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Resumo 

 

A utilização dos raios X como método de diagnóstico por imagem é uma grande 

ferramenta dos médicos nos dias atuais contra o câncer de mama. Os sistemas de 

diagnóstico auxiliado por computador aumentam ainda mais a taxa de sucesso na detecção 

de estruturas nas imagens mamográficas. Este trabalho busca encontrar um método para a 

segmentação de agrupamentos de microcalcificações em imagens mamográficas digitais. 

Primeiramente tenta-se aplicar o conhecimento repassado através de outros trabalhos na 

tratativa deste problema, utilizando-se um filtro de realce com as características de tamanho 

e contraste semelhantes às microcalcificações. Posteriormente, expande-se um algoritmo 

existente para imagens de 150 mícrons e comprova-se sua viabilidade também para 

imagens de demais resoluções espaciais. Os resultados foram avaliados qualitativa e 

quantitativamente através de inspeção visual buscando a maior sensibilidade e uma menor 

taxa de falsos positivos por caso. 

 

Palavras-chave: imagens mamográficas, microcalcificação, segmentação. 

  



 

 

  



 

Abstract 

 

The use of x-rays as a method of image diagnosis is a important tool today for 

doctors against breast cancer. Computer systems for aided diagnosis further increase the 

success rate of detecting structures in mammographic images. This work aims to find a 

method for the segmentation of microcalcifications in digital mammographic images. First 

attempts to apply the knowledge imparted by other study in dealings this problem, using a 

filter with the features of contrast and size similar to microcalcifications. Subsequently, 

expands an existing algorithm for images of 150 microns and is proven its viability also for 

images of other spatial resolution. The results were evaluated qualitatively and quantitatively 

by visual inspection seeking higher sensitivity and a lower rate of false positives per case. 

 

Keywords: mammographic images, microcalcification, segmentation.  
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Capítulo 1 - Introdução 

 

1.1.Raios X 

 

 Os raios X são ondas eletromagnéticas cujo comprimento de onda varia de 0,005 

a 1 nanômetro. Embora seu comprimento de onda seja muito menor, sua natureza 

eletromagnética é idêntica à da luz visível. Estas ondas podem ser geradas através da 

aceleração de elétrons utilizando-se uma grande diferença de potencial, seguida de uma 

desaceleração através da colisão desses elétrons com a superfície do ânodo. 

 A radiografia consiste no uso dos raios X para a obtenção de imagens de 

materiais não homogêneos, através da exposição destes objetos à radiação com a 

presença de um filme sensível como anteparo. As regiões mais densas do objeto 

absorvem uma maior quantidade de raios X, permitindo uma menor passagem destes e 

formando regiões mais claras no filme revelado. 

 Devido ao alto poder de penetração dos raios X, a radiografia é usada como uma 

técnica de obtenção de imagens não invasiva, podendo produzir imagens da estrutura 

interna de um objeto, sem danificá-lo. Graças ao seu curto comprimento de onda, os 

raios X podem detectar diversos tipos de estruturas em escala microscópica (ARHATARI, 

2006). 

 

1.2.Câncer de Mama 

 

O câncer é uma doença caracterizada pelo crescimento descontrolado das células em 

determinada região do organismo, que ocorre devido às mutações, ou mudanças 

anormais, nos genes responsáveis por controlar o crescimento das células e mantê-las 

sadias (VERDE, 2007). 
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O câncer de mama é o câncer mais frequente entre as mulheres e a maior causa de 

morte por neoplasias entre estas. No ano de 2012, a previsão é de 52.680 novos casos 

desta patologia, representando 27,9% do total de novos casos de câncer entre as 

mulheres nesse ano. A taxa de mortalidade no ano de 2010 foi de 11,51 a cada 100.000 

mulheres no Brasil, perdendo somente para o câncer de próstata como a localização de 

câncer com maior mortalidade no país (INCA, 2012). 

As maiores chances de sobrevivência se dão quando a patologia é diagnosticada e 

tratada em seus estágios iniciais. Por esse motivo, o INCA (Instituto Nacional do Câncer) 

recomenda a toda mulher com 40 anos de idade ou mais a procurar um especialista e ter 

suas mamas examinadas anualmente. Já entre 50 e 69 anos de idade, a mulher também 

deve fazer uma mamografia a cada dois anos. 

Foi constatado que a detecção precoce do câncer de mama através da mamografia 

reduz a mortalidade em mulheres após os 50 anos de idade em aproximadamente um 

terço (TIMMEMAN, 1999). 

Segundo a literatura especializada, de 30% a 50% dos casos 

de câncer de mama detectados por meio de mamografia 

apresentam agrupamentos de microcalcificações associados. 

Além disso, estudos demonstraram que 26% dos casos de 

câncer não palpável de mama apresentam nódulos 

associados na mamografia e 18% apresentam nódulos e 

microcalcificações. (AZEVEDO-MARQUES, 2001, p. 287) 

Pelos motivos apresentados por (AZEVEDO-MARQUES, 2001), a maioria dos 

sistemas de auxílio ao diagnóstico em mamografia é voltada para a detecção de nódulos 

e microcalcificações.  

 

1.3.Objetivos 

 

Este trabalho está contido em uma das linhas de pesquisa do Laboratório de 

Análise e Processamento de Imagens Médicas e Odontológicas (LAPIMO) da Escola de 

Engenharia de São Carlos da USP. Esta linha de pesquisa tem por objetivo o 
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desenvolvimento de uma ferramenta computacional para auxílio ao diagnóstico do câncer 

de mama. 

Como motivação, tem-se a necessidade de localização de agrupamentos de 

microcalcificações nas imagens mamográficas digitais, visto que, quase metade dos 

casos de câncer de mama diagnosticados através de mamografias estão relacionados à 

presença destes agrupamentos (AZEVEDO-MARQUES, 2001). 

Pelos motivos apresentados, o objetivo do presente trabalho é o desenvolvimento 

de um método para identificação de agrupamentos de microcalcificações em imagens 

mamográficas com diferentes resoluções espaciais, que seja capaz de atuar sobre 

qualquer imagem, independentemente de suas características, como média, desvio 

padrão e densidade da mama em questão. 
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Capítulo 2 – Revisão da literatura 

 

2.1.Mamografia 

 

Devido ao fato de a mama ser constituída de tecidos moles de densidades muito 

semelhantes e de que os objetos de interesse na mamografia são estruturas 

microscópicas, para a obtenção de imagens da mama utiliza-se um equipamento especial 

chamado mamógrafo, cujo exemplo pode ser observado na Figura 1 abaixo. 

 

 

Figura 1: Exemplo de um mamógrafo. 

 

Uma particularidade desse equipamento pode ser encontrada em seu tubo de raios X. 

No lugar do elemento tungstênio utilizado nos tubos convencionais, no mamógrafo utiliza-

se o molibdênio devido às características do feixe produzido por este elemento gerarem 

melhores imagens para as estruturas que constituem a mama. Para se detectar objetos 

que podem chegar a 0,3 mm de diâmetro, como as microcalcificações, por exemplo, 

outro fator importante é a garantia de que o ponto focal do equipamento seja bem 

pequeno. 
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Outra característica que difere o mamógrafo dos tradicionais aparelhos de raios X é o 

tamanho do campo de radiação, que no mamógrafo chega a ter metade da dimensão 

comparando-se aos demais equipamentos. Para reduzir o tamanho do campo, são 

utilizados colimadores de feixe e restritores, que direcionam o feixe e barram a radiação 

desnecessária. Além de ajudar a diminuir a dose de radiação emitida em outras partes do 

corpo do paciente, estes acessórios melhoram a qualidade da imagem.  

Através do compartimento de compressão, uma placa de material radiotransparente 

comprime a mama a fim de se obter a menor espessura possível, levando as estruturas 

da mama mais próximas do anteparo que contém o filme, evitando a movimentação da 

mama e separando estruturas sobrepostas, obtendo assim imagens com melhor 

resolução e contraste. 

Para evitar que o mesmo fóton impressione o filme radiográfico duas vezes (chamado 

efeito “crossover”), o que pode causar certa penumbra na imagem, utiliza-se uma tela 

intensificadora posicionada embaixo do filme no chassi mamográfico. Os fótons que 

passam pelo filme atingem a tela e transformam-se em luz visível, que por sua vez 

impressiona o filme gerando a imagem final (ROSA, 2005). 

 

2.2.Digitalização de imagens mamográficas 

 

O manuseio e o intercâmbio de mamografias no formato de película se tornam muitas 

vezes trabalhoso, devido ao volume ocupado e aos cuidados necessários para a 

conservação destas imagens. A fim de se sanar esses e outros problemas, recorre-se à 

digitalização das imagens mamográficas. 

Para a digitalização das imagens armazenadas em películas, utilizam-se scanners 

apropriados, que através de sensores e uma fonte de luz, captam a intensidade de luz 

que atravessa o filme radiográfico. Eles possuem uma fonte de luz em forma de linha que 

varre o objeto a ser digitalizado, enquanto um sensor mede a quantidade de luz 

transmitida em cada ponto (GÓIS, 2010). A luz é convertida em um sinal elétrico que é 

posteriormente digitalizado por um conversor A/D. Ao processo de se obter uma porção 

finita de valores discretos, a partir de um sinal analógico, dá-se o nome de amostragem. 

Um esquema ilustrativo do processo de amostragem pode ser observado na Figura 2. 
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Figura 2: Ilustração do processo de amostragem 

 

Após ser digitalizada, a imagem se torna uma função bidimensional da intensidade da 

luz, representada por f(x, y), na qual os valores de x e y são coordenadas espaciais e o 

valor de f é proporcional ao nível de cinza daquela imagem naquele ponto. O intervalo 

que a função f pode assumir depende da quantidade de níveis de cinza da imagem. 

Imagens de 1 bit possuem no máximo 2 níveis (2¹ = 2); imagens de 2 bits possuem no 

máximo 4 níveis (2² = 4) e assim sucessivamente. A Figura 3 ilustra a representação de 

uma imagem digital. 

 

Figura 3: Exemplo de representação de uma imagem digital 

 

A quantidade de pontos nas direções x e y que constituem a imagem caracterizam a 

resolução espacial dessa imagem. Assim, além da quantidade de níveis de cinza, outro 

fator fundamental para qualidade de imagens digitalizadas é a sua resolução espacial. 
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Um exemplo de variação de resolução espacial de uma imagem por ser observado na 

Figura 4. 

 

Figura 4: Impacto da resolução na qualidade da imagem 

 

Com a imagem já digitalizada, abre-se um imenso leque de ferramentas para a 

análise, ajustes e até reconstrução dos dados nela armazenados. Em se tratando de 

imagens mamográficas, tais ferramentas contribuem para o aumento da eficácia do 

diagnóstico de patologias. 

 

2.3.Sistemas CAD 

2.3.1.Princípios de funcionamento 

 

O diagnóstico auxiliado por computador (do inglês computer-aided diagnosis, ou 

CAD) é o diagnóstico realizado pelo radiologista com o auxílio de um processamento 

automatizado de imagens radiográficas como uma “segunda opinião”, sendo o 

computador utilizado somente para a obtenção de informações adicionais, cabendo ao 

radiologista a tomada final de decisão (DOI, 1999). 

A avaliação de uma imagem por um radiologista é pessoal e, portanto, subjetiva, 

estando sujeita a variações ao ser avaliada por outro especialista ou até mesmo por 

distração e fadiga do mesmo. Foi demonstrado que se a leitura for realizada por dois 

radiologistas, a sensibilidade do diagnóstico é aumentada (THURFJELL, 1994). Assim, a 
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proposta dos sistemas CAD é atuar como um segundo especialista na avaliação de uma 

imagem radiológica. 

Existem dois tipos de CAD, aqueles que atuam no auxílio à classificação, que 

quantificam características da imagem e as classificam como sendo normais ou não, e 

aqueles que têm por finalidade o auxílio à detecção de lesões, que varrem a imagem em 

busca de padrões anormais. Este último é o objeto de estudo deste trabalho. 

Por ser constituído de processos genéricos e amplos, o CAD pode ser aplicado a 

todas as diversas formas de diagnóstico por imagem, como por exemplo, a radiografia, a 

ultrassonografia e a ressonância magnética. Além disso, podem-se elaborar esquemas 

de CAD para todas as partes do corpo, sendo as mais utilizadas nas áreas de diagnóstico 

precoce de câncer de mama, detecção de nódulos pulmonares e análise quantitativa de 

fluxo sanguíneo (AZEVEDO-MARQUES, 2001). 

Na detecção automatizada de lesões, o radiologista é o único responsável pela 

classificação de regiões contendo padrões radiológicos suspeitos, localizadas pelo 

computador. Assim, o papel do software de detecção é unicamente o auxílio na 

localização de estruturas. 

Pesquisas na Universidade de Chicago, EUA, foram pioneiras na apresentação de 

uma metodologia para detecção automatizada de microcalcificações em imagens 

mamográficas. Essa metodologia inclui as seguintes etapas: pré-processamento para 

realce das imagens; filtragem para remoção de estruturas de fundo; segmentação das 

microcalcificações para extração de atributos e o uso de redes neurais artificiais para 

redução do número de detecções falso-positivas (CHAN, DOI, et al., 1987). 

No mês de junho de 1998, o Food and Drug Administration (FDA), dos Estados 

Unidos, aprovou o uso do ImageChecker M1000 (HOLOGIC, 2012), sistema de auxílio à 

detecção que passou a oferecer uma dupla leitura na análise de mamografias.  

 

2.3.2.Avaliação de sistemas de CAD 

 

A maneira mais comum de se avaliar a eficiência de um sistema de CAD é utilizando-

se a teoria de detecção de sinal (TDS). As imagens resultantes dos sistemas de CAD são 
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tratadas como um estímulo positivo caso apresentem alguma anormalidade, ou como um 

estímulo negativo caso sejam imagens que não apresentem nenhum achado. 

Desse modo, um verdadeiro positivo (VP) se caracteriza por uma resposta positiva a 

um estímulo positivo, e um falso positivo (FP) se constitui de uma resposta positiva para 

um estímulo negativo. Similarmente, uma resposta negativa para um estímulo negativo é 

considerado um verdadeiro negativo (VN) e uma resposta negativa para um estímulo 

positivo é considerado um falso negativo (FN). 

De posse dessas informações relativas ao sistema, é possível medir a taxa de 

verdadeiros positivos de um sistema, também chamada de sensibilidade, e a taxa de 

falsos positivos, que é o complemento da medida de especificidade. O cálculo destas 

taxas pode ser observado nas equações (1) e (2). 

                                             
  

     
 Eq. (1) 

 

                                           
  

     
 Eq. (2) 

 

A curva ROC (do inglês Receiver Operating Characteristic) mostra o 

comportamento geral do sistema de CAD e permite analisar se o sistema possui as 

qualidades necessárias para o seu uso. Ela é obtida ao traçar o gráfico das taxas de 

verdadeiros positivos e falsos negativos de um sistema para diferentes configurações de 

sua execução, alterando o rigor com que o sistema classifica os estímulos (BARBOSA 

FILHO, 2012). 

Na avaliação de sistemas de CAD que têm por finalidade o auxílio à detecção de 

lesões, costuma-se utilizar curvas FROC (do inglês Free-response Receiver Operating 

Characteristic), que se diferem das curvas ROC somente pelo uso da taxa de falsos 

positivos por imagem ao invés da taxa de falsos negativos. Do mesmo modo que a curva 

ROC, espera-se que o número de falsos positivos por imagem do sistema aumente à 

medida que sua sensibilidade também cresce (BARBOSA FILHO, 2012). 
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2.4.Processamento de Imagens 

2.4.1.Operações lógicas e aritméticas 

2.4.1.1.Operações pixel a pixel 

 

Sabemos que após uma imagem ter sido adquirida e digitalizada, ela pode ser 

vista como uma matriz de inteiros e, portanto pode ser manipulada numericamente 

utilizando operações lógicas e/ou aritméticas. Estas operações podem ser efetuadas pixel 

a pixel ou orientadas a vizinhança. No primeiro caso, elas podem ser descritas pela 

seguinte notação: 

X opn Y = Z 

onde X e Y podem ser imagens (matrizes) ou escalares, Z é obrigatoriamente uma matriz 

e opn é um operador aritmético (+, -, x e /) ou lógico (AND, OR, XOR) binário. 

Sejam duas imagens X e Y de igual tamanho. Estas imagens podem ser 

processadas pixel a pixel utilizando um operador aritmético ou lógico, produzindo uma 

terceira imagem Z, cujos pixels correspondem ao resultado de X opn Y para cada 

elemento de X e Y. 

Ao executarmos operações aritméticas sobre imagens, devemos tomar especial 

cuidado com os problemas de underflow ou overflow do resultado. A adição de duas 

imagens de 256 tons de cinza, por exemplo, pode resultar em um número maior que 255 

para alguns pixels, ao mesmo tempo em que a subtração de duas imagens pode resultar 

em valores negativos para alguns elementos. Exemplos de operações aritméticas sobre 

imagens podem ser observados na Figura 5. 
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Figura 5: Exemplo de operações aritméticas: (a) X, (b) Y, (c) X+Y, (d) X-Y 

 

Todas as operações lógicas (ou booleanas) conhecidas podem ser aplicadas 

entre imagens, inclusive a operação de complemento (NOT), que é uma operação unária 

(requer apenas um operando). A Figura 6 exemplifica a aplicação de operações lógicas 

sobre imagens binárias. 
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Figura 6: Exemplos de operações lógicas em imagens binárias: (a)A, (b)B, (c)A and B, (d)A or B, (e)A 
xor B, (f)(not A) and B, (g)not A e (h)not B 
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2.4.1.2.Operações orientadas a vizinhança 

 

As operações orientadas a vizinhança utilizam o conceito de convolução com 

máscaras (ou janelas ou templates). 

Seja uma subárea de uma imagem: 

[

      
      
      

] 

onde: Z1, ..., Z9 são os valores de tons de cinza de cada pixel. 

Seja uma máscara 3 x 3 de coeficientes genéricos W1, ..., W9: 

[

      
      
      

] 

 

A máscara acima percorrerá a imagem, desde o seu canto superior esquerdo até seu 

canto inferior direito. A cada posição relativa da máscara sobre a imagem, o pixel central 

da subimagem em questão será substituído, em uma matriz denominada 'imagem-

destino', por um valor: 

  ∑     

 

   

 

 

As operações de convolução com máscaras são amplamente utilizadas no 

processamento de imagens (MARQUES FILHO e VIEIRA NETO, 1999). Uma seleção 

apropriada dos coeficientes W1, ..., W9 torna possível uma grande variedade de 

operações úteis, tais como redução de ruído, afinamento e detecção de características da 

imagem. Deve-se observar, entretanto, que a operação de convolução com máscaras 

exige grande esforço computacional. Por exemplo, a aplicação de uma máscara 3 x 3 

sobre uma imagem 512 x 512 requer nove multiplicações e oito adições para cada 

localização de pixel, num total de 2.359.296 multiplicações e 2.097.152 adições. 
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2.4.2.Operações de convolução com máscaras 

2.4.2.1.Detecção de pontos isolados 

 

A máscara a seguir é um exemplo de operador de convolução que, quando 

aplicado a uma imagem, destacará pixels brilhantes circundados por pixels mais escuros. 

Como será visto adiante, este operador corresponde a um filtro passa-altas. 

[
      
     
      

] 

2.4.2.2.Detecção de bordas 

 

Para a detecção e realce de bordas, aplicam-se habitualmente filtros espaciais de 

dois tipos: (a) baseados no gradiente da função de luminosidade, I(x,y), da imagem, e (b) 

baseados no laplaciano de I(x,y). 

Tanto o gradiente quanto o laplaciano costumam ser aproximados por máscaras 

de convolução ou operadores 3 x 3. Exemplos destas máscaras são os operadores de 

Roberts, Sobel, Prewitt e Frei-Chen, mostrados na Tabela 1. 

 

Tabela 1: Operadores 3 x 3 utilizados para estimar a amplitude do gradiente através de uma borda. 
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. A Figura 7 mostra um exemplo de aplicação das matrizes de detecção de 

bordas. 

 

Figura 7: Exemplo de realce e detecção de bordas. (a) imagem original, (b) realce de bordas utilizando 
os operadores de Prewitt horizontal e vertical, (c) realce de bordas utilizando os operadores de Sobel 

horizontal e vertical. 

 

2.4.3.Técnicas de modificação de histograma 

2.4.3.1.Conceito de histograma 

 

O histograma de uma imagem é um conjunto de números indicando o percentual 

de pixels naquela imagem que apresentam um determinado nível de cinza. Estes valores 

são normalmente representados por um gráfico de barras que fornece para cada nível de 

cinza o número (ou o percentual) de pixels correspondentes na imagem. Através da 

visualização do histograma de uma imagem obtemos uma indicação de sua qualidade 

quanto ao nível de contraste e quanto ao seu brilho médio (se a imagem é 

predominantemente clara ou escura). Cada elemento deste conjunto é calculado como: 

  (  )  
  
 

 

onde: 

0 ≤ rk ≤ 1 

k = 0, 1, ..., L-1, onde L é o número de níveis de cinza da imagem digitalizada; 
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n = número total de pixels na imagem; 

pr(rk) = probabilidade do k-ésimo nível de cinza; 

nk = número de pixels cujo nível de cinza corresponde a k. 

 

2.4.3.2.Equalização de histograma 

 

A equalização de histograma é uma técnica a partir da qual se procura redistribuir 

os valores de tons de cinza dos pixels em uma imagem, de modo a obter um histograma 

o mais uniforme possível, no qual o número (percentual) de pixels de qualquer nível de 

cinza é praticamente o mesmo. Para tanto, utiliza-se uma função auxiliar, denominada 

função de transformação. A forma mais usual de se equalizar um histograma é utilizar a 

função de distribuição acumulada da distribuição de probabilidades original, que pode ser 

expressa por: 

    (  )  ∑
  

 

 

   

 ∑  (  )

 

   

 

onde: 

0 ≤ rk ≤ 1 

k = 0, 1, ..., L-1 

 

2.4.3.3.Expansão de histograma 

 

Nesta técnica, o histograma original de uma imagem é modificado de tal forma 

que parte dele é expandida para ocupar toda a faixa de cinza da imagem. A Figura 8 

ilustra esquematicamente o processo. 
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Figura 8: Expansão de histograma. 

 

2.4.3.4.Limiarização (Thresholding) 

 

O princípio da limiarização consiste em separar as regiões de uma imagem quando 

esta apresenta duas classes (o fundo e o objeto). Devido ao fato da limiarização produzir 

uma imagem binária à saída, o processo também é denominado, muitas vezes, 

binarização. A forma mais simples de limiarização consiste na bipartição do histograma, 

convertendo os pixels cujo tom de cinza é maior ou igual a um certo valor de limiar (T) em 

brancos e os demais em pretos, como ilustra a Figura 9. No caso de níveis de cinza 

divididos basicamente em duas classes, onde o histograma apresenta dois picos e um 

vale, a limiarização é trivial. 

 

 

Figura 9: Limiarização de uma imagem monocromática: (a) histograma original, (b) histograma da 
imagem binarizada. 
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2.4.4.Filtragem, Realce e Suavização de Imagens 

2.4.4.1.Suavização de imagens 

 

Os filtros são denominados 'passa-baixas' quando atenuam ou eliminam as 

componentes de alta frequência no domínio das transformadas de Fourier. Como as 

componentes de alta frequência correspondem a regiões de bordas e/ou detalhes finos 

na imagem, o efeito da filtragem passa-baixas é a suavização da imagem, provocando 

um leve borramento na mesma. Já os filtros passa-altas atenuam ou eliminam os 

componentes de baixa frequência e, em função disto, realçam as bordas e regiões de alto 

contraste da imagem. Os filtros passa-faixa, capazes de remover ou atenuar 

componentes acima de sua frequência de corte superior e abaixo de sua frequência de 

corte inferior, embora existam, são de pouca utilidade prática, com exceção de algumas 

tarefas específicas de restauração de imagens.  

A Figura 10 mostra as respostas em frequência dos três principais tipos de filtros 

existentes e os respectivos filtros espaciais correspondentes. 

 

 

Figura 10: (Acima) Resposta em frequência dos principais tipos de filtros. (Abaixo) Filtros 
correspondentes no domínio espacial. 
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Como se pode perceber na Figura 10(a), a resposta ao impulso de um filtro passa-

baixas indica que ele deve apresentar todos seus coeficientes positivos. A forma mais 

simples de implementar um filtro com tais características é construir uma máscara 3 x 3 

com todos seus coeficientes iguais a 1, dividindo o resultado da convolução por um fator 

de normalização, neste caso igual a 9. Um filtro com esta característica é denominado 

filtro da média. A Figura 11(a) mostra a máscara resultante, enquanto a Figura 11(b) e 

Figura 11(c) ilustram o mesmo conceito, aplicado a máscaras de maiores dimensões. Na 

escolha do tamanho da máscara deve-se ter em mente que quanto maior a máscara, 

maior o grau de borramento da imagem resultante. 

 

Figura 11: Máscaras para cálculo do filtro da média: (a) 3 x 3; (b) 5 x 5; (c) 7 x 7. 

 

Uma das principais limitações do filtro da média em situações onde o objetivo é 

remoção de ruídos em imagens está na sua incapacidade de preservar bordas e detalhes 

finos da imagem. Para contorná-la, uma técnica alternativa é o filtro da mediana. Nesta 

técnica, o nível de cinza do pixel central da janela é substituído pela mediana dos pixels 

situados em sua vizinhança. 

 

2.4.4.2.Realce de imagens 

 

O principal objetivo das técnicas de realce é o de destacar detalhes finos na 

imagem. O formato da resposta ao impulso de um filtro passa-altas, Figura 10(b), deve 

ser tal que a máscara correspondente apresente coeficientes positivos nas proximidades 

de seu centro e negativos longe dele. No caso de uma máscara 3 x 3, isto significa 
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projetar uma máscara com pixel central positivo e todos seus oito vizinhos negativos. Um 

exemplo de máscara com estas características é apresentado abaixo. 

 

 
[
      
     
      

] 

 

Sabendo-se que o cálculo da média dos pixels em um trecho de imagem produz 

como efeito a remoção de seus componentes de alta frequência e que o conceito de 

média é análogo à operação de integração, é razoável esperar que a diferenciação 

produza o efeito oposto e, portanto, enfatize os componentes de alta frequência 

presentes em uma imagem. O método mais usual de diferenciação em aplicações de 

processamento de imagens é o gradiente. Em termos contínuos, o gradiente de f(x,y) em 

um certo ponto (x,y) é definido como o vetor: 

   

[
 
 
 
  

  
  

  ]
 
 
 
 

 

Aproximações para o cálculo do gradiente podem ser feitas através de máscaras, 

como por exemplo, as máscaras de dimensão 3x3 dos operadores de Prewitt e Sobel, 

apresentados anteriormente. 
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41 

 

 

Capítulo 3 - Materiais e Métodos 

 

Na tentativa de se atingir o objetivo apresentado, utilizaram-se dois métodos 

distintos. Primeiramente tentou-se elaborar um programa que utilizasse o esquema da 

Figura 12 para identificar os agrupamentos de microcalcificações. O programa filtraria a 

imagem utilizando um filtro detector de sinal, neste caso uma curva chapéu, e o resultado 

desse processo seria subtraído da mesma imagem filtrada por um filtro da média, com o 

objetivo de se remover o ruído de fundo. A imagem resultante seria limiarizada, ou seja, 

uma porcentagem dos pixels com maior intensidade apareceria com máxima intensidade 

e os demais pixels apareceriam em preto. Ao término deste processo, restariam na 

imagem somente os pixels que representam os achados. 

 

Figura 12: Esquema geral da detecção computadorizada de microcalcificações em mamografias. 

 

A escolha da filtragem por meio de uma curva chapéu se dá devido às 

características das estruturas que desejamos realçar. A parte central da curva 

corresponde a um “matched filter” (filtro casado, em tradução livre do inglês) com 
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tamanho e variações de contraste de uma típica microcalcificação, conforme pode ser 

observado na Figura 13.  

.  

Figura 13: Forma do "matched filter" utilizado para realce das microcalcificações. 

 

O filtro da média utilizado é o mesmo apresentado no item 2.4.4.1, e possui 

tamanho sf x sf, conforme mostrado na equação (3) abaixo. 

 
 

   
[
   
   
   

] Eq. (3) 

 

Como parâmetros para a execução do programa, devem ser informados o 

tamanho do filtro do chapéu, o tamanho do filtro da média e a porcentagem de pixels da 

região final do histograma que permanecerão na limiarização (denominada no programa 

de variável topo), conforme Figura 14. 
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Figura 14: Exemplo de identificação da variável topo no histograma da imagem 

 

Devido ao fato de o objetivo deste trabalho se tratar da obtenção de um programa 

único que seja capaz de identificar estruturas de interesse em imagens com diferentes 

resoluções espaciais e características, teriam que ser encontrados parâmetros únicos 

que fossem eficientes para as diferentes entradas. 

Assim, foi proposto realizar-se o processamento de uma grande quantidade de 

imagens permutando entre variações de todos os parâmetros. Os dados seriam avaliados 

através de inspeção visual, adquirindo-se a sensibilidade e a taxa de falsos positivos para 

cada conjunto de parâmetros e, após uma análise estatística chegar-se-ia a um conjunto 

de valores que seriam suficientes para se detectar os agrupamentos de 

microcalcificações nos diferentes tipos de imagem. 

O segundo método criado neste trabalho é uma expansão do  método 

apresentado por Nunes, F. L. S. em (NUNES, 2001), o qual se constitui de um esquema 

para detecção de microcalcificações em imagens de resolução espacial de 150µm. Este 

método utiliza a técnica de diferença de imagens para realçar o sinal das 

microcalcificações através da supressão da estrutura de fundo da mamografia 

digitalizada.  

Esse procedimento é realizado através da utilização de dois filtros lineares. O 

primeiro núcleo realça a aparência de pequenas estruturas, enquanto que o segundo filtro 

  

topo 1-topo 
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suprime as mesmas estruturas. Através da subtração das duas imagens (aquela com os 

sinais suprimidos daquela com os sinais realçados) obtém-se a imagem da diferença. Na 

prática, os dois filtros são combinados em um simples filtro linear, conforme ilustrado na 

Figura 15. Operações baseadas em “thresholding” e “operadores morfológicos” são então 

aplicados para extração de sinais da imagem. 

 

Figura 15: Representação do corte longitudinal do filtro utilizado. 

 

Como citado, o método apresentado pelo trabalho original (NUNES, 2001) era 

capaz somente de detectar agrupamentos de microcalcificações em imagens com 

resolução espacial de 150µm. Assim, para atingir o objetivo proposto por este trabalho 

teve-se que criar uma técnica que, utilizando a mesma metodologia, conseguisse realizar 

detecções em imagens digitais com quaisquer tamanhos de pixel.  

Para isso, o filtro foi primeiramente reproduzido através da função fspecial do 

MATLAB (THE MATHWORKS, 2012), que é capaz de gerar a curva informando-se o 

tamanho desejado e o desvio padrão σ. Neste caso, através de tentativas, chegou-se ao 

valor de 1,60 para o desvio padrão e fixou-se em 35 o tamanho do filtro. A curva 

resultante pode ser vista na Figura 16. 
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Figura 16: Filtro para detecção de microcalcificações. Em azul a curva original. Em vermelho a 
reprodução para este trabalho. 

 

Após a reprodução do comportamento do filtro, buscou-se a adaptação para o 

trabalho com imagens de resoluções espaciais em geral. Supondo que uma 

microcalcificação seja representada por cerca de 3 pixels brancos de diâmetro, em uma 

imagem com resolução de 150µm, para uma resolução de 50µm seriam necessários 9 

pixels de diâmetro para a representação da mesma imagem. Com base nesse raciocínio, 

a seguinte curva foi gerada para se utilizar no filtro, como pode ser observado na Figura 

17. 

 

Figura 17: Em azul: reprodução do filtro para imagens de 150µm. Em vermelho: filtro adaptado para 
imagens de 50µm. 
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Utilizando-se do mesmo raciocínio empregado para obter-se a curva do filtro para 

imagens de resolução espacial de 50µm, geraram-se as curvas para demais resoluções 

utilizando-se diferentes valores para o desvio padrão, como ilustra a Figura 18. 

 

 

Figura 18: Em vermelho σ=4,8 para 50µm; em preto σ=3,2 para 75µm; em verde σ=2,4 para 100µm e 
em magenta σ=1,92 para 125µm 

 

Ao encontrarem-se os melhores valores do desvio padrão para cada tamanho de 

pixel, notou-se que o produto Resolução Espacial x σ é constante e possui valor 240. 

Com isso, se torna simples gerar uma curva para cada resolução, desde que o usuário 

forneça como entrada a resolução espacial da imagem. 

Um ponto importante de se ressaltar é que o método original (NUNES, 2001) 

trabalha somente sobre regiões de interesse, ou seja, para o seu funcionamento deve-se 

selecionar uma pequena porção da imagem da mama, para que em seguida o programa 

busque nessa região os achados. Assim, o processamento, a limiarização e a 

consequente identificação desses agrupamentos são relativamente mais simples, visto 

que na região de interesse as estruturas presentes são somente a mama e as estruturas 

suspeitas. 

Desse modo, o programa aqui apresentado possui uma maior complexidade, pois 

lida com a imagem inteira da mama. Isso significa que ao processar a imagem estarão 

presentes nela diversos artefatos, como demais estruturas internas da mama e ruído, o 
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que faz com que a busca pelos agrupamentos de microcalcificações seja mais 

complicada, devido à difícil distinção entre as estruturas de características semelhantes. 

Além dos dois métodos para detecção de microcalcificações, foram 

implementados programas para transformação área-ponto e busca de agrupamentos de 

microcalcificações (NISHIKAWA, JIANG, et al., 1992), conforme apêndices B e C, 

respectivamente. 

A transformação área-ponto (NISHIKAWA, JIANG, et al., 1992) tem a finalidade 

de transformar uma microcalcificação em um único pixel a fim de facilitar a contagem no 

momento da identificação de “clusters”. Ela é realizada da seguinte maneira: um máscara 

de 3 x 3 pixels percorre a imagem começando do canto superior esquerdo. Para cada 

iteração, é contabilizado o número de pixels com nível de cinza igual a 1. Havendo dois 

ou mais pixels com essa característica, todos os pixels sob a máscara são ajustados para 

um valor igual ao do fundo, menos o pixel do canto inferior direito do núcleo, que é 

ajustado para o valor máximo (valor 1, para a imagem normalizada). O núcleo é então 

movido dois pixels para a direita e o processo é repetido. O processo salta de duas em 

duas linhas até atingir o fim da imagem. O esquema do processo pode ser observado na 

Figura 19. 

 

Figura 19: Representação do esquema de funcionamento do algoritmo de transformada área-ponto 
(NISHIKAWA, JIANG, et al., 1992). 
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Para a identificação do agrupamento de sinais espalhados (NISHIKAWA, JIANG, 

et al., 1992) foi estabelecido o seguinte critério: os pixels identificados como 

microcalcificações foram passados para a imagem final somente quando três ou mais 

sinais estavam presentes dentro de um núcleo de tamanho e forma pré-definidos, isto é, 

se três ou mais sinais estavam presentes no núcleo, o conteúdo do núcleo era 

reproduzido, pixel a pixel, na imagem de saída. As microcalcificações isoladas foram 

desta forma, eliminadas da imagem. Cada pixel foi examinado na imagem de entrada de 

forma a produzir uma imagem de saída que indicasse somente regiões contendo sinais 

agrupados. 

Na técnica original de identificação de agrupamentos, obteve-se o melhor 

resultado com um núcleo de 32 x 32 pixels (NUNES, 2001). Para imagens de diferentes 

resoluções espaciais, foram utilizados núcleos também de diferentes tamanhos, sempre 

se mantendo a proporção entre resolução espacial e tamanho do núcleo. 

Após todo o processo, a imagem resultante contendo somente pixels individuais 

representando cada microcalcificação de um agrupamento passa por um processo de 

dilatação e em seguida uma detecção de borda, a fim de se obter somente o contorno 

dos agrupamentos de microcalcificações. Esse contorno é sobreposto à imagem original 

na cor vermelha, indicando a localização dos achados. Um exemplo do resultado final do 

processo pode ser observado na Figura 20. 



49 

 

 

Figura 20: Exemplo do resultado final do processo de detecção. 

 

Observa-se que além dos dois agrupamentos de microcalcificações encontrados 

no interior na mama, foram marcados também sinais de ruído na parte externa da mama 

e diversos pontos ao longo do músculo peitoral. Isso se deve ao fato de esses pontos 

possuírem níveis de cinza e dimensões semelhantes às das microcalcificações buscadas. 

Esses tipos de falsos positivos são eliminados ao inserir-se o trabalho atual no sistema 

CAD, pois a imagem passará por um pré-processamento a fim de se eliminar o fundo 

preto e o músculo peitoral, restando apenas a mama. 
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Capítulo 4 - Resultados 

 

O presente trabalho teve início na implementação do primeiro método 

apresentado no capítulo anterior. Após a programação do código em MATLAB (THE 

MATHWORKS, 2012), deu-se início ao processamento de imagens para posterior análise 

estatística dos resultados e obtenção dos parâmetros gerais. 

Para produção dos dados utilizaram-se 25 imagens da base de imagens DDSM 

(Digital Database for Screening Mammography) da Universidade do Sul da Flórida 

(MICHAEL HEATH, 2001), que continham nos laudos achados de agrupamentos de 

microcalcificações. Foram escolhidas imagens com 50µm de resolução espacial e 12 bits 

de resolução de contraste, todas contendo agrupamentos de microcalcificações e um 

laudo indicando a posição dos achados. 

 Cada imagem foi processada permutando-se 15 valores para o tamanho do filtro 

de realce (variável tf), 15 valores para o tamanho do filtro de suavização (variável sf) e 

mais 15 valores para a porcentagem da limiarização (variável topo), gerando um total de 

3375 iterações por imagem. O resultado de cada iteração foi armazenado em uma 

imagem no formato JPEG para posterior análise. 

 Devido à subjetividade e à semelhança entre os muitos resultados gerados, 

decidiu-se selecionar os 5 melhores conjuntos de parâmetros para cada imagem. A 

escolha foi realizada por inspeção visual e, de posse de todos os conjuntos de 

parâmetros considerados, formou-se a Tabela 5 apresentada no apêndice D deste 

trabalho, na qual ao seu final foi calculada a média e o desvio médio de cada variável.  

Obtiveram-se como média dos parâmetros os seguintes valores: para o tamanho 

do filtro de realce a média foi de 15,53; para o tamanho do filtro de suavização o valor 

médio foi de 15,03 e para a porcentagem da limiarização de 0,139%. Ao observarem-se 

os desvios médios, notam-se valores demasiadamente elevados, chegando a mais de 

50% para a variável tf, por exemplo. Isso demonstra que a escolha da variável não 

depende somente das características da estrutura a ser localizada, mas as 

características da imagem como contraste entre as estruturas e níveis de ruído de baixas 
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e altas frequências também são fundamentais na escolha dos tamanhos dos filtros e na 

porcentagem de limiarização. 

Assim, em alguns casos, ao mesmo tempo em que se obtiveram baixos valores 

de FP e elevada sensibilidade levando a ótimos resultados na aplicação dos valores, 

também houve ocorrências de níveis de sensibilidades e FP inaceitáveis no auxílio ao 

diagnóstico, como pode ser observado na Figura 21. Dessa maneira buscou-se a 

utilização de outro método para a detecção de agrupamentos de microcalcificações. 

 

 

Figura 21: Exemplos de resultados do primeiro método: (a)Alto índice de FN, (b)Bom resultado e 
(c)Alto índice de FP. 

 

No segundo método aqui elaborado, a fim de se expandir o trabalho já existente 

(NUNES, 2001), primeiramente foi reproduzida a curva chapéu original através da função 

fspecial do MATLAB (THE MATHWORKS, 2012). Através da variação do desvio padrão e 

análise visual da curva resultante, obteve-se a curva aproximada já apresentada na 

Figura 16. A seguir, também através da variação do desvio padrão, chegou-se a uma 
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regra geral para gerar-se a curva do filtro dependendo da resolução espacial da imagem, 

conforme foi mostrado na Figura 18. 

Para a obtenção dos resultados a partir da expansão do trabalho anterior 

(NUNES, 2001), primeiramente foi necessário definir o valor da variável topo a ser 

utilizado, ou seja, os pontos que efetivamente aparecerão no resultado final. Na imagem 

resultante, os pontos com nível de cinza entre [1-topo] e [1] no histograma são 

considerados positivos. 

Assim, para encontrar o melhor valor a ser aplicado a todas as imagens, foi 

gerada uma curva FROC a partir do processamento de 50 imagens com resolução 

espacial de 50µm. A variável “topo” foi variada de 0,0001 a 0,0039, com passos de 

0,0002, gerando assim 20 pontos a serem analisados. Os dados foram armazenados na 

Tabela 2. 

Tabela 2: Resultados obtidos para construção da curva FROC. 

topo Sensibilidade 
Média 

Média 
de FPs 

0,01% 4,69% 0,38 

0,03% 11,56% 1,41 

0,05% 15,94% 1,75 

0,07% 28,91% 2,53 

0,09% 38,28% 3,56 

0,11% 47,81% 5,09 

0,13% 50,78% 5,72 

0,15% 60,00% 6,28 

0,17% 69,84% 6,88 

0,19% 75,31% 7,56 

0,21% 78,75% 7,97 

0,23% 81,41% 8,22 

0,25% 83,13% 8,53 

0,27% 87,50% 8,75 

0,29% 88,44% 9,19 

0,31% 91,25% 9,28 

0,33% 93,13% 9,47 

0,35% 95,00% 9,75 

0,37% 95,00% 9,88 

0,39% 95,00% 9,88 
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Em uma curva FROC, o valor que apresenta o melhor custo-benefício entre a 

sensibilidade do programa e a taxa de FP, é aquele no qual a curva começa a se 

estabilizar. Assim, a partir da análise da curva FROC da Figura 22 concluiu-se que o 

melhor valor para a variável topo é 0,0021, com uma sensibilidade de 78,75%, e uma 

taxa de falsos positivos de 7,97 por imagem. 

 

 

Figura 22: Curva FROC da variável Topo 

 

Após encontrar-se o valor da porcentagem de limiarização que melhor se adequa 

a imagens de 50µm de resolução espacial esperar-se-ia que esse valor da variável topo 

também seria o que traria os melhores resultados para as demais resoluções, pois a 

quantidade de radiação absorvida pelas microcalcificações é semelhante independente 

da resolução espacial empregada, gerando também semelhante nível de contraste. 

Assim, para comprovar este fato, imagens com diferentes tamanhos de pixel foram 

processadas pelo programa. 

Primeiramente utilizaram-se 16 imagens com resolução espacial de 70µm e 14 

bits de resolução de contraste, adquiridas como cortesia da base INbreast (BREAST 
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RESEARCH GROUP, 2012). São imagens obtidas através do método DR (sigla que, em 

português, indica radiografia digital direta), ou seja, um método que envolve a conversão 

direta da imagem através de um detector que captura e converte o sinal em formato 

digital, sem a utilização de filmes ou chassis para captura dos fótons. Estas imagens 

estão armazenadas no padrão DICOM (Digital Imaging and Communications in 

Medicine), um conjunto de normas para tratamento, armazenamento e transmissão de 

informação médica em formato eletrônico. 

Em seguida, essas imagens foram processadas com o método desenvolvido no 

presente trabalho, e os dados foram armazenados na Tabela 3. Com esse teste obteve-

se uma sensibilidade média de 94,7% e uma taxa de FP média de 4,0 por imagem. Um 

exemplo de detecção em imagem pode ser observado na Figura 23. 

 

Tabela 3: Resultado do processamento das imagens de 70µm 

IMAGEM FP SENSIBILIDADE 

20587054 2 100% 

20587080 6 100% 

22579870 0 100% 

22579916 10 100% 

22613918 2 80% 

22613970 0 70% 

22670978 0 75% 

22671003 1 100% 

22678953 20 100% 

22679008 9 90% 

24055149 2 100% 

24055203 2 100% 

26933801 0 100% 

26933859 6 100% 

30011824 1 100% 

30318067 3 100% 

Média:  4,0 94,7% 
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Figura 23: Exemplo de processamento em imagem de 70µm. Neste caso temos uma sensibilidade de 
100% e uma taxa de FP de 2,0 

 

A seguir, para comprovar a eficácia do método também para imagens com pixels 

de dimensões maiores, utilizaram-se 10 imagens do BancoWeb (MATHEUS, 2010) com 

resolução espacial de 150µm e resolução de contraste de 16 bits. Um exemplo de 

imagem processada pode ser observado na Figura 24.  
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Figura 24: Exemplo de processamento em imagem de 150µm. Neste caso temos uma sensibilidade de 
cerca de 90% e uma taxa de FP de 2,0 

 

Após inspeção visual e análise dos resultados, foi obtida uma sensibilidade média 

de 90,5% e uma taxa de FP média de 6,2 por imagem, conforme indica a Tabela 4 a 

seguir. 

Tabela 4: Resultado do processamento das imagens de 150µm 

IMAGEM FP SENSIBILIDADE 

110005_506180899CCD1 2 100% 

110012_518261198MLD2 4 100% 

28515160501 6 100% 

28515160501CCE3 5 90% 

28515160501MLD2 5 80% 

28515160501MLE4 8 100% 

45063180800CCD4 9 90% 

45063180800CCE1 11 70% 

45063180800MLE2 7 75% 

50130230804MLE4 5 100% 

Média 6,2 90,5% 
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Capítulo 5 - Conclusões 

 

A localização de agrupamentos de microcalcificações em imagens mamográficas 

é de extrema importância, vista a relação entre a existência dessas estruturas e o 

diagnóstico do câncer em estágio inicial, ampliando a chance de cura. 

 No primeiro método utilizado neste trabalho, devido principalmente à grande 

diferença encontrada nas características das imagens como contraste e níveis de ruído 

de baixas e altas frequências, não foi possível chegar a um conjunto de parâmetros 

únicos aplicáveis a quaisquer imagens, impossibilitando a aplicação direta deste 

algoritmo na detecção de agrupamentos de microcalcificações. 

Já o segundo programa, a expansão do esquema de detecção de agrupamentos 

de microcalcificações (NUNES, 2001), providencia uma maior abrangência ao método, 

visto que o programa original era restrito à detecção em imagens com resolução de 

150µm. Já a expansão apresentada nesse trabalho possibilita a aplicação também às 

demais imagens, sem restrição quanto ao tamanho dos pixels desta imagem, permitindo 

que um maior leque de imagens mamográficas digitais possa ser analisado e os 

resultados desta análise utilizados como fator de auxílio ao diagnóstico pelo profissional 

radiologista. 

Por se aplicar somente a imagens de somente uma resolução espacial, o trabalho 

original (NUNES, 2001) utilizava um único filtro chapéu para o processamento das 

imagens, ou seja, possuía pesos que não se alteravam. Já este trabalho utiliza um filtro 

cujos pesos se modificam de acordo com o tamanho do pixel da imagem em que se 

aplica, generalizando o modelo anterior. 

Para a utilização do método de (NUNES, 2001) era obrigatória a seleção de uma 

região de interesse para o processamento. Isso ocorria devido à maior facilidade na 

segmentação de regiões onde se suspeitava da existência de estruturas de interesse e 

também pelo menor tempo necessário para o processamento de uma imagem menor. Já 

o trabalho atual atua sobre a imagem da mama como um todo, sendo capaz de localizar 

automaticamente os agrupamentos de microcalcificações em qualquer região da mama. 
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Ao analisar a aplicação da técnica em imagens de resolução espacial de 50µm, 

nota-se na curva FROC que esta não apresenta uma relação excelente entre a 

sensibilidade e a taxa de falsos positivos, pois ao aumentar-se a quantidade de FP de 8 

para 20, pouco acrescenta-se na sensibilidade do sistema. Porém, ao focar-se no ponto 

de melhor custo-benefício (sensibilidade de 79%), nota-se uma taxa de falsos positivos 

não muito elevada, de cerca de 8 casos por imagem.  

Comparada à sensibilidade do método original (NUNES, 2001) de 93%, a 

sensibilidade aqui apresentada é inferior, pois ao reduzir-se o tamanho do pixel de 150µm 

para 50µm passam a ser capturados na imagem artefatos que a antiga resolução 

espacial não possuía a capacidade de captar. Assim, ao livrar-se de uma alta taxa de 

falsos positivos, reduz-se a sensibilidade do método. 

Por outra lado, ao analisarem-se os resultados do processamento das imagens de 

70µm da base INbreast (BREAST RESEARCH GROUP, 2012), por se tratar de imagens 

adquiridas por DR e com uma boa resolução espacial, observou-se um bom nível de 

contraste e, assim, o resultado do processamento foi bastante superior ao resultado 

utilizando-se imagens de 50µm, apresentando uma sensibilidade média de 94,7% e uma 

taxa de FP de 4,0 casos por imagem, chegando a ser superior também ao método 

original (NUNES, 2001). 

O resultado do processamento de imagens com pixels de tamanho maior, neste 

caso 150µm, ficou dentro do esperado, superando bastante os resultados dos primeiros 

testes, com sensibilidade média de 90,5% e uma taxa de falsos positivos de 6,2 casos 

por imagem. 

Os valores de sensibilidade encontrados acima podem ser comparados com os 

valores apresentados no manual do ImageChecker (HOLOGIC, 2012). No manual tem-se 

como sensibilidade média 91% e uma média de 1,5 marcas de falso-positivo por caso. O 

processamento das imagens de 70µm de resolução espacial superou a sensibilidade do 

CAD comercial citado. Já as imagens com pixels de 150µm tiveram uma sensibilidade 

bem próxima do software mencionado. Somente quando se trabalhou com a resolução 

espacial de 50µm obteve-se um resultado inferior, devido à maior existência de artefatos 

nas imagens de maior resolução, conforme já explanado. 

Isso demonstra que, trabalhando próximo da situação ideal de uma imagem sem 

ruído e com um alto nível de contraste entre as estruturas, o código é perfeitamente 
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funcional. Já fora dessa zona ideal, a eficácia do método continua sendo boa, porém 

depende fortemente da qualidade dos equipamentos utilizados na aquisição e/ou 

digitalização dos exames. 

 O código gerado neste trabalho está totalmente funcional e pode ser executado 

sobre qualquer imagem de mama digital, bastando inserir como entrada uma imagem em 

que se buscam agrupamentos de microcalcificações e também a resolução espacial 

desta imagem, e a saída da função retornará a demarcação das regiões onde estão os 

achados. 

 Assim, inserindo o presente trabalho no contexto geral do grupo de pesquisa em 

que está contido, o papel do programa desenvolvido é contribuir para o conjunto de 

ferramentas já existentes, para que estas ferramentas sejam cada vez mais eficientes no 

auxílio ao diagnóstico, visto que foi elaborada uma solução com abrangência ainda não 

inexistente. Com o uso deste esquema de detecção agora é possível a busca por clusters 

de microcalcificações em qualquer mamografia digital, sem restrição de aparelho 

digitalizador ou mamógrafo empregados. 
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APÊNDICE A: Programa principal desenvolvido na 

expansão do método 
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APÊNDICE B: Programa para transformação Área-

Ponto 
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APÊNDICE C: Programa para detecção de 

agrupamentos 
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APÊNDICE D: Tabela de dados do processamento 

de imagens para análise estatística 

Tabela 5: Resultados do processamento de imagens para análise estatística. 

Imagem Caso Mama Posição tf sf topo 

Imagem 1 

0002 Esquerda Craniocaudal 13 13 0,00026 

0002 Esquerda Craniocaudal 13 15 0,00018 

0002 Esquerda Craniocaudal 13 15 0,00026 

0002 Esquerda Craniocaudal 13 17 0,00018 

0002 Esquerda Craniocaudal 17 13 0,00024 

Imagem 2 

0002 Esquerda Mediolateral Oblíqua 13 19 0,00036 

0002 Esquerda Mediolateral Oblíqua 13 21 0,00038 

0002 Esquerda Mediolateral Oblíqua 15 17 0,00038 

0002 Esquerda Mediolateral Oblíqua 21 19 0,00040 

0002 Esquerda Mediolateral Oblíqua 21 21 0,00038 

Imagem 3 

0007 Esquerda Mediolateral Oblíqua 9 1 0,00050 

0007 Esquerda Mediolateral Oblíqua 9 7 0,00070 

0007 Esquerda Mediolateral Oblíqua 11 5 0,00070 

0007 Esquerda Mediolateral Oblíqua 13 5 0,00110 

0007 Esquerda Mediolateral Oblíqua 15 5 0,00110 

Imagem 4 

0007 Direita Mediolateral Oblíqua 3 9 0,00090 

0007 Direita Mediolateral Oblíqua 3 13 0,00090 

0007 Direita Mediolateral Oblíqua 5 15 0,00090 

0007 Direita Mediolateral Oblíqua 7 13 0,00120 

0007 Direita Mediolateral Oblíqua 9 11 0,00120 

Imagem 5 

0010 Direita Mediolateral Oblíqua 5 9 0,00150 

0010 Direita Mediolateral Oblíqua 7 1 0,00150 

0010 Direita Mediolateral Oblíqua 7 1 0,00150 

0010 Direita Mediolateral Oblíqua 7 5 0,00120 

0010 Direita Mediolateral Oblíqua 9 1 0,00150 

Imagem 6 

0012 Direita Craniocaudal 3 15 0,00130 

0012 Direita Craniocaudal 7 9 0,00100 

0012 Direita Craniocaudal 9 11 0,00100 

0012 Direita Craniocaudal 11 11 0,00130 

0012 Direita Craniocaudal 11 17 0,00100 

Imagem 7 

0012 Direita Mediolateral Oblíqua 3 11 0,00160 

0012 Direita Mediolateral Oblíqua 7 5 0,00130 

0012 Direita Mediolateral Oblíqua 9 7 0,00130 

0012 Direita Mediolateral Oblíqua 9 9 0,00190 

0012 Direita Mediolateral Oblíqua 11 11 0,00190 
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Imagem Caso Mama Posição tf sf topo 

Imagem 8 

3005 Esquerda Craniocaudal 9 9 0,00010 

3005 Esquerda Craniocaudal 13 9 0,00010 

3005 Esquerda Craniocaudal 13 15 0,00010 

3005 Esquerda Craniocaudal 15 15 0,00010 

3005 Esquerda Craniocaudal 17 15 0,00010 

Imagem 9 

3007 Esquerda Craniocaudal 1 21 0,00100 

3007 Esquerda Craniocaudal 1 21 0,00070 

3007 Esquerda Craniocaudal 1 23 0,00100 

3007 Esquerda Craniocaudal 1 27 0,00130 

3007 Esquerda Craniocaudal 1 29 0,00130 

Imagem 
10 

3007 Esquerda Mediolateral Oblíqua 11 7 0,00070 

3007 Esquerda Mediolateral Oblíqua 11 7 0,00100 

3007 Esquerda Mediolateral Oblíqua 11 9 0,00100 

3007 Esquerda Mediolateral Oblíqua 11 9 0,00070 

3007 Esquerda Mediolateral Oblíqua 11 9 0,00100 

Imagem 
11 

0007 Esquerda Craniocaudal 5 15 0,00080 

0007 Esquerda Craniocaudal 5 17 0,00060 

0007 Esquerda Craniocaudal 11 19 0,00060 

0007 Esquerda Craniocaudal 11 21 0,00100 

0007 Esquerda Craniocaudal 11 21 0,00140 

Imagem 
12 

0020 Esquerda Craniocaudal 3 23 0,00050 

0020 Esquerda Craniocaudal 7 21 0,00030 

0020 Esquerda Craniocaudal 9 15 0,00030 

0020 Esquerda Craniocaudal 9 23 0,00030 

0020 Esquerda Craniocaudal 11 23 0,00050 

Imagem 
13 

0020 Esquerda Mediolateral Oblíqua 27 25 0,00090 

0020 Esquerda Mediolateral Oblíqua 31 29 0,00120 

0020 Esquerda Mediolateral Oblíqua 33 27 0,00120 

0020 Esquerda Mediolateral Oblíqua 33 33 0,00120 

0020 Esquerda Mediolateral Oblíqua 33 33 0,00120 

Imagem 
14 

3003 Direita Craniocaudal 9 5 0,00260 

3003 Direita Craniocaudal 9 5 0,00260 

3003 Direita Craniocaudal 9 7 0,00260 

3003 Direita Craniocaudal 9 9 0,00280 

3003 Direita Craniocaudal 9 11 0,00280 

Imagem 
15 

3005 Esquerda Mediolateral Oblíqua 31 13 0,00200 

3005 Esquerda Mediolateral Oblíqua 33 9 0,00200 

3005 Esquerda Mediolateral Oblíqua 33 9 0,00200 

3005 Esquerda Mediolateral Oblíqua 33 11 0,00200 

3005 Esquerda Mediolateral Oblíqua 33 13 0,00200 
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Imagem Caso Mama Posição tf sf topo 

Imagem 
16 

3008 Direita Mediolateral Oblíqua 3 11 0,00240 

3008 Direita Mediolateral Oblíqua 3 13 0,00260 

3008 Direita Mediolateral Oblíqua 3 13 0,00280 

3008 Direita Mediolateral Oblíqua 3 13 0,00260 

3008 Direita Mediolateral Oblíqua 5 13 0,00260 

Imagem 
17 

3019 Esquerda Mediolateral Oblíqua 19 19 0,00150 

3019 Esquerda Mediolateral Oblíqua 19 19 0,00200 

3019 Esquerda Mediolateral Oblíqua 25 7 0,00150 

3019 Esquerda Mediolateral Oblíqua 25 7 0,00200 

3019 Esquerda Mediolateral Oblíqua 25 13 0,00150 

Imagem 
18 

3027 Esquerda Craniocaudal 19 19 0,00100 

3027 Esquerda Craniocaudal 25 7 0,00100 

3027 Esquerda Craniocaudal 25 25 0,00100 

3027 Esquerda Craniocaudal 25 25 0,00100 

3027 Esquerda Craniocaudal 25 25 0,00100 

Imagem 
19 

3027 Esquerda Mediolateral Oblíqua 25 13 0,00150 

3027 Esquerda Mediolateral Oblíqua 25 19 0,00150 

3027 Esquerda Mediolateral Oblíqua 25 19 0,00150 

3027 Esquerda Mediolateral Oblíqua 25 25 0,00150 

3027 Esquerda Mediolateral Oblíqua 25 25 0,00150 

Imagem 
20 

3030 Direita Craniocaudal 19 25 0,00250 

3030 Direita Craniocaudal 25 7 0,00250 

3030 Direita Craniocaudal 25 13 0,00250 

3030 Direita Craniocaudal 25 19 0,00250 

3030 Direita Craniocaudal 25 25 0,00250 

Imagem 
21 

3030 Direita Mediolateral Oblíqua 19 25 0,00150 

3030 Direita Mediolateral Oblíqua 25 19 0,00200 

3030 Direita Mediolateral Oblíqua 25 25 0,00150 

3030 Direita Mediolateral Oblíqua 25 25 0,00200 

3030 Direita Mediolateral Oblíqua 25 25 0,00250 

Imagem 
22 

3037 Esquerda Craniocaudal 19 13 0,00100 

3037 Esquerda Craniocaudal 19 13 0,00150 

3037 Esquerda Craniocaudal 19 19 0,00150 

3037 Esquerda Craniocaudal 19 19 0,00200 

3037 Esquerda Craniocaudal 19 25 0,00150 

Imagem 
23 

3037 Esquerda Mediolateral Oblíqua 13 13 0,00100 

3037 Esquerda Mediolateral Oblíqua 19 7 0,00100 

3037 Esquerda Mediolateral Oblíqua 19 19 0,00150 

3037 Esquerda Mediolateral Oblíqua 19 19 0,00150 

3037 Esquerda Mediolateral Oblíqua 25 25 0,00200 
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Imagem Caso Mama Posição tf sf topo 

Imagem 
24 

3044 Esquerda Craniocaudal 13 1 0,00250 

3044 Esquerda Craniocaudal 13 7 0,00250 

3044 Esquerda Craniocaudal 25 7 0,00250 

3044 Esquerda Craniocaudal 25 13 0,00250 

3044 Esquerda Craniocaudal 25 19 0,00200 

Imagem 
25 

3044 Esquerda Mediolateral Oblíqua 19 19 0,00250 

3044 Esquerda Mediolateral Oblíqua 19 25 0,00250 

3044 Esquerda Mediolateral Oblíqua 25 7 0,00250 

3044 Esquerda Mediolateral Oblíqua 25 13 0,00250 

3044 Esquerda Mediolateral Oblíqua 25 19 0,00250 

Média 15,53 15,03 0,00139 

Desvio Médio 7,78 6,18 0,00064 

 

 


