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NEURO-SIMBÓLICAS

São Paulo
2020



CAIO FABRICIO DEBERALDINI NETTO

SISTEMA DE PREDIÇÃO DE SÉRIES
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verança, da honestidade e ética. Espero, no futuro, retribuir-lhes tudo aquilo o que vocês,
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quanto fora do escopo acadêmico foram-me vitais para a realização deste trabalho, assim
como a finalização de minha graduação em situação tão adversa. Agradeço, também, pela
compreensão e paciência ao longo de cada etapa deste processo.

Aos colegas do curso de Engenharia Mecatrônica, em especial Andrés, André e Paulo.
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“Excellence is never an accident. It is
always the result of high intention, sin-
cere effort, and intelligent execution; it
represents the wise choice of many al-
ternatives - choice, not chance, deter-
mines your destiny.”

-- Aristóteles



RESUMO

Sistemas de predição de séries temporais têm apresentado crescente desempenho
graças ao uso de modelos estat́ısticos e modelos neurais, os quais são aprendidos a partir
de grandes bases de dados. Combinações desses modelos com regras levam ao aprendi-
zado dito “neuro-simbólico”. Este trabalho desenvolverá um sistema de predição de séries
temporais baseado em dados e regras, ou seja, em técnicas neuro-simbólicas.

Palavras-Chave – sistemas de predição, séries temporais, aprendizado de máquina,
aprendizado estat́ıstico, modelos neurais, racioćınio simbólico, neuro-simbólico.



ABSTRACT

Time series forecast systems have shown increasing performance thanks to the use
of statistical models and neural models, which are learned from huge databases. Joining
both models with rules takes it to the so called “neuro-symbolic” learning. This work will
develop a time series prediction system based on data and rules, i.e. over neuro-symbolic
techniques.

Keywords – forecast systems, time series, machine learning, statistical learning, neural
models, symbolic reasoning, neuro-symbolic.
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1 INTRODUÇÃO

1.1 Objetivos

Os últimos dez anos testemunharam grandes mudanças na área de aprendizado de

máquina. Houve significativo avanço em técnicas que empregam otimização local para

ajustar modelos de grande porte, como redes neurais profundas, a partir de enormes mas-

sas de dados. Por outro lado, avanços em capacidade de processamento e em coleta de

dados permitiram que tais modelos e tais massas de dados fossem efetivamente proces-

sados. Tópicos como por exemplo tradução automática foram muito afetados: hoje os

melhores tradutores automáticos usam modelos de linguagem baseados em redes neurais

[1]. Além disso, uma gama variada de sistemas (e.g., sistemas de classificação de obje-

tos, de perguntas/respostas, tradução automática, predição de fenômenos, etc) passaram

a depender de modelos latentes (aprendizado de representação) que capturam padrões

essencialmente estat́ısticos em grandes bases de dados [2].

Este trabalho desenvolverá um sistema de predição de séries temporais, baseado em

dados e regras, e aprendido por meio de técnicas neuro-simbólicas.

1.2 Estrutura do Trabalho

O presente trabalho está estruturado da seguinte forma: o Caṕıtulo 2 faz uma revisão

da literatura sobre o tema, entendendo quais são seus principais autores, o que são as

técnicas neuro-simbólicas e como é posśıvel integrar modelos latentes com simbolismo.

Ademais, quais os modelos de predição de séries temporais usuais em Deep Learning e

posśıveis caminhos para abordar o problema; depois, têm-se os Caṕıtulos 3 e 4, os quais

versam sobre a metodologia empregada e os requisitos para cumprir com os objetivos

deste projeto; na sequência, o Caṕıtulo 5 apresenta o problema, as soluções escolhidas,

sua modelagem e as dificuldades do problema; por fim, o Caṕıtulo 6 mostra os resultados

obtidos, os principais desafios encontrados e a conclusão do trabalho.
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2 REVISÃO BIBLIOGRÁFICA

2.1 Considerações Iniciais

O progresso meteórico nos últimos anos da área de Inteligência Artificial reflete, para

algumas pessoas, uma ilusão a respeito dos avanços e pesquisas feitas na área. Tendo seu

ińıcio datado por volta da metade do século XX, a área, que hoje é considerada o que

a eletricidade foi durante a 3a Revolução Industrial [3], passou por um inverno sofŕıvel

até as décadas finais daquele século. Muito em parte pois os computadores não possúıam

as bases computacionais e de processamento existentes hoje em dia, assim como pelos

resultados irrisórios pela falta de técnicas e modelos que, devido a falta de bases massivas

de dados, utilizavam-se de regras para obterem resultados fracos - técnicas conhecidas

como simbólicas -, comparando-se com os obtidos pelos sistemas atuais. Desde então

houve um aumento significativo na aquisição de novos dados, no seu tratamento e no seu

compartilhamento (o surgimento da internet foi, sem dúvidas, um ponto de inflexão) e,

estudos antes congelados, como as primeiras tentativas de mimetizar o que, porventura,

venha a ser a estrutura neural de um ser humano - as primeiras aplicações de redes neurais

datam do fim do século XX -, aqueceram-se e passaram a dominar tanto a área acadêmica,

quanto os noticiários e cotidiano das pessoas.

O aprendizado de máquina (Machine Learning - ML) e, mais recentemente, o aprendi-

zado profundo (Deep Learning - DL) são a prova desse cenário retrospectivo. Atualmente,

os melhores sistemas artificiais ditos inteligentes fazem parte do escopo dessas áreas [4, 5].

A área de Processamento de Linguagem Natural (ou, NLP, em sua sigla em inglês), por

exemplo, passou a adotar modelos baseados em grandes massas de dados, em especial

modelos neurais (ou latentes) [6], em suas soluções, em contrapartida à soluções mais

clássicas de NLP, como o próprio Watson da IBM o faz. Essa mudança de paradigma é

bastante compreenśıvel, dado que modelos latentes conseguem levar os sistemas a obterem

acurácias, precisões e outras métricas nunca antes obtidas - ainda que haja um preço no

que tange a interpretabilidade desses modelos, muitas vezes tidos como “caixas-pretas”.
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Modelos neurais baseiam-se em formulações matemáticas que buscam aprender re-

presentações a partir da distribuição dos dados que os alimentam. Diferentes domı́nios

e tarefas são explorados a partir de arquiteturas diversas. O Multi-Layer Perceptron

(MLP) foi um dos primeiros modelos neurais que obtiveram resultados significativos em

áreas como Visão Computacional [7]. Hoje em dia, as arquiteturas que conseguem os

melhores resultados, inclusive melhores do que seres humanos, pautam-se no cerne do

aprendizado profundo - utilização de grandes massas de dados aliado a modelos com-

plexos. Arquiteturas como Redes Neurais Convolucionais, Redes Neurais Recorrentes e

Redes Generativas Adversárias (CNN, RNN e GAN, respectivamente, nas siglas em inglês)

são alguns exemplos de redes neurais que encontram-se neste ápice.

No contexto deste trabalho, assim como será discutido na seção seguinte, os problemas

de predição de séries temporais são atacados com grande êxito fazendo-se uso de modelos

estat́ısticos relacionais, e.g. modelos auto-regressivos (AR) [8, 9], médias móveis exponen-

cialmente ponderadas [10] e modelos bayesianos (baseados nas evidências de distribuições

a priori) [11]. Todavia, atualmente, com a popularização do aprendizado profundo e

a capacidade de coleta de dados, abordagens data-driven passaram a ser adotadas e a

fornecerem resultados sobre-humanos [12] — em algum senso. Neste sentido, modelos

sequenciais passaram a ser utilizados para tarefas de predição de séries temporais, tais

como RNNs [13] (exemplo da arquitetura de RNN conhecida como LSTM na Figura 1).

Figura 1: Arquitetura de uma Rede Neural Recorrente conhecida como LSTM (Long

Short-Term Memory)

Fonte: Extráıdo de [14].

No espectro oposto, muitos pesquisadores defendem o uso de modelos simbólicos, com

a justificativa de que há uma certa regularidade nas relações estat́ısticas existentes nos

dados e fatos previamente conhecidos, podendo-se extrapolar esse conhecimento a priori

para inferir novas informações. Trabalhos como [15, 16, 17] abordam o tema sob pers-

pectivas diferentes. Nesse caso, extrair informações contextuais e/ou semânticas a partir
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de dados simbólicos, por exemplo de palavras e relações em Grafos de Conhecimento

(Knowledge Graphs ou KG, na sigla em inglês) é uma tarefa mais próxima de nós, seres

humanos, porém para uma máquina não é natural. Os resultados obtidos através de abor-

dagens e técnicas simbólicas são, geralmente, menos precisas, todavia mais interpretáveis.

Nesse contexto, a Figura 2 permite visualizar essas caracteŕısticas presentes em técnicas

e modelos ditos simbólicos.

Figura 2: Diagrama de fluxo representando um exemplo simples de um método simbólico

- também conhecido como rule-based AI.

Fonte: Autor.

No caso acima, um exemplo simplista do que, porventura, poderiam ser as regras

necessárias para um carro autônomo (um modelo simbólico baseado puramente em regras),

torna-se bastante claro os motivos das técnicas simbólicas serem menos precisas do que

as técnicas e modelos neurais. Em cenários menos abrangentes, muito provavelmente um

racioćınio baseado em regras seja valioso, como, por exemplo, na classificação de uma fruta

baseada na sua cor, formato, tamanho, etc. Porém, no contexto de carros autônomos,

torna-se praticamente inviável estabelecer regras que consigam englobar toda a gama
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de situações que um carro autônomo pode enfrentar (tendo em vista que esses véıculos

baseiam-se em Visão Computacional, uma leve mudança na iluminação da imagem e/ou

v́ıdeo do cenário capturado já acarretaria na necessidade de formulação de novas regras).

O mesmo é válido para problemas na área de NLP: em problemas complexos, sistemas

puramente simbólicos não fornecem os mesmos resultados extraordinários de modelos

neurais, apesar de seus benef́ıcios.

Desta forma, de acordo com pesquisas recentes e especialistas da área [18, 19], a com-

binação dessas duas abordagens pode trazer o melhor de ambas as técnicas e, sob uma

ótica otimista, alavancar a Inteligência Artificial a ńıveis até então inatingidos. A justifica-

tiva seria na completude obtida na união das duas técnicas: modelos simbólicos possuem

seus pontos fortes nas fraquezas existentes em modelos neurais — e vice-versa. Assim,

modelos neuro-simbólicos seriam interpretáveis, robustos, generalizáveis e precisariam de

menos dados para serem treinados.

Desse modo, a fim de compreender como este tema (técnicas e metodologias neuro-

simbólicas) vem sendo tratado pelos pesquisadores, assim como a posśıvel aplicação em

problemas de predição de séries temporais, propõe-se analisar a literatura através de duas

abordagens. A primeira por meio de uma análise bibliométrica. A segunda através de

uma análise de trabalhos espećıficos resultantes da análise bibliométrica.

2.2 Revisão Bibliométrica

A revisão bibliométrica é uma abordagem que tem como objetivo entender como um

tema qualquer vem sendo pesquisado ao longo dos anos, assim como quem são os principais

autores, instituições e páıses responsáveis por essas pesquisas. Ou seja, é uma abordagem

quantitativa que se baseia na captura e análise das informações obtidas nas bases de dados

que reúnem produção cient́ıfica (e.g. Scopus, Web of Science).

Para a realização da análise bibliométrica do tema em questão, foram utilizadas a

própria ferramenta de análise de uma dessas bases de dados (Scopus) e o software —

VOSviewer — capaz de criar redes de conexão entre os trabalhos e os autores, formando

clusters e outras informações visuais, por meio dos metadados extráıdos das bases de

dados.

Os dados foram obtidos a partir de dois grupos de palavras-chave. O primeiro grupo

foi a união das palavras “neural networks” e “symbolic reasoning” com o conector AND.

O resultado obtido foram 73 documentos, passando de surveys e overviews até estudos
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de caso.

A Figura 3 apresenta a rede de conexões entre os autores, sendo posśıvel notar a

formação de clusters de autores os quais tiveram trabalhos conjuntos e em co-autorias

(mais próximos no cluster), quem são os autores que mais publicaram a respeito do tema

(vértices maiores) e como eles se relacionam (citações) a partir das arestas entre os nós.

A Figura 4 apresenta o mapa de densidade para este mesmo conjunto de palavras-chave,

representando quem são os autores que mais publicam sobre o tema (cores mais quentes

no mapa).

Figura 3: Rede de conexões entre autores e os principais expoentes do tema, através das

keywords “neural networks” AND “symbolic reasoning”.

Fonte: Autor com aux́ılio do software VOSviewer.
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Figura 4: Mapa de densidade de publicações dos autores, através das keywords “neural

networks” AND “symbolic reasoning”. Cores mais quentes indicam maior quantidade de

publicações.

Fonte: Autor com aux́ılio do software VOSviewer.

Ainda que com este primeiro conjunto de palavras-chave tenhamos obtido um número

expressivo de trabalhos e conseguimos visualizar quais os autores mais relevantes, busca-

mos expandir a análise. Assim, o segundo grupo de palavras-chave foi a união das palavras

“neuro symbolic” e “neural-symbolic” com o conector OR. O resultado foi quase 5 vezes

maior do que o anterior (316 documentos) e pôde fornecer mais informações a respeito da

produção cient́ıfica do tema.

A Figura 5 representa a rede de conexões entre os autores, sendo posśıvel notar a
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Figura 5: Rede de conexões entre autores e os principais expoentes do tema, através das
keywords “neuro symbolic” OR “neural-symbolic”.

Fonte: Autor com aux́ılio do software VOSviewer.

maior diversidade de pesquisadores, apesar de apresentar os mesmos autores com maior

expressividade na área — inclusive com relações e quantidade de publicações semelhan-

tes, representadas pelas arestas e o tamanho dos nós. O mapa de densidade para este

conjunto de palavras-chave é representado pela Figura 6. É posśıvel notar os autores mais

producentes, em consonância com o exposto nas Figuras 3 e 4.

Como o segundo conjunto de palavras-chave foi mais proveitoso, analisamos, a partir

da ferramenta dispońıvel na base de dados Scopus, como esses 316 trabalhos se distribúıam

nas diferentes dimensões que se seguem.

A Figura 7 apresenta como o tema passou a ser explorado ao longo dos anos. É

posśıvel notar uma tendência de crescimento de pesquisas sobre o tema, com um pico

de trabalhos publicados em 2020 (33 documentos) — vale ressaltar que a grande queda

pós-2020 indica os trabalhos com publicação prevista para 2021.
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Figura 6: Mapa de densidade de publicações dos autores, através das keywords “neuro
symbolic” OR “neural-symbolic”. Cores mais quentes indicam maior quantidade de pu-
blicações.

Fonte: Autor com aux́ılio do software VOSviewer.

Figura 7: Documentos publicados por ano.

Fonte: Autor adaptado de Scopus.
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Já a Figura 8 fornece a informação a respeito de quais páıses estão produzindo pes-

quisas a respeito do tema. O destaque do Brasil, figurando entre os 3 páıses com mais

documentos sobre o tema (quase 40), poderá ser entendido na sequência. Ademais, páıses

com excelentes reputações no que tange a pesquisas de ponta na área de IA figuram entre

aqueles com mais publicações sobre o tema (Reino Unido e EUA).

Figura 8: Documentos publicados por páıs.

Fonte: Autor adaptado de Scopus.

Por fim, como pôde ser observado pelas Figuras 3, 4, 5 e 6, além da posição expressiva

do Brasil, representada pela Figura 8, o autor com maior número de publicações sobre

o tema é Lamb, pesquisador brasileiro da Universidade Federal do Rio Grande do Sul

(UFRGS) — apresentado na Figura 9. Vale destacar as co-autorias entre este autor e

outros com grande destaque, como D’Avila Garcez, Hitzler e Besold, pesquisadores estes

principalmente de universidades americanas e/ou britânicas — University of London,

Wright State University e University of London, respectivamente.
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Figura 9: Documentos publicados por autor.

Fonte: Autor adaptado de Scopus.

Com este panorama, seguiu-se para uma análise dos trabalhos, em especial surveys,

destes autores que mais se destacaram no tema, além de como sistemas de predição de

séries temporais enquadram-se neste cenário — apresentados na seção 2.3.

2.3 Análise da Literatura

Besold et al. (2017) [18] propõem uma visão hoĺıstica sobre as principais motivações

para a união entre os paradigmas conexionista e de racioćınio lógico, em termos computa-

cionais, além de como os estudos de técnicas neuro-simbólicas permeiam diferentes áreas

e aplicações, seus fundamentos teóricos e desafios. Os autores argumentam a respeito da

fragilidade e dependência de modelos neurais a conjuntos de dados representativos das

tarefas a que se propõe a solucionar, e como a integração de técnicas simbólicas podem

auxiliar na resposta destes modelos ao acoplar um módulo de racioćınio (lógico ou pro-

babiĺıstico). Ou seja, o objetivo principal é, de fato, proporcionar a unificação deste dois

paradigmas.

Uma forma de se chegar a esta unificação, de acordo com os autores, é pensando no

problema a ser atacado de maneira modular. O problema precisa ser subdividido em

pequenas partes, as quais serão responsáveis por tratar de um aspecto espećıfico, por

exemplo racioćınio sobre conceitos genéricos e conhecimento obtido a partir do aprendi-

zado de representação. Assim, cada módulo seria responsável por auxiliar na construção
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Figura 10: Framework geral de um sistema baseado em técnica neuro-simbólica.

Fonte: Extráıdo de [18].

de novos conhecimentos, possibilitando o modelo a raciocinar sobre novos conceitos. Vale

destacar que o aprendizado e o racioćınio simbólico são traduzidos a partir de arquiteturas

neurais, as quais são representadas, inicialmente, antes mesmo do aprendizado, ou seja,

as particularidades do problema são integradas a arquitetura do modelo. Esta framework

discutida pelos autores está representada na Figura 10. Diferentes redes neurais, cada

uma responsável por raciocionar sobre um aspecto do problema em diferentes ńıveis de

abstração, intra e interconectadas. Esta abstração aponta diretamente para a utilização

de modelos em que exista um forte viés relacional entre suas entidades, não apenas do

ponto de vista conexionista das redes neurais, mas inclusive do ponto de vista lógico, pois

as diferentes redes neurais artificiais precisam ser concatenadas a fim de representarem

uma abstração lógica.

Consequentemente, como apontado pelos autores, os principais desafios, tanto práticos
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quanto teóricos, passam por (1) conseguir traduzir o racioćınio simbólico, que está relaci-

onado com a lógica (proposicional, booleana, fuzzy, etc), (2) criar modelos de aprendizado

e de racioćınio — h́ıbridos e não “puro-sangue” — e (3) traduzir as redes em lógica

(extração de conhecimento).

Sob esta perspectiva, buscamos entender como e quais os modelos neuro-simbólicos

posicionam-se atualmente. Besold et al. (2017) citam alguns exemplos como BN (Baye-

sian Networks), MLN (Markov Logic Networks), RNM (Relational Neural Machines, como

NTMs — Neural Turing Machines), dentre outros. E, seguindo linha parecida, De Raedt

et al. (2020) [20], ao traçar paralelos entre os modelos ditos estat́ısticos relacionais e os

neuro-simbólicos, comparando-os em 7 diferentes dimensões, expande esse leque de mode-

los que unem aprendizado e regras, mas possuindo muitas intersecções com o argumento

expresso em [18].

Tanto Besold et al. (2017) quanto De Raedt et al. (2020) definem os modelos neuro-

simbólicos em termos de modelagem em grafos (sejam diretos ou indiretos). Neste sentido,

grande destaque é dado para as chamadas Redes Neurais de Grafos (GNNs, na sua sigla

em inglês). Lamb et al. (2020) [21] apresentam, a partir deste survey, como GNNs ligam-se

(ou podem ser relacionadas) com computação neuro-simbólica. O viés indutivo relacional

das Redes Neurais de Grafos, assim como sua propriedade de invariância a permutação

— as quais serão melhor explicitadas na seção 5.2.1 — são caracteŕısticas comuns entre

os modelos neuro-simbólicos supracitados e as GNNs.

Todos estes trabalhos [18, 20, 21] discutem sobre a utilização de modelos neuro-

simbólicos em diferentes áreas: biologia computacional, avaliação de riscos, processamento

de linguagem natural, visão computacional, etc. Todavia, apesar de algumas destas áreas

compartilharem conhecimentos e técnicas aplicáveis ao estudo de séries temporais (e.g.,

mecanismos de memória e atenção, emprestados dos estudos feitos na área de NLP),

existe uma lacuna no que tange a técnicas neuro-simbólicas em conjunto com modelos de

aprendizado profundo aplicados a séries temporais.

Lim e Zohren (2020) [22] apresentam um panorama sobre como aprendizado profundo

vem sendo utilizado em problemas de séries temporais, assim como quais são as técnicas

clássicas utilizadas em tarefas de predição de conjuntos de dados de séries temporais.

Apesar dos autores deixarem claro que este survey não tem nenhuma pretensão de ser

um trabalho exaustivo, a classificação seguida pelos autores permite entender quais os

prós e contras de cada categoria de modelos e técnicas aplicadas a séries temporais. Neste

sentido, os métodos, de acordo com os autores, podem ser classificados em três categorias:
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1. Abordagem Clássica: Os métodos tradicionais de modelagem de séries temporais

têm como foco modelos puramente estat́ısticos e paramétricos, os quais dependem

do ajuste de especialistas no domı́nio [22]. São representantes desta classe:

1.1. ARIMA — Autoregressive Integrated Moving Average [8]

1.2. Exponential Smoothing [10, 23]

2. Abordagem por ML e DL: Métodos baseados em aprendizado de máquina e

aprendizado profundo buscam aprender a dinâmica temporal do conjunto de dados

guiados estritamente nos padrões presentes na própria distribuição (i.e., são data-

driven). Porém, o segundo conjunto de modelos, de DL, conseguem incorporar

em suas arquiteturas os viéses relacionais que podem existir no conjunto de dados,

permitindo o aprendizado de representações mais complexas. Exemplos desta classe

de métodos:

2.1. Redes Neurais Convolucionais (CNN) [24, 25]

2.2. Redes Neurais Recorrentes (RNN) [13, 26, 27]

• LSTM — Mecanismos de memória

• Transformers — Mecanismos de atenção

3. Abordagem Hı́brida: Apesar dos benef́ıcios da utilização de modelos de aprendi-

zado de máquina ou aprendizado profundo em problemas de séries temporais (e.g.,

reduzir ou extinguir a etapa de feature engineering), por serem data-driven esses

modelos estão suscet́ıveis a sobreajustarem à distribuição dos dados, especialmente

quando trabalha-se com modelos complexos como aqueles pertencentes ao aprendi-

zado profundo [22]. Neste sentido, os métodos h́ıbridos mostraram-se ideais para a

solução de muitos problemas envolvendo séries temporais, conseguindo unir o me-

lhor de ambos os paradigmas: incorporação de conhecimento sobre o domı́nio na

estrutura do modelo em conjunto com o aprendizado de padrões. Assim, parte

do modelo é responsável por capturar as informações temporais, enquanto a outra

tem como função direcionar a solução do sistema, a partir das particularidades do

domı́nio. Destacam-se os seguintes modelos:

3.1. ES-RNN [28]

3.2. Gaussian Processes [29]

3.3. Deep State Space [30]
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Os autores finalizam o trabalho explicitando algumas limitações que muitos modelos

de aprendizado profundo, desenvolvidos para problemas de séries temporais, possuem.

Primeiro, a área ainda carece de abordagens que consigam lidar com conjuntos de dados

faltantes ou que possuam aquisição aleatória, tendo em vista que grande parte destes

modelos tratam as relações temporais de forma regular. Por último, os modelos atuais

carecem de arquiteturas que consigam capturar o caráter hierárquico dos conjuntos de

dados de séries temporais. Como será visto no problema abordado neste trabalho, séries

temporais podem possuir grupos logicamente conectados que influenciam no resultado do

fenômeno observado. Estes agrupamentos podem advir tanto da estrutura do problema

quanto de relações de causalidade latentes.
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3 METODOLOGIA

Conforme indicado nas seções anteriores, pretende-se nesse trabalho focar na imple-

mentação de um sistema de predição de séries temporais baseado em técnicas neuro-

simbólicas. O primeiro passo será a escolha do domı́nio; pretende-se atuar em duas

etapas. Durante o primeiro semestre, construir o sistema de predição de séries temporais

que consiga abordar um problema a partir da união do aprendizado em cima de grandes

massas de dados e técnica simbólica. O problema em questão diz respeito a predição

de fenômenos maŕıtimos em uma região litorânea do Brasil (especificamente, a região da

Báıa de Sepetiba/Ilha Grande), de interesse da indústria de minérios, óleo e gás. Nesta

primeira etapa, será posśıvel compreender os principais desafios, assim como fazer o maior

número de ajustes posśıveis para que o sistema possa fornecer respostas robustas. Em

seguida, implementar modelos baseline, com o intuito de comparação com o(s) modelo(s)

implementados na primeira etapa. Assim, poderemos concluir se: (1) o uso de técnicas

neuro-simbólicas faz sentido para a predição de séries temporais, onde há uma forte relação

entre os atributos espaciais e temporais do problema; (2) validar a hipótese de que este

tipo de sistema (baseados em técnicas neuro-simbólicas) de fato é mais robusto do que

outras soluções e possui ganhos em termos de eficiência no aprendizado (necessidade de

menos dados para obter melhores resultados).
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4 REQUISITOS

Desse modo, apresentados a área da pesquisa, seus termos e trabalhos correlatos, com

suas vantagens e desvantagens, seguem-se os requisitos para o projeto:

• Escolha de um domı́nio: Tendo em vista que o cerne do trabalho consiste na

junção de duas técnicas de inteligência artificial (à t́ıtulo de esclarecimento, técnicas

e modelos neurais unidos com técnicas simbólicas de racioćınio) e que, segundo apre-

sentado na revisão bibliográfica e na revisão do estado-da-arte, técnicas simbólicas

são precedidas pelo conhecimento das regras e procedimentos do domı́nio, estabele-

cer um domı́nio que seja amplamente discutido e conhecido.

• Construção de um modelo neuro-simbólico de um sistema de predição

de séries temporais: Implementar um modelo neuro-simbólico, ou seja, que

seja capaz de extrair informações estat́ıstico-relacional dos dados, através de ar-

quiteturas neurais, unido com as regras e conhecimento do domı́nio, por meio de

técnicas simbólicas. A revisão do estado-da-arte aponta para a direção de modelos

sequênciais que capturam relações espaço-temporais (e.g. GNNs).

• Testes do sistema: Após treinamento do modelo, testá-lo na base de dados do

problema do domı́nio escolhido.

• Validação da metodologia: A fim de que outros modelos e técnicas sejam compa-

radas com a metodologia adotada, validar o modelo proposto com modelos baseline

e modelos estado-da-arte na base de dados do problema escolhido.
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5 DESENVOLVIMENTO

5.1 O Problema da Região da Baia de Sepetiba/Ilha

Grande

Diferentes situações práticas requerem, com frequência, previsões onde tanto as in-

formações presentes nos dados quanto os padrões estruturais dos problemas referentes a

estas situações devem ser considerados conjuntamente. Por exemplo, se atributos são re-

lacionados por meio de predicados, de modo que os dados cheguem na forma de grafos, é

posśıvel explorar o aprendizado relacional para construir um modelo de predição por meio

de GNNs [31, 32]. Outro cenário diferente que parece pedir também alguma estrutura

teórica em grafos acontece caso tenhamos conhecimento prévio sobre as relações entre atri-

butos. Seja devido à relações espaciais, temporais ou espaço-temporais. Redes Neurais

de Grafos parecem oferecer o véıculo ideal para explorar essa estrutura de tempo/espaço

subjacente.

Examinamos um problema real de importância tecnológica e econômica, onde é preciso

lidar com um fluxo substancial de dados temporais e também com uma estrutura espacial

conhecida. O problema é determinar a velocidade da corrente de água em um local

espećıfico dentro de uma importante área portuária da América do Sul, usando medições

coletadas por uma rede de bóias maŕıtimas próximas umas as outras. A predição das

condições da água na área portuária é uma grande preocupação para as autoridades

portuárias que precisam coordenar um grande número de navios pesados que transportam,

por exemplo, petróleo ou minério. Os modelos f́ısicos atuais são caros para desenvolver

e manter, pois exigem medições de alta qualidade do ambiente, condições de contorno e

uma representação espacial 3D precisa da localização.

Abstratamente, esse é um problema em que dados sequenciais são coletados através

de uma rede de sensores com uma estrutura espacial fixa, onde os sensores geralmente

estão com defeito. Assim, nosso problema espećıfico é representativo de uma grande classe

de desafios de predições enfrentados por várias indústrias e que poderiam se beneficiar
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Figura 11: Báıa de Sepetiba/Ilha Grande e a localização dos principais terminais
portuários: 1 - Terminal Angra (Petróleo) TEBIG; 2 - Terminal da Ilha de Guáıba (TIG);
3 - Porto de Sepetiba; 4 - Terminal CSN.

Ilha Grande Bay

Sepetiba Bay
1

2

3 4

Fonte: Autor.

amplamente da alavancagem de GNNs.

Neste sentido, foi desenvolvido, no presente trabalho, um modelo baseado em GNN

cuja estrutura captura relações espaciais no domı́nio e cujos parâmetros são aprendidos a

partir de dados históricos, para solucionar o problema de predição de séries temporais da

região da Báıa de Sepetiba/Ilha Grande.

A Báıa de Sepetiba/Ilha Grande está localizada no Estado do Rio de Janeiro, região

sudeste do Brasil. É uma área protegida perto da cidade do Rio de Janeiro, com diferentes

instalações portuárias e tráfego intenso de navios. A Figura 11 mostra a região de interesse

na América do Sul (à esquerda) e os quatro principais terminais portuários: TEBIG, TIG,

Porto de Sepetiba e CSN (à direita).

Condições maŕıtimas e climáticas possuem um impacto direto nas operações exercidas

nos terminais portuários devido às posśıveis consequências para as embarcações comerciais

que ali se locomovem, afetando frontalmente a segurança da navegação. Como exemplo,

em condições de eventos extremos (e.g., correntes maŕıtimas fortes ou baixa visibilidade),

o tráfego de embarcações na região deve ser interrompido. Portanto, a previsão a curto

prazo destes fenômenos ambientais (dentro de 24 a 48 horas) é uma tarefa essencial das

autoridades portuárias. No caso de canais compartilhados com vários tamanhos de navios,

como no caso da região em análise, a previsão torna-se ainda mais cŕıtica. Desta forma, o

interesse neste trabalho é realizar previsões dentro de um peŕıodo de 24 horas, pois essa

é a janela de previsão mais t́ıpica nesse contexto.

A previsão de parâmetros ambientais geralmente é feita com uma série de modelos de

circulação atmosférica e hidrodinâmica. As entradas do método são as condições de limite,

como variação das marés, informações de satélite de baixa resolução ou modelo global e

medições locais do vento [33]. Eles também dependem de um modelo de grade 3D preciso
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da área (litoral e batimetria). Os últimos anos testemunharam um número crescente de

dados medidos, devido a novos sensores, tecnologias de transmissão e armazenamento de

dados, e uma consequente chamada para técnicas mais sofisticadas baseadas em dados

para previsão de séries temporais [34]. O modelo baseado em dados é independente dos

modelos f́ısicos e das entradas externas, sendo atualizado automaticamente assim que um

novo conjunto de medições estiver dispońıvel. É dentro dessa tendência de modelagem

baseada em dados que busca-se operar neste trabalho.

Adotamos uma nova abordagem de modelagem que usa uma rede de sensores dis-

tribúıda espacialmente ao longo da Báıa de Sepetiba/Ilha Grande para prever a velocidade

da corrente de água em uma única bóia conhecida como Bifurcação. A rede consiste em

um sistema de nove bóias localizadas conforme indicado na Figura 12 (observe que a bóia

Bifurcação aparece sobre o número 5). Cada bóia coleta medições de variáveis relacionadas

à elevação da maré, velocidade da corrente e do vento, temperatura e visibilidade.

Cada bóia coleta uma rodada de medições a cada dez minutos. Devido à dinâmica

relativamente lenta do sistema, convencionou-se fazer uma subamostragem e analisar in-

tervalos de vinte minutos entre medidas. Notavelmente, a coleta de dados é bastante falha

(problema abordado na seção 5.3): vários atributos estão ausentes em muitas rodadas de

medição e, em alguns casos, bóias não relatam um ou mais atributos por meses. Isso

ressalta o benef́ıcio da abordagem GNN que explora as informações espaciais.

Figura 12: Localização das bóias que medem a velocidade da corrente e do vento, elevação
da maré, temperatura e visibilidade. Nome das bóias: 1) B18; 2) BEV; 3) TIG; 4) TIG
1; 5) Bifurcação; 6) Evolução; 7) Pier; 8) BPA; 9) B22

1 2
3
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7

8
9

Fonte: Autor.



30

5.2 Redes Neurais de Grafos

5.2.1 Explorando relações espaço-temporal

Redes neurais profundas agora oferecem excelente, e muitas vezes surpreendente, de-

sempenho em uma variedade de configurações onde os padrões devem ser identificados e

postos em prática. No entanto, as redes neurais totalmente conectadas enfrentam difi-

culdades em capturar relações entre entidades Em alguns casos, as redes neurais adotam

pesos que são compartilhados por muitas unidades, por exemplo em Redes Neurais Con-

volucionais (CNNs) ou Redes Neurais Recorrentes (RNN); contudo, mesmo nesses casos,

as conexões são principalmente locais dentro do modelo (espacial ou temporalmente).

Redes Neurais de Grafos (GNNs, na sigla em inglês) foram desenvolvidas de forma

a levar em consideração a estrutura de um domı́nio, expresso através de relações entre

entidades [35, 31]. O objetivo é trabalhar na intersecção entre técnicas neurais e modela-

gem simbólica, onde as relações e conexões subjacentes capturam os aspectos simbólicos

do domı́nio. Para codificar o domı́nio, uma GNN usa nós (que pertencem a uma ou mais

classes), arestas (que correspondem a predicados binários) e atributos globais. Figura 13

representa um fragmento de um grafo com tais objetos.

Figura 13: Grafo: nós, arestas e atributos global.

vi
vj vk

u

Fonte: Autor.

Para ilustrar melhor os componentes de uma GNN, considere uma configuração sim-

ples que não está relacionada ao aplicativo que descrevemos a seguir. Considere o pro-

blema f́ısico de prever a posição da massa em um sistema massa-mola. Pode-se modelar

o sistema f́ısico usando um grafo com nós representando as massas do sistema e arestas

representando relações entre nós - isto é, interações entre massas devido às molas. Os

atributos de massas vi são suas posições, velocidades e valores de massa. Os atributos

de arestas ek são a rigidez e o comprimento natural da mola que conecta cada massa

(vértice). Por último, o atributo global u, compartilhado com todas as entidades, é a

força da gravidade. Esses objetos definem o grafo subjacente. Para prever os atributos

do modelo, uma função de predição deve ser aplicada às entidades; por exemplo, pode-se

querer prever a posição de uma massa (nó) após 5 etapas de tempo no problema hipotético

do sistema massa-mola.
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Para determinar o comportamento de uma GNN, várias funções devem ser especifi-

cadas. Battaglia et al. (2017) [36] definem, em seu esquema geral, as funções associadas

aos vértices, arestas e atributos globais:

e′k = φe (ek, vrk , vsk , u) , ē′i = ρe→v (E ′i)

v′i = φv (ē′i, vi, u) , ē′ = ρe→u (E ′)

u′ = φu (ē′, v̄′, u) , v̄′i = ρv→u (V ′)

onde os atributos das entidades arestas e nós, e atributos globais, respectivamente ek, vi

e u, são atualizados pelas funções φ. Além disso, os atributos das arestas são agregados

por funções ρ, que podem ser a média, mediana, soma (qualquer função de agregação) de

forma a serem obtidos pelos vértices apontados pelas arestas ou pelos atributos globais. O

mesmo é válido para agregar atributos dos nós com o propósito de atualizar os atributos

globais. Para uma GNN, cada função φ é codificada por uma rede neural. Todas essas

redes devem ter sua estrutura pré-definida e seus pesos serão aprendidos — como será

discutido posteriormente.

5.2.2 Modelando o problema em GNN

Seguindo Battaglia et al. (2017), tomamos um grafo atribúıdo (direcionado) como

uma tupla G = (V,E), em que V = {v1, . . . ,vN} é um conjunto dos atributos do nó

(vetores com valor real) e E = {(e1, r1, s1), . . . , (eM , rM , sM)} é um conjunto de triplas

contendo um atributo de aresta ek (um vetor de valor real) sobre a aresta (rk, sk) 1.

Nosso grafo é especificado da seguinte forma: cada vértice representa uma bóia cujos

atributos são componente de velocidade da corrente no eixo x, componente de velocidade

da corrente no eixo y, componente da velocidade do vento no eixo x, componente da

velocidade do vento no eixo y, ńıvel do mar, temperatura e visibilidade locais. Quanto

às arestas, um especialista forneceu conhecimento de domı́nio selecionando quais atribu-

tos dos nós afetam mais os demais atributos dos vértices adjacentes. Os atributos da

aresta são uma projeção dos atributos componente de velocidade da corrente no eixo x,

componente de velocidade da corrente no eixo y e ńıvel local do mar do vértice adjacente.

Consideramos dois tipos de topologia de grafos: uma versão totalmente conectada

(denominado modelo “Não Local”) e uma versão totalmente desconectada (denominado

modelo “Local”). A primeira versão captura efeitos entre bóias (como todas compartilham

1[36] também define um atributo global u que não usamos.
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uma localização geográfica, estão relacionadas espacialmente); já a segunda versão não

aproveita o viés indutivo relacional e foi constrúıdo apenas para fins de comparação e ob-

tenção de evidências sobre a hipótese de melhoria do modelo ao compartilhar informações

entre as entidades. Ou seja, têm-se dois esquemas:

• A GNN Não Local atualiza os atributos dos vértices levando em consideração todas

as informações relacionais [37].

V φv

E φe

ρe→v
V ′

A função e′k = φe(ek) atualiza cada atributo de aresta ek. Esses atributos atua-

lizados são agregados através de uma soma ponderada como ēi = ρe→v({ek}k:rk=i) =∑
k:rk=i wke

′
k, em que wk é uma função da distância entre o nó emissor e o nó receptor.

Para um nó receptor, calculamos o inverso da raiz quadrada da distância f́ısica (fornecida

por especialista na área) entre esse nó e o nó emissor adjacente. Em seguida, normaliza-

mos esse fator com a soma de todas essas distâncias invertidas de cada nó emissor para

aquele receptor, obtendo nosso peso wk. Em resumo, queremos que, para todas as bóias,

os atributos dos seus parentes mais próximos tenham maior relevância. Finalmente, a

função v′i = φv(ēi,vi) atualiza cada atributo de nó vi levando em consideração o atributo

agregado ēi. Conforme especificado na Seção 5.2.1, em uma abordagem GNN, as funções

aplicadas às entidades do grafo são redes neurais. Nesse sentido, as funções de atualização

descritas acima como φe e φv são redes neurais (NN) alimentadas por atributos da en-

tidade. Em outras palavras, dados os atributos das bóias em uma etapa de tempo, que

estão nos nós e arestas do grafo, seus valores na próxima etapa são previstos atualizando

os atributos das arestas, e′k = NN e(ek), que é uma variável independente para atualizar

os atributos dos nós: v′i = NN v(ēi,vi).

• O bloco de GNN Local, por sua vez, analisa apenas os atributos dos vértices, isto

é, temos apenas v′i = φv(vi).

V φv V ′

Observe que o segundo esquema (Local) ainda se beneficia da estrutura em grafo, pois

a função φv é compartilhada entre todos os nós.

Para permitir que as GNNs capturem a evolução temporal dos sinais, concatenamos,

para cada nó e aresta, medições das últimas 48h, coletadas a cada 20 minutos. Portanto,
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gera-se atributos de nós vi ∈ R145×7 e atributos de arestas ek ∈ R145×3 (ou seja, 144

pontos de dados observados mais o ponto do próximo passo a ser previsto).

5.3 Dados do Problema

5.3.1 Análise Exploratória

O conjunto de observações consiste de uma grande base de dados de 01-01-2018 00h00

a 31-12-2019 23h50 (2 anos de medições), amostrados de 10 em 10 minutos, dos quatro

locais da Báıa de Sepetiba/Ilha Grande (TEBIG, TIG, CSN e Porto de Sepetiba), o que

fornece, aproximadamente, 105 mil pontos2.

Os dados consistem de medições de fenômenos maŕıtimos e climáticos através de uma

rede de sensores, instalados em bóias, totalizando 9 pontos de medição. Sete são os

fenômenos observados: componentes de velocidade da corrente de água nos eixos x e y,

componentes de velocidade do vento nos eixos x e y, ńıvel do mar e temperatura local, e

visibilidade. A Tabela 1 ilustra a disposição dos dados obtidos.

Tabela 1: Dataset dos dados. Os valores dos fenômenos aqui presentes são meramente
ilustrativos.

t bcx media bcy media . . . B18v
01− 01− 2018 00h00 0.789 0.567 . . . NaN
01− 01− 2018 00h10 0.743 0.598 . . . 1.0

. . . . . . . . . . . . . . .
31− 12− 2019 23h50 0.722 NaN . . . 1.0

Fonte: Autor.

Apesar do grande avanço nos últimos anos em termos de captura, processamento e

distribuição de dados em diferentes áreas, e tendo em vista que a referida rede de sensores

encontra-se “into the wild”, ou seja, estão vulneráveis a toda sorte de intempéries, seria

ingênuo pensar que os dados não apresentariam faltas. Deste modo, existia uma deficiência

considerável, a ponto de ser necessário implementar algoritmos capazes de completar nossa

base com certa fidelidade: cerca de 3,2 milhões de células estavam ausentes neste conjunto

de dados, o que corresponde a aproximadamente 43% das células.

A t́ıtulo de exemplificação, a Figura 14 apresenta a distribuição para um fenômeno

observado na bóia Bifurcação. É posśıvel notar faixas de dados faltantes, tanto no ano de

2Vale destacar que o pesquisador responsável por fornecer os dados exigiu a sua confidencialidade.
Assim, apesar do modelo ser exposto e aberto, os dados aqui representados servirão para ilustrar a
estrutura da base a qual t́ınhamos em mãos e foi utilizada para o treinamento e teste do nosso modelo.
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2018 (ińıcio das observações) quanto em 2019 (faixa mais larga, onde, provavelmente, o

sensor sofreu algum dano). Apesar disso, é posśıvel notar que na maior parte do peŕıodo

observável houve a aquisição dos dados.

Figura 14: Distribuição para um dos fenômenos da bóia Bifurcação. Devido às restrições

para divulgação dos dados, o fenômeno foi anonimizado tanto pela omissão do que ele

representa quanto pela transformação dos valores.

Fonte: Autor.

De maneira totalmente oposta, a Figura 15, que apresenta a distribuição para o mesmo

fenômeno, porém observado pela bóia B22, mostra que alguns desses sensores deixaram

de medir estes fenômenos em grande parte do peŕıodo (se não, em alguns casos, como o

ilustrado na Figura 15, na maioria dele).



35

Figura 15: Distribuição para um dos fenômenos da bóia B22. Devido às restrições para

divulgação dos dados, o fenômeno foi anonimizado tanto pela omissão do que ele representa

quanto pela transformação dos valores.

Fonte: Autor.

5.3.2 Imputação dos Dados

Tendo sido explicitado o problema relativo aos dados faltantes da base, dois métodos

distintos foram aplicados a fim de realizar a imputação dos dados.

1. MICE (Multiple Imputation by Chained Equations) [38, 39, 40]: este método

funciona a partir do esquema de maximização da probabilidade a posteriori (ou

MAP, na sigla em inglês). A ideia central consiste em utilizar as informações das

distribuições a priori das variáveis faltantes junto com a relação entre elas. Inici-

almente, completa-se a base a partir das distribuições das próprias variáveis. Na

sequência, define-se uma destas como sendo a variável dependente e faz-se uma

regressão tendo como variáveis independentes as demais variáveis. Repete-se este

processo para todas as demais variáveis, atualizando os seus valores em cada rodada

de regressão, até que os valores das variáveis deixem de alterar, ou seja, quando hou-

ver a otimização dos valores.

2. Imputação via distribuição espaço-temporal: suponha que consideremos uma

bóia e um atributo esteja ausente em algum momento. Caso este atributo estiver

presente para a maioria das bóias, imputamos a média delas quando a variância

for menor do que um threshold ; caso contrário, imputamos a mediana. Todavia,
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se a maioria das bóias também tiverem este atributo ausente, tomamos a média

deste atributo em relação ao tempo para as medições da bóia. Ou seja, no primeiro

esquema é levado em conta a distribuição espacial do atributo, enquanto que no

segundo, a distribuição temporal. O valor de threshold foi obtido através de várias

tentativas, seguidas de amostragens de intervalos para definir, qualitativamente, se

a imputação teve bom resultado ou não — o valor encontrado foi de 0.25.

Nossas experiências indicaram que a imputação via distribuição espaço-temporal levou a

um desempenho um pouco melhor. Deste modo, relatamos, na sequência, os resultados

com um conjunto de dados completo por este método.
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6 RESULTADOS E CONCLUSÕES

Implementamos nossa GNN usando a biblioteca de redes de grafos do DeepMind1,

adaptando-o conforme necessário ao nosso modelo. Dadas as premissas de modelagem

descritas na seção anterior, temos 2.415.367 parâmetros para treinar o esquema Não Local

e 2.020.359 parâmetros no esquema Local. Os modelos foram treinados em um lote de 5k

pontos de dados com sliding window de 6 pontos de dados para treinamento e 3 pontos

de dados para validação (uma divisão de 67%/33% do conjunto de treinamento/teste).

O otimizador Adam foi utilizado com learning rate igual a 1e-4. Os modelos foram

treinados para 5 iterações. As arquiteturas de redes neurais usadas para as entidades

tinham 5 camadas e 256 unidades/camada. A Tabela 2 resume esta definição.

Tabela 2: Hiperparâmetros e seus valores. Seus ajustes foram realizados através de grid-
search durante a fase de validação.

Hiperparâmetro Valor
Learning Rate (α) 1e-4

# camadas 5
# unidades/camada 256

Fonte: Autor.

Em seguida, usamos o modelo para prever a corrente de água na bóia Bifurcação

pelas próximas 24 horas de forma sequencial. Ou seja, usamos dados das últimas 48h

para prever as medições para os próximos 20 minutos. Em seguida, alteramos nossa

janela de tempo para incorporar essa previsão como se fosse uma medida e predizemos as

medidas para o segundo intervalo de 20 minutos do dia. Continuamos dessa maneira até

que todas as 24[h]× 3[medidas/h] = 72 medidas tenham sido previstas. Um exemplo de

previsão de 2 etapas é mostrado na Figura 16. Como afirmado antes, dado que o objetivo

é prever a velocidade da corrente de água para as 24h seguintes, são necessários 72 passos

semelhantes aos mostrados na Figura 16.

Os testes indicaram que, para ambas as topologias, Local e Não Local, os modelos

1〈https://github.com/deepmind/graph nets〉.

https://github.com/deepmind/graph_nets
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Figura 16: Exemplo do processo de predição.

T − 144 T − 143 · · · T T+1
Prediz

T − 143 T − 142 · · · T + 1 T+2
Prediz

Fonte: Autor.

aprendidos são bem-sucedidos no rastreamento do comportamento dinâmico dos sinais.

Em particular, as previsões foram capazes de ajustar o número de variações atuais no

peŕıodo de previsão — representadas pelas cristas e vales do sinal —, um comportamento

não trivial, pois esse número varia em função da maré e das condições meteorológicas

(vide Figuras 17 e 18). No entanto, ambos os modelos tiveram dificuldade em se ajustar

aos valores de pico dos sinais. O erro quadrático médio é de 0.02 nós2 para o modelo não

local e de 0.10 nós2 para o modelo local (o erro quadrático é medido subtraindo os valores

observados e previstos ao longo do tempo).

A Figura 17 mostra uma execução de predição, comparando nosso modelo com mode-

los baseline amplamente usados em predição de série temporal — especificamente, ARIMA

[9] e LSTM [13]. Ambos os baselines foram treinadas em uma base de 20k dados e 50

iterações. Nosso modelo tem um desempenho significativamente melhor do que ARIMA e

um pouco melhor do que o LSTM, mas com notável eficiência de dados — menos pontos

de dados e iterações para treinar (cerca de um quarto dos pontos de dados). Comparando

os dois modelos GNN, Não local e Local, os melhores resultados são obtidos com o pri-

meiro, evidência que sustenta nossa hipótese de que um modelo poderia se beneficiar do

compartilhamento e combinação de informações entre suas entidades. Dado que o baseline

LSTM e o modelo GNN Não Local foram os melhores modelos, também apresentamos

na Figura 17 o erro quadrático de ambos os modelos ao longo da janela de tempo. O

resultado agregado dos modelos é apresentado na Tabela 3.

Tabela 3: Comparação entre os modelos a partir do erro quadrático médio (MSE, na sigla
em inglês). Tanto GNN Não Local e LSTM obtiveram os melhores resultados, apesar do
primeiro modelo ter maior eficiência de dados — necessita de menos dados para obter o
mesmo resultado.

Modelo MSE
GNN Não Local 0.02

LSTM 0.02
GNN Local 0.10

ARIMA 0.43

Fonte: Autor.



39

Figura 17: Resultados para uma janela de tempo selecionada, comparando os modelos e
os baselines.
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Os resultados obtidos e apresentados ao longo deste caṕıtulo permitem concluir que

a utilização de Redes Neurais de Grafos em problemas de predição de séries temporais

é um véıculo adequado, tanto do ponto de vista da modelagem do problema, a qual

passa pelo conhecimento hoĺıstico deste, quanto dos resultados práticos: há ganhos na

acurácia, ao compararmos com modelagens clássicas e aquelas que não levam em conta

o compartilhamento de informações, o modelo é mais eficiente em termos de consumo de

dados e a forma exigida pela modelagem permite um melhor entendimento de como o

aprendizado ocorre.

Vale destacar, ainda, que os resultados deste trabalho foram publicados na forma

de um artigo para o evento intitulado Symposium on Knowledge Discovery, Mining and

Learning (KDMiLe, 2020), evento conjunto com o Brazilian Conference on Intelligent

Systems (BRACIS, 2020). O trabalho foi muito bem recebido pelos pesquisadores da

área e obteve a 2a colocação dentre os melhores papers do evento.
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Figura 18: Resultados para outra janela de tempo.
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Fonte: Autor.

Além disso, tendo sido vista a posição das GNNs nas técnicas neuro-simbólicas, foi

posśıvel alargar o rol de aplicações de modelos que as empregam. A hipótese de que a

união entre os paradigmas conexionistas e de racioćınio simbólico, incorporado a partir

de regras e restrições na arquitetura do modelo e das redes neurais, alavanca os sistemas

de IA obteve mais uma evidência com os resultados colhidos a partir deste trabalho.

Todavia, é evidente que nosso sistema exige melhorias em certos pontos. Ambos os

modelos de GNN obtiveram resultados insatisfatórios quando nas proximidades de picos

do sinal original. Futuros trabalhos poderiam analisar a influência da arquitetura para

este fenômeno, tendo em vista que, provavelmente, as estruturas totalmente conectada e

disconectada (Não Local e Local, respectivamente) não representam o teto e o piso da

performance desse modelo. Criar um modelo de GNN que consiga aprender, por exemplo,

qual seria a melhor disposição de conexões entre os vértices pode ser um caminho a

ser seguido. Outro modo, porventura, seria a reunião de diferentes modelos de GNN,

treinados cada qual para uma tarefa espećıfica na captura do comportamento da série

temporal (e.g., tendência, sazonalidade, evento adverso). Assim, um ensemble de GNNs

— semelhante à framework apresentada durante a revisão bibliográfica da computação

neuro-simbólica — alavancaria ainda mais a performance do sistema.

Por fim, em se tratando de um problema de grande interesse econômico (predição

de fenômenos cŕıticos à atividade de navegação em regiões portuárias), seria interessante

comparar os resultados obtidos pelo modelo GNN com aquele resultante de modelagem

hidrodinâmica da região. Seria promissor uma solução totalmente guiada por dados que

conseguisse resultados semelhantes, ou até mesmo melhores, do que aqueles obtidos a
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partir de softwares matemáticos de modelagem hidrodinâmica, muitas vezes caros, ŕıgidos

e que exigem manutenções e/ou atualizações constantes, tendo em vista as mudanças

f́ısicas do local.
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