RODRIGO ALLAN DOS REIS

R.R. DICOM VIEWER: SOFTWARE
VISUALIZADOR DE ARQUIVOS DICOM
PARA MAC OS X

Trabalho de Conclusao de Curso apresentado a
Escola de Engenharia de Sao Carlos, da
Universidade de Sao Paulo

Curso de Engenharia Elétrica com énfase em
Eletronica

ORIENTADOR: Prof. Dr. Homero Schiabel

Sédo Carlos
2010

AUTORIZO A REPRODUGAO E DIVULGAGAO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalografica preparada pela Secio de Tratamento
da Informagdo do Servico de Biblioteca — EESC/USP

R375r

Reis, Rodrigo Allan dos

R.R. DICOM VIEWER : Software visualizador de arquivos
DICOM para MAC os X / Rodrigo Allan dos Reis ; orientador
Homero Schiabel. -- S&o Carlos, 2011.

Trabalho de Conclusdo de Curso (Graduagdo em Engenharia
Elétrica com énfase em Eletrdnica) -- Escola de
Engenharia de S&o Carlos da Universidade de Sdo Paulo,
2011.

1. Engenharia de Software. 2. DICOM. 3. MAC OS X.
4. Objective-C. 5. Processamento digital de imagens.
I. Titulo.

Dedicatoria

Dedico este trabalho aos meus pais, Aécio e Maria, por todos os anos em que me apoiaram,
incondicionalmente, e por nunca terem duvidado do meu poténcial.

Ao meu irmao, Fernando, ndo apenas pelas o6timas idéias, que ajudaram muito na realizagdo deste
projeto, mas por sempre estar disposto a me ajudar em tudo.

A minha namorada Bianca, por estar ao meu lado nos momentos mais dificeis, ser tdo boa

companheira, acreditar em mim, e ter me ajudado a reencontrar o meu caminho.

“Nos somos aquilo que fazemos repetidamente. Exceléncia, entdo, ndo é um

modo de agir, mas um habito.” - Aristoteles

Agradecimentos

Agradeco sinceramente ao Prof. Dr. Homero Schiabel, pela ajuda e, principalmente, pela confianga,
acreditando na idéia do projeto e na possibilidade da sua realizacdo.
Agradego também ao Dr. Fernando Ivan dos Reis, meu irméo, que forneceu muitas idéias para o

projeto, além de compartilhar seus conhecimentos na area médica.

Resumo

Este projeto tem como objetivo o desenvolvimento de um software capaz de mostrar as informagdes
presentes em arquivos de imagens médicas digitais, os arquivos DICOM, dentro da plataforma do sistema
operacional Mac OS X. Estes sistemas operacionais, usados pelos computadores da empresa Apple, sdo
muito confiaveis e seguros, fazendo crescer a sua utilizagdo em diversas areas, inclusive a médica. Desta
forma, optou-se pela implementagdo de um software que suprisse as necessidades basicas de uma clinica
médica - a visualiza¢do das imagens e as correspondentes informacdes contidas nos arquivos DICOM. A
linguagem de programagdo escolhida foi Objective-C, que permite uma codificagdo orientada a objetos, o
que, devido as suas qualidades como linguagem, torna o sofiware estruturado e simples, facilitando a
atualizacdo e inclusdo de novas fungdes. Estas caracteristicas permitem que o software obtido neste
projeto possa ser facilmente modificado futuramente para operar em outros dispositivos da Apple, os quais

possuem sistemas operacionais equivalentes ao Mac OS X, como celulares e computadores de méo.

Palavras-chave: DICOM, Mac OS X, Objective-C, engenharia de software, imagens médicas

digitais.

Abstract

This project aims to develop a software capable of showing the information contained in files of
digital medical images, DICOM files, inside the platform's operating system Mac OS X. These operating
systems, used by the computers of the company Apple, are very reliable and secure, increasing its use in
several areas, including medical. Thus, it was chosen to implement a software that met the basic needs of a
medical clinic - the viewing of images and related information contained in DICOM files. The chosen
programming language was the Objective-C, which allows an object-oriented coding, which, due to its
qualities as a language, makes the software simple and structured, making it easier to update and add new
functions. These features allow the software obtained from this project to be easily modified to futurely
operate in other Apple devices, which have similar operating systems of Mac OS X, such as mobile

phones and handheld computers.

Keywords: DICOM, Mac OS X, Objective-C, software engineering, digital medical
images.

10

1. INTRODUCAO

Sumario

2. OBJETIVOS

3. A LINGUAGEM DE PROGRAMACAO OBJECTIVE-C

3.1. MOTIVACAO PARA USAR OBJECTIVE=C....uuutiiiiiiiiiiiiiieeeee ettt et e e e e e e e e e e e e e e e e e se e nasasassasaenenereeeeeeeas
3.2. A PROGRAMACAO ORIENTADA A OBJETOSuuuvetiiiiiieeeeeeeeeeeeeeeieeeeeessssssseeseseeteeeesssseeasesessesessssssssssssssssssesesseeesees
3.3. A POSSIBILIDADE DE REUTILIZACAO DA LINGUAGEM ORIENTADA A OBJETOS.......cccoittiiiiieeeeinnereeeeeeeeeeeeeeens

4. O SISTEMA OPERACIONAL UNIX MAC OSX

4.1. CoMO O SISTEMA UNIX DIFERE DE OUTROS SISTEMAS OPERACIONAISuuvuurrriiiiiirieeieeeeeeeeeeeeeeeeeeeesesesssssnnnnnns

4.2. COCOA FRAMEWORK
5. ANALISE DE SISTEMA E DE REQUISITOS

5.1 IDENTIFICACAO DAS NECESSIDADESuuuuutututtttteeieieeieeeeeeeeeeeeetesessesessssssssessssseeseseseeseeesessssssessessssssssssssssseseseeeeeeees

5.1.1 A fungdo do Sistema.........

5.1.2 Desempenho, Qualidade e Confiabilidade.......................c.ccoociiiiiiiiiiiiiiiiiiiieeet e
5.1.3 Tecnologias e Recursos exigidos no desenvolvimento do SiStema..................cccccocoevciavenoiivcioeinnieeeane.

5.2 ESTUDO DA VIABILIDADE
5.2.1 Viabilidade Economica
5.2.2 Viabilidade Técnica..........
5.2.3 Viabilidade Legal

5.3 ANALISE ECONOMICA

5.4 ANALISE TECNICAcoccun....

5.5 DIAGRAMA DE CONTEXTO DE ARQUITETURAcevtiiiiiiiieeee et ee oo eeeeeeeetateteee e eeeeeeeeeeeeeeeeeeesessesssssssssasaesenereeeeeeeas

5.6. ANALISE DE REQUISITOS..........

5.6.1 Reconhecimento do PrOBDIEIIA.cccc..oooeeiiiiiieei et

5.6.2 Revisdoccceeun...

6. PROJETO DO SOFTWARE

6.1 DIAGRAMA DE FLUXO DE DADOS (DFD)oiiiiiiieeiie ettt ettt te e et e e naae e st e e ensaaeennns

6.2 DESCRICAO DOS PROCESSOS.....

6.3 ESPECIFICACAO DOS PROCESSOSietttietteeeeeeieeeeteeeeeeeeeeeeeeeseseesesssasssseseasseseeseesaeeeaeesessesesasassssssssssasseneseeeeeees
6.4 DIAGRAMA ENTIDADE-RELACIONAMENTO (DER) ...oiiiiiiiiiiieciie ettt e

6.5 CODIFICACAO......uuveerevrereeeeeeenns

7. TESTES

7.1 TESTE DE UNIDADE.........cccc......
7.1.1 Interface Grdfica..............

7.1.2 Avaliacdo da Estrutura de Dados e das Condiches-Limite.................ccc.occcoeeeieiieieeaeieieeeeeeeeeeeeeee

7.2 TESTE DE INTEGRACAO.............
7.3 TESTE DE VALIDACAO
7.4 TESTE DE SISTEMAccecceennnees

8. MANUTENCAO E QUALIDADE

9. CONCLUSOES

10. REFERENCIAS BIBLIOGRAFICAS

11. ANEXOS

11.1 ANEXO 1: O PADRAO DICOM

13
15
17

17
18
20

23

23
24

26

26
27
27
28
30
30
30
30
31
31
33
35
35
35

38

38
41
41
43
44

48

48
49
51
55
55
55

58
60
62
64
64

11

12

1. Introducao

O indispensavel uso de computadores na maioria dos ambientes de trabalho atualmente, a tardia e
necessaria popularizagdo do padrido de imagens digitais e comunicagdes em medicina, o padrio DICOM
(Digital Imaging and Communications In Medicine), a crescente utilizagdo, alto desempenho grafico e a
confiabilidade dos computadores da empresa Apple, os Maclntoshs, motivou a realizagdo do presente
projeto. Ele consiste no desenvolvimento de um sofiware, exclusivo para o sistema operacional dos
Maclntoshs, o Mac OSX, que pudesse ser utilizado em clinicas médicas para a rapida e simples
visualizagdo desses arquivos do padrdao DICOM.

Este padrio foi criado como uma tentativa de padronizar a comunicagdo entre diferentes
dispositivos de aquisi¢do digital de imagens médicas, possibilitando assim a troca de informagdes entre
clinicas localizadas em diversas posi¢des geograficas. O padrdo vem sendo desenvolvido desde a década
de 80, e encontra-se atualmente em sua terceira versdo. A dificuldade na difusdo e a eventual causa de
tamanha demora na obtengcdo de um resultado satisfatorio devem-se muito as complicagdes nas
negociagdes entre as partes interessadas, sobretudo fabricantes de equipamentos e de softwares.

As fungoes designadas para o software poderiam ser muitas, desde as organizacionais, como
agendamento e controle de exames e horarios, até fun¢des mais complexas relativas a manipulagdo das
imagens a serem visualizadas, podendo, desta forma, se tornarem muitas para o projeto em questdo.
Portanto, optou-se pela implementac¢do de um software basico e simples, com fungdes apenas de
visualizagdo do contetido dos arquivos médicos, utilizando como base os conceitos de Engenharia de
Software, tornando o projeto estruturado e metodoldgico, podendo assim, posteriormente, ser facilmente
atualizado com novas func¢des. Estas atualiza¢des torna-lo-iam mais util na rotina das clinicas médicas e
possibilitariam sua expansdo para dispositivos moéveis portateis da linha Apple, que utilizam o mesmo

sistema operacional dos Maclntoshs, como o iPhone, o iPod e o recente iPad.

13

2. Objetivos

O objetivo principal do projeto é obter uma ferramenta baseada em software livre capaz de
visualizar as informagdes e a imagem digital contidas nos arquivos DICOM, em substitui¢do a estruturas
dedicadas e de exclusividade de certos fabricantes de equipamentos particulares de obtengdo de imagens
médicas digitais. A premissa é o desenvolvimento desse software utilizando-se das metodologias
provenientes das disciplinas de Engenharia de Software e Linguagens de Programacéo e Aplicagdes, além
de demais conceitos obtidos no curso relacionados a programacgdo, gerenciamento, e¢ realizacdo de
projetos. Portanto, entende-se também como objetivo do projeto a boa qualidade da documentagéo, que €
parte fundamental na qualidade do produto final, sendo necessario para o uso de conceitos como a
abstracdo e a modularidade, que garantem uma boa organizacdo do conteudo do projeto.

Além disso, tem-se também como objetivo complementar a versatilidade do software final, de modo
que possa ser facilmente atualizavel, permitindo a implementacdo de versdes para outros dispositivos
moveis portateis. Assim, torna-se uma ferramenta bem generalista, possibilitando futuras adigdes de

fungdes mais especificas, conforme as necessidades do usuario.

15

16

3. A linguagem de programacio Objective-C

Objective-C é uma linguagem computacional simples projetada para permitir uma sofisticada
programacdo orientada a objeto. Objective-C ¢ definido como um pequeno mas poderoso conjunto de
extensdes da linguagem padrdo ANSI C. Suas adi¢cdes ao C sdo em sua maior parte baseadas em
Smalltalk, uma das primeiras linguagens de programacgao orientada a objeto. A linguagem Objective-C ¢
projetada para dar ao C capacidades totais de orientagdo ao objeto, e fazer isso de um modo simples e
direto. (Object-Oriented Programming with Objective-C, 2008)

Uma abordagem orientada a objetos no desenvolvimento de um aplicativo torna um programa mais
intuitivo de se projetar, mais rapido, mais suscetivel a modifica¢es, e mais facil de entender. A maior

parte dos ambientes de desenvolvimento orientados a objeto consiste de, no minimo, trés partes:

* Uma biblioteca de objetos;
* Um conjunto de ferramentas de desenvolvimento;

* Uma linguagem de programagdo orientada a objetos e uma biblioteca de apoio

Como linguagem, Objective-C tem uma longa historia. Ela foi criada pela empresa Stepstone no
comego da década de 80 por Brad Cox ¢ Tom Love. Foi licenciada por NeXT Computer Inc. no fim da
década de 80 para o desenvolvimento da NeXTStep frameworks, que antecedeu a Cocoa. NeXT extendeu a
linguagem de muitos modos, por exemplo, com a adi¢do de novos protocolos (Object-Oriented

Programming with Objective-C, 2008).

3.1. Motiva¢ao para usar Objective-C

A linguagem Objective-C foi escolhida pelo framework Cocoa (ver se¢do 4.2) por uma variedade de
motivos. Primeiro, e mais importante, ela ¢ uma linguagem orientada a objetos. O tipo de funcionalidade
que estd presente no framework Cocoa s6 pode ser usado por meio de técnicas de orientacdo a objetos.
Segundo, devido a Objective-C ser uma expansido do padrdo ANSI C: programas em C existentes podem
ser adaptados para usarem o framework sem perder nada do trabalho feito em seus desenvolvimentos
originais. Como Objective-C incorpora o C, é possivel obter todos os beneficios da linguagem C ao
trabalhar com Objective-C. Além disso, Objective-C é uma linguagem simples, de sintaxe pequena e facil

de aprender. Sua terminologia é auto-consciente e tem €nfase no desenvolvimento abstrato, apresenta aos

17

novos adeptos uma curva ingreme de aprendizagem (Object-Oriented Programming with Objective-C,

2008).

3.2. A Programacio orientada a objetos

“A orientacdo a objetos é uma abordagem para desenvolvimento de software que organiza os
problemas e suas solugoes como um conjunto de objetos distintos. A estrutura e o comportamento dos
dados estdo incluidos na representa¢do” (PFLEEGER, 2004, p. 210).

Segundo o documento Object-Oriented Programming with Objective-C (Object-Oriented
Programming with Objective-C, 2008) a programagdo orientada a objetos fornece uma abstragdo dos
dados os quais podem ser operados. Além disso, ela fornece um agrupamento concreto entre dados e as
operagdes que podem ser feitas com os mesmos.

As linguagens de programagdo, tradicionalmente, dividiram o mundo em duas partes - dados e
operagdes nos dados. Dado é estatico e imutavel, a ndo ser que operagdes os mudem. Esta divisdo é,
obviamente, fundamentada na maneira como os computadores funcionam, por isso ndo pode ser
facilmente ignorada ou deixada de lado. Em algum ponto, todos os programadores - mesmo o0s
programadores orientados a objeto - devem dispor as estruturas de dados as quais seus programas irdo usar
e definir as fungdes que irdo agir sobre os dados (Object-Oriented Programming with Objective-C, 2008).

A linguagem pode oferecer varias maneiras de suporte para a organizagdo dos dados e das fungdes,
mas ela ndo dividira o mundo de maneira diferente. Fungdes e dados sdo os elementos basicos do projeto
(Object-Oriented Programming with Objective-C, 2008).

A programacio orientada a objetos ndo s6 contesta esta visdo do mundo como a reestrutura em um
nivel superior. Ela agrupa operagdes e dados em uma unidade modular chamada objeto e permite a
combinag¢do destes em redes estruturadas a fim de formar um programa completo. Neste tipo de
linguagem, objetos e interagdes de objetos sfo os elementos basicos do projeto (Object-Oriented
Programming with Objective-C, 2008).

Todo objeto tem seu estado (dado) e comportamento (operagdes nos dados). Assim, eles ndo sio tdo
diferentes de objetos fisicos comuns. E facil ver como um dispositivo mecanico, como um relégio de
bolso ou um piano, englobam tanto um estado como um comportamento. Mas quase tudo o que ¢
projetado para fazer um trabalho também englobam. Mesmo coisas simples como uma garrafa combinam
estado (o quédo cheia esta, estar ou ndo aberta, o qudo quente esta seu conteido) com comportamento (a
habilidade de entregar seu conteido com diferentes taxas de fluxo, estar aberta ou fechada, suportar

temperaturas altas ou baixas). Sdo, portanto, estas semelhangas com coisas reais que ddo aos objetos tanto

18

poder (Object-Oriented Programming with Objective-C, 2008).

Uma representagdo de um objeto pode ser vista na Figura 1. Segundo Object-Oriented
Programming with Objective-C (Object-Oriented Programming with Objective-C, 2008), o objeto
combina o estado e o comportamento, e ¢ um grupo de fungdes relacionadas e uma estrutura de dados que
alimenta essas fungdes. As fungdes sdo conhecidas como métodos, e os campos de sua estrutura de dados

sdo as variaveis exemplo.

Figura 1- Representacio de um Objeto (Object-Oriented Programming wit Objective-C,
2008)

Um programa consiste em uma rede de objetos interconectados que chamam uns aos outros para
resolver uma parte de um quebra cabegas. Cada objeto tem um papel especifico para interpretar no projeto
total do programa e € capaz de se comunicar com outros objetos. Objetos comunicam-se por mensagens,

que sdo pedidos para realizarem métodos.

19

—» message

Figura 2 - Rede de Objetos (Object-Oriented Programming wit Objective-C, 2008)

Um programa pode ter mais de um exemplo, ou instincia, do mesmo objeto, os quais dizemos
serem membros da mesma Classe. Todos os membros de uma classe sdo capazes de efetuar os mesmos
métodos e t€ém os mesmos conjuntos de variaveis exemplo. Eles também compartilham uma definigdo

comum; cada tipo de objeto ¢ definido somente uma vez.

3.3. A Possibilidade de Reutilizacdo da Linguagem Orientada a Objetos

Projetar um programa orientado a objeto ndo implica, necessariamente, em escrever grandes
quantidades de codigo. A possibilidade de reutilizar as defini¢des de classes da uma grande oportunidade
de criar um programa amplamente de classes planejadas por outros. Pode até ser possivel construir
programas interessantes inteiramente com o uso de classes que outra pessoa ja definiu. A medida que o
numero de defini¢des de classes cresce, o programador tem mais e mais partes reutilizaveis para escolher.

As classes reutilizaveis vém de muitas fontes. Os desenvolvimentos de projetos geralmente geram
defini¢des de classes reutilizaveis e alguns programadores empreendedores os comercializam. Os
ambientes de programacdo orientada a objetos tipicamente vém com bibliotecas de classes.

Tipicamente, um grupo de biblioteca de classes trabalha junto para definir parcialmente a estrutura
de um programa. Essas classes constituem um kit, que pode ser usado para construir uma variedade de
aplicativos diferentes. Quando um programador usa um framework, ele aceita o modelo de programa que

o framework fornece e adapta o seu projeto a ele. Um programador pode utilizar um framework das

20

seguintes formas:

* Inicializar os exemplos das classes do framework
* Definir subclasses das classes do framework

* Definir novas classes para trabalhar com as classes definidas pelo framework

21

22

4. O Sistema Operacional Unix Mac OSX

Unix é um sistema operacional desenvolvido em 1969 pela AT&T. Hoje os sistemas Unix estdo
divididos em varios, alguns desenvolvidos pela propria AT&T e outros por organizagdes lucrativas e nédo
lucrativas. Alguns sistemas operacionais modernos conhecidos atualmente descendem diretamente do
sistema Unix, como a nova versdo desenvolvida pela propria AT&T, o SVR4 (System V Release 4) e o
Solaris (da empresa Sun, baseada em SVR4). Outros sistemas, embora ndo tenham relagdo direta com o
desenvolvimento do Unix, ganharam o direito de usar a marca por atenderem a uma série de requisitos
impostos pelo consorcio industrial The Open Group, que é atualmente o dono da marca Unix. Dentre estes
sistemas estda 0 Mac OS X, que é o resultado de algumas modificagdes no sistema operacional chamado
NeXTStep, da empresa NeXT, que foi comprada pela Apple em 1997. O sistema operacional entdo passou a

ser conhecido como Darwin, o qual foi melhorado e s6 entdo chegou-se ao sistema Mac OS X.

4.1. Como o Sistema Unix Difere de Outros Sistemas Operacionais

O objetivo de todos os sistemas operacionais ¢ mais ou menos 0 mesmo: controlar as atividades de
um computador. Os sistemas operacionais diferem na maneira como eles fazem seu trabalho e nas
caracteristicas adicionais que oferecem. O Unix ¢ Unico em seu desenho modular, que permite aos
usuarios acrescentar ou remover partes para adapta-lo as suas necessidades especificas. Os programas em
Unix s@o como pegas de um quebra-cabegas; os mddulos se encaixam com conexdes-padrdo. Pode-se tirar
um modulo e substitui-lo por um outro ou expandir o sistema acrescentando varios méddulos. De uma certa
maneira, o sistema Unix de cada pessoa ¢ inico. Muitos usuarios acrescentam ou eliminam modulos
sempre que preciso, adaptando suas implementacdes as suas necessidades. Se um modulo ndo ¢é
necessario, pode-se geralmente remové-lo sem prejudicar a operagdo do resto do sistema. Essa
caracteristica é especialmente Util nas implementa¢des de microcomputadores, onde as unidades de disco
tém capacidade limitada; a remogdo de programas desnecessarios abre espago para mais arquivos de dados
(THOMAS, YATES, 1989).

Além disso, uma das questdes principais que tornam os sistemas Unix mais confidveis que os
demais é sua seguranca. Por varios motivos — como o bom uso do sistema de usudrios, ndo dando
privilégios totais a eles, e o proprio foco da maioria dos invasores nos sistemas operacionais Windows,
que s@o mais frageis — os computadores que rodam sistemas operacionais Unix acabam sendo muito

seguros. A estabilidade do sistema é também muito alta, mantendo assim a integridade total dos arquivos e

23

trabalhos presentes no computador. Desta forma, a utilizagdo desses sistemas em clinicas médicas,

preocupadas com a seguranca dos seus exames, vem crescendo nos ltimos anos.

4.2. Cocoa Framework

O Mac OS X fornece aos seus usuarios uma APl (4dpplication Programming Interface) chamada
Cocoa Framework. Um framework, como citado anteriormente, ¢ uma biblioteca de classes de objetos
previamente definidas que podem ser usadas no desenvolvimento de softwares. Cocoa fornece uma
grande colecdo de classes definidas para uso na linguagem Objective-C, com duas bibliotecas principais:
Foudation Kit e Application Kit.

Foudation Kit fornece servicos que ndo estdo diretamente ligados a interface grafica, como
manipulacdo de valores e strings, e estrutura de lagos. Application Kit define as classes usadas para a
implementacdo da interface grafica.

De uma forma resumida, Cocoa framework ¢ um conjunto de bibliotecas, contendo defini¢des de
classes de objetos e definidas sob a linguagem Objective-C, que fornece ao usuario a oportunidade de por

em pratica a reutilizacdo da linguagem, configurando-se assim como uma poderosa ferramenta para o

desenvolvimento de aplicativos para o sistema operacional Mac OS X.

24

25

5. Analise de Sistema e de Requisitos

Antes que o software possa ser submetido a engenharia, o “sistema” no qual ele reside deve ser
entendido. Para conseguir isso, o objetivo geral do sistema deve ser determinado: o papel do hardware,
software, pessoal, base de dados, procedimentos e outros elementos do sistema devem ser identificados; e
requisitos operacionais devem ser conseguidos, analisados, especificados, modelados, validados e
generalizados. Objetivos e requisitos operacionais mais detalhados sdo identificados através da
informagdo do cliente; requisitos sdo analisados para avaliar sua clareza e consisténcia; uma especificagao,
frequentemente incorporando um modelo de sistema, é criada e depois validada tanto pelos profissionais
quanto pelos clientes. Finalmente, os requisitos sdo generalizados para garantir que as modificagdes sejam
controladas adequadamente.

Portanto, esta é a primeira etapa que deve ser realizada no processo de Engenharia de Software, e
nela sera analisada qual é o objetivo do programa, para que o usuario ira utiliza-lo, que tipo de pessoas
irdo utiliza-lo, entre outras coisas. Assim, nesta etapa deve-se analisar ndo apenas o software, mas todo o
ambiente que o envolve.

Segundo Pfleeger (2004), esta etapa também pode ser chamada de projeto conceitual. O projeto
conceitual descreve o sistema em uma linguagem que o cliente possa entender, em vez de utilizar jargdo
de computagdo e termos técnicos. Por exemplo, pode-se dizer ao cliente que um menu em uma tela dara
aos usuarios acesso as fungdes do sistema. O projeto conceitual pode, até mesmo, enumerar as respostas e
as acOes aceitaveis que podem resultar dos usuarios. Entretanto, ndo se diz ao cliente como os dados sdo

armazenados ou que tipo de sistema genericamente de banco de dados realizara as manipulagdes de dados.

5.1 Identificacao das necessidades

Este é o primeiro passo no processo de analise de sistemas e o ponto de partida na evolugdo de um
sistema baseado em computador. Consiste em descobrir se realmente existe a necessidade de se
desenvolver o software.

Para esta verificagdo sera considerado basicamente o que ja foi discutido até o momento sobre o
ambiente que envolve o sistema operacional dos computadores da Apple, o Mac OS X: a confiabilidade e
seguranca que ele fornece aos seus usudrios, a sua recente popularizagdo (precos mais acessiveis), € a
relativa escassez de ferramentas que possam atingir os objetivos descritos aqui (o mercado ¢ dominado por

apenas um unico software compativel com Mac OS X capaz de ser realmente utilizado na rotina das

26

clinicas médicas), além da emergente possibilidade da implementagdo da ferramenta compativel com
dispositivos moveis portateis. Mas para constatar de fato tal necessidade, mais alguns quesitos precisam

ser verificados.

5.1.1 A funcio do Sistema

O sistema sera criado para cumprir a fungdo mais basica exigida por um usudrio da area médica em
relacdo a imagens médicas digitais, os arquivos DICOM, que ¢é a sua visualizagdo. Portanto, o software
deve enxergar os arquivos DICOM presentes em qualquer dispositivo de armazenamento de midia, como
HD (Hard Disk), CDs, DVDs, memorias flash, e outras, que estejam diretamente ligados ao computador
em que o software estiver instalado, sendo capaz de exibir todas as informagdes pertinentes presentes no
conteudo do arquivo, o que ndo pode ser feito sem a presenga de uma ferramenta especializada nesta
funcao.

Desta forma, o programa ird exibir na tela a imagem médica, qualquer que seja o tipo da mesma
(gerada por raios X, Ressonancia Magnética, ultrassom, etc, ja que o que importa é sua caracteristica de se
constituir num arquivo digital, geralmente em formado L-JPEG), juntamente com as informagdes relativas

ao exame presentes neste arquivo (Nome do Paciente, Data e Hora do exame, etc).

5.1.2 Desempenho, Qualidade e Confiabilidade

Analisando o ambiente em que o software estara inserido, observa-se que o perfil do usuario pode
ser muitas vezes decisivo para a avaliagdo da qualidade e da confiabilidade do software. E facil evidenciar
que existem muitos médicos em atua¢do que possuem pouco conhecimento na area de informatica,
primeiramente porque os cursos de medicina pouco oferecem em termos de tais conhecimentos aos seus
alunos. Além disso, existem muitos médicos que ndo tém grande facilidade na operagdo de computadores,
procurando até, de certa forma, evitar o uso dos mesmos. Estes profissionais preferem continuar
trabalhando com as imagens tradicionais.

Nesta realidade fica explicita a necessidade de um software de facil operagdo, o que é chamado de
user-friendly, para que mais profissionais se sintam confortaveis e se capacitem para o uso diario do
mesmo. A sua confiabilidade fica restrita a fidelidade das informagdes exibidas, o que ¢ intrinseco a
implementacdo do programa. Como desempenho para essa proposta em si, espera-se uma alta velocidade
no tempo de resposta, ja que as fun¢des ndo sdo especificas e ndo exigem nenhum processamento

avangado ou complexo de dados.

27

5.1.3 Tecnologias e Recursos exigidos no desenvolvimento do Sistema

Como a proposta foca a aplicagdo exclusivamente em sistemas da Apple, o desenvolvimento e a
utilizacdo do software considera computadores com sistema operacional Mac OS X (Figura 3). O
desempenho desses computadores ndo ¢é relevante. Esses requisitos, hoje em dia, sdo de facil acesso e de

custo regular.

Figura 3 - Computadores Apple

Para o desenvolvimento ¢ necessario uma API — conjunto de ferramentas que possibilitam o
desenvolvimento de aplicativos — especifica. A Apple disponibiliza, gratuitamente, uma API chamada
XCode (Figuras 4 e 5), que esta sendo utilizada para este projeto. Nela estdo presentes os frameworks que

acompanham a biblioteca Cocoa framework.

28

Getting Started iPhone Dev Center Mac Dev Center Xcode News [RSS] Mailing Lists Tips

Welcome to Xcode 3.1

Create your first Cocoa application
Learn how easy it is to quickly create, build, and run your first
Mac application.

5 Build your user interface
= Learn how Interface Builder works with Xcode to design your Ul
and wire your code to the visual controls.

F y Store your application data
Learn how Xcode makes it easy to leverage Core Data to store
your application’s data.

Optimize your application
Learn how to integrate Instruments into your Xcode workflow to
analyze the performance of your application.

M Show at launch

Figura 4 - Xcode

[m main.m - Teste (a)

Groups & Files 1 A|Code | ® | A |

o]

v 'S Teste B §% AppKit.framework ®

»[| Classes ﬁ Cocoa.framework 4

» (] Other Sources §% CoreData.framework &]

» (] Resources §% Foundation.framework B

» [| Frameworks E] Info.plist ®

» [| Products [5] InfoPlist.strings (English)
» (&) Targets
» </ Executables B’ MainMenu.xib (English) A
» /® Errors and Warnings Q Teste.app oy
'9‘ Find Results < » [@main.m:l § <No selected symb—ol> % J, |"=|C.|#, -
» [%) Bookmarks 7 a
»iiscMm /¢ main.m |

@ Project Symbols Pl /7 Teste
Is

Implementation Files
» (] NIB Files

/¢ Created by Rodrigo Reis on 28/168/18.

/¢ Copyright __MyCompanyName__ 2616. All rights reserved.
#import <Cocoa/Cocoa.h>

int main{int arge, char *argv[])

return NSApplicationMain{arge, {const char **) argv);

}

Figura 5 - Area de Trabalho do Xcode

Em relacdo as tecnologias e recursos adicionais necessarios para a instalacdo e utilizacdo do

software, nenhuma ferramenta adicional é requerida, sendo necessario apenas o seu carregamento em si.

29

5.2 Estudo da Viabilidade

Trés areas principais devem ser analisadas neste estudo: viabilidade econdmica, viabilidade técnica

e viabilidade legal.

5.2.1 Viabilidade Economica

Trata-se da avaliacdo do custo de desenvolvimento confrontada com a renda de retorno derivada do
sistema desenvolvido. Como o sistema ndo exigira nenhuma ferramenta adicional para o seu
funcionamento, ¢ tampouco conhecimentos avangados por parte dos seus usuarios, € por se tratar de um
projeto académico sem fins lucrativos, onde todas as ferramentas utilizadas foram fornecidas pela
universidade ou adquiridas gratuitamente (XCode — www.apple.com), o estudo de viabilidade econdmica
ndo pode ser corretamente aplicado ao caso, a ndo ser se tomarmos como zero o custo de
desenvolvimento, o que realmente é o caso, e também como zero a renda de retorno, tornando, em todo

caso, o projeto viavel.

5.2.2 Viabilidade Técnica

Em termos técnicos, o projeto é totalmente viavel. Os conhecimentos adquiridos nas disciplinas de
programacdo e engenharia de software formam, aliados aos conhecimentos adicionais adquiridos em
linguagens orientadas ao objeto e ao funcionamento do padrdo DICOM, a base da exigéncia técnica do

projeto. O restante ¢ complementado por conhecimentos em gerenciamento de projetos.

5.2.3 Viabilidade Legal

Todas as ferramentas utilizadas no desenvolvimento do projeto sdo de uso gratuito e de licenga
aberta, assim como todas as bibliotecas e frameworks usados na implementacdo do codigo do software.

Nenhum dado confidencial sera manipulado na utilizacdo do software, e os arquivos DICOM utilizados

30

para os testes sdo de exames disponibilizados para tal fim, tendo os nomes dos pacientes envolvidos nos

estudos excluidos do arquivo. Portanto, em termos legais, o projeto é viavel.

5.3 Analise Economica

Apoés a constatacdo da viabilidade do projeto, ainda deve-se atentar para mais alguns detalhes
econdmicos relacionados ao custo-beneficio do produto final. Nesta etapa, ndo apenas os objetivos
tangiveis devem ser analisados, mas também os intangiveis, como a satisfagdo do cliente.

Os custos de aquisi¢do sdo nulos, ja que o projeto ndo visa fins lucrativos, ndo ha a necessidade de
compra de equipamentos adicionais e nem de licengas para a utiliza¢do do software. Também néo existem
custos relacionados a instalagdes, ja que o software atua de forma autdnoma no sistema, e nenhuma
modificacdo no ambiente é necessaria.

Quanto aos custos relacionados a inicia¢do ou treinamento dos usuarios, eles também sdo minimos,
j& que o proprio objetivo do projeto é que o software seja simples, facilitando a sua utilizagéo.

Para os custos que tenham relagdo direta com o desenvolvimento do projeto, como ja citado
anteriormente, o Unico aplicativo adicional necessario foi o API XCode, o qual pode ser obtido
gratuitamente pelo site da Apple.

Os unicos custos permanentes relacionados ao projeto sdo unicamente os de manutengao, devido a
depreciag@o do hardware no qual ele estara instalado; porém, devido a simplicidade do programa, ele ndo
sera responsavel por praticamente nada desta depreciagdo, ja que nenhum recurso complexo de hardware

¢ utilizado na realizagdo das suas fungoes.

5.4 Analise Técnica

A partir dos dados coletados no estudo de viabilidade técnica, é possivel refinar e detalhar tais
necessidades, fazendo com que os procedimentos das etapas técnicas que seguem se tornem mais faceis.

Assim como ja foi ressaltado anteriormente, algumas caracteristicas importantes da programagao
orientada a objetos sera usada no desenvolvimento deste projeto. Uma delas é a Reutilizaggo.

Para fazer uso desta caracteristica da orientagdo a objetos, foi necessaria uma intensa pesquisa por
frameworks que pudessem suprir as necessidades, ou parte delas, envolvidas no projeto. Decidiu-se entdo

pelo uso do framework iiDICOM, distribuido gratuitamente pela Imaging Informatics. Trata-se de uma

31

série de defini¢des de Classes de objetos relacionados a obtencdo das informagdes presentes nos arquivos
DICOM. Sua implementag@o é bastante simples, e a simplificagdo causada pelo seu uso € muito grande.

Além do uso correto dos beneficios da programacéo orientada a objetos, também sera utilizado o
aplicativo XCode, que permite que o processo de codificagdo do sofiware na linguagem Objective-C
acontega. Desta forma, é imprescindivel a correta utilizagdo da ferramenta, utilizando todos os seus
recursos com o objetivo de facilitar o desenvolvimento do projeto, como a ferramenta para criacdo de
interfaces graficas que acompanha o API, o Interface Builder, que pode ser visto na Figura 6.

No [Interface Builder ¢é possivel criar instincias de objetos, como janelas e botdes, e as
comunicacgdes que eventualmente estas instincias realizardo, as mensagens. Isto tudo ¢ feito de maneira
grafica, s6 sendo necessario implementar os métodos que serdo ativados pelas mensagens. Este tipo de
abordagem so6 € possivel devido a orientagdo ao objeto.

Assim pode-se fazer um esbogo de como o software ird comportar-se (Figura 7). Observando o
esbogo, nota-se que uma classe devera ser criada, para comportar o objeto de controle, e “chamar” todas
as classes definidas nos frameworks utilizados. De maneira mais clara, foi feito o que esta descrito no
capitulo 3.3 como “Definir novas classes para trabalhar com as classes definidas pelo framework”. Nesta
classe também estardo definidos todos os métodos solicitados pelas mensagens vistas no esboco. Os

demais itens do esbogo sdo objetos ja definidos pelo framework Cocoa.

® Interface Builder File Edit Font Layout Tools Window Help
-8 0.0, Library. 000 Aclass Identity.
&5
Objects | Media | Pnind g | ® |9 o
— ¥ Class Identity
Da m Class RAclass '!

¥ Class Actions

» (@] Aoplication

v [Objects & Controllers
(&) controliers
() core Data

v [Views & Cells =3

Action

MainMenu.xib
nextimage: id

[#) RAclass.h O 4
openfFile: id v

File's Owner First Responder Application

Object - Provides you with an
instance of an NSObject subclass
that is not available in Interface...

+

¥ Class Outlets

Object Controller - A Cocoa m
bindings-compatible controller
class. Properties of the content...

MainMenu Window (TCC... Font Manager

Outlet
[%) RAclass.h [~} m
imageView id
sendFileName id 4
sendText id

Array Controller - A bindings
compatible class that manages a
collection of objects.

My Splash

Tree Controller - A bindings
compatible controller that manages
a tree of objects.

+

v
Sy Interface Builder Identity

Cocoa bindings compatible

Name
controller class. Properties of the... ¥

ObjectID 454

Lock | Nothing (Inherited) L C]

Notes (7] Show With Selection

ol=x X K |

Push Button
NSButton

The NSButton class is a subclass of NSControl
that intercepts mouse-down events and sends
an action message to a target object when it's
clicked or pressed.

Figura 6 - Interface Builder

32

solicitar a abertura de um arquivo

¥~

Botao

objeto de controle

enviar dados

enviar imagem

recipiente da imagem recipiente dos dados

Figura 7 - Esboco do Programa

5.5 Diagrama de Contexto de Arquitetura

Todo sistema baseado em computador pode ser modelado como uma transformagao de informagéo
usando um gabarito entrada-processamento-saida Estudos posteriores estenderam essa visdo e incluiram
duas caracteristicas adicionais do sistema - processamento e manutengdo de interface do usuario, e
autoteste. Estas caracteristicas, embora ndo estejam sempre presentes, tornam mais robusto qualquer
modelo de sistema (PRESSMAN, 2006).

Usando uma representagdo de entrada, processamento, saida, processamento da interface do usuario
e processamento de autoteste, um engenheiro de sistemas pode criar um modelo de componentes do
sistema que estabeleca a fundagdo para os passos posteriores em cada uma das disciplinas da engenharia.

Segundo Pressman (2006), como praticamente todas as técnicas de modelagem usadas na
engenharia de sistemas e de software, o gabarito de modelo do sistema permite ao analista criar uma
hierarquia de detalhes. Um diagrama de contexto de arquitetura (DCA) fica no nivel mais alto da
hierarquia. O DCA define todos os produtores externos da informag¢do usada pelo sistema, todos os
consumidores externos da informacédo criada pelo sistema e todas as entidades que se comunicam através

da interface ou realizam manutencao e autoteste.

33

A Figura 8 representa o diagrama de contexto de arquitetura para este projeto.

Interface do usuario
Usuario

Solicitagoes @suahzacéo
de abertura da Imagem
de arquivos e das 4 ~N
{Lnformagées I
" Sistema de [Cz=2, MM
na tela

Arquivo
Dicom

Eeme=2) | Visualizacao N J

de Imagens 1)
g (Dades) Informacoes

M >
\ Dicom / na tela

. J/

Entrada Saida

Figura 8 - Diagrama de Contexto de Arquitetura

Como sugere Pressman (2006), nem todos os sistemas apresentam todas as caracteristicas citadas. E
0 caso, como pode ser visto na Figura 8, deste projeto, que nao possui nenhum mecanismo de autoteste.

O DCA acima sugere simplesmente que o usudrio solicite, através de uma interface, que o arquivo
DICOM, localizado no ambiente de entrada, envie suas informagdes para o sistema de visualiza¢do de
imagens DICOM. O sistema, entfo, se comunica com a saida, enviando a imagem e os dados para a tela, o

que pode ser visualizado pelo usuario através da interface.

34

5.6. Analise de Requisitos

Entender os requisitos de um problema estd entre as tarefas mais dificeis enfrentadas por um
engenheiro de software.

Segundo Pressman (2006), a engenharia de requisitos fornece o mecanismo apropriado para
entender o que o cliente deseja, analisando as necessidades, avaliando a exequibilidade, negociando uma
condi¢do razoavel, especificando a solu¢do de modo ndo ambiguo, validando a especificagdo e gerindo os

requisitos a medida que eles sdo transformados em um sistema operacional.

5.6.1 Reconhecimento do Problema

As solugdes baseadas em computador para a visualizagdo e manipulagdo de imagens médicas
digitais, os arquivos DICOM, sdo, em sua grande parte, voltadas para o sistema operacional Windows,
existindo poucas alternativas para o sistema Mac OS X. Além disso, com a nova tendéncia de aplicativos
voltados aos dispositivos moveis portateis, como celulares e computadores portateis, existe uma grande
demanda por visualizadores médicos compativeis com estes equipamentos.

Os requisitos do sistema passaram por algumas alteragdes no decorrer do projeto, sendo que as
funcdes de manipulagdo das imagens foram retiradas. Porém é um requisito do projeto permitir, através do
desenvolvimento de um bom software basico, a inclusdo destas fungdes no futuro. Com isto também
pretende-se deixar o sofiware pronto para as alteragdes necessarias para a implementacdo das versdes para

iPhone, iPod e iPad.

5.6.2 Revisao

Com relagdo a revisdo do projeto, foi possivel contar com a ajuda de um médico para constatar
quais alteracdes eram convenientes. O radiologista Dr. Fernando Ivan dos Reis sugeriu a diminui¢do do
niamero de informacgdes mostradas pelo software. No projeto base, o software iria mostrar todas as
informagdes presentes no arquivo, que contém muitos dados intteis para os médicos. Desta forma, o

radiologista sugeriu quais destes dados sdo realmente relevantes para os médicos na analise da imagem, e

35

também que essas informacdes fossem dispostas nos cantos da propria imagem, uma vez que este € o
padrdo dos melhores softwares do mercado neste género.

Essas alteragdes ajudaram a tornar o software mais amigavel aos médicos, sendo que o torna mais
parecido com outros softwares ja conhecidos. Assim, mais um dos requisitos, a facilidade de uso ou user-

friendly, pdde ser melhorado.

36

37

6. Projeto do Software

Um conjunto de conceitos fundamentais de projeto tem evoluido durante a historia da engenharia de
software. Apesar de o grau de interesse em cada conceito ter variado ao longo dos anos, cada um resistiu
ao teste do tempo. Cada um fornece ao projetista de sofiware uma base por meio da qual métodos mais
sofisticados de projeto podem ser aplicados.

Em outras palavras, o projeto de software é responsavel por analisar os requisitos especificados até
o momento, e liga-los as etapas de engenharia e manutencdo que se seguirdo. Com esta ponte, problemas
como a construgdo de sistemas instaveis ¢ a alta probabilidade de falhas quando pequenas mudangas sdo
feitas, sdo minimizadas. Um software projetado corretamente tem a sua realizagdo muito mais facil, além
de que seu produto final pode ser analisado quanto a sua qualidade.

Para que esse projeto seja feito de maneira a elevar a qualidade do software, alguns procedimentos
devem sempre ser tomados: abstracdo, refinamento e modularidade.

Com esses conceitos em mente, ¢ possivel descrever o sistema de maneira simples, sendo
irrelevante a complexidade do mesmo (abstragdo). Apos a obtengdo de um modelo simples e geral, com
um alto nivel de abstragdo, sdo aplicados os conceitos de refinamento e de modularidade, e entdo uma
solucdo detalhada, estruturada e modularizada é adquirida.

Se estes procedimentos forem tomados juntamente com uma orientagdo voltada ao fluxo dos dados

no sistema, podemos modelar um Diagrama de Fluxo de Dados.

6.1 Diagrama de Fluxo de Dados (DFD)

A abordagem orientada ao fluxo de dados é uma das mais usadas no mundo, e se aplica na
confec¢do de uma ampla variedade de solu¢des baseadas em computador.

O diagrama de fluxo de dados permite ao engenheiros de software desenvolver modelos do dominio
informacional e do dominio funcional a0 mesmo tempo. A medida que o DFD ¢é refinado em maior nivel
de detalhe, o analista realiza uma decomposi¢do funcional implicita do sistema.

Uma DFD deve representar as funcdes do sistema, as interagdes entre as func¢des do sistema, as
transformacgdes que o sistema deve realizar, as fontes de informacdo, o destino dos resultados ¢ os dados
mantidos pelo sistema.

Como a analise de requisitos ndo gerou um nimero muito grande de fungdes, ¢ como ndo existe

processamentos de dados complexos relacionados a estas fungdes, foram necessarios apenas dois niveis

38

(Figuras 9 e 10) para detalhar suficientemente o comportamento do fluxo de dados do sistema.

Tela

Imagem e Informagoes
Nome e Caminho do Arquivo

TArquivos Dicom

Banco de Dados

Figura 9 - Diagrama de Fluxo de Dados (Nivel 1)

39

Banco de Dados

Nome e Caminho do l

. rquivos Dicom
Arquivo q

Receber
Caminho do
arquivo

Formatar
Informagoes
da Imagem

WA
nformagoes da

Imagem Tela

4

Arquivo Selecionadol

Executar
Arquivo

Formatar
Informagoes
dos Dados

Informacgoes dos
Dados

Figura 10 - Diagrama de Fluxo de Dados (Nivel 2)

Nos diagramas criados € possivel identificar as seguintes formas: retangulos, circulos, barras
horizontais paralelas e setas.

Os circulos representam os processos do sistema. Sdo elementos que transformam as informagdes ¢
correspondem a uma fungdo ou atividade que deve ser executada pelo sistema. As setas sdo usadas para
descrever o movimento de informagdes de um componente do sistema para outro. Elas traduzem a relagdo
entre os diferentes processos do sistema. As entidades externas sdo representadas pelos retingulos, que
sdo elementos que estdo fora do limite do software, mas que interagem com o mesmo, gerando fontes ou
recebendo informagdes. Os fluxos que conectam entidades a processos representam interfaces entre o
software e o ambiente externo. Por fim, as barras paralelas indicam os repositorios de dados que sdo
armazenados para serem usados pelos processos. Podem entfo representar ficharios, buffers, arquivos,
banco de dados, etc.

A figura 9 nos da apenas uma visdo geral do sistema, mostrando o fluxo de dados na forma mais
simples e abstrata possivel. Nela podemos ver que as entidades externas sdo o teclado, o mouse ¢ a tela, o
que configura a interface com o usuario, que fard uso destas entidades para acessar os arquivos presentes

no banco de dados.

40

O nivel 2 do DFD, representado na Figura 10, nos da um detalhamento dos processos contidos no
processo geral descrito no nivel 1. Portanto, os processos finais que foram obtidos com este refinamento
sdo: receber caminho do arquivo, executar arquivo, formatar informag¢des da imagem e formatar
informagdes dos dados. Sdo estes processos que deverdo fazer parte da base principal do software, por isso
deverdo ser melhor definidos para entdo serem implementados na linguagem de programacdo escolhida

pelo projeto.

6.2 Descricao dos Processos

Os quatro processos obtidos na etapa anterior sdo descritos da seguinte forma:

Receber Caminho do Arquivoe: Este processo recebe do usuario o caminho € o nome do arquivo
que sera executado pelo programa, e o seleciona da lista de arquivos compativeis presentes no banco de

dados.

Executar Arquivo: Neste processo o arquivo selecionado é analisado e as informagdes necessarias,

da imagem e dos dados, sdo guardadas para processamento posterior.

Formatar Informacédes da Imagem: As informagdes da imagem presentes no arquivo selecionado

sdo processadas para gerar a imagem na tela.
Formatar Informacdes dos Dados: Formata as informagdes importantes do arquivo e os prepara

para serem exibidos na tela.

6.3 Especificacao dos Processos

Esta etapa se encarrega de definir o que deve ser feito dentro de cada um dos processos, de modo a
transformar entradas em saidas. Trata-se de um pseudocddigo, criado para facilitar ainda mais o processo

de codificag¢do. Assim, elaborou-se o seguinte pseudocodigo:

Processo Principal

41

Repita
Se Processo “Receber Caminho do Arquivo”= Verdadeiro
Processo “Executar Arquivo”
Processo “Formatar Informagdes da Imagem”
Processo “Formatar Informacdes dos Dados”
Fim Se

Fim Processo

Processo “Receber Caminho do Arquivo”
Obtenha(Arquivos DICOM)
Obtenha(Nome e Caminho_do_Arquivo)
Se Nome="*.dcm”
Ler (Nome e Caminho _do_Arquivo)
Seleciona Arquivo para Execucao
Retornar(Verdadeiro)

Fim Se

Fim Processo

Processo “Executar Arquivo”
Obtenha(Arquivo DICOM)
Escreva(Informagdes_da_Imagem)
Escreva(Informagdes_dos Dados)

Fim Processo

Processo “Formatar Informagdes da Imagem”
Leia(Informagdes da Imagem)
Gere(Imagem)

Escreva(Imagem)

Fim Processo

Processo “Formatar Informacodes dos Dados”
Leia(Informagdes _dos Dados)
Gere(Dados)

Escreva(Dados)

Fim Processo

6.4 Diagrama Entidade-Relacionamento (DER)

“O par objeto/relacionamento é a pedra fundamental do modelo de dados. Esses pares podem ser
representados graficamente por meio do diagrama entidade-relacionamento (DER). O DER foi
originalmente proposto por Peter Chen [CHE77] para o projeto de sistemas de base de dados relacional
e foi estendido por outros. Um conjunto de componentes primordiais é identificado para o DER: objetos
de dados, atributos, relacionamentos e indicadores de varios tipos. A finalidade principal do DER é
representar objetos de dados e seus relacionamentos” (PRESSMAN, 2006, p. 151).

Uma notacdo rudimentar do DER ja foi introduzida. Objetos de dados sdo representados por um
retangulo rotulado; relacionamentos sdo indicados por uma linha rotulada conectando objetos. Em
algumas variantes do DER, uma linha de conexdo contém um losango, que ¢é rotulado com um
relacionamento.

A Figura 11 representa a DER deste projeto. Os niimeros entre parénteses indicam que o usuario
pode selecionar, ou visualizar, no minimo um, ¢ no maximo um arquivo DICOM de cada vez. Ja os
arquivos DICOM podem ser selecionados, ou visualizados, por no minimo um, ¢ no maximo N usudrios,
jé& que estes arquivos podem estar armazenados em um banco de dados comum a uma rede, onde podem

estar instalados N softwares de visualizagio.

43

)

Seleciona

(

(LN) (L1

Arquivos
Dicom

Usuario

(1LN) (1)

)

Visualiza

(

Figura 11 - Diagrama Entidade-Relacionamento

6.5 Codificacao

Primeiramente foi necessaria a criagdo de uma classe para alocar os objetos e métodos que serdo
usados pelo software. Desta forma, a classe RAClass foi criada, e nela foram implementados os métodos
IBAction “openFile”, acionado sempre que o botdo “Open DICOM Image” é pressionado, ¢ os IBOutlets
“imageView”, “sendText” e “sendFileName”, que sdo utilizados para manipular as informacdes do
arquivo selecionado. Estes quatro métodos sdo os principais responsaveis pelo funcionamento do
programa, juntamente com os métodos contidos na biblioteca iiDICOM. framework.

Um diagrama de blocos que ilustra a implementaggo da classe RAClass pode ser visto na Figura 12.

44

‘Inicio de RACIass'
Inicio da IBAction
openfFile

Declaragdes:

inteiro i

openDlg da classe NSOpenPanel
files da classe NSArray
fileName da classe NSString
image da classe NSImage
dataSet da classe NSDictionary

files = Todos os nomes dos arquivos

ressionar o botdo Ol encontrados em openDlg

Nio

|
v

fileName = arquivo selecionado

l

image = imagem presente no arquivo
fileName

(utilizando o método sliceAsNSImage da
biblioteca iiDicom.framework)

|

Enviar image para seu recipiente através da IBOutlet
imageView

Enviar o caminho do arquivo selecionado para seu
recipiente através da IBOutlet sendFileName

l

Final da IBAction e dataSet = diciondrio presente no arquivo fileName
openfFile (utilizando o método metaDataSet da biblioteca

l iiDicom.framework)

Final de RAClass l

Enviar dataSet através da IBOutlet sendText

i < nimero de arquivos
em files

Nio

Figura 12 - Diagrama de Blocos

Para um melhor entendimento da estrutura geral do programa foi feito um diagrama de classes, que
representa mais claramente as relagdes que foram formadas entre as classes do software. Esse tipo de

modelagem ¢ muito util, pois define todas as classes que serdo necessarias no sistema.

45

Properties mostram os atributos e Operations mostram os métodos que podem ser utilizados pelos objetos

instanciados por cada uma das classes.

| (NSObject
mySplash » Properties
¥ Properties | 7|, Operations iiDcmSlice
¥ Operations ¥ Properties
initiali _bitsPerPixelComponent:int
_bytesPerRow:int
RAclass _cgirDicomSlice:CGImageRef
¥ Properties _d?comDictionary.i|DcmDictionary
imageView:id _d|§omr.|lcname NSString
sendrileName:id liDcmDictionary _ir::lzlgghelsgtta unsigned char *
sendTextid ¥ Properties _imageData.ScaIed:ﬂoat .
sendTextD[.rd _dcmFilename:NSString “monochromeMaxPossiblevValue:double
sendTextDS:id _metaDataSet:NSMutableDictionary monochromeMaxValue-Gouble
sendTextEl:id _metaForimageKitProperties:NSMutableDictionary _monochromel\dinPossibIeVaIue’double
¥ Operations _metalnformation:NSMutableDictionary _monochrome‘MinValue'double ’
OpenFile:(idjsender fileRead:B00L _nsiDicomSIicel'NSImagé
¥ Operations _planes:int .
dicomFilename —width:int
init P .
initWithDicomFile:(NSString)dicomFilename iggg:geﬁr:ncsolorspace.CCCoIorSpaceRef
metaDataSet X bitsPerPixelComponent
metaDataSetValueByKey:(NSString)key bytesPerRow
metaDictionaryAllForimageKitProperties dicomDictionary
metalnformation filename
metalnformationValueByKey:(NSString)key height
seriesUid init
initWithDicomFileSlice:(NSString)dicomFilename
isHounsfield
isMonochrome

monochromeMaxPossibleValue
monochromeMaxValue
monochromeMinPossibleValue
monochromeMinValue

planes
sliceAsCGImageRef:(BOOL)autoWindowLeve!
sliceAsHounsfield
sliceAsNSImage:(BOOL)autoWindowLevel context:(NSGraphicsContext)context
sliceAsRawData:(BOOL)autoWindowLevel
sliceAsRawScaledData
slicelnstanceNumber

sliceLocation

voxelVolume

width

Figura 13- Diagrama de Classes

A classe NSObject ¢ a classe raiz da biblioteca Cocoa, através dela os objetos herdam todas as
fungdes basicas necessarias para que eles possam se comportar como objetos da linguagem Objective-C. A
classe mySplash foi criada apenas para que uma tela de abertura seja inicializada antes do software. As
classes iiDcmDictionary e iiDcmSlice sdo classes definidas na biblioteca iiDICOM.framework e possuem
muitos atributos e métodos, porém poucos deles foram utilizados no projeto, como os métodos

metaDataSet e sliceAsNSImage. A classe RAclass ¢ a principal do codigo

46

47

7. Testes

“O teste de software é um elemento de um aspecto mais amplo, que é frequentemente referido como
verificagdo e validagcdo (V&V). Verificacdo se refere ao conjunto de atividades que garante que o
software implementa corretamente uma fun¢do especifica. Valida¢do se refere a um conjunto de
atividades diferentes que garantem que o software construido corresponde aos requisitos do cliente”
(PRESSMAN, 2006, p. 289).

Verificagdo responde a pergunta: estamos construindo o produto corretamente? Enquanto validagéo
responde a: estamos construindo o produto certo?

A etapa de testes pode ser dividida em 4 partes: teste de unidade, teste de integracdo, teste de

validagdo e teste de sistema, e serdo discutidos a seguir.

7.1 Teste de Unidade

“Ao desenvolver um grande sistema, o teste, geralmente, envolve vdrios estagios. Primeiro, cada
componente do programa é testado, isolado dos outros componentes do sistema. Esse teste, conhecido
como teste de modulo, teste de componente ou teste de unidade, verifica se o componente funciona de
forma adequada aos tipos de entradas esperadas, a partir do estudo do projeto do componente. Sempre
que possivel, o teste de unidade é feito em um ambiente controlado, de modo que a equipe de teste possa
fornecer ao componente a ser testado um conjunto de dados predeterminado, e a observar quais agoes e
dados sdo produzidos. Além disso, a equipe de testes verifica as estruturas de dados internas, a logica e
as condigoes limite para os dados de entrada e saida” (PFLEEGER, 2004, p. 275).

Primeiramente realizou-se uma inspecdo do codigo. Uma vez que a descricdo de projeto ajuda a
codificar e documentar cada componente de programa, o seu programa reflete a sua interpretagdo do
projeto. A documentacdo explica em palavras e figuras o que o programa deve fazer no cédigo. Portanto, ¢
util que se revise objetivamente o codigo e sua documentagdo, a fim de eliminar interpretagdes erroneas,
inconsisténcias e outros defeitos (PFLEEGER, 2004).

Os componentes testados nesta etapa foram: a interface grafica, a estrutura de dados e as condigdes-

limite.

48

7.1.1 Interface Grafica

Segundo a analise dos requisitos documentada nos capitulos anteriores, era de grande importancia
que a interface grafica apresentasse simplicidade, o que tornaria o programa mais amigavel. Este teste
tem, portanto, como objetivo verificar que esta simplicidade foi de fato alcangada pela codificagdo. A tela
inicial do programa, que pode ser vista na Figura 12, transmite muito bem tal simplicidade. A interface ¢
formada por apenas um botdo (sem contar com os botdes de fechar, minimizar e maximizar) que, ao ser
pressionado, leva a interface para uma nova janela (Figura 13), que também ¢ de facil operacdo. Apos a

selecdo do arquivo desejado, a imagem ¢ mostrada de forma clara, e suas informagdes dispostas nos

cantos da mesma, como foi especificado na analise de requisitos (Figura 14).

e®no TCC-Dicom Viewer

Open Dicom Image

Figura 14 - Tela Inicial

49

| %UOO Open

<« » (22 =[m] [2 Macintosh HD B Q
DEVICES 25 Aplicativos
£ Ma [Biblioteca
El iDisk <] Developer
a.l Guias do ...formacdes
PLACES)
§ Mes;_l) 128 Sistema
{4} rodrigoreis @ Usuirios

/v Aplicativos
| Documentos
' Cls final.doc

Cancel) [Open 3

Figura 15 - Janela de Sele¢do de Arquivos

000 TCC-Dicom Viewer

{ Open Dicom Image)

/Users/rodrigoreis/D loads/matlab/ ples/sample_data/DICOM/digest_article/brain_012.dcm

WindowCenter:0 Patient's Name;|
WindowWidth:0

Age:028
Dimension:256x256 Patient ID:123565

Thickness:5.00000
Spacing Between Slices:2.00000

Acquisition Date:20010316
Acquisition Time:143415)

Figura 16 - Exibi¢ao da Imagem

50

7.1.2 Avaliacao da Estrutura de Dados e das Condi¢oes-Limite

A estrutura de dados local é examinada para garantir que os dados armazenados temporariamente
mantenham sua integridade durante todos os passos da execucdo de um algoritmo. Todos os caminhos
independentes (caminhos basicos) ao longo da estrutura de controle sdo exercitados para garantir que
todos os comandos de um moédulo tenham sido executados pelo menos uma vez. As condi¢des-limite sdo
testadas para garantir que o modulo opere adequadamente nos limiares estabelecidos para limitar ou
restringir o processamento (PRESSMAN, 2006).

A estrutura de dados foi testada utilizando diferentes tipos de arquivos DICOM, abrindo-os
seguidamente ou apos a reinicializagdo do sofiware (Figuras 16 a 21).

A analise das condi¢des limites também foi testada. Nela tentou-se abrir arquivos que ndo sejam

suportados pelo software (Figura 15), o que ndo foi possivel devido a implementagdo do codigo, que

desabilita a sele¢do de arquivos que ndo sejam da extensdao dem, propria dos arquivos DICOM.

OWOLO. Open
'« » 88 =/m| | [Jmesa B (Q search

¢ " -
C 1) A

DEVICES
- Macintosh HD
£ iDisk

[brain_015.dem

Cais>1v

PLACES

£ rodrigoreis

'ﬁ Aplicativos
| Documentos
" Cls final.doc

/_Cancel'\ (Open)

Figura 17 - Sele¢iao Limitada a Arquivos dem

51

®0o0 TCC-Dicom Viewer

| Open Dicom Image)

...0 colateral medial trauma com stress em valgo/DICOM/PA000000/STO00000/SE000000/IM000003.dcm

WindowCenter: Patient's Name:Removido
258.570119156736 Age:(null;
WindowWidth: Patient ID:2957909|
449.578368469293
Dimension:256x256

Thickness:10.0 Acquisition Date:20090923|
[Spacing Between Slices: Acquisition Time:085502.18}
19.7963829040527

Figura 18 — lesdo do ligamento colateral medial

000 TCC-Dicom Viewer

| Open Dicom Image)

...s RO/luxacao lat patela condropatia patelar g4/DICOM/PA000000/STO00000/SE000000/IM000004.dcm

WindowCenter: Patient's Name:Removido
467.641237688161

WindowWidth: Patient ID:326978
812.928823638727

Dimension:256x256

Acquisition Date:20090829
Acquisition Time:080344.84

19.7963829040527

Figura 19 - luxacio lateral da patela

52

00 TCC-Dicom Viewer

{ Open Dicom Image)

i
" ...oma com ¢ intra e extra crani. /DICOM/PA /ST /SE000000/ .decm

WindowCenter: Patient's Name:Removido
[l1334.426041825675

WindowWidth:
[lls81.338726911921

Dimension:256x256

Acquisition Date:20091128
Spacing Between Slices:5.0 Acquisition Time:120319.34]

Figura 20 - meningeoma com componentes intra e extra cranianos

®00 TCC-Dicom Viewer

{ Open Dicom Image)

|
" ...asseptica cabeca femoral pos trauma moto 3m/DICOM/PA000000/STO00000/SE000000/IM0O00016.dcm

WindowCenter:112.0 Patient's Name:Removido
[l windowwidth:225.0 Age:025
Dimension:256x256 Patient 1D:3096949|

Thickness:7.0 Acquisition Date:20080816)
Spacing Between Slices:10.0 Acquisition Time:100333|

Figura 21 - necrose asséptica da cabeca femoral pés trauma

53

®00 TCC-Dicom Viewer

[Open Dicom Image J

...stenose acentuada esq estenose vertebral esq/DICOM/PA000000/STO00000/SE000001/IM000003.dcm

WindowCenter:72 Patient's Name:Removido
WindowWidth:126
Dimension:512x512 Patient ID:3263026

Thickness:1.200000048
Spacing Between Slices:
1.200000048

Figura 22 - oclusio da carotida direita

®0o TCC-Dicom Viewer

{ Open Dicom Image)

/Users/rodrigoreis/Desktop/Exames RO/Tomografia Abdomem/DIRCE_D/18045/80260/00010001.dcm

\WindowCenter:50\50 Patient's Name:Removido
WindowWidth:350\350 Age:074
Dimension:512x512 Patient 1D:2240554]

Acquisition Date:2010
Acquisition Time;0

Figura 23 - tomografia do abdomem

54

7.2 Teste de Integracao

Teste de integragdo € uma técnica sistematica para construir a arquitetura do software enquanto, ao
mesmo tempo, conduz testes para descobrir erros associados as interfaces. O objetivo ¢, a partir de
componentes testados no nivel de unidade, construir uma estrutura de programa determinada pelo projeto.

O teste de integragdo realizado nesta etapa foi do tipo incremental, o qual consiste em dividir em
partes a verificagdo de erros do programa desenvolvido. Isso contribui para uma abordagem mais
simplificada na corre¢do de erros. Assim, as interfaces tém a possibilidade de serem inteiramente testadas
e uma abordagem sistematica ao teste pode ser aplicada.

“A integracdo incremental é a antitese da abordagem big-bang. O programa é construido e testado
em pequenos incrementos, em que erros sdo mais fdceis de isolar e corrigir; é mais provdvel que as
interfaces sejam testadas completamente e pode ser aplicada uma abordagem sistemdtica de teste”

(PRESSMAN, 2006, p. 297).

7.3 Teste de Validacao

Validagdo pode ser definida de varios modos, mas uma defini¢do simples (no entanto, rigorosa) é
que ela se torna bem sucedida quando o software funciona de um modo que pode ser razoavelmente
esperado pelo cliente.

Diante da andlise de requisitos e sistemas propostos no comeg¢o desse documento, fez-se a
verificagdo de congruéncia entre o sofiware pronto e esses requisitos observados. Desde o inicio, a
intengdo do software era de se constituir numa ferramenta simples para a visualizagdo de arquivos
DICOM em sistema operacional Mac OS X. Como projetado, o programa atende a todas essas

especifica¢des, apresentando tudo em uma interface amistosa e simples.

7.4 Teste de Sistema

“Teste de sistema ¢, na verdade, uma série de diferentes testes cuja finalidade principal é exercitar
por completo o sistema baseado em computador. Apesar de cada teste ter uma finalidade distinta, todos

trabalham para verificar se os elementos do sistema foram adequadamente integrados e executam as

fungdes a eles alocadas” (PRESSMAN, 2006, p. 3006).

55

Assim, fez-se a andlise do sofitware como um elemento que faz parte de um sistema mais amplo.
Neste caso, o programa ainda tem limitagdes quanto as suas func¢des; porém, como estas ja estavam
definidas na analise de requisitos, o sofiware desempenha satisfatoriamente o papel para o qual foi

projetado.

56

57

8. Manutencao e Qualidade

Esta fase de desenvolvimento de software envolve toda e qualquer modificagdo feita apos ele estar
pronto. Qualquer corre¢do de erro ou nova funcionalidade adicionada ¢ considerada uma atividade de
manutencdo. De tal modo, esta etapa ndo tem um fim definido enquanto o software esta sendo utilizado
pelo usuario. Usualmente diz-se que o gasto com manutencio de sistemas existentes ¢ deveras maior do
que com o desenvolvimento de novos sistemas.

A manutengdo corretiva, que é aquela feita para corrigir pequenos erros no funcionamento do
programa, serd feita através do contato com o usudrio. Estes erros ndo costumam ser muito complexos e
tendem a ser poucos quando o programa passa por uma etapa de testes bem realizada. No caso deste
software, espera-se uma baixa incidéncia destes erros enquanto estiver funcionando em seu formato atual.

A classe de manutengdes adaptativas tem como objetivo atualizar o software para que ele possa
continuar operando em sistemas e ambientes novos. A presente ferramenta tem em seu projeto conceitual
o requisito de ser futuramente adaptado aos sistemas operacionais dos dispositivos moveis portateis
iPhone, iPod ¢ iPad. Portanto, esta etapa da manutengdo passa a ser imprescindivel para a completa
realizagdo deste projeto.

O sistema operacional destes dispositivos, o 10S4 (também desenvolvido pela Apple), tem grande
semelhanga com o Mac OS X; portanto, esta adaptagao pode ser totalmente executada, bastando para isso
apenas alguns estudos adicionais sobre o I0S4. A programacdo em Objective-C ¢ totalmente aceita pelos
dispositivos, e ¢ também possivel criar aplicativos para eles, utilizando o XCode. Assim, nenhuma
alterag@o no projeto devera ser feita, sendo necessarias apenas algumas altera¢des na codificagao.

Outra manuten¢do que esta prevista neste projeto ¢ a inclusdo de novas fungdes para o software,
como a op¢do de manipulagdo das imagens (brilho, contraste, zoom, etc). Como o programa foi
desenvolvido de maneira clara e simples, a implementagdo destas fungdes ndo sera trabalhosa e deverdo
tomar lugar nas proximas versdes do aplicativo.

O principal objetivo da Engenharia de Software é ajudar a produzir sofiware de qualidade; empresas
que fazem isso sdo mais competitivas e podem, em geral, oferecer um melhor servigo a um pre¢o mais
competitivo também.

A nocéo de qualidade de software pode ser descrita por um grupo de fatores, requisitos ou atributos,
tais como: confiabilidade, eficiéncia, facilidade de uso, modularidade, legibilidade, etc. Podemos
classificar estes fatores em dois tipos principais: externos e internos.

Os fatores externos de qualidade sdo verificados principalmente pelo pessoal que ira utilizar no dia-
a-dia o software projetado. No caso do projeto, os médicos fardo as propostas de mudanga, aprimorando-o

e trazendo uma melhora no seu desempenho ¢ confiabilidade.

58

Ja os fatores internos de qualidade, foram verificados (legibilidade, portabilidade, modularidade)
durante o processo da criagao, desde a parte de analise e especificacdo de requisitos até a efetuagdo dos
testes propriamente ditos.

Os fatores que afetam a qualidade de software sdo divididos em trés categorias: revisdo do produto,

transi¢do do produto e operagdo do produto.

Revisao do Produto

Os trés fatores que foram verificados na revisdo foram: a possibilidade de manuten¢do, que é
conseguida na alteracdo do codigo-fonte que esta organizado de maneira logica, a capacidade de
mudancas e adaptagdes no sofiware conforme dito em relacdo a manutengdo e a possibilidade da
realizagdo de testes de cada funcdo, e das variaveis que representam as entradas geradas pela interface

com O usuario.

Transiciao do Produto

O software, uma vez que foi criado em linguagem de alto nivel Objective-C, pode ser executado nos
sistemas operacionais existentes nos computadores Apple atuais com o sistema operacional Mac OS X
10.5. Para a execu¢do em sistemas operacionais futuros (como o Mac OS X 10.6), existira a necessidade

de adaptacdes, as quais ndo comprometeriam a sua integridade.

Operacao do Produto

Em relagdo a operagdo, o software corresponde aos requisitos esperados, uma vez que 0 mesmo se

propoe a realizar as tarefas que atingem as necessidades basicas de visualizagdo de imagens DICOM, e o

software também pode ser considerado eficiente, pois é executado com precisdo dentro dos limites

especificados nas etapas anteriores de projeto.

59

9. Conclusoes

A proposta inicial deste trabalho sofreu, ao longo do seu desenvolvimento, algumas modifica¢des
que foram necessarias para definir com clareza o rumo do projeto. Algumas delas se devem a problemas
encontrados no seu decorrer que nio foram identificados em sua idealizagdo, outras devidas a ajustes
essenciais para o seu desenvolvimento. Porém, a ideia central do projeto foi mantida e realizada com
sucesso.

Durante o periodo de trabalho, varias etapas foram construidas e conhecimentos em diversas areas
adquiridos, desde o estudo da formacdo de imagens digitais, a teoria de projetos de softwares, a
programacgdo poderosa em Objective-C e o gerenciamento de projetos em si. Algumas destas areas
estavam mais facilmente ao alcance, ja outras necessitaram de intensa pesquisa ¢ estudo.

Primeiramente, o padrdo DICOM teve de ser estudado e esclarecido, para que entdo fosse possivel
enxergar com clareza os proximos objetivos. Passou-se entdo a elaboracdo de alguns protdtipos do
programa, para verificar a real possibilidade da realizagdo do projeto e entender mais profundamente o
ambiente onde o software seria criado. O proximo passo foi a realizagdo das pesquisas de requisitos,
quando o programa sofreu a maior parte de suas modificagdes, chegando a um patamar que pudesse ser
corretamente realizado. Estes requisitos, embora ndo sejam o ideal para um sofiware nesta area, formaram
uma base que, através da clareza e modularidade com que o projeto foi estruturado, poderdo ser facilmente
incrementados para tornar o projeto uma ferramenta bastante util na area.

Por fim, dentro da idéia proposta e tempo disponivel, foram atingidos os objetivos esperados e, o
mais importante, obtiveram-se indicativos promissores. Os resultados obtidos criaram expectativas
otimistas para a continuidade do projeto e deixaram uma base para tal, ndo sendo necessarios outros
recursos sendo os ja utilizados aqui. Com a vantagem de se constituir, entdo, um recurso de software livre
para visualizagdo de arquivos DICOM em qualquer computador que utilize o sistema operacional para o
qual foi desenvolvido (Mac OS X), o que é um ganho significativo em fungao da existéncia desse tipo de

recurso apenas a custos elevados — provenientes de fabricantes estrangeiros.

60

61

10. Referéncias Bibliograficas

Object-Oriented Programming with Objective-C, 2008. Disponivel em:
<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf>
Acesso em: 13 mai. 2010

Pfleeger, Shari Lawrence. Engenharia de software: teoria e pratica / Shari Lawrence Pfleeger [tradugdo
de] Dino Franklin. 2. ed. Sdo Paulo: Prentice Hall/Pearson Education, 2004. 535 p.

Pressman, Roger S.. Engenharia de software / Roger S. Pressman ; traducéo [de] Rosdngela Delloso
Penteado ; revisdo técnica [de] Fernao Stella R. Germano, José Carlos Maldonado, Paulo Cesar Masiero.

6. ed. Sdo Paulo : McGraw-Hill, c2006. 720 p.

Thomas, Rebecca; Yates, Jean. Unix : guia do usuario / Rebecca Thomas, Jean Yates ; [Trad] Maria
Claudia de Oliveira Santos. 2. ed. Sdo Paulo : McGraw-Hill, 1989. 744 p.

Digital Imaging and Communications in Medicine (DICOM). Rosslyn: National Electrical
Manufacturers Association, 2004.

Stallings, William. Operating systems : internals and design principles / William Stallings. 3. ed. Upper
Saddle River, N.J. : Prentice Hall, 1998. 781 p.

62

63

11. Anexos

11.1 Anexo 1: O padriao DICOM

Com a introducdo da Tomografia Computadorizada (CT) seguido de outras modalidades de
diagnosticos digitais em 1970, e com o crescimento do uso de computadores em aplicagdes clinicas, a
ACR (American College of Radiology) e a NEMA (National Eletrical Manufacturers Association)
reconheceu a emergente necessidade de um método padronizado de transferéncia de imagens e
informagdes associadas entre os dispositivos fabricados por varios fornecedores. Esses dispositivos
produziam uma grande variedade de formatos de imagens digitais.

A ACR e a NEMA formaram um comité conjunto em 1983 para desenvolver um padrao para:

Promover a comunicacdo de informagdes de imagens digitais, independentemente do fabricante do
dispositivo

Facilitar o desenvolvimento e expansdo do arquivamento de imagens e sistemas de comunicagdo (PACS),
que também possam interagir com outros sistemas de informagdes hospitalares

Permitir a criagdo de bases de dados de informagdes de diagnodsticos que possam ser acessados por uma

grande variedade de dispositivos distribuidos geograficamente.

Este padrio, que ¢é atualmente designado Digital Imaging and Communications In Medicine

(DICOM), engloba varias melhorias importantes para as versoes anteriores do padrio ACR-NEMA:

E aplicavel para um ambiente de rede. O padrio ACR-NEMA era aplicavel para um ambiente ponto a
ponto apenas; para a operagdo em ambiente de rede era necessario uma Network Interface Unit (NIU).
DICOM suporta a operagdo em um ambiente de rede usando o protocolo padrdo de redes TCP/IP

E aplicavel em um ambiente de midia off-line. As versdes anteriores do padrio ndo especificavam um
formato de arquivo ou escolhiam uma midia fisica ou arquivo de sistema l6gico. DICOM usa para isso
midias industriais padroes como CD-R e MOD e arquivos de sistema légico como ISO 9660 e sistema de
arquivo PC FAT 16.

Especifica como os dispositivos que acessam o padrdo reagem aos comandos e dados que sdo transferidos
ou movimentados. Os padrdes anteriores eram confinados a transferéncia de dados, mas o DICOM
especifica, através do conceito de Classes de Servico, as semanticas dos comandos ¢ dados associados.

Especifica niveis de conformidade (aderéncia ao padrdo). Os padrdes anteriores apenas especificavam um

64

nivel minimo de conformidade. DICOM descreve explicitamente como um implementador deve estruturar
uma Declara¢do de Conformidade (Aderéncia) para selecionar opgdes especificas.

E estruturado como um documento de multiplas partes. Isso facilita a evolugdo do padrio em um ambiente
de mudangas rapidas, simplesmente adicionando novos recursos. As instrugdes definidas pela ISO de
como estruturar um documento de multiplas partes foram seguidas na construgdo do padrio.

Introduz Objetos de Informagdes explicitas, nao s6 para imagens e graficos, mas também para formas de
onda, relatdrios, impressao, etc.

Especifica uma técnica estabelecida para indentificar unicamente qualquer Objeto de informagao.

Definic¢oes:

Atributo: Uma propriedade de um Objeto de Informagdo. Um atributo tem um nome e um valor, que séo

independentes de qualquer esquema de codificacdo.

Comando: Um pedido para operar em uma informagao através da rede

Elemento de Comando: Uma codificagdo de um pardmetro de um comando que transmite o valor deste

parametro.

Canal de Comando: O resultado da codificagio de um conjunto de Elementos de comando DICOM

usando o esquema de codificagdio DICOM.

Declaragdo de Conformidade: Uma declaragdo formal que descreve a implementagdo de um produto
especifico que usa o padrio DICOM. Especifica a Classe de Servigos, Objetos de Informagio, e

Protocolos de Comunicag¢do suportados pela implementagéo.

Dicionario de Dados: Um registro de Elementos de Dados DICOM, o qual atribui uma unica 7ag, um

nome, caracteristicas de valor, e semanticas de cada Elemento de Dado.

Elemento de Dado: Uma unidade de informagao definida por uma entrada unica do dicionario de dados.

Conjunto de Dados: Informagdes trocadas que consistem em um conjunto estruturado de Atributos. O

valor de cada Atributo do conjunto de Dados é expresso como um Elemento de Dado.

65

Canal de Dados: O resultado da codificagdo de um Conjunto de Dados usando o esquema de codificagao

DICOM.

Objeto de Informagdo: Uma abstracdo de alguma informacao real.

Classe de Objeto de Informacgdo: Uma descri¢do formal de um Objeto de Informagdo, que inclui uma
descrigdo do seu propdsito e os respectivos Atributos que este possui. Ndo inclui os valores desses

Atributos.

Instancia de Objeto de Informacédo: Inclui os valores dos Atributos da Classe de Objeto de Informacao.

Mensagem: Uma unidade de dado do Protocolo de Trocas de Mensagens, que ¢ trocada entre dois
aplicativos DICOM. A mensagem ¢ composta de um Canal de Comando seguido por um Canal de Dados

opcional.

Classe de Servigos: Uma descri¢ao estruturada de um servigo que € suportado por aplicativos DICOM
cooperantes usando comandos DICOM especificos e agindo em uma especifica classe de objeto de

informacgao.

Sdo definidos dois tipos de Classe de Objeto de Informagédo:

Classe de Objeto de Informagdo Normalizada inclui somente os atributos inerentes a entidade do mundo
real representada, por exemplo, data do estudo ou hora do estudo; o nome do paciente é inerente ao

paciente e ndo ao estudo, por isso nao ¢ incluida nesta classe.

Classe de Objeto de Informagdo Composta pode incluir adicionalmente atributos que estdo relacionados

mas ndo sdo inerentes a entidade do mundo real.

Para representar a ocorréncia de uma entidade do mundo real, uma instdncia de Objeto de
Informac@o € criada, a qual inclui valores para os atributos da Classe de Objeto de Informagao. Este valor
do atributo pode mudar durante o tempo para representar precisamente as mudancas de estado da entidade
a qual ela representa. Isto é conseguido fazendo-se diferentes operagdes basicas sobre a instancia para

apresentar um conjunto de servigos definidos como uma Classe de Servigos.

66

Uma Classe de Servigos associa um ou mais Objetos de Informagdo com um ou mais Comandos a serem

realizados sobre esses objetos.

Objetivos do Padrao DICOM:

O Padrao DICOM facilita a interoperabilidade de dispositivos solicitando conformidade. Em

particular, ele:

Endereca a semantica de comandos e dados associados. Para que acontega a interagdo entre os
dispositivos, devem existir padrdes de como ¢ esperado que estes dispositivos reajam a comandos e dados
associados, e ndo somente sobre a informagdo que sera trocada pelos dispositivos.

Endereca a semantica de servigos de arquivos, formatos de arquivos e diretdrios necessarios para a
comunicac¢io off-line.

E explicito em definir os requerimentos para conformidade das implementa¢des do padrdo. Em particular,
uma declaragdo de conformidade deve especificar informagdes suficientes para determinar as fungdes que
sdo esperadas na interoperabilidade com outro dispositivo.

Facilita opera¢do em ambientes de rede.

E estruturado de maneira a acomodar a introducdo de novos servigos, dando suporte a futuras aplica¢des

em imagens médicas.

Este padriao foi desenvolvido com énfase em imagens médicas diagnosticas como sdo usadas em
radiologia, cardiologia e disciplinas relacionadas; no entanto, ¢ também aplicavel a varias outras
comunicac¢des relacionadas a clinicas e ambientes médicos.

A figura 23 apresenta um modelo basico e geral do padrdo, cobrindo tanto a comunica¢do on-line

(ambiente de rede) como a off-line (armazenamento em arquivos).

67

Medical Information

| Service Class Specifications |

Information Objects Definitions |
| Data Set Structure and Encoding - Data Dictionary |

| Message Ex change | | File Format |
DICOM Upper Layer Service Boundary DICOM Basic File Service Boundary
| |
DICOM Security
Upper Layer
Layer (Optional)
Security
Layer |
(Optional) | l
| 1
TCP/IP Physical Media
Transport and Media
Layer File Formats
Network Exchange Media Storage Interchange
On-Line Communication Off-Line Communication

Figura 24 - Modelo geral do padrio (Digital Imaging and Communications in Medicine, 2004)

Estrutura de Dados e Semantica:

O Padrao DICOM especifica como os aplicativos DICOM constroem e codificam as informagdes de
um conjunto de dados que resulta do uso dos Objetos de Informagdo e Classes de Servigos. E também
especificado o suporte a diversas técnicas padroes de compressdo de imagem, como JPEG com perdas e
sem perdas. Sdo definidas também a seméntica de inumeras fungdes que sdo comuns a varios Objetos de

Informacao.

68

Dicionario de Dados:

Todos os elementos de dados DICOM disponiveis para representar alguma informacdo sdo
definidos no Dicionario de Dados, junto com os elementos utilizados na codificagdo de midia transferivel
e uma lista de itens de identificag¢do tinica associados pelo DICOM.

Para cada elemento ¢ especificado:

Sua fag, que consiste em um grupo e um nimero de elemento
Seu nome

Seu valor representativo (string, inteiro, etc)

A multiplicidade do seu valor (quantos valores por atributo)

Se ja foi retirado do padréo
Para cada item de indentificagdo tnica é especificado:
Seu valor unico, que ¢ numérico com componentes multiplos separados por pontos decimais, limitado a 64
caracteres
Seu nome
Seu tipo

Em que parte do Padrao DICOM ele esta definido

Uma parte da especificagdo deste diciondrio estd mostrado na Figura 24.

69

Tag Name VR VM

(0008,0001) Length to End RET
(0008,0005) Specific Character Set Cs 1-n
(0008,0008) Image Type Cs 1-n
(0008,0010) Recognition Code RET
(0008,0012) Instance Creation Date DA 1
(0008,0013) Instance Creation Time ™ 1
(0008,0014) Instance Creator UID Ul 1
(0008,0016) SOP Class UID Ul 1
(0008,0018) SOP Instance UID ul 1
(0008,001A) Related General SOP Class UID Ul 1-n
(0008,001B) Original Specialized SOP Class UID Ul 1
(0008,0020) Study Date DA 1
(0008,0021) Series Date DA 1
(0008,0022) Acquisition Date DA 1
(0008,0023) Content Date DA 1
(0008,0024) Overlay Date DA 1
(0008,0025) Curve Date DA 1
(0008,002A) Acquisition Datetime DT 1
(0008,0030) Study Time ™ 1

Figura 25 - Dicionario de Dados (Digital Imaging and Communications in Medicine, 2004)

Funcio de Visualizacdo de Imagens em Tons de Cinza:

Esta fungdo fornece métodos de calibragdo de sistemas de display particulares com o proposito de
apresentar as imagens consistentemente em diferentes displays (monitores e impressoras).

A fungdo escolhida é baseada na percepc¢do visual humana, que possui sensibilidade ndo linear
dentro da faixa de luminancia dos dispositivos de visualizagdo, portanto foi utilizado um modelo de

sistema visual humano.

70

71

72

73

