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_____________________________ 

Albert Einsten, The World As I See It 



7 

 

 

  



8 

 

 

Agradecimentos 

 

A todos os professores que eu tive na graduação, que me proporcionaram conhecimento 

para poder fazer esse e todos os projetos feitos durante a graduação. Aos funcionários e outros 

professores que de alguma forma deram suporte aos alunos trabalhando para que o curso esteja 

sempre em melhoria. 

  

Ao professor Valdir Grassi Jr. Pelo apoio, incentivo e orientação durante o 

desenvolvimento desse projeto. 

 

A minha família que sempre me apoiou e me deu forças em todos os projetos da minha 

vida. Principalmente meus pais (Edvaldo e Lizete) e meu irmão (Vinicius). Sem eles, nada disso 

teria sido possível. Agradeço também a Camila, que me acompanhou durante todos esses anos 

de faculdade, também me apoiando em todas as minhas decisões. 

 

Aos amigos que durante os anos de faculdade, dividiram a república comigo, sempre 

proporcionando um ambiente alegre e de boa convivência. E principalmente, agradeço a todos 

os meus colegas de sala. Sem eles, o curso nunca teria sido o mesmo. Noites de estudo, de festa, 

de confraternização. Tudo isso foi muito importante não só na minha formação acadêmica, mas 

principalmente na minha formação como pessoa. Obrigado! 



9 

 

 

  



10 

 

 

Resumo 

 
Resolver a cinemática de um robô manipulador é um cálculo de grande importância na 

área de robótica, uma vez que esses robôs são usados em escala comercial e em várias pesquisas 

científicas. No entanto, esse é um cálculo que pode ser de grande complexidade. Este trabalho 

tem como objetivo propor uma maneira alternativa para o cálculo da cinemática inversa de 

robôs manipuladores.  Como referência experimental para esse estudo, tomou-se o robô Puma 

560 e foi implementado um sistema evolutivo baseado em algoritmos genéticos na linguagem C. 

Para os testes do método proposto, os resultados foram divididos em duas principais categorias 

(cálculo da posição final do manipulador e cálculo da posição e orientação final do 

manipulador). O método proposto foi analisado quanto à precisão e quanto ao tempo de 

processamento. Através de médias e desvio-padrão de uma bateria de 100 testes para cada 

configuração, pode-se concluir que o método é muito eficaz para exemplos onde só a posição 

final é considerada. Já para quando a complexidade do problema aumenta muito (considerando 

a orientação do manipulador) o algoritmo mostrou-se apenas razoável. Para tal cálculo, chegou-

se a conclusão que em trabalhos futuros, o algoritmo deve sofrer melhorias. 

 

Palavras-chave: Robôs Manipuladores, Puma 560, Cinemática Inversa, Sistemas 

Evolutivos, Algoritmos Genéticos. 
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Abstract 
 

Solve the kinematics of a robot manipulator is a calculation of great importance in 

robotics, since these robots are used on a commercial scale and in various scientific research. 

However, this can be a very complex calculation. This paper proposes an alternative way to 

calculate the inverse kinematics for robot manipulators. As an experimental reference for this 

study, the robot Puma 560 was chosen and an evolutionary system based on Genetic Algorithms 

has been implemented in C. For testing the proposed method, the results were separated in two 

main categories: the end effector position calculation of the manipulator and the end position 

and orientation of the manipulator. The proposed method was analyzed for accuracy and 

processing time. With averages and standard deviation of 100 tests sequence to each 

configuration, it can be concluded that the method is very effective for examples where only the 

final position is considered, and that the algorithm is reasonable when the complexity of the 

problem increases greatly (considering the orientation of the manipulator). For this calculation, 

it was concluded that in future works, the algorithm must have improvements. 

 

Keywords: Robot Manipulators, Puma 560, Inverse Kinematic, Evolutionary Systems, 

Genetic Algorithm. 

  



13 

 

 

Sumário 
1. Introdução ........................................................................................................................... 16 

2. Fundamentação Teórica ...................................................................................................... 19 

2.1. Puma 560 ......................................................................................................................... 19 

2.2. Cinemática Direta ............................................................................................................ 22 

2.3. Matrizes de Rotação ........................................................................................................ 24 

2.4. Algoritmos Genéticos ...................................................................................................... 25 

2.5. Trabalhos Relacionados .................................................................................................. 27 

3. Metodologia ........................................................................................................................ 29 

3.1. Desenvolvimento em C ................................................................................................... 29 

3.2. Cinemática Direta ............................................................................................................ 29 

3.3. Estrutura dos Indivíduos e Criação da População ........................................................... 30 

3.4. Avaliação da População .................................................................................................. 31 

3.5. Eliminação dos Menos Aptos .......................................................................................... 32 

3.6. Cruzamento da População ............................................................................................... 32 

3.7. Mutação ........................................................................................................................... 32 

3.8. Critérios de Parada .......................................................................................................... 32 

3.9. Entrada e Saída de Dados ................................................................................................ 32 

4. Resultados e Discussão ....................................................................................................... 34 

4.1. Posição ............................................................................................................................ 34 

4.2. Posição + Orientação ....................................................................................................... 37 

5. Conclusão ............................................................................................................................ 40 

5.1. Dificuldade e Limitações ................................................................................................ 40 

5.2. Contribuições .................................................................................................................. 40 

5.3. Trabalhos Futuros ............................................................................................................ 40 

Referências .................................................................................................................................. 41 

Apêndice A – Cinemática Inversa com Algoritmo Genético em C ............................................ 42 

 

  



14 

 

 

Lista de Ilustrações 
 

Figura 1 - Puma 560[2] ............................................................................................................. 16 
Figura 2 - Configurações do Puma 560[2] ................................................................................ 17 
Figura 3 - Esquema de Medidas do Puma560[2] ...................................................................... 20 
Figura 4 - Representação de Denavit-Hartenberg[2] ................................................................ 22 
Figura 5 - Rotação Roll-Pitch-Yaw[1] ....................................................................................... 24 
Figura 6 - Fluxograma do Algoritmo Genético .......................................................................... 25 

  



15 

 

 

Lista de Tabelas 
 

Tabela 1 - Método de Denavit-Hartenberg ................................................................................. 23 
Tabela 2 - Parâmetros de Denavit-Hartenberg .......................................................................... 23 
Tabela 3 - Resultados do Teste 1 ................................................................................................ 34 
Tabela 4 - Resultados do Teste 2 ................................................................................................ 35 
Tabela 5 - Resultados do Teste 3 ................................................................................................ 36 
Tabela 6 - Resultados do Teste 4 ................................................................................................ 37 
Tabela 7 - Resultados do Teste 5 ................................................................................................ 38 
Tabela 8 - Resultados do Teste 6 ................................................................................................ 39 
 

  



16 

 

 

1. Introdução 
 

Robôs manipuladores vêm sendo utilizados em larga escala no ambiente científico. As 

aplicações variam desde um robô explorador que analisa rochas e as escava em outro planeta, 

até simples operações em linhas de produção como soldagem de peças mecânicas. 

Tais aplicações têm em comum a necessidade de precisão de localização de um ponto 

ao final do braço robótico, onde se localiza o efetuador. Esse cálculo envolve todas as juntas de 

um robô manipulador, sejam elas prismáticas (promovem um deslocamento longitudinal em 

parte do braço robótico) ou de rotação (promovem um deslocamento angular em parte do braço 

robótico). 

O cálculo da posição final do efetuador a partir dos valores dos ângulos de cada junta é 

conhecido como cinemática direta. Já o inverso, ou seja, a determinação de quais ângulos 

devem ser utilizados para que uma posição final conhecida seja alcançada, é chamado de 

cinemática inversa. 

Para a cinemática direta, existe um método relativamente simples e eficaz, que resolve o 

problema de maneira direta e funciona para qualquer modelo de robô. Basta seguir um 

algoritmo e uma resposta única e verdadeira será encontrada. 

Já para a cinemática inversa, o problema não é de tão fácil solução. Não existe uma 

regra geral para a resolução de todos os casos. Existem vários métodos de se encontrar a solução 

e, principalmente, existe mais de uma solução para o mesmo ponto. Essas características podem 

ser verificadas no robô Puma 560 (Figura 1). 

 

 

 

                                                                         
Figura 1 - Puma 560[2] 
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O problema das várias soluções, pode ser facilmente observado, imaginando o 

manipulador como um braço humano. Para alcançar um objeto com a mão, existem várias 

configurações que se pode fazer com o braço. Essas configurações para o Puma 560 estão 

ilustradas na Figura 2 a seguir. 

 
Figura 2 - Configurações do Puma 560[2] 

 

 

 

 Esse conjunto de fatores, faz com que a implementação da cinemática inversa seja 

demasiadamente custosa e complicada. Por isso, além de a solução analítica ou geométrica, que 

são mais comumente utilizadas, outros métodos de solução desse problema podem se tornar 

viáveis. Visto que o mais proibitivo nos métodos comuns do cálculo da cinemática inversa é 

muitas vezes a complexidade, a utilização de um cálculo através de métodos numéricos, 

utilizando-se algoritmos evolutivos torna-se justificada. 

Existem diversos tipos de sistemas evolutivos, como algoritmos que simulam colônia de 

formigas, enxame de abelhas, dentre outros. Porém o mais difundido é o Algoritmo Genético. 

O algoritmo genético tem como principais características resolver problemas complexos 

através de algoritmos relativamente simples, que se baseiam na Teoria da Evolução e na 

Genética criando modelos que se adaptam de maneira eficaz em várias áreas do conhecimento.   

 Em resumo, algoritmos genéticos buscam simular uma população de indivíduos, que 

evoluem através de processos como reprodução, mutação, seleção natural e outros conceitos 

evolucionistas, para que ao final os indivíduos resultantes sejam os mais adaptados possíveis ao 

ambiente em que vivem. 

 Analogamente, para a Cinemática Inversa, pode-se criar uma população, onde os 

indivíduos são possíveis ângulos para as juntas do Puma 560. Esses indivíduos sofrem as 

diversas adaptações e se tornam indivíduos que possuem os melhores ângulos que resultam em 

uma posição e orientação escolhidas para o efetuador. Resolvendo assim, o problema da 

Cinemática Inversa. 

O presente trabalho busca, portanto, implementar um algoritmo genético para a 

resolução do problema da cinemática inversa do robô Puma 560. O algoritmo será desenvolvido 

na linguagem C e os resultados obtidos serão analisados e estudados, revelando assim, a 

viabilidade ou não desse modo de abordagem do problema da cinemática inversa. 
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O capítulo 2 trata da revisão bibliográfica, onde a fundamentação teórica necessária 

para o projeto, assim como o levantamento bibliográfico de pesquisas e trabalhos que serviram 

de base para a solução proposta nesse projeto serão apresentadas. 

O capítulo 3 apresentará os métodos utilizados para a resolução do problema. É nesse 

capítulo que o algoritmo que foi utilizado será apresentado, detalhado e discutido. 

O capítulo 4 discorre sobre a apresentação, análise e discussão dos resultados obtidos 

através do código do programa. 

O capítulo 5 por fim, apresenta as considerações finais e conclusões do projeto, assim 

como propostas de trabalhos futuros. 
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2. Fundamentação Teórica 
 

Neste capítulo serão introduzidos os principais conceitos utilizados na elaboração desse 

projeto. Para isso, serão analisadas as características mecânicas e funcionais do robô escolhido 

como referência, o equacionamento da cinemática direta para robôs manipuladores, o sistema de 

matrizes de rotação utilizado e uma visão geral de algoritmos genéticos. Por fim, será feito um 

levantamento de trabalhos que incentivaram essa pesquisa.  

2.1. Puma 560 

 

Criado pela empresa Unimation, o Puma 560 da série Puma 500 é utilizado tanto em 

aplicações comerciais como em ambientes de estudo como laboratórios de faculdade. Como já 

foi mencionado anteriormente, trata-se de um robô manipulador. O Puma possui seis juntas de 

rotação unidas por elos, e um efetuador ao final do braço. 

Para os testes desse trabalho, resolveu-se modelar o Puma 560 com um segmento na 

extremidade do punho, gerando um novo ponto de posição final, e fazendo com que o cálculo da 

posição e da orientação final do robô seja mais interessante para demonstrar os objetivos 

propostos no trabalho. 

Um esquema do robô em questão, com marcações de dimensões e sistemas de 

coordenadas está ilustrado a seguir na Figura 3. 
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Figura 3 - Esquema de Medidas do Puma560[2] 
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Os tamanhos de cada elo foram retirados de medidas feitas em laboratório por outros 

trabalhos [4], sendo eles: 

a2 = 43,20cm, a3 = 2,00cm, d3 = 14,90cm, d4 = 43,20cm e d7 = 10,00cm. 

A exceção é quanto a junta d7 que teve sua medida criada para efeitos de estudo para 

esse trabalho. 

Além disso, para efeitos de simulação, foi considerado o início do robô como a posição 

exata da primeira junta e todos os ângulos das juntas variando entre -180º e + 180º. 
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2.2. Cinemática Direta 

 

Como já mencionado anteriormente neste trabalho, cinemática direta de um robô 

manipulador é o estudo da posição do seu efetuador em relação aos valores das suas juntas. 

Logo, através dela, também é possível definir qual será a posição e orientação do sistema de 

coordenadas do efetuador em relação ao sistema de coordenadas inicial, fixo na base (primeiro 

elo).  

Como visto na figura anterior (Figura 3), além do sistema de coordenadas inicial e final, 

define-se também um sistema para cada uma das demais juntas. A definição de todos esses 

sistemas de coordenadas, foi realizada seguindo um método conhecido como Representação de 

Denavit-Hartenberg, através do qual, é possível determinar a posição e a orientação do sistema i 

em relação ao sistema anterior (i−1), pelo uso de matrizes homogêneas, relacionando a 

transformação entre estes sistemas. 

 

 
Figura 4 - Representação de Denavit-Hartenberg[2] 

 
Dado um robô composto por juntas de rotação e elos entre elas, representado 

anteriormente na Figura 4, podem-se definir também os Parâmetros de Denavit-Hartenberg, 

sendo: 

ai-1 o comprimento do elo (distância entre Zi e Zi+1 ao longo de Xi-1); 

αi-1 a torção do elo (ângulo entre Zi e Zi+1 em torno de Xi-1); 

di o deslocamento entre elos (distância entre Xi-1 e Xi ao longo de Zi-1); 

θi o ângulo da junta (ângulo entre Xi-1 e Xi em torno de Zi-1). 

 

Conhecidas as notações e parâmetros, o sistema de coordenadas de cada junta, assim 

como os parâmetros de Denavit-Hartenberg, podem ser definidos através do método 

demonstrado na Tabela 1 a seguir: 
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Tabela 1 - Método de Denavit-Hartenberg 

- Numerar os elos a partir da base imóvel do manipulador. (elo 0); 

 

- Desenhar linhas ao longo dos eixos de cada junta; 

 

- Para o Primeiro Elo (i=0): 

 {0} = {1} para θ1 = 0 escolhido; 

d1 = 0 constante; 

 

- Para i=1 até i =n-1; 

- Posicionar a origem de Oi onde a perpendicular comum entre os eixos i e i+1 

encontra com o eixo i. Se os eixos i e i+1 se cruzam, posicionar Oi nessa intersecção. 

Se i e i+ são paralelos, escolher Oi de forma conveniente; 

 

- Definir o eixo Zi ao longo do eixo da junta i; 

 

- Definir o eixo Xi ao longo da perpendicular comum entre os eixos i e i+1. Se os eixos 

se interceptam, definir Xi normal ao plano contendo os dois eixos. 

 

 - Definir Yi de acordo com a regra da mão direita. 

 

- Para o Último Elo (i = n): 

 Xi se alinha com Xi-1 para  θn = 0; 

Origem de {N} escolhida para que dn = 0; 

 

 

O resultado dos sistemas de coordenadas pode ser verificado na Figura 3 já 

apresentada, e os parâmetros definidos pelo método podem ser encontrados a seguir na 

Tabela 2. 

 
Tabela 2 - Parâmetros de Denavit-Hartenberg 

i αi-1 ai-1 di θi 

1 0 0 0 θ1 

2 -90º 0 0 θ2 

3 0 a2 d3 θ3 

4 -90º a3 d4 θ4 

5  90º 0 0 θ5 

6 -90º 0 0 θ6 

7 0 0 d7 0 

 
Dessa forma, a posição e a orientação do efetuador em relação à base são obtidas por 

uma composição de transformações homogêneas consecutivas, partindo-se do sistema da base 

para o sistema do efetuador. 

Para calcular a matriz de transformação de um sistema Oi-1 para o seguinte Oi basta 

seguir as seguintes transformações: 

 

  
    

 = Rotação (X,αi-1) × Translação(X, ai-1) × Rotação(Z, θi) × Translação(Z, di) 
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Logo: 

  
    = [

       

                     
                    
    

] × [

                 
                

     

    

] =  

 

[

                    

                                                         

                                                       

    

]  

 
  

Dessa forma, para obter a matriz de transformação de T07, basta calcular: 

 

  
  =   

      
    

    
    

    
    

 ; 

 

O cálculo da matriz final de transformação entre o sistema inicial e final que conclui 

a cinemática direta (  
 ) será realizado posteriormente no capítulo 3. 

2.3. Matrizes de Rotação 

 

Para uma fácil visualização da orientação final do efetuador, foi utilizado nesse 

trabalho, o sistema de rotação Roll-Pitch-Yaw. Esse sistema de rotação prevê que toda rotação 

pode ser representada pela combinação de três rotações consecutivas ao redor de cada eixo do 

sistemas de coordenadas inicial. 

Considerando os ângulos roll para a rotação em torno de z, pitch para a rotação em 

torno de y e yaw para a rotação em torno de x, conforme a Figura 5 a seguir.  

 
Figura 5 - Rotação Roll-Pitch-Yaw[1] 

 

 Sendo roll = Φ, pitch = θ e yaw = Ψ. A matriz final de Rotação pode ser apresentada 

como na equação [1] a seguir: 
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Rxyz = Rz,Φ, Ry,θ, Rx,Ψ 

   

= [
              
             

   

]   [
             

   
              

]   [

   
              
             

]  

 

[

                                                                           
                                                                           

                               
] 

 

 Esse será o sistema de rotação adotado nos cálculos posteriores, no capítulo 3. 

2.4. Algoritmos Genéticos 

 

Sistemas Evolutivos podem ser considerados como uma área de inteligência 

computacional que se baseia em empregar processos evolutivos sobre uma população de 

indivíduos que evoluem de acordo com processos inspirados pelas leis evolucionistas como o 

Darwinismo. 

A definição dos diferentes tipos de Sistemas Evolutivos é muitas vezes semelhante e 

redundante, já que aconteceram por volta da mesma época, e sempre a partir de um mesmo 

princípio. 

Nos Algoritmos Genéticos, além do princípio evolucionista, utiliza-se de operadores 

genéticos, tais como: reprodução, mutação e eliminação dos menos aptos, em algoritmos 

iterativos para alcançar indivíduos adaptados o suficientemente para resolver um problema.   

A Figura 7 a seguir, mostra um resumo de como a dinâmica do algoritmo genético 

usado nesse trabalho funciona. Em seguida, cada parte do fluxograma é explicada de maneira 

mais específica. 

 
Figura 6 - Fluxograma do Algoritmo Genético 
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2.4.1. Inicialização 

 

Como base de funcionamento para os Algoritmos Genéticos, uma população de 

tamanho fixo de indivíduos é criada. Essa população é criada de forma aleatória, com valores 

aleatórios para cada indivíduo. Existem ainda, outras maneiras de se inicializar a população, 

sendo possível levar em consideração algum conhecimento prévio na inicialização da mesma. 

Cada um desses indivíduos criados têm uma estrutura composta por diversos parâmetros 

que serão detalhados no capítulo 3. Porém, para melhor exemplificação, os principais 

parâmetros são as possíveis soluções para um problema, que no contexto desse trabalho, são 

equivalentes aos valores de ângulos das juntas do robô manipulador. 

Esses parâmetros podem ser comparados à essência daquele indivíduo, como um 

cromossomo. Ainda nessa comparação, cada ângulo representado pode ser comparado à um 

gene daquele cromossomo. A representação escolhida foi em valores numéricos para os ângulos 

em radianos. Porém, a mesma poderia ter sido feita com valores binário, hexadecimais, dentre 

outros. 

 

 

2.4.3. Cálculo do Fitness 

 

Uma função (no escopo desse trabalho, a cinemática direta) associa uma nota à 

determinado indivíduo. É assim que se pode mensurar o quão adaptado aquele indivíduo está. 

Essa nota é chamada de fitness, e nesse caso, foi definido como quanto menor, melhor. 

A escolha da função de avaliação depende muito do problema e da maneira de 

representação dos indivíduos. Indivíduos representados por valores binários, por exemplo, 

requereriam uma função de avaliação completamente diferente. 

O mais importante é que essa função consiga dar uma nota pra cada indivíduo, 

separando os mais adaptados dos menos adaptados. A maneira específica de como essa nota é 

calculada, será detalhada posteriormente no capítulo 3. 

 

 

2.4.4. Eliminação dos Menos Aptos 

 

A cada análise da população, uma análise de aptidão é realizada. Se após certo número 

pré-definido de gerações o fitness do melhor indivíduo não está se alterando, todos os demais 

indivíduos com exceção do melhor (elitismo) são eliminados, simulando um genocídio. Essa 

técnica ajuda a prevenir a convergência para mínimos e máximos locais.  

Gerar novamente novos indivíduos faz com que um maior espaço de busca seja 

analisado, promovendo uma maior variabilidade nos indivíduos. O melhor indivíduo é salvo 

para não se perder a referência do melhor resultado encontrado até então. 

 

 

2.4.5. Seleção e Reprodução  

 

De maneira iterativa, as populações vão sendo substituídas por novas gerações. A 

seleção dos indivíduos é feita a partir da função de fitness já explicada. Essa função seleciona 

qual é o individuo daquela população com a melhor nota. 

Selecionado o melhor indivíduo, existem vários métodos para se realizar a reprodução. 

Na clonagem, uma cópia idêntica dos indivíduos é transferida para a nova população. Já no 

cruzamento indivíduos são de alguma forma associado a outros. 

Alguns métodos de cruzamento conhecidos são a Roleta Russa, onde pra cada pai um 

indivíduo é selecionado ao acaso para o cruzamento e o Torneio de N, onde para cada pai, n 

indivíduos são selecionados ao acaso, e o melhor deles é que cruzará com o pai para gerar um 

novo descendente. 

Para esse projeto, foi utilizado o cruzamento do melhor, onde o melhor indivíduo da 

população cruza com todos os outros para gerar novos descendentes. 
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2.4.6. Mutação 

 

Por fim, aleatoriamente, alguns indivíduos passam por um processo de mutação. 

Pequenas modificações na estrutura de cada indivíduo (como a soma de uma pequena quantia 

randômica no valor de algum ângulo) são feitas, promovendo novamente uma maior 

variabilidade, e causando uma diversificação interessante para que se possa encontrar um 

resultado novo. A mutação de uma parte da característica de um indivíduo pode ser considerada 

como um gene diferente em um cromossomo, que pode gerar uma característica nova, que ajude 

ou não para a sobrevivência do mesmo. 

 

 

2.4.7. Critério de Parada 

 

 Como na natureza, o algoritmo genético está sempre em evolução. Portanto, deve-se 

criar um critério de parada, onde os resultados daquele momento sejam tomados como resposta. 

Nesse projeto, o critério adotado como parada foi a diferença entre o erro do melhor indivíduo 

com um erro mínimo pré-definido, garantindo uma solução satisfatória. Porém, caso isso não 

ocorra em até 1 segundo, a evolução também é encerrada. 

2.5. Trabalhos Relacionados 

 

Os trabalhos relacionados a seguir, buscam exemplificar trabalhos de diversas 

naturezas, voltados à resolução da cinemática inversa utilizando-se de algoritmos genéticos. 

Cada um deles, com uma abordagem própria, contribuiu para a análise e sedimentação de 

conceitos para que esse projeto fosse criado. 

 Dentre os diversos trabalhos relacionados pesquisados na área, seis trouxeram 

informações relevantes para a motivação desse projeto. 

 Uma das maneiras mais simples do uso de algoritmos genéticos para o cálculo da 

cinemática inversa foi encontrada em Scofano [7]. A motivação era resolver a cinemática 

inversa para o robô Braid, de 25 elos e com dois graus de liberdade por elo, em duas dimensões. 

Porém, por se tratar de um atuador binário, apenas um conjunto de soluções era possível. O 

posicionamento final era restringido há um conjunto de pontos no espaço. 

 Uma primeira evolução para esse trabalho foi encontrada em Nunes [6] e em Nunes, 

Rosado e Grandinetti [10]. Agora, o robô utilizado é o Robix RCS-6, de 3 graus de liberdade.  

Os resultados continuam em duas dimensões, porém agora se trata de um atuador contínuo 

(repostas em certo espaço continuo, não mais pontuais). Além disso, ambos os trabalhos 

realizam também um planejamento de uma trajetória descrita pelo robô. O algoritmo genético 

calcula os pontos iniciais e finais desejados, e os pontos intermediários são obtidos através do 

cálculo de uma trajetória cúbica. Nunes [6] ainda faz a comparação dos resultados 

implementados no MatLab e em linguagem C, concluindo que a última possui melhores 

resultados e rapidez de processamento. 

 Como sugestão para trabalhos futuros, Nunes [6] propõe a resolução para um sistema 

em três dimensões.  Trabalho de Ramírez e Rubiano [11] resolve o problema da cinemática 

inversa para a posição final, com o robô Teachbot-01, de 3 graus de liberdade, porém dessa vez 

em três dimensões. Uma característica interessante desse trabalho é a forma de visualização de 

resultados implementada, possibilitando uma imagem próxima do que seria a configuração final 

do robô em questão. 

 Chapelle e Bidaud [9], resolvem o problema da posição para um outro robô que trabalha 

em ambientes de três dimensões, o Puma560. O robô possui 6 graus de liberdade, porém, só os 

3 primeiros ângulos influenciam no cálculo da posição final do robô. O cálculo do 

posicionamento utilizando o algoritmo genético obteve sucesso. 

Por fim, o trabalho de Santos, Lopes e Gebara [8] resolve a cinemática inversa para 

posição, usando algoritmos genéticos, para o robô Puma560, porém agora, adicionando um 

segmento ao final do braço robótico. Essa alteração faz com que os seis ângulos influenciem no 
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cálculo da posição, aumentando a complexidade do problema. Além disso, o planejamento de 

trajetória é feito, porém agora o algoritmo genético é usado para calcular todos os pontos da 

trajetória. Para a otimização dos resultados, um método de redução progressiva do espaço de 

busca foi utilizado. 

 

Analisando todos esses trabalhos, esse trabalho tenta conciliar o aprendizado passado 

em cada um deles, para reproduzir a técnica de encontrar a cinemática inversa para o Puma 560, 

em três dimensões, com seis juntas de rotação. Considerou-se um segmento ao final do braço 

robótico, para a maior complexidade de resultados. Considerou-se ainda, não só a posição do 

efetuador, como sua orientação. O algoritmo será implementado na linguagem C. Como em 

outros trabalhos, o algoritmo genético será analisado quanto à viabilidade da solução 

encontrada. 

. 
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3. Metodologia 
 

A presente seção discutirá qual a metodologia utilizada para implementar cada parte do 

programa. Todas as considerações aqui têm como base os conceitos teóricos fundamentados no 

capítulo 2. 

É importante ressaltar que foi adotado um método de resolução para o problema, 

separado em três modos: 

No primeiro modo, apenas a posição final do efetuador é levada em consideração, um 

cálculo simples, direto, que desconsidera a orientação e gera um resultado que pode variar entre 

as várias configurações do puma 560 pode gerar para um mesmo ponto. 

No segundo modo, assim como no primeiro, a posição final do efetuador é o objetivo da 

solução encontrada. Porém uma configuração de ângulos iniciais é tomada como base para a 

resolução do problema. Esse modo tem como objetivo aproximar a configuração da resposta 

encontrada a uma configuração anterior. Dessa forma, o manipulador não faria um movimento 

muito grande para mover entre duas posições próximas em uma trajetória. 

No terceiro e último modo, além da posição final, a orientação final desejada também é 

calculada. Esse cálculo é feito levando em consideração os parâmetros de rotação roll, pitch e 

yaw.  

3.1. Desenvolvimento em C 

 

O desenvolvimento do programa que calcula a cinemática inversa através de algoritmos 

genéticos foi feito na linguagem C, no sistema operacional Windows.  

Como não se trata de uma aplicação embarcada, e apenas uma simulação, o sistema 

operacional oferece compatibilidade para grande maioria dos softwares utilizados no 

desenvolvimento do programa. 

A linguagem C, apesar de não possuir muitas ferramentas de visualização simples como 

possuem outras linguagens como MATLAB e Java, é bem otimizada para realizar todas as 

contas e é de fácil implementação. 

Todo código foi feito a partir do início, sendo que as únicas bibliotecas prontas 

utilizadas foram as que são próprias da linguagem C. 

3.2. Cinemática Direta 

 

No Capítulo 2, pode-se observar quais são os parâmetros e configurações gerados pelo 

algoritmo de Denavit-Hartenberg. Observou-se também, como a transformação de um sistema 

para o outro pode ser obtida. 

Dito isso, as multiplicações de matrizes foram realizadas e a matriz final encontrada foi: 

 

Considerando:  

s1 = sen(θ1) e c1 = cos(θ1) 

s2 = sen(θ2) e c2 = cos(θ2) 

s3 = sen(θ3) e c3 = cos(θ3) 

s4 = sen(θ4) e c4 = cos(θ4) 

s5 = sen(θ5) e c5 = cos(θ5) 

s6 = sen(θ6) e c6 = cos(θ6) 

s23 = sen(θ2+ θ3); c23 = cos(θ2+ θ3) 
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Tem-se que: 

 

  
  =   

      
    

    
    

    
    

 ; 

 

 

  
  = [

           

           

           

    

], onde: 

 

    = c1*(c23*((c4*c5*c6) - (s4*s6)) - (s23*s5*c6)) + s1*((s4*c5*c6) + (c4*s6))  

    = s1*(c23*((c4*c5*c6) - (s4*s6)) - (s23*s5*c6)) - c1*((s4*c5*c6) + (c4*s6))  

    = -s23*((c4*c5*c6) - (s4*s6)) - (c23*s5*c6) 

    = c1*(c23*(-(c4*c5*s6) - (s4*c6)) + (s23*s5*s6)) + s1*((c4*c6) - (s4*c5*s6)) 

    = s1*(c23*(-(c4*c5*s6) - (s4*c6)) + (s23*s5*s6)) - c1*((c4*c6) - (s4*c5*s6))  

    = -s23*(-(c4*c5*s6) - (s4*c6)) + (c23*s5*s6)  

    = -c1*((c23*c4*s5) + (s23*c5)) - (s1*s4*s5) 

    = -s1*((c23*c4*s5) + (s23*c5)) + (c1*s4*s5) 

    = (s23*c4*s5) - (c23*c5) 

px = c1*(c23*(-c4*s5*d7 + a3)-s23*(c5*d7 + d4) + a2*c2) - s1*(s4*s5*d7 + d3) 

py = s1*(c23*(-c4*s5*d7 + a3) - s23*(c5*d7 + d4) + a2*c2) + c1*(s4*s5*d7 + d3)  

pz = s23*(c4*s5*d7-a3) - c23*(c5*d7 + d4) - a2*s2 

 

 

Uma análise rápida, permite dizer que os valores px, py, pz indicam quais são os valores 

do ponto [X,Y,Z] respectivamente, encontrados para os valores de ângulos de entrada da 

cinemática direta. Da mesma forma, os valores, r11, r12, r13, r21, r22, r23, r31, r32, r33 indicam a 

matriz de rotação do efetuador em relação à base. Essa matriz de rotação pode ser comparada 

com a matriz de rotação gerada com os parâmetros de rotação Roll-Pitch-Yaw discutidos no 

capítulo anterior. 

3.3. Estrutura dos Indivíduos e Criação da População 

 

Para que o algoritmo genético tenha um bom funcionamento, é necessário definir uma 

boa estruturação de cada indivíduo. 

No caso desse projeto, cada indivíduo é composto da seguinte forma: 

 

 Elementos principais, que definem todas as características do problema:  

 

θ1, θ2, θ3, θ4, θ5, θ6 – Responsáveis por armazenar o valor do ângulo de cada junta do 

robô gerados por aquele indivíduo. Esse conjunto de informação que dá a identidade de cada 

indivíduo da população. 

 

 Elementos de consulta, que são resultado de processamentos realizados com os 

elementos principais:  

 

r11, r12,  r13, r21, r22, r23, , r31, r32, r33 – Armazenam os valores de orientação encontrados 

pelo resultado do cálculo da cinemática direta para o conjunto de ângulos do indivíduo.  

 

x, y, z – Armazenam os valores da posição final do efetuador calculados pela cinemática 

direta para o conjunto de ângulos do indivíduo. 

 

Fitness – Responsável por armazenar a nota retornada da função de avaliação do 

algoritmo genético. 
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Erro – Responsável por armazenar o erro do indivíduo em relação ao fitness perfeito 

(zero). 

De acordo com o método de inicialização escolhido, consiste em gerar valores 

aleatórios entre -180º e +180º para os ângulos θ1, θ2, θ3, θ4, θ5, θ6 de cada indivíduo. 

3.4. Avaliação da População 

 

Existem no programa três variáveis principais de avaliação.  

 

A primeira (fitxyz) é responsável por avaliar a posição de cada indivíduo. É calculada somando-

se as diferenças entre as posições desejadas e obtidas. 

  

 fitx = módulo(x-result[x]) 

 fity = módulo(y-result[y]) 

     fitz = módulo(z-result[z]) 

 fitxyz = (fitx+fity+fitz);  
  

A segunda (fitth) é responsável por avaliar a distância de cada ângulo de um indivíduo 

dos ângulos iniciais. É calculada somando-se as diferenças entre os ângulos iniciais e os do 

indivíduo. 
  

fit1 = módulo(th1-thini1) 

 fit2 = módulo(th2-thini2) 

 fit3 = módulo(th3-thini3) 

 fit4 = módulo(th4-thini4) 

 fit5 = módulo(th5-thini5) 

 fit6 = módulo(th6-thini6) 

 fitth = (fit1+fit2+fit3+fit4+fit5+fit6)*180/pi; 
  

Por fim, a terceira(fitr) é responsável por avaliar a distância entre a orientação obtida e a 

desejada. É calculada somando-se as diferenças entre os índices da matriz de rotação Roll-Pitch-

Yaw desejada com os índices obtidos pela cinemática direta. 
 

 fit11 = módulo(rx1-result[3]) 

 fit12 = módulo(rx2-result[4]) 

 fit13 = módulo(rx3-result[5]) 

 fit21 = módulo(ry1-result[6]) 

 fit22 = módulo(ry2-result[7]) 

 fit23 = módulo(ry3-result[8]) 

 fit31 = módulo(rz1-result[9]) 

 fit32 = módulo(rz2-result[10]) 

 fit33 = módulo(rz3-result[11]) 

 fitr = (fit11+fit12+fit13+fit21+fit22+fit23+fit31+fit32+fit33); 
  

 A partir daí, o cálculo do fitness é feito de acordo com o modo de execução que está 

sendo usado. 

 Se o modo é apenas a posição, fitness = fitxyz. Se o modo está buscando a posição 

levando em consideração os ângulos iniciais, fitness = 100*fitxyz + fitth. A multiplicação do 

valor de fitxyz por 100 serve para deixar os valores na mesma ordem de grandeza e, 

consequentemente, mesma importância na conta. 

 Se o terceiro modo for usado, onde a orientação também é considerada, o cálculo do 

fitness fica: fitness = 10*fitxyz + fitr. Novamente, a multiplicação do valor de fitxyz por 10 
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serve para deixar os valores na mesma ordem de grandeza e, consequentemente, mesma 

importância na conta. 

3.5. Eliminação dos Menos Aptos 

 

Depois de certo número de gerações em que o melhor indivíduo não evolui mais, uma 

rotina de elitismo é chamada. Essa rotina elimina todos os indivíduos com exceção do melhor. 

Porém dessa vez, os novos indivíduos gerados, são criados com valores aleatórios entre -360º e 

+360º. Posteriormente, os valores menores que -180º e maiores que +180º são normalizados 

para -180º e + 180º respectivamente. 

Isso faz com que mais valores na borda sejam gerados, o que aumenta a velocidade de 

evolução em alguns casos, já que o método de cruzamento escolhido aproxima os valores para 

valores intermediários, pois é feito uma média de valores. 

3.6. Cruzamento da População 

 

Para o cruzamento dos indivíduos e consequente formação de uma nova geração o 

método do cruzamento do melhor é implementado da seguinte maneira: 

Um indivíduo é selecionado aleatoriamente. O valor de cada ângulo desse indivíduo é 

somado ao valor do ângulo respectivo do melhor indivíduo e dividido por dois. A média de cada 

ângulo é então atribuída a um indivíduo da nova população. 

O procedimento é repetido para cada indivíduo da nova população, com exceção do 

melhor, que é copiado na íntegra. 

3.7. Mutação 

 

A mutação ocorre para causar variabilidade genética. Para toda geração, é gerada uma 

probabilidade de mutação, um número aleatório entre 1 e 100. Se esse número estiver entre 1 e 

5, 20% dos indivíduos sofreram mutação. Se estiver entre 5 e 10, 10% dos indivíduos sofreram 

mutação. Entre 10 e 30, 7% dos indivíduos sofrem mutações, entre 30 e 50, 3% dos indivíduos 

sofrem mutações, e entre 50 e 80, 1% dos indivíduos sofre mutação. Para números entre 80 e 

100 não ocorre nenhuma mutação. 

Após definido o número de mutações, sorteia-se quais indivíduos serão os que irão 

sofrer a mutação, e para cada um deles, sorteia-se ainda números entre -18º e + 18º para serem 

adicionados a cada ângulo. 

Posteriormente, os valores menores que -180º e maiores que +180º são normalizados 

para -180º e + 180º respectivamente, para manter os resultados condizentes. 

3.8. Critérios de Parada 

 

Para cada modo de operação do algoritmo, um erro diferente é calculado. No primeiro e 

segundo modo, descritos no começo desse capítulo, o erro analisado é a variável fitxyz, descrita 

no item 3.5. Já para o último modo, o erro é a soma do fitxyz com o fitr, descrito no mesmo 

item. 

Em todos esses casos, se o erro obtido for inferior a um erro pré-estipulado, o algoritmo 

para de evoluir e devolve o melhor indivíduo como resposta. Se por acaso o algoritmo levar 

mais de 1 segundo para evoluir, o critério de parada também é acionado. 

3.9. Entrada e Saída de Dados 
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Para entrada de dados, exemplos de execução são definidos, onde devem ser 

configurados o modo de execução, e os valores necessários para cada modo. 

O modo 1 requer apenas uma posição final (X,Y,Z).  

No modo 2, além da posição final, devem ser configurados os ângulos iniciais thini1, 

thini2, thini3, thini4, thini5, thini6  

 No modo 3, devem ser configurados a posição final, e os parâmetros roll, pitch e yaw da 

orientação desejada em relação ao sistema base. 

A saída também é dependente do modo de configuração. Em todos os casos, os ângulos 

de cada junta e a posição final do efetuador são exibidos. Porém, somente no modo 3, é exibida 

também a matriz de rotação Roll-Pitch-Yaw. 
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4. Resultados e Discussão 
 

Ao presente capítulo, caberá a análise dos resultados gerados pelo programa, assim 

como a discussão da confiabilidade e viabilidade dos mesmos. Além de analisar os resultados 

gerados, é importante ressaltar quais foram as entradas usadas para colher tais resultados. 

Para uma melhor compreensão, os resultados serão divididos entre os testes para a 

posição e os testes para posição e orientação do manipulador. A simulação foi divida em 6 

testes. 

Para cada um dos testes descritos a seguir, foram analisados 100 resultados. O melhor 

resultado de cada teste, assim como a média dos valores encontrados e o desvio padrão, são 

exibidos nas tabelas a seguir. Nos valores de erros das tabelas, o Erro da Posição, é a soma dos 

erros das posições x, y e z. O Erro nos Ângulos Iniciais é a soma da distância de todos os 

ângulos encontrados com o seu respectivo ângulo inicial. Por fim, o Erro de Orientação é a 

soma da diferença entre cada posição da matriz de rotação encontrada e da desejada. 

4.1. Posição 

 

 

4.1.1. Teste 1 

 

Objetivo: Simples comprovação do modo 1 (só a posição final) para um ponto A 

qualquer. 

 

Modo: 1. 

Valores de Posição Desejados:  

x = 3,40cm; y = 20,84cm; z = -20,67cm. 

Possível solução que gera a posição e orientação desejadas:  

θ1= 30º, θ2= -40º, θ3= 60º, θ4= 20º, θ5= 25º, θ6= 30º. 
 

Tabela 3 - Resultados do Teste 1 

Teste 1 – 100 valores Melhor Média Desvio Padrão 

Tempo(s) 0,024 0,145 0,248 

Número de Iterações 340 1998 3408 

Erro na Posição (cm) 0,01 0.13 0,29 

 

Posição encontrada para o melhor:  

x = 3,40cm; y = 20,84cm; z = -20,66cm.  

Ângulos encontrados para o melhor:  

θ1= -66,00º; θ2= -136,92º; θ3= 120,02º; θ4= -45,31º; θ5= 27,83º; θ6= -11,62º. 

 

Analisando os resultados anteriores, pode-se concluir que são resultados muito 

satisfatórios, já que uma ótima precisão na localização da posição final foi garantida e o tempo 

de execução foi bem baixo. 
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4.1.2. Teste 2 

 

Objetivo: Simples comprovação do modo 1 (só a posição final) para um ponto B 

qualquer próximo de A. 

 

Modo: 1. 

Valores de Posição Desejados:  

x = 7,19cm; y = 24,15cm; z = -16,89cm. 

Possível solução que gera a posição e orientação desejadas:  

θ1= 35º, θ2= -45º, θ3= 50º, θ4= 5º, θ5= 60º, θ6= 90º. 
 

Tabela 4 - Resultados do Teste 2 

Teste 2 – 100 valores Melhor Média Desvio Padrão 

Tempo(s) 0,007 0,123 0,226 

Número de Iterações 98 1702 3118 

Erro na Posição (cm) 0,02 0,09 0,06 

 

Posição encontrada para o melhor:  

x = 7,19cm; y = 24,15cm; z = -16,88cm.  

Ângulos encontrados para o melhor:  

θ1= -63,97º; θ2= -140,37º; θ3= 136,28º; θ4= -12,77º; θ5= -77,49º; θ6= -157,86º. 

 

Analisando os resultados anteriores, pode-se concluir que são resultados muito 

satisfatórios, já que uma ótima precisão na localização da posição final foi garantida e o tempo 

de execução foi bem baixo. 

Além disso, pode-se perceber que os valores de ângulos encontrados são bem diferentes 

dos conhecidos na possível solução. Isso prova a multiplicidade de resultados do manipulador, 

já que um resultado satisfatório com outra configuração foi encontrado para a mesmo posição 

do efetuador. 

Percebe-se no teste 2, em relação ao teste 1, que para sair do Ponto A (baseado nos 

ângulos: θ1= 30º, θ2= -40º, θ3= 60º, θ4= 20º, θ5= 25º, θ6= 30º) e caminhar até o ponto B próximo 

de A, ocorreu um grande deslocamento angular (θ1= -63,97º; θ2= -140,37º; θ3= 136,28º; θ4= -

12,77º; θ5= -77,49º; θ6= -157,86º). 
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4.1.3. Teste 3 

 

Objetivo: Comprovar a diferença entre os modos 1 (só a posição final) e 2 (posição final 

+ ângulos iniciais) para o mesmo ponto B próximo de A. 

 

Modo: 2 

Valores de Posição Desejados:  

x = 7,19cm; y = 24,15cm; z = -16,89cm. 

Possível solução que gera a posição e orientação desejadas:  

θ1= 35º, θ2= -45º, θ3= 50º, θ4= 5º, θ5= 60º, θ6= 90º. 

Valor dos ângulos iniciais:  

θ1= 30º, θ2= -40º, θ3= 60º, θ4= 20º, θ5= 25º, θ6= 30º. 
 

Tabela 5 - Resultados do Teste 3 

Teste 3 – 100 valores Melhor Média Desvio Padrão 

Tempo(s) 0,066 0,092 0,164 

Número de Iterações 871 1207 2151 

Erro na Posição (cm) 0,06 0,08 0,02 

Erro nos Ângulos 

Iniciais (graus) 
109,97 339,88 111,69 

 

Posição encontrada para o melhor:  

x = 7,17cm; y = 24,15cm; z = -16,85cm.  

Ângulos encontrados para o melhor:  

θ1= 32,28º; θ2= -55,61º; θ3= 61,20º; θ4= 36,28º; θ5= 16,60º; θ6= -36,20º. 

 

Analisando os resultados anteriores, pode-se concluir que são resultados muito 

satisfatórios, já que uma ótima precisão na localização da posição final foi garantida e o tempo 

de execução foi bem baixo.  

Além disso, pode-se perceber que os valores de ângulos encontrados dessa vez são bem 

mais próximos aos passados como ângulos iniciais. Isso prova que a aproximação implementada 

para ângulos iniciais funciona de maneira correta. 

Diferentemente do que aconteceu até então com o Erro na Posição, o Erro nos Ângulos 

Iniciais apresentou uma média e desvio padrão alto. O que indica que o algoritmo nem sempre 

está chegando a uma solução satisfatória. 

Percebe-se no teste 3, em relação ao teste 1, que para sair do Ponto A (baseado nos 

ângulos: θ1= 30º, θ2= -40º, θ3= 60º, θ4= 20º, θ5= 25º, θ6= 30º) e caminhar até o ponto B próximo 

de A, ocorreu um pequeno deslocamento angular (θ1= 32,28º; θ2= -55,61º; θ3= 61,20º; θ4= 

36,28º; θ5= 16,60º; θ6= -36,20º). Isso demonstra a eficácia do modo 2 (teste 3) em relação ao 

modo 1(teste 2). 
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4.2. Posição + Orientação 

 

 

4.2.1.  Teste 4 

 

Objetivo: Simples comprovação do funcionamento do modo 3 (posição final + 

orientação final). 

 

Modo = 3. 

Valores de Posição Desejados:  

x = 45,20cm; y = 14,90cm; z = -53,20cm. 

Possível solução que gera a posição e orientação desejadas:  

θ1= θ2= θ3= θ4= θ5= θ6=0º. 

Parâmetros de rotação escolhidos:  

yaw = 0º, pitch = 180º e roll = 180º. 

Matriz de rotação definida pelos parâmetros Roll, Pitch e Yaw: [
   
    
    

]. 

 

Tabela 6 - Resultados do Teste 4 

Teste 4 – 100 valores Melhor Média Desvio Padrão 

Tempo(s) 1,00 1,000 0,000 

Número de Iterações 13121 13236 88 

Erro na Posição (cm) 0,11 0,37 0,85 

Erro na Orientação 0,16 3,97 2,43 

 

Posição encontrada para o melhor:  

x = 45,20cm; y = 14,90cm; z = -53,20cm.  

Ângulos encontrados para o melhor:  

θ1= -142,93º; θ2= -179,86º; θ3= -175,84º; θ4= -72,04º; θ5= -2,74º; θ6= -70,99º. 

Matriz de rotação encontrada para o melhor: [
            
             
             

] 

 

Analisando os resultados anteriores, pode-se concluir que são resultados muito 

satisfatórios, já que uma ótima precisão na localização da posição final foi garantida, assim 

como uma ótima precisão na matriz de rotação. Porém, já é possível perceber que o algoritmo 

não convergiu em tempo suficiente, parando apenas no limite de 1 segundo. Apesar disso, o 

resultado ainda é muito satisfatório.  
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4.2.2.  Teste 5 

 

Objetivo: Comprovação do funcionamento do modo 3 (posição final + orientação final) 

para mesma posição com orientações diferentes (Orientação 1). 

 

Modo = 3. 

Valores de Posição Desejados:  

x = 43,70cm; y = 11,55cm; z = 42,00cm. 

Parâmetros de rotação escolhidos:  

yaw = 0º, pitch = -90º e roll = 180º.  

Matriz de rotação definida pelos parâmetros Roll, Pitch e Yaw: [
   
    
   

]. 

 

Tabela 7 - Resultados do Teste 5 

Teste 5 – 100 valores Melhor Média Desvio Padrão 

Tempo(s) 1,000 1,000 0,000 

Número de Iterações 13577 13305 156 

Erro na Posição (cm) 0,05 0,23 0,68 

Erro na Orientação 0,43 4,88 1,80 

 

Posição encontrada para o melhor:  

x = 43,75cm; y = 11,55cm; z = 42,00cm.  

Ângulos encontrados para o melhor:  

θ1= -3,84º; θ2= -103,81º; θ3= 15,25º; θ4= -36,09º; θ5= 4,34º; θ6= 36,43º. 

Matriz de rotação encontrada para o melhor: [
             
               
             

] 

 

Analisando os resultados anteriores, pode-se concluir que são resultados satisfatórios, já 

que uma ótima precisão na localização da posição final foi garantida, seguida de uma boa 

precisão na matriz de rotação. O tempo de execução novamente ultrapassou o limite de 1 

segundo.   
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4.2.3.  Teste 6 

 

Objetivo: Comprovação do funcionamento do modo 3 (posição final + orientação final) 

para mesma posição com orientações diferentes (Orientação 2).  

 

Modo = 3. 

Valores de Posição Desejados:  

x = 43,70cm; y = 11,55cm; z = 42,00cm. 

Parâmetros de rotação escolhidos:  

yaw = 0º, pitch = 0º e roll = 180º.  

Matriz de rotação definida pelos parâmetros Roll, Pitch e Yaw: [
    
    
   

]. 

 

Tabela 8 - Resultados do Teste 6 

Teste 6 – 100 valores Melhor Média Desvio Padrão 

Tempo(s) 1,000 1,000 0,000 

Número de Iterações 13118 13230 64 

Erro na Posição (cm) 0,02 0,36 1,22 

Erro na Orientação 1,80 5,53 1,60 

 

Posição encontrada para o melhor:  

x = 43,70cm; y = 11,55cm; z = 41,98cm.  

Ângulos encontrados para o melhor:  

θ1= -151,88º; θ2= -87,46º; θ3= 167,66º; θ4= 152,54º; θ5= -77,09º; θ6= 27,97º. 

Matriz de rotação encontrada para o melhor: [
             
             
           

] 

 

 Analisando os resultados anteriores, pode-se concluir que são resultados razoáveis, já 

que uma ótima precisão na localização da posição final foi garantida, seguida de uma precisão 

ruim na matriz de rotação. O tempo de execução novamente ultrapassou o limite de 1 segundo. 

A análise da média e do desvio padrão do Erro na Orientação revela que os valores de 

um modo geral estão distantes do objetivo de precisão. 
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5. Conclusão 
 

O presente trabalho contou com uma variedade grande de testes, porém todos para 

provar um mesmo objetivo, o cálculo da cinemática inversa para o Puma560 utilizando-se 

algoritmos genéticos. 

Os diferentes testes foram realizados, porque o trabalho tentou explorar várias áreas de 

utilização da cinemática inversa, tentando retirar todas as informações possíveis provenientes 

desse cálculo. 

 Ficou evidenciado que o algoritmo genético resolveu muito bem problemas simples 

como a definição da posição do efetuador. 

Quando se trata de problemas mais complexos, como definição de posição e orientação 

do efetuador, o algoritmo genético obteve uma solução satisfatória, porém consideravelmente 

mais lenta e menos precisa. 

Pela análise final dos resultados, pode-se concluir que o objetivo desse trabalho foi 

cumprido. A resolução do problema utilizando algoritmos genéticos é completamente viável e 

pode ser uma ótima alternativa para os métodos convencionais. 

O tempo de execução, mesmo nos piores casos, não são proibitivos, e a precisão, 

mesmo nos piores casos, é mais do que suficiente para a maioria das aplicações. Portanto, o 

resultado é satisfatório, porém depende muito da aplicação. 

5.1. Dificuldade e Limitações 

 

As maiores dificuldades encontradas na execução desse trabalho, estão relacionadas 

com a convergência do algoritmo genético. Conforme o problema foi crescendo e a 

complexidade aumentando, maiores eram as dificuldades de fazer o algoritmo evoluir em um 

tempo hábil. 

Percebeu-se que quanto mais valores são levados em consideração na função de fitness, 

maior é a chance de uma dada população inicial randômica ficar presa em mínimos e máximos 

locais. 

Para amenizar esse problema, mais operadores genéticos foram criados e diferentes 

técnicas foram testadas. Isso gerou outra dificuldade, balancear inúmeras variáveis em busca de 

um bom resultado. 

5.2. Contribuições 

 

Dentre as contribuições desse trabalho, vale citar que foi um estudo completo do 

Puma560, considerando toda a sua mecânica e geometria, no espaço de três dimensões, com 

todas as juntas existentes. Logo, pode-se entender bem o funcionamento desse manipulador 

robótico. 

Além disso, foi feito um bom estudo sobre técnicas e parâmetros de algoritmos 

genéticos, e dos cálculos de cinemáticas direta e inversa. 

5.3. Trabalhos Futuros 

 

Da análise dos dados obtidos, tem-se motivação para uma melhor estruturação de um 

novo algoritmo genético, com diferentes métodos de fitness e diferentes operadores genéticos, 

para que uma maior precisão e eficiência sejam alcançados. 

Para complementar o estudo realizado, poderia ser adicionado ao código, uma técnica 

de cálculo de trajetória, não se restringindo mais há apenas pontos isolados. Após isso, existe 

também a possibilidade de se considerar o problema do desvio de obstáculos no planejamento 

da trajetória. 
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Apêndice A – Cinemática Inversa com Algoritmo Genético em C 
 

 A seguir encontra-se o código completo utilizado no presente projeto, desenvolvido em 

C, para calcular a cinemática inversa utilizando algoritmos genéticos. 

 
/*Libraries*/ 

#include "stdafx.h" 

#include "stdio.h" 

#include "stdlib.h" 

#include "math.h" 

#include "time.h" 

#include <iostream> 

#include <windows.h> 

#include <fstream> 

#include <sys/timeb.h>  

 

/*Definições Matemáticas*/ 

#define pi acos(-1.0) 

 

/*Dimensões do Robô em cm - A Search for Consensus Among Model Parameters Reported for the PUMA 560 

Robot*/  

double a2 = 43.2; 

double a3 =  2.0; 

double d3 = 14.9; 

double d4 = 43.2; 

double d7 = 10.0;//Valor fictício, pois o braço foi inventado apenas para simulação. 

 

/*Valores para a Posição Desejada*/ 

double x, y, z; 

/*Ângulos Iniciais*/ 

double thini1; double thini2; double thini3; double thini4; double thini5; double thini6; 

/*Valores para a Orientação Desejada*/ 

double yaw, pitch, roll; 

double sroll, croll, spitch, cpitch, syaw, cyaw;//Seno e Cosseno dos ângulos roll, pitch e yaw. 

double rx1,rx2,rx3,ry1,ry2,ry3,rz1,rz2,rz3;//Valores de translação. 

/*Modo de Operação*/ 

double mode;//0 - Posição, 1 - Posição + Ângulos Anteriores, 2 - Posição + Orientação. 

double samples = 100;//Número de amostras para cada teste. 

 

/*Variaveis usadas para calculos estatisticos*/  

double media_tempo, desvpadr_tempo; 

double media_interacoes, desvpadr_interacoes; 

double media_erropos, desvpadr_erropos; 

double media_erroant, desvpadr_erroant; 

double media_erroori, desvpadr_erroori; 

 

/*Pârametros do Algoritmo Evolutivo*/ 

#define pop         100//Tamanho da população. 

double  acerto    =   0.1;//Erro máximo permitido. 

double  genoTaxa  = 200;//Diferença entre bests para incrementar o genocidio. 

double  genocidio =  10;//Número de genoTaxas necessárias para ocorrer o genocidio. 

 

/*Estrutura de cada indivíduo*/ 

struct individuo{ 

 double th1, th2, th3, th4, th5, th6; 

 double r11, r12, r13, r21, r22, r23, r31, r32, r33; 

 double x,y,z; 

 double fitness; 

 double erropos, erroant, erroori; 

 double erro; 

}; 

 

/*Estrutura das Respostas*/ 

struct respostas{  

 double x,y,z; 
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 double th1, th2, th3, th4, th5, th6; 

 double r11, r12, r13, r21, r22, r23, r31, r32, r33; 

 double fitness; 

 double erropos, erroant, erroori; 

 double tempo; 

 int geracoes; 

}; 

 

 

 

/*Definindo as Populações*/ 

struct individuo parents[pop];//População de Pais 

struct individuo childrens[pop];//População de Filhos  

struct respostas resposta[100];//População de Respostas 

 

/*Função que calcula a posição x,y,z pela cinemática direta*/ 

double * cinematicaDireta(int num_indiv) 

{ 

 double s1, s2, s3, s4, s5, s6;//Seno dos ângulos. 

 double c1, c2, c3, c4, c5, c6;//Cosseno dos ângulos. 

 double s23,  c23;//Seno e Cosseno da soma dos ângulos. 

 double r11, r21, r31, r12, r22, r32, r13, r23, r33;//Valores de rotação.  

 double px, py, pz;//Valores de translação. 

  

 double th1 = parents[num_indiv].th1; 

 double th2 = parents[num_indiv].th2; 

 double th3 = parents[num_indiv].th3; 

 double th4 = parents[num_indiv].th4; 

 double th5 = parents[num_indiv].th5; 

 double th6 = parents[num_indiv].th6; 

 

 s1 = sin(th1); s2 = sin(th2); s3 = sin(th3); s4 = sin(th4); s5 = sin(th5); s6 = sin(th6);//Definição do seno dos 

ângulos. 

 c1 = cos(th1); c2 = cos(th2); c3 = cos(th3); c4 = cos(th4); c5 = cos(th5); c6 = cos(th6);//Definição do 

cosseno dos ângulos. 

 s23 = sin(th2+th3); c23 = cos(th2+th3);//Definição do seno e do cosseno das somas dos ângulos. 

  

 r11 = c1*(c23*((c4*c5*c6)-(s4*s6)) - (s23*s5*c6))+s1*((s4*c5*c6)+(c4*s6));//Linha 1, coluna 1, da 

matriz de transformação. 

 r21 = s1*(c23*((c4*c5*c6)-(s4*s6)) - (s23*s5*c6))-c1*((s4*c5*c6)+(c4*s6));//Linha 2, coluna 1, da matriz 

de transformação.  

 r31 = -s23*((c4*c5*c6)-(s4*s6))-(c23*s5*c6);//Linha 3, coluna 1, da matriz de transformação. 

 

 r12 = c1*(c23*(-(c4*c5*s6)-(s4*c6))+(s23*s5*s6))+s1*((c4*c6)-(s4*c5*s6));//Linha 1, coluna 2, da matriz 

de transformação. 

 r22 = s1*(c23*(-(c4*c5*s6)-(s4*c6))+(s23*s5*s6))-c1*((c4*c6)-(s4*c5*s6));//Linha 2, coluna 2, da matriz 

de transformação. 

 r32 = -s23*(-(c4*c5*s6)-(s4*c6))+(c23*s5*s6);//Linha 3, coluna 2, da matriz de transformação. 

 

 r13 = -c1*((c23*c4*s5)+(s23*c5))-(s1*s4*s5);//Linha 1, coluna 3, da matriz de transformação. 

 r23 = -s1*((c23*c4*s5)+(s23*c5))+(c1*s4*s5);//Linha 2, coluna 3, da matriz de transformação. 

 r33 = (s23*c4*s5)-(c23*c5);//Linha 3, coluna 3, da matriz de transformação. 

  

 px = c1*(c23*(-c4*s5*d7+a3)-s23*(c5*d7+d4)+a2*c2)-s1*(s4*s5*d7+d3);//Linha 1, coluna 4, da matriz de 

transformação. 

 py = s1*(c23*(-c4*s5*d7+a3)-s23*(c5*d7+d4)+a2*c2)+c1*(s4*s5*d7+d3);//Linha 2, coluna 4, da matriz 

de transformação. 

 pz = s23*(c4*s5*d7-a3)-c23*(c5*d7+d4)-a2*s2;//Linha 3, coluna 4, da matriz de transformação. 

   

 parents[num_indiv].r11 = r11; 

 parents[num_indiv].r12 = r12; 

 parents[num_indiv].r13 = r13; 

 parents[num_indiv].r21 = r21; 

 parents[num_indiv].r22 = r22; 

 parents[num_indiv].r23 = r23; 

 parents[num_indiv].r31 = r31; 

 parents[num_indiv].r32 = r32; 
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 parents[num_indiv].r33 = r33; 

 parents[num_indiv].x = px; 

 parents[num_indiv].y = py; 

 parents[num_indiv].z = pz; 

  

 double result[12] = {px,py,pz, r11,r12,r13,r21,r22,r23,r31,r32,r33};//Reultados da translação e da rotação. 

 

 return result; 

} 

 

/*Cálculo da função de Fitness*/ 

double nota(int num_indiv) 

{ 

 double *result = cinematicaDireta(num_indiv);//Recebe os valores da cinemática direta. 

  

 /*Atribui os valores calculados para o individuo*/ 

 double th1 = parents[num_indiv].th1; 

 double th2 = parents[num_indiv].th2; 

 double th3 = parents[num_indiv].th3; 

 double th4 = parents[num_indiv].th4; 

 double th5 = parents[num_indiv].th5; 

 double th6 = parents[num_indiv].th6; 

 

 /*Calcula o fitness para o individuo*/ 

 double fitness;//Fitness total. 

 double fitx, fity, fitz;//Fitness da posição. 

 double fit1, fit2, fit3, fit4, fit5, fit6;//Fitness dos ângulos anteriores. 

 double fit11, fit12, fit13, fit21, fit22, fit23, fit31, fit32, fit33;//Fitness dos ângulos de rotação. 

 double fitxyz = -1, fitr = -1, fitth = -1;//Fitness de cada modo. 

 

 /*Posição*/ 

 fitx = x-result[0]; if(fitx<0) fitx = fitx*(-1); 

 fity = y-result[1]; if(fity<0) fity = fity*(-1); 

    fitz = z-result[2]; if(fitz<0) fitz = fitz*(-1); 

 

 fitxyz = (fitx+fity+fitz);  

 fitness = fitxyz; 

 parents[num_indiv].erro = fitxyz; 

  

 /*Ângulos Iniciais*/ 

 if(mode == 1){ 

  fit1 = th1-thini1; if(fit1<0) fit1 = fit1*(-1); 

  fit2 = th2-thini2; if(fit2<0) fit2 = fit2*(-1); 

  fit3 = th3-thini3; if(fit3<0) fit3 = fit3*(-1); 

  fit4 = th4-thini4; if(fit4<0) fit4 = fit4*(-1); 

  fit5 = th5-thini5; if(fit5<0) fit5 = fit5*(-1); 

  fit6 = th6-thini6; if(fit6<0) fit6 = fit6*(-1); 

  

  fitth = (fit1+fit2+fit3+fit4+fit5+fit6)*180/pi; 

  fitness = 100*fitxyz + fitth; 

  parents[num_indiv].erro = fitxyz; 

 } 

 

 /*Orientação*/  

 if(mode == 2){ 

  fit11 = rx1-result[3];  if(fit11<0) fit11 = fit11*(-1); 

  fit12 = rx2-result[4];  if(fit12<0) fit12 = fit12*(-1); 

  fit13 = rx3-result[5];  if(fit13<0) fit13 = fit13*(-1); 

  fit21 = ry1-result[6];  if(fit21<0) fit21 = fit21*(-1); 

  fit22 = ry2-result[7];  if(fit22<0) fit22 = fit22*(-1); 

  fit23 = ry3-result[8];  if(fit23<0) fit23 = fit23*(-1); 

  fit31 = rz1-result[9];  if(fit31<0) fit31 = fit31*(-1); 

  fit32 = rz2-result[10]; if(fit32<0) fit32 = fit32*(-1); 

  fit33 = rz3-result[11]; if(fit33<0) fit33 = fit33*(-1); 

   

  fitr = (fit11+fit12+fit13+fit21+fit22+fit23+fit31+fit32+fit33); 

  fitness = fitxyz + fitr; 
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  parents[num_indiv].erro =  10*fitxyz + fitr; 

 } 

 

 parents[num_indiv].erropos = fitxyz; 

 parents[num_indiv].erroant = fitth; 

 parents[num_indiv].erroori = fitr; 

 

 return fitness; 

} 

 

int main() 

{  

    /*Variáveis para contar tempo*/ 

 struct timeb ini, fim; 

  

 srand(time(NULL));//Gerando numeros aleatorios. 

 

 int best = 0;//Posição do melhor. 

 int kill = 0;//Constante de genocídio. 

 double bestant = 10000000;//Melhor da geração anterior, valor alto para não entrar a primeira vez no kill++. 

 int parent1 = 0, parent2 = 0;//Escolha dos dois individuos para o cruzamento. 

 int mut = 0, muta = 0, mutb = 0;//Números para armazenar os valores de escolha da mutação. 

 double plus = 0.0;//Número a ser somado para que ocorra a mutação. 

 int geracoes_cont = 0;//Número de gerações. 

 int best_resposta = -1;//Melhor resposta da Bateria de Respostas. 

 double resposta_ant;//Resposta anterior da Bateria de Respostas. 

 

 /*Bateria de Testes*/ 

 for(int teste=1;teste<=6;teste++){ 

  /*Bateria de Respostas*/ 

  for(int tries=0;tries<samples;tries++){ 

 

   ftime(&ini);//Reseta a contagem de Tempo. 

   geracoes_cont = 0;//Reseta a contagem de Iterações. 

 

   //Teste só com a Posição final - Aleatória. 

   if(teste == 1){ 

    mode = 0; 

    x = 3.40; y = 20.84; z = -20.67; 

 

   //Teste só com a Posição final - Valor para todos os ângulos zeros. 

   }else if(teste == 2){    

    mode = 0; 

    x = 7.19; y = 24.15; z = -16.89; 

 

   //Teste com a Posição Final + Ângulos Anteriores - Valor para todos os ângulos zeros. 

   }else if(teste == 3){ 

    mode = 1; 

    x = 7.19; y = 24.15; z = -16.89; 

    thini1 = 30*pi/180; thini2 = -40*pi/180; thini3 = 60*pi/180; thini4 = 

20*pi/180; thini5 = 25*pi/180; thini6 = 30*pi/180; 

 

   //Teste com a Posição + Orientação - Valor para todos os ângulos zeros, sem rotação. 

   }else if(teste == 4){ 

    mode = 2; 

    x = 45.20, y = 14.90, z = -53.20; 

    yaw = 0*pi/180, pitch = 180*pi/180, roll = 180*pi/180; 

    

    sroll = sin(roll); croll = cos(roll); 

    spitch = sin(pitch); cpitch = cos(pitch); 

    syaw = sin(yaw); cyaw = cos(yaw); 

    rx1 = croll*cpitch; 

    rx2 = -sroll*cyaw+croll*spitch*syaw; 

    rx3 = sroll*syaw+croll*spitch*cyaw; 

    ry1 = sroll*cpitch; 

    ry2 = croll*cyaw+sroll*spitch*syaw; 

    ry3 = -croll*syaw+sroll*spitch*cyaw; 
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    rz1 = -spitch; 

    rz2 = cpitch*syaw; 

    rz3 = cpitch*cyaw; 

 

   //Teste com a Posição + Orientação - 1a. Orientação Escolhida 

   }else if(teste == 5){ 

    mode = 2; 

    //d7 = 0; a3 = 0;//Mudando os parametros do robô para uma melhor 

visualização. 

    x = 43.70, y = 11.55, z = 42.00; 

    yaw = 0*pi/180, pitch = -90*pi/180, roll = 180*pi/180; 

    

    sroll = sin(roll); croll = cos(roll); 

    spitch = sin(pitch); cpitch = cos(pitch); 

    syaw = sin(yaw); cyaw = cos(yaw); 

    rx1 = croll*cpitch; 

    rx2 = -sroll*cyaw+croll*spitch*syaw; 

    rx3 = sroll*syaw+croll*spitch*cyaw; 

    ry1 = sroll*cpitch; 

    ry2 = croll*cyaw+sroll*spitch*syaw; 

    ry3 = -croll*syaw+sroll*spitch*cyaw; 

    rz1 = -spitch; 

    rz2 = cpitch*syaw; 

    rz3 = cpitch*cyaw; 

   

   //Teste com a Posição + Orientação - 2a. Orientação Escolhida 

   }else if(teste == 6){ 

    mode = 2; 

    //d7 = 0; a3 = 0;//Mudando os parametros do robô para uma melhor 

visualização. 

    x = 43.70, y = 11.55, z = 42.00; 

    yaw = 0*pi/180, pitch = 0*pi/180, roll = 180*pi/180; 

    

    sroll = sin(roll); croll = cos(roll); 

    spitch = sin(pitch); cpitch = cos(pitch); 

    syaw = sin(yaw); cyaw = cos(yaw); 

    rx1 = croll*cpitch; 

    rx2 = -sroll*cyaw+croll*spitch*syaw; 

    rx3 = sroll*syaw+croll*spitch*cyaw; 

    ry1 = sroll*cpitch; 

    ry2 = croll*cyaw+sroll*spitch*syaw; 

    ry3 = -croll*syaw+sroll*spitch*cyaw; 

    rz1 = -spitch; 

    rz2 = cpitch*syaw; 

    rz3 = cpitch*cyaw; 

   } 

 

   //Inicialização da população original randômicamente. 

   for(int i=0; i<pop; i++){ 

    parents[i].th1 = rand()%36000; 

    parents[i].th1 = ((parents[i].th1/100.0f)-180)*pi/180;parents[i].th1; 

    parents[i].th2 = rand()%36000; 

    parents[i].th2 = ((parents[i].th2/100.0f)-180)*pi/180;parents[i].th2; 

    parents[i].th3 = rand()%36000; 

    parents[i].th3 = ((parents[i].th3/100.0f)-180)*pi/180;parents[i].th3; 

    parents[i].th4 = rand()%36000; 

    parents[i].th4 = ((parents[i].th4/100.0f)-180)*pi/180;parents[i].th4; 

    parents[i].th5 = rand()%36000; 

    parents[i].th5 = ((parents[i].th5/100.0f)-180)*pi/180;parents[i].th5; 

    parents[i].th6 = rand()%36000; 

    parents[i].th6 = ((parents[i].th6/100.0f)-180)*pi/180;parents[i].th6; 

   } 

 

   /*Avaliação*/ 

   while (1){ 

    /*Cálculo das notas de cada individuo*/ 

    for(int i=0; i<pop; i++){ 
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     parents[i].fitness = nota(i); 

    } 

    

    /*Cálculo do melhor individuo*/ 

    for(int i=0; i<pop; i++){ 

     if(parents[i].fitness <= parents[best].fitness){ 

      best = i; 

     } 

    } 

    

    /*Aumentando a constante de genocídio, caso a nota do melhor continue a 

mesma*/ 

    if((bestant - parents[best].fitness) <= genoTaxa){ 

     kill++; 

    } 

    

    /*Genocidio. Recria todos os individuos, com exceção do melhor*/ 

    if(kill >= genocidio){ 

     for(int i=0; i<pop; i++){ 

      if(i != best){ 

       parents[i].th1 = rand()%72000; 

       parents[i].th1 = ((parents[i].th1/100.0f)-

360)*pi/180; 

       parents[i].th2 = rand()%72000; 

       parents[i].th2 = ((parents[i].th2/100.0f)-

360)*pi/180; 

       parents[i].th3 = rand()%72000; 

       parents[i].th3 = ((parents[i].th3/100.0f)-

360)*pi/180; 

       parents[i].th4 = rand()%72000; 

       parents[i].th4 = ((parents[i].th4/100.0f)-

360)*pi/180; 

       parents[i].th5 = rand()%72000; 

       parents[i].th5 = ((parents[i].th5/100.0f)-

360)*pi/180; 

       parents[i].th6 = rand()%72000; 

       parents[i].th6 = ((parents[i].th6/100.0f)-

360)*pi/180; 

      } 

      /*Regularizando Individuos*/ 

      if(parents[i].th1 >  180*pi/180) parents[i].th1 =  

180*pi/180; 

      else if(parents[i].th1 < -180*pi/180) parents[i].th1 = -

180*pi/180;  

      if(parents[i].th2 >  180*pi/180) parents[i].th2 =  

180*pi/180; 

      else if(parents[i].th2 < -180*pi/180) parents[i].th2 = -

180*pi/180; 

      if(parents[i].th3 >  180*pi/180) parents[i].th3 =  

180*pi/180; 

      else if(parents[i].th3 < -180*pi/180) parents[i].th3 = -

180*pi/180; 

      if(parents[i].th4 >  180*pi/180) parents[i].th4 =  

180*pi/180; 

      else if(parents[i].th4 < -180*pi/180) parents[i].th4 = -

180*pi/180; 

      if(parents[i].th5 >  180*pi/180) parents[i].th5 =  

180*pi/180; 

      else if(parents[i].th5 < -180*pi/180) parents[i].th5 = -

180*pi/180; 

      if(parents[i].th6 >  180*pi/180) parents[i].th6 =  

180*pi/180; 

      else if(parents[i].th6 < -180*pi/180) parents[i].th6 = -

180*pi/180; 

     } 

     kill = 0;//Reseta a contagem de genocidio. 

    } 
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    /*Seleção*/ 

    for(int i=0; i < pop; i++){ 

     parent1 = best; 

     parent2 = rand()%pop;//Sorteia um indivíduo. 

     

     /*Com exceção do melhor, cruza*/ 

     if (i == best)  

      childrens[i] = parents[best]; 

     else{ 

      childrens[i].th1 = 

(parents[parent1].th1+parents[parent2].th1)/2; 

      childrens[i].th2 = 

(parents[parent1].th2+parents[parent2].th2)/2; 

      childrens[i].th3 = 

(parents[parent1].th3+parents[parent2].th3)/2; 

      childrens[i].th4 = 

(parents[parent1].th4+parents[parent2].th4)/2; 

      childrens[i].th5 = 

(parents[parent1].th5+parents[parent2].th5)/2; 

      childrens[i].th6 = 

(parents[parent1].th6+parents[parent2].th6)/2; 

     } 

 

     /*Nova geração*/ 

     parents[i] = childrens[i]; 

    } 

 

    /*Mutação*/ 

    muta = rand()%100;//Sorteia um número, dependendo do resultado decide 

quantas vezes mutar. 

    if(muta>80 && muta>=50) 

     mut = 1; 

    else if(muta<50 && muta>=30) 

     mut = 3; 

    else if(muta<30 && muta>=10) 

     mut = 7;    

    else if(muta<10 && muta>=5) 

     mut = 10; 

    else if(muta<5 && muta>=1) 

     mut = 20; 

     

    /*Muta o numero de vezes escolhidas*/ 

    for(int i=0; i< mut; i++){ 

     /*Escolhe alguém aleatoriamente para mutar, com excecão do 

melhor*/ 

     mutb = rand()%pop; 

     if(mutb != best){ 

      plus = rand()%3600; 

      plus = (plus/100.0f)-18.00; 

      parents[mutb].th1 = parents[mutb].th1 + plus; 

      plus = rand()%3600; 

      plus = (plus/100.0f)-18.00; 

      parents[mutb].th2 = parents[mutb].th2 + plus; 

      plus = rand()%3600; 

      plus = (plus/100.0f)-18.00; 

      parents[mutb].th3 = parents[mutb].th3 + plus; 

      plus = rand()%3600; 

      plus = (plus/100.0f)-18.00; 

      parents[mutb].th4 = parents[mutb].th4 + plus; 

      plus = rand()%3600; 

      plus = (plus/100.0f)-18.00; 

      parents[mutb].th5 = parents[mutb].th5 + plus; 

      plus = rand()%3600; 

      plus = (plus/100.0f)-18.00; 

      parents[mutb].th6 = parents[mutb].th6 + plus; 

     } 
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     /*Regularizando Individuos*/ 

     if(parents[mutb].th1 >  180*pi/180) parents[mutb].th1 =  

180*pi/180; 

     else if(parents[mutb].th1 < -180*pi/180) parents[mutb].th1 = -

180*pi/180;  

     if(parents[mutb].th2 >  180*pi/180) parents[mutb].th2 =  

180*pi/180; 

     else if(parents[mutb].th2 < -180*pi/180) parents[mutb].th2 = -

180*pi/180; 

     if(parents[mutb].th3 >  180*pi/180) parents[mutb].th3 =  

180*pi/180; 

     else if(parents[mutb].th3 < -180*pi/180) parents[mutb].th3 = -

180*pi/180; 

     if(parents[mutb].th4 >  180*pi/180) parents[mutb].th4 =  

180*pi/180; 

     else if(parents[mutb].th4 < -180*pi/180) parents[mutb].th4 = -

180*pi/180; 

     if(parents[mutb].th5 >  180*pi/180) parents[mutb].th5 =  

180*pi/180; 

     else if(parents[mutb].th5 < -180*pi/180) parents[mutb].th5 = -

180*pi/180; 

     if(parents[mutb].th6 >  180*pi/180) parents[mutb].th6 =  

180*pi/180; 

     else if(parents[mutb].th6 < -180*pi/180) parents[mutb].th6 = -

180*pi/180; 

    } 

 

    /*Armazenando qual foi o best do último melhor individuo*/ 

    bestant = parents[best].fitness; 

   

    /*Atualizando o Cálculo do Tempo de Execução*/ 

    ftime(&fim); 

 

    /*Atualizando o Cálculo do Numero de Gerações*/ 

    geracoes_cont++; 

    

    /*Parando a simulação quando a precisão for atingida ou passar mais de 1 

segundo*/ 

    if(parents[best].erro < acerto || (((double) 

fim.time+((double)fim.millitm*0.001))-((double)ini.time+((double)ini.millitm*0.001))) >= 1.0)  

     break; 

   } 

    

   /*Armazenando Respostas*/ 

   resposta[tries].x = parents[best].x; 

   resposta[tries].y = parents[best].y; 

   resposta[tries].z = parents[best].z; 

   resposta[tries].th1 = parents[best].th1; 

   resposta[tries].th2 = parents[best].th2; 

   resposta[tries].th3 = parents[best].th3; 

   resposta[tries].th4 = parents[best].th4; 

   resposta[tries].th5 = parents[best].th5; 

   resposta[tries].th6 = parents[best].th6; 

   resposta[tries].r11 = parents[best].r11; 

   resposta[tries].r12 = parents[best].r12; 

   resposta[tries].r13 = parents[best].r13; 

   resposta[tries].r21 = parents[best].r21; 

   resposta[tries].r22 = parents[best].r22; 

   resposta[tries].r23 = parents[best].r23; 

   resposta[tries].r31 = parents[best].r31; 

   resposta[tries].r32 = parents[best].r32; 

   resposta[tries].r33 = parents[best].r33; 

   resposta[tries].fitness = parents[best].fitness; 

   resposta[tries].erropos = parents[best].erropos; 

   resposta[tries].erroant = parents[best].erroant; 

   resposta[tries].erroori = parents[best].erroori; 
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   resposta[tries].tempo = (((double) fim.time+((double)fim.millitm*0.001))-

((double)ini.time+((double)ini.millitm*0.001))); 

   resposta[tries].geracoes = geracoes_cont; 

  } 

   

  /*Escolhendo a melhor resposta*/ 

  best_resposta = 0; 

  resposta_ant = 1000000; 

  for(int tries=0;tries<samples;tries++){ 

   if(resposta[best_resposta].fitness > resposta[tries].fitness) 

    best_resposta = tries; 

  } 

 

  /*Impressão dos resultados*/ 

  printf("\n\tTeste %d\n", 

   teste); 

   

  printf("\nResultados dos cem:\n\n"); 

  if(mode == 0){ 

   printf("\n[Tempo em s], [Iteracoes], [Erro Posicao]\n"); 

   media_tempo = 0; desvpadr_tempo = 0; 

   media_interacoes = 0; desvpadr_interacoes = 0; 

   media_erropos = 0; desvpadr_erropos = 0; 

    

   for(int tries=0;tries<samples;tries++){ 

    printf("%.3lf, %d, %.2lf\n", 

    resposta[tries].tempo, resposta[tries].geracoes, resposta[tries].erropos); 

    media_tempo = media_tempo + resposta[tries].tempo; 

    media_interacoes = media_interacoes + resposta[tries].geracoes; 

    media_erropos = media_erropos + resposta[tries].erropos; 

   } 

   media_tempo = media_tempo/samples; 

   media_interacoes = media_interacoes/samples; 

   media_erropos = media_erropos/samples; 

    

   for(int tries=0;tries<samples;tries++){ 

    desvpadr_tempo = desvpadr_tempo + pow((resposta[tries].tempo - 

media_tempo),2); 

    desvpadr_interacoes = desvpadr_interacoes + pow((resposta[tries].geracoes - 

media_interacoes),2); 

    desvpadr_erropos = desvpadr_erropos + pow((resposta[tries].erropos - 

media_erropos),2); 

   } 

   desvpadr_tempo = sqrt(desvpadr_tempo/(samples-1)); 

   desvpadr_interacoes = sqrt(desvpadr_interacoes/(samples-1)); 

   desvpadr_erropos = sqrt(desvpadr_erropos/(samples-1)); 

    

   printf("\nMedias:\n"); 

   printf("%.3lf, %.0lf, %.2lf\n", 

   media_tempo, media_interacoes, media_erropos); 

   printf("\nDesvio Padrao:\n"); 

   printf("%.3lf, %.0lf, %.2lf\n", 

   desvpadr_tempo, desvpadr_interacoes, desvpadr_erropos); 

  } 

  if(mode == 1){ 

   printf("\n[Tempo em s], [Iteracoes], [Erro Posicao], [Erro Angulo Inicial]\n"); 

   media_tempo = 0; desvpadr_tempo = 0; 

   media_interacoes = 0; desvpadr_interacoes = 0; 

   media_erropos = 0; desvpadr_erropos = 0; 

   media_erroant = 0; desvpadr_erroant = 0; 

 

   for(int tries=0;tries<samples;tries++){ 

    printf("%.3lf, %d, %.2lf, %.2lf\n", 

    resposta[tries].tempo, resposta[tries].geracoes, resposta[tries].erropos, 

resposta[tries].erroant); 

    media_tempo = media_tempo + resposta[tries].tempo; 

    media_interacoes = media_interacoes + resposta[tries].geracoes; 
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    media_erropos = media_erropos + resposta[tries].erropos; 

    media_erroant = media_erroant + resposta[tries].erroant; 

   } 

   media_tempo = media_tempo/samples; 

   media_interacoes = media_interacoes/samples; 

   media_erropos = media_erropos/samples; 

   media_erroant = media_erroant/samples; 

 

   for(int tries=0;tries<samples;tries++){ 

    desvpadr_tempo = desvpadr_tempo + pow((resposta[tries].tempo - 

media_tempo),2); 

    desvpadr_interacoes = desvpadr_interacoes + pow((resposta[tries].geracoes - 

media_interacoes),2); 

    desvpadr_erropos = desvpadr_erropos + pow((resposta[tries].erropos - 

media_erropos),2); 

    desvpadr_erroant = desvpadr_erroant + pow((resposta[tries].erroant - 

media_erroant),2); 

   } 

   desvpadr_tempo = sqrt(desvpadr_tempo/(samples-1)); 

   desvpadr_interacoes = sqrt(desvpadr_interacoes/(samples-1)); 

   desvpadr_erropos = sqrt(desvpadr_erropos/(samples-1)); 

   desvpadr_erroant = sqrt(desvpadr_erroant/(samples-1)); 

 

   printf("\nMedias:\n"); 

   printf("%.3lf, %.0lf, %.2lf, %.2lf\n", 

   media_tempo, media_interacoes, media_erropos, media_erroant); 

   printf("\nDesvio Padrao:\n"); 

   printf("%.3lf, %.0lf, %.2lf, %.2lf\n", 

   desvpadr_tempo, desvpadr_interacoes, desvpadr_erropos, desvpadr_erroant); 

  } 

  if(mode == 2){ 

   printf("\n[Tempo em s], [Iteracoes], [Erro Posicao], [Erro Orientacao]\n"); 

   media_tempo = 0; desvpadr_tempo = 0; 

   media_interacoes = 0; desvpadr_interacoes = 0; 

   media_erropos = 0; desvpadr_erropos = 0; 

   media_erroori = 0; desvpadr_erroori = 0; 

 

   for(int tries=0;tries<samples;tries++){ 

    printf("%.3lf, %d, %.2lf, %.2lf\n", 

    resposta[tries].tempo, resposta[tries].geracoes, resposta[tries].erropos, 

resposta[tries].erroori); 

    media_tempo = media_tempo + resposta[tries].tempo; 

    media_interacoes = media_interacoes + resposta[tries].geracoes; 

    media_erropos = media_erropos + resposta[tries].erropos; 

    media_erroori = media_erroori + resposta[tries].erroori; 

   }  

   media_tempo = media_tempo/samples; 

   media_interacoes = media_interacoes/samples; 

   media_erropos = media_erropos/samples; 

   media_erroori = media_erroori/samples; 

 

   for(int tries=0;tries<samples;tries++){ 

    desvpadr_tempo = desvpadr_tempo + pow((resposta[tries].tempo - 

media_tempo),2); 

    desvpadr_interacoes = desvpadr_interacoes + pow((resposta[tries].geracoes - 

media_interacoes),2); 

    desvpadr_erropos = desvpadr_erropos + pow((resposta[tries].erropos - 

media_erropos),2); 

    desvpadr_erroori = desvpadr_erroori + pow((resposta[tries].erroori - 

media_erroori),2); 

   } 

   desvpadr_tempo = sqrt(desvpadr_tempo/(samples-1)); 

   desvpadr_interacoes = sqrt(desvpadr_interacoes/(samples-1)); 

   desvpadr_erropos = sqrt(desvpadr_erropos/(samples-1)); 

   desvpadr_erroori = sqrt(desvpadr_erroori/(samples-1)); 

 

   printf("\nMedias:\n"); 
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   printf("%.3lf, %.0lf, %.2lf, %.2lf\n", 

   media_tempo, media_interacoes, media_erropos, media_erroori); 

   printf("\nDesvio Padrao:\n"); 

   printf("%.3lf, %.0lf, %.2lf, %.2lf\n", 

   desvpadr_tempo, desvpadr_interacoes, desvpadr_erropos, desvpadr_erroori); 

  } 

 

  printf("\nResultados do melhor:\n\n");  

  printf("\nPosicao (em cm) Desejada:\nX = %.2lf, Y = %.2lf, Z = %.2lf\n",  

   x, y, z); 

  printf("\nPosicao (em cm) Encontrada:\nX = %.2lf, Y = %.2lf, Z = %.2lf\n",  

   resposta[best_resposta].x, resposta[best_resposta].y, resposta[best_resposta].z); 

   

  if(mode == 1){ 

   printf("\nAngulos (em graus) Iniciais:\nth1: %.2lf, th2: %.2lf, th3: %.2lf, th4: %.2lf, 

th5: %.2lf, th6: %.2lf\n",  

    thini1*180/pi, thini2*180/pi, thini3*180/pi, thini4*180/pi, thini5*180/pi, 

thini6*180/pi); 

  } 

  printf("\nAngulos (em graus) Encontrados:\nth1: %.2lf, th2: %.2lf, th3: %.2lf, th4: %.2lf, th5: 

%.2lf, th6: %.2lf\n",  

   resposta[best_resposta].th1*180/pi, resposta[best_resposta].th2*180/pi, 

resposta[best_resposta].th3*180/pi,  

   resposta[best_resposta].th4*180/pi, resposta[best_resposta].th5*180/pi, 

resposta[best_resposta].th6*180/pi); 

   

  if(mode == 2){ 

   printf("\nMatriz de Rotacao Row, Pitch Yaw:\n"); 

   printf("[%.2lf, %.2lf, %.2lf]\n[%.2lf, %.2lf, %.2lf]\n[%.2lf, %.2lf, %.2lf]\n",  

    resposta[best_resposta].r11, resposta[best_resposta].r12, 

resposta[best_resposta].r13,  

    resposta[best_resposta].r21, resposta[best_resposta].r22, 

resposta[best_resposta].r23,  

    resposta[best_resposta].r31, resposta[best_resposta].r32, 

resposta[best_resposta].r33); 

  } 

   

  if(mode == 0){  

   printf("\nErro da Posicao: %.2lf\n",  

    resposta[best_resposta].erropos); 

  } 

  if(mode == 1){  

   printf("\nErro da Posicao: %.2lf. Erro dos Angulos Iniciais: %.2lf\n",  

    resposta[best_resposta].erropos, resposta[best_resposta].erroant); 

  } 

  if(mode == 2){  

   printf("\nErro da Posicao: %.2lf. Erro da Orientacao: %.2lf\n",  

    resposta[best_resposta].erropos, resposta[best_resposta].erroori); 

  } 

  printf("\nO calculo foi realizado em apoximadamente %.3fs, e em %d iteracoes\n\n",  

   resposta[best_resposta].tempo, resposta[best_resposta].geracoes); 

 } 

 //getchar(); 

 return 0; 

} 

 


