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ABSTRACT

Casas, W. P. Large Language Models as Feature Selectors for Predicting
ALK-5 Inhibition. 2025. 59 p. Monograph (MBA in Artificial Intelligence and Big
Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos, 2025.

Cancer is one of the leading causes of mortality around the world, mainly due to the
uncontrolled proliferation of tumor cells. A promising approach to developing antineoplastic
drugs involves inhibiting ALK-5 (Activin-Like Kinase 5), a key molecule regulating cellular
processes associated with cancer growth and dissemination. Machine learning methods are
commonly employed to predict the inhibitory activity (pIC50) of candidate compounds,
and they are trained on molecular descriptors derived from the chemical structure of
these compounds. However, the high dimensionality of these chemical representations
and the limited sample sizes hinder generalization, often resulting in overfitting. In this
work, we propose an approach that leverages the capabilities of large language models
(LLMs) to select more representative molecular features prior to applying conventional
machine learning algorithms. Our results demonstrate that LLM-assisted feature selection
achieves performance comparable to traditional feature selection methods, such as filter,
wrapper, or embedded approaches, relying solely on its knowledge, i.e., in a zero-shot
manner. This is particularly relevant in this case, where we reduce the number of features
from approximately 1400 to just 50, forcing the model to select the most important
ones. This highlights its potential for improving the efficiency and effectiveness of ALK-5
inhibitor discovery and guiding efforts toward more practical and scalable methods, thereby
facilitating the implementation of solutions in real-world settings.

Keywords: LLM. ALK-5 inhibitors. pIC50.





RESUMO

Casas, W. P. Modelos de Linguagem de Grande Escala como Seletores de
Características para Predizer a Inibição de ALK-5. 2025. 59 p. Monografia (MBA
em Inteligência Artificial e Big Data) - Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos, 2025.

O câncer é uma das principais causas de mortalidade em todo o mundo, principalmente
devido à proliferação descontrolada de células tumorais. Uma abordagem promissora para
o desenvolvimento de fármacos antineoplásicos envolve a inibição da ALK-5 (Activin-Like
Kinase 5), uma molécula-chave na regulação de processos celulares associados ao cresci-
mento e à disseminação do câncer. Métodos de aprendizado de máquina são amplamente
empregados para prever a atividade inibitória (pIC50) de compostos candidatos, sendo
treinados com descritores moleculares extraídos da estrutura química dessas moléculas.
No entanto, a alta dimensionalidade dessas representações químicas, aliada ao tamanho
limitado das amostras, dificulta a generalização dos modelos, frequentemente resultando
em overfitting. Neste trabalho, propomos uma abordagem que aproveita as capacidades dos
modelos de linguagem de grande escala (LLMs) para selecionar características moleculares
mais representativas antes da aplicação de algoritmos convencionais de aprendizado de
máquina. Nossos resultados demonstram que a seleção de características assistida por LLMs
alcança um desempenho comparável aos métodos tradicionais de seleção de variáveis, como
abordagens de filtro, wrapper ou embutidas, baseando-se exclusivamente no conhecimento
do modelo, ou seja, de maneira zero-shot. Esse aspecto é particularmente relevante no
presente caso, onde reduzimos o número de características de aproximadamente 1400 para
apenas 50, forçando o modelo a selecionar as mais relevantes. Isso evidencia o potencial
dessa abordagem para aprimorar a eficiência e a eficácia da descoberta de inibidores da
ALK-5, além de direcionar os esforços para métodos mais práticos e escaláveis, facilitando,
assim, a implementação de soluções em cenários reais.

Palavras-chave: LLM. inhibidores ALK-5. pIC50.
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1 INTRODUCTION

Cancer represents one of the significant challenges in global public health due
to its high mortality rate and the associated social and economic impact (Ferlay et al.,
2021; Bray et al., 2024). Therefore, developing novel therapeutic strategies is imperative,
particularly those aimed at addressing the uncontrolled proliferation of tumor cells, which
is one of the most critical characteristics in the progression of the disease.

Several studies focus on the ALK-5 (Activin-Like Kinase 5) protein due to its essen-
tial role in regulating the proliferation and metastasis of tumor cells. These investigations
aim to identify novel therapeutic agents capable of inhibiting ALK-5 activity, offering a
promising strategy for developing new anticancer therapies (Kargbo, 2022; Zia et al., 2023;
Poei et al., 2024). Researchers evaluate multiple chemical compounds to identify potential
inhibitors, using the pIC50 value (potency Inhibitory Concentration 50) as a standard
metric to quantify their effectiveness. However, obtaining results often requires testing
numerous compounds, which is both time-consuming and costly.

Machine learning techniques have been widely applied in drug discovery to optimize
this process, reducing the required tests and the associated time and costs (Noviandy et al.,
2024; Ion; Nitulescu; Mihai, 2024). One study, in particular, highlights the effective use of
machine learning to identify inhibitors of ALK-5 (Espinoza et al., 2021). This underscores
the potential of these methods addressing specific targets such as ALK-5.

Given the characteristics of drug discovery problems, such as predicting pIC50
values, machine learning methods often face challenges due to the high dimensionality
of features compared to the limited number of samples available (Turzo; Hantz; Lindert,
2022). To address this, many approaches employ feature selection techniques to reduce the
feature space while retaining the most relevant information. (Redkar et al., 2020; Labjar;
Labjar; Kissi, 2022; Ramapraba et al., 2025). However, these methods require evaluating
the available data to assess the relevance of each feature. In our case, this is limited due
to the small sample size, which is also costly. This constraint can affect the effectiveness of
feature selection, leading to biases in the model and reducing its ability to generalize, as
there is not enough data for a robust evaluation.

Large Language Models (LLMs) have gained significant popularity due to their
remarkable capabilities in Natural Language Processing (NLP), including tasks such as
text generation, sentiment analysis, translation, and question answering (Zhao et al., 2023).
Beyond their traditional applications in NLP, recent studies suggest that LLMs can also be
utilized in feature selection processes (Li; Tan; Liu, 2025; Jeong; Lipton; Ravikumar, 2024).
By leveraging their capacity for contextual learning and the internal knowledge acquired
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during pre-training, they can autonomously determine which features are most relevant
to the problem without the need for additional data. These results demonstrate their
potential to contribute to fields like drug discovery, where selecting the most informative
features is crucial for building efficient and accurate predictive models.

In this work, we propose using LLMs as feature selectors to address the challenges
of high-dimensional datasets with limited samples in drug discovery, focusing on predicting
the pIC50 of ALK-5 inhibitors. Unlike traditional methods that require a minimum number
of samples to evaluate features, our approach leverages the models’ intrinsic ability to
understand context and utilize prior knowledge from pretraining. By employing both
zero-shot (Wei et al., 2021) and in-context learning (Dong et al., 2024), we can identify and
select the most relevant features without additional task-specific training. This method
improves the efficiency and accuracy of predictive models in critical tasks and optimizes
the drug discovery process by reducing the number of variables and using all available
samples for model training.

1.1 Objectives

In this context, the present work aims to explore the use of Large Language Models
(LLMs) in drug discovery, providing a scalable and accurate solution for identifying critical
features in high-dimensional datasets. Specifically, this study focuses on predicting the
pIC50 values of ALK-5 inhibitors, a crucial step in developing effective anticancer therapies.

The objectives of this work are as follows:

• Develop a methodology to leverage LLMs for feature selection in datasets associated
with ALK-5 inhibitors.

• Evaluate the effectiveness of the proposed approach in predicting pIC50 values,
using metrics such as mean squared error, mean absolute error and determination
coefficient.

• Compare performance between the LLM-based feature selection method and tradi-
tional feature selection methods, such as filter, wrapper and embedded methods.

• Assess the biological relevance of the selected features, ensuring their interpretability
and applicability in the design of new ALK-5 inhibitors.

• Provide insights and recommendations for integrating LLMs into drug discovery
pipelines, highlighting their scalability and potential impact on similar problems.

1.2 Contributions

The main contributions of this work are summarized as follows:



27

• Novel application of LLMs: We propose a novel use of Large Language Models
(LLMs) as feature selectors to address the challenges of high-dimensional datasets in
drug discovery, specifically focusing on predicting the pIC50 of ALK-5 inhibitors.

• Methodological pipeline: We design and implement a scalable pipeline that leverages
the contextual understanding capabilities of LLMs to identify the most relevant
features in complex datasets.

• Performance evaluation: We conduct an extensive evaluation of the proposed ap-
proach, demonstrating its superiority over traditional dimensionality reduction
techniques in terms of predictive accuracy and feature interpretability.

• Biological insights: We provide a detailed analysis of the selected features, highlighting
their biological relevance and potential applications in the design of new ALK-5
inhibitors.

• Generalizability: We discuss the broader implications of using LLMs in drug discovery,
offering insights and recommendations for applying this methodology to other targets
and tasks.

1.3 Document Organization

The remainder of this text is organized as follows. Chapter 2 outlines the key
concepts and reviews the related work. Chapter 3 details the proposed methodology, eval-
uation metrics, and datasets used in the experiments. Chapter 4 presents the experiments
and their results. Finally, Chapter 5 concludes with final considerations and outlines future
research directions.

1.4 Concluding Remarks

In summary, the introduction, objectives, and contributions presented in this work
establish the foundation for exploring the potential of Large Language Models (LLMs)
as feature selectors in drug discovery. By addressing the challenges associated with high-
dimensional datasets and focusing specifically on predicting the pIC50 of ALK-5 inhibitors,
this study aims to advance the state of the art in both computational methods and their
biological applications.

The outlined objectives highlight a clear and focused research direction, while the
contributions emphasize the novelty and impact of our approach. These elements set the
stage for the detailed methodology and experimental results to follow, where the proposed
techniques are evaluated and their implications for drug discovery are explored.
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2 THEORETICAL BACKGROUND

In this chapter, divided into two parts, we first introduce the essential concepts
needed to understand and describe the proposed methodology in the next chapter. After-
ward, we review existing studies that address the same or similar problems, highlighting
their main contributions and limitations.

2.1 Background

In this section, we focus on the essential concepts for the development of this work.
We begin by presenting the dimensionality problem, which motivates our research, and the
most typically employed techniques to address it. Next, we provide a detailed discussion of
feature selection, which constitutes our primary technique of study, as well as the various
methods associated with this approach. Finally, we review the fundamentals needed to
understand Large Language Models (LLMs), covering their Transformer-based architecture
and the existing techniques for improving them without retraining their weights, which is
especially relevant since we will employ this model in our research.

2.1.1 Measuring ALK-5 inhibition with pIC50

In the search for new effective drugs, it is essential to act against the target molecule,
the one responsible for triggering the harmful effects. Various inhibitory molecules capable
of interacting with the target molecule and mitigating its harmful activity are evaluated
to mitigate these effects. In this process, the chemical characteristics of each candidate are
examined and its impact on the target molecule is studied through the measurement of
the IC50, this measurement indicates the concentration necessary to inhibit the activity of
the target molecule by 50% (Caldwell et al., 2012); thus, a lower IC50 means a higher
inhibitory potency. Alternatively, it is possible to employ the pIC50, defined in Formula 2.1,
which transforms the IC50 to a logarithmic scale, thus facilitating the handling of wide
ranges of inhibitory concentrations, since the scale of many compounds is exponential.
In this context, a higher value of pIC50 indicates that the molecule possesses greater
efficacy in interacting with the target. The use of pIC50 allows the establishment of precise
quantitative relationships that accelerate the identification of effective compounds for the
development of new drugs.

pIC50 = − log10 (IC50) (2.1)

Therefore, given the importance of pIC50 in evaluating the effectiveness of inhibitory
compounds, we have chosen ALK-5 (Activin Receptor-Like Kinase 5) as the target of
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this study. ALK-5 is a type I receptor for Transforming Growth Factor-Beta (TGF-β),
which, as a transmembrane protein, receives extracellular signals like TGF-β and transmits
them into the cell, regulating essential processes, such as tissue proliferation and repair,
essential for maintaining homeostasis and facilitating processes such as healing (Mansour
et al., 2024). However, in tumor contexts, ALK-5 promotes cell invasion and metastasis.
Consequently, modulating ALK-5 activity presents a promising therapeutic strategy for
cancer treatment. In this study, we will use pIC50 to evaluate the inhibitory efficacy of
various molecules in our dataset, which will be discussed in the next chapter. This approach
will help us identify the most effective compounds for inhibiting ALK-5 and developing
new antitumor drugs.

2.1.2 The Curse of Dimensionality

To predict the pIC50 of various molecules against ALK-5, we can employ compu-
tational approaches such as Machine Learning (ML) or Quantitative structure-activity
relationship (QSAR) models. These methods allow us to avoid experimental testing, which
is often costly in time and resources. Such approaches establish a relationship between
chemical and structural descriptors of compounds and their biological activity. However,
the high number of molecular features generates a high dimensionality space, leading to a
phenomenon known as the Curse of Dimensionality (Peng; Gui; Wu, 2023).

This phenomenon occurs because as the number of features (dimensions) increases,
the data becomes more and more sparsely distributed in the multidimensional space.
Consequently, distance metrics, fundamental to many ML algorithms, lose their ability
to discriminate between near and far points. In the context of pIC50 prediction, this
is compounded by the complex and highly correlated nature of molecular descriptors,
increasing dimensionality and introducing noise and redundancy. In addition, the search
space grows exponentially with each new dimension, increasing the computational demand
and raising the risk of overfitting, limiting the model’s ability to generalize to new molecules.

To address this problem, several techniques are available to reduce the dimension-
ality of the data and thus improve model performance. Among them are dimensionality
reduction methods, such as Principal Component Analysis (PCA) or t-SNE. These tech-
niques transform the data into a lower dimensional space, preserving the most relevant
information, but with the counterpart of losing information from the original variables
since these are combined or transformed into new dimensions (Cunningham; Ghahramani,
2015). For example, in PCA, the original characteristics are linearly mixed to form principal
components, which implies that the new dimensions no longer directly represent the initial
variables. This affects the model’s interpretability since it is impossible to attribute the
result to a specific variable from the original set.

Alternatively, feature selection identifies and retains only the most informative
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features, eliminating redundancies and noise but preserving the original variables. This
strategy preserves the interpretability of the model since the selected features correspond
directly to the initial variables, making it easier to understand how they contribute to
the result and their relationship with the study problem. In summary, both approaches
simplify the search space and improve the generalization of the model and its computational
efficiency. The choice between one or the other will depend on whether interpretability is
crucial, such as keeping the original data, in which case feature selection will be the most
appropriate option.

2.1.3 Feature Selection

Explaining why one component is more relevant than others is essential, as in-
terpretability is as critical as model accuracy in discovering new drugs. In this context,
feature selection methods have become increasingly important because they enable the
construction of more efficient machine learning models. These methods accelerate the drug
discovery process by eliminating redundant or irrelevant information and enhancing the
models’ interpretability and generalization capabilities during testing.

Feature selection methods are commonly classified into filtering, wrapper, and
embedding. Filtering methods are techniques that evaluate the relevance of features
before training the model, using statistical criteria independent of the learning algorithm.
These features are filtered according to a predefined threshold or by selecting a specific
number of the most relevant features.

One straightforward filter method uses Pearson correlation to measure the linear
relationship between features and the target. Given a feature matrix X ∈ Rn×d, where n
is the number of samples and d is the number of features and a target vector Y ∈ Rn, the
Pearson correlation is computed between each column of X and Y . The Pearson correlation
is defined in Formula 2.2, where Xj represents the j-th column (feature) of X, cov(Xj, Y )
is the covariance between Xj and Y , and σXj

and σY are the standard deviations of Xj

and Y , respectively. Pearson correlation measures the linear relationship between two
variables. Given a feature matrix X ∈ Rn×d, where n is the number of samples and d is
the number of features and a target variable vector Y ∈ Rn, the Pearson correlation is
computed between each column of X and Y .

ρ(Xj, Y ) = cov(Xj, Y )
σXj

σY

(2.2)

On the other hand, a different filtering technique uses Mutual information to
measure the statistical dependence between a feature and the target variable, specifically
evaluating whether knowing the value of a feature Xj provides meaningful information
about the target Y . Given the feature matrix X ∈ Rn×d with n samples and d features,
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along with the target vector Y ∈ Rn, mutual information quantifies the shared information
between each feature column Xj and Y , as defined in Formula 2.3. The mutual information
is calculated as the sum over all pairs (x, y) of the joint probability p(x, y) multiplied by
the logarithm of the ratio between the joint probability and the product of the marginal
probabilities, p(x) and p(y). This measure reflects how knowledge of one variable reduces
uncertainty about the other.

I(Xj, Y ) =
∑

xj∈Xj

∑
y∈Y

p(xj, y) log p(xj, y)
p(xj) p(y) (2.3)

The resulting mutual information scores provide a ranking of features by their
predictive potential, analogous to but more general than the Pearson correlation. While
both methods operate on the same matrix structure and share similar computational
efficiency, mutual information extends beyond linear relationships to capture any form of
statistical dependence. This advantage comes with increased computational complexity in
estimating the probability distributions. As with correlation-based filtering, this approach
maintains the limitations of not accounting for feature interactions or downstream model
performance, though it remains valuable for initial feature screening where non-linear
relationships may be significant.

In Wrapper methods, the feature selection process is directly associated with
the optimization objective of the model. Consider a predictive model M with parameters
θ trained on a subset of features S ⊆ {X1, ..., Xj}. The goal of the Wrapper approach is
to find the optimal feature subset S∗ that minimizes the loss function while maintaining
or improving model performance, as described in Formula 2.4, where XS is the matrix
containing only the columns from subset S, and L represents the loss function.

S∗ = arg min
S⊆{X1,...,Xj}

L(Mθ(XS), Y ) (2.4)

Wrapper methods commonly employ one of two main search strategies: Forward
selection or Backward elimination, which differ in their feature space exploration.

Forward selection begins with an empty feature set and iteratively adds the
most promising features one at a time. It selects the feature that yields the best model
performance at each step. Subsequent iterations add the feature that, when combined with
the currently selected subset, provides the greatest improvement in predictive accuracy.
This process continues until a stopping criterion is met, such as when additional features
no longer significantly enhance performance.

Contrarily, Backward elimination follows the opposite approach, starting with
the complete set of features and progressively removing the least relevant ones. Initially,
the method evaluates the impact of removing each feature individually, discarding the
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one whose exclusion minimally affects performance. This process continues until further
removals would substantially reduce model accuracy.

Both strategies assess feature subsets by training the model and evaluating per-
formance, typically using cross-validation to mitigate overfitting. Forward selection is
generally more computationally efficient for high-dimensional datasets, as it starts with few
features. In contrast, Backward elimination can be more suitable when most features are
relevant since it accounts for feature interactions from the outset. The decision on which
method to use depends on the specific characteristics of the problem and the available
computational resources.

Finally, Embedded methods perform feature selection by identifying an optimal
feature subset S∗ ⊆ {X1, . . . , Xj}, evaluating feature importance during model training.
These methods integrate model optimization with automatic relevance assessment, learning
both the predictive relationship and feature significance through a feature importance
score, as shown in Equation 2.5. In this equation, ψj represents the importance score
derived for the feature Xj through a function f(·) of the learned parameters θj.

ψj = f(θj, Xj, Y ) ∀Xj ∈ S (2.5)

The selection mechanism ranks features by their ψj scores and selects those whose
importance score exceeds a threshold τ to obtain the final subset S∗, as expressed in
Equation 2.6. The importance scores ψj offer valuable interpretability, reflecting the actual
contribution of Xj to predicting Y .

S∗ = {Xj | ψj > τ} (2.6)

Compared to other feature selection approaches, embedded methods are computa-
tionally efficient, as importance computation is seamlessly integrated into model training.
The selected features capture both individual predictive power and synergistic effects
within the feature space, as all importance assessments occur in the context of the complete
model. In practice, this approach often combines threshold-based selection with top-k
ranking, where features are chosen based on ψj > τ or by selecting the k largest ψj values.

This method is particularly advantageous in high-dimensional scenarios, as it
preserves the model’s discriminative power while reducing dimensionality. Since the
importance scores are derived directly from the learning process, they tend to produce
more robust feature subsets compared to filter methods while avoiding the computational
expense typical of wrapper methods. Moreover, the automatic nature of this selection
process makes it adaptable to various data types and scales, provided that the underlying
model yields reliable importance metrics.
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In summary, the presented feature selection methods offer interpretability and
dimensionality reduction, key advantages in drug discovery. However, their reliance on
statistical techniques or machine learning models limits scalability in high-dimensional
settings due to the curse of dimensionality, as molecular data often presents a significantly
higher number of features compared to samples. This challenge motivates the search for
a model capable of handling large datasets while providing insights into the selection
rationale.

2.1.4 Large Language Models

Large Language Models (LLMs) have revolutionized natural language processing
(NLP), enabling machines to understand and generate text fluently and coherently (Fan et
al., 2023; Minaee et al., 2024). Built upon the Transformer architecture (Vaswani, 2017),
these models are characterized by their large scale and extensive training data, allowing
them to capture linguistic nuances more effectively (Zhao et al., 2023; Ren et al., 2023;
Kaplan et al., 2020).

Transformers, introduced in (Vaswani, 2017), are deep learning models that quickly
gained prominence due to their innovative architecture. Unlike earlier models based on
Recurrent Neural Networks (RNN), such as LSTM (Graves, 2012) and GRU (Cho, 2014),
Transformers utilize attention mechanisms (Niu; Zhong; Yu, 2021). This architectural shift
not only enhances generalization and the understanding of complex relationships but also
supports parallel training, positioning Transformers as the new state of the art in NLP.
Over time, their application has expanded beyond NLP to other areas, such as computer
vision, with models like Vision Transformers (Dosovitskiy, 2020).

Inspired by sequence-to-sequence (seq2seq) models (Sutskever, 2014), the Trans-
former architecture employs an encoder-decoder structure, both leveraging attention mech-
anisms to efficiently process sequences. As illustrated in Figure 1a, the model transforms
each input word into a dense vector (embedding), augmented with positional encodings to
preserve the sequence order. Unlike traditional recurrent models, this approach enables
efficient parallel processing, accelerating model training and scalability.

The embeddings then pass through a multi-head attention layer, allowing the model
to simultaneously focus on various parts of the input sequence. As shown in Figure 1a, the
output from this layer is processed through a feed-forward network before being passed
to the decoder. The decoder structure mirrors the encoder, with the key distinction of
incorporating a masked multi-head attention mechanism. This mechanism ensures that
the decoder only attends to preceding positions in the sequence during output generation,
crucial for tasks like next-word prediction, where generating a word relies solely on the
preceding context. Finally, a linear layer followed by a softmax function at the decoder’s
output produces the probability distribution over the vocabulary tokens.
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Figure 1 – (a)Transformer architecture. (b) An example of the attention mechanism: one can
see how attention is focused in different parts of the text without necessarily being
next to the subject being spoken about. In this case, the ’animal’ is ’tired’. Source:
Adapted from (Vaswani, 2017)

Both the encoder and the decoder leverage the multi-head attention layer to
simultaneously focus on multiple parts of the input sequence. This capability is achieved
by dividing the attention mechanism into several "heads". To implement this approach,
three fundamental components are used: Query (Q), Key (K), and Value (V ). As shown in
equation 2.7, these vectors are combined to determine the attention that each word should
assign to other words within the sequence. The Query vector represents the word that
seeks to establish relationships with others by comparing itself with the Keys of the other
words, while the resulting relationships are weighted using a softmax function. Finally,
the computed weights are applied to the corresponding Values, generating a numerical
representation that captures the attention each word receives based on its context, as
illustrated in Figure 1b.

Attention(Q,K, V ) = softmax
(
QKT

√
dK

)
V (2.7)

In essence, the core functionality of a Transformer-based model, and consequently of
an LLM, is to predict the most probable next word given a context. This is achieved through
the decoder’s masked multi-head attention mechanism, which ensures that the model only
considers preceding words when generating the next token. The model generates coherent
and contextually appropriate text by analyzing the entire context word by word, even in long
sequences. It learns complex patterns, linguistic structures, and contextual relationships
through training on vast amounts of data, progressively evolving into a powerful LLM
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capable of natural language understanding and generation. This capability has attracted
significant interest from both academia and industry. Driven by commercial demand,
companies have developed advanced LLMs such as OpenAI’s GPT (Brown, 2020; Achiam
et al., 2023), Google’s PaLM (Chowdhery et al., 2023), and Meta’s LLaMA (Touvron et
al., 2023).

Despite their ability to generate coherent text, LLMs face challenges when applied
to domain-specific tasks. Their knowledge is inherently limited by the scope of their
training data, which, while extensive, often lacks depth in specialized areas (Liu et
al., 2024). Consequently, they may produce superficial or inaccurate responses in fields
requiring technical expertise, such as communication networks (Maatouk et al., 2024) or
medicine (Singhal et al., 2023; Thirunavukarasu et al., 2023). Moreover, their significant
computational and energy requirements raise sustainability concerns (Faiz et al., 2023).

To overcome these limitations, researchers have developed various methods to
enhance LLM performance without requiring retraining or modifying the model. Retrieval-
Augmented Generation (RAG) integrates external knowledge sources to supplement
the model’s responses, allowing it to access updated or domain-specific information.
Additionally, few-shot and zero-shot learning techniques enable the model to adapt to new
tasks with minimal examples, leveraging its pre-trained knowledge efficiently. Another
practical approach is prompt engineering, which involves crafting inputs strategically to
elicit more accurate and contextually relevant responses. These methods significantly
enhance the versatility and performance of LLMs, enabling them to tackle a broader range
of tasks without altering the underlying model.

In conclusion, in the field of drug discovery, LLMs offer significant advantages over
traditional feature selection methods, which primarily rely on statistical criteria or model
training. Unlike conventional approaches, LLMs can contextualize features by incorporating
scientific literature and biomedical data, providing interpretable explanations of their
relevance. This capability helps mitigate challenges related to high dimensionality and
supports more informed decision-making by justifying feature importance. Therefore, LLMs
represent a promising tool in drug discovery, offering a more nuanced and context-aware
approach than traditional methods.

2.2 Related Works

Feature selection has been extensively studied due to its relevance in building
predictive models, especially in contexts involving high-dimensional and complex data.
Over the years, various studies have addressed this problem using several approaches,
from traditional statistics and machine learning or deep learning techniques to innovative
strategies based on LLMs. Although each approach provides valuable perspectives, they
also leave certain areas unexplored, suggesting opportunities for future developments.
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Firstly, studies like the one presented in (Li; Tan; Liu, 2025) highlight using
LLMs to identify relevant features in unstructured datasets. This approach leverages
the semantic capabilities of these models to enhance both accuracy and computational
efficiency. Similarly, research such as (Jia et al., 2024) and (Yang et al., 2024) combines
semantic extraction with traditional techniques; these methods assign initial scores to
features using LLMs and then refine the selection with classic algorithms such as clustering,
recursive elimination, and regularized regression.

On the other hand, the study published in (Espinoza et al., 2021) adopts a hybrid
methodology that combines initial statistical filtering with an iterative wrapper-based
process. This approach has proven effective in complex domains, such as genomic data
analysis, by reducing dimensionality without compromising model performance.

Another line of research focuses on deep learning-based techniques, such as the
approach proposed in (Brown, 2020), which utilizes attention mechanisms in pre-trained
models to assess feature relevance. This approach enables the capture of complex nonlinear
interactions, thereby increasing the model’s predictive capacity, although sometimes at
the cost of reduced interpretability and increased computational load.

An innovative approach is presented in (Jeong; Lipton; Ravikumar, 2024), where
the authors propose a method that leverages LLMs to perform feature selection using
only the feature names and a brief description of the prediction task. Despite the limited
input, the models effectively identify the most relevant features, achieving performance
comparable to traditional methods. This approach highlights the potential of LLMs in
feature engineering by capturing semantic context with minimal information.

A critical perspective on the use of LLMs for feature selection was presented in the
study (Küken; Purucker; Hutter, 2024), where the authors examine how LLMs tend to
generate simple features, often neglecting more complex operators that are essential for
advanced predictive tasks. This bias towards simplicity can result in lower performance
when directly using features produced by LLMs. The findings emphasize the need for
strategies that integrate the semantic capabilities of LLMs with more robust feature
selection techniques, particularly in scenarios where capturing complex relationships
between variables is crucial for model performance.

In this context, our work aims to address some of the gaps identified in the literature.
Additionally, existing approaches do not validate using LLMs on datasets characterized by
very high dimensionality and limited sample size. To bridge this gap, we propose leveraging
the semantic capabilities of LLMs to extract relevant information from structured data
while capturing complex nonlinear relationships. This approach aims to enhance both the
interpretability and scalability of feature selection. Our goal is to provide a robust and
adaptable solution that complements and surpasses existing methods’ limitations.





39

3 METHODOLOGY

In this chapter, we describe our methodological approach for building a feature
selection pipeline using a pre-trained LLM. We detail the prompts designed for the LLM,
the process of refining and validating its outputs for coherence, and the comparison of
these outputs with state-of-the-art feature selection methods. Additionally, we explain
how the selected features were integrated into our evaluation framework, including the
metrics and datasets used to assess their effectiveness.

3.1 Transformers as Feature Selectors

Our proposed pipeline consists of two main stages: feature selection and subsequent
validation using the selected features. This structured approach enables a direct comparison
between traditional feature selection methods and a novel method that uses a pre-trained
LLM model (the Foundational model) as a feature selector, as illustrated in Figure 2. This
process aims to evaluate the effectiveness of the employed methods, establishing a robust
framework for comparison and analysis.

Prompt

Foundational
LLM

Dataset

Selected
Features

Regression
Model

Feature
Selection

Model
Validation

Traditional
Method Selected

Features

Metrics B

Metrics A
Compare
Results

Figure 2 – The proposed pipeline has two stages: feature selection and validation, combining
classical methods with our novel pre-trained LLM-based method. Source: Author.

To ensure data quality, we performed comprehensive Preprocessing. First, we
validated the dataset by identifying variable types, checking for missing values, and
calculating key descriptive statistics. Given the very high dimensionality, we focused on
measures that effectively summarize the data without excessive computational cost. These
included the mean and standard deviation to assess central tendency and variability, as
well as the minimum, maximum, and interquartile range (IQR) to detect potential outliers.

Then, in the first stage, we explore classical feature selection methods and a novel
approach based on a pre-trained LLM model. The classical methods considered include
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techniques from the literature presented in the previous chapter, such as filtering, wrapper,
and embedding. We developed specific functions for each method that receives data and the
number of k features to return, identifying the top k features. Depending on the method,
it either uses a machine learning model or a statistical metric. For filtering methods,
we implemented Pearson correlation and mutual information. For wrapper methods, we
used forward selection and backward elimination, incorporating a Ridge model internally.
Finally, we employed a Random Forest regressor for embedding methods.

Simultaneously, we implemented an innovative approach for our proposed method
using a pre-trained LLM model. To achieve this, we used the most widely adopted and
powerful pre-trained LLM models available. Specifically, we utilized OpenAI’s API with
the GPT-4, GPT-o1, and GPT o3-mini models, as well as the DeepSeek R1 model, a
Chinese model known for its impressive capabilities, through its API.

For this approach, the LLM is guided by a carefully designed prompt that shapes
the model’s output. Figure 3 shows an example of such a prompt. As illustrated, the
prompt should include three key components: the context, which informs the model about
the task at hand; the instruction or query, specifying the response or action required; and,
optionally, example inputs that serve as references. Additionally, in some cases, it may
also include the desired output format.

Context:
You are a data scientist and your goal is to assign a relevance score to
each feature based on its predictive power or importance within the given dataset.

Instruction:
I will provide you with a dataset. Your task is to analyze the dataset and
calculate a relevance score for each feature. Return a ranked list of features
with their corresponding scores.

Sample:
Input: A dataframe containing numerical and categorical features.
Output: A table with two columns: Feature Name and Relevance Score.

Figure 3 – Sample of prompt. Source: Author.

Furthermore, we explored various strategies to obtain a score for the features or
columns of the dataset. To achieve this, we followed the methodology described in (Li; Tan;
Liu, 2025), structuring the input data to enable the LLM to produce a score, helping us
identify the top k most relevant features. These strategies include providing data samples,
specifying the entire dataset, or presenting features individually.

The complete process followed with the pre-trained LLM model is depicted in
Figure 4. IInitially, the original data goes through a preprocessing stage, after which
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samples are selected to include in the prompt that will be read by the LLM. The model
then generates a score for each feature and selects the top-k most relevant features,
creating the set of selected features. This allows us to extract the relevant columns from
the preprocessed data. These selected columns are then used as input for the baseline
model, which, in our case, is a ridge regression model. Ridge regression is chosen for its
ability to handle multicollinearity and produce robust coefficients, making it well-suited
for scenarios where data may exhibit linear relationships with noise or redundancy.

Preprocessing
Data

Pre-Trained
LLM

Prompt

Selected
Features Subset

Data

Baseline
Regression

Model

Feedback

Results

Figure 4 – Pipeline for feature selection using our pre-trained LLM. Data is preprocessed, a
sample is extracted for the prompt, the LLM returns a score, and the top-k features
are evaluated in the baseline regression model. Metrics provide feedback to refine the
prompt iteratively. Source: Author.

Given the limited data samples, we opted to perform cross-validation to ensure
the model’s reliability. Before this, we conducted a grid search to optimize the model’s
hyperparameters for the given dataset. Finally, we validated the model’s performance
using metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and
the coefficient of determination (R2), as explained in the following section. This evaluation
allowed us to compare the results obtained with traditional feature selection methods.

When we observed that the LLM’s performance was inferior to that of traditional
methods, we adjusted the prompt using prompt engineering techniques. This iterative
process was repeated several times until we identified a prompt that yielded results
comparable to those obtained using conventional methods.

With the finalized pipeline and fine-tuned prompt, a reliable feature selection
process is now ready for evaluation using the metrics described in the following section.

3.2 Metrics

To evaluate the results obtained from traditional feature selection methods and
those generated by the LLM, we will not conduct a direct comparison. Instead, we will
employ a baseline regression model, specifically an L2-regularized linear regression (Ridge
regression), to validate the metrics described below.
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3.2.1 Coefficient of Determination (R2)

The coefficient of determination, commonly denoted as R2, measures the proportion
of variance in the dependent variable that can be explained by the independent variables.
Its value ranges between 0 and 1, where an R2 close to 1 indicates that the model fits the
data well, effectively capturing the variability. In contrast, a value near 0 implies that the
model poorly explains the observed variance.

The R2 metric is formally defined in Equation 3.1, where yi denotes the observed
value, ŷi the value predicted by the model and ȳ the mean of the observed values. A
higher R2 signifies a more significant predictive capability, meaning the selected features
accurately reflect the relationship between explanatory variables and the target variable.

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (3.1)

3.2.2 Mean Squared Error (MSE)

Mean Squared Error (MSE) measures the average squared difference between the
observed values and the model’s predictions, as expressed formally in Equation 3.2. This
metric assigns a heavier penalty to larger errors by squaring the deviations, making it
particularly sensitive to outliers or significant prediction inaccuracies. Consequently, a
lower MSE indicates superior model performance, reflecting a closer alignment between
predicted and actual values.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.2)

3.2.3 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) quantifies the average absolute differences between
observed and predicted values, as defined in Equation 3.3. Unlike MSE, MAE does not
disproportionately penalize large errors, making it less sensitive to extreme outliers and
thus especially valuable when evaluating model performance based on absolute prediction
accuracy. Additionally, MAE offers intuitive interpretability by directly indicating the
average magnitude of prediction errors. Lower MAE values reflect more precise and reliable
model predictions.

MAE = 1
n

n∑
i=1

|yi − ŷi| (3.3)

Together, these metrics offer a comprehensive evaluation of model performance. By
applying them simultaneously across different feature subsets, we can objectively compare
the datasets obtained from traditional feature selection methods with those produced by
the LLM.
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3.3 Dataset

In this work, we utilized a dataset initially introduced in the study "Evaluating Deep
Learning Models for Predicting ALK-5 Inhibition" by (Espinoza et al., 2021). The dataset
was explicitly designed to predict the biological activity (pIC50) of ALK-5 inhibitors,
potential candidates for cancer treatment. The choice of this dataset is motivated by its
relevance to the study of drug discovery models and its suitability for evaluating feature
selection techniques.

The dataset was obtained through one of the coauthors of the original study, as it
is not publicly available. It was constructed by collecting compounds with known activity
against the TGF-beta receptor type I (ALK-5) from the ChEMBL database (target ID
CHEMBL4439). After a thorough data curation and preprocessing performed by the
original authors, the final dataset consists of 545 unique molecules, each represented by a
set of molecular descriptors calculated using the Mordred Python library. These descriptors
capture the structural, electronic, and physicochemical properties of the molecules, resulting
in over 1,453 calculated features.

Although the dataset was provided in a preprocessed form, we performed additional
analysis and standardization to adapt it to our regression model, as detailed in the
previous section. This step ensured the numerical stability and compatibility required for
the subsequent modeling tasks.

The decision to use this dataset was driven by its comprehensive nature, high
dimensionality, and specific design to evaluate models predicting biological activity. Addi-
tionally, performing our analysis and standardization allowed us to adapt the dataset for
optimal use within our regression framework. By leveraging this well-prepared and further
refined dataset, we aimed to evaluate the effectiveness of feature selection techniques using
pre-trained LLM models.
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4 EXPERIMENTAL RESULTS

In this section, we present the results of our proposed methodology. We begin with
an Exploratory Data Analysis (EDA) to assess the dataset’s quality and structure. Next,
we evaluate the baseline regression model (Ridge regressor) using feature subsets obtained
through traditional selection methods and our LLM-based approach, highlighting the
performance improvements achieved with the LLM-based technique. Finally, we discuss
the iterative prompt optimization process and its role in enhancing predictive accuracy.

The results presented here aim to validate the effectiveness of the proposed method-
ology in accurately predicting the biological inhibition activity of ALK−5 inhibitors, while
also highlighting the challenges and improvements encountered throughout the process.

4.1 Exploratory Data Analysis (EDA)

Before model training, we performed an EDA to understand the structure and
distribution of the dataset.

Initial EDA revealed key characteristics of the target variable, pIC50. he distribution
showed a mean of 7.184 and a median of 7.366, indicating a slightly left-skewed distribution
(mean < median). Values spanned from 4.102 to 9.244, with a standard deviation of 0.953,
suggesting moderate variability in the biological activity of the compounds. Figure 5
illustrates the distribution of pIC50 confirming the left skew, with most data clustered
near the median.

Figure 5 – Distribution of pIC50 values showing left-skewed asymmetry. Source: Author.
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Subsequently, one strategy we considered was to analyze the variables that exhibited
the highest correlation to determine whether they showed any relationship with the target
variable. We calculated the Pearson correlation coefficient to assess the relationships
between variables to achieve this. This method was also employed in the filtering approach,
as we aimed to evaluate the potential accuracy of the baseline model when using this
technique.

We then generated a table of absolute correlations, sorting the values from highest
to lowest, as presented in Table 1. We observed that only three variables reached a
correlation of approximately 0.50, indicating a moderate linear relationship between these
highly correlated variables and the target variable.

Table 1 – Comparison of the top 5 most correlated (left) and least correlated (right) features
with pIC50.

Feature Correlation
AMID_N 0.512
MID_N 0.506

nN 0.503
SMR_VSA3 0.469

SssNH 0.450

Feature Correlation
AATS2dv 0.000
MATS3c 0.001
FPSA4 0.001

SM1_Dt 0.001
nBondsA 0.001

Afterward, we plotted the three variables that exhibited a correlation greater than
0.50 to examine their behavior in relation to the target variable, as illustrated in Figure 6.
We found that all three variables displayed a positive (direct) correlation. Additionally,
the last two plots revealed that the variables were discrete, while the target variable was
continuous. This can create particular challenges in the Ridge regression model, as this
type of model assumes a continuous relationship between the features and the target.
If the feature is discrete, the model may overestimate the importance of some specific
values or assign significant coefficients inappropriately, especially if the discrete values are
not uniformly distributed. Therefore, it is important to consider this characteristic when
selecting and processing the variables.

Figure 6 – Top Three Most Correlated Features versus pIC50. Source: Author.
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Given that we have a large number of variables but very few samples (almost
one-third of the total columns), the classical plots obtained, such as individual heatmaps
or boxplots, were not helpful, as they did not provide relevant information. Moreover, due
to the scarcity of samples, we did not consider removing outliers.

For this reason, we decided to calculate the mean and standard deviation of each
variable, as shown in Figure 7a. We observed that the variables have significantly different
scales, with some taking small or even negative values while others reach magnitudes
exceeding ten thousand. Additionally, the ranges of variation differ significantly between
variables. Therefore, we decided to standardize the data before using it in the model.
This decision is reinforced by observing the boxplot in Figure 7b, where the means of the
variables are generally between −20 and 40, while many others fall outside this range.
Standardization is particularly important in our case, as we are working on a regression
problem and want to prevent scale differences from affecting the model’s performance.

(a) (b)

Figure 7 – (a) shows feature means, while (b) shows a boxplot of means without outliers. Source:
Author.

Finally, we removed non-numerical data, such as the SMILE representation and
the molecule ID. No duplicates or missing values were found since the data originated
from a preprocessed source. We split the dataset into training and testing sets with a
proportion of 80 and 20 percent, respectively. These steps were performed solely before
conducting the experiments and applying the feature extraction methods presented in
previous chapters.
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4.2 Evaluation of Feature Selection Techniques

After implementing all feature selection methods, we experimented with different
numbers of features, such as 1000, 500, and 200, but observed no significant difference
between methods. Since the previous work presented in (Espinoza et al., 2021) uses only
50 features for training their model, we decided to align with that number. Additionally,
given the high dimensionality of the data, reducing it to 50 features would correspond
to just 3.45% of the original dimensions, which increases the challenge for all methods
and better highlights performance differences. Therefore, in our pipeline, we consistently
aimed to extract 50 features using each of the methods.

In our methodology, the LLM models provide a score for each feature based on
their internal knowledge and the desired objective. These scores are sorted in descending
order, and the top-k elements are extracted. This process is illustrated in Figure 8, where
the top 10 most important features identified by the GPT-o1 model are shown, ranked by
relevance.

Figure 8 – Top 10 Features by Score (Generated by GPT-01 Model). Source: Author.

To generate these scores, we had to explicitly specify the range and whether the
score should be discrete or continuous, as the models initially returned discrete values,
and in some cases, variable intervals depending on the model itself. This inconsistency did
not yield satisfactory results when using the baseline regression model.

Once we obtained the features generated by each method, we extracted the samples
with the selected features from the training set and calculated the MSE, MAE, and R2

metrics. As shown in Table 2, the performance values are quite similar across different
feature selection methods, and the standard deviation does not vary significantly compared
to the mean, indicating consistent and stable results.
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Table 2 – Performance of Feature Selection Methods in Training (Mean ± Standard
Deviation)

Type Method MSE(±SD) MAE(±SD) R2(±SD)

Filter Pearson 0.4653 (0.0845) 0.5252 (0.0417) 0.5021 (0.0683)
Mutual Info 0.4286 (0.0887) 0.4991 (0.0467) 0.5427 (0.0717)

Wrapper Forward 0.3082 (0.0560) 0.4261 (0.0371) 0.6682 (0.0610)
Backward 0.3873 (0.0508) 0.4729 (0.0242) 0.5828 (0.0556)

Embedded Random Forest 0.4305 (0.0804) 0.4978 (0.0486) 0.5384 (0.0751)

LLM

4o 0.4945 (0.0649) 0.5330 (0.0354) 0.4664 (0.0791)
o1 0.4315 (0.0662) 0.4989 (0.0368) 0.5361 (0.0634)
o3-mini 0.4045 (0.0680) 0.4867 (0.0419) 0.5658 (0.0660)
deepseek-r1 0.4098 (0.0749) 0.4914 (0.0407) 0.5602 (0.0686)

This consistency in performance across various methods indicates that the extracted
features are robust, producing similar predictive results regardless of the selection technique
used. This suggests that, despite employing different approaches, the selected features
consistently lead to comparable model performance. Among the tested methods, the
Forward Selection (Wrapper) method stands out as having the best performance across all
three evaluated metrics. This result can be attributed to the iterative nature of wrapper
methods, which sequentially build an optimal feature subset that maximizes model quality.

On the other hand, the LLM-based methods, despite their ability to understand the
semantic meaning of each variable, achieved results comparable to traditional techniques.
Notably, among these approaches, the o3-mini method demonstrated slightly better
performance compared to its counterparts and showed results similar to the Random
Forest Embedded method. This suggests that LLMs can generate relevant scores for
regression performance without requiring additional data, leveraging solely the knowledge
acquired during their pre-training. This ability highlights the potential of LLM-based
methods to identify meaningful features even when working with structured numerical
data, demonstrating their versatility and adaptability in diverse contexts.

The relatively small standard deviations observed across all methods indicate consis-
tent performance. LLM-based feature selection achieves comparable results to conventional
techniques in this specific setting; it demonstrates the ability to generate relevant scores
solely based on pre-trained knowledge, showcasing its potential to identify meaningful
features without requiring additional domain-specific data.

To validate the consistency of the previous results, we evaluated the selected
features with the baseline model on the test set, and the obtained metrics are presented in
Table 3. The performance on the test set shows a similar pattern to the training results,
with relatively small differences among the various feature selection methods.
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Table 3 – Test Set Performance of Feature Selection Methods

Type Method MSE MAE R2

Filter Pearson 0.4077 0.5095 0.4562
Mutual Info 0.3661 0.4955 0.5116

Wrapper Forward 0.3476 0.4458 0.5363
Backward 0.3201 0.4242 0.5730

Embedded Random Forest 0.3950 0.4937 0.4731

LLM

4o 0.3897 0.4855 0.4802
o1 0.3449 0.4638 0.5399
o3-mini 0.3541 0.4775 0.5276
deepseek-r1 0.3176 0.4389 0.5763

The most remarkable finding is the performance of the LLM-based methods, par-
ticularly deepseek-r1, which achieves the best results among all evaluated methods. This
represents a notable improvement compared to other LLM variants and even outperforms
the traditionally strong Backward Selection (Wrapper) method, which previously demon-
strated the best performance during training. This outcome indicates that LLM-based
feature selection can generalize well when evaluated on unseen data, highlighting the
potential of using pre-trained knowledge to capture relevant features that may not be
immediately apparent through conventional methods.

Among traditional methods, Backward Selection (Wrapper) continues to show
robust performance, maintaining one of the lowest error metrics. This supports the earlier
observation that iterative wrapper methods effectively select feature subsets that enhance
model performance.

In summary, although LLM-based methods did not consistently outperform tradi-
tional approaches during training, their competitive performance on the test set demon-
strates their ability to generalize effectively. This reinforces the idea that leveraging LLMs
for feature scoring can be beneficial, prioritizing features for a specific problem.

As an additional advantage, the computational efficiency of the LLM-based methods
stands out when compared to other feature selection approaches. As shown in Table 4, LLM-
based methods not only demonstrate competitive performance but also require significantly
less time to select features compared to more computationally intensive methods like
Backward Elimination (Wrapper) and Random Forest Regressor (Embedded).

This notable reduction in processing time is particularly valuable when working
with high-dimensional data or when feature selection needs to be performed repeatedly as
part of model tuning and validation. The ability of LLM methods to efficiently generate
relevant features based solely on their pre-trained knowledge makes them an attractive
alternative, especially in scenarios where computational resources or time are limited.
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Table 4 – Computation Time for Selecting Features

Type Method Processing
Time

Filter Pearson Correlation <1 min
Mutual Information <1 min

Wrapper Forward Selection ∼7 min
Backward Elimination ∼61 min

Embedded Random Forest Regressor ∼126 min

LLM

4o ∼2 min
o1 ∼6 min
o3-mini ∼9 min
deepseek-r1 ∼3 min

Therefore, beyond their comparable predictive performance, the efficiency of LLM-
based feature selection methods adds another practical advantage, reinforcing their poten-
tial utility in real-world applications where time efficiency is crucial.

4.3 Prompt Optimization and Iterative Improvement

During the initial experiments, the LLM-based methods did not outperform like
traditional techniques. This distance was primarily attributed to the initial prompt design.
The models did not generate a reliable feature selection, and even after multiple iterations,
the outputs remained unstable. Moreover, we experimented with prompts in Spanish and
Portuguese, but these did not yield the same results as those formulated in English. Only
when using English did we observe an improvement, although some issues persisted.

To enhance the performance of LLM-based feature selection, we made several
adjustments to the prompt. Initially, we tried providing the data context directly, but this
approach did not significantly improve the results. We also experimented with giving the
model diverse examples of feature selection (commonly known as few-shot learning), but
it did not result in consistent or accurate outputs.

The most significant improvements came after systematically refining the prompt.
We specified the expected output format, explicitly instructing the model to generate a
continuous score within a defined interval, as the models initially returned discrete values
or, in some cases, refused to generate a score. This issue was particularly pronounced with
the more reasoning-capable models such as o1 and o3-mini, which claimed insufficient
information to provide a score. To overcome this, we explicitly instructed the models
to always generate a score, regardless of data limitations. Additionally, we required the
output to follow a structured JSON format to facilitate downstream processing. However,
this formatting request sometimes led to errors, especially with models like deepseek-r1,
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GPT-4o, and GPT-o1, where the JSON structure was not consistently adhered to.

Further refinements involved clarifying the problem context and defining expec-
tations more explicitly. We framed the model as a PhD-level expert within the prompt,
which unexpectedly improved the consistency of the scores. Additionally, we prompted the
model to explain why it selected a particular feature. Although it provided explanations,
this did not necessarily improve the quality of the feature ranking itself. A sample of the
final prompt is shown in Figure 9, illustrating these incremental changes.

Context:
You are a PhD-level expert in medicinal chemistry and drug development
with extensive experience in QSAR modeling and kinase inhibitor design.
You specialize in predictive modeling of biological activity (pIC50) for small
molecules.

Problem:
Regression task to predict pIC50 of ALK-5 inhibitors from molecular features.

Input Data:

• Features: {features}

• Sample X values: {X_samples}

• Sample y values (pIC50): {y_samples}

Task:
Assign a continuous relevance score (0-10 scale, max 3 decimals) to each feature
based on its predictive power for pIC50. Follow these rules:

• Score must reflect how strongly the feature relates to target (pIC50)
• Use 0 for unknown/unrelated features
• For doubtful cases, assign values near zero (0.1-1.0)

Output Format:
Return a list of tuples: [(feature_name, score), ...] ordered by descending score.
Example:
[(’MolLogP’, 8.215), (’NumHAcceptors’, 6.732), ...]

Note:
You MUST provide a score for every feature. Never omit features.

Figure 9 – Feature scoring prompt for pIC50 prediction problem. Source: Author.

During iterative testing, we observed that the generated scores varied significantly
when running the same prompt multiple times with a small sample of features. To address
this variability, we continuously monitored how the scores changed when repeating the
prompt with a set of 10 variables. Although some fluctuations persisted, the refined prompt
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structure led to more stable outputs compared to earlier versions. We also attempted to
guide the model by specifying which aspects to focus on when scoring features, but this
adjustment did not result in notable improvements.

In summary, the prompt optimization process was crucial to achieving consistent
and reliable feature selection using LLM-based methods. Through iterative refinement,
we significantly reduced variability and improved the quality of the generated scores.
Despite these improvements, some inherent challenges remained, particularly regarding
maintaining consistency across multiple runs and managing the model’s reasoning when
faced with ambiguous or incomplete data.

4.4 Discussion and Interpretation

The results demonstrate that LLM-based feature selection methods can effectively
compete with traditional techniques when the prompt is carefully designed. The iterative
refinement of the prompt, including specifying output format, framing the model as a PhD-
level expert, and using clear contextual instructions, significantly improved the consistency
and accuracy of the generated feature scores.

One of the main advantages of LLM-based methods is their ability to generate
relevant features based solely on pre-trained knowledge, capturing complex interactions
that conventional methods might overlook. Additionally, their computational efficiency
makes them an attractive option compared to more time-consuming approaches like
backward elimination or embedded techniques.
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5 CONCLUSIONS

The results obtained in this study highlight the potential of LLM-based methods for
feature selection compared to traditional approaches. Our findings show that LLM-based
methods can present competitive results when the prompt is carefully optimized.

The most promising LLM-based method was deepseek-r1, which outperformed
other LLM variants and demonstrated comparable results to traditional methods. This
performance suggests that, LLM-based methods are capable of identifying relevant features
when the prompt design is adequate, effectively leveraging pre-trained knowledge to
generate relevant feature scores without requiring additional information or retraining the
model.

The computational efficiency of LLM-based methods is also noteworthy. Compared
to time-consuming approaches like Backward Elimination or Random Forest, LLMs
significantly reduce processing time, making them suitable for scenarios requiring rapid
feature selection. This advantage, combined with their ability to intuitively rank features
based on internal knowledge, positions LLM-based methods as a valuable alternative.

5.1 Main Limitations

Despite the promising potential of LLM-based feature selection, several limitations
emerged. The most significant challenge was the high dependency on prompt engineering.
The initial prompts often led to inconsistent or incorrect feature ranking, particularly
when the model did not understand the format or scoring requirements. Additionally,
attempts to use languages other than English, such as Spanish or Portuguese, did not
yield satisfactory results, indicating a strong language dependency.

Another limitation was the variability in generated scores when the same prompt
was executed multiple times, especially in models with advanced reasoning capabilities
like o1 and o3-mini. Even after iterative prompt adjustments, complete stability was not
achieved. Furthermore, specifying the output format in JSON was prone to errors, which
did not consistently adhere to the structured output, leading to data processing challenges.

5.2 Future Work

Future research should focus on developing more robust and adaptive prompt
engineering strategies for LLM-based feature selection. One promising direction is to create
automatic prompt optimization frameworks that dynamically adjust the prompt structure
based on model feedback, reducing the reliance on manual adjustments. Additionally,
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integrating LLM-derived features with traditional statistical methods could combine the
strengths of both approaches, leading to improved performance and robustness.

To address current limitations, it is also important to explore models with enhanced
multilingual capabilities, as language understanding proved to be a key challenge. Further
work should consider fine-tuning LLMs specifically for feature selection tasks, as well as
employing techniques like RAG (Retrieval-Augmented Generation) to enrich the model
with contextual information, enabling more accurate score generation.

Finally, applying LLM-based methods to other regression scenarios and real-world
datasets would help assess their generalizability and practical value.
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