

RODRIGO ALLAN DOS REIS

R.R. DICOM VIEWER: SOFTWARE
VISUALIZADOR DE ARQUIVOS DICOM

PARA MAC OS X

Trabalho de Conclusão de Curso apresentado à
Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em
Eletrônica

ORIENTADOR: Prof. Dr. Homero Schiabel

São Carlos
2010

 2

 3

Dedicatória

 Dedico este trabalho aos meus pais, Aécio e Maria, por todos os anos em que me apoiaram,

incondicionalmente, e por nunca terem duvidado do meu potêncial.

 Ao meu irmão, Fernando, não apenas pelas ótimas idéias, que ajudaram muito na realização deste

projeto, mas por sempre estar disposto a me ajudar em tudo.

 À minha namorada Bianca, por estar ao meu lado nos momentos mais difíceis, ser tão boa

companheira, acreditar em mim, e ter me ajudado a reencontrar o meu caminho.

“Nós somos aquilo que fazemos repetidamente. Excelência, então, não é um

modo de agir, mas um hábito.” - Aristóteles

 4

 5

Agradecimentos

 Agradeço sinceramente ao Prof. Dr. Homero Schiabel, pela ajuda e, principalmente, pela confiança,

acreditando na idéia do projeto e na possibilidade da sua realização.

 Agradeço também ao Dr. Fernando Ivan dos Reis, meu irmão, que forneceu muitas idéias para o

projeto, além de compartilhar seus conhecimentos na área médica.

 6

 7

Resumo

 Este projeto tem como objetivo o desenvolvimento de um software capaz de mostrar as informações

presentes em arquivos de imagens médicas digitais, os arquivos DICOM, dentro da plataforma do sistema

operacional Mac OS X. Estes sistemas operacionais, usados pelos computadores da empresa Apple, são

muito confiáveis e seguros, fazendo crescer a sua utilização em diversas áreas, inclusive a médica. Desta

forma, optou-se pela implementação de um software que suprisse as necessidades básicas de uma clínica

médica - a visualização das imagens e as correspondentes informações contidas nos arquivos DICOM. A

linguagem de programação escolhida foi Objective-C, que permite uma codificação orientada a objetos, o

que, devido às suas qualidades como linguagem, torna o software estruturado e simples, facilitando a

atualização e inclusão de novas funções. Estas características permitem que o software obtido neste

projeto possa ser facilmente modificado futuramente para operar em outros dispositivos da Apple, os quais

possuem sistemas operacionais equivalentes ao Mac OS X, como celulares e computadores de mão.

 Palavras-chave: DICOM, Mac OS X, Objective-C, engenharia de software, imagens médicas

digitais.

 8

 9

Abstract

 This project aims to develop a software capable of showing the information contained in files of

digital medical images, DICOM files, inside the platform's operating system Mac OS X. These operating

systems, used by the computers of the company Apple, are very reliable and secure, increasing its use in

several areas, including medical. Thus, it was chosen to implement a software that met the basic needs of a

medical clinic - the viewing of images and related information contained in DICOM files. The chosen

programming language was the Objective-C, which allows an object-oriented coding, which, due to its

qualities as a language, makes the software simple and structured, making it easier to update and add new

functions. These features allow the software obtained from this project to be easily modified to futurely

operate in other Apple devices, which have similar operating systems of Mac OS X, such as mobile

phones and handheld computers.

 Keywords: DICOM, Mac OS X, Objective-C, software engineering, digital medical
images.

 10

 11

Sumário

1. INTRODUÇÃO... 13	

2. OBJETIVOS.. 15	

3. A LINGUAGEM DE PROGRAMAÇÃO OBJECTIVE-C .. 17	

3.1. MOTIVAÇÃO PARA USAR OBJECTIVE-C.. 17	

3.2. A PROGRAMAÇÃO ORIENTADA A OBJETOS... 18	

3.3. A POSSIBILIDADE DE REUTILIZAÇÃO DA LINGUAGEM ORIENTADA A OBJETOS... 20	

4. O SISTEMA OPERACIONAL UNIX MAC OSX... 23	

4.1. COMO O SISTEMA UNIX DIFERE DE OUTROS SISTEMAS OPERACIONAIS .. 23	

4.2. COCOA FRAMEWORK... 24	

5. ANÁLISE DE SISTEMA E DE REQUISITOS ... 26	

5.1 IDENTIFICAÇÃO DAS NECESSIDADES ... 26	

5.1.1 A função do Sistema ... 27	

5.1.2 Desempenho, Qualidade e Confiabilidade... 27	

5.1.3 Tecnologias e Recursos exigidos no desenvolvimento do Sistema... 28	

5.2 ESTUDO DA VIABILIDADE ... 30	

5.2.1 Viabilidade Econômica .. 30	

5.2.2 Viabilidade Técnica.. 30	

5.2.3 Viabilidade Legal ... 30	

5.3 ANÁLISE ECONÔMICA ... 31	

5.4 ANÁLISE TÉCNICA .. 31	

5.5 DIAGRAMA DE CONTEXTO DE ARQUITETURA... 33	

5.6. ANÁLISE DE REQUISITOS.. 35	

5.6.1 Reconhecimento do Problema.. 35	

5.6.2 Revisão ... 35	

6. PROJETO DO SOFTWARE... 38	

6.1 DIAGRAMA DE FLUXO DE DADOS (DFD).. 38	

6.2 DESCRIÇÃO DOS PROCESSOS... 41	

6.3 ESPECIFICAÇÃO DOS PROCESSOS .. 41	

6.4 DIAGRAMA ENTIDADE-RELACIONAMENTO (DER) ... 43	

6.5 CODIFICAÇÃO.. 44	

7. TESTES.. 48	

7.1 TESTE DE UNIDADE... 48	

7.1.1 Interface Gráfica .. 49	

7.1.2 Avaliação da Estrutura de Dados e das Condições-Limite.. 51	

7.2 TESTE DE INTEGRAÇÃO... 55	

7.3 TESTE DE VALIDAÇÃO .. 55	

7.4 TESTE DE SISTEMA.. 55	

8. MANUTENÇÃO E QUALIDADE .. 58	

9. CONCLUSÕES ... 60	

10. REFERÊNCIAS BIBLIOGRÁFICAS.. 62	

11. ANEXOS .. 64	

11.1 ANEXO 1: O PADRÃO DICOM .. 64	

 12

 13

1. Introdução

 O indispensável uso de computadores na maioria dos ambientes de trabalho atualmente, a tardia e

necessária popularização do padrão de imagens digitais e comunicações em medicina, o padrão DICOM

(Digital Imaging and Communications In Medicine), a crescente utilização, alto desempenho gráfico e a

confiabilidade dos computadores da empresa Apple, os MacIntoshs, motivou a realização do presente

projeto. Ele consiste no desenvolvimento de um software, exclusivo para o sistema operacional dos

MacIntoshs, o Mac OSX, que pudesse ser utilizado em clínicas médicas para a rápida e simples

visualização desses arquivos do padrão DICOM.

 Este padrão foi criado como uma tentativa de padronizar a comunicação entre diferentes

dispositivos de aquisição digital de imagens médicas, possibilitando assim a troca de informações entre

clínicas localizadas em diversas posições geográficas. O padrão vem sendo desenvolvido desde a década

de 80, e encontra-se atualmente em sua terceira versão. A dificuldade na difusão e a eventual causa de

tamanha demora na obtenção de um resultado satisfatório devem-se muito às complicações nas

negociações entre as partes interessadas, sobretudo fabricantes de equipamentos e de softwares.

 As funções designadas para o software poderiam ser muitas, desde as organizacionais, como

agendamento e controle de exames e horários, até funções mais complexas relativas à manipulação das

imagens a serem visualizadas, podendo, desta forma, se tornarem muitas para o projeto em questão.

Portanto, optou-se pela implementação de um software básico e simples, com funções apenas de

visualização do conteúdo dos arquivos médicos, utilizando como base os conceitos de Engenharia de

Software, tornando o projeto estruturado e metodológico, podendo assim, posteriormente, ser facilmente

atualizado com novas funções. Estas atualizações torná-lo-iam mais útil na rotina das clínicas médicas e

possibilitariam sua expansão para dispositivos móveis portáteis da linha Apple, que utilizam o mesmo

sistema operacional dos MacIntoshs, como o iPhone, o iPod e o recente iPad.

 15

2. Objetivos

 O objetivo principal do projeto é obter uma ferramenta baseada em software livre capaz de

visualizar as informações e a imagem digital contidas nos arquivos DICOM, em substituição a estruturas

dedicadas e de exclusividade de certos fabricantes de equipamentos particulares de obtenção de imagens

médicas digitais. A premissa é o desenvolvimento desse software utilizando-se das metodologias

provenientes das disciplinas de Engenharia de Software e Linguagens de Programação e Aplicações, além

de demais conceitos obtidos no curso relacionados a programação, gerenciamento, e realização de

projetos. Portanto, entende-se também como objetivo do projeto a boa qualidade da documentação, que é

parte fundamental na qualidade do produto final, sendo necessário para o uso de conceitos como a

abstração e a modularidade, que garantem uma boa organização do conteúdo do projeto.

 Além disso, tem-se também como objetivo complementar a versatilidade do software final, de modo

que possa ser facilmente atualizável, permitindo a implementação de versões para outros dispositivos

móveis portáteis. Assim, torna-se uma ferramenta bem generalista, possibilitando futuras adições de

funções mais específicas, conforme as necessidades do usuário.

 16

 17

3. A linguagem de programação Objective-C

 Objective-C é uma linguagem computacional simples projetada para permitir uma sofisticada

programação orientada a objeto. Objective-C é definido como um pequeno mas poderoso conjunto de

extensões da linguagem padrão ANSI C. Suas adições ao C são em sua maior parte baseadas em

Smalltalk, uma das primeiras linguagens de programação orientada a objeto. A linguagem Objective-C é

projetada para dar ao C capacidades totais de orientação ao objeto, e fazer isso de um modo simples e

direto. (Object-Oriented Programming with Objective-C, 2008)

 Uma abordagem orientada a objetos no desenvolvimento de um aplicativo torna um programa mais

intuitivo de se projetar, mais rápido, mais suscetível a modificações, e mais fácil de entender. A maior

parte dos ambientes de desenvolvimento orientados a objeto consiste de, no mínimo, três partes:

• Uma biblioteca de objetos;

• Um conjunto de ferramentas de desenvolvimento;

• Uma linguagem de programação orientada a objetos e uma biblioteca de apoio

 Como linguagem, Objective-C tem uma longa história. Ela foi criada pela empresa Stepstone no

começo da década de 80 por Brad Cox e Tom Love. Foi licenciada por NeXT Computer Inc. no fim da

década de 80 para o desenvolvimento da NeXTStep frameworks, que antecedeu a Cocoa. NeXT extendeu a

linguagem de muitos modos, por exemplo, com a adição de novos protocolos (Object-Oriented

Programming with Objective-C, 2008).

3.1. Motivação para usar Objective-C

 A linguagem Objective-C foi escolhida pelo framework Cocoa (ver seção 4.2) por uma variedade de

motivos. Primeiro, e mais importante, ela é uma linguagem orientada a objetos. O tipo de funcionalidade

que está presente no framework Cocoa só pode ser usado por meio de técnicas de orientação a objetos.

Segundo, devido a Objective-C ser uma expansão do padrão ANSI C: programas em C existentes podem

ser adaptados para usarem o framework sem perder nada do trabalho feito em seus desenvolvimentos

originais. Como Objective-C incorpora o C, é possível obter todos os benefícios da linguagem C ao

trabalhar com Objective-C. Além disso, Objective-C é uma linguagem simples, de sintaxe pequena e fácil

de aprender. Sua terminologia é auto-consciente e tem ênfase no desenvolvimento abstrato, apresenta aos

 18

novos adeptos uma curva íngreme de aprendizagem (Object-Oriented Programming with Objective-C,

2008).

3.2. A Programação orientada a objetos

 “A orientação a objetos é uma abordagem para desenvolvimento de software que organiza os

problemas e suas soluções como um conjunto de objetos distintos. A estrutura e o comportamento dos

dados estão incluídos na representação“ (PFLEEGER, 2004, p. 210).

 Segundo o documento Object-Oriented Programming with Objective-C (Object-Oriented

Programming with Objective-C, 2008) a programação orientada a objetos fornece uma abstração dos

dados os quais podem ser operados. Além disso, ela fornece um agrupamento concreto entre dados e as

operações que podem ser feitas com os mesmos.

 As linguagens de programação, tradicionalmente, dividiram o mundo em duas partes - dados e

operações nos dados. Dado é estático e imutável, a não ser que operações os mudem. Esta divisão é,

obviamente, fundamentada na maneira como os computadores funcionam, por isso não pode ser

facilmente ignorada ou deixada de lado. Em algum ponto, todos os programadores - mesmo os

programadores orientados a objeto - devem dispor as estruturas de dados as quais seus programas irão usar

e definir as funções que irão agir sobre os dados (Object-Oriented Programming with Objective-C, 2008).

 A linguagem pode oferecer várias maneiras de suporte para a organização dos dados e das funções,

mas ela não dividirá o mundo de maneira diferente. Funções e dados são os elementos básicos do projeto

(Object-Oriented Programming with Objective-C, 2008).

 A programação orientada a objetos não só contesta esta visão do mundo como a reestrutura em um

nível superior. Ela agrupa operações e dados em uma unidade modular chamada objeto e permite a

combinação destes em redes estruturadas a fim de formar um programa completo. Neste tipo de

linguagem, objetos e interações de objetos são os elementos básicos do projeto (Object-Oriented

Programming with Objective-C, 2008).

 Todo objeto tem seu estado (dado) e comportamento (operações nos dados). Assim, eles não são tão

diferentes de objetos físicos comuns. É fácil ver como um dispositivo mecânico, como um relógio de

bolso ou um piano, englobam tanto um estado como um comportamento. Mas quase tudo o que é

projetado para fazer um trabalho também englobam. Mesmo coisas simples como uma garrafa combinam

estado (o quão cheia está, estar ou não aberta, o quão quente está seu conteúdo) com comportamento (a

habilidade de entregar seu conteúdo com diferentes taxas de fluxo, estar aberta ou fechada, suportar

temperaturas altas ou baixas). São, portanto, estas semelhanças com coisas reais que dão aos objetos tanto

 19

poder (Object-Oriented Programming with Objective-C, 2008).

 Uma representação de um objeto pode ser vista na Figura 1. Segundo Object-Oriented

Programming with Objective-C (Object-Oriented Programming with Objective-C, 2008), o objeto

combina o estado e o comportamento, e é um grupo de funções relacionadas e uma estrutura de dados que

alimenta essas funções. As funções são conhecidas como métodos, e os campos de sua estrutura de dados

são as variáveis exemplo.

Figura 1- Representação de um Objeto (Object-Oriented Programming wit Objective-C,
2008)

 Um programa consiste em uma rede de objetos interconectados que chamam uns aos outros para

resolver uma parte de um quebra cabeças. Cada objeto tem um papel específico para interpretar no projeto

total do programa e é capaz de se comunicar com outros objetos. Objetos comunicam-se por mensagens,

que são pedidos para realizarem métodos.

 20

Figura 2 - Rede de Objetos (Object-Oriented Programming wit Objective-C, 2008)

 Um programa pode ter mais de um exemplo, ou instância, do mesmo objeto, os quais dizemos

serem membros da mesma Classe. Todos os membros de uma classe são capazes de efetuar os mesmos

métodos e têm os mesmos conjuntos de variáveis exemplo. Eles também compartilham uma definição

comum; cada tipo de objeto é definido somente uma vez.

3.3. A Possibilidade de Reutilização da Linguagem Orientada a Objetos

 Projetar um programa orientado a objeto não implica, necessariamente, em escrever grandes

quantidades de código. A possibilidade de reutilizar as definições de classes dá uma grande oportunidade

de criar um programa amplamente de classes planejadas por outros. Pode até ser possível construir

programas interessantes inteiramente com o uso de classes que outra pessoa já definiu. À medida que o

número de definições de classes cresce, o programador tem mais e mais partes reutilizáveis para escolher.

 As classes reutilizáveis vêm de muitas fontes. Os desenvolvimentos de projetos geralmente geram

definições de classes reutilizáveis e alguns programadores empreendedores os comercializam. Os

ambientes de programação orientada a objetos tipicamente vêm com bibliotecas de classes.

 Tipicamente, um grupo de biblioteca de classes trabalha junto para definir parcialmente a estrutura

de um programa. Essas classes constituem um kit, que pode ser usado para construir uma variedade de

aplicativos diferentes. Quando um programador usa um framework, ele aceita o modelo de programa que

o framework fornece e adapta o seu projeto a ele. Um programador pode utilizar um framework das

 21

seguintes formas:

• Inicializar os exemplos das classes do framework

• Definir subclasses das classes do framework

• Definir novas classes para trabalhar com as classes definidas pelo framework

 22

 23

4. O Sistema Operacional Unix Mac OSX

 Unix é um sistema operacional desenvolvido em 1969 pela AT&T. Hoje os sistemas Unix estão

divididos em vários, alguns desenvolvidos pela própria AT&T e outros por organizações lucrativas e não

lucrativas. Alguns sistemas operacionais modernos conhecidos atualmente descendem diretamente do

sistema Unix, como a nova versão desenvolvida pela própria AT&T, o SVR4 (System V Release 4) e o

Solaris (da empresa Sun, baseada em SVR4). Outros sistemas, embora não tenham relação direta com o

desenvolvimento do Unix, ganharam o direito de usar a marca por atenderem a uma série de requisitos

impostos pelo consórcio industrial The Open Group, que é atualmente o dono da marca Unix. Dentre estes

sistemas está o Mac OS X, que é o resultado de algumas modificações no sistema operacional chamado

NeXTStep, da empresa NeXT, que foi comprada pela Apple em 1997. O sistema operacional então passou a

ser conhecido como Darwin, o qual foi melhorado e só então chegou-se ao sistema Mac OS X.

4.1. Como o Sistema Unix Difere de Outros Sistemas Operacionais

 O objetivo de todos os sistemas operacionais é mais ou menos o mesmo: controlar as atividades de

um computador. Os sistemas operacionais diferem na maneira como eles fazem seu trabalho e nas

características adicionais que oferecem. O Unix é único em seu desenho modular, que permite aos

usuários acrescentar ou remover partes para adaptá-lo às suas necessidades específicas. Os programas em

Unix são como peças de um quebra-cabeças; os módulos se encaixam com conexões-padrão. Pode-se tirar

um módulo e substituí-lo por um outro ou expandir o sistema acrescentando vários módulos. De uma certa

maneira, o sistema Unix de cada pessoa é único. Muitos usuários acrescentam ou eliminam módulos

sempre que preciso, adaptando suas implementações às suas necessidades. Se um módulo não é

necessário, pode-se geralmente removê-lo sem prejudicar a operação do resto do sistema. Essa

característica é especialmente útil nas implementações de microcomputadores, onde as unidades de disco

têm capacidade limitada; a remoção de programas desnecessários abre espaço para mais arquivos de dados

(THOMAS, YATES, 1989).

 Além disso, uma das questões principais que tornam os sistemas Unix mais confiáveis que os

demais é sua segurança. Por vários motivos – como o bom uso do sistema de usuários, não dando

privilégios totais a eles, e o próprio foco da maioria dos invasores nos sistemas operacionais Windows,

que são mais frágeis – os computadores que rodam sistemas operacionais Unix acabam sendo muito

seguros. A estabilidade do sistema é também muito alta, mantendo assim a integridade total dos arquivos e

 24

trabalhos presentes no computador. Desta forma, a utilização desses sistemas em clínicas médicas,

preocupadas com a segurança dos seus exames, vem crescendo nos últimos anos.

4.2. Cocoa Framework

 O Mac OS X fornece aos seus usuários uma API (Application Programming Interface) chamada

Cocoa Framework. Um framework, como citado anteriormente, é uma biblioteca de classes de objetos

previamente definidas que podem ser usadas no desenvolvimento de softwares. Cocoa fornece uma

grande coleção de classes definidas para uso na linguagem Objective-C, com duas bibliotecas principais:

Foudation Kit e Application Kit.

 Foudation Kit fornece serviços que não estão diretamente ligados à interface gráfica, como

manipulação de valores e strings, e estrutura de laços. Application Kit define as classes usadas para a

implementação da interface gráfica.

 De uma forma resumida, Cocoa framework é um conjunto de bibliotecas, contendo definições de

classes de objetos e definidas sob a linguagem Objective-C, que fornece ao usuário a oportunidade de pôr

em prática a reutilização da linguagem, configurando-se assim como uma poderosa ferramenta para o

desenvolvimento de aplicativos para o sistema operacional Mac OS X.

 25

 26

5. Análise de Sistema e de Requisitos

 Antes que o software possa ser submetido a engenharia, o “sistema” no qual ele reside deve ser

entendido. Para conseguir isso, o objetivo geral do sistema deve ser determinado: o papel do hardware,

software, pessoal, base de dados, procedimentos e outros elementos do sistema devem ser identificados; e

requisitos operacionais devem ser conseguidos, analisados, especificados, modelados, validados e

generalizados. Objetivos e requisitos operacionais mais detalhados são identificados através da

informação do cliente; requisitos são analisados para avaliar sua clareza e consistência; uma especificação,

frequentemente incorporando um modelo de sistema, é criada e depois validada tanto pelos profissionais

quanto pelos clientes. Finalmente, os requisitos são generalizados para garantir que as modificações sejam

controladas adequadamente.

 Portanto, esta é a primeira etapa que deve ser realizada no processo de Engenharia de Software, e

nela será analisada qual é o objetivo do programa, para que o usuário irá utilizá-lo, que tipo de pessoas

irão utilizá-lo, entre outras coisas. Assim, nesta etapa deve-se analisar não apenas o software, mas todo o

ambiente que o envolve.

 Segundo Pfleeger (2004), esta etapa também pode ser chamada de projeto conceitual. O projeto

conceitual descreve o sistema em uma linguagem que o cliente possa entender, em vez de utilizar jargão

de computação e termos técnicos. Por exemplo, pode-se dizer ao cliente que um menu em uma tela dará

aos usuários acesso às funções do sistema. O projeto conceitual pode, até mesmo, enumerar as respostas e

as ações aceitáveis que podem resultar dos usuários. Entretanto, não se diz ao cliente como os dados são

armazenados ou que tipo de sistema genericamente de banco de dados realizará as manipulações de dados.

5.1 Identificação das necessidades

 Este é o primeiro passo no processo de análise de sistemas e o ponto de partida na evolução de um

sistema baseado em computador. Consiste em descobrir se realmente existe a necessidade de se

desenvolver o software.

 Para esta verificação será considerado basicamente o que já foi discutido até o momento sobre o

ambiente que envolve o sistema operacional dos computadores da Apple, o Mac OS X: a confiabilidade e

segurança que ele fornece aos seus usuários, a sua recente popularização (preços mais acessíveis), e a

relativa escassez de ferramentas que possam atingir os objetivos descritos aqui (o mercado é dominado por

apenas um único software compatível com Mac OS X capaz de ser realmente utilizado na rotina das

 27

clínicas médicas), além da emergente possibilidade da implementação da ferramenta compatível com

dispositivos móveis portáteis. Mas para constatar de fato tal necessidade, mais alguns quesitos precisam

ser verificados.

5.1.1 A função do Sistema

 O sistema será criado para cumprir a função mais básica exigida por um usuário da área médica em

relação a imagens médicas digitais, os arquivos DICOM, que é a sua visualização. Portanto, o software

deve enxergar os arquivos DICOM presentes em qualquer dispositivo de armazenamento de mídia, como

HD (Hard Disk), CDs, DVDs, memórias flash, e outras, que estejam diretamente ligados ao computador

em que o software estiver instalado, sendo capaz de exibir todas as informações pertinentes presentes no

conteúdo do arquivo, o que não pode ser feito sem a presença de uma ferramenta especializada nesta

função.

 Desta forma, o programa irá exibir na tela a imagem médica, qualquer que seja o tipo da mesma

(gerada por raios X, Ressonância Magnética, ultrassom, etc, já que o que importa é sua característica de se

constituir num arquivo digital, geralmente em formado L-JPEG), juntamente com as informações relativas

ao exame presentes neste arquivo (Nome do Paciente, Data e Hora do exame, etc).

5.1.2 Desempenho, Qualidade e Confiabilidade

 Analisando o ambiente em que o software estará inserido, observa-se que o perfil do usuário pode

ser muitas vezes decisivo para a avaliação da qualidade e da confiabilidade do software. É fácil evidenciar

que existem muitos médicos em atuação que possuem pouco conhecimento na área de informática,

primeiramente porque os cursos de medicina pouco oferecem em termos de tais conhecimentos aos seus

alunos. Além disso, existem muitos médicos que não têm grande facilidade na operação de computadores,

procurando até, de certa forma, evitar o uso dos mesmos. Estes profissionais preferem continuar

trabalhando com as imagens tradicionais.

 Nesta realidade fica explícita a necessidade de um software de fácil operação, o que é chamado de

user-friendly, para que mais profissionais se sintam confortáveis e se capacitem para o uso diário do

mesmo. A sua confiabilidade fica restrita à fidelidade das informações exibidas, o que é intrínseco à

implementação do programa. Como desempenho para essa proposta em si, espera-se uma alta velocidade

no tempo de resposta, já que as funções não são específicas e não exigem nenhum processamento

avançado ou complexo de dados.

 28

5.1.3 Tecnologias e Recursos exigidos no desenvolvimento do Sistema

 Como a proposta foca a aplicação exclusivamente em sistemas da Apple, o desenvolvimento e a

utilização do software considera computadores com sistema operacional Mac OS X (Figura 3). O

desempenho desses computadores não é relevante. Esses requisitos, hoje em dia, são de fácil acesso e de

custo regular.

Figura 3 - Computadores Apple

 Para o desenvolvimento é necessário uma API – conjunto de ferramentas que possibilitam o

desenvolvimento de aplicativos – específica. A Apple disponibiliza, gratuitamente, uma API chamada

XCode (Figuras 4 e 5), que está sendo utilizada para este projeto. Nela estão presentes os frameworks que

acompanham a biblioteca Cocoa framework.

 29

Figura 4 - Xcode

Figura 5 - Área de Trabalho do Xcode

 Em relação às tecnologias e recursos adicionais necessários para a instalação e utilização do

software, nenhuma ferramenta adicional é requerida, sendo necessário apenas o seu carregamento em si.

 30

5.2 Estudo da Viabilidade

 Três áreas principais devem ser analisadas neste estudo: viabilidade econômica, viabilidade técnica

e viabilidade legal.

5.2.1 Viabilidade Econômica

 Trata-se da avaliação do custo de desenvolvimento confrontada com a renda de retorno derivada do

sistema desenvolvido. Como o sistema não exigirá nenhuma ferramenta adicional para o seu

funcionamento, e tampouco conhecimentos avançados por parte dos seus usuários, e por se tratar de um

projeto acadêmico sem fins lucrativos, onde todas as ferramentas utilizadas foram fornecidas pela

universidade ou adquiridas gratuitamente (XCode – www.apple.com), o estudo de viabilidade econômica

não pode ser corretamente aplicado ao caso, a não ser se tomarmos como zero o custo de

desenvolvimento, o que realmente é o caso, e também como zero a renda de retorno, tornando, em todo

caso, o projeto viável.

5.2.2 Viabilidade Técnica

 Em termos técnicos, o projeto é totalmente viável. Os conhecimentos adquiridos nas disciplinas de

programação e engenharia de software formam, aliados aos conhecimentos adicionais adquiridos em

linguagens orientadas ao objeto e ao funcionamento do padrão DICOM, a base da exigência técnica do

projeto. O restante é complementado por conhecimentos em gerenciamento de projetos.

5.2.3 Viabilidade Legal

 Todas as ferramentas utilizadas no desenvolvimento do projeto são de uso gratuito e de licença

aberta, assim como todas as bibliotecas e frameworks usados na implementação do código do software.

Nenhum dado confidencial será manipulado na utilização do software, e os arquivos DICOM utilizados

 31

para os testes são de exames disponibilizados para tal fim, tendo os nomes dos pacientes envolvidos nos

estudos excluídos do arquivo. Portanto, em termos legais, o projeto é viável.

5.3 Análise Econômica

 Após a constatação da viabilidade do projeto, ainda deve-se atentar para mais alguns detalhes

econômicos relacionados ao custo-benefício do produto final. Nesta etapa, não apenas os objetivos

tangíveis devem ser analisados, mas também os intangíveis, como a satisfação do cliente.

 Os custos de aquisição são nulos, já que o projeto não visa fins lucrativos, não há a necessidade de

compra de equipamentos adicionais e nem de licenças para a utilização do software. Também não existem

custos relacionados a instalações, já que o software atua de forma autônoma no sistema, e nenhuma

modificação no ambiente é necessária.

 Quanto aos custos relacionados à iniciação ou treinamento dos usuários, eles também são mínimos,

já que o próprio objetivo do projeto é que o software seja simples, facilitando a sua utilização.

 Para os custos que tenham relação direta com o desenvolvimento do projeto, como já citado

anteriormente, o único aplicativo adicional necessário foi o API XCode, o qual pode ser obtido

gratuitamente pelo site da Apple.

 Os únicos custos permanentes relacionados ao projeto são unicamente os de manutenção, devido à

depreciação do hardware no qual ele estará instalado; porém, devido à simplicidade do programa, ele não

será responsável por praticamente nada desta depreciação, já que nenhum recurso complexo de hardware

é utilizado na realização das suas funções.

5.4 Análise Técnica

 A partir dos dados coletados no estudo de viabilidade técnica, é possível refinar e detalhar tais

necessidades, fazendo com que os procedimentos das etapas técnicas que seguem se tornem mais fáceis.

 Assim como já foi ressaltado anteriormente, algumas características importantes da programação

orientada a objetos será usada no desenvolvimento deste projeto. Uma delas é a Reutilização.

 Para fazer uso desta característica da orientação a objetos, foi necessária uma intensa pesquisa por

frameworks que pudessem suprir as necessidades, ou parte delas, envolvidas no projeto. Decidiu-se então

pelo uso do framework iiDICOM, distribuído gratuitamente pela Imaging Informatics. Trata-se de uma

 32

série de definições de Classes de objetos relacionados à obtenção das informações presentes nos arquivos

DICOM. Sua implementação é bastante simples, e a simplificação causada pelo seu uso é muito grande.

 Além do uso correto dos benefícios da programação orientada a objetos, também será utilizado o

aplicativo XCode, que permite que o processo de codificação do software na linguagem Objective-C

aconteça. Desta forma, é imprescindível a correta utilização da ferramenta, utilizando todos os seus

recursos com o objetivo de facilitar o desenvolvimento do projeto, como a ferramenta para criação de

interfaces gráficas que acompanha o API, o Interface Builder, que pode ser visto na Figura 6.

 No Interface Builder é possível criar instâncias de objetos, como janelas e botões, e as

comunicações que eventualmente estas instâncias realizarão, as mensagens. Isto tudo é feito de maneira

gráfica, só sendo necessário implementar os métodos que serão ativados pelas mensagens. Este tipo de

abordagem só é possível devido à orientação ao objeto.

 Assim pode-se fazer um esboço de como o software irá comportar-se (Figura 7). Observando o

esboço, nota-se que uma classe deverá ser criada, para comportar o objeto de controle, e “chamar” todas

as classes definidas nos frameworks utilizados. De maneira mais clara, foi feito o que está descrito no

capítulo 3.3 como “Definir novas classes para trabalhar com as classes definidas pelo framework”. Nesta

classe também estarão definidos todos os métodos solicitados pelas mensagens vistas no esboço. Os

demais itens do esboço são objetos já definidos pelo framework Cocoa.

Figura 6 - Interface Builder

 33

Figura 7 - Esboço do Programa

5.5 Diagrama de Contexto de Arquitetura

 Todo sistema baseado em computador pode ser modelado como uma transformação de informação

usando um gabarito entrada-processamento-saída Estudos posteriores estenderam essa visão e incluiram

duas características adicionais do sistema - processamento e manutenção de interface do usuário, e

autoteste. Estas características, embora não estejam sempre presentes, tornam mais robusto qualquer

modelo de sistema (PRESSMAN, 2006).

 Usando uma representação de entrada, processamento, saída, processamento da interface do usuário

e processamento de autoteste, um engenheiro de sistemas pode criar um modelo de componentes do

sistema que estabeleça a fundação para os passos posteriores em cada uma das disciplinas da engenharia.

 Segundo Pressman (2006), como praticamente todas as técnicas de modelagem usadas na

engenharia de sistemas e de software, o gabarito de modelo do sistema permite ao analista criar uma

hierarquia de detalhes. Um diagrama de contexto de arquitetura (DCA) fica no nível mais alto da

hierarquia. O DCA define todos os produtores externos da informação usada pelo sistema, todos os

consumidores externos da informação criada pelo sistema e todas as entidades que se comunicam através

da interface ou realizam manutenção e autoteste.

 34

A Figura 8 representa o diagrama de contexto de arquitetura para este projeto.

Figura 8 - Diagrama de Contexto de Arquitetura

 Como sugere Pressman (2006), nem todos os sistemas apresentam todas as características citadas. É

o caso, como pode ser visto na Figura 8, deste projeto, que não possui nenhum mecanismo de autoteste.

 O DCA acima sugere simplesmente que o usuário solicite, através de uma interface, que o arquivo

DICOM, localizado no ambiente de entrada, envie suas informações para o sistema de visualização de

imagens DICOM. O sistema, então, se comunica com a saída, enviando a imagem e os dados para a tela, o

que pode ser visualizado pelo usuário através da interface.

 35

5.6. Análise de Requisitos

 Entender os requisitos de um problema está entre as tarefas mais difíceis enfrentadas por um

engenheiro de software.

 Segundo Pressman (2006), a engenharia de requisitos fornece o mecanismo apropriado para

entender o que o cliente deseja, analisando as necessidades, avaliando a exequibilidade, negociando uma

condição razoável, especificando a solução de modo não ambíguo, validando a especificação e gerindo os

requisitos à medida que eles são transformados em um sistema operacional.

5.6.1 Reconhecimento do Problema

 As soluções baseadas em computador para a visualização e manipulação de imagens médicas

digitais, os arquivos DICOM, são, em sua grande parte, voltadas para o sistema operacional Windows,

existindo poucas alternativas para o sistema Mac OS X. Além disso, com a nova tendência de aplicativos

voltados aos dispositivos móveis portáteis, como celulares e computadores portáteis, existe uma grande

demanda por visualizadores médicos compatíveis com estes equipamentos.

 Os requisitos do sistema passaram por algumas alterações no decorrer do projeto, sendo que as

funções de manipulação das imagens foram retiradas. Porém é um requisito do projeto permitir, através do

desenvolvimento de um bom software básico, a inclusão destas funções no futuro. Com isto também

pretende-se deixar o software pronto para as alterações necessárias para a implementação das versões para

iPhone, iPod e iPad.

5.6.2 Revisão

 Com relação a revisão do projeto, foi possível contar com a ajuda de um médico para constatar

quais alterações eram convenientes. O radiologista Dr. Fernando Ivan dos Reis sugeriu a diminuição do

número de informações mostradas pelo software. No projeto base, o software iria mostrar todas as

informações presentes no arquivo, que contém muitos dados inúteis para os médicos. Desta forma, o

radiologista sugeriu quais destes dados são realmente relevantes para os médicos na análise da imagem, e

 36

também que essas informações fossem dispostas nos cantos da própria imagem, uma vez que este é o

padrão dos melhores softwares do mercado neste gênero.

 Essas alterações ajudaram a tornar o software mais amigável aos médicos, sendo que o torna mais

parecido com outros softwares já conhecidos. Assim, mais um dos requisitos, a facilidade de uso ou user-

friendly, pôde ser melhorado.

 37

 38

6. Projeto do Software

 Um conjunto de conceitos fundamentais de projeto tem evoluído durante a história da engenharia de

software. Apesar de o grau de interesse em cada conceito ter variado ao longo dos anos, cada um resistiu

ao teste do tempo. Cada um fornece ao projetista de software uma base por meio da qual métodos mais

sofisticados de projeto podem ser aplicados.

 Em outras palavras, o projeto de software é responsável por analisar os requisitos especificados até

o momento, e ligá-los às etapas de engenharia e manutenção que se seguirão. Com esta ponte, problemas

como a construção de sistemas instáveis e a alta probabilidade de falhas quando pequenas mudanças são

feitas, são minimizadas. Um software projetado corretamente tem a sua realização muito mais fácil, além

de que seu produto final pode ser analisado quanto à sua qualidade.

 Para que esse projeto seja feito de maneira a elevar a qualidade do software, alguns procedimentos

devem sempre ser tomados: abstração, refinamento e modularidade.

 Com esses conceitos em mente, é possível descrever o sistema de maneira simples, sendo

irrelevante a complexidade do mesmo (abstração). Após a obtenção de um modelo simples e geral, com

um alto nível de abstração, são aplicados os conceitos de refinamento e de modularidade, e então uma

solução detalhada, estruturada e modularizada é adquirida.

 Se estes procedimentos forem tomados juntamente com uma orientação voltada ao fluxo dos dados

no sistema, podemos modelar um Diagrama de Fluxo de Dados.

6.1 Diagrama de Fluxo de Dados (DFD)

 A abordagem orientada ao fluxo de dados é uma das mais usadas no mundo, e se aplica na

confecção de uma ampla variedade de soluções baseadas em computador.

 O diagrama de fluxo de dados permite ao engenheiros de software desenvolver modelos do domínio

informacional e do domínio funcional ao mesmo tempo. À medida que o DFD é refinado em maior nível

de detalhe, o analista realiza uma decomposição funcional implícita do sistema.

 Uma DFD deve representar as funções do sistema, as interações entre as funções do sistema, as

transformações que o sistema deve realizar, as fontes de informação, o destino dos resultados e os dados

mantidos pelo sistema.

 Como a análise de requisitos não gerou um número muito grande de funções, e como não existe

processamentos de dados complexos relacionados à estas funções, foram necessários apenas dois níveis

 39

(Figuras 9 e 10) para detalhar suficientemente o comportamento do fluxo de dados do sistema.

Figura 9 - Diagrama de Fluxo de Dados (Nível 1)

 40

Figura 10 - Diagrama de Fluxo de Dados (Nível 2)

 Nos diagramas criados é possível identificar as seguintes formas: retângulos, círculos, barras

horizontais paralelas e setas.

 Os círculos representam os processos do sistema. São elementos que transformam as informações e

correspondem a uma função ou atividade que deve ser executada pelo sistema. As setas são usadas para

descrever o movimento de informações de um componente do sistema para outro. Elas traduzem a relação

entre os diferentes processos do sistema. As entidades externas são representadas pelos retângulos, que

são elementos que estão fora do limite do software, mas que interagem com o mesmo, gerando fontes ou

recebendo informações. Os fluxos que conectam entidades a processos representam interfaces entre o

software e o ambiente externo. Por fim, as barras paralelas indicam os repositórios de dados que são

armazenados para serem usados pelos processos. Podem então representar fichários, buffers, arquivos,

banco de dados, etc.

 A figura 9 nos dá apenas uma visão geral do sistema, mostrando o fluxo de dados na forma mais

simples e abstrata possível. Nela podemos ver que as entidades externas são o teclado, o mouse e a tela, o

que configura a interface com o usuário, que fará uso destas entidades para acessar os arquivos presentes

no banco de dados.

 41

 O nível 2 do DFD, representado na Figura 10, nos dá um detalhamento dos processos contidos no

processo geral descrito no nível 1. Portanto, os processos finais que foram obtidos com este refinamento

são: receber caminho do arquivo, executar arquivo, formatar informações da imagem e formatar

informações dos dados. São estes processos que deverão fazer parte da base principal do software, por isso

deverão ser melhor definidos para então serem implementados na linguagem de programação escolhida

pelo projeto.

6.2 Descrição dos Processos

 Os quatro processos obtidos na etapa anterior são descritos da seguinte forma:

 Receber Caminho do Arquivo: Este processo recebe do usuário o caminho e o nome do arquivo

que será executado pelo programa, e o seleciona da lista de arquivos compatíveis presentes no banco de

dados.

 Executar Arquivo: Neste processo o arquivo selecionado é analisado e as informações necessárias,

da imagem e dos dados, são guardadas para processamento posterior.

 Formatar Informações da Imagem: As informações da imagem presentes no arquivo selecionado

são processadas para gerar a imagem na tela.

 Formatar Informações dos Dados: Formata as informações importantes do arquivo e os prepara

para serem exibidos na tela.

6.3 Especificação dos Processos

 Esta etapa se encarrega de definir o que deve ser feito dentro de cada um dos processos, de modo a

transformar entradas em saídas. Trata-se de um pseudocódigo, criado para facilitar ainda mais o processo

de codificação. Assim, elaborou-se o seguinte pseudocódigo:

Processo Principal

 42

 Repita

 Se Processo “Receber Caminho do Arquivo”= Verdadeiro

 Processo “Executar Arquivo”

 Processo “Formatar Informações da Imagem”

 Processo “Formatar Informações dos Dados”

 Fim Se

Fim Processo

Processo “Receber Caminho do Arquivo”

 Obtenha(Arquivos_DICOM)

 Obtenha(Nome_e_Caminho_do_Arquivo)

 Se Nome=”*.dcm”

 Ler (Nome_e_Caminho_do_Arquivo)

 Seleciona Arquivo para Execução

 Retornar(Verdadeiro)

 Fim Se

Fim Processo

Processo “Executar Arquivo”

 Obtenha(Arquivo_DICOM)

 Escreva(Informações_da_Imagem)

 Escreva(Informações_dos_Dados)

Fim Processo

Processo “Formatar Informações da Imagem”

 Leia(Informações_da_Imagem)

 Gere(Imagem)

 Escreva(Imagem)

Fim Processo

Processo “Formatar Informações dos Dados”

 Leia(Informações_dos_Dados)

 Gere(Dados)

 Escreva(Dados)

 43

Fim Processo

6.4 Diagrama Entidade-Relacionamento (DER)

 “O par objeto/relacionamento é a pedra fundamental do modelo de dados. Esses pares podem ser

representados graficamente por meio do diagrama entidade-relacionamento (DER). O DER foi

originalmente proposto por Peter Chen [CHE77] para o projeto de sistemas de base de dados relacional

e foi estendido por outros. Um conjunto de componentes primordiais é identificado para o DER: objetos

de dados, atributos, relacionamentos e indicadores de vários tipos. A finalidade principal do DER é

representar objetos de dados e seus relacionamentos” (PRESSMAN, 2006, p. 151).

 Uma notação rudimentar do DER já foi introduzida. Objetos de dados são representados por um

retângulo rotulado; relacionamentos são indicados por uma linha rotulada conectando objetos. Em

algumas variantes do DER, uma linha de conexão contém um losango, que é rotulado com um

relacionamento.

 A Figura 11 representa a DER deste projeto. Os números entre parênteses indicam que o usuário

pode selecionar, ou visualizar, no mínimo um, e no máximo um arquivo DICOM de cada vez. Já os

arquivos DICOM podem ser selecionados, ou visualizados, por no mínimo um, e no máximo N usuários,

já que estes arquivos podem estar armazenados em um banco de dados comum a uma rede, onde podem

estar instalados N softwares de visualização.

 44

Figura 11 - Diagrama Entidade-Relacionamento

6.5 Codificação

 Primeiramente foi necessária a criação de uma classe para alocar os objetos e métodos que serão

usados pelo software. Desta forma, a classe RAClass foi criada, e nela foram implementados os métodos

IBAction “openFile”, acionado sempre que o botão “Open DICOM Image” é pressionado, e os IBOutlets

“imageView”, “sendText” e “sendFileName”, que são utilizados para manipular as informações do

arquivo selecionado. Estes quatro métodos são os principais responsáveis pelo funcionamento do

programa, juntamente com os métodos contidos na biblioteca iiDICOM.framework.

 Um diagrama de blocos que ilustra a implementação da classe RAClass pode ser visto na Figura 12.

 45

Figura 12 - Diagrama de Blocos

 Para um melhor entendimento da estrutura geral do programa foi feito um diagrama de classes, que

representa mais claramente as relações que foram formadas entre as classes do software. Esse tipo de

modelagem é muito útil, pois define todas as classes que serão necessárias no sistema.

 46

Properties mostram os atributos e Operations mostram os métodos que podem ser utilizados pelos objetos

instanciados por cada uma das classes.

Figura 13- Diagrama de Classes

 A classe NSObject é a classe raiz da biblioteca Cocoa, através dela os objetos herdam todas as

funções básicas necessárias para que eles possam se comportar como objetos da linguagem Objective-C. A

classe mySplash foi criada apenas para que uma tela de abertura seja inicializada antes do software. As

classes iiDcmDictionary e iiDcmSlice são classes definidas na biblioteca iiDICOM.framework e possuem

muitos atributos e métodos, porém poucos deles foram utilizados no projeto, como os métodos

metaDataSet e sliceAsNSImage. A classe RAclass é a principal do código

 47

 48

7. Testes

 “O teste de software é um elemento de um aspecto mais amplo, que é frequentemente referido como

verificação e validação (V&V). Verificação se refere ao conjunto de atividades que garante que o

software implementa corretamente uma função específica. Validação se refere a um conjunto de

atividades diferentes que garantem que o software construído corresponde aos requisitos do cliente”

(PRESSMAN, 2006, p. 289).

 Verificação responde à pergunta: estamos construindo o produto corretamente? Enquanto validação

responde a: estamos construindo o produto certo?

 A etapa de testes pode ser dividida em 4 partes: teste de unidade, teste de integração, teste de

validação e teste de sistema, e serão discutidos a seguir.

7.1 Teste de Unidade

 “Ao desenvolver um grande sistema, o teste, geralmente, envolve vários estágios. Primeiro, cada

componente do programa é testado, isolado dos outros componentes do sistema. Esse teste, conhecido

como teste de módulo, teste de componente ou teste de unidade, verifica se o componente funciona de

forma adequada aos tipos de entradas esperadas, a partir do estudo do projeto do componente. Sempre

que possível, o teste de unidade é feito em um ambiente controlado, de modo que a equipe de teste possa

fornecer ao componente a ser testado um conjunto de dados predeterminado, e a observar quais ações e

dados são produzidos. Além disso, a equipe de testes verifica as estruturas de dados internas, a lógica e

as condições limite para os dados de entrada e saída” (PFLEEGER, 2004, p. 275).

 Primeiramente realizou-se uma inspeção do código. Uma vez que a descrição de projeto ajuda a

codificar e documentar cada componente de programa, o seu programa reflete a sua interpretação do

projeto. A documentação explica em palavras e figuras o que o programa deve fazer no código. Portanto, é

útil que se revise objetivamente o código e sua documentação, a fim de eliminar interpretações errôneas,

inconsistências e outros defeitos (PFLEEGER, 2004).

 Os componentes testados nesta etapa foram: a interface gráfica, a estrutura de dados e as condições-

limite.

 49

7.1.1 Interface Gráfica

 Segundo a análise dos requisitos documentada nos capítulos anteriores, era de grande importância

que a interface gráfica apresentasse simplicidade, o que tornaria o programa mais amigável. Este teste

tem, portanto, como objetivo verificar que esta simplicidade foi de fato alcançada pela codificação. A tela

inicial do programa, que pode ser vista na Figura 12, transmite muito bem tal simplicidade. A interface é

formada por apenas um botão (sem contar com os botões de fechar, minimizar e maximizar) que, ao ser

pressionado, leva a interface para uma nova janela (Figura 13), que também é de fácil operação. Após a

seleção do arquivo desejado, a imagem é mostrada de forma clara, e suas informações dispostas nos

cantos da mesma, como foi especificado na análise de requisitos (Figura 14).

Figura 14 - Tela Inicial

 50

Figura 15 - Janela de Seleção de Arquivos

Figura 16 - Exibição da Imagem

 51

7.1.2 Avaliação da Estrutura de Dados e das Condições-Limite

 A estrutura de dados local é examinada para garantir que os dados armazenados temporariamente

mantenham sua integridade durante todos os passos da execução de um algoritmo. Todos os caminhos

independentes (caminhos básicos) ao longo da estrutura de controle são exercitados para garantir que

todos os comandos de um módulo tenham sido executados pelo menos uma vez. As condições-limite são

testadas para garantir que o módulo opere adequadamente nos limiares estabelecidos para limitar ou

restringir o processamento (PRESSMAN, 2006).

 A estrutura de dados foi testada utilizando diferentes tipos de arquivos DICOM, abrindo-os

seguidamente ou após a reinicialização do software (Figuras 16 a 21).

 A análise das condições limites também foi testada. Nela tentou-se abrir arquivos que não sejam

suportados pelo software (Figura 15), o que não foi possível devido à implementação do código, que

desabilita a seleção de arquivos que não sejam da extensão dcm, própria dos arquivos DICOM.

Figura 17 - Seleção Limitada a Arquivos dcm

 52

Figura 18 – lesão do ligamento colateral medial

Figura 19 - luxação lateral da patela

 53

Figura 20 - meningeoma com componentes intra e extra cranianos

Figura 21 - necrose asséptica da cabeça femoral pós trauma

 54

Figura 22 - oclusão da carótida direita

Figura 23 - tomografia do abdomem

 55

7.2 Teste de Integração

 Teste de integração é uma técnica sistemática para construir a arquitetura do software enquanto, ao

mesmo tempo, conduz testes para descobrir erros associados às interfaces. O objetivo é, a partir de

componentes testados no nível de unidade, construir uma estrutura de programa determinada pelo projeto.

 O teste de integração realizado nesta etapa foi do tipo incremental, o qual consiste em dividir em

partes a verificação de erros do programa desenvolvido. Isso contribui para uma abordagem mais

simplificada na correção de erros. Assim, as interfaces têm a possibilidade de serem inteiramente testadas

e uma abordagem sistemática ao teste pode ser aplicada.

 “A integração incremental é a antítese da abordagem big-bang. O programa é construído e testado

em pequenos incrementos, em que erros são mais fáceis de isolar e corrigir; é mais provável que as

interfaces sejam testadas completamente e pode ser aplicada uma abordagem sistemática de teste”

(PRESSMAN, 2006, p. 297).

7.3 Teste de Validação

 Validação pode ser definida de vários modos, mas uma definição simples (no entanto, rigorosa) é

que ela se torna bem sucedida quando o software funciona de um modo que pode ser razoavelmente

esperado pelo cliente.

 Diante da análise de requisitos e sistemas propostos no começo desse documento, fez-se a

verificação de congruência entre o software pronto e esses requisitos observados. Desde o início, a

intenção do software era de se constituir numa ferramenta simples para a visualização de arquivos

DICOM em sistema operacional Mac OS X. Como projetado, o programa atende a todas essas

especificações, apresentando tudo em uma interface amistosa e simples.

7.4 Teste de Sistema

 “Teste de sistema é, na verdade, uma série de diferentes testes cuja finalidade principal é exercitar

por completo o sistema baseado em computador. Apesar de cada teste ter uma finalidade distinta, todos

trabalham para verificar se os elementos do sistema foram adequadamente integrados e executam as

funções a eles alocadas” (PRESSMAN, 2006, p. 306).

 56

 Assim, fez-se a análise do software como um elemento que faz parte de um sistema mais amplo.

Neste caso, o programa ainda tem limitações quanto às suas funções; porém, como estas já estavam

definidas na análise de requisitos, o software desempenha satisfatoriamente o papel para o qual foi

projetado.

 57

 58

8. Manutenção e Qualidade

 Esta fase de desenvolvimento de software envolve toda e qualquer modificação feita após ele estar

pronto. Qualquer correção de erro ou nova funcionalidade adicionada é considerada uma atividade de

manutenção. De tal modo, esta etapa não tem um fim definido enquanto o software está sendo utilizado

pelo usuário. Usualmente diz-se que o gasto com manutenção de sistemas existentes é deveras maior do

que com o desenvolvimento de novos sistemas.

 A manutenção corretiva, que é aquela feita para corrigir pequenos erros no funcionamento do

programa, será feita através do contato com o usuário. Estes erros não costumam ser muito complexos e

tendem a ser poucos quando o programa passa por uma etapa de testes bem realizada. No caso deste

software, espera-se uma baixa incidência destes erros enquanto estiver funcionando em seu formato atual.

 A classe de manutenções adaptativas tem como objetivo atualizar o software para que ele possa

continuar operando em sistemas e ambientes novos. A presente ferramenta tem em seu projeto conceitual

o requisito de ser futuramente adaptado aos sistemas operacionais dos dispositivos móveis portáteis

iPhone, iPod e iPad. Portanto, esta etapa da manutenção passa a ser imprescindível para a completa

realização deste projeto.

 O sistema operacional destes dispositivos, o IOS4 (também desenvolvido pela Apple), tem grande

semelhança com o Mac OS X; portanto, esta adaptação pode ser totalmente executada, bastando para isso

apenas alguns estudos adicionais sobre o IOS4. A programação em Objective-C é totalmente aceita pelos

dispositivos, e é também possível criar aplicativos para eles, utilizando o XCode. Assim, nenhuma

alteração no projeto deverá ser feita, sendo necessárias apenas algumas alterações na codificação.

 Outra manutenção que está prevista neste projeto é a inclusão de novas funções para o software,

como a opção de manipulação das imagens (brilho, contraste, zoom, etc). Como o programa foi

desenvolvido de maneira clara e simples, a implementação destas funções não será trabalhosa e deverão

tomar lugar nas próximas versões do aplicativo.

 O principal objetivo da Engenharia de Software é ajudar a produzir software de qualidade; empresas

que fazem isso são mais competitivas e podem, em geral, oferecer um melhor serviço a um preço mais

competitivo também.

 A noção de qualidade de software pode ser descrita por um grupo de fatores, requisitos ou atributos,

tais como: confiabilidade, eficiência, facilidade de uso, modularidade, legibilidade, etc. Podemos

classificar estes fatores em dois tipos principais: externos e internos.

 Os fatores externos de qualidade são verificados principalmente pelo pessoal que irá utilizar no dia-

a-dia o software projetado. No caso do projeto, os médicos farão as propostas de mudança, aprimorando-o

e trazendo uma melhora no seu desempenho e confiabilidade.

 59

 Já os fatores internos de qualidade, foram verificados (legibilidade, portabilidade, modularidade)

durante o processo da criação, desde a parte de análise e especificação de requisitos até a efetuação dos

testes propriamente ditos.

 Os fatores que afetam a qualidade de software são divididos em três categorias: revisão do produto,

transição do produto e operação do produto.

Revisão do Produto

 Os três fatores que foram verificados na revisão foram: a possibilidade de manutenção, que é

conseguida na alteração do código-fonte que está organizado de maneira lógica, a capacidade de

mudanças e adaptações no software conforme dito em relação à manutenção e à possibilidade da

realização de testes de cada função, e das variáveis que representam as entradas geradas pela interface

com o usuário.

Transição do Produto

 O software, uma vez que foi criado em linguagem de alto nível Objective-C, pode ser executado nos

sistemas operacionais existentes nos computadores Apple atuais com o sistema operacional Mac OS X

10.5. Para a execução em sistemas operacionais futuros (como o Mac OS X 10.6), existirá a necessidade

de adaptações, as quais não comprometeriam a sua integridade.

Operação do Produto

 Em relação à operação, o software corresponde aos requisitos esperados, uma vez que o mesmo se

propõe a realizar as tarefas que atingem as necessidades básicas de visualização de imagens DICOM, e o

software também pode ser considerado eficiente, pois é executado com precisão dentro dos limites

especificados nas etapas anteriores de projeto.

 60

9. Conclusões

 A proposta inicial deste trabalho sofreu, ao longo do seu desenvolvimento, algumas modificações

que foram necessárias para definir com clareza o rumo do projeto. Algumas delas se devem a problemas

encontrados no seu decorrer que não foram identificados em sua idealização, outras devidas a ajustes

essenciais para o seu desenvolvimento. Porém, a ideia central do projeto foi mantida e realizada com

sucesso.

 Durante o período de trabalho, várias etapas foram construídas e conhecimentos em diversas áreas

adquiridos, desde o estudo da formação de imagens digitais, a teoria de projetos de softwares, a

programação poderosa em Objective-C e o gerenciamento de projetos em si. Algumas destas áreas

estavam mais facilmente ao alcance, já outras necessitaram de intensa pesquisa e estudo.

 Primeiramente, o padrão DICOM teve de ser estudado e esclarecido, para que então fosse possível

enxergar com clareza os próximos objetivos. Passou-se então à elaboração de alguns protótipos do

programa, para verificar a real possibilidade da realização do projeto e entender mais profundamente o

ambiente onde o software seria criado. O próximo passo foi a realização das pesquisas de requisitos,

quando o programa sofreu a maior parte de suas modificações, chegando a um patamar que pudesse ser

corretamente realizado. Estes requisitos, embora não sejam o ideal para um software nesta área, formaram

uma base que, através da clareza e modularidade com que o projeto foi estruturado, poderão ser facilmente

incrementados para tornar o projeto uma ferramenta bastante útil na área.

Por fim, dentro da idéia proposta e tempo disponível, foram atingidos os objetivos esperados e, o

mais importante, obtiveram-se indicativos promissores. Os resultados obtidos criaram expectativas

otimistas para a continuidade do projeto e deixaram uma base para tal, não sendo necessários outros

recursos senão os já utilizados aqui. Com a vantagem de se constituir, então, um recurso de software livre

para visualização de arquivos DICOM em qualquer computador que utilize o sistema operacional para o

qual foi desenvolvido (Mac OS X), o que é um ganho significativo em função da existência desse tipo de

recurso apenas a custos elevados – provenientes de fabricantes estrangeiros.

 61

 62

10. Referências Bibliográficas

Object-Oriented Programming with Objective-C, 2008. Disponível em:
<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf>
Acesso em: 13 mai. 2010

Pfleeger, Shari Lawrence. Engenharia de software: teoria e prática / Shari Lawrence Pfleeger [tradução
de] Dino Franklin. 2. ed. São Paulo: Prentice Hall/Pearson Education, 2004. 535 p.

Pressman, Roger S.. Engenharia de software / Roger S. Pressman ; tradução [de] Rosângela Delloso
Penteado ; revisão técnica [de] Fernão Stella R. Germano, José Carlos Maldonado, Paulo Cesar Masiero.
6. ed. São Paulo : McGraw-Hill, c2006. 720 p.

Thomas, Rebecca; Yates, Jean. Unix : guia do usuario / Rebecca Thomas, Jean Yates ; [Trad] Maria
Claudia de Oliveira Santos. 2. ed. São Paulo : McGraw-Hill, 1989. 744 p.

Digital Imaging and Communications in Medicine (DICOM). Rosslyn: National Electrical
Manufacturers Association, 2004.

Stallings, William. Operating systems : internals and design principles / William Stallings. 3. ed. Upper

Saddle River, N.J. : Prentice Hall, 1998. 781 p.

 63

 64

11. Anexos

11.1 Anexo 1: O padrão DICOM

 Com a introdução da Tomografia Computadorizada (CT) seguido de outras modalidades de

diagnósticos digitais em 1970, e com o crescimento do uso de computadores em aplicações clínicas, a

ACR (American College of Radiology) e a NEMA (National Eletrical Manufacturers Association)

reconheceu a emergente necessidade de um método padronizado de transferência de imagens e

informações associadas entre os dispositivos fabricados por vários fornecedores. Esses dispositivos

produziam uma grande variedade de formatos de imagens digitais.

 A ACR e a NEMA formaram um comitê conjunto em 1983 para desenvolver um padrão para:

Promover a comunicação de informações de imagens digitais, independentemente do fabricante do

dispositivo

Facilitar o desenvolvimento e expansão do arquivamento de imagens e sistemas de comunicação (PACS),

que também possam interagir com outros sistemas de informações hospitalares

Permitir a criação de bases de dados de informações de diagnósticos que possam ser acessados por uma

grande variedade de dispositivos distribuídos geograficamente.

 Este padrão, que é atualmente designado Digital Imaging and Communications In Medicine

(DICOM), engloba várias melhorias importantes para as versões anteriores do padrão ACR-NEMA:

É aplicável para um ambiente de rede. O padrão ACR-NEMA era aplicável para um ambiente ponto a

ponto apenas; para a operação em ambiente de rede era necessário uma Network Interface Unit (NIU).

DICOM suporta a operação em um ambiente de rede usando o protocolo padrão de redes TCP/IP

É aplicável em um ambiente de mídia off-line. As versões anteriores do padrão não especificavam um

formato de arquivo ou escolhiam uma mídia física ou arquivo de sistema lógico. DICOM usa para isso

mídias industriais padrões como CD-R e MOD e arquivos de sistema lógico como ISO 9660 e sistema de

arquivo PC FAT 16.

Especifica como os dispositivos que acessam o padrão reagem aos comandos e dados que são transferidos

ou movimentados. Os padrões anteriores eram confinados a transferência de dados, mas o DICOM

especifica, através do conceito de Classes de Serviço, as semânticas dos comandos e dados associados.

Especifica níveis de conformidade (aderência ao padrão). Os padrões anteriores apenas especificavam um

 65

nível mínimo de conformidade. DICOM descreve explicitamente como um implementador deve estruturar

uma Declaração de Conformidade (Aderência) para selecionar opções específicas.

É estruturado como um documento de múltiplas partes. Isso facilita a evolução do padrão em um ambiente

de mudanças rápidas, simplesmente adicionando novos recursos. As instruções definidas pela ISO de

como estruturar um documento de múltiplas partes foram seguidas na construção do padrão.

Introduz Objetos de Informações explícitas, nao só para imagens e gráficos, mas também para formas de

onda, relatórios, impressão, etc.

Especifica uma técnica estabelecida para indentificar unicamente qualquer Objeto de informação.

Definições:

Atributo: Uma propriedade de um Objeto de Informação. Um atributo tem um nome e um valor, que são

independentes de qualquer esquema de codificação.

Comando: Um pedido para operar em uma informação através da rede

Elemento de Comando: Uma codificação de um parâmetro de um comando que transmite o valor deste

parâmetro.

Canal de Comando: O resultado da codificação de um conjunto de Elementos de comando DICOM

usando o esquema de codificação DICOM.

Declaração de Conformidade: Uma declaração formal que descreve a implementação de um produto

específico que usa o padrão DICOM. Especifica a Classe de Serviços, Objetos de Informação, e

Protocolos de Comunicação suportados pela implementação.

Dicionário de Dados: Um registro de Elementos de Dados DICOM, o qual atribui uma única Tag, um

nome, características de valor, e semânticas de cada Elemento de Dado.

Elemento de Dado: Uma unidade de informação definida por uma entrada única do dicionário de dados.

Conjunto de Dados: Informações trocadas que consistem em um conjunto estruturado de Atributos. O

valor de cada Atributo do conjunto de Dados é expresso como um Elemento de Dado.

 66

Canal de Dados: O resultado da codificação de um Conjunto de Dados usando o esquema de codificação

DICOM.

Objeto de Informação: Uma abstração de alguma informação real.

Classe de Objeto de Informação: Uma descrição formal de um Objeto de Informação, que inclui uma

descrição do seu propósito e os respectivos Atributos que este possui. Não inclui os valores desses

Atributos.

Instância de Objeto de Informação: Inclui os valores dos Atributos da Classe de Objeto de Informação.

Mensagem: Uma unidade de dado do Protocolo de Trocas de Mensagens, que é trocada entre dois

aplicativos DICOM. A mensagem é composta de um Canal de Comando seguido por um Canal de Dados

opcional.

Classe de Serviços: Uma descrição estruturada de um serviço que é suportado por aplicativos DICOM

cooperantes usando comandos DICOM específicos e agindo em uma específica classe de objeto de

informação.

 São definidos dois tipos de Classe de Objeto de Informação:

Classe de Objeto de Informação Normalizada inclui somente os atributos inerentes a entidade do mundo

real representada, por exemplo, data do estudo ou hora do estudo; o nome do paciente é inerente ao

paciente e não ao estudo, por isso não é incluída nesta classe.

Classe de Objeto de Informação Composta pode incluir adicionalmente atributos que estão relacionados

mas não são inerentes à entidade do mundo real.

 Para representar a ocorrência de uma entidade do mundo real, uma instância de Objeto de

Informação é criada, a qual inclui valores para os atributos da Classe de Objeto de Informação. Este valor

do atributo pode mudar durante o tempo para representar precisamente as mudanças de estado da entidade

a qual ela representa. Isto é conseguido fazendo-se diferentes operações básicas sobre a instância para

apresentar um conjunto de serviços definidos como uma Classe de Serviços.

 67

Uma Classe de Serviços associa um ou mais Objetos de Informação com um ou mais Comandos a serem

realizados sobre esses objetos.

Objetivos do Padrão DICOM:

 O Padrão DICOM facilita a interoperabilidade de dispositivos solicitando conformidade. Em

particular, ele:

Endereça a semântica de comandos e dados associados. Para que aconteça a interação entre os

dispositivos, devem existir padrões de como é esperado que estes dispositivos reajam a comandos e dados

associados, e não somente sobre a informação que será trocada pelos dispositivos.

Endereça a semântica de serviços de arquivos, formatos de arquivos e diretórios necessários para a

comunicação off-line.

É explícito em definir os requerimentos para conformidade das implementações do padrão. Em particular,

uma declaração de conformidade deve especificar informações suficientes para determinar as funções que

são esperadas na interoperabilidade com outro dispositivo.

Facilita operação em ambientes de rede.

É estruturado de maneira a acomodar a introdução de novos serviços, dando suporte à futuras aplicações

em imagens médicas.

 Este padrão foi desenvolvido com ênfase em imagens médicas diagnósticas como são usadas em

radiologia, cardiologia e disciplinas relacionadas; no entanto, é também aplicável a várias outras

comunicações relacionadas à clínicas e ambientes médicos.

 A figura 23 apresenta um modelo básico e geral do padrão, cobrindo tanto a comunicação on-line

(ambiente de rede) como a off-line (armazenamento em arquivos).

 68

Figura 24 - Modelo geral do padrão (Digital Imaging and Communications in Medicine, 2004)

Estrutura de Dados e Semântica:

 O Padrão DICOM especifica como os aplicativos DICOM constroem e codificam as informações de

um conjunto de dados que resulta do uso dos Objetos de Informação e Classes de Serviços. É também

especificado o suporte a diversas técnicas padrões de compressão de imagem, como JPEG com perdas e

sem perdas. São definidas também a semântica de inúmeras funções que são comuns a vários Objetos de

Informação.

 69

Dicionário de Dados:

 Todos os elementos de dados DICOM disponíveis para representar alguma informação são

definidos no Dicionário de Dados, junto com os elementos utilizados na codificação de mídia transferível

e uma lista de ítens de identificação única associados pelo DICOM.

 Para cada elemento é especificado:

Sua tag, que consiste em um grupo e um número de elemento

Seu nome

Seu valor representativo (string, inteiro, etc)

A multiplicidade do seu valor (quantos valores por atributo)

Se já foi retirado do padrão

 Para cada ítem de indentificação única é especificado:

Seu valor único, que é numérico com componentes múltiplos separados por pontos decimais, limitado a 64

caracteres

Seu nome

Seu tipo

Em que parte do Padrão DICOM ele está definido

 Uma parte da especificação deste dicionário está mostrado na Figura 24.

 70

Figura 25 - Dicionário de Dados (Digital Imaging and Communications in Medicine, 2004)

Função de Visualização de Imagens em Tons de Cinza:

 Esta função fornece métodos de calibração de sistemas de display particulares com o propósito de

apresentar as imagens consistentemente em diferentes displays (monitores e impressoras).

 A função escolhida é baseada na percepção visual humana, que possui sensibilidade não linear

dentro da faixa de luminância dos dispositivos de visualização, portanto foi utilizado um modelo de

sistema visual humano.

 71

 72

 73

