI e tem solugéo dada por
V .
i(t) = TE -t +11(0)
_y (2.26)
va(t) = v2(0) - exp (RC)

comi1(0) e v2(0) sendo as condigbes iniciais do problema. J& para o caso em que a chave estd aberta (modo
2), as(t) =1 e, por (2.24), segue que

g 1 Ve

11 7 11 7

= + , (2.27)
. 1 —1 0
v2 c RC||™
ou ainda,

- 1 \%
=gt TE (2.28a)
. 1. 1
Vg = 521 — E’Ug, (228b)

que também é LTI.
Vamos, primeiramente, encontrar a expressdo de v (t). Derivando (2.28b) no tempo e substituindo i1 pela
expressdo em (2.28a), obtemos

. 1. 1 . 1( 1 VE> 1.
Vg = =1 — Uy = —Tv2+ —/— | — 5=v2,

ct RC?* C\ L L RC
ou sgja,
. . 1 Vg
V2 + @02 + EUZ o (2.29)

Para resolver (2.29), vamos calcular a resposta natural v% (t) e a resposta forcada v{ (t). Como recordagéo,
a solugdo x(t) de uma equagdo diferencial linear ndo homogénea

d’n,

ﬁndtinx

(1) + -+ r-(t) = (1)
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€ dada por
(t) = 2"(t) + 2! (1),

sendo x"(t) a resposta natural, obtida quando g(t) = 0, e x/(t) a resposta forgcada, obtida para uma
escolha especifica da fungao g(x)fzol,
Com relagdo ao célculo da resposta natural vy (t), considere

1 1

C=3%RC

de modo que (2.29) seja reescrita como
US + 2(:1)'5 +wivy =0

(lembre-se que o 0 do lado direito aparece porque estamos calculando a resposta natural). Quando ¢ = wy, a
solugdo da equagédo acima ja é bem conhecida?? e vale

U;L(t) = (A1 + Agt)eia, (230)

com A1, A, sendo constantes a serem determinadas através das condicées iniciais do circuito.
A resposta forcada vg (t) € obtida ao supormos que vs(t) = K1 = cte em (2.29) (tal escolha é feita, pois a
fonte de tensdo do circuito é continua, ou ainda, o lado direito de (2.29) é uma constante). Assim, temos

.. 1 .. 1 1 Ve , .
Kit+ poki+ 5K = 75K =22 oqueimplicaque Ky =V, (2.31)

portanto, v} (t) = Ky = V. Como vy(t) = v (t) 4 v} (t), segue de e que
va(t) = (Ay + Agt)e™ " + V. (2.32)
A expressdo de A, sai de ao tomarmost = 0:
ve(0) = A1e” + Vg = A,  ouseja, A5 =uvy(0) — V.
Para encontrarmos A,, derivamos (2.32), igualamos tal resultado com e fazemost = 0,

—v3(0)  1(0) v2(0) | i1(0)
RC c RC c

o que implica que Ay = A1( —

U2(0) = —A1( + Az =

Seguindo os passos acima para o célculo de i, (t), obtém-se, para { = wy,

v
i1(t) = (By + Bat)e ' + fE,
com
1% Vi — v(0
Bi=i(0) -7 e BzzBluEf”().

Resumindo, dadas as condigées iniciais vc(0) eir,(0), se { = wy entao:

e Modo 1: A representacdo em espaco de estados é dada por (2.26), cuja solugéo sera

i) = Y2 1+ ia(0)

va(#) = 3(0) - exp (1%)
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e Modo 2: A representagdo em espago de estados é dada por (2.28), com solugdo

1%
i1(t) = (By + Bat)e St + EE

’Ug(t) = (A1 + Agt)e_ct + Vg

tal que
1 v2(0) | i1(0)
=——, A= - Ay = A —
¢ YiTek 1 =v2(0) = Vg, 2 16 RO + ol
. 1% Ve — v2(0
Bi=i(0)-—% e DBy=DBi(+ ETQ()
De forma geral, segue, de forma analoga ao Exemplo |2} que
VE(t t5) + iy (t;) sedy(t) =1em (tj,t;41]
— 1y 1ty 1 = iy Ui+1]3
ny=4 L 7 7 v Pt t>0, (2.33)
[By(t;) + Ba(t;)(t — t;)]Je ¢t + 7 sedi(t)=0em (t;,t;44],
e
—(t—tj)>
v (t; -exp( sedi(t)=1em (t;,t;i1];
vg(t) _ 2( J) RC 1( ) (] J+1} £>0, (2.34)
[A1(t;) + Aa(t;)(t — t;)]e < =5) + Vi se dy(t) = 0em (t;, 1541,
com
1 ?)Q(t') ’Ll(t )
C=gpor Al =wlly)=Ve,  Axty) = Ault;)C - Ré + CJ :
Vi Ve —wva(t
Bu(t;) = ir(t)) — -2 Balty) = Bulty)¢ + 202

paraj =0,1,2,...et; — oo (suposicdo para frequéncia de chaveamento finita por simplicidade).
Vamos definir valores para as varidveis de (2.33) e (2.34) para que vejamos o processo de calculo manual
da resposta do conversor Boost.

Exemplo 6 (Exemplo numérico). Vamos supor que o conversor Boost seja operado por um PWM (Pulse
Width Modulation, da sigla em inglés) de 1 kHz com duty clicle de 50% (na primeira metade do periodo a onda
fica em 1 e na outra em 0). Dados os valores dos componentes R =50, L = 1H e C' = 10 mF, da fonte de
tensdo Vg = 110 V e as condigdes iniciais v5(0) = 0V e i1(0) = 0 A, entdo

1 1
=—— =10= — = wy,
2RC Jio o
0 que satisfaz a condicdo imposta para utilizarmos as equagées (2.33) e (2.34). O circuito comecga a operar
no modo 1, permanecendo nele até o chaveamento emt = 0.5 s, logo,

¢

11(t) =110 - ¢
para 0 <t <0.0005,
’Ug(t) =0

com i1(0.0005) = 0.055 A e v2(0.0005) = 0 V. Dentro do préximo periodo de tempo, ou seja (0.0005,0.001],
o circuito estara no modo 2. Sendo t; = 0.0005, por (2.33) e (2.34), tem-se

A1(0.0005) = v5(0.0005) — Vig = —110;

2(0.0005) 41 (0.0005) 0.055
Ay (0. = A;(0. - = —110-10 — 0+ —— = —1094.5;
5(0.0005) = A (0.0005)¢ 2t G 0-10 =0+ 5 094.5;
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1% 110
B1(0.0005) = 4, (0.0005) — fE = 0.055 — - = ~21.945;
Vi — v1(0.0005) 110—0

B5(0.0005) = B1(0.0005)¢ +

=—-21.945-10 = —109.45;
L + 1 ’

e, entao,

i1(t) = [-21.945 — 109.45 - (t — 0.0005)]e~10(¢=0-0005) 4 29
para 0.0005 <t <0.001,

va(t) = [~110 — 1094.5 - (t — 0.0005)]e—10(¢t=0-0005) 4 17¢

comi1(0.001) ~ 0.110 A e v3(0.001) =~ 0.0041 V.
No terceiro periodo de tempo, dado por (0.001,0.0015], o circuito voltara ao modo 1. Por (2.33) e (2.34),
comt; = 0.001, tem-se

i1(t) =110 - (¢t — 0.001) 4+ 0.11
para 0.001 < ¢t <£0.0015,
vo(t) = 0.0041 - ¢~20(t=0.001)

com i1(0.0015) =~ 0.165 A e v2(0.0015) ~ 0.00406 V.
Poderiamos continuar repetindo esse procedimento, mas acreditamos ter ficado claro como calcular a
resposta no tempo do circuito. Para ver como fica o gréfico de i1 (t) e vo(t), veja a Figura@

Figura 6 — Evolug@o no tempo dos estados do conversor Boost.
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(b) Tenséo no capacitor.

Fonte: Elaborado pelo autor.
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A evolugdo no tempo dos estados do sistema (Figura@ indica que o valor em regime da corrente no
indutor esta acima de 80 A e que o valor da tensdo no capacitor esta acima dos Vo, = 220 V, também em
regime. Utilizando (2.12) e os valores de Vi = 110V e D = 0.5 mencionados anteriormente, conclui-se que

Ve 110
1-D 05 oV,

Vs

que é o mesmo valor obtido via simulagdo e modelo em espago de estados (pela Figural6).
Da mesma forma, segue de (2.23) e dos valores mencionados no inicio deste exemplo, que

I Iz Va 220
- - —88A
=D, (1-D)R 055 ’

estando também de acordo com os valores da Figura[6, Vale ressaltar que os valores escolhidos para os
componentes, frequéncia de chaveamento e duty cycle sGo meramente ilustrativos (foram escolhidos apenas
com o intuito de satisfazer a condigdo ( = wgy). Uma corrente dessa magnitude passando pelo indutor ndo
é muito factivel (tal valor esta atrelado aos valores dos componentes, que foram escolhidos com o objetivo
de simplificar as contas) e, além disso, a pequena oscilagdo em volta do valor médio visto nos graficos da
Figura[f se deve a frequéncia escolhida (baseada nos componentes). Se, por exemplo, a frequéncia fosse
100 Hz, a ondulagéo seria bem maior e seu efeito poderia ser percebido, mesmo sem a ampliagdo da imagem,
principalmente na tensdo neste caso; ver Figura[7

Figura 7 — Evolugao no tempo dos estados do conversor Boost para f = 100 Hz.
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(b) Tenséo no capacitor.

Fonte: Elaborado pelo autor.
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A forma como foi encontrada a solugéo do conversor Boost no Exemplo [5]se assemelha bastante com o
que se faz para encontrar a solugao de equagoes diferenciais impulsivas. O proximo capitulo apresenta ao
leitor tais equagdes e faz a ligagao dessas com os sistemas chaveados.
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3 EQUAGOES DIFERENCIAIS IMPULSIVAS

Uma Equacao Diferencial Impulsiva (EDI) possui como estrutura basica

» Uma equagao diferencial

i = f(a,1), 3.1)

com f: Q xRy — R”, sendo 2 C R™ um conjunto aberto;
 Subconjuntos M (t), N(t) c Q,t e Ry e
* Operadores A(t) : M(t) — N(t),t € R.

A interacdo entre os itens descritos acima ocorre da seguinte forma. Suponha que z(t) = z(t, 2o, to) seja
a solugéo de passando por (zg,tg) € 2 x R,. Entdo z(¢) evolui no tempo até um instante ¢; > to em
que xz(t1) intersepta o conjunto M (t1). Nesse instante de tempo ¢ = t1, 0 operador A(t) transfere x(t) para
um novo ponto (x7,t1) € N(t1), sendo ] = A(t;)z1(t1). Desse modo, z(t) = x(t,x], 1) agora evolui no
tempo a partir da condicao inicial (xf,tl), comt > t1. Do mesmo modo, a solugao de avanca sobre
x(t) = z(t,z], 1) até que ela intercepte novamente o conjunto M (t) em um instante t = ¢, > t; e, de
forma analoga, o operador A(t) transfere a solugéo x(t) para um ponto (x5 ,t2) € N(tz), 23 = A(tz)z(t2). A
solugéo de agora é dada por z(t) = x(t, ¥ ,t2), t > to, até que x(t) intercepte novamente M (t) em um
instante ¢ = t3 e, entdo, o processo se repetira, caso a solugao exista.

A solugdo x(t), t > to, descreve uma curva em R™ chamada de curva integral. Os instantes de tempo
t = t, nos quais x(t) intercepta o conjunto M (t) sdo chamados de momentos de impulso. Assumiremos, a
partir desse ponto, que a solugdo z(t) da EDI seja continua a esquerda em ¢, k = 1,2,.. ., isto é,

x(t,) = lim x(t) = z(tx).

t—ty

Além disso, a solugado de uma EDI sera:

« Continua, se a curva integral ndo interceptar M (t) ou se ela atingir M (t) somente nos instantes de
tempo em que A(t)x(t) = x(t);

« Continua por partes com uma quantidade finita de saltos, se a curva integral encontrar M (¢t) em uma
quantidade finita de vezes, sendo que nem todos esses instantes de tempo satisfazem A(t)z(t) =
(t);

+ Continua por partes com uma quantidade enumeravel de saltos, se a curva integral interceptar M (t)
em uma quantidade enumeravel de instantes de tempo ¢ tais que A(t)xz(t) # =(t)2.

Poderiamos ainda considerar os casos em que ocorrem infinitos saltos ndo enumeraveis, mas, para
simplificar, ndo o faremos (na verdade, uma frequéncia de chaveamento infinita € um problema para sistemas
fisicos e, por isso, evita-se tal situagao).

A seguir, sdo apresentados alguns tipos classicos de sistemas diferenciais com impulso.

3.1 Sistemas com impulsos em tempos fixados

Tais sistemas sdo os mais simples e sdo caracterizados pelo conhecimento prévio dos momentos de
impulso ¢, k = 1,2, .... Aqui, {t;} representa uma sequéncia de tempos tal que ¢, — oo quando k — oo.

Definicao 3.1.1 (Sistemas com impulsos em tempos fixados'22'23')

k=1,2,..., asequéncia {A(ty)} sera dada por

. Dados os momentos de impulsos {t;},

Aty) : Q — Q, x — A(tk)x(tr) = x(tr) + I (x(ty)),
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em que I : Q — Q é uma aplicagdo para cada k. Como resultado, o conjunto N (t) também sera definido
para os instantes t = t,, e N(t;) = A(tp)M (tx). Dessa forma, um sistema com impulsos em tempos
fixados sera descrito por

Q':’:f(l’,t), t7étk'a
Ar = Ik(x), t= tk,

(3.2)

sendok=1,2,... e

Ax(ty) = z(t)) — (ty) com  z(tf) = 1im+ x(t), para k=1,2,....

t—tf

Vemos, de imediato, que uma solugdo z(t) de (3.2) satisfaz

(i) &= f(z(t),t) parat € (t, ty1] €
(II) Al‘(tk) = Ik(x(tk)) parat = tx, k= 1,2,....

O comportamento da solugéo ¢é influenciado pelo efeito impulsivo, principalmente sua existéncia e continui-
dade. Os exemplos a seguir mostram esses comportamentos.

Exemplo 7 (Existéncia da solu¢dod). Considere a EDI dada por
z =0, t#k,
(3.3)
Ax = L, t=k,
z—1
comk =1,2,.... A equagdo diferencial &t = 0 possui solugcdo continua para todo t, independente do valor

inicial. Porém, para a condigéo inicial z(0) = 1, o sistema impulsivo de tempos fixados (3.3) so possui solugédo
z(t) = 1 dentro do intervalo 0 < t < 1, ja que I(1), k € N, ndo esta definido.

Exemplo 8 (Continuidade da solugéo'zzl). Considere a EDI dada por
=0, t #k,
Moo E i (3.4)
T = 57 AR
comk =1,2,.... A equagdo diferencial &t = 0 possui solugcdo continua para todo t, independente do valor

inicial. Entretanto, o sistema impulsivo de tempos fixados (3.4) possuira solugdo continua por partes com uma
quantidade enumeravel de saltos caso a condigao inicial do problema seja x(0) # 0 (ver Figura @

Figura 8 — Trajetdria de x(t), com condicao inicial z(0) = 8.

N X(t)
8 P——
6
4 —
2 —
—t L
0 0.5 1 15 2 2.5 3 3.5 4 45

Fonte: Elaborado pelo autor.
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3.2 Sistemas com impulsos em tempos variaveis

Diferentemente do que foi apresentado na seg¢ao anterior, em que os momentos de impulso eram pré-
determinados, agora, iremos considerar uma fungdo como definidora dos momentos de impulso.

2223 " Seja {Sk} uma sequéncia de superficies

Definicao 3.2.1 (Sistemas com impulsos em tempos variaveis
dadas por Sy, : t = (), k = 1,2,. .., tais que 7,(x) < Tp41(x) e 7i(z) — oo quando k — oo. Definimos,

entao, um sistema com impulsos em tempos variaveis por

&= f(z,t), t#m(x),
Ax = I(x), t=m(x),

(3.5)

sendok =1,2,... e Ax(ty) = z(t]) — x(ty).

Algumas situagdes interessantes podem ocorrer quando consideramos sistemas da forma (3.5). Por
exemplo, diferentes condigbes iniciais podem levar a solu¢gdes com diferentes pontos de descontinuidade.
Também é possivel que uma solugédo atinja a mesma superficie Sy varias vezes, o que é chamado de
fenémeno de pulso. Além disso, diferentes solugdes podem assumir 0 mesmo valor apoés algum tempo, o
que é conhecido como confluéncia.

O exemplo a seguir ilustra alguns desses casos.

Exemplo 9 (Sistemas com impulsos em tempos variéveis'zzl). Considere a EDI dada por
=0, t# 1(x),t>0
# Ti(2) (3.6)
Az = 2?sgn(r) —z, t=m(2),
comk=0,1,2,..., sendo 1(x) = x + 6k para |z| < 3 e
1, sex>0
sgn(z) =¢ 0, sex=0 (3.7)
-1 sex <.

Figura 9 — Trajetorias do sistema impulsivo para diferentes condicdes iniciais.
x(1)
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(C) xo = 0.8. (d) xo = —0.8.

Fonte: Elaborado pelo autor.
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Para uma condigéo inicial (0) = xo > |3|, a solugdo nunca atingird nenhuma das superficie Sy, k =
0,1,2,..., como mostra a Figura[9& para z, = 4. J& se zy = 2, a solugdo z(t) = 2, t € [0, 2], sofrerd o efeito
impulsivo emt, = 2, o que resultard em Ax =2 e x(t;) = 4. Logo, a solugdo n&o interceptara mais nenhuma
das superficies Sy, e x(t) = 4 para todo t > 2 (ver Figura @)

Se a condigao inicial for dada por xo = 0.8, entdo a solugdo x(t) encontrara uma vez cada uma das
superficies Sy, t, —> oo e z(tx) — 0 quando k — oo (ver Figura@). Porém, se xy = —0.8, a solugao
interceptard S; em um ndmero infinito de tempos ti, k = 0,1, ..., sendo que t;, — 6 e xz(t;;) — 0 quando
k — oo (ver Figura[9d).

3.3 Sistemas autonomos com impulsos

Agora, iremos considerar sistemas independestes do tempo. Os instantes de chaveamento serao, entéo,
baseados no estado do sistema.

Definigao 3.3.1 (Sistemas auténomos com impulso®>2%)

conjuntos independentes de t, definido por

. SejaA: M — N um operador, com M, N sendo

Az =z + I(x),
sendo I : Q) — Q, Q C R™. Um sistema auténomo com impulsos sera definido como

z=f(z), z¢M,
Ax=1(x), x€ M,

(3.8)

Quando uma solugao z(t) de (3.8) atingir o conjunto M em algum tempo ¢, o operador A transferira a
solucéo para algum ponto do conjunto N. O exemplo a seguir apresenta um simples sistema auténomo com
impulsos.

Exemplo 10 (Sistema auténomo com impulsos). Considere a EDI dada por

=1, x ¢ M,
Ax=-2, z€M,

(3.9)

comM ={-2,4} e N = {—4,2}. Sendo z(t) = t + x9, zo = x(0), a solugdo da equacéo diferencial = 1,
vemos que a solugdo nunca interceptara o conjunto M quando xy > 4. Caso contrdrio, a solugdo apresentara
um comportamento periédico a partir do primeiro momento impulsivo (ver Figura[10).

Figura 10 — Trajetérias de x(¢) com condigdo inicial z(0) = 1 (em vermelho) e x(0) = —4 (em azul).

Fonte: Elaborado pelo autor.
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3.4 Sistemas autonomos impulsivos com retardo

Diferente dos sistemas auténomos com impulsos descritos anteriormente, agora iremos considerar que
existe um atraso embutido no sistema.

Definicao 3.4.1 (Sistemas autdnomos impulsivos com retardo'24')

M, N sendo conjuntos independentes de t, definido por

. Segja A: M — N um operador, com

Az =z + I(z),

sendo I : QQ — Q, Q C R", chamado de condigdo de autossustentacdo. Um sistema auténomo impulsivo
com retardo sera definido como

i = f(a:(t)), () ¢ M,

(3.10)
Az® = I(z®), 2® ¢ M,

sendo

« M (9) = 2(t + 0) a fungdo memoria,
« 0 €[-r,0] oatraso e
* xo = ¢ a condi¢do inicial do problema,

emque ¢ : [—-r,00 — R, r > 0.

Desse modo, tanto o sistema quanto o operador impulsivo estdo em fung¢ao do valor do estado x de 6
instantes de tempo atras. Quando x atingir o conjunto M, s6 apds um instante de tempo 6 que 0 momento
impulsivo ocorrera. A notagao usual do estado com retardo é x;, mas para nao causar confusao com o indice
dos subsistemas, adotamos a notagao z(%).

Exemplo 11 (Sistema auténomo impulsivo com retardo). Considere a EDI dada por

i=1, ) £ 4,

(3.11)
Az =-2, z®) =4,

sendo x\Y) = x(t — 1) (aqui M = {4} e N = {2}). Note que foi considerado atraso somente no operador
impulsivo, por simplicidade.

Sendo z(t) = t + xo, x9 = 1, a solugdo da equagdo diferencial + = 1, vemos que a solugdo nunca
interceptara o conjunto M quando xzy, > 4. Caso contrario, a solugdo apresentara um comportamento
periddico a partir do primeiro momento impulsivo. Neste caso, por conta do atraso presente no operador
impulsivo, o momento impulsivo s6 ocorrerd 1 instante de tempo apds a interceptagdo (ver Figura[TT).

Comparando a Figura[11]com a[10, conclui-se que poderiamos considerar esse problema simplesmente
como uma EDI auténoma se tomarmos M = {5}.

Figura 11 — Trajetéria de x(¢) com condig¢&o inicial z(0) = 1.

0 1 2 3 4 5 6 7 8 9

Fonte: Elaborado pelo autor.
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3.5 Sistemas chaveados e sistemas impulsivos

E. Joelianto e H. Y. Sutarto> representam um sistema chaveado usando equagdes diferenciais impulsivas

lineares. Alguns autores, como Liberzon®¥, apresentam uma representagao dos sistemas chaveados que
lembra os sistemas impulsivos e, inclusive, utilizam resultados obtidos para sistemas impulsivos no contexto
dos chaveados. Outros, como R. Goebel, R. G. Sanfelice e A. R. Teel™, apresentam uma formulagao unificada
que inclui EDI’s e sistemas chaveados como subclasses dos sistemas hibridos. Existe também aqueles que

. . . . . 27|12
juntam os dois para formar um sistema chaveado |mpuIS|vo| )

, que ndo sé muda de subsistema quando
ocorre o chaveamento, mas também impde um salto no estado. Entretanto, nenhum se dedicou a fazer uma
ligagdo entre os sistemas chaveados e os sistemas impulsivos utilizando o devido rigor matematico.

O objetivo, aqui, é obter uma formulagéo inédita e escrever um sistema chaveado através de um sistema

impulsivo, e vice-versa. Para isso, vamos primeiro descrever o que é uma solugao de um sistema chaveado.

3.5.1 Aresposta de um sistema chaveado

Seja = = f,() () um sistema chaveado, com o(t) : R, — J = {1,2,..., ¢} sendo continua & esquerda
e f.(x) sendo LTI, paratodo a € J. Se ¢(t) = m € J dentro de um periodo (tx, tx+1], @ solugédo z(t) do
sistema chaveado, dentro desse mesmo intervalo de tempo, serd, a menos do deslocamento temporal, igual
a solugéo x.,(s) da equacao diferencial Z,,, = fon(zm) com condigdo inicial 2, = x(t;) dentro do intervalo
0<s<(thsr — tg)-

De fato, ao somarmos t; na desigualdade 0 < s < (tg4+1 — tr), N6s obtemos que ¢ < s+t < tgy1.
Como t, <t < tgy1, Segue que s =t — iy e, entdo, <., = fin(Tm) = for)(z) = 2, se o(t) = m dentro do
intervalo ¢, <t <41, sendo z; a condic¢ao inicial. Logo,

‘T(t) = $771(57Ik) = zm(t — tg, IEk) para todo t. <t< Tht1,

tal que (s, zx) = x.,,(t) (colocar x;, como variavel de z,,, € uma estratégia adotada para deixar explicita
a dependéncia da solugao com relacdo a condigao inicial). Fazendo a extensado para todos os intervalos
(tj,tj41] em que o(t) = m, obtém-se

z(t) = xm(t —tj,x;) paratodo (tj,t;41] talque o(t) =m.
Agora, defina a fungéo x;;, para todo ¢ > 0 da seguinte maneira:

Tt —tg,xE), Seo(t)=m (em (tx,t
(1) = (t — tw, zy) (t) (em (tr,tr41]) 3.12)
0, caso contrario,

0 que nos leva a

q

z(t) = z(t,x0) = me(t) (8.13)
=1
com zg = x(0) sendo a condigdo inicial do sistema chaveado.

Note que foi isso o que fizemos na Segédo[2.2.4] N6s descrevemos a solugéo de cada um dos subsistemas
do conversor Boost para uma condigao inicial xo qualquer e para t > 0. Depois, a solugdo do sistema
chaveado foi escrita em funcao dessas solugdes dos subsistemas deslocadas no tempo e com a condigéo
inicial substituida por z(tx), com t; sendo os instantes de chaveamento (ver equagdes e ([2.34)), para
k=0,1,2....

Vamos, agora, obter a solugdo de um sistema chaveado a partir das equagdes diferenciais impulsivas.
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3.5.2 Equivaléncia entre sistemas chaveados e impulsivos

Considere, paracadam € J = {1,2,...,q}, 0 seguinte sistema impulsivo em tempos fixados

:‘)m = fm(ym)7 t 7é tx
AYm = Ik,m(ym); t=1g

comk=0,1,2,...,emque tg = 0 e os operadores de impulsos sdo dados por

Yo (t) (tk) - ym(tk)7 se O'(t;:) =m
Yrn — Ym (tr) caso contrario,

Ik,m(ym) -

sendo y¢, um ponto de equilibrio fixo qualquer de ¢,, = fin(ym), o(t) : Ry — J uma fungéo continua a
esquerda e y, (1) (tx) = yr(tx) 0 valor da solugéo y,(t) de y, = f.(y,) em ty, com o(ty) = r.

Com os operadores de impulsos I ,,, m = 1,2,..., k = 0,1,..., o valor de ym(tg), que é a condigao
inicial do intervalo (ty, tx41], S€rd y, (1) (tx) quando o(t) = m e sera yg, quando o (t; ) # m.

Supondo que os momentos impulsivos tx, k = 0,1, ..., sejam iguais aos instantes de chaveamento do
sistema chaveado descrito na subsegao e que as fungdes o sejam as mesmas, a solugéo y,, (t) do
sistema impulsivo nos intervalos (tx, tx11], €M que Ik m(Ym) = Yo(r) (tr) — Ym(tr), seraigual & solugéo x, (1)
do subsistema do sistema chaveado deslocada no tempo de 5, quando y, () (tx) = z(tx), com z(t) sendo
a solugédo do sistema chaveado, e serd y,,(t) = y<, nos demais instantes de tempo (pois ¢, é ponto de
equilibrio). Como as fungdes o sdo as mesmas para todos os m e k, a equagéo diferencial ¢, = fin(ym)
retirada do sistema impulsivo sera igual ao modo %, = f,,(x.,) do sistema chaveado, ou seja, z,(t) = y.m ().
Segue, entéo, que Yy, (tk) = yr(tr) = 24(tx) = x(tx) = a1, para o(t) = r, pois o subsistema ativo do
sistema chaveado sera o r. Logo,

T (t — t, ), S€ U(tz) =m

Ym(t) = -
Yrn caso contrario.
Agora, considere a fungéo
1 q q
am(t) = — [[(e(t)=4), com  pu =[] (m—i). (3.14)
Pm 35 i=1

Se o(t) = m, entao

Entretanto, se o(t) = r # m, entdo

1
om(t) = Pm p

m
i

(O’(t)—’i):L(T—1)'...‘(7'—7”)'...'(7’—(]):0.

Logo, a,,(t) = 1 quando o(t) = m, e au,(t) = 0 nas demais situagdes (note que essa é a mesma funcéo «
definida na sec¢éo[2.2.4). Note que também é possivel obter a fungdo o (t) a partir das fungdes a., (t), ja que

ot) = i-ai(t). (3.15)
i=1
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Exemplo 12 (Exemplo numérico). Seja o(t) uma fungdo dada por

, para0 <t <1,

paral <t <2

1
3
2, para?2 <t <3
3

, parad <t <4

(ver Figura[13).

Figura 12 — Grafico da fungéo o(t) do Exemplo[12}

1 ¢——————e

A 4

0 1 2 3 4

Fonte: Elaborado pelo autor.

Como a imagem de o(t) € o conjunto {1, 2,3}, entdo q = 3. Por (3.14), temos

(0(t) =2)(a(t) =3) _ (o(t) = 2)(o(t) = 3)

1 .
1CORD 1-2)1-3) 2

ar(t) = —
P
1=2

Analisando o valor de o (t) em cada um dos intervalos de tempo em que o(t) permanece constante,
temos

(1-2)(1-3) 2
=—-=1 ara0 <t <1;
2 2 ) p — — )
—92 —
G )2(3 3)=g=0, paral <t < 2;
al)=Y 2_9@-3 o
=—-=0, para2 <t <3
2 2
3—2)(3—-3 0
( I ):,:07 para3d <t <4.
2 2
De forma analoga, segue que
0, para0 <t <1, 0, para0 <t <1,
0, paral <t <2; 1, paral <t <2;
ax(t) = e as(t)=
1, para2 <t <3; 0, para2 <t <3;
0, para3 <t<4 1, para3 <t <4,

como pode ser visto na Figura[13,
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Figura 13 — Gréfico das fungdes «,, (t), do Exemplo

Aal(t) /\az(t)
16— 1
t\ .
0 1 2 3 4 0 1 2 3 4"
(b) aa(2)
(@) ai(t)
4\a3(t)
1 —— —_—
0 1 2 3 4"

(C) a3 (t)

Fonte: Elaborado pelo autor.

Agora, supondo que tivéssemos somente as fungdes o, (t), m = 1,2, 3, por (3:15), teriamos

log(t) + 202(t) +3a3(t) =1-14+2-0+3-0=1, para0<t<1;
o(t) = lag(t) 4 205(t) + 3a3(t) =0-140-0+3-1=3, paral <t<2;
log(t) 4 205(t) + 3a3(t) =0-14+2-1+3-0=2, para2 <t<3;
lag(t) + 2a2(t) + 3a3(t) =1-0+2-04+3-1=3, para3 <t <A4.

Voltando para a investigagé&o inicial, basta utilizar as fungbes a,,, definidas em 4) para obtermos
‘T:n(t) = ym(t) : am(t)a
em que z;,(t) é dado por (3.12) e, dali, por (3.13), segue que
Z z} Z i (1) -y (t). (3.16)

i=1

Portanto, é possivel encontrar a solugéo z(t) de um sistema chaveado & = f,)(z), o(t) : Ry —
J =1{1,2,...,q}, com condi¢do inicial z(0) através das solugdes y;(t), i = 1,2,..., g, obtidas por meio da
resolugao do sistema de EDI’s

= fily1), t#t

Alh =Ip1(y1) t=tg,
(3.17)

fn(yq) t# g

qu*qu( q) =tk

com operadores de impulsos dados por
o t m(tk), Se t+ =
Tem(gm) =37 & (tk) = Ym (tr) o(ty) =m 3.18)
Y — Ym(tr) caso contrario,

k=0,1,2,...,paraty € Ry, m € J, yn(0) = 2(0), para todo m € J.
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Note que também ¢é possivel fazer o contrario, isto é, obter a solu¢éo do sistema de EDI’s, dado por (3.17)
e (3.18), por meio da solugao do sistema chaveado, descrito na subsegéo Para isso, basta utilizar

z(t), seo(tf)=m
ym(t) - yanl
y&,,  caso contrario.

Uma outra abordagem para representar o sistema de EDI’s seria colocar as fungdes « para dentro do
sistema e trocar o ponto de equilibrio por 0:

= filyr) -ai(t), t#t

Ayr = I 1(y1) t=t,

yq = fn(yq) cap(t), t#t
Ayy = I 4(yq) t = ty,

com operadores de impulsos dados por

T () Yo(t)(tr) — Ym(tx), se J(t;) =m
kom\Ym ) —
—Ym(tr), caso contrario.

Além disso, também é possivel definirmos um sistema impulsivo estendido da seguinte forma:

Ax = I(x), t=tr, k=0,1,2,...,
em que
oy fi(z1) 0
o 0 fa(z2) -+ 0
g 0 0 falzg)
e
Ti (1)
Iy 2(2) Ty (te) — zi(ty), seo(ty) =1
Ix(z) = com I i(z) = (t)(tx) (%) o(ty)
: —z;(tg), caso contrario.
_Ik,q(mq)_

3.6 Equacoes integrais e sistemas chaveados

A representagdo do sistema impulsivo via equagdes diferenciais carrega consigo uma estrutura a mais, o
operador impulsivo. O operador impulsivo € pouco usual quando se trata da representagéao de sistemas, e é
algo que ndo existe na representagéo basica dos sistemas chaveados (Definigao [2.1.7).

A ideia, aqui, € utilizar o Corolario dado a seguir para escrever um sistema chaveado (sistema
impulsivo estendido) na forma de uma equacao integral do tipo Volterra (escreveremos simplesmente
EIV), para incorporarmos o operador impulsivo na prépria equagao integral e, assim, obtermos uma outra
representagao, também inédita, para os sistemas chaveados.
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Algumas das ferramentas matematicas utilizadas no Corolario [3.6.1, como a integral de Henstock-
Kurzweil-Stieltjes, que € uma generalizagao das integrais de Riemann e Lebesgue, e as nogdes de funcoes
regradas, que sao fungdes mais gerais que as continuas por partes, sdo pouco usuais na engenharia. Por
isso, a defini¢do e explicagdo dessas ferramentas foram deixadas para o Apéndice (veja o[Apéndice Alpara
as fungbes regradas e o[Apéndice B|para a integral de Henstock-Kurzweil-Stieltjes. Um esbogo da prova do
Corolario é apresentado no

Corolario 3.6.1.2%

Sejamm,n € N eT > 0. Assuma que, paracada k € {1,...,m}, tx € [to,to +T], comty < t; <ty <
e <t <to+ T, eIy : B— R" seja um operador impulsivo talque I + I, : B— B,emque B C R" é
um conjunto aberto e I : B — B é o operador identidade. Suponha que f : B x [ty,to + T] — R" seja
Henstock-Kurzweil-Stieltjes integravel com respeito a fungdo regrada g : [to, to + T] — R que é continua em
cada ty. Defina a fungdo f: B X [tg,to +T] — R™ por

~ f(z,t), telto,to+TN\{t1, .., tm}
flzt) =
In(2), t=ty ke{l,...,m}.
Além disso, paratodok € {1,...,m}, sejac, € R, uma constante, comcy, < ci11, € definag : [to, to+T] —
R por
g(t), t € [to. ta]
g(t) =19 g(t) +cx, t€ (tp,tpri],ke{l,...,m—1}
g(t) +cm, tE€ (tm,to+T]
satisfazendo A1§(ty,) = g(t{) — g(tx) = 1 paratodo k € {1,...,m}. Entdo x : [to,to + T] — B serd uma
fungao regrada e uma solugéo da EIV
t
(t) = x(to) +/ fa(s),8)dg(s)+ > Ix(x(tr)), t€ [to,to+ T,
to ke{l,...,m}

l‘(to) =Xy,

se, e somente se, = for solugdo da sequinte EIVEY

o(t) = a(to) + [ Fla(s),5)dg(s), t € [to,to+T],

to
fﬂ(to) = Z9-

Considere o sistema chaveado representado na sua forma estendida, com os subsistemas f,,
sendo lineares e continuos, m = 1,2,...,n. Como sabemos, a linearidade de &,, = f.(z.,) implica na
existéncia da solugao que, junto a continuidade, nos leva a Riemann integrabilidade com relagéo a t. Portanto,
o sistema & = f(x) é também Riemann integravel com relagdo a ¢. Dito isso, segue que f é Henstock-Kurzweil
integravel com respeito a fungdo ¢(t) = ¢, ja que a integral de Henstock-Kurzweil € uma extensdo da integral
de Riemann. Tomando o conjunto B de forma apropriada, nossas fungdes f, g e o operador I, satisfazem as
premissas do Coroléario [3.6.1] Sendo assim, considere a fungéo

Fa) = f(x), teltoto+TI\{tr,- - tm}
Ip(z), t=ty, k=1,...,m,
e a fungao
t, t € [to,t1]
gt)=q t+k, te (tptp],ke{l,...,m—1}
t+m, t€ (tm, to+ T,
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emquec, =k, k=1,...,m. Note que, aqui,
ATg(tr) =g(t) —glte) =t +k = (t+ k1) =1,

satisfazendo a condigao referente a escolha dos ¢. Portanto, a solugao do sistema chaveado pode ser obtida
através da solugao de

£(t) = 2(0) + / Fla(s))dgls), ¢ € [0.7),
0
x(0) = .
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4 APLICAGOES

Os sistemas chaveados sao fundamentais em diversas aplicagdes tecnoldgicas que demandam controle
eficiente e confiavel. Neste capitulo, abordamos exemplos préaticos, como:

» O conversor Boost, utilizado para elevar a tensao em sistemas de poténcia;
» O controle de motores CC, essencial para regulagao de velocidade e torque e
» Aisolagao de falhas em redes elétricas, onde a rapida comutacao garante a continuidade e seguranca

do fornecimento.

Essas aplicagdes ilustram a importancia e versatilidade dos sistemas chaveados em diversos setores tecnol6-
gicos. Vamos iniciar as aplicagdes pelo conversor Boost, amplamente explorado neste texto.

4.1 Conversor Boost com controle de dupla malha

A aplicagao de conversores CC-CC, como o Boost, em inversores fotovoltaicos é essencial para otimizar a
conversao de energia em sistemas solares. Eles sdo particularmente Uteis para ajustar a tensao de entrada
dos painéis solares, que pode variar significativamente de acordo com condigées ambientais como a irradiancia
solar e a temperatura. Isso ocorre porque a tensdo de saida dos painéis solares nem sempre corresponde a
tensao ideal para o inversor, responsavel pela conversao de corrente continua para corrente alternada usada
na rede elétrica.

Os conversores CC-CC, especialmente aqueles que integram algoritmos de rastreamento do ponto de
maxima poténcia (MPPT; do inglés Maximum Power Point Tracking), sao fundamentais para maximizar a
extragdo de energia dos painéis. O MPPT ajusta a tensdo de entrada para garantir que o sistema opere
sempre no ponto de maior eficiéncia, considerando as variagdes de iluminagao e temperatura ao longo do dia.
Esses conversores também ajudam a estabilizar a tensao fornecida ao inversor, garantindo uma operagao
eficiente e segura mesmo em condic¢des variaveis de operagéolso‘m'.

Para que os requisitos de projeto sejam atendidos e para que a saida do conversor CC-CC esteja sempre
seguindo o valor estipulado pelo algoritmo do MPPT, é necessario que se tenha um controlador atuando sobre
o chaveamento do circuito. No nosso exemplo, iremos aplicar um controle em malha dupla, sendo a malha
externa a de tensdo e a interna a de corrente, ver Figura[T4]

Figura 14 — Estratégia de controle em cascata para o conversor Boost.

Controlador PWM
Interno

Malha Interna

Malha Externa

Fonte: Adaptado de Campos e Teixeira|32|.

Para a malha externa, vamos controlar a tensdo de saida utilizando um PID (Proporcional Integral
Derivativo), que é dado pela seguinte equacgao integrodiferencial

t

d
ui(t) = Kyei(t) + K, ; e1(s)ds + KD%el(t), (4.1)

sendo”
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* e1(t) = vyes(t) — v2(t) 0 erro entre a tenséo de referéncia v, (t) e a de saida vs(t) (ver Figura[3),
* K, 0 ganho proporcional,

* K, o ganho integral

* K, o ganho derivativo.

Ja para a malha interna, vamos utilizar um ganho proporcional K, de modo que ez (t) = uy(t) —i1(t) e
Ug(t) = Keg(t) = K[u1 (t) — Z'l(t)}, (42)

que, ao ser inserido no PWM, gera o sinal de controle « (¢) da chave, como mostra a Figura
Desse modo, podemos representar o conversor Boost através de um sistema de EDI's com impulsos em
tempos variaveis da seguinte forma:

1 = fi(x), t # 7(u)
Axy = I 1(x1), t=71,(u),

(4.3)
Ty = fa(x2), t # 1 (u)
A(EQ = Ikyg(xg), t= Tk(u),
com operadores de impulsos dados por
za(ty) — x1(tr), sea(tf) =1,
Ipa(2) =
—x1(t) caso contrario;
(4.4)
xl(tk.) — l‘g(tk), se Oz(t:) = 07
I o(x2) =

—x2(tk) caso contrario,

comk =0,1,2,...,sendo &; = fi(z1) igual a 2.25), i3 = fa(z2) igual a 2.27), 7. (u) = T(us + k) para
0 < ug <1 e para um periodo de chaveamento T'. Por(3.16] sabemos que a solucéo de (4.3) sera

z(t) = ar(t)z1(t) + aa(t)z2(t),

sendo as(t) =1 — oy (t).

Bem, apresentar essa representacao para o leitor e deixar por isso mesmo, ficara parecendo que obté-la é
algo trivial, o que nao é necessariamente verdade. Explicaremos alguns pontos sobre a modelagem para que
fique mais claro.

Primeiramente, perceba que estamos levando z; e z3 para 0 quando Ij 1(z1) = —x1(t;) € Ix2(x2) =
—x9(t),) em (4.4), respectivamente. E por qué? Nao ha nenhum motivo em especial. Foi uma escolha arbitraria
para deixar os operadores mais simples. Além disso, a substitui¢do de o (¢) por a4 (t) como condigdo de
foi realizada, pois ja sabemos quem é «; (se utilizdssemos o, precisariamos de (3.15), o que introduziria um
passo a mais sem necessidade).

Outro ponto a ser destacado € que, essencialmente falando, us € fungdo de z, ja que possui vy € i1 em
sua expressao, por e (4.9), entéo estamos de acordo com a Definigao[3.2.1]

Por fim, fica facil perceber o motivo da escolha das superficies 7, £ = 0,1, ... quando se sabe que 0
funcionamento do PWM baseia-se na comparagao entre o valor da entrada e uma onda triangular, sendo sua
saida igual a 1 se a entrada for maior ou igual ao valor da onda dente de serra e 0 caso contrario®**4 ve
Figura[T5] Logo, as superficies 7, sdo, na verdade, a onda dente de serra do PWM (a unido das superficies
forma a onda dente e serra). De fato, como

r
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e como que as superficies sdo segmentos de reta, entdo 79(u2) = T'us, para 0 < u < 1. Extrapolando essa
andlise para as demais superficies, chega-se em 7 (u2) = T(us + k) para 0 < us < 1. Unindo todas esses
segmentos de retas formados pelas superficies, obtém-se a onda dente de serra.
Perceba, por (2.16), que o primeiro instante de chaveamento ¢, ocorrerd quando
to

to = TUQ(tQ), ou seja, UQ(to) = f = d1 (to),

isto é, o sinal de entrada do PWM ¢é o duty cicle. Sendo assim, o que o controle faz é alterar o valor do duty

cicle para que a tenséo de saida seja igual ao valor de referéncia e, como sabemos por (2.12), o valor da
tenséo de saida esta intrinsecamente atrelado ao valor do duty cicle.

Figura 15 — Ldgica do sinal de saida «; do PWM.

Entrada
Dente de Serra

T0 1 T2 73

2T 3T 4T

Fonte: Elaborado pelo autor.

[ ]

A 4

O exemplo a seguir simula o funcionamento do circuito com o controlador atuando para manter a tensao
de saida do conversor CC-CC seguindo a referéncia a ser especificada.

Exemplo 13. Vamos tomar como pardmetro os valores da Tabela[1| para a simulagao, que define a referéncia
da tensédo de saida como sendo 200V . Para vermos o controle atuando, emt = 5s, a resisténcia do resistor foi
abaixada para 25¢), enquanto que a tenséo de entrada foi aumentada para 150V emt = 10 s. Como condigdo
inicial, foi adotado xo = [0 0] para ambos os subsistemas (o T indica transposto). O resultado pode ser
visto na Figura[16

Tabela 1 — Parametros de simulagao do conversor Boost com controlador.

Parametros | Valores
Tensédo de entrada | 100 V
Tenséao de saida 200V
Indutor 400 uH
Capacitor 100 pF
Resistor 50 Q2
Freq. PWM 20 kHz
K, 0.0033
K, 6.43
K, 0.0027
K 0.0008

Fonte: Adaptado de ADNANE2!,
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Note, pela Figura que a tensao de saida volta ao patamar de 200V apos ambas as perturbagbes
(variagdo no valor da resisténcia e tensao de entrada do conversor), mostrando que o controlador conseguiu
levar a tensdo de saida para o valor desejado, mesmo apds perturbagbes no sistema. Quanto a corrente no
indutor, percebe-se que existe uma grande oscilagdo sobre ela, causada principalmente pelas caracteristicas
do sistema e do PWM. Poderiamos aumentar a frequéncia de chaveamento para diminuirmos a oscilagao,
mas isso muitas vezes ndo é possivel na pratica, por conta do limite fisico da chave (transistor).

Figura 16 — Evolugao no tempo dos estados do conversor Boost com controle.

A v2(t)

250 -

) - =
-

150 |-

100

t
| | | | | | | | | | | | | | | }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(a) Tensao no capacitor.
A in(t)
40 |-
20
t
| | | | | | | | | | | | | | | .
»~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-20 -

(b) Corrente no indutor.

Fonte: Elaborado pelo autor.

Esse exemplo mostra que é possivel modelar um sistema chaveado controlado sem que seja necessario
inserir a lei de controle dentro da modelagem do sistema. Isso facilita bastante o nosso trabalho, dado que,
uma vez modelado, ndo é mais necessario refazer o modelo por causa da troca de controlador. Note que a
mesma modelagem apresentada na Segéo [2.2.4] foi utilizada aqui, a diferenga esta nos momentos impulsivos,
que antes eram fixos e agora sao variaveis e dependentes do controle.

E natural modelar de um conversor CC-CC como um sistema chaveado, dado a sua forma de funciona-
mento. Entretanto, existem sistemas que, a principio, ndo sao chaveados, mas que se tornam um, se 0 método
de controle empregado envolver chaveamento.

4.2 Controle de velocidade de um motor CC

Nao ha diuvidas de que maquinas elétricas sao elementos indispensaveis no mundo contemporéaneo,
desde a industria de processos até aplicagdes domésticas. Motores elétricos tém muitas vantagens sobre
outros tipos de motores, ndo se limitando a, mas incluindo: baixo custo, alta densidade de poténcia, requisitos
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simples de construgao e instalacao, robustez, versatilidade (pode ser facilmente adaptado a varios tipos
de cargas), alta eficiéncia e simplicidade de controle. Em relagao aos varios tipos de motores elétricos, os
motores de corrente continua sdo muito atraentes e amplamente utilizados em aplicagdées de velocidade
variavel®® devido a facilidade de seu controle.

Uma representagao em espago de estados de um motor CC (Figura k7

: R, K,|[. 1
1a - = - = (2 e
—| La La + | La va(t), (4.5)
. K., f
W _me L w 0
J J

sendo

* i4(t) a corrente de armadura;

* w(t) a velocidade angular;

* R, aresisténcia do circuito de armadura;

» L, aindutancia do circuito de armadura;

+ K, a constante de forga contra-eletromotriz;
+ K,, a constantes de torque;

» J momento de inércia da carga;

 f o coeficiente de atrito viscoso e

* v, (t) a tenséo de armadura.

Figura 17 — Circuito equivalente de um motor CC.

i,() R L,
O TAAN

Va (1) e(t)

a(t) J

Fonte: BASILIO e MOREIRAEZ.,

O motor CC por si s6 ndo é um sistema chaveado. Entretanto, uma técnica muito comum de controle
da velocidade de um motor CC é a de modular a tensédo de armadura v, (t) via controlador e PWM, por
exemplo'38', 0 que torna o sistema chaveado.

Dado que j& utilizamos a técnica de controle com PWM no exemplo anterior, vamos controlar a velocidade
angular do motor CC utilizando a técnica de sliding mode com retardo.

O sliding mode se destaca pela sua capacidade de lidar com incertezas e nao linearidades, proporcionando
desempenho confiavel, mesmo em condicoes adversas®™. A técnica baseia-se na escolha de uma superficie
de chaveamento s(¢), sendo e o erro, cujo sistema deve seguir. Se o erro estiver acima da superficie e se
distanciando dela, o chaveamento ocorre para que o erro va até a superficie e, caso o erro esteja abaixo da
superficie e esteja se afastando dela, o chaveamento ocorre para que o erro encontre a superficie. Para o

nosso problema, vamos utilizar a superficie|39|

s(e)=é+e  com e=w, —w,
em que w, € o valor de referéncia da velocidade angular. Desse modo, podemos tomar o sinal de controle por

u(t) = %[1 + sen(s®(6))], (4.6)
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sendo s*(0) = s(e(t +0)), 8 < 0, e sgn dado por (3.7). O objetivo do retardo na lei de chaveamento é impedir

que a frequéncia de chaveamento cresga indefinidamente, fenédmeno esse chamado de chattering'e'g'.

Podemos, entao, representar (4.5) em malha fechada com o controlador por
&1 = fi(x1), s £0
Azxy = I 1 (1), s® =0,

Tp = fz(m), s #0
Azxy = Ik,z(fz), st = 0,

com operadores de impulsos dados por

oa(ty) — 21(ty), seu(ty)=1,

Inai(z) = o
—x1(tg) caso contrario;
x1(tg) — z2(tr), se u(tZ) =0,
I o(z2) = .
—xa(ty) caso contrario,
parak =0,1,2,..., sendo &; = fi(z1) igual a
. R, Ky |. 1
) I I ol B Y I
— a a + a Va’
. K, f
w —_— —-= w 0
J J
com V, constante, e &2 = fo(x2) igual a
. R, K[
la B L, L, lq
K
w LO w
J J

Assim como no caso do conversor Boost, vamos simular o funcionamento do motor CC controlado e alterar
alguns dos valores do modelo durante a simulagéo para vermos a a¢ao do controlador para manter o sistema
na referéncia a ser especificada.

Exemplo 14. Assumindo os valores da Tabe/a[g para os pardmetros de simulagdo, = —0.001s, o = [0 0]7
como condigdo inicial para ambos os subsistemas e u(t) = 1, t € [0, 0], como condigdo inicial do sinal de
controle, é possivel simular a agao do controle sobre o sistema para manter a velocidade angular seguindo a
referéncia dada, que aqui assumiremos ser w, = 100rad/s.

Tabela 2 — Parametros de simulagao.

Parametros | Valores
R, 2.3Q
Lo 3.4mH
K, 0.0453 V /rad/s
K, 0.0453V /rad/s

3.72x107° kgm?
5.23x107° kgm/rad/s
6V
Fonte: Adaptado de BASILIO e MOREIRAEZ,

N

Para melhor visualizarmos a agao de controle atuando, emt = 2s, o coeficiente de atrito viscoso f valera
26.15 x 107° kgm /rad/s, enquanto que, emt = 5s, a tensdo V,, passard a ser 12V, ver Figura
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Figura 18 — Evolugao no tempo da velocidade angular do motor CC.
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Fonte: Elaborado pelo autor.

Um ponto a ser destacado, caso ndo tenha percebido pela Figura[18, é que o controlador empregado nao
possui um método para fixar a frequéncia de chaveamento. Quando o valor de f foi alterado, emt = 2s, a
frequéncia de chaveamento, que estava por volta dos 305 rad /s, caiu para 115 rad/s, aproximadamente. J&
emt = 5s, a frequéncia aumentou para um valor préximo a 385rad/s, ver Figura

Figura 19 — Frequéncia de chaveamento da chave de controle da velocidade angular do motor CC.
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Fonte: Elaborado pelo autor.

A aplicagao do sliding mode no controle de velocidade do motor CC transforma o sistema em malha
fechada em um sistema chaveado, mesmo o motor CC nao sendo um, ou seja, se fizer sentido para a
aplicacao, é possivel tornar um sistema nao chaveado em um chaveado utilizando técnicas baseadas em
PWM ou sliding mode, por exemplo.

Os exemplos abordados até entao trataram de apresentar sistemas chaveados com subsistemas lineares
e simples, e com chaveamento intermitente. Tais exemplos sdo bastantes didaticos e representam bem a
modelagem e o comportamento dos sistemas chaveados. Entretanto, existem problemas bem mais complexos
que também podem ser estudados a partir da abordagem de sistemas chaveados.

4.3 Tempo de abertura dos disjuntores isoladores de falhas

A estabilidade de sistemas elétricos de poténcia € fundamental para garantir a operacao confiavel de
redes de transmissao e distribuigao, sendo composta por trés fatores principais'4°':

» Tempo (curto, médio ou longo prazo);
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+ Variaveis (angulo, tensdo ou frequéncia);
» Perturbacao (grandes, pequenas, previsiveis e/ou imprevisiveis).

Para entender os diferentes tipos de estabilidade em sistemas elétricos de poténcia, é importante diferenciar
entre estabilidade transitéria, estabilidade de tenséo e estabilidade a pequenas perturbagdes. A estabilidade
transitoria avalia a capacidade do sistema de manter o sincronismo quando ocorre uma grande perturbacao,
como um curto-circuito ou a desconexao subita de uma linha de transmissao. Essas perturbagdes exigem
que o sistema reaja rapidamente, e seu comportamento depende das condi¢des de operagao e do tempo de
resposta dos controles envolvidos.

A estabilidade de tensao esta relacionada a capacidade do sistema de manter niveis adequados de
tensao, principalmente em resposta a variagdes de carga mais lentas, enquanto a estabilidade a pequenas
perturbacdes considera oscilagdes pequenas, em que as equagdes do sistema podem ser linearizadas para
prever o comportamento apds pequenas mudangas. Essas andlises sdo fundamentais para a operagao segura
e eficiente dos sistemas de poténcia, garantindo que o sistema retorne ao estado de equilibrio de forma
controlada®”.

O modelo dindmico de um sistema de n geradores, sem amortecimento, que descreve o comportamento

dos angulos no tempo em fungao dos parametros da rede gt?

82’ = Wj;
(4.7)
Mid}i = Pmi - Pei (6)
1=1,2,...,n,com
Pe,(6) = |Eil*Gii + Y Cigsin(0; — 0) + Dix cos(8; — 0)
=
para

Cir = |Ei||Ex|Bi. €  Dix = |Ei||Ex|Gir,
sendo, para cada um dos geradores:

* ¢; 0 angulo do rotor em relagéo a um referencial sincrono;

* w; a velocidade sincrona;

* M, a constante de inércia;

« P,,, a poténcia mecanica fornecida pela turbina;

» P., apoténcia elétrica fornecida a rede;

« E; = |E;|£6; é atensdo do gerador e

* Yir = G + jB;i, sendo o elemento ik da matriz de admitancia reduzida do sistema.

A analise de estabilidade transitéria a grandes perturbagdes (analise de sincronismo) dos geradores se
resume a descobrir quanto tempo os disjuntores podem demorar para atuarem e isolarem a falta (curto-circuito)

do restante da rede elétrica. Dado que a topologia da rede muda quando em falta e quando em poés-falta, o
que implica na mudanga da matriz Y, podemos modelar a rede da seguinte maneira:

o1 = fi(z1), t#t,
Al’lifl(fﬂ), t:ta,

Ty = fo(xa), t#tq
AIEQZIQ((E), t:ta7
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com operadores de impulsos dados por

sendo ¢, o tempo de abertura dos disjuntores e &1 = fi(x1), 2 = fao(x2) iguais a (4.7).
O exemplo a seguir ilustra uma forma de se determinar o tempo maximo de abertura dos disjuntores para
isolar uma falha mantendo o sincronismo entre os geradores.

Exemplo 15. Aqui, iremos analisar o sincronismo de geradores via analise de estabilidade transitéria a
ocorréncia de um curto-circuito em uma linha de transmissao. O objetivo é descobrir qual o tempo maximo de
abertura dos disjuntores para isolamento da falha que garante a estabilidade (sincronismo) do sistema.

Para tal, considere o sistema de 3 maquinas e 3 geradores da Figura[20, Iremos supor que um curto sélido
trifasico ocorra na linha 1-2 nas proximidades da barra 2, tal que possamos considerar que o curto tenha
ocorrido na prépria barra. O que ocorre, entao, € uma ligagdo entre a barra 2 com a barra de referéncia (terra)
durante a falta e, apos a abertura dos disjuntores da linha 1-2, a rede perde a conexdo direta que havia antes
entre as barras 1 e 2. A modelagem do sistema em falta e pos-falta, com base na Figura € dada por""zl:

* Em falta:

51 = w1

52 = w2

5y wy

0.053w; = 2.49 — 0.7138 — 2.09 sin(d; — d3) — 0.485 cos(dy — I3)
0.079w, = 4.21

0.318w3 = 8.20 — 9.5468 — 2.06 sin(d3 — d1) — 0.480 cos(d3 — d1)

« Pos-falta:
(;1 = W1
52 = w2
(§3 = W3

0.053w; = 2.49 — 0.9441 — 0.28sin(d1 — d2) — 0.078 cos(dy — d2) — 2.47sin(d1 — d3) — 0.63 cos(d, — d3)
00790 = 4.21 — 0.5921 — 0.28 5in(d2 — 1) — 0.078 cos(82 — d1) — 6.84sin(2 — 83) — 1.29 cos(d2 — 63)

0.318ws3 = 8.20 — 9.5468 — 2.47sin(d3 — 01) — 0.630 cos(d3 — 01) — 6.84sin(d3 — d2) — 1.29 cos(ds — d2)

A condic3o inicial do sistema em falta é obtida através do fluxo de carga (resolugao do circuito para obtengao
dos angulos das tensbes nas barras, que serdo os valores dos ) do sistema pré-falta. Neste caso, temos
wo = [0 0 0], pois o sistema esta em equilibrio, e o = [26.8° 26.5° 6.719 = [0.4677 0.4625 0.1171] rad,
ou seja, xg = w1 w2 3 §1 02 3] =10 0 0 0.4677 0.4625 0.1171].

A simulagdo do problema se dara via calculo numérico, utilizando o método de Runge-Kutta de 42 ordem,
com passo de integragdo igual a 0,002 s. Para melhor visualizar os resultados, vamos alterar o referencial da
sistema para o referencial do centro de dngulo (COA), cuja formula ¢+

3 1 O . 1
Wi = wj — m;Miwia d; :5¢*M7TZM115727

sendo M+ a soma das constante de inércia.
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Figura 20 — Sistema de 3 barras e 3 geradores.
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Fonte: BRETAS e ALBERTOM2]

Os resultados da Figura[21) sdo relativos ao tempo de abertura de t, = 0.194s, enquanto que os resultados
apresentados na Figura[22 foram obtidos com um tempo de abertura igual at, = 0.195s.

Figura 21 — Evolugao no tempo dos estados do sistema de 3 barras e 3 geradores para t, = 0.194 s.
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Fonte: Elaborado pelo autor.

Na Figura vemos que os angulos é dos geradores estao oscilando em torno da origem, indicando que
eles estdo em torno da trajetdria do centro de angulo. Ja na Figura percebe-se que 0 6, divergiu do trajeto
dos demais geradores, indicando que houve perda de sincronismo entre os geradores. O que conclui-se
através das Figuras[21]|e[23 é que o tempo critico de abertura t.,, que é o maximo tempo de abertura dos
disjuntores que mantém o sistema em equilibrio, esta entre 0.194 e 0.195 s. Vale ressaltar que, para chegar



63

no intervalo 0.194 < t., < 0.195, intervalo esse que também foi obtido por Bretas e A/berto""zl, é necessario
utilizar nimeros com mais precisdo. Os valores apresentados estao arredondados.

Figura 22 — Evolugao no tempo dos estados do sistema de 3 barras e 3 geradores para t, = 0.195s.
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Fonte: Elaborado pelo autor.

Aqui temos um exemplo de um sistema que em que normalmente ndo se emprega uma modelagem
utilizando a abordagem dos sistemas chaveados. Apesar da complexidade desse exemplo ser maior quando
comparado com os demais, dado que temos seis variaveis de estado e os subsistemas nao sao lineares, esse
sistema de 3 barras e 3 geradores é extremamente simples. Tal problema, de estudar a estabilidade transitoria
de um sistema elétrico de poténcia, aparece em sistemas de geragao e distribuicdo extremamente longos e
complexos, como o préprio Sistema Interligado Nacional (SIN) brasileiro, que cobre praticamente todo o pais.
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5 CONCLUSAO

O presente trabalho teve como objetivo analisar sistemas chaveados por meio de uma abordagem
matematica baseada em equagdes diferenciais e integrais generalizadas. A modelagem e a andlise desses
sistemas sdo fundamentais para a compreenséao de diversos dispositivos amplamente utilizados na engenharia
elétrica, como conversores de corrente continua (CC-CC), motores de corrente continua (CC), e outros
sistemas de controle e automagéo. Através de uma abordagem sistematica, foi possivel explorar os principais
conceitos teoricos e validar, por meio de simulagdes, a eficacia dos modelos desenvolvidos.

O modelo médio e 0 modelo de pequenos sinais baseiam-se em linearizagdes e suposigdes simplificadoras,
0 que pode levar a uma descri¢gdo imprecisa do comportamento dinamico em condigdes nas quais os efeitos
nao lineares sdo predominantes, como em mudangas rapidas de carga ou variagdes abruptas na tensao de
entrada. Isso evidenciou a necessidade de métodos alternativos e mais robustos para capturar a dinamica
completa dos sistemas chaveados, especialmente em aplicagdes em que a precisao é essencial.

O estudo das equacgdes diferenciais impulsivas e integrais generalizadas ofereceu uma abordagem
complementar, permitindo uma andlise mais detalhada do comportamento dindmico desses sistemas, sem
depender de suposigoes lineares. Essa metodologia mostrou-se eficaz na descri¢gdo das transigoes rapidas e
das mudangas abruptas nos estados do sistema, proporcionando uma visdo mais realista dos fenbmenos
envolvidos. As simulagdes realizadas confirmaram a capacidade da modelagem de representar de forma
precisa o comportamento tanto transiente quanto em regime permanente dos dispositivos estudados, mesmo
diante de variagdes nos parametros.

A andlise realizada contribui para a compreensao dos desafios e das limitagcdes das técnicas tradicionais
de modelagem, sugerindo que a utilizacdo de métodos baseados em equagdes diferenciais generalizadas
pode oferecer uma alternativa mais robusta para a analise de sistemas chaveados. As descobertas reforgam a
importancia de se buscar metodologias que capturem com maior precisdo a dindmica intrinseca dos sistemas,
especialmente em contextos de alta complexidade, como nos conversores de eletrdnica de poténcia.

Os resultados obtidos também reforgam a aplicabilidade das técnicas propostas em diferentes areas da
engenharia elétrica, como sistemas de poténcia e eletrdnica de poténcia. A precisdo dos modelos desenvol-
vidos oferece uma base sélida para o desenvolvimento de novos dispositivos e sistemas mais eficientes e
robustos. Além disso, o trabalho abre caminho para pesquisas futuras, sugerindo a aplicacao das técnicas
estudadas em outros tipos de conversores e sistemas chaveados, bem como a integragao com métodos de
controle baseados em chaveamento.

Em concluséo, esta monografia ndo apenas alcanga seus objetivos ao demonstrar a eficacia das técnicas
de modelagem, mas também contribui para o avango do conhecimento na area de sistemas chaveados. Ao
proporcionar uma base tedrica e pratica para o estudo desses sistemas, o trabalho oferece recursos valiosos
para engenheiros e pesquisadores que buscam desenvolver solugdes inovadoras e eficientes para problemas
complexos em engenharia elétrica.
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APENDICE A - FUNCAO REGRADA

Defini¢ao A.1 (Partigéo'zgl)

tais que

. Seja [a, b] um intervalo compacto de R. O conjunto de pontos d = {tg,t1,...,tm}

a=ty<t1 <--- <ty =0b

é chamado de particdo de [a, b]. Denotaremos por |d| o nimero de intervalos em que [a, b] é dividido pela
partigdo d. O conjunto formado por todas as parti¢bes d de [a, b] sera denotado por Dy, ;).

Definigdo A.2 (Funcio de Variagéo Limitada®). Seja f : la,b] — R™ uma fungdo e d € D), ;) uma parti¢éo.
A variagcao de f sera dada por

||

var(f) = varg(f) = sup Z |f(t:) = ftiza)l-

d€Diq i—1

Se var(f) < oo, entdo f serd dita de variacdo limitada e, nesse caso, escreveremos f € BV ([a, b],R™).

Definigdo A.3 (Funcio Regrada®). Seja [a, b] um intervalo compacto de R. Uma fungdo f : [a,b] — R™

sera chamada regrada, se os limites laterais
ft7)=lim f(s), te(ad], e f(t7)=lim f(s), t€lab),
s—t—

s—tt

existirem. O espago vetorial formado por tais fungbes regradas f serd denotado por G([a,b],R™). Ja o
subespago de G([a, b], R™) formado pelas fungdes continuas a esquerda serd denotado por G~ ([a, b], R™).

Note que o espago das fungdes continuas, assim como o espaco das fun¢des de variagao limitada, sdo
subespagos de G([a, b], R™); ver Figura[23]

Figura 23 — Diagrama de Venn do espaco de G([a, b], R™).

~
Funcoes Regradas

Funcoes Funcoes de
Continuas Variacao Limitada

Fonte: Elaborado pelo autor.

Fungdes continuas sdo as mais usuais e o leitor deve ter conhecimento de varias delas. Para nao deixar
em branco, podemos citar as fungdes seno, cosseno, a fungao constante e a fungao afim. Ja como exemplo
de fungbes de variagao limitada e que também sdo continuas, podemos considerar qualquer fungéo continua,
crescente e limitada. Para exemplos de fungdes que pertencem ao conjunto das fungdes de variagao limitada,
mas que nao estao no conjunto das fungdes continuas, basta tomar uma fungéo limitada e crescente que
possui uma descontinuidade de primeira espécie (de salto) em algum ponto. Uma fungéo que é continua, mas
que nao é de variagao limitada é a fungao
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pois ela é muito oscilatéria perto da origem. Por fim, insira alguma descontinuidade na fungéo f(t) definida
acima (como f(0) = 1, por exemplo), para obter uma fungdo regrada (ja que seus limites laterais existem) que
nao é continua e nem de variagéo limitada.
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APENDICE B - INTEGRAL DE HENSTOCK-KURZWEIL

Seja [a, b] C R um intervalo compacto, com a < b. Uma particdo marcada de [a, b] € uma colegéo finita
de pares D = {(7, [ti—1,ti]), i =1,2,...,n} paraalguminteiron > 0,talque a =ty < t;1 <---<t, =be
T; € [ti—1,t;]. Os elementos 7; sdo chamados de marcas dos subintervalos [t;—1,t;], i = 1,2,...,n, de [a, b].

Qualquer fungao positiva ¢ : [a,b] — (0, o) sera chamada de calibre de [a, b]. Uma particdo marcada

D = {(Ti7 [tiflati])ai = 172a v ,’I’L} = {t0>7-17t17 v 7tn7177—n;tn}

serd dita J-fina, se

[ti—17ti] C (Tif(;(Ti),Ti+5(Ti)) (B1)
paracadai=1,2,...,n,com ¢ sendo um calibre de [a, b]'44'.
Definigdo B.1 (Integral de Henstock-Kurzweil-Stielties®). Diremos que uma fungdo f : [a,b] — R™ serd

Henstock-Kurzweil-Stieltjes integrdvel com respeito a g, sendo g : [a,b] — R™ uma fungdo, ou Henstock-
Kurzweil-Stieltjes g-integrdvel, se existir uma fungdo F' : [a,b] — R™, tal que para todo € > 0, existira um
calibre ¢ de [a,b] tal que

|d|

> FE)lg(t:) — g(ti)] = F|| <€
=1

para toda particdo marcada -fina de [a,b], D = {to,T1,t1,- .., tn—1,Tn,tn}. A funcdo F serd chamada de
integral de Henstock-Kurzweil-Stieltjes de f com respeito a g no intervalo [a, b] e serd denotada por

F= /b " F@)dg(t). B.2)

A garantia de que a integral de Henstock-Kurzweil-Stieltjes esteja bem definida segue do lema seguinte.

|44|)

Lema B.2 (Lema de Cousin™). Dado um calibre ¢ de [a, b], existe uma particdo marcada é-fina de [a, b].

Alguns casos particulares da integral de Henstock-Kurzweil-Stielties surgem ao assumirmos certas condi-
coes. Por exemplo, tome g(t) = ¢ na Definigdo para tornar-se a integral usual de Henstock-Kurzweil

/ba F(t) dt.

Ao invés disso, considere que o calibre § = cte em para obter a integral de Riemann-Stieltjes

/b "5t da(t)

/ oy,

se também for considerado que g(t) = ¢ (ver Figura[24).

e a integral de Riemann

Por outro lado, suponha que f assuma valores reais e tome particdes "semi-marcadas" (7, [ti—1, t;]) no
lugar de (a diferenga aqui é que ndo é preciso que t;_1 < 7; < t;) para obter a integral de Lebesgue

/ba F(t) dt.
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Figura 24 — Diagrama de Venn referente a integral de Henstock-Kurzweil.

de!

\ Integral
Integral A\ Impropria
de
Lebesgue

Integral de Henstock-Kurzweil

Fonte: Eric Schechter 42/,

De outro modo, ao considerar que g : [a,b] — R e f : [a,b] — R™, diremos que a integral em (B.2)
trata-se da Perron—Stieltjes (ou integral vetorial de Henstock-Kurzweil-Stieltjes)

/b "5t da(t).

Fungdes continuas e limitadas no intervalo [a, b] sdo todas Riemann integraveis (em [a, b]). Um exemplo
de fungéo que néo é Riemann integravel € a funcao

1
fity =4 VE
0,t=0,

t e (0,1]

pois ela ndo é limitada neste intervalo. Entretanto, f(¢) é integravel no sentido da integral imprépria de
Riemann.
Ja a fungéo de Dirichlet no intervalo [0, 1]

ITOES S
0, caso contrario
€ Lebesgue integravel, mas nao possui integral impropria de Riemann, por ser descontinua em todos os
pontos do intervalo.
Como exemplo de fungéo que sé é integravel via integral de Henstock-Kurzweil, podemos citar a derivada
da fungao

1) azzsin(%), para0 <t <1
t = X
0, parat =0,

por conta da f(t) ndo ser absolutamente continuat®.
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APENDICE C - ESBOGO DA PROVA DO COROLARIO[3.6.1|

Aqui sera apresentada um esbogo da prova do resultado que da origem ao Corolario Para a
demonstragao completa, consulte®.
O nosso ponto de partida sera o corolario seguinte.

Corolario C.1. Sejam f : [a,b] — R™ e g : [a,b] — R fungbes tais que g é regrada e a integral de
Perron-Stieltjes

existe. Entdo a funcdo
é regrada em [a, b] e satisfaz

com
Atg(t)=g(t")—glt) e Ag(t)=g(t™)—g(t).

Vale ressaltar que o mesmo vale ao colocar o ¢ no limite inferior da integral. Perceba que se g ndo possuir
descontinuidade em ¢, entdo h(tT) = h(t) = h(t~), como normalmente acontece. J& se g possuir uma
descontinuidade em ¢, tal descontinuidade sera contabilizada através do valor de f(t)ATg(t) elou f(t)A~g(t),
a depender do tipo de descontinuidade. Pensando na integral em sua concepg¢ao inicial, isto é, através de uma
soma de areas da forma f(7)[g(t;+1) — g(t;)], como foi apresentado em intui-se que a area referente ao
instante ¢ n&o sera nula (pelo menos nédo por conta de g) pois g(t*) — g(t) # 0 elou g(t~) — g(t) # 0.

Convencidos de que o Corolario[C.1]é vélido, é possivel provar o préximo lema.

Lema C.2. Sejam € N. Suponha que paracadak € {1,...,m}, ty € [to,to+ A, to <t1 <ta <...<tm <
to+ A eg: [to, to + A] — R é uma fungdo regrada, continua a esquerda em [ty,to + \| e continua em ty,
para todo k. Seja f : [to,to + \] — R™, n € N*, uma fungdo qualquer e considere que f : [to, to + A — R™
é tal que f(t) = f(t) paratodot € [to,to + N\{t1,...,tm}, € tome § : [to,to + A] — R de modo que j — g
seja constante em cada um dos intervalos [to, t1], (t1,t2], ..., (tm—1,tm], (tm,to + A]. Entdo a integral (de
Henstock-Kurzweil-Stieltjes)

to+A
[ #)dats)

to
existira, e somente se, a integral (de Henstock-Kurzweil-Stieltjes)

to+A

[ #)dats)

to

existir. Nesse caso, teremos

to+A to+A
/ F(s) dai(s) = / 7(5) dg(s) + 3 F(tr) A* (k).
to to ke{l,....m}

tp<to+A
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Prova: Como g — g é constante nos intervalos [to, t1], (t1,t2], - -, (Em—1,tm], (Em, to + A, vale
ty tht1 to+A
[ ) g 9)(s) = 1im / f6)dG-g)) = tm [ Fo)dg-gs)=0 (€3
; Tty T—t J
comk € {1,...,m — 1}. Sendo assim, pelo Corolérioe por (C.3), segue que
tht1 tet1 T
/ f(s) d(g — g)(s) = lim_ / f(s) d(g— g)(s) + Tim_ [ f(s) d(g— g)(s)
b T, J T—>f i
=0+ f(t) AT (5 — g)(tx) = (1) AT (5 — 9)(tr) (C.4)
para k € {1,...,m — 1}. Quando t,, # to + A obtém-se, de maneira anéloga, que
to+A
[ 7@ - 9)(5) = F(t)A" 5 - o). ©5)

tom
caso contrario, (C.5) sera igual a 0.

Juntando (C.3), e chega-se em

to+A
[ ) da-9)s) = 3 Ftatan) (C6)
to ke{l,...,m}

te<to+A

0 que prova a existéncia da integral (de Henstock-Kurzweil-Stieltjes) acima.
Agora, pela continuidade de g nos instantes ¢; e pela definicdo de f segue que

t1 T
[ ) dgt) = tim [ ) dg(s) = tm [ 16 / 7(5) dos
b 1t0 'r~>t 4
tet1 T T tht1
/ f(s)dg(s) = tm_ [ f(s) dg(s) = tim [ f(s / £(s) dg(s ©.7)
o a—)—zt U—t>t J
to+A to+A to+A to+A
F(s)dg(s) = tim [ f(s)dg(s) = tim [ f(s)do(s) = [ £(s) da(s)
t[ T—tm 7—/ Tt :r/ {[

paratodo k € {1,...,m — 1}.
Nas igualdades acima, as integrais do lado esquerdo existirao se e somente se as do lado direito existirem.
Consequentemente, obtém-se

to+A to+A
/ F(s) dg(s) = / £(s) da(s) c8)

e a integral (de Henstock-Kurzweil-Stieltjes) da esquerda existira se, e somente se, a integral (de Henstock-
Kurzweil-Stieltjes) da direita existir e elas terdo o mesmo valor. Além disso,

to+A to+A to+A to+A

[ ioao = [ Ferdas)+ [ Fo)aa-a6) = [ 5 dets) + 3 Feata)

ke{l,....m}
to to to to yeeey
tr<to+A

por e (C.6), o que implica o resultado.
Utilizando o Lema|[C.2] ¢ facil mostrar o teorema a seguir.
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Teorema C.3. Sgjam,n € N. Assuma que, paracadak € {1,...,m}, ty € [to,to + A, comty <t1 <ty <
e <t < to+ A, el : B— R™ seja um operador impulsivo talque I + I, : B— B, emque B C R" é
um conjunto aberto e I : B — B é o operador identidade. Suponha que f : R™ x [to,to + \] — R" seja
Henstock-Kurzweil-Stieltjes integravel com respeito a fungédo g € G~ ([to, to + A], R) que é continua em cada
ty.. Defina

r f(y7t)a te [t07t0+A]\{t1,...,tm}
fly,t) =
I(y(t), t=tr ke{l,...,m}.

Além disso, para todo k € {1,...,m — 1}, seja ¢, € Ry uma constante com ¢, < cx4+1 € defina g :
[to,to + A] — R por

g(t), t € [to, 1]
g(t): g(t>+ck7 te(tk7tk+1}7ke{17'~-am_l}
g(t)+cm7 te (tmatO'i'T}

satisfazendo At g(ty) = 1 paratodo k € {1,...,m}. Entdo v € G([to,to + )\, B) sera uma solugdo do
problema de valor inicial para a Equacgéo Integral do tipo Volterra-Stieltjes (EIV)

o) = alto) + [ £(a(5).5)da(s) + 3 Telalti)). ¢ € tonto +

ke{l,...,m}
tp<t
ZL’(to) = Xy,

se, e somente se, x for solugdo da EIVE

t

z(t) = x(to) + t f(x(s),s) dj(s), t€ [to,to+ A,

I(to) = Xp-

Prova: Pelo Lema[C.2] vale

ke{l,....m}
te<t

[ Fato)5) das) = [ Fa(s).) dalo) + 3 Flan A" a0,
to to
Logo, pelas definicées das fungdes f e g, segue que

/ Flas), 5) di(s) = / F(a(s),5) dg(s) + 3 Iu(a(te)),
to to kE{tl,k}:’m}

provando o resultado.
O Corolario é obtido de imediato a partir do Teorema|C.3
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