
DANILLO FELIPE ARAGÃO

Análise Comparativa entre Arquiteturas Serverless e Baseadas em
Servidores: O Caso da Plataforma Mnemos

São Paulo
2024

DANILLO FELIPE ARAGÃO

Análise Comparativa entre Arquiteturas Serverless e Baseadas em
Servidores: O Caso da Plataforma Mnemos

Versão Original

Monografia apresentada ao PECE –
Programa de Educação Continuada em
Engenharia da Escola Politécnica da
Universidade de São Paulo como parte
dos requisitos para a conclusão do curso
de MBA em Tecnologia de Software.

Área de Concentração: Tecnologia de
Software

Orientador: Prof. Bruno Sofiato

São Paulo
2024

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a
fonte.

FICHA CATALOGRÁFICA

[Colocar na versão final do trabalho. Obter em:
https://www.poli.usp.br/bibliotecas/servicos/catalogacao-na-publicacao]

https://www.poli.usp.br/bibliotecas/servicos/catalogacao-na-publicacao

Nome: ARAGÃO, Danillo Felipe

Título: Análise Comparativa entre Arquiteturas Serverless e Baseadas em
Servidores: O Caso da Plataforma Mnemos.

Monografia apresentada ao PECE – Programa de
Educação Continuada em Engenharia da Escola
Politécnica da Universidade de São Paulo como parte dos
requisitos para a conclusão do curso de MBA em
Tecnologia de Software.

Aprovado em: / /

Banca Examinadora

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

Prof(a). Dr(a). ___

Instituição: __

Julgamento: ___

DEDICATÓRIA

Dedico este trabalho a minha esposa,

Bruna, por me apoiar nessa trajetória,

me inspirar a não desistir e por ajudar

na elaboração deste trabalho.

RESUMO

ARAGÃO, D. F. Análise Comparativa entre Arquiteturas Serverless e Baseadas
em Servidores: O Caso da Plataforma Mnemos. 2024. 40f. Monografia (MBA em
Tecnologia de Software). Programa de Educação Continuada em Engenharia da
Escola Politécnica da Universidade de São Paulo. São Paulo. 2024.

Este trabalho visa especificar e projetar a plataforma "Mnemos", utilizando serviços
de computação em nuvem. A plataforma “Mnemos” objetiva a otimização do
aprendizado com base na teoria da "curva do esquecimento" de Hermann
Ebbinghaus. Em sua pesquisa, Ebbinghaus concluiu que a retenção de
conhecimento pode ser aprimorada por meio de revisões periódicas do conteúdo
estudado. Este trabalho realiza uma comparação entre duas arquiteturas para a
implementação da plataforma: a arquitetura serverless (sem servidores), e a
arquitetura baseada em servidores, analisando aspectos de desempenho, custo e
viabilidade de cada abordagem.

Palavras-chave: esquecimento, curva, conhecimento, tecnologia, plataforma,
revisão, cloud, serverless.

ABSTRACT

ARAGÃO, D. F. Análise Comparativa entre Arquiteturas Serverless e Baseadas
em Servidores: O Caso da Plataforma Mnemos. 2024. 40f. Monografia (MBA em
Tecnologia de Software). Programa de Educação Continuada em Engenharia da
Escola Politécnica da Universidade de São Paulo. São Paulo. 2024.

This work aims to specify and design the "Mnemos" platform, using cloud computing
services, to optimize learning tracking based on Hermann Ebbinghaus' "forgetting
curve" theory. Ebbinghaus' research shows that knowledge retention can be
improved through periodic content reviews, carried out within specific time intervals.
The study provides a detailed comparison between two distinct architectures for the
platform implementation: the serverless architecture, which offers dynamic scalability
and cost optimization, and the traditional architecture, based on dedicated servers,
analyzing performance, cost, and feasibility aspects of each approach.

Keywords: forgetting, curve, knowledge, technology, platform, reviewing, cloud,
serverless.

LISTA DE ILUSTRAÇÕES

Figura 1 - Curva do Esquecimento e Retenção... 14
Figura 2 - Como funciona a curva do esquecimento..15
Figura 3 - Diagrama de contexto de sistema..20
Figura 4 - Diagrama de domínio...24
Figura 5 - Modelagem de banco de dados...25
Figura 6 - Arquitetura AWS - Com servidores.. 26
Figura 7 - Arquitetura AWS - Serverless.. 27

LISTA DE TABELAS

Tabela 1 - Regras de negócio...22
Tabela 2 - API...23
Tabela 3 - Comparação de custos - Arquitetura com servidores x Serverless...........28
Tabela A.1 - Configuração com servidores...37
Tabela B.1 - Configuração Serverless..38
Tabela C.1 - Descrição dos serviços AWS utilizados na arquitetura..........................39

SUMÁRIO

1. INTRODUÇÃO..11
1.1. Motivações... 11
1.2. Objetivo.. 11
1.3. Justificativas...12
1.4. Estrutura do Trabalho.. 12

2. CURVA DO ESQUECIMENTO...14
3. DEFINIÇÕES..16

3.1. Computação em Nuvem.. 16
3.2. Front-end e Back-end.. 16
3.3. Arquitetura REST...16
3.4. Protocolo HTTP..17
3.5. Serverless.. 18
3.6. FinOps..18

4. PROJETO...19
4.1. Escopo... 19
4.2. Sistema.. 19
4.3. Requisitos não-funcionais..20
4.4. Requisitos funcionais... 22
4.5. Caso de uso exibição de cartões a serem revisados.................................... 22

5. DETALHES DA IMPLEMENTAÇÃO...23
5.1. API - Application Programming Interface...23
5.2. Modelo de domínio...23
5.3. Banco de dados... 24

6. ARQUITETURA..26
6.1. Arquitetura tradicional (com servidores).. 26
6.2. Arquitetura Serverless... 26
6.3. Serverless X Arquitetura com Servidores.. 27

7. CONSIDERAÇÕES FINAIS... 30
7.1. Conclusões.. 30
7.2. Trabalhos Futuros.. 31

REFERÊNCIAS..32
ANEXO A..37
ANEXO B..38
ANEXO C... 39

1. INTRODUÇÃO

1.1. Motivações

Em 2023, a cidade de São Paulo tinha cerca de 231 mil alunos matriculados

no Ensino Médio público, em situação regular, conforme os dados divulgados pelo

“Histórico de matrículas por turma” fornecido pela Secretaria da Educação (2023).

Ainda em 2023, o Exame Nacional do Ensino Médio (Enem) teve um total de 4,6

milhões de inscritos (Ministério da Educação, 2023), enquanto a Associação

Nacional de Proteção e Apoio aos Concursos (ANPAC) estimou em 2019 que

existiam cerca de 10 milhões de concurseiros no Brasil todos os anos (VALLE;

Tondo, 2019). Em abril de 2024, de acordo com os dados da Pesquisa Nacional por

Amostra de Domicílios Contínua (PNAD Contínua, 2024), divulgada pelo Instituto

Brasileiro de Geografia e Estatística (IBGE), existiam cerca de 8.082 mil pessoas

desempregadas em todo o país.

Com tantos números, é notável o mercado existente de pessoas que

precisam e buscam estudar, bem como encontrar meios de reter o aprendizado, seja

para provas escolares, concursos públicos ou até mesmo aprender um novo idioma

e expandir as oportunidades no mercado de trabalho.

1.2. Objetivo

O objetivo deste trabalho é projetar um aplicativo de auxílio aos estudos,

baseando-se na teoria da curva do esquecimento de Hermann Ebbinghaus (1880),

utilizando os serviços de computação em nuvem da Amazon Web Services (AWS).
O aplicativo visa otimizar a retenção de conhecimento dos usuários,

fornecendo lembretes programados para revisões de conteúdo de acordo com os

princípios de repetição espaçada, a fim de melhorar a eficiência do processo de

aprendizagem e memorização.

O projeto busca não apenas validar a aplicação da teoria de Ebbinghaus em

ambientes digitais, mas também explorar a utilização de uma infraestrutura em

nuvem, garantindo escalabilidade, disponibilidade e custo-benefício na operação do

aplicativo.

1.3. Justificativas

Tendo como base o estudo da “curva do esquecimento”, o excesso de

informações e a necessidade cada vez maior de estudar e reter informações, este

trabalho apresenta como uma proposta de solução uma plataforma que organiza e

facilita o controle dos conteúdos e revisões.

Levando em conta o cenário nacional, temos uma quantidade significativa de

pessoas buscando melhores condições de vida e oportunidades de emprego, dessa

forma, justifica-se a necessidade de desenvolver ferramentas e plataformas que

ajudem a organizar e otimizar o estudo e as revisões de conteúdo, de forma a

melhorar a retenção de conhecimento. Este trabalho se propõe a contribuir com uma

solução prática e acessível para a organização dos estudos, baseada nos princípios

da curva do esquecimento e nas técnicas de recordação ativa, visando melhorar a

eficiência no processo de aprendizagem e, consequentemente, os resultados

acadêmicos e profissionais.

A solução proposta é baseada em computação em nuvem. Segundo a AWS

(2024), a computação em nuvem consiste na entrega sob demanda de recursos

computacionais, como banco de dados, armazenamento, servidores de aplicação,

entre outros, cujo preço se dá de acordo com a utilização dos recursos. Ao

utilizarmos a computação em nuvem, deixamos de nos preocupar com algumas

coisas, como manutenção e espaço físico para acomodação de servidores e

redimensionamento de poder computacional, em caso de aumento ou diminuição de

usuários.

1.4. Estrutura do Trabalho

O Capítulo 1 INTRODUÇÃO apresenta as motivações, o objetivo, as

justificativas, método de pesquisa e a estrutura do trabalho.

O Capítulo 2 CURVA DO ESQUECIMENTO apresenta um pouco da teoria de

Hermann Ebbinghaus sobre a curva do esquecimento, que serve como base para a

plataforma Mnemos.

O Capítulo 3 DEFINIÇÕES define alguns termos e conceitos que serão

utilizados no decorrer do trabalho.

O Capítulo 4 PROJETO aborda a idealização do projeto.

O Capítulo 5 DETALHES DA IMPLEMENTAÇÃO define de forma um pouco

mais detalhada alguns modelos e interfaces.

O Capítulo 6 ARQUITETURA apresenta os modelos de arquitetura serverless

e tradicional propostos.

O Capítulo 7 SERVERLESS X ARQUITETURA COM SERVIDORES expõe

um comparativo de custo e desempenho entre os dois modelos de arquitetura.

O Capítulo 8 CONCLUSÕES FINAIS apresenta a conclusão sobre o trabalho.

REFERÊNCIAS relaciona as fontes utilizadas para a confecção do trabalho.

ANEXO A apresenta a configuração e precificação da arquitetura com

servidores, segundo a calculadora AWS.

ANEXO B apresenta a configuração e precificação da arquitetura serverless,

segundo a calculadora AWS.

2. CURVA DO ESQUECIMENTO
Em 1880, Hermann Ebbinghaus, psicólogo e pedagogo alemão, iniciou um

estudo e publicou uma hipótese cinco anos depois chamada “Über das Gedächtnis”

(traduzida para o inglês como “Memory: A Contribution to Experimental Psychology”,

1885), apresentada por meio de um gráfico, representado na Figura 1, que

demonstrou como acontece a retenção de informações no cérebro humano ao longo

de um período.

Figura 1 - Curva do Esquecimento e Retenção

Fonte: Diário Oficial de Brasília, 2020.

A curva de esquecimento de Hermann Ebbinghaus suporta um dos sete

tipos de falhas de memória: a transitoriedade, que é o processo de esquecimento

que ocorre com o passar do tempo.

Ele levantou a hipótese de que a velocidade de esquecimento depende de

vários fatores, como a dificuldade do material aprendido, sua representação e outros

fatores fisiológicos, como estresse e sono, e que a taxa de esquecimento basal

difere pouco entre os indivíduos. Ele concluiu que a diferença no desempenho pode

ser explicada por habilidades de representação mnemônica (técnicas para

desenvolver a memória e memorizar coisas).

Ebbinghaus afirmou que os melhores métodos para aumentar a força da

memória são:

● Melhor representação da memória (por exemplo, com técnicas de associação

de ideias ou fatos difíceis de reter a outros mais simples ou mais familiares);

● Repetição baseada na recordação ativa (especialmente repetição periódica).

Sua premissa era que cada repetição na aprendizagem aumenta o intervalo

ótimo antes que a próxima repetição seja necessária. Ele descobriu que a

informação é mais fácil de lembrar quando é construída sobre coisas que já se

conhece, e a curva do esquecimento era achatada a cada repetição. Assim, ao

aplicar treinamento frequente na aprendizagem, a informação era solidificada por

recordações repetidas.

As evidências sugerem que esperar de 10 a 20% do tempo até quando as

informações serão necessárias é o momento ideal para uma única revisão. Como

mostrado na Figura 2, após 20 minutos, uma pessoa esquece cerca de 42% do que

aprendeu. Depois de uma hora, mais da metade do conteúdo já foi esquecido (56%).

Passados 30 dias, 80% do conteúdo estudado é esquecido também.

Figura 2 - Como funciona a curva do esquecimento

Fonte: Blog Folha Dirigida, 2020.

3. DEFINIÇÕES
Este capítulo discute acerca de algumas definições, de forma a facilitar

o entendimento do projeto.

3.1. Computação em Nuvem

A AWS (2024) define computação em nuvem como sendo a entrega

sob demanda de recursos de TI, como poder computacional, banco de dados,

entre outros, no lugar de comprar, manter e evoluir datacenters físicos.

Diferentemente dos datacenters físicos, que têm custo do local,

ar-condicionado, segurança, além dos servidores e licenças, entre outros, na

computação em nuvem, esses custos são de responsabilidade do provedor,

sendo cobrado apenas pela utilização dos serviços.

3.2. Front-end e Back-end

De acordo com a AWS, qualquer aplicação web1 possui dois aspectos

críticos: front-end e back-end. O front-end são as telas que o usuário interage,

o que inclui elementos visuais, como botões, caixas de seleção, e mensagens

de texto, entre outros. O back-end é a camada de processamento da

aplicação, que a faz funcionar por trás da camada de exibição, processando,

armazenando, consultando e manipulando os dados no banco de dados.

3.3. Arquitetura REST

A arquitetura REST, criada por Roy Fielding (2000), é uma forma de

organizar e padronizar a interação entre componentes de sistemas na

internet, estabelecendo regras básicas sobre como os sistemas devem

funcionar juntos, de forma que os sistemas emissores e receptores consigam

entender os dados um do outro. Algumas das regras da arquitetura REST

são: a aplicação deve ter um interface uniforme, assim todos os seus

recursos devem ser acessados de maneira padronizada, a aplicação não

deve ter estado (stateless), ou seja, cada solicitação deve ser independente,

não necessitando informações prévias de outras solicitações, entre outras.

1 Nesse contexto, entendemos como aplicação web qualquer aplicação acessada via internet e que
tenha uma interface para que possa ser utilizada pelos usuários.

A arquitetura REST é modelada através de recursos, que são as

entidades ou objetos do sistema que serão expostos para manipulação. Os

recursos podem representar algo concreto, como “usuário”, ou algo mais

abstrato como “relatório”.

3.4. Protocolo HTTP

A comunicação nas APIs (Application Programming Interface) que

seguem o paradigma Rest é feita com o protocolo HTTP. O protocolo HTTP

foi definido na RFC 1945 (1996) como um protocolo leve, rápido, genérico,

sem estado e orientado a objetos para transmissão de informações entre um

cliente e um servidor, onde o cliente abre uma conexão com o servidor,

executa uma requisição e espera até receber a resposta. O protocolo HTTP

define os métodos de requisição, conhecidos como métodos HTTP ou verbos

HTTP, que indicam a ação a ser executada para um dado recurso, entre os

mais utilizados, temos2:

● GET - Solicita a consulta de um recurso;

● POST - Envia dados para o servidor processar;

● PUT - Envia dados para o servidor para substituição de um recurso já

processado;

● DELETE - Exclui um recurso;

● PATCH - Envia dados para o servidor para atualização parcial de um

recurso já processado.

A RFC 1945 também define o Status Code das respostas das

requisições como sendo um inteiro de três dígitos que indica o resultado da

requisição:

● 1xx: Respostas informativas;

● 2xx: Respostas bem-sucedidas;

● 3xx: Mensagem de redirecionamento;

● 4xx: Resposta de erro do cliente;

● 5xx: Resposta de erro do servidor.

Na RFC 7231(2014) é exposto que o alvo das requisições HTTP são

os chamados recursos, porém o HTTP não limita um recurso, apenas define a

2 Métodos GET, POST, PUT e DELETE segundo RFC 1945
Método PATCH segundo RFC 5789 (2010)

interface de interação com eles.

Cada recurso é identificado através de uma URI (Uniform Resource Identifier -

Identificador Uniforme de Recurso). De forma resumida, as URIs são

compostas pelo endereço do servidor, nome do recurso e, opcionalmente,

alguns parâmetros. Com a junção da URI, identificando o recurso, e o método

HTTP, identificando a ação, temos a função daquela requisição. Por exemplo,

uma requisição do tipo PATCH, na URI “http://exemplo.com.br/clientes/154”

atualiza parcialmente os dados do cliente cujo identificador é 154.

3.5. Serverless

Segundo a AWS (2024), as tecnologias serverless recebem esse nome

porque sua execução ocorre em servidores totalmente gerenciados pela provedor

dos serviços de nuvem, eliminando a necessidade dos responsáveis técnicos pela

aplicação se preocuparem com a configuração, manutenção ou administração

desses servidores, logo, para os responsáveis técnicos, é como a aplicação não

possuísse um servidor. Esse modelo permite que os desenvolvedores foquem

exclusivamente no código e na lógica de negócios, enquanto o provedor gerencia a

infraestrutura de forma automática, garantindo, assim, alta disponibilidade e

escalabilidade, além da cobrança ser realizada pelo uso de cada serviço.

3.6. FinOps

A FinOps Foundation (2024) explica que o FinOps é um framework e a prática

cultural estratégica que visa proporcionar uma gestão financeira eficiente, permitindo

que as empresas otimizem os gastos com recursos em nuvem, maximizando o valor

do sistema nela hospedado. O framework envolve a colaboração das equipes de

finanças, operações e tecnologia para garantir a alocação de recursos de forma

eficaz, reduzindo os custos, além disso, o framework proporciona uma visão

detalhada dos custos e da infraestrutura, o que permite a tomada de decisão

baseada em dados de forma prática e ágil.

4. PROJETO
Esse capítulo aborda a idealização do projeto, definindo o escopo e os

requisitos.

4.1. Escopo

A proposta deste trabalho é projetar e estruturar a plataforma Mnemos de

acompanhamento de estudo, que aplica uma sugestão de espaçamento de revisões

de conteúdos criados pelos próprios usuários, derivada da pesquisa de Hermann

Ebbinghaus sobre a “curva do esquecimento”.

Este trabalho tem seu foco no principal caso de uso da plataforma, que é a

exibição de cartões a serem revisados de acordo com o espaçamento sugerido por

Ebbinghaus, um dia, uma semana e um mês, porém, para a plataforma completa,

teríamos diversos casos de uso, como o cadastro de usuários e cadastro de cartões.

4.2. Sistema

A Figura 3 mostra o diagrama de contexto do sistema, seguindo o padrão C4

Model (2024). O usuário acessa a plataforma pelo portal web, via navegador ou pelo

aplicativo mobile, em dispositivos móveis. A plataforma, seja o portal web ou

aplicativo, comunica-se com o back-end, que, por sua vez, faz as devidas operações

do banco de dados, sejam elas consultas, alterações, inserções ou exclusões. Para

o front-end, back-end e banco de dados, serão utilizados serviços de computação

em nuvem da AWS (Amazon Web Services).

Figura 3 - Diagrama de contexto de sistema

4.3. Requisitos não-funcionais

No livro Engenharia de Software, Sommerville (2011) explica que os

requisitos não-funcionais são restrições aplicadas ao sistema, incluindo restrições de

tempo de resposta e restrições nos processos, são, diferentemente dos requisitos

funcionais, restrições que não afetam as regras de negócio.

A ISO 25010 define características de qualidade para categorizar requisitos

não-funcionais. Abaixo encontram-se características de qualidade consideradas

importantes para a plataforma, bem como o racional pela sua escolha:

● Capacidade: A capacidade, ou limite máximo do produto, está

relacionado à capacidade de processamento do sistema sem

degradação significativa de seu desempenho. O sistema deverá ter

boa resposta à variação de capacidade. Como a plataforma poderá ser

utilizada por uma gama muito grande de usuários devemos prever

necessidade de um possível aumento de poder computacional, devido

a um aumento do número de acessos;

● Adaptabilidade: A adaptabilidade é a capacidade de um sistema de ser

adaptado para um novo hardware, e a tecnologia. O sistema deverá

ser implementado para plataforma web e para plataforma mobile. O

acesso ao sistema via plataforma web visa facilitar a escrita e a criação

dos cartões que serão revisados, uma vez que é mais fácil redigir

textos mais longos com teclados físicos de um computador do que com

o teclado virtual de um dispositivo mobile. A camada de apresentação

deve ser desenvolvida em Flutter3, uma vez que ele é capaz de gerar,

com o mesmo código, aplicações mobile para dispositivos Android e

iOS, bem como aplicações web e até mesmo aplicações desktop para

sistemas Windows, macOS e Linux;

● Comportamento do Tempo e Uso de Recursos: O comportamento do

tempo é o tempo de resposta de um software, e uso de recursos, a

quantidade de poder computacional utilizado por uma sistema. As

funções Lambda deverão ser desenvolvidas na linguagem Python:

Conforme observado em um benchmark realizado pela Xebia (2024),

as duas linguagens de programação cujas funções Lambda executam

mais rápido são Rust e Python. Uma pesquisa realizada pela Jetbrains

(2023) mostra Python em terceiro lugar entre as linguagens com mais

desenvolvedores, enquanto Rust não aparece no top 7. A linguagem

Python foi escolhida por contar com uma rápida execução em funções

Lambda, aliado a uma alta disponibilidade de desenvolvedores.

3 Site oficial: https://flutter.dev/

4.4. Requisitos funcionais

Segundo Sommerville, os requisitos funcionais são os serviços que o sistema

deve fornecer, as respostas e reação do sistema de acordo com determinadas

entradas. Os requisitos funcionais também são conhecidos como requisitos de

negócio, ou regras de negócio.

O sistema deverá permitir a criação de novos usuários, CRUD (Create, Read,

Update, Delete - Criação, Leitura, Atualização e Exclusão) de cartões, CRUD de

etiquetas, recuperação de senha, arquivamento de cartões (inibição da exibição do

cartão na lista de revisão) e notificação dos cartões que devem ser revisados no dia.

Dentre esses requisitos, o principal para a plataforma, é a notificação dos cartões

que devem ser revisados no dia, é essa funcionalidade que colocará em prática o

estudo de Hermann Ebbinghaus, e auxiliará o usuário em seus estudos.

4.5. Caso de uso exibição de cartões a serem revisados

O caso de uso “Exibição de Cartões a Serem Revisados” é o principal caso

de uso do sistema. Ele é responsável por notificar o usuário nas datas corretas de

revisão do conteúdo do cartão, seguindo o estudo do Ebbinghaus.

A Tabela 1 define as regras de negócio relacionadas a esse caso de uso.

Tabela 1 - Regras de negócio

Regras de negócio Descrição

RN01
As notificações de revisões do cartão deverão ocorrer um dia após a
criação, uma semana após a primeira revisão, um mês após a segunda
revisão, um semestre após a terceira revisão.

RN02
Após a data de revisão estipulada, o cartão continuará sendo exibido na
lista de cartões a serem revisados até que o usuário o marque como
revisado, como arquivado ou o exclua.

RN03 A data da próxima revisão do cartão será calculada com base na data em
que o usuário efetuou a revisão atual.

RN04 Cartões arquivados não aparecerão na lista de cartões a revisar.

5. DETALHES DA IMPLEMENTAÇÃO
Esse capítulo aborda a implementação de uma forma mais detalhada,

definindo algumas interfaces e modelos.

5.1. API - Application Programming Interface

Para possibilitar a comunicação entre as camadas do front-end e back-end, é

necessária uma interface de aplicação que padronize a troca de mensagens,

conforme define a arquitetura REST.. Para tanto, temos, na Tabela 2, a API

(Application Programming Interface - Interface de Programação de Aplicativos), que

define quais os recursos disponíveis e como acessá-los. Nessa definição, estão

sendo seguidos os conceitos elencados no item 3.3, onde os recursos são

consultados com o método GET, atualizados com o método PATCH e deletados com

o método DELETE.

Tabela 2 - API de Cartões

Cartões

Endpoint Método Ação

api/v1/cartoes/{id} PATCH Marca o cartão como revisado e atualiza a data da próxima
revisão

api/v1/cartoes/{id} GET Coleta as informações de um cartão

api/v1/cartoes/{id} DELETE Deleta um cartão

api/v1/cartoes GET Coleta as informações de todos os cartões

api/v1/cartoes/revisao GET Coleta as informações dos cartões a serem revisados no dia

5.2. Modelo de domínio

Na Figura 4 temos o diagrama de domínio, seguindo o padrão de diagrama

de classes da UML (2024). No diagrama temos as entidades Usuario, Cartao e

Etiqueta. Um Cartao e uma Etiqueta só existe, caso exista também um Usuario,

caracterizando, assim uma composição4.

4 Segundo a UML (2024), composição é quando uma classe está contida na outra, a classe contida
só existe enquanto a classe que a contém existe, caso a classe que contém seja destruída, a classe
contida também será destruída.

Figura 4 - Diagrama de domínio

5.3. Banco de dados

Algumas aplicações não necessitam persistir dados, e, por consequência, não

exigem um banco de dados, por exemplo uma aplicação que faça a integração entre

dois sistemas, ou mesmo um aplicativo de celular que se utilize somente do

armazenamento local.

A plataforma Mnemos poderia contar apenas com o armazenamento local do

dispositivo móvel do usuário, sem utilizar um banco de dados, porém em um cenário

como esse não seria possível integrar com um portal web e o usuário perderia todos

os dados ao realizar limpeza ou trocar o dispositivo, além disso, o usuário poderia

ter problemas com a plataforma, caso seu armazenamento estivesse cheio. Para

evitar esses problemas, foi decidido pela utilização de um banco de dados para a

persistência de dados. Como as informações são bem estruturadas e padronizadas,

foi decidido por um banco de dados relacional, por ter um melhor desempenho

nesse cenário. Caso a estrutura dos dados pudesse variar muito, dificultando a

padronização e criação de tabelas, o banco de dados não relacional seria o mais

indicado.

Figura 5 - Modelagem de banco de dados

Para a modelagem de banco de dados utilizamos a notação de diagrama de

classes da UML, conforme ilustrado no Diagrama disposto na Figura 5. Foram

definidas três tabelas, a tabela CARTAO, que contem informações sobre o cartão

que o usuário cadastrou com o resumo do assunto estudado, a tabela ETIQUETA,

que armazena as informações das etiquetas para categorização dos cartões, e, por

fim, a tabela CARTAO_ETIQUETA, que relaciona as etiquetas aos cartões, uma vez

que, ao mesmo tempo que uma etiqueta pode estar atrelada a nenhum ou vários

cartões, um cartão também pode possuir nenhuma ou várias etiquetas.

Como estamos utilizando o Amazon Cognito para autenticação e autorização

dos usuários, foi decidido pela não criação de uma tabela de usuários, apenas

usando o ID do usuário do próprio Amazon Cognito5 como referência nas tabelas

CARTAO e ETIQUETA.

5 Os serviços AWS utilizados estão explicados no Anexo C

6. ARQUITETURA
Neste capítulo serão discutidos os modelos de arquitetura tradicional (com

servidores) e a arquitetura serverless.

6.1. Arquitetura tradicional (com servidores)

Na Figura 6 temos a arquitetura AWS tradicional, com servidores. Da mesma

forma que a arquitetura serverless os dispositivos acessam a plataforma por meio do

Route53 com os arquivos do site da plataforma armazenados no S3 Bucket e

distribuídos pelo CloudFront. Também tem integração com o Amazon Cognito para

autenticação e com o Amazon SES para envio de e-mail de confirmação de cadastro

e recuperação de senhas. Porém a API é hospedada e disponibilizada por uma

máquina EC2 que atua como servidor, que por sua vez, acessa o RDS para

persistência e consulta dos dados.

Figura 6 - Arquitetura AWS - Com servidores

6.2. Arquitetura Serverless

A Figura 7 representa a arquitetura AWS serverless, na qual os dispositivos

(navegadores web e dispositivos móveis) acessam a plataforma por meio do

Route53. Caso a plataforma esteja sendo acessada via navegador, os arquivos do

site da plataforma, armazenados no S3 Bucket, são distribuídos pelo CloudFront.

O API Gateway expõe as funções Lambda por meio de rotas da API, garantindo a

autenticação e autorização com o Amazon Cognito. As funções Lambda, por sua

vez, acessam o RDS para persistência e consulta dos dados. O Amazon Cognito

integra-se com o Amazon SES para envio de e-mail de confirmação de cadastro e

recuperação de senhas.

Figura 7 - Arquitetura AWS - Serverless

6.3. Serverless X Arquitetura com Servidores

Em questão de desempenho, um benchmark realizado por Pedro Correa

(2021) comparou uma aplicação sendo executada em uma arquitetura com

servidores com a mesma aplicação sendo executada em uma arquitetura serverless,

ambas utilizando os serviços Azure de computação em nuvem. Foram realizadas

825 requisições em 70 segundos no ambiente com servidores, dessas requisições,

apenas 271 foram bem sucedidas, o que representa 33% das chamadas, o que nos

dá 3,9 requisições/segundos com sucesso. Já no ambiente serverless, foram

realizadas 848 chamadas em 70 segundos, todas bem sucedidas, equivalente a

12,11 requisições/segundo com sucesso.

Em termos de custo, as duas arquiteturas têm formas distintas de cobrança,

enquanto na arquitetura com servidores a cobrança é pela disponibilidade do

servidor, independente de estar sendo utilizado ou não, no serverless ela é realizada

de acordo com a utilização. Por conta disso, foi analisado um período de maior

estresse da aplicação, com maior quantidade de chamadas. Nesse cenário, o custo

estimado para a arquitetura com servidores seria de US$ 840/mês contra US$ 190

para a arquitetura serverless.

Além disso, por ser cobrado conforme consumo de recursos, utilizar a

arquitetura serverless incentiva a otimização dos códigos, como forma de redução

de custo, refletindo no desempenho do sistema.

Foi utilizada a calculadora AWS (2024) para estimar o custo da aplicação

seguindo a arquitetura serverless apresentada na Figura 6, sua configuração e

precificação estão contidas no Anexo B, e uma arquitetura com servidores,

apresentada na Figura 7, cuja configuração e precificação então contidas no anexo

A utilizando máquinas virtuais como servidores para o back-end.

De acordo com a calculadora AWS, como exibido na tabela 3, para o cenário

serverless, não temos custo inicial e um custo mensal de US$ 356,59, enquanto

para o cenário com servidores, temos um custo inicial de US$ 1.014,41 e um custo

mensal de US$ 1.040,02, o um custo mensal 292% maior que o custo mensal do

cenário serverless.

Tabela 3 - Comparação de custos - Arquitetura com servidores x Serverless

Com servidores Serverless

Custo inicial US$ 1.014,41 -

Custo mensal US$ 1.040,02 US$ 356,59

Custo primeiro ano US$ 13.494,65 US$ 4279,08

Como exposto acima, o custo de um ambiente serverless é muito menor que

o ambiente com servidores, variando o valor conforme o uso, sem desperdiçar

recursos computacionais, indo de encontro a ideia de FinOps. Além dessa vantagem

financeira, temos também a vantagem em relação a capacidade do sistema; ao

dimensionarmos um servidor em uma arquitetura com servidores, levamos em conta

uma estimativa de acessos simultâneos, caso haja um aumento de acessos, mesmo

que temporário, o servidor pode não ter recursos suficientes, podendo causar

lentidão ou até mesmo indisponibilidade do sistema, já em uma arquitetura

serverless, como a nuvem fornece recurso sob demanda, caso ocorra um aumento

de demanda, a performance do sistema não é afetada. Por conta dessas vantagens,

a arquitetura escolhida foi a serverless.

7. CONSIDERAÇÕES FINAIS

7.1. Conclusões

Infelizmente, a curva de esquecimento é um efeito que não pode ser

impedido. A eliminação de informações da memória é uma forma do cérebro se

proteger, evitando uma sobrecarga. É uma função natural cujos efeitos não podem

ser bloqueados. Porém, com o uso da plataforma “Mnemos”, as pessoas terão às

mãos, por meio de um aparelho celular, todo o conteúdo que elas já estudaram, um

resumo dele da forma que melhor entenderam e as datas propostas para revisão.

Desta forma, a sequência de estudos estará organizada e sempre acessível e

disponível para consulta.

As arquiteturas serverless e com servidor em nuvem apresentam diversos

trade-offs que devem ser considerados ao escolher a mais adequada para uma

aplicação, por exemplo, apesar das arquiteturas com servidor apresentarem custos

previsíveis, esse custo aumenta quando temos baixa utilização, por termos custos

fixos de instâncias ativas de servidores. Em contrapartida, nas arquiteturas

serverless a cobrança por consumo proporciona um custo mais eficiente para

utilização intermitente, mas pode ser um pouco mais caro em utilizações intensivas

ou contínuas. Enquanto a arquitetura com servidores proporciona um controle maior

sobre o ambiente, a arquitetura serverless conta com a escalabilidade automática.

Como exposto neste trabalho, a implementação da plataforma “Mnemos”

com programação em nuvem da Amazon (AWS) e uma arquitetura serverless é

factível. A integração de serviços gerenciados AWS proporciona uma base sólida

escalável, flexível e confiável para a plataforma. A combinação desses serviços não

apenas garante eficiência e desempenho, mas também proporciona uma

infraestrutura segura e econômica. Portanto, a arquitetura proposta para a

“Mnemos”, utilizando as soluções oferecidas pela AWS, confirma a viabilidade e a

capacidade da plataforma para atender às necessidades de escalabilidade,

segurança e performance, posicionando-a favoravelmente para alcançar sucesso a

longo prazo.

7.2. Trabalhos Futuros

Como próximos passos para este trabalho temos a criação das arquiteturas

propostas, de forma a comparar, de forma mais prática, o desempenho de ambas

(benchmark); análise e comparação dos custos a longo prazo; e estudo sobre o uso

de inteligência artifical para gerenciar os custos de forma ainda mais eficiente. Um

pré-requisito para os três estudos é a implementação do sistema completo nas duas

arquiteturas.

Para realização do benchmark, deve-se realizar requisições de forma a

simular acessos simultâneos para poder mensurar a taxa de sucesso e de falhas,

algo similar ao benchmark realizado pelo Pedro Correa, mas com os serviços da

AWS.

Para a realização do benchmark, de forma a realizar o comparativo dos

custos a longo prazo, será necessário implementar uma forma de equilibrar as

requisições entre as duas arquiteturas, em um teste A/B, o que pode ser realizado

com ajustes na política de roteamento do serviço Route 53. Segundo a Oracle

(2024), o teste A/B serve para comparar o desempenho de duas versões de um

sistema, geralmente as versões divergem em termos de conteúdo, para testar qual

delas é mais atrativa para os visitantes. Nesse caso as versões divergem em termos

de arquitetura.

Para o estudo sobre o uso da inteligência artificial para gerenciamento de

custos, será necessária a implementação de algumas ferramentas de coleta de

dados, para a aquisição de dados de uso e custos, ferramentas para tratamento

desses dados, além de ferramentas de análise de dados, e de modelagem de

inteligência artifical.

REFERÊNCIAS

SÃO PAULO, Secretaria da Educação de. Dados Abertos da Educação.
Histórico de matrículas por turma. Disponível em:
<https://dados.educacao.sp.gov.br/dataset/histórico-de-matrículas-por-turma>.

Acesso em 01 dez. 2024.

BRASIL. Ministério da Educação. Inep registra 4,6 milhões de inscritos no
Enem 2023 Disponível em:
<https://www.gov.br/inep/pt-br/assuntos/noticias/enem/inep-registra-4-6-milhoes

-de-inscritos-no-enem-2023>. Acesso em 01 dez. 2024.

VALLE, Patrícia. TONDO, Stephanie. Concurseiros e mercado estão
assustados com medidas do governo Bolsonaro. Disponível em:
<https://extra.globo.com/economia/concurseiros-mercado-estao-assustados-co

m-medidas-do-governo-bolsonaro-23579586.html#:~:text=A%20associação%2

0Nacional%20de%20Proteção,os%20impactos%20para%20o%20mercado>.

Acesso em 01 dez. 2024.

IBGE. Painel PNAD Contínua. Disponível em:
<https://painel.ibge.gov.br/pnadc/>. Acesso em 01 dez. 2024.

EBBINGHAUS, Hermann. Über das Gedächtnis (Memory: A Contribution to

Experimental Psychology). Tradução de Henry A. Ruger & Clara E. Bussenius.

Disponível em:

<http://psychclassics.yorku.ca/Ebbinghaus/index.htm>. Acesso em 01 dez.

2024.

https://dados.educacao.sp.gov.br/dataset/hist%C3%B3rico-de-matr%C3%ADculas-por-turma
https://extra.globo.com/economia/concurseiros-mercado-estao-assustados-com-medidas-do-governo-bolsonaro-23579586.html#:~:text=A%20associa%C3%A7%C3%A3o%20Nacional%20de%20Prote%C3%A7%C3%A3o,os%20impactos%20para%20o%20mercado
https://extra.globo.com/economia/concurseiros-mercado-estao-assustados-com-medidas-do-governo-bolsonaro-23579586.html#:~:text=A%20associa%C3%A7%C3%A3o%20Nacional%20de%20Prote%C3%A7%C3%A3o,os%20impactos%20para%20o%20mercado
https://extra.globo.com/economia/concurseiros-mercado-estao-assustados-com-medidas-do-governo-bolsonaro-23579586.html#:~:text=A%20associa%C3%A7%C3%A3o%20Nacional%20de%20Prote%C3%A7%C3%A3o,os%20impactos%20para%20o%20mercado
http://psychclassics.yorku.ca/Ebbinghaus/index.htm

SCHACTER, Daniel L. The seven sins of memory: How the mind forgets
and remembers. Boston: Houghton Mifflin, 2001.

SONNAD, Nikhil. You probably won’t remember this, but the “forgetting
curve” theory explains why learning is hard. Disponível em:

<https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-

memorize/>. Acesso em 01 dez. 2024.

ECKEL, Bruna. Curva do Esquecimento: o que é e como superar.
Disponível em:

<https://noticiasconcursos.com.br/curva-do-esquecimento-o-que-e-e-como-sup

erar/>. Acesso em 01 dez. 2024.

BRASÍLIA, Diário Oficial de. Curva de Esquecimento: o que você tem que
saber para não desperdiçar seu estudo. Disponível em:
<https://www.diariooficialdf.com.br/curva-de-esquecimento-o-que-voce-tem-que

-saber-para-nao-desperdicar-seu-estudo/>. Acesso em 01 dez. 2024.

WIKIPÉDIA. Curva do esquecimento. Disponível em:
<https://pt.wikipedia.org/wiki/Curva_do_esquecimento>. Acesso em 01 dez.

2024.

WIKIPÉDIA. Hermann Ebbinghaus. Disponível em:
<https://pt.wikipedia.org/wiki/Hermann_Ebbinghaus>. Acesso em 01 dez. 2024.

AWS. Boas-vindas à documentação do AWS. Disponível em:
<https://docs.aws.amazon.com/pt_br/>. Acesso em 01 dez. 2024.

C4 MODEL. The C4 model for visualising software architecture. Disponível
em:

<https://c4model.com/>. Acesso em 01 dez. 2024.

https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/
https://qz.com/1213768/the-forgetting-curve-explains-why-humans-struggle-to-memorize/
https://www.diariooficialdf.com.br/curva-de-esquecimento-o-que-voce-tem-que-saber-para-nao-desperdicar-seu-estudo/
https://www.diariooficialdf.com.br/curva-de-esquecimento-o-que-voce-tem-que-saber-para-nao-desperdicar-seu-estudo/
https://pt.wikipedia.org/wiki/Curva_do_esquecimento#cite_note-2

AWS. Qual é a diferença entre front-end e back-end no desenvolvimento
de aplicações?. Disponível em:
<https://aws.amazon.com/pt/compare/the-difference-between-frontend-and-bac

kend/#:~:text=O%20back%2Dend%20consiste%20nos,da%20aplica%C3%A7

%C3%A3o%20para%20seus%20usu%C3%A1rios.>. Acesso em 01 dez. 2024.

AWS. O que é a API RESTful?. Disponível em:
<https://aws.amazon.com/pt/what-is/restful-api/#:~:text=A%20API%20RESTful

%20%C3%A9%20uma,terceiros%20para%20executar%20v%C3%A1rias%20ta

refas.>. Acesso em 01 dez. 2024.

AWS. Fundamentos da Nuvem AWS. Disponível em:
<https://aws.amazon.com/pt/getting-started/cloud-essentials/#:~:text=A%20com

puta%C3%A7%C3%A3o%20em%20nuvem%20%C3%A9,com%20pre%C3%A

7o%20conforme%20o%20uso.>. Acesso em 01 dez. 2024.

Fielding, Roy. Architectural Styles and
the Design of Network-based Software Architectures. Disponível em:
<https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm>. Acesso em

01 dez. 2024.

mdn web docs. HTTP. Disponível em:
<https://developer.mozilla.org/pt-BR/docs/Web/HTTP>. Acesso em 01 dez.

2024.

mdn web docs. Métodos de requisição HTTP. Disponível em:
<https://developer.mozilla.org/pt-BR/docs/Web/HTTP/Methods>. Acesso em 01

dez. 2024.

ABNT NBR ISO/IEC 25010:2011. Engenharia de sistemas e software -
Requisitos de qualidade e avaliação de sistemas e software (SQuaRE) -
Modelo de qualidade de produto e modelo de qualidade em uso. Rio de

Janeiro: ABNT, 2011.

Xebia. AWS Lambda Benchmarking. Disponível em:
<https://xebia.com/blog/aws-lambda-benchmarking/>. Acesso em 01 dez. 2024.

AWS. Sem servidor na AWS. Disponível em:
<https://aws.amazon.com/pt/serverless>. Acesso em 01 dez. 2024.

Jetbrains. Ecossistema de Desenvolvedores: Data Playground. Disponível
em:

<https://www.jetbrains.com/pt-br/lp/devecosystem-data-playground/>. Acesso

em 01 dez. 2024.

NIELSEN, J. Usability Engineering. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1994.

EVANS, Eric. Domain-Driven Design: Tackling Complexity in the Heart of
Software. 1. ed. Boston: Addison-Wesley, 2004.

OMG UML, OMG® Unified Modeling Language® (OMG UML®). Disponível
em:

<https://www.omg.org/spec/UML/2.5.1/PDF>. Acesso em 01 dez. 2024.

BERNERS-LEE, Tim; FIELDING, Roy T.; FRYSTYK, Henrik. Hypertext
Transfer Protocol – HTTP/1.0. Fremont, CA: Internet Engineering Task
Force, 1996. Disponível em: <https://datatracker.ietf.org/doc/html/rfc1945>.

Acesso em 01 dez. 2024.

FIELDING, Roy T.; GETTYS, Jim; MOGUL, Jeffrey C.; NIELSEN, Henrik

Frystyk; MASINTER, Larry; LEE, Paul J.; TETZLAFF, Tim Berners-. Hypertext
Transfer Protocol – HTTP/1.1. Fremont, CA: Internet Engineering Task
Force, 1999. Disponível em: <https://datatracker.ietf.org/doc/html/rfc2616>.

Acesso em 01 dez. 2024.

DUSSEAULT, Lisa; SNELL, James M. PATCH Method for HTTP. Fremont,
CA: Internet Engineering Task Force, 2010. Disponível em:

<https://datatracker.ietf.org/doc/html/rfc5789>. Acesso em 01 dez. 2024.

FIELDING, Roy; RESCHKE, Julian. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content, 2014. Disponível em:

<https://datatracker.ietf.org/doc/html/rfc7231>. Acesso em 01 dez. 2024.

Luchidchart; Principais diagramas da UML: modelos e exemplos, 2024.
Disponível em:

<https://www.lucidchart.com/blog/pt/modelos-e-exemplos-de-diagramas-uml#cl

ass>. Acesso em 01 dez. 2024.

CORREA, Pedro; Serverless Saga #2: Benchmarks & Custo, 2021.

Disponível em:

<https://medium.com/digitalproductsdev/serverles-saga-2-benchmarks-custo-24

e7063e9cc>. Acesso em 01 dez. 2024.

AWS; Calculadora de preços da AWS, 2024. Disponível em:

<https://calculator.aws/>. Acesso em 01 dez. 2024.

FinOps Foundation; What is FinOps, 2024. Disponível em:

<https://www.finops.org/introduction/what-is-finops/>. Acesso em 01 dez. 2024.

SOMMERVILLE, Ian. Engenharia de Software. 9. ed. São Paulo: Pearson

Prentice Hall, 2011.

Oracle; O que é teste A/B?, 2024. Disponível em:

<https://www.oracle.com/br/cx/marketing/what-is-ab-testing/#:~:text=teste%20A

%2FB%3F-,Defini%C3%A7%C3%A3o%20de%20teste%20A%2FB,delas%20at

rai%20mais%20visitantes%2Fespectadores.>. Acesso em 08 dez. 2024.

ANEXO A
Na Tabela A.1 temos os serviços e valores para um ambiente com servidores

para a plataforma Mnemos. A estimativa de preços foi gerada pela calculadora AWS

no dia 10/11/2024, seguindo a arquitetura definida na Figura A.1, estimando um

custo inicial de US$ 1.014,40, e um custo mensal de US$ 1.040,02.

Tabela A.1 - Configuração com servidores

Serviço Custo Inicial Mensal Resumo da configuração

S3 Standard US$ 0,00 US$ 0,03

Armazenamento S3 Standard (0.5 GB por mês),
Solicitações PUT, COPY, POST, LIST para S3 Standard
(2), GET, SELECT e todas as outras solicitações do S3
Standard (15000)

Amazon
CloudFront US$ 0,00 US$ 0,13

Número de solicitações (HTTPS) (por mês),
Transferência de dados de saída para a Internet (00 GB
por mês), Transferência de dados de saída para a origem
(1 GB por mês), Número de solicitações (HTTPS) (0 por
mês)

Amazon EC2 US$ 1.014,40 US$ 28,17

Locação (Instâncias compartilhadas), Sistema
operacional (Linux), Carga de trabalho (Consistent,
Número de instâncias: 1), Instância do EC2 avançada
(r6g.large), Pricing strategy (Compute Savings Plans 3yr
Partial Upfront), Habilitar monitoramento (desabilitada),
DT Entrada: Not selected (0 TB por mês), DT Saída: Not
selected (0 TB por mês), DT Intrarregião: (0 TB por mês)

Amazon RDS
for MySQL US$ 0,00 US$ 299,20

Quantidade de armazenamento (100 GB), Nós (1), Tipo
de instância (db.m1.medium), Utilização (somente sob
demanda) (100 %Utilized/Month), Opção de implantação
(Multi-AZ), Modelo de preço (OnDemand),
Armazenamento para cada instância do RDS (SSD de
uso geral (gp2))

Amazon Route
53 US$ 0,00 US$ 2,20 Zonas hospedadas (1)

VPN
Connection US$ 0,00 US$ 384,50

Dias úteis por mês (22), Número de conexões do
Site-to-Site VPN (), Número de associações de sub-rede
(1)

VPN
Connection US$ 0,00 US$ 275 Dias úteis por mês (22)

Amazon
Cognito US$ 0,00 US$ 50,75

Taxa de otimização para solicitações de token (0), Taxa
de otimização para clientes de aplicativo (0), Recursos
avançados de segurança (Habilitada), Número de
usuários ativos mensalmente (MAU) (1000)

Amazon
Simple E-mail
Service (SES)

US$ 0,00 US$ 0,03
Mensagens de e-mail enviadas do EC2 (0 por mês),
Mensagens de e-mail enviadas do cliente de e-mail (300
por mês)

ANEXO B
Na Tabela B.1 temos os serviços e valores para um ambiente serverless para

a plataforma Mnemos. A estimativa de preços foi gerada pela calculadora AWS no

dia 10/11/2024, seguindo a arquitetura definida na Figura 10 do item 6.4, a

estimativa não gerou um custo inicial, e gerou um custo mensal de US$ 356,59.

Tabela B.1 - Configuração Serverless

Serviço Custo Inicial Mensal Resumo da configuração

S3 Standard US$ 0,00 US$ 0,03

Armazenamento S3 Standard (0.5 GB por mês),
Solicitações PUT, COPY, POST, LIST para S3
Standard (2), GET, SELECT e todas as outras
solicitações do S3 Standard (15000), Dados
retornados pelo S3 Select (0.5 GB por mês)

Amazon
CloudFront US$ 0,00 US$ 0,13

Número de solicitações (HTTPS) (por mês),
Transferência de dados de saída para a Internet (0
GB por mês), Transferência de dados de saída para
a origem (1 GB por mês), Número de solicitações
(HTTPS) (0 por mês)

AWS Lambda US$ 0,00 US$ 0,00

Arquitetura (x86), Arquitetura (x86), Modo de
invocação (Em buffer), Quantidade de
armazenamento temporário alocada (512 MB),
Número de solicitações (900000 por mês)

Amazon RDS
for MySQL US$ 0,00 US$ 299,20

Quantidade de armazenamento (100 GB), Nós (1),
Tipo de instância (db.m1.medium), Utilização
(somente sob demanda) (100 %Utilized/Month),
Opção de implantação (Multi-AZ), Modelo de preço
(OnDemand), Armazenamento para cada instância
do RDS (SSD de uso geral (gp2))

Amazon Route
53 US$ 0,00 US$ 2,20 Zonas hospedadas (1)

Amazon
Cognito US$ 0,00 US$ 50,75

Taxa de otimização para solicitações de token (0),
Taxa de otimização para clientes de aplicativo (0),
Recursos avançados de segurança (Habilitada),
Número de usuários ativos mensalmente (MAU)
(1000)

Amazon
Simple Email
Service (SES)

US$ 0,00 US$ 0,03
Mensagens de e-mail enviadas do EC2 (por mês),
Mensagens de e-mail enviadas do cliente de e-mail
(300 por mês)

Amazon API
Gateway US$ 0,00 US$ 4,25

Unidades de solicitações da API HTTP (milhões),
Unidades de solicitação da API REST (milhões),
Tamanho da memória do cache (GB) (Nenhum),
Unidades de mensagens WebSocket (milhares),
Tamanho médio da mensagem (32 KB), Solicitações
(por mês), Solicitações (1 por mês)

ANEXO C
Na Tabela C.1 temos os serviços AWS que foram utilizados nas arquiteturas,

bem como suas funções.

Tabela C.1 - Descrição dos serviços AWS utilizados na arquitetura

Representação Nome Função

Route53

Atua como DNS (Domain Name System - Sistema de nomes

de domínio), atribuindo endereço de domínio da plataforma ao

portal e à API

S3 Bucket

S3 (Simple Storage Service - Serviço de armazenamento

simples) armazena arquivos na AWS, pode ser utilizado para

armazenar desde arquivos para uma página web, até arquivos

de backup, data lakes, entre outros

CloudFront

O CloudFront acelera a distribuição de conteúdo web para os

usuários. Quando um usuário solicita um conteúdo

disponibilizado pelo CloudFront, a solicitação é roteada para o

servidor com menor latência, caso o conteúdo já esteja

presente nesse servidor, o CloudFront o entregará

imediatamente, caso contrário, ele fará uma cópia do conteúdo

da origem, e o disponibilizará. Esse serviço ajuda a diminuir a

latência e melhorar o desempenho das aplicações web

API Gateway

O API Gateway serve para criação, publicação, manutenção,

monitoramento e proteção de APIs e tem integração com

outros serviços de autenticação da AWS, como o Amazon

Cognito

Amazon

Cognito
O Amazon Cognito gerencia, autentica e autoriza usuários

Amazon SES
O Amazon SES (Simple E-mail Service - Serviço simples de

E-mail) é uma plataforma de envio e recebimento de e-mail

Representação Nome Função

Lambda

As funções Lambda são funções computacionais que permitem

a execução de códigos em resposta ao acionamento de

diversos outros serviços AWS, tais como API Gateway, S3,

DynamoDB, entre outros

RDS

O RDS (Relational Database Service - Serviço de banco de

dados relacional) fornece banco de dados relacional, para

persistência de dados

EC2

O EC2 (Elastic Compute Cloud) são máquinas remotas em

data centers da Amazon que fornecem capacidade

computacional redimensionável, que podem ser utilizadas

como servidores

Fonte: AWS (2024)

