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RESUMO

CHEN, HAOYU Topologia de Grothendieck em geometria algébrica e geometria algébrica real. 2024.

135 p. Monografia (Bacharelado em Matemática) – Instituto de Matemática e Estatı́stica, Univer-

sidade de São Paulo, São Paulo, 2o Semestre de 2024.

A noção de topologia de Grothendieck, introduzida por Alexander Grothendieck juntamente

com a topologia étale, visa definir feixes em categorias arbitrárias e suas cohomologias, como

parte da tentativa de provar a conjectura de Weil, que acabou sendo bem-sucedida. Neste tra-

balho, exploramos as topologias de Grothendieck na categoria de morfismos étale em um es-

quema X, incluindo a topologia étale e a topologia real étale. Estudamos também que a categoria

de feixes na topologia real étale de um esquema X é equivalente à categoria de feixes em espec-

tro real associado ao esquema X. Por fim, discutimos a relação entre a cohomologia de Galois e

a cohomologia étale sobre um corpo, além das interações entre pontos reais, ordens e dimensão

cohomológica.

Palavras-chave: feixes, topologias de Grothendieck, geometria algébrica, geometria algébrica

real e cohomologia de Galois



ABSTRACT

CHEN, HAOYU Grothendieck topologies in algebraic geometry and real algebraic geometry. 2024.

135 p. Monografia (Bacharelado em Matemática) – Instituto de Matemática e Estatı́stica, Univer-

sidade de São Paulo, São Paulo, 2o Semestre de 2024.

The notion of Grothendieck topology, introduced by Alexander Grothendieck together with

the étale topology, aims to define sheaves on arbitrary categories and their cohomologies, as part

of the attempt to prove Weil’s conjecture, which ended up being successful. In this work, we

explore the Grothendieck topologies in the category of étale morphisms on a scheme X, including

the étale topology and the real étale topology. We also study that the category of sheaves on the

real étale topology of a scheme X is equivalent to the category of sheaves on the real spectrum

associated to the scheme X. Finally, we discuss the relationship between Galois cohomology and

étale cohomology over a field, in addition to the interactions between real points, orders and

cohomological dimension.

Keywords: sheaves, Grothendieck topologies, algebraic geometry, real algebraic geometry and

Galois cohomology
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Preface

Algebraic geometry is a branch of mathematics that traces its origins back to ancient civiliza-

tions, where geometric problems were often framed in terms of algebraic equations and vice

versa. Initially, the focus was on the vanishing sets of collections of polynomials with coeffi-

cients in fields such as C, R, C or finite field Fq. The primary aim was to study the geometry of

these vanishing sets rather than to solve polynomial equations explicitly. This involves concepts

such as dimension, degree, genus, irreducibility, regularity, and normality in the context of these

varieties.

Between the 19th and 20th centuries, the field of algebraic geometry evolved to focus on al-

gebraic varieties, i.e. spaces that can be locally identified with the vanishing sets of polynomial

collections, such as projective varieties. This change led to significant results such as Bézout’s

theorem, the Riemann-Roch theorem, the GAGA principle, and Chow’s lemma. As a result,

algebraic geometry has become a vibrant intersection of many branches of mathematics.

A significant milestone in algebraic geometry was Hilbert’s Nullstellensatz, proven by David

Hilbert at the end of the 19th century. This theorem established a crucial link between the com-

mon zero sets of polynomial systems and the ideals of polynomial rings, allowing geometric

properties to be explored through pure algebra. It also demonstrated that for any algebraically

closed field k, the category of irreducible algebraic sets over k is contravariantly equivalent to the

category of finitely generated k-algebras.

In the early 20th century, significant advancements were made in various areas of mathe-

matics, particularly in topology. Henri Poincaré introduced the field in his work ”Analysis Si-

tus” (1895), which laid the groundwork for concepts such as fundamental groups and singular

homology. In the latter half of the century, mathematicians like Veblen, Alexander, Lefschetz,

and Čech developed various methods for associating (co)homology groups with topological

spaces. This progress was further clarified by Eilenberg and Steenrod, who demonstrated that

any (co)homology theory constructed in a concrete and purposeful manner on topological spaces

was equivalent, provided it satisfied a short list of axioms known as the Eilenberg-Steenrod ax-
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ioms.

In the 1940s, Leray sought to understand the relationship between the cohomology groups of

two spaces X and Y connected by a continuous map from Y to X. This exploration led to the

introduction of sheaves, which are local systems of coefficient groups, as well as the develop-

ment of sheaf cohomology and spectral sequences. Later, in his influential 1957 Tohoku paper

([13]), Grothendieck demonstrated that the category of sheaves of abelian groups on a topolog-

ical space forms an abelian category with enough injectives. This allowed for the definition of

the cohomology groups of sheaves on a space X as the right derived functors of the functor that

assigns to each sheaf its abelian group of global sections, which is a left exact functor.

To develop homological algebra, S. Mac Lane and S. Eilenberg introduced category theory,

focusing on natural transformations and functors. In this framework, Grothendieck and Serre’s

school reformulated algebraic geometry using the language of category theory, commutative

algebra, sheaf theory, and its cohomology. They introduced the concept of schemes in place of

algebraic varieties, allowing classical algebraic geometry to be expressed through schemes.

One key advantage of schemes is that they do not require a priori embedding in affine or

projective spaces; they can be realized geometrically with coordinates in any field or ring. This

flexibility means that base change is a natural operation for schemes. Additionally, schemes are

topological spaces equipped with sheaves, enabling the use of sheaf cohomology as a powerful

tool in the study of their properties.

However, this foundation proved inadequate for certain situations, such as establishing a co-

homology theory necessary for the Weil conjectures. The Zariski topology is quite coarse, leading

to the result that for any irreducible topological space X, the cohomology group Hn(X, F) = 0 for

all constant sheaves and all n > 0. A revolutionary solution to this problem was introduced by

the concept of a site or Grothendieck topology. This topology does not follow the usual sense of

topology; rather, it generalizes the notion of an open cover to arbitrary categories. For example,

in the étale topology, not only are open subschemes is considered open, but any étale morphism

U → X is also regarded as an open subset. This enriched perspective on the Zariski topology

allowed for the development of a more robust cohomological framework, effectively addressing

the requirements of the Weil conjectures.

The real spectrum emerged from the work of Coste and Coste-Roy in the early 1980s, as they

investigated the topos of real étale sheaves Sh(specAret) for a commutative ring with unit A

([9]). Their motivating question was whether this topos is spatial; that is, whether there exists a

category of sheaves on some topological space that is equivalent to the category of sheaves on

the real étale site. The answer is affirmative, and the topological space that satisfies this condition

2
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is known as the real spectrum of A.

Later, Claus Scheiderer demonstrated that for any scheme X, the category of sheaves on the

real spectrum Xr is naturally equivalent to the category of sheaves on the real étale topology of

Et/X. This finding encouraged further exploration of the relationship between real étale topol-

ogy and étale topology. While neither topology was finer than the other, Scheiderer proposed a

comparison through an intermediate topology b, defined as the intersection of both topologies.

This approach proved successful, as the category of sheaves on b is equivalent to the glued cate-

gory of Sh(Xet) and Sh(Xret). Scheiderer utilized this result to uncover the deep connections that

exist between the étale site of a scheme X and the orderings of the residue fields of X.

This work aims to study various Grothendieck topologies on the category of étale morphisms

into a scheme X such as étale topology and real étale topology. In this thesis, a ring refers to a

commutative ring with 1. We assume that the reader possesses a solid understanding of com-

mutative algebra, category theory, and algebraic geometry. In the first chapter, we will summa-

rize the fundamental notions and results that will be referenced throughout the thesis, without

delving into extensive details on these subjects, due to the limited time available to address the

”unbounded” mathematical world. The second chapter focuses on the main object of the thesis,

the étale site, where we define the étale topology and provide some classical examples of étale

sheaves. The third chapter offers a brief overview of real algebraic geometry, covering topics

such as real closed fields, the real Nullstellensatz, real valuation rings, and the real spectrum.

In chapter four, we present the specialization in the real spectrum of schemes, which serves as

an important tool for our next discussion, the reader may skip this chapter if they are willing

to accept the ultimate results presented in later sections. In chapter five, we introduce another

Grothendieck topology, the real étale site Xret, and prove that the real étale topos, the category

of sheaves on this site, is spatial. Chapter six explores the ”gluing” of the étale topos and the

real étale topos, a concept utilized by Claus Scheiderer in his work on real and étale cohomology.

Finally, in the last chapter, we discuss the relationship between Galois cohomology and étale

cohomology on a spectrum of fields, as well as the interplay among real points, orderings, and

cohomological dimensions.

3
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Chapter 1

Prerequisites

We summarize the fundamental notions and results that will be referenced throughout the thesis,

without delving into extensive details on these subjects. We will recommend some valuable

references at the beginning of each section for those who want to gain a deeper understanding

of these subjects.

1.1 Algebraic Geometry

In this section, we will not delve into the details of classical algebraic geometry; instead, we

will cover only the basic concepts necessary to introduce modern algebraic geometry. The main

references for this part are [15] (for classic algebraic geometry), [14], [29], and [17].

Definition 1.1.1. Let k be a field.

i - If S ⊆ k[X1, ..., Xn], then we define

V(S) := {x ∈ An
K : p(x) = 0, ∀p ∈ S}

ii - If Y ⊆ An
K, then we define

I(Y) = { f ∈ k[X1, ..., Xn] : f (x) = 0, ∀x ∈ Y}

iii - A subset X ⊆ An
K is an algebraic set in An if there exists S ⊆ k[X1, ..., Xn] such that X = V(S).

Lemma 1.1.2. i - If X ⊆ An
K, then I(X) is a radical ideal.

ii - If I, J ⊆ k[X1, ..., Xn] are two subsets such that I ⊆ J, then V(J) ⊆ V(I).

iii - If X and Y are algebraic sets such that X ⊆ Y ⊆ An, then I(Y) ⊆ I(X).

5
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iv - If X is an algebraic set, then X = V(I(X)).

v - If X, Y ⊆ An
K are algebraic sets, then X ∪Y = V(I(X) ∩ I(Y)) and X ∩Y = V(I(X) + I(Y)).

vi - ∅ and An
K are algebraic sets.

Using the last two items, we can define a closed topology on An
K, known as the Zariski topol-

ogy, in which the closed subsets are algebraic sets.

Definition 1.1.3. Let V ⊆ An
K be an algebraic set,

• V is said to be reducible if and only if there exists two closed subsets V1, V2 ⊊ V in subspace

topology (induced by Zariski topology) such that V1 ∪V2 = V.

• V is said to be irreducible if it is not reducible.

This definition is a specific case of an irreducible topological space.

Theorem 1.1.4 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field, and let A = k[X1, ..., Xn],

then,

a - An algebraic set X ⊆ An
K is irreducible if and only if I(X) is a prime ideal. (It is not necessary to

assume that the field is algebraically closed.)

b - m ⊆ A is a maximal ideal if and only if m is of the form

m = (X1 − a1, ..., Xn − an) = I(P)

for some P = (a1, ..., an) ∈ An
K.

c - If J ⊊ A ideal, then V(J) ̸= ∅.

d - If J ⊊ A ideal, then

I(V(J)) =
√

J

.

Proof. the proof of item a) can be found in Proposition 1.8 of [15], and b), c), and d) in Theorem

1.15 of [15].

Corollary 1.1.5. Let k be an algebraically closed field, and let A = k[X1, ..., Xn]. The maps V :

{ideals o f A} → {subsets o f An
k}, I : {subsets o f An

k} → {ideals o f A} induce the bijective

functions between

6
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• {algebraic sets in An
k} and {radical ideals o f A};

• {irreducible algebraic sets in An
k} and {prime ideals o f A};

• {points in An
k} and {maximal ideals o f A}.

Definition 1.1.6. A polynomial function on an algebraic set V ⊆ An
k is a map f : V → k such that

there exists a polynomial p ∈ k[X1, ..., Xn] with f (x) = p(x) for all x ∈ V.

Definition 1.1.7. Let V ⊆ be an algebraic set. The coordinate ring of V is defined by

k[V] := k[X1, ..., Xn]/I(V).

Since for any p and q ∈ k[X1, ..., Xn] we have

p|V = q|V ⇐⇒ (p− q)|V = 0 ⇐⇒ p− q ∈ I(V).

For this reason, the coordinate ring of V can be identified as

k[V] = { f : f : V → k is a polynomial function}

Let Irr(k) be a category whose objects are affine varieties in kn, for some n. For any affine varieties

X ⊆ kn, Y ⊆ km, a morphism ϕ : X → Y is a map that can be expressed by polynomials

in the coordinate, i.e., there exist polynomials f1, ..., fm ∈ k[X1, ..., Xn] such that for each point

(a1, ..., an) ∈ X,

ϕ(a1, ..., an) = ( f1(a1, ..., an), ..., fm(a1, ..., an))

(this map is also called a polynomial map).

Now, let f : X → Y be a morphism between affine varieties. For g ∈ k[Y] we define f ∗(g) :=

g ◦ f . Since g is a polynomial function. Thus we have a map between k-algebras

f ∗ : k[Y] −→ k[X]

g 7−→ f ∗(g) = g ◦ f .

Moreover, this map is a homomorphism of the k-algebra, since

f ∗(g1 + g2) = (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f = f ∗(g1) + f ∗(g2),

f ∗(g1 · g2) = (g1 · g2) ◦ f = (g1 ◦ f ) · (g2 ◦ f ) = f ∗(g1) · f ∗(g2)

7



1.1. ALGEBRAIC GEOMETRY CHAPTER 1. PREREQUISITES

and for any constant c ∈ k, it is clear that f ∗(c) = c.

Since

(g ◦ f )∗(h) = h ◦ (g ◦ f ) = (h ◦ g) ◦ f = g∗(h) ◦ f = f ∗(g∗(h)),

and since

(idX)
∗( f ) = f ◦ idV = f = idk[X],

the map

V 7−→ k[V]

f : V →W 7−→ f ∗ : k[W]→ k[V]

defines a contravariant functor between category Irr(k) and the category of finitely generated

k-algebras which are integral domains. In addition,

Theorem 1.1.8. The functor above is a contravariant equivalences of categories.

Therefore, to study algebraic sets, it is sufficient to focus on the prime ideals of associated

polynomial rings.

Since concepts such as singularity, normality, and projective algebraic sets will not be used in

our work, we will not introduce them here.

Now, we will review some basic notions of sheaves on topological spaces, which will be used

to define schemes, a generalization of algebraic varieties.

For any topological space X, we define a category O(X), whose objects are the open subsets of

X, and the only morphisms are the inclusion maps.

Definition 1.1.9. Let X be a topological space. A presheaf F of sets (resp. rings, abelian groups, groups,

etc.) in X is a contravariant functor F : O(X)→ Set.

If F is a presheaf on X, the set F(U) is called the sections of the presheaf F on the open set

U, and sometimes we use the notation Γ(U, F) instead of F(U). We call the maps F(V ↪→ U) by

restriction maps, and we sometimes use s|V instead of F(V ↪→ U)(s), for s ∈ F(U).

Definition 1.1.10. A presheaf F on a topological space X is a sheaf if it satisfies the following axioms:

1. If U is an open subset of X, if {Ui}i∈I is an open covering of U, and if s, s′ ∈ F(U) is an element

such that s|Ui = s′|Ui for all i ∈ I, then s = s′.

2. If U is an open set, if {Ui}i∈I is an open covering of U, and if we have elements si ∈ F(Ui) for each

8
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i ∈ I such that for every i, j ∈ I, the equality

si|Ui∩Uj = sj|Uj∩Ui

holds, then there is an element s ∈ F(U) such that s|Ui = si for every i ∈ I.

Example 1.1.11. Let V be an irreducible projective curve. Since V is a Riemann surface (see [22]),

holomorphic functions can be defined on any open subset of the topology that gives V its Riemann surface

structure. The functor given by

H : O(V) −→ Set

U 7−→ {holomorphic function on U}

is a sheaf on V. Moreover, since V is compact, the maximum modulus theorem implies that H(V) ∼= C

(see Theorem 1.37 of [22]).

Example 1.1.12. Let V ⊆ Cn be an algebraic set equipped with Zariski topology, the functor given by

O : O(V) −→ Ring

U 7−→ { p
q

: p, q ∈ C[V], q(x) ̸= 0 ∀x ∈ U}

is a sheaf on V. This sheaf is know as structure sheaf of V or regular function sheaf, This name reflects its

role in capturing the local properties of algebraic set V, such as dimension and singularity.

If V is an irreducible projective curve, we have O(V) ∼= C (see Theorem 2.35 of [15]) which coincides

withH(V).

Now, we will introduce the germ of the sections of a presheaf at some point.

Definition 1.1.13. If F is a presheaf on X, and x is a point of X, we define the fiber (stalk) Fx of F at x

to be the direct (injective) limit

lim−→
U∈O(X)

x∈U

F(U).

Definition 1.1.14. A morphism of sheaves (presheaves) is a natural transformation between con-

travariant functors. So, an isomorphism of sheaves (presheaves) is a morphism ϕ : F → G which has

two-side inverse, i.e., exists a morphism of sheaves ψ : G → F such that ϕ ◦ ψ = idG and ψ ◦ ϕ = idF.

Proposition 1.1.15. Let ϕ : F → G be a morphism of sheaves on a topological space X. Then ϕ is an

isomomorphism if and only if the induced map on the fiber ϕp : Fp → Gp is an isomorphism (which

depends on the type of sheaves) for every P ∈ X.

9
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Proof. See Proposition 1.1, II of [14]

Given a presheaf F on a topological space X, we can construct the sheaf F# as follows. For any

open set U, let F#(U) be the set of functions s : U → ⋃
x∈U Fx such that

• For any x ∈ U, s(x) ∈ Fx;

• For any x ∈ U, there is a neighborhood V of x, contained in U, and an element t ∈ F(V),

such that for every y ∈ V, the germ ty of t at y coincides with s(y).

The sheaf F# is called the sheaf associated to the presheaf F. This construction define a functor

( )# : F 7→ F# from the category of presheaves X to the category of sheaves on X, called

sheafification. Moreover, the sheafification is the left adjoint functor of inclusion functor from

category of sheaves on X to the category of presheaves on X.

Definition 1.1.16. Let f : X → Y be a continuous map of topological spaces. Given a sheaf F on X, we

define the direct image sheaf f∗F on Y by ( f∗F)(V) = F( f−1(V)) for every open subset V ⊆ Y. Given

a sheaf G on Y, we define the inverse image sheaf f ∗G on X by the sheaf associated to the presheaf

U 7→ lim←−
V∈O(Y)
V⊇ f (U)

G(V)

for every open subset U ⊃ X.

Both constructions define functors and, moreover, form an adjoint pair.

Definition 1.1.17. Let X be a topological space, and let Z be a subspace of X (i.e., a subset equipped with

induced topology). Let i : Z ↪→ X be the inclusion map. Given a sheaf F on X, we define the restriction

of F to Z by i∗F, we often denote it by F|Z.

Hilbert-Nullstellensatz theorem established bijective correspondence between prime ideals

and irreducible algebraic sets, so instead of working on algebraic sets, we can study Zariski

spectrum Spec. Let’s define a topology on its spectrum.

Definition 1.1.18. Let A be a ring, and let a ⊆ A be an ideal, we define the subset V(a) ⊆ SpecA to be

the set of all prime ideals of A that contain a.

Lemma 1.1.19. Let A be a ring,

a - If a and b are two ideals of A, then V(ab) = V(a) ∪V(b).

b - If {ai} is a family of ideals of A, then V(∑ ai) =
⋂

V(ai).

10
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c - If a and b are two ideals of A, V(a) ⊆ V(b) if and only if
√

b ⊆
√

a

This lemma allows us to define a closed topology on Spec A in which the closed subsets are of

the form V(a). We observe that this topology ”coincides” with the Zariski topology on algebraic

set (in a certain sense), for this reason, this topology is also called Zariski’s Topology.

For any element f ∈ A, we denote by D( f ) the open complement of V(( f )). One can easily

show that open subsets of the form D( f ) form a base for the topology of Spec A.

Now, let us define a ring sheaf (sheaf whose codomain is the category Ring) O on SpecA

that is an analogue to the regular function sheaf. For each prime ideal p ⊆ A, let Ap be the

localization of A in p. For an open U ⊆ Spec A, we define O(U) to be the set of functions

s : U → ⨿p∈U Ap =
⋃

p∈U{(x, Ap) : x ∈ Ap}, such that s(p) ∈ Ap for each p, and each p, there

exists a neighborhood V of p that is contained in U, and elements a, f ∈ A, such that for each

q ∈ V, f /∈ q, and s(q) = a/ f in Aq.

Of course, the sums and products of functions fromO(U) are functions fromO(U), and iden-

tity always is in each Ap. Therefore, O(U) is a commutative ring with unity. If V ⊆ U are two

open rings, the natural restriction map O(U) → O(V) is a ring homomorphism, which shows

that O is a presheaf. Finally, the last condition of the definition of O guarantees that it is a sheaf.

This sheaf is called a spectrum or structure sheaf on Spec A.

Proposition 1.1.20. Let A be a ring, and let O be a spectrum sheaf on Spec A

1. For all p ∈ Spec A, the stalk Op is isomorphic to the local ring Ap

2. O(Spec A) ∼= A.

Proof. See Proposition 3.1, 3.2 of [17].

It is well known that the localization k[V]p of a coordinate ring k[V] provides local information

about the associated algebraic set. For example, the tangent space can be defined as the dual

space of k-module mx/m2
x, where mx is the maximal ideal of the localization k[V] by the prime

ideal p := { f ∈ k[V] : f (x) = 0}. This proposition ensures that we can study the local properties

of an algebraic set through Spec k[V], as well as its topological properties.

A natural way to approach geometry is to study additional structures on a topology. For

example, Riemann surfaces and the holomorphic functions defined on them.

Definition 1.1.21. A ringed space is a pair (X,OX), where X is a topological space and OX is a ring

sheaf on X. A ringed space morphism from (X,OX) to (Y,OY) is a pair ( f , f ♯) of a continuous function

f : X → Y and a natural transformation f ♯ : OY → f∗O = OX ◦ f−1.

11
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A ringed space (X,OX) is a locally ringed space if and only if for every point x ∈ X, the stalk OX,x

is a local ring. A morphism of locally ringed spaces is a ringed space morphism ( f , f ♯) such that for every

point x ∈ X, f ♯x : OY, f (x) → OX,x is a local ring homomorphism.

A locally ringed space isomorphism is a morphism whose components are invertible, i.e., f is a homeo-

morphism and f ♯ is a natural isomorphism.

The following result motivates the definition of a scheme.

Theorem 1.1.22. 1. If A is a ring, then (Spec(A),O) is a locally ringed space.

2. If ϕ : A→ B is a ring homomorphism, then ϕ induces a locally ringed space morphism

( f , f ♯) : (Spec B,OSpec B)→ (Spec A,OSpec A).

3. If A and B are rings, then any locally ringed space morphism from Spec B to Spec A is induced by

a ring homomorphism ϕ : A→ B in (2).

Proof. See Proposition 3.14, 2 of [17].

Definition 1.1.23. An affine scheme is a locally ringed space that is isomorphic to (Spec A,O) for some

ring A. A scheme is a locally ringed space (X,OX) such that for every point it has an open neighborhood

U ⊆ X such that (U,OX|U) is an affine scheme. A morphism of schemes is a morphism of a locally ringed

space, analogously to isomorphism. We called X the underlying topological space of scheme (X,OX), and

OX its structure sheaf.

There are some well-known facts about schemes.

Proposition 1.1.24. Let (X,OX) be a scheme, and let U ⊆ X be any open subset, then (U,OX|U) is a

scheme.

Proof. See 3.9, 2 of [17].

Lemma 1.1.25. Let X, Y be two schemes. We suppose given an open covering {Ui}i∈I of Y and the

morphism fi : Y → X of schemes such that fi|Ui∩Uj = f j|Ui∩Uj for every i, j ∈ I. Then there exists a

unique morphism f : Y → X such that f |Ui = fi.

Proposition 1.1.26. If Y is an affine scheme, then for any scheme X, the canonical map

ρX,Y : homSch(X, Y) −→ homCRings(OY(Y),OX(X))

( f , f #) 7−→ f #(Y) : OY(Y)→ f∗OX(Y) = OX(X)

12
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is a bijection and ”functorial” in X in the sense that for any morphism of schemes h : Z → X, we have

ρZ,Y ◦ homSch(h, Y) = homCRings(OY(Y), g#(X)) ◦ ρX,Y

Proof. See Proposition 3.25, 2 of [17].

Now, we will define some special schemes.

Definition 1.1.27. 1. A scheme X is quasi-compact or compact if its underlying topological space

is quasi-compact.

2. A scheme X is connected if its underlying topological space is connected.

3. A scheme X is irreducible if its underlying topological space is irreducible.

4. A scheme X is reduced if for every open subset U, the ring OX(U) is reduced, i.e., no nilpotent

elements.

5. A scheme X is integral if for every open subset U, the ring OX(U) is an integral domain.

6. A scheme X is locally noetherian if it has an open cover by affine subschemes (Spec Ai)i∈I , where

each Ai is a noetherian ring.

7. A scheme X is noetherian if it is locally noetherian and quasi-compact (compact but not necessarily

Hausdorff space). Equivalently, X is noetherian if it can be covered by a finite number of open affine

subsets Spec Ai with Ai noetherian.

Proposition 1.1.28. Every affine scheme is quasi-compact.

Proof. Let X = Spec A be an affine scheme, and let {D( f )} f∈F be a covering of X consisting of

basic open set. Then,

X =
⋃
f∈F

D( f ) =
⋃
f∈F

X \V(( f )) = X \
⋂
f∈F

V(( f )).

So,

∅ =
⋂
f∈F

V(( f )) = V(∑
f∈F

( f ))

which implies 1 ∈ ∑ f∈F( f ). From the definition of sum of the ideals, there are f1, ..., fn ∈ F and

a1, ..., an ∈ A such that

a1 f1 + ... + an fn = 1.

So, ∅ =
⋂

i=1,...,n V(( fi)), this says that X =
⋃

i=1,...,n D( fi).

Corollary 1.1.29. A scheme X is quasi-compact if and only if X is a finite union of open affine subscheme.

13
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Proof. If the scheme is quasi-compact then it is obviously a finite union of affine schemes. If X is

a finite union of open affine subschemes, then X is a finite union of open quasi-compact subsets,

and therefore, X is quasi-compact.

Proposition 1.1.30. A scheme X is locally noetherian if and only if for every open affine subscheme

U = Spec A, A is a noetherian ring. In particular, an affine scheme X = Spec A is noetherian if and

only if A is a noetherian ring.

Proof. See 3.46, 2 of [17].

The Grothendieck’s relative point of view is that much of algebraic geometry should be devel-

oped for a morphism of schemes Y → X, i.e., we are more interested in properties of Y relative

to X rather than the internal geometry of Y.

Definition 1.1.31. Let X be a fixed scheme. A scheme over X or X-Scheme is a scheme Y, together with

a morphism of schemes fY : Y → X. If Y and Z are X-schemes, a morphism of Y to Z is a morphism of

scheme g : Y → Z such that fZ ◦ g = fY. We will denote the category of all X-schemes by Sch(X).

In the language of the schemes, a variety is defined in the following way.

Definition 1.1.32. Let k be a field. An affine variety over k is the affine scheme isomorphic to the

(Spec A, O) for some finitely generated algebra A over k. An algebraic variety is a k-scheme X such

that there exists a finite covering {U1, ..., Un}, where each Ui is an affine open subscheme that is an affine

varieties over k.

The following result shows that the notion of a scheme and an algebraic variety generalize the

notion of ”variety” in classical sense.

Proposition 1.1.33. Let k be an algebraically closed field. And let V be an algebraic set over k. The

topological space is homeomorphic to the set of closed points of underlying topological space of Spec k[V],

and its sheaf of regular functions is obtained by restricting the structure sheaf of Spec k[V] via this

homeomorphism.

Proof. See Proposition 2.6, II of [14]. In this reference, Hartshorne has established this result for

arbitrary varieties in the classical sense, including projective and quasi-affine varieties.

Here is a powerful lemma used in many results of scheme theory

Lemma 1.1.34. Let S be a scheme. Let {Xi}i∈I be a family of S-schemes. For each i ̸= j, suppose given an

open subscheme Uij ⊆ Xi. Suppose also given for each i ̸= j an isomorphism of S-schemes fij : Xij → Xji

such that

14
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1. fii = idXi ;

2. fij(Xij ∩ Xik) = Xji ∩ Xjk;

3. fik = f jk ◦ fij on Xij → Xik.

Then there exists an S-scheme X, unique up to isomorphism, with open immersions (of S-schemes) gi :

Xi → X such that gi = gj ◦ fij on Xij, and that X =
⋃

i∈I gi(Xi).

Proof. See Lemma 3.33, 2 of [17]

We will now introduce the concept of a point in the context of schemes.

Notation 1.1.35. Let π1 : Y → X and π2 : Z → X be two X-schemes, the set of X-morphism between

them, homX(Z, Y), is also denoted by Y(Z) provided there is no confusion (if Z = Spec A, is denoted by

Y(A) as well).

Definition 1.1.36. Let π : Y → X be an X-scheme. A section of X is a morphism of X-schemes

s : X → Y such that π ◦ s = idX. The set of all sections of Y is exactly the set homX(X, Y) = Y(X) (here

X represents idX : X → X).

Example 1.1.37. Let X be a scheme over a field k. Then we can identify X(k) with the set of points x ∈ X

such that κ(x) = k: Let s ∈ X(k) be a section, and let x be the image of the point of Spec k. Then the

homomorphism s#
x induces a homomorphism of fields κ(x) → k. Since κ(x) is a k-algebra, κ(x) = k.

Conversely, if κ(x) = k, then there exists a unique section Spec k→ X (the composition of the canonical

morphism Spec OX,x → X and morphism induced by OX,x → κ(x)) whose image is x.

This motivates the following definition:

Definition 1.1.38. Let X be a scheme over a field k. And let k′ be any field extension of k. The points of

X(k′) is called k-rational points or k-valued points of X (here k′ represents k→ k′).

Remark 1.1.39. The assumption that k′ is a field extension of k arises from the fact that the k-scheme

Spec k′ → Spec k corresponds to a field homomorphism k→ k′, which is always injective. This injectivity

holds because the unique prime ideal of a field is 0, implying that the kernel of a field homomorphism must

be 0.

As mentioned above, if k′ = k, then Y(k) is the set of points x ∈ X such that κ(x) = k

There are some special morphisms of schemes

Definition 1.1.40. A morphism f : Y → X of schemes is quasi-compact if X can be covered by open

affine subschemes Vi such that the pre-images f−1(Vi) are quasi-compact.

15
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Proposition 1.1.41. If f : Y → X is a morphism of affine schemes, then f is quasi-compact.

Proof. f−1(X) = Y is quasi-compact, since Y is an affine scheme.

Definition 1.1.42. A homomorphism ϕ : A → B is of finite type if B is a finitely generated (or finite

type) A-algebra, i.e., B is isomorphic to A[x1, ..., xn]/I for some n and some ideal I ⊆ A[x1, ..., xn].

Definition 1.1.43. 1. A morphism f : Y → X of schemes is of finite type at y ∈ Y if there exists an

affine open neighborhood U = Spec B ⊆ Y of y and an affine open subscheme V = Spec A ⊆ X

with f (U) ⊆ V such that the induced ring homomorphism A→ B is of finite type.

2. A morphism f : Y → X of schemes is locally of finite type if it is of finite type at every point

of Y. Equivalently, f is locally finite type if X has an open covering by affine subschemes Vi =

Spec Ai such that for each i, f−1(Vi) =
⋃

j∈J Ui,j is covered by open affine subschemes of Y, and

the restriction of f to Ui,j induces a finite type ring homomorphism Ai → Bi,j.

3. A morphism f : Y → X of schemes is of finite type if f is locally of finite presentation and quasi-

compact. Equivalently, f is finite type if X has an open covering by affine subschemes Vi = Spec Ai

such that for each i, f−1(Vi) =
⋃

j∈J Ui,j is covered by finitely many open affine subschemes of Y,

and the restriction of f to Ui,j induces a finite type ring homomorphism Ai → Bi,j. In this case, we

say X is of finite type over Y

Definition 1.1.44. The morphism f : Y → X is finite if X can be covered by affine open schemes Spec Ai

such that each f−1(Spec Ai) = Spec Bi ⊆ Y is affine, and Bi is a finitely generated Ai-module. In this

case, we say X is finite over Y.

Definition 1.1.45. A homomorphism ϕ : A → B is of finite presentation if B is isomorphic to

A[x1, ..., xn]/( f1, ..., fm) as a finite type A-algebra for some n, m and some polynomials fi.

Definition 1.1.46. 1. A morphism f : Y → X of schemes is of finite presentation at y ∈ Y if

there exists an affine open neighborhood U = Spec B ⊆ Y of y and an affine open subscheme

V = Spec A ⊆ X with f (U) ⊆ V such that the induced ring homomorphism A → B is of finite

presentation.

2. A morphism f : Y → X of schemes is locally of finite presentation if it is of finite presentation

at every point of Y. Equivalently, f is locally finite presented if X has an open cover by affine

subschemes Vi = Spec Ai such that for each i, f−1(Vi) =
⋃

j∈J Ui,j is covered by open affine

subschemes of Y, and the restriction of f to Ui,j induces a finite presented ring homomorphism

Ai → Bi,j.
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Definition 1.1.47. An open subscheme of a scheme (X,OX) is a scheme (U,O|U) where U is an open

subspace of X, and O|U is the restriction of the structure sheaf of X. An open immersion is a morphism

f : X → Y which induces an isomorphism of X with an open subscheme of Y.

Definition 1.1.48. A closed immersion is a morphism f : Y → X of schemes such that f induces a

homeomorphism of Y onto a closed subset of X, and furthermore the map f # : OX → f∗OY of sheaves on

X is surjective. A closed subscheme of a scheme X is an equivalence class of closed immersions, where

we say f : Y → X and f ′ : Z → X are equivalent if and only if there is an isomorphism i : Y → Z such

that f = f ′ ◦ i.

Since we have the concept of a base space, we also have the notion of a base change.

Definition 1.1.49. Let X be a scheme, and let (Y, Y → X) and (Z, Z → X) (in short, Y and Z) be

X-schemes. A fiber product or pullback of Y and Z over X, denoted Y ×X Z, to be a scheme, together

with morphisms p1 : Y×X Z → Y and p2 : Y×X Z → Z that satisfies the following property:

1. The diagram

Y×X Z Z

Y X

p2

p1

is commutative;

2. For any scheme W, and for any morphisms f : W → Y and g : W → Z which makes a commutative

diagram

W Z

Y X,

g

f

there exists a unique morphism θ : W → Y×X Z such that f = p1 ◦ θ and g = p2 ◦ θ.

The morphisms p1 and p2 are called the projection morphisms of the fiber product onto its factors.

Theorem 1.1.50. For any X-schemes Y and Z, the fiber product Y ×X Z exists, and is unique up to

isomorphism.

Proof. The uniqueness can easily be deduced from the universal property of a pullback in a

general category. For existence, the idea is first to construct products for affine schemes and

the glue. Let us note that if (Y ×X Z) exists, ,then for any open subscheme U of Y, the fiber

product of U and Y also exists. It suffices for this to take U ×X Z := p−1
1 (U), and the projection

17
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morphism can be taken the restrictions of p1 and p2 to the open subset p−1(U). furthermore,

given the symmetry of the definition, if (Y ×X Z, p1, p2) exists, then (Z×X Y, p2, p1) is the fiber

product of Z and Y.

• Let us first suppose that X = Spec A, Y = Spec B and Z = Spec Z are affine schemes.

Set W = Spec(B ⊗A C) and p (resp. q) be the morphism corresponding to the canonical

homomorphism B→ B⊗A C with b 7→ b⊗ 1 (resp. C → B⊗A C with c 7→ 1⊗ c). Since the

tensor product of rings is pushout and Spec is a contravariant equivalence of categories,

(W, p, q) is the fiber product of Y and Z over X.

• Let us now suppose X and Z are affine schemes, and Y arbitrary. Let {Yi}i∈I be a covering

of Y by affine open subschemes. From the first case, the fiber product (Yi ×X Z, pi, qi)

exists for every i ∈ I. For any pair i, j, the pre-image p−1
i (Yi ∩ Yj) and p−1

j (Yi ∩ Yj) are

canonically isomorphic to (Yi ∩ Yj) ×X Z, which gives an isomorphism of fiber products

fij : p−1
i (Yi ∩Yj)→ p−1

j (Yi ∩Yj). From the uniqueness of the isomorphism of fiber products

p−1
i (Yi ∩ Yj ∩ Yk) ×X Z ∼= p−1

k (Yi ∩ Yj ∩ Yk) ×X Z, we have fik = f jk ◦ fij. Then, we can

glue the X-schemes Yi ×X Z to an X-scheme W by Lemma 1.1.34. As each Yi ×X Z can

be considered as a Y-scheme and a Z-scheme via the projection morphisms, and as the fij

are compatible with the structures of Y-schemes and of Z-schemes, we obtain projection

morphisms p : W → X, q : W → Y by gluing. Then (W, p, q) is the fiber product of Y and

Z over X.

• Let us now suppose X is affine, and Y, Z arbitrary. We cover Z by affine open subscheme

Zi. Then the fiber products of Y and Zi exist by symmetry of the fiber product. By gluing

the Y×X Zi as above, we obtain the existence of the fiber product.

• Let us suppose that X, Y and Z are arbitrary schemes. Let {Xi}i∈I be an affine open

covering of X. Let f : Y → X and g : Z → X be the structural morphisms, Yi := f−1(Xi),

and Zi := g−1(Xi). Note that any Xi- scheme is an X-schemes in a natural way. It follows,

the fiber product of Yi and Zi over Xi is also their fiber product over S. Thus, repeats the

same argument, the fiber product (Y×X Z, p, q) exists.

An important application of fiber products is to the notion of base change. Let X be a fixed

scheme, and let Y → X and Y′ → X be morphism of schemes. Then there is a pullback X′ =

Y ×X Y′ and two projection morphisms p1 : Y ×X Y′ → Y and p2 : Y ×X Y′ → Y. We say that

p1 : Y×X Y′ → Y is the base change of the morphism Y′ → X via the morphism Y → X.
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Definition 1.1.51. Let f : Y → X be a morphism of schemes. The diagonal morphism is a morphism

∆ : Y → Y ×X Y whose composition with both projection maps p1, p2 : Y ×X Y → Y is the identity

map of Y, i.e., p1 ◦ ∆ = p2 ◦ ∆ = idY. By universal property of fiber product, the diagonal morphism is

unique.

Definition 1.1.52. A morphism of schemes f : Y → X is separated if its diagonal morphism ∆ is a

closed immersion. In this case, we say X is separated over Y.

Proposition 1.1.53. If f : Y → X is a morphism of affine schemes, then f is separated.

Proof. Let Y = Spec A, X = Spec B. Then A is a B-algebra, and Y ×X Y = Spec A⊗B A is also

affine. The diagonal morphism ∆ is induced by diagonal homomorphism

A⊗B A −→ A

a⊗ a′ 7−→ aa′.

This is a surjective homomorphism of rings, since a⊗ 1 7→ a. Hence ∆ is a closed immersion.

Definition 1.1.54. A morphism f : Y → X of schemes is quasi-separated if the diagonal map ∆ : Y →

Y×X Y is quasi-compact.

Quasi-separated morphisms were introduced by Grothendieck and Dieudonné as a general-

ization of separated morphisms.

Proposition 1.1.55. A closed immersion is quasi-compact.

Proof. Let f : Y → X be a closed immersion, and let {Vi}i∈I be an open covering by affine

subschemes. Since f (Y) ∩ Vi is a closed subset of Vi and Vi is quasi-compact (by Proposition

1.1.28), f (Y) ∩Vi is quasi-compact. Because of f : Y → f (Y) is a homeomorphism, we have that

f−1(Vi) = f−1(Vi ∩ f (Y)) is quasi-compact as desired.

Corollary 1.1.56. A separated morphism of schemes is quasi-separated.

Definition 1.1.57. A morphism f : Y → X of schemes is of finite presentation if f is locally finite

presentation, quasi-compact, and quasi-separated.

Definition 1.1.58. 1. A morphism f : Y → X is universally closed if it is closed, and for any

morphism Y′ → X, the corresponding morphism f ′ : Y ×X Y′ → Y′ obtained by base change is

also closed.

2. A morphism f : Y → X is proper if it is separated, of finite type, and universally closed.
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We summarize some immediate observations of these morphisms.

Remark 1.1.59. Let f : Y → X be a morphism of schemes.

1. If X and Y are affine schemes, then f is separated, quasi-compact.

2. If f is finite, then f is of finite-type.

3. If f is of finite presentation at some point y ∈ Y, then f is of finite-type at y.

4. If X is locally noetherian, then f is of finite presentation at y ∈ Y if and only if f is of finite

presentation at y.

5. If f is separated, then f is quasi-separated.

We will not present the projective scheme or other fundamental concepts of algebraic geome-

try, such as normality and singularity.
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1.2 Abelian Category

In this section, we introduce the fundamental concepts of abelian categories, with the main ref-

erences being [4], [35], and [32].

Definition 1.2.1. A pre-additive category is a category C together with an abelian group structure on

each set homC(A, B) of morphisms such that the composition maps

◦ : homC(A, B)× homC(B, C) −→ homC(A, C)

( f , g) 7−→ g ◦ f

are group homomorphism for all objects A, B, C ∈ C.

Definition 1.2.2. Given two objects A, B in a pre-additive category A, a biproduct of A and B is a

quintuple (P, pA, pB, sA, sB) such that

1. P is an object in A;

2. pA : P→ A, pB : P→ B, sA : A→ P and sB : B→ P are morphisms in A;

3. pA ◦ sA = idA, pB ◦ sB = idB, pA ◦ sB = 0, and pB ◦ sA = 0;

4. and sA ◦ pA + sB ◦ pB = idP.

The object P is written by A⊕ B in general.

Proposition 1.2.3. Let A be a pre-additive category, and let A, B be objects in A. Then, the following

statements hold

1. If (P, pA, pB, sA, sB) is a biproduct, then (P, pA, pB) is a product of A, B, and (P, sA, sB) is a

coproduct of A, B.

2. The biproduct of A, B exists, if and only if, the product (resp. coproduct) of A, B exists.

Proof. See Proposition 1.2.4 of [4].

Definition 1.2.4. A pre-additive category is additive if it has a zero object and every finite set of objects

has a biproduct.

Definition 1.2.5. A functor F : A → B between pre-additive categories is additive if it is a group

homomorphism on each hom-set in A.

Proposition 1.2.6. A functor between addtive categories is additive if and only if it preserves all biproduct

diagrams.
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Proof. See Proposition 1.3.4 of [4].

Definition 1.2.7. A category is abelian if it is additive and

1. it has all kernels and cokernels,

2. every monomorphism is the kernel of some morphism, and

3. every epimorphism is the cokernel of some morphism.

Theorem 1.2.8. A category A is abelian if and only if it is additive, if all kernels and cokernels exist, and

if the natural map Coim( f )→ Im( f ) is an isomorphism for all morphisms f ∈ A.

This means that the first isomorphism theorem holds in the abelian category.

Proposition 1.2.9. Let f : A→ B be a morphism in an abelian category, then

1. f is a monomorphism if and only if Ker( f ) = 0.

2. f is an epimorphism if and only if Coker( f ) = 0.

Proof. See Proposition 1.5.4 of [4].

Given all these properties, the notion of an exact sequence is well-defined in the abelian cate-

gory.

Definition 1.2.10. Let A be an abelian category. A sequence

...→ A−2
f−1−→ A−1

f0−→ A0
f1−→ A1

f2−→ A2 → ...

of A is said to be exact if Im ( fi) = Ker ( fi+1).

Definition 1.2.11. A short exact sequence is an exact sequence of the form

0→ A′
f−→ A

g−→ A′′ → 0

which means that the map f is a monomorphism, g is an epimorphism, and Ker (g) = Im ( f ).

Definition 1.2.12. A functor is said to be left-exact (resp. right-exact) if it preserves all finite limits

(resp. colimits).

This is the general definition of a left (right) exact functor. In the context of abelian categories,

the concepts of left and right exactness coincide with the standard definitions, which we will

state in the following proposition..
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Proposition 1.2.13. Let A and A′ be abelian categories, and let F : A → A′ be a covariant functor.

Then, F is

1. left-exact if and only if whenever

0→ A′
f−→ A

g−→ A′′ → 0

is exact then

0 −→ F(A′)
F( f )−−→ F(A)

F(g)−−→ F(A′′)

is exact;

2. right-exact if and only if whenever

0→ A′
f−→ A

g−→ A′′ → 0

is exact then

F(A′)
F( f )−−→ F(A)

F(g)−−→ F(A′′) −→ 0

is exact.

Proof. See Proposition 1.11.2 of [4].

Definition 1.2.14. A covariant functor between abelian categories is said to be exact if it is both left exact

and right exact.

The contravariant version is similar.

Proposition 1.2.15. Let A and A′ be abelian categories, and let G : A → A′ be a contravariant functor.

Then, G is

1. left-exact if and only if whenever

0→ A′
f−→ A

g−→ A′′ → 0

is exact then

0 −→ G(A′′)
G(g)−−→ G(A)

G( f )−−→ G(A′)

is exact;

2. right-exact if and only if whenever

0→ A′
f−→ A

g−→ A′′ → 0

23



1.2. ABELIAN CATEGORY CHAPTER 1. PREREQUISITES

is exact then

G(A′′)
G(g)−−→ G(A)

G( f )−−→ G(A′) −→ 0

is exact.

Remark 1.2.16. Let F : A → A′ be a functor between abelian categories. If F is either left or right exact,

then it preserves either the biproduct or the bicoproduct. Therefore, by Proposition 1.2.6, F is an additive

functor.

Now we will state the famous snake lemma without any proof.

Proposition 1.2.17. In an abelian category, If the following diagram is commutative,

A B C 0

0 A′ B′ C′

f

a

g

b c

f ′ g′

where 0 is the zero object. And if the rows are exact sequences, then there is an exact sequence relating the

kernels and cokernels of a, b, and c:

Ker a→ Ker b→ Ker c d−→ coker a→ coker b→ coker c

where d is a morphism, called connecting morphism.

Here, we present the cochain complex and its associated cohomology groups in the abelian

category.

Definition 1.2.18. • A cochain complex A∗ in an abelian category A is a sequence

A∗ : ...→ An−1 dn−1

−−→ An dn
−→ An+1 → ...

of A such that for each n ∈ Z, dn+1 ◦ dn = 0 for all n. So there is a factorization

An → Im (dn)→ Ker (dn+1)→ An+1.

• A morphism of cochain complexes f : A∗ → B∗ is a family of morphisms ( f n)n∈Z such that all

the diagrams

An An+1

Bn Bn+1

dn
A

f n f n+1

dn
B
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are commutative.

• The category of cochain complexes of an abelian category A is denoted by CoCh(A).

• A homotopy h between a pair of morphisms of cochain complexes f , g : A∗ → B∗ is a family of

morphisms (hn : An → Bn−1) such that

f n − gn = dn−1
B ◦ hn + hn+1 ◦ dn

A

An−1 An An+1

Bn−1 Bn Bn+1

dn−1
A dn

A

hn f ngn
hn+1

dn−1
B

dn
B

for all n, this diagram is not necessarily commutative. Two morphisms f , g : A∗ → B∗ are said to

be homotopic if a homotopy between f and g exists, and is denoted by f ∼ g.

• A morphism f : A∗ → B∗ of cochain complexes is a homotopy equivalence if there exists a

morphism g : B∗ → A∗ such that there exists a homotopy between f ◦ g and idB∗ , and there exists a

homotopy between g ◦ f and idA∗ . If there exists a homotopy equivalence between A∗ and B∗, then

we say that A∗ and B∗ are homotopy equivalent.

• For any n ∈ Z, the n-th cohomology group of a cochain complex A∗ is the quocient

Hn(A∗) =
Ker (dn)

Im (dn−1)
= Coker(Im (dn−1)→ Ker (dn)).

A morphism f : A∗ → B∗ induces functionally, for each n, a morphism Hn+1( f ) = f ∗,n+1 :

Hn+1(A∗) → Hn+1(B∗) of A (or simply f ∗) To show this, we see the following commutative

diagram

An Ker(coker(dn
A)) = Im(dn

A) An+1 Coker(dn
A)

Bn Ker(coker(dn
B)) = Im(dn

B) Bn+1 Coker(dn
B).

f n

im(dn
A) coker(dn

A)

f n+1

im(dn
B) coker(dn

B)

The definition of morphism of cochain complexes and the universal property of Coker(dn
A) pro-

vide a unique morphism µ : Coker(dn
A) → Coker(dn+1

B ) with µ ◦ coker(dn
A) = coker(dn

B) ◦ f n+1.

But then coker(dn
B) ◦ f n+1 ◦ im(dn

A) = µ ◦ coker(dn
A) ◦ im(dn

A) = 0, from the universal property

of Ker(coker(dn
B)), there exists a unique morphism ν : Ker(coker(dn

A)) → Ker(coker(dn
B)) with
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im(dn
B) ◦ ν = f n+1 ◦ im(dn

A). By the same argument, since

dn+1
B ◦ f n+1 ◦ ker(dn+1

A ) = f n+2 ◦ dn+1
A ◦ ker(dn+1

A ) = 0,

there is a unique morphism η : Ker(dn+1
A )→ Ker(dn+1

B ) with ker(dn+1
B ) ◦ η = f n+1 ◦ ker(dn+1

A ).

With all this, we obtain a diagram

An Im(dn
A) Ker(dn+1

A ) An+1

Bn Im(dn
B) Ker(dn+1

B ) Bn+1.

f n

ψ

ν

ker(dn+1
A )

η f n+1

ψ′ ker(dn+1
B )

We will prove that this diagram commutes, i.e., η ◦ ψ = ψ′ ◦ ν. Note that

ker(dn+1
B ) ◦ ψ′ ◦ ν = im(dn

B) ◦ ν = f n+1 ◦ im(dn
A) = f n+1 ◦ ker(dn+1

A ) ◦ ψ = ker(dn+1
B ) ◦ η ◦ ψ.

Since ker(dn+1
B ) is a monomorphism, we have ψ′ ◦ ν = η ◦ ψ. So, from the universal property

of the Coker(ψ), there is a unique f ∗,n+1 : Hn+1(A∗) = Coker(ψ) → Hn+1(B∗) = Coker(ψ′)

making the diagram

Im(dn
A) Ker(dn+1

A ) Coker(ψ)

Im(dn
B) Ker(dn+1

B ) Coker(ψ′)

ψ

ν

coker(ψ)

η f ∗

ψ′ coker(ψ′)

commute.

By the uniqueness, we have ( f ◦ g)∗,n = f ∗,n ◦ g∗,n, id∗,n = (idHn(A∗)), and ( f + g)∗,n = f ∗,n +

g∗,n. So Hn : CoCh(A)→ A is an additive covariant functor.

Proposition 1.2.19. If two morphisms f , g : A∗ → B∗ are homotopic, then

f ∗,n = g∗,n : Hn(A∗)→ Hn(B∗).

Proof. We will prove that ( f − g)∗,n = 0 for each n. From the previous construction, ( f − g)∗,n is
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induced by a commutative diagram

An−1 Im(dn−1
A ) Ker(dn

A) An

Bn−1 Im(dn−1
B ) Ker(dn

B) Bn.

( f−g)n−1

ψ

ν

ker(dn
A)

η ( f−g)n

ψ′ ker(dn
B)

Let h be a homotopy between f and g, by the definition, we have

π : = ( f − g)n ◦ ker(dn
A) = (hn+1 ◦ dn

A + dn−1
B ◦ hn) ◦ ker(dn

A)

= dn−1
B ◦ hn ◦ ker(dn

A) = ker(dn
B) ◦ ψ′ ◦ (coim(dn−1

B ) ◦ hn ◦ ker(dn
A)).

Let π′ := coim(dn−1
B ) ◦ hn ◦ ker(dn

A), so that π = ker(dn
B) ◦ ψ′ ◦ π′. On the other hand, π =

ker(dn
B) ◦ η, since ker(dn

B) is a monomorphism, we have η = ψ′ ◦ π′. Then we obtain

( f − g)∗,n ◦ coker(ψ) = coker(ψ′) ◦ η = coker(ψ′) ◦ ψ′ ◦ π′ = 0.

Since coker(ψ) is an epimorphism, we conclude that ( f − g)∗ = 0.

Corollary 1.2.20. If f : A∗ → B∗ is a homotopy equivalence, then f ∗,n is an isomorphism for every

n ∈ Z.

Proof. From the definition of homotopy equivalence, there is a morphism g : B∗ → A∗ of cochain

complexes such that f ◦ g ∼ idB∗ and g ◦ f ∼ idA∗ . By the previous proposition, we have f ∗,n ◦

g∗,n = ( f ◦ g)∗,n = (idHn(B∗)) and g∗,n ◦ f ∗,n = (g ◦ f )∗,n = (idHn(A∗)) as desired.

Proposition 1.2.21. 1. The category CoCh(A) is an abelian category.

2. A sequence of cochain complexes

0→ A∗
f−→ B∗

g−→ C∗ → 0

is exact if and only if

0→ An f n

−→ Bn gn

−→ Cn → 0

is exact for every n ∈ Z.

Proof. For item 1), see 1.2.3 of [35]. The item 2) follows from the definition of the morphism of

cochain complexes.
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Now, we will introduce the right exact functor and discuss some basic facts about it.

Definition 1.2.22. An object I in a category C is said to be injective if for every monomorphism g : X →

Y and every morphism g : X → I there exists a morphism h : Y → I (no need to be unique) extending g

to Y, i.e., the following diagram commutes

X Y

I.

f

g
h

Proposition 1.2.23. Let A be an abelian category. If

0→ I
f−→ B

g−→ C → 0

is an exact sequence in A such that I is injective, then the sequence splits, i.e., there is an isomorphism h

from B to the direct sum of I and C, such that h ◦ f is the natural injection of A into the direct sum, and

g ◦ h−1 is the natural projection of the direct sum onto C, so the sequence

0→ I
h◦ f−−→ I ⊕ C

g◦h−1

−−−→ C → 0

is exact.

Proof. From the properties of a short exact sequence, the morphism f is a monomorphism. By

the definition of an injective object, there is a r : B → I such that r ◦ f = idI . Now consider

morphism idB − f ◦ r : B→ B. We have

(idB − f ◦ r) ◦ f = f − f ◦ r ◦ f = f − f = 0,

which implies that there exists a unique morphism s : B → C such that s ◦ g = idB − f ◦ r, since

g = coker( f ). We have already f ◦ r + s ◦ g = idB, g ◦ f = 0, and r ◦ f = idI . We have also

g ◦ s ◦ g = g ◦ (idB − f ◦ r) = g− g ◦ f ◦ r = g = idC ◦ g,

hence g ◦ s = idC, since g is an epimorphism. Finally

r ◦ s ◦ g = r ◦ (idB − f ◦ r) = r− r ◦ f ◦ r = r− r = 0,

thus r ◦ s = 0, since g is an epimorphism. This concludes that the quintuple (B, r, g, f , s) is the
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biproduct of I and C.

Definition 1.2.24. An abelian category A is said to have sufficiently many injective objects if for

every object X ∈ A there exists a monomorphism from A into an injective object in A.

Example 1.2.25. The category Ab of abelian groups is an abelian category which has sufficiently many

injective objects.

Definition 1.2.26. LetA, A′ be two abelian categories. A covariant ∂-functor fromA toA′ is a system

F = (Fi)i≥0 of covariant exact functors

Fi : A → A′

together with a connecting morphism ∂ : Fi(A′′)→ Fi+1(A′) defined for each i ≥ 0 and each short exact

sequence 0→ A′ → A→ A′′ → 0 in A, satisfying the following properties:

1. For every commutative diagram with exact rows

0 A′ A A′′ 0

0 B′ B B′′ 0

in A, the diagram

Fi(A′′) Fi+1(A′)

Fi(B′′) Fi+1(B′)

∂

∂

is commutative for all i ≥ 0.

2. For every exact sequence

0→ A′ → A→ A′′ → 0

in A the long sequence

0→ F0(A′)→ F0(A→ F0(A′′)→ F1(A′)→ F1(A)→ ...

is exact in A′.

Definition 1.2.27. Let F = (Fi)i≥0 and F′ = (Fi)i≥0 be two ∂-functors from an abelian category A to
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another abelian category A′. A morphism from F to F′ is a system f = ( f i)i≥0 of functorial morphisms

f i : Fi → (F′)i

which satisfies the following property:

For any exact sequence

0→ A′ → A→ A′′ → 0

in A the diagram

Fi(A′′) Fi+1(A′)

(F′)i(A′′) (F′)i+1(A′)

f i(A′′) f i+1(A′)

commutes.

Definition 1.2.28. A ∂-functor F = (Fi)i≥0 from the abelian category A to the abelian category A′ is

called universal if each morphism f 0 : F0 → (F′)0 of functors has a unique extension to a morphism

f : F → F′ of ∂-functors.

Definition 1.2.29. An additive covariant functor F : A → A′ from an abelian category to an additive

category is called effaceable if for every object A ∈ A, there is a monomorphism m : A → M in A such

that F(m) = 0

Theorem 1.2.30. Let A be an abelian category with sufficiently many injective objects, then

1. A functor F : A → A′ is effaceable if and only if F(M) = 0 for all injective objects M ∈ A;

2. An exact ∂-functor F = (Fi) from A′ to an abelian category A′ is universal if and only if Fi is

effaceable for every i > 0.

Proof. (1) : Assume that F is effaceable, and let M be an injective object inA. By definition, there

is a monomorphism m : M → N in A with F(m) = 0. From the definition of the injective object,

there is a commutative diagram
M N

M.

m

idM n

This implies idF(M) = F(idM) = F(n) ◦ F(m) = 0, so F(M) = 0. The converse is obvious, since

A has sufficient many injective, for every object A ∈ A, there is a monomorphism m : A → M

with M injective. Since F(M) = 0, F(m) = 0.
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(2) : see 2.1.2 of [32].

Definition 1.2.31. Let F : A → A′ be a left exact additive covariant functor between abelian categories.

The right derived functor of F is the universal exact ∂-functor from A to A′ that extends F. If it exists,

it is unique up to isomorphism. We will denote it by (RiF)i≥0, and RiF is called the i-th right derived

functor of F.

Theorem 1.2.32. Let A be an abelian category with sufficiently many injective objects, and let A′ be

an abelian category. Then for every left exact additive covariant functor F : A → A′ the right derived

functor (RiF)i≥0 exists.

Proof. Since A has sufficiently many injective objects, every object A ∈ A has an injective reso-

lution, i.e., there is an exact sequence

M∗(A) : 0→ A→ M0 → M1 → ...

where Mi are injective objects in A.

We will use the following facts from [6], ch. V:

1. If M∗(A) and M∗(A′) are injective resolutions of A and A′ in A, then every morphism u :

A→ A′ extends to a morphism M∗(A)→ M∗(A′) of CoCh(A), and any two extensions of

u are homotopic. In particular, the injective resolution M∗(A) of A is uniquely determined

up to homotopy equivalent.

2. Any exact sequence 0→ A′ → A→ A′′ → 0 in A extends to an exact sequence

0→ M∗(A′)→ M∗(A)→ M∗(A′′)→ 0

in CoCh(A).

Given an object A ∈ A, and an injective resolution of A

M∗(A) : 0→ A→ M0 → M1 → ....

Since F is left exact which preserves kernel, the sequence

F(M∗(A)) : F(0)→ F(A)→ F(M0)→ F(M1)→ ...

is a cochain complexes, and since additive functor preserves homotopy, F(M∗(A)) is uniquely

determined up to the homotopy equivalence, i.e., for any injective resolutions M∗(A) and M∗(A)′
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of A, the cochain complexes F(M∗(A)) and F(M∗(A)′) are homotopy equivalent. Hence, the

system of functor given by

R0F(A) = H0(F(M∗(A))) = Ker (F(M0)→ F(M1))

RiF(A) = Hi(F(M∗(A))) =
Ker (F(Mi)→ F(Mi+1))

Im (F(Mi−1)→ F(Mi))
, i ≥ 1

is well-defined. Moreover, for any morphism u : A → A′ in A, we have a unique extension

M∗(u) : M∗(A)→ M∗(A′) up to homotopy, so the morphism RiF(u) = Hi(M∗(u)) : RiF(A)→

RiF(A′) is also well-defined. For this reason, RiF is an additive covariant functor.

Since F is left exact, R0F = F. For each i > 0 the RiF are effaceable, since for an injective

object M ∈ A an injective resolution of M is given by 0 → M
idM−−→ M → 0, from which we have

RiF(M) = 0 for each i > 0, so by Theorem 1.2.30, if (RiF)i≥0 is a ∂-functor, then it is universal.

Now, we will prove that RiF is a ∂-functor. Given a short exact sequence

0→ A′ → A→ A′′ → 0,

from 2), it is extendable to a short exact sequence

0→ M∗(A′)→ M∗(A)→ M∗(A′′)→ 0

for suitably chosen resolutions. Since Mi(A′) is injective, all exact sequences

0→ Mi(A′)→ Mi(A)→ Mi(A′′)→ 0

split and therefore

0→ F(Mi(A′))→ F(Mi(A))→ F(Mi(A′′))→ 0

is exact. The exact sequence

0→ F(M∗(A′))→ F(M∗(A))→ F(M∗(A′′))→ 0

of complexes in A′ yields. The connecting homomorphisms

∂ : RiF(A′′)→ Ri+1F(A′)

are provided by the snake lemma, so that the long cohomology sequence becomes exact and the

∂’s functorial for short exact sequences in A. Hence, (RiF)i≥0 is a right derived functor of F.
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From the construction, we can interpret that the right derived functors (RiF)i≥0 ”measure” the

failure of exactness of the left-exact functor F.

Definition 1.2.33. Let A and B be abelian categories having sufficiently many injectives, and let F :

A → B be an additive covariant functor. An F-acyclic object, is an object X in A such that

RrF(X) = 0 for all i > 0.

Remark 1.2.34. In the proof of the previous theorem,, we saw that for any left exact additive functor F,

every injective object is an F-acyclic object.

Lemma 1.2.35. Let A and B be abelian categories such that A has enough injectives. Let G : A → B

be a right adjoint additive functor with F : B → A left adjoint to G. Then the following conditions are

equivalent:

1. The functor F preserves injective maps.

2. The functor F is exact.

3. The functor G preserves injectives, i.e., sends injective object into injective object.

Proof. See Lemma 12.29.1 of [31].

Proposition 1.2.36. Let L1 and L2 be left exact functors from abelian categories with enough injective

objects. And let L = L2 ◦ L1. If L1 preserves injective objects and X is an L1-acyclic object, then

(RrL)(X) = (RrL2)(L1X).

In particular, the above equality holds if L1 is an exact functor that preserves injective objects.

Proof. Let

0→ X → I0 → I1 → ...

be an injective resolution of X. By hypotheses on L1,

0→ L1X → L1 I0 → L1 I1 → ...

is an injective resolution of L1X, which can be used to compute the (RrL2)(L1X). Now we have

RrL(X) =
Ker (L(Ir)→ L(Ir+1))

Im (L(Ir−1)→ L(Ir))
=

Ker (L2(L1 Ir)→ L2(L1 Ir+1))

Im (L2(L1 Ir−1)→ L2(L1 Ir))
= RrL2(L1(X))

as desired.
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1.3 Grothendieck Topology

In this section, we introduce the Grothendieck topology, sheaves on Grothendieck topology, and

sheafification, with the main references being [5], [16], [32], [20], [12], [33], and [10].

To define a sheaf, it is not necessary to have a topological space. Grothendieck shows that

it suffices to have a category C together with, for each object U ∈ C, a set of families of maps

{Ui → U}i∈I , called the coverings of U, satisfying the following axioms:

1. For every covering {Ui → U}i∈I and every morphism V → U in C, the pullbacks (fiber

products) Ui ×U V exist, and {Ui ×U V → V} is a covering of V;

2. If {Ui → U}i∈I is a covering of U, and for each i ∈ I, {Vij → UI}j∈Ji is a covering of Ui,

then the family {Vij → Ui → U}i,j is a covering of U;

3. For every object U ∈ C, the single family {id : U → U} is a covering of U.

These axioms generalize the notion of an open covering in a topological space. For any open

subset U and V with V ⊆ U, and for any open covering U =
⋃

i∈I Ui of U, the first axiom asserts

that the family {Ui ∩ V : i ∈ I} forms an open covering of V. The second and third axioms are

more straightforward.

Definition 1.3.1. The system of coverings satisfying the above axioms is called a Grothendieck pre-

topology, or simply topology, and C together with a topology τ is called a site.

Definition 1.3.2. A morphism f : (C ′, τ′) → (C, τ) of topologies is a functor f : C → C ′ of the

underlying categories with the following two properties:

1. If {Ui
ϕi−→ U} is a covering of (C, τ), then { f (Ui)

f (ϕi)−−→ f (U)} is also a covering of (C ′, τ′).

2. For each covering {Ui → U} of (C, τ) and a morphism V → U in C, the canonical morphism

f (Ui ×U V)→ f (Ui)× f (U) f (V)

is an isomorphism for all i.

A morphism of topologies f : (C ′, τ′) → (C, τ) is actually a functor in the opposite direc-

tion, which aligns better with our intuition from topological spaces. Some authors may define

a morphism of topologies f : (C ′, τ′) → (C, τ) as a functor C ′ → C, as in [32], because of this is

the definition used in SGA4 (the seminar, not the book). However, since this approach was not

adopted in the published version, we will use the definition given above.
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Definition 1.3.3. A presheaf of sets on a site Cτ = (C, τ) is a contravariant functor F : C → Set. A

morphism between presheaves is just a natural transformation, We will denote the category of presheaf

of sets on a site Cτ by Psh(Cτ).

Definition 1.3.4. A presheaf F on a site Cτ is separated if, for any coverings {Ui → U}, the canonical

map

F(U) −→∏
i

F(Ui)

is injective.

Notation 1.3.5. If ϕ : U → V is a morphism of C, then we sometimes denote F(ϕ) : F(V) → F(U) by

a 7→ a|U (this can be confuse, since there may be more than one morphism from U to V).

Similarly, a presheaf of abelian groups or rings on Cτ is a contravariant functor from C to the

category of abelian group or rings.

The concept of a presheaf on a site does not depend on the coverings, whereas the notion of a

sheaf does depend on them.

Definition 1.3.6. A sheaf on site Cτ is a presheaf F that satisfies the sheaf condition: the diagram

F(U) ∏i∈I F(Ui) ∏(i,j)∈I×I F(Ui ×U Uj)
F(pr1)

F(pr2)

is exact (i.e., an equalizer) for every covering {Ui → U}, where (Ui ×U Uj) is the fiber product of

(Ui → U, Uj → U), and the left morphism is induced by the product.

Hence F is a sheaf if the map

F(U)→∏ F(Ui)

f 7→ ( f |Ui)i∈I

identifies F(U) with the subset of the product consisting of families ( fi) such that

fi|Ui×UUj = f j|Ui×UUj

for every i, j ∈ I × I. We denote the category of sheaves of sets on Cτ by Sh(Cτ), and the category

of sheaves of abelian groups by Ab(Cτ). It is easy to see that Sh(Cτ) is a full faithful subcategory

of Psh(Cτ).

Theorem 1.3.7. The category Ab(Cτ) is an abelian category with sufficiently many injective objects.
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Proof. (see [32] Section 3 of Chapter I).

Hence, the right derived functors Rq f exist for each given left exact additive functor from

Ab(Cτ) to Ab. For a fixed object U ∈ C, we consider the section functor ΓU : Ab(Cτ) → Ab

defined by ΓU(F) = F(U), this functor is left exact functor, so there is a right derived functor.

Definition 1.3.8. For an abelian sheaf F on Ab(Cτ) we define the q-th (sheaf) cohomology group of

U with values in F by

Hq
τ(U, F) = RqΓU(F).

The sheaf cohomology ”measures” the lack of exactness of the global section functor Γ(X,−).

In addition, it also ”measures” the capability to ”lift local data to global” in certain situations.

Here’s a summary of how it works:

Let X be a topological space and F a sheaf on X. Consider a cover {Ui}i∈I of X, and sections

fi ∈ F(Ui) over each open set Ui. Let G ⊆ F be a subsheaf, and assume that for all i, j ∈ I,

the difference fi − f j ∈ G(Ui ∩ Uj). One might ask wether f ’s ”glue” to a global section f ∈

F(X) such that f |Ui − fi ∈ G(Ui) for each i. This is a generalization of the Cousin’s problem:

Given an open cover {Ui}i∈I of C, and meromorphic functions fi defined on each Ui, where

fi − f j is holomorphic on Ui ∩Uj. Is there a meromorphic function f on C such that f |Ui − fi is

holomorphic for each i?

This problem is closely related to the exactness of the global section functor Γ(X,−). Let

f i ∈ (F/G)(Ui) be the image of fi under the projection F → F/G. The sections f i glue in the

quotient sheaf F/G, since f i − f j = 0 ∈ (F/G)(Ui ∩Uj), and by the sheaf property, there exists

an element f ∈ (F/G)(X). Therefore, the fi’s can be lifted to a global section f ∈ F(X) such

that f |Ui − fi ∈ G(Ui) if and only if the global section f lies in the image of the map (Γ(X, F) →

Γ(X, F/G)).

Since Γ(X,−) is left exact, we have the following exact sequence:

0→ Γ(X, G)→ Γ(X, F)→ Γ(X, F/G)→ H1(X, G).

Hence, the fi’s can be lifted to a global section f ∈ F(X) if and only if the first cohomology group

H1(X, G) is trivial.

There is another approach to sheaves, defined using a Grothendieck topology (rather than just

a pretopology). We will explain how this construction works.

Let C be a category and c be an object in C. A sieve on c is a subfunctor of the functor hc =

hom(−, c), which assigns to each object x ∈ C the set of morphism from x to c. Let S be a sieve

on c, and let f : c′ → c be a morphism in C, We denote the pullback S×hc hc′ of S along f by f ∗S.

36



CHAPTER 1. PREREQUISITES 1.3. GROTHENDIECK TOPOLOGY

More concretely, for each object x ∈ C, we have

f ∗S(x) = {g : x → c′ : f ◦ g ∈ S(x)}.

Definition 1.3.9. A Grothendieck topology J on a category C is functor from C to Set such that J(c)

is a set of distinguished sieves on c (whose element is called a covering sieve) for each object c ∈ C,

satisfying the following axioms:

1. If S ∈ J(c) and f : c′ → c is a morphism of C, then the pullback f ∗S ∈ J(c′);

2. Let S ∈ J(c),, and let T be any sieve on c. Suppose that for every object c′ ∈ C and every morphism

f : c′ → c in S(c′), the pullback sieve f ∗T ∈ J(c′). Then T ∈ J(c);

3. For every object c ∈ C, hc ∈ J(c).

If C is a category and J is a Grothendieck topology on C, then the pair (C, J) is also called a site.

These axioms are analogous to the axioms of a Grothendieck pretopology.

For any pretopology, the collection of all sieves that contain some covering family from the

pretopology is a Grothendieck topology. So, there is no ambiguity in site.

Definition 1.3.10. In the sense of Grothendieck topology, a sheaf F on site (C, J) is a presheaf on C such

that for every object c ∈ C and every covering sieve S ∈ J(c), the natural map hom(hc, F)→ hom(S, F)

induced by the inclusion S ↪→ hc is a bijection (This definition is equivalent to the previous one).

There is a consequence of Yoneda’s lemma which characterizes the set hom(R, F) even if F is

not a sheaf.

Proposition 1.3.11. Let C be a category, and let F : C → Set be a presheaf. If R is a sieve on X ∈ C, then

hom(R, F) ∼= lim←−
(U→X)∈C/R

F(U)

where C/R is the comma category.

Proof. See Proposition 4.6 of [23].

Given a presheaf F , we can construct a sheaf from it through a process called sheafifica-

tion. This process defines a functor, and in fact, sheafification is a left adjoint to the inclusion

functor from Sh(C) to Psh(C). Let’s explore this concept further, particularly in the context of

Grothendieck’s pre-topology.
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We will work with the site (C, τ). For simplicity, we will often denote the site by C instead of

(C, τ).

Let U = {Ui → U}i∈I and V = {Vk → U}k∈I be two coverings of U. We say that the pair

(ϕ : K → I, {Vk → Uϕ(k)}k∈K) is a refinement of U by V , if the compositions Vk → Uϕ(k) → U is

equal to the Vk → U.

Let F be a presheaf of sets on C, and let U = {Ui → U}i∈I be a covering of U. We denote the

equalizer {
(si)i∈I ∈∏

i∈I
F(Ui) : si|Ui×UUj = sj|Ui×UUj ∀i, j ∈ I

}

by F(U ). It is clear that the refinement of U by V induces a commutative diagram

Vi Uϕ(i)

Vi ×U Vj Uϕ(i) ×U Uϕ(j) U.

Vj Uϕ(j)

For this reason, there is a map F(U )→ F(V) defined by (si) 7→ (sϕ(k)|Vk).

Let IU be the category of all coverings of U: the objects are the coverings of U in C, and a

morphism from V to U is the refinement of U by V . Note that IU is not empty since {idU} is a

covering of U. According to the previous remarks, the construction U 7→ F(U ) defines a con-

travariant functor from IU to Set. We define

F+(U) = lim−→
U∈Iop

U

F(U ).

Now, we turn the collection of sets F+(U) into a presheaf. Let V → U be a morphism in C. From

the definition of the covering, there is a natural morphism IU → IV given by

{Ui → U} 7→ {Ui ×U V → V}.

Similarly, there is a functorial map of sets F({Ui → U}) → F({Ui ×U V → V}) defined by

(si) 7→ (si|Ui×UV). Hence, by generalities of colimits we obtain a canonical map F+(U)→ F+(V).

This construction defines a presheaf F+. Of course, if F is a sheaf on C, then F+ ∼= F.

Proposition 1.3.12. 1. If F is a presheaf on C, then F+ is a separated sheaf.
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2. If F is a separated sheaf, then F+ is a sheaf.

Hence, the presheaf F# := F++ is always a sheaf.

Proof. see [16] 5.III

F# is called the sheaf associated to F. As noted above, this process defines a functor known as

sheafification.

aτ : Psh(C) −→ Sh(C)

F 7−→ F#.

Moreover:

Theorem 1.3.13. The functor aτ is a left adjoint of the inclusion functor i : Sh(C)→ Psh(C).

Proof. see [16] 6.III .

Corollary 1.3.14. For any presheaf F on a site T, the following are equivalent:

1. F is a sheaf.

2. For any covering {Ui → U}i∈I in T there exists a refinement {U′j → U} of {Ui → U} in T, such

that

F(U)→∏ F(U′j)⇒ F(U′j0 ×U U′j1)

is exact.

Proof. See I.3.1.4 of [32]

Sheafification of presheaves of abelian groups, groups, rings, etc., is defined in the same way,

and sheafification is exact when the category is abelian.

Next, we will summarize the canonical topology of a given category.

Definition 1.3.15. Let C be a category. Recall, a morphism in C is called an epimorphism if the canonical

map hom(V, Z) → hom(U, Z) is injective for every object Z ∈ C. A morphism U → V is an effective

epimorphism, if the diagram

hom(V, Z)→ hom(U, Z)⇒ hom(U ×V U, Z)

is exact for every Z ∈ C, where the two right-hand maps are induced by the projections of U×V U onto the

left and right factor. A morphism U → V is called a universal effective epimorphism, if U×V W →W

is an effective epimorphism for every morphism W → V in C.
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These notions generalize to families of morphisms {Ui → V}i∈I : A family {Ui → V}i∈I is a family

of epimorphisms if {hom(V, Z) → ∏i∈I hom(Ui, Z)} is injective for every Z ∈ C. It is a family of

effective epimorphisms if the diagram

hom(V, Z)→∏
i∈I

hom(Ui, Z)⇒ ∏
i,j∈I

hom(Ui ×V Uj, Z)

is exact for every object Z ∈ C. A family of effective epimorphisms is a family of universal effective

epimorphisms if {Ui ×V W →W} is a family of effective epimorphisms for every morphism W → V in

C.

Definition 1.3.16. Let C be a category. The canonical topology τ of C is the collection of all family of

universal effective epimorphisms in C.

Remark 1.3.17. To show that canonical topology is Grothendieck’s (pre-)topology, see I. 1.3 of [32] and

IV, 1 of [11]

There are some immediate facts

Proposition 1.3.18. 1. Every representable presheaf of sets is a sheaf on (C, τ).

2. The canonical topology is the finest topology on C such that all representable presheaves of sets are

sheaves.

Definition 1.3.19. A Grothendieck topos is a category equivalent to the category of sheaves on a site.

In this thesis, we will not consider elementary toposes. Thus, we will sometimes use the term

”topos” in place of ”Grothendieck topos.”

The notions of direct image and inverse image functors in the category of sheaves on a topo-

logical space generalize to the concept of a geometric morphism in a topos.

Definition 1.3.20. If E and F are toposes, a geometric morphism f : E→ F consists of a pair of adjoint

functors ( f ∗, f∗)

f ∗ : F → E and f∗ : E→ F

such that the left adjoint functor f ∗ preserves finite limits. The left adjoint f ∗ is called the inverse image

of the geometric morphism, and the right adjoint f∗ is called the direct image of the geometric morphism.

Theorem 1.3.21. Let f : C ′τ′ → Cτ be a morphism of sites, with C and C ′ small. Then precomposition

with f defines a functor between the categories of presheaves

(−) ◦ f : Psh(C ′τ)→ Psh(Cτ).
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Moreover, there is a geometric morphism between the categories of sheaves

( f ∗, f∗) : Sh(C ′τ)→ Sh(Cτ)

where f∗ is the restriction of (−) ◦ f to sheaves.

Proof. See [30].

Theorem 1.3.22 (Comparison Lemma). Let C, C be two small categories, and let τ (resp. τ′) be a

Grothendieck topology on C (resp. C ′). Let u : C → C ′ be a fully faithful functor that induces a morphism

of Grothendieck topologies. If every object X ∈ C ′ has a covering {u(Ui)→ X}i∈I by objects of C, then u

induces an equivalence of categories of sheaves (of sets) (u∗, u∗) : Sh(Cτ)→ Sh(C ′τ′).

Proof. See III.4.1. of [12]

We introduce the notion of a topology in a topos. For more details, see [12], [33], [10], and

Chapter 7, part 1 of [31].

Definition 1.3.23. Let C be a category, and let τ and τ′ be two Grothendieck topologies on C. The inter-

section topology τ ∩ τ′ of topologies τ and τ′ is the finest topology on C that is coarser than both τ and

τ′.

In the sense of [12] (SGA4 IV.9), an embedding is defined as follows.

Definition 1.3.24. Let f : Sh(Cτ) → Sh(Cτ′) be a morphism of topoi. We say that f is a embedding if

and only if it is fully faithful.

Example 1.3.25. Let C be a category, and let τ, τ′ be its topologies. Let τ ∩ τ′ denote the intersection

topology of τ and τ′. The canonical morphisms of topologies induce geometric morphisms

j = (j∗, j∗) : Sh(Cτ)→ Sh(Cτ∩τ′) and i = (i∗, i∗) : Sh(Cτ′)→ Sh(Cτ∩τ′).

Moreover, the right adjoins j∗ and i∗ are embeddings.

Definition 1.3.26. [12] (SGA4)

1. The subtopos E ⊆ Sh(C) is open if there exists a subsheaf F of the final object of Sh(C) such that

E ∼= Sh(C/F).

2. The subtopos E′ ⊆ Sh(C) is closed if there exists a subsheaf F of the final object of Sh(C) such that

E′ ∼= {G ∈ Sh(C) : pr1 : F× G → F is an isomorphism)} .
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3. They are complement for each other if they are defined by the same F.

Remark 1.3.27. if F is a subsheaf of the final object of Sh(C), then the topoi Sh(C/F) and {G ∈ Sh(C :

F× G → F is an isomorphism)} are subtopoi of Sh(C) (See 7.43 of [31]).

Remark 1.3.28. The term ”open” in the above definition refers to the open sets in the Lawvere-Tierney

topology.

Definition 1.3.29. Let f : Sh(Cτ) → Sh(Cτ′) be an embedding. We say f is an open (resp. closed)

immersion if the essential image of f is an open (resp. closed) subtopos.

Example 1.3.30. If X is a topological space, then topos Sh(X)/F is equivalent to Sh(U) for some open

subset U of X.

Notation 1.3.31. Denote by ϵτ′ the composition

Cτ Psh(Cτ) Sh(Cτ)

a hom(−, a)

b hom(−, b)

h− aτ

f f ◦−

where aτ is the sheafification with respect to topology τ.

Proposition 1.3.32. Let C be a category, and let τ, τ′ be its topologies. Let τ ∩ τ′ denote the intersection

topology of τ and τ′. Let j = (j∗, j∗) : Sh(Cτ) → Sh(Cτ∩τ′) and i = (i∗, i∗) : Sh(Cτ′) → Sh(Cτ∩τ′)

be the canonical geometric morphisms induced by ”inclusion” maps. The following properties are equiva-

lent:

1. j∗ makes Sh(Cτ) an open subtopos of Sh(Cτ∩τ′), while i∗ makes Sh(Cτ′) its closed complement;

2. Every object X ∈ C has a covering sieve R with respect to τ such that, for every U → X in R, the

empty sieve is τ′-covering for U.

Proof. Let ∅τ′ be the initial object of Sh(Cτ′). By [12] (SGA4.II.4.6.1), the empty sieve is τ′-covering

for U ∈ C if and only if ϵτ′(U) = ∅τ′ .

Write W := i∗(∅τ′) = i∗(aτ′(∅)), by the definition of sheafification, we have

W(X) =


∗ if ϵτ′(X) = ∅τ′ ,

∅ otherwise.
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Therefore W is a subsheaf of the final sheaf ∗.

(2) ⇒ (1) : Firstly, we show that j is isomorphic to the embedding corresponding to the

open subtopos Sh(Cτ∩τ′)/W. For F ∈ Sh(Cτ∩τ′), the τ-sheaf j∗F is the τ-sheaf associated to the

presheaf F. If X ∈ C satisfies ϵτ′(X) = ∅τ′ , then ϵτ′(U) = ∅τ′ holds also for all U → X, since the

initial object of the topos is strict and the functor ϵτ′ induces a morphism of sheaves ϵτ′(U) →

ϵτ′(X) = ∅τ′ . Therefore, every τ-covering sieve of U is also a τ ∩ τ′-covering, consequently,

(j∗F)(X) = F(X) if ϵτ′(X) = ∅τ′ . (1.1)

Hence, the map W × j∗ j∗F is a τ ∩ τ′-sheaf given by

X 7→


F(X) if ϵτ′(X) = ∅τ′ ,

∅ otherwise.

So if F ∈ Sh(Cτ∩τ′) has Psh(F, W) ̸= ∅, then F →W × j∗ j∗F is an isomorphism. Therefore, every

F ∈ Sh(Cτ∩τ′)/W satisfies F ∼= W × j∗ j∗F.

Note that for each U ∈ C, by equality 1.1, if ϵτ′(U) = ∅τ′ , we have j∗W(U) = W(U) = ∗.

By the hypothesis (2), every X ∈ C has a covering sieve R with respect to τ such that, for every

U → X in R, the empty sieve is τ′-covering for U, so j∗W(U) = ∗ for every U ∈ C/R. Applying

Proposition 1.3.11, we obtain

j∗W(X) = hom(hX, j∗W) = hom(R, j∗W) = lim←−
(U→X)∈C/R

j∗W(U) = lim←−
(U→X)∈C/R

∗ = ∗.

Therefore, j∗W = ∗ is the final sheaf. Hence for every A ∈ Sh(Cτ) we have j∗(W × j∗A) = A.

Then the restriction of j∗ to Sh(Cτ∩τ′)/W is an equivalence of categories from Sh(Cτ∩τ′)/W to

Sh(Cτ), a quasi-inverse being given by A 7→W × j∗A.

In other words, j∗ is isomorphic to the open embedding corresponding to the open subtopos

Sh(Cτ∩τ′)/W.

Now, we will prove that i∗ is isomorphic to the closed complement embedding of j∗. The

closed complement of Sh(Cτ∩τ′)/W is the full subcategory

E : = {F ∈ Sh(Cτ∩τ′) : pr1 : W × F →W is an isomorphism}

= {F : F(X) = ∗ for all X with ϵτ′(X) = ∅τ′}
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The functor i∗ takes values in E, since for any B ∈ Sh(Cτ′), we have

(i∗B)(X) = hom(hX, B) = hom(ϵτ′(X), B) (X ∈ C).

Hence, i∗(Sh(Cτ)) ⊆ E. It remains to prove that i∗(Sh(Cτ)) ⊇ E, or in other words, that every

F ∈ E is a τ′-sheaf.

Let F ∈ E and X ∈ C, and let R′ be a τ′-covering sieve of X. It is sufficient to show that

F(X) ∼= Hom(R′, F) (the definition of sheaf). By the hypothesis (2) there is a τ-covering sieve R

of X consisting of objects which are covered by empty sieve under τ′. Now R ∪ R′ is a covering

sieve for τ ∩ τ′. Since F is a sheaf for τ ∩ τ′, the upper horizontal map in the following diagram

F(X) hom(R ∪ R′, F) = lim←−(U→X)∈C/(R∪R′)
F(U)

hom(R′, F) = lim←−(U→X)∈C/R′
F(U)

is bijective. Since F ∈ E, we have F(U) = ∗ for each (U → X) ∈ C/R. This implies that the right

hand vertical map between the lim←−’s is bijective. Hence so is the diagonal map, as desired.

(1)⇒ (2) : See (2.2) of [27].
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1.4 Galois cohomology

In the first half of the 20th century, the concept of group cohomology was well developed, fo-

cusing on invariants associated with a group G equipped with a G-module S. This provided a

purely algebraic tool for studying group representations, drawing analogies with the topological

case. A notable application was in the context of Galois groups, leading to the notion of Galois

cohomology, which became an important tool in the modern development of number theory.

In this section, we present some fundamental concepts of group cohomology, profinite groups,

and Galois cohomology, with the primary references being [25] and [24].

Definition 1.4.1. A topological group G is a topological space that is also a group such that the group

operation

· : G× G −→ G

(a, b) 7−→ ab,

and the inverse map

−1 : G −→ G (1.2)

a 7−→ a−1 (1.3)

are continuous.

A morphism of topological groups is a continuous group homomorphism.

Definition 1.4.2. Given a topological group G, a G-set is a set S equipped with a G-action on S, i.e., a

function · : G× S→ S, (g, s) 7→ g · s satisfies the following two axioms:

• e · s = s;

• g · (h · s) = gh · s.

In this case, the topology doesn’t matter.

A continuous G-sets S is a set S equipped with an G-action G× S→ S that is continuous when S is

given the discrete topology.

A morphism of G-sets is a function f : S→ T such that g · f (s) = f (g · s) for every g ∈ G and s ∈ S.

This morphism is called G-equivariant map.

The category of G-sets (resp. continuous G-sets), denoted G-Set (CG-Set), is a category consists of

G-sets (resp. continuous G-sets), with morphisms given by G-equivariant maps.
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Definition 1.4.3. Given a topological group G, A G-module (resp. continuous G-module) is a G-set

(resp. continuous G-set) M equipped with an abelian group operation, denoted (M,+), such that

g · (x + y) = g · x + g · y

for every g ∈ G, x, y ∈ M.

A morphism of G-modules is a morphism of G-sets f : M→ N which is also a group homomorphism.

The category of G-modules (resp. continuous G-modules), denoted G-Mod (CG-Mod), is a category

that consists of G-modules (resp. continuous G-modules), with morphisms given by G-equivariant maps

that are also group homomorphisms.

Definition 1.4.4. Let S be a G-set. For all x ∈ S, the orbit of x, denoted G · x, is the set

{g · x : g ∈ G}.

Given a subset T ⊆ S, the stabilizer of T, denoted Stab(T), is the set

{g ∈ G : g · x = x ∀x ∈ T}.

We write Stab(x) instead of Stab({x}). it is immediate that Stab(T) is a subgroup of G.

Given a subset L ⊆ G, the L-invariant of S, denoted SL, is the set

{x ∈ S : g · x = x ∀g ∈ L}.

Remark 1.4.5. If S is a G-module, SL is a subgroup of S.

If f : S → T is a morphism of G-set, then f preserves invariant element, i.e., Stab(x) ⊆ Stab( f (x))

for all x ∈ X. In particular, if x ∈ SL for a L ⊆ G, then f (x) ∈ TL, in other words, f (SL) ⊆ TL.

A G-set S is continuous if and only if the subgroup Stab(x) is open subset of G for each x ∈ S.

Definition 1.4.6. Let L be a subset of a topological group G, we define the L-invariant functor as

( )L : G-Set −→ Set

S 7−→ SL,

and for a morphism f : S→ T of G-sets, f L is the induced restriction, as noted in the previous remark..

We will use the same name and notation for the analogous functors CG-Set → Set, G-Mod → Ab,

and CG-Mod→ Ab.
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Proposition 1.4.7. Given a topological group G, the category CG-Mod is abelian and has sufficiently

many injectives. Moreover, the G-invariant functor

( )L : CG-Mod −→ Set

is left exact.

Proof. See [31], Lem. 19.3.1.

From this definition, we can define the group cohomology.

Definition 1.4.8. Given a topological group G, a G-module S, and a q ≥ 0, we define the q-th (group)

cohomology of G, with coefficients in the S by

Hq(G, S) = Rq( )G(S).

Here is the famous theorem about group cohomology.

Theorem 1.4.9 (Hilbert’s Theorem 90). If L/K is a finite Galois extension of fields with Galois group

G = Gal(L/K), then the first cohomology group of G, with coefficients in L×, is trivial:

H1(G, L×) = {1}.

A particularly important case for us is Galois cohomology, which is defined by taking G to be

the absolute Galois group of a field, i.e., Gal(ksep/k), where ksep denotes the separable closure of

k, i.e., the maximal Galois extension of k. To define Galois cohomology, we first need to equip G

with a topology. While it would be possible to use the discrete topology, this is not convenient

for our purposes. Instead, we adopt the profinite topology on Gal(ksep/k), which is natural for

the study of such Galois groups.

Definition 1.4.10. A profinite group is a topological group that is isomorphic to the inverse limit (or

projective limit) of a system (cofiltered diagram) of discrete finite groups.

Since the cofiltered limit of a system of discrete finite groups can be viewed as a ”subspace”

of the product of these groups, we can equip it with the subspace topology inherited from the

product topology on the Cartesian product of the finite groups in the system.

There are some useful properties of profinite groups.

Theorem 1.4.11. Let G be a topological group. Then the following are equivalent:

1. G is profinite.
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2. G is compact, Hausdorff, and totally disconnected.

3. The identity 1 admits a local base U such that each U ∈ U is an open normal subgroup of G with

finite index and

G = lim←−
U∈U

G/U.

Proof. See Theorem 2.1.3 of [25]

Proposition 1.4.12. Let G be a profinite group and U be the set of all open normal subgroups of G. Then⋂
H∈U H = {1}.

Proof. See Theorem 2.1.3 of [25].

Proposition 1.4.13. Let G be a profinite group, and let U be the set of all open normal subgroups of G. If

A is a G-set equipped with discrete topology, then A is a continuous G-set (i.e., the action is continuous)

if and only if A =
⋃

U∈U AU .

Proof. Assume A is a continuous G-set, then stab(x) is an open subgroup of G for each x ∈ A.

By the previous proposition, for any x ∈ A there is an open normal subgroup H contained in

stab(x). Therefore, x ∈ Astab(x) ⊆ AH, as desired.

Assume A =
⋃

U∈U AU , we need to prove that the action f : G× A → A is continuous. Since

the topological space A is discrete, it suffices to show that the preimage f−1(b) is an open subset,

for every b ∈ A. Fix a b ∈ A, since A =
⋃

U∈U AU , there exists an open normal subgroup H

such that b ∈ AH. Thus, for any (g, a) ∈ f−1(b), Hg× {a} is an open subset of (g, a) such that

Hg× {a} ⊆ f−1(b). Therefore, f−1(b) is an open subset as desired.

The following theorem shows that the Galois group is a profinite group.

Theorem 1.4.14. For any field F, and any Galois extension K

Gal(K/F) = lim←−
L

Gal(L/F),

where L runs over finite Galois extensions of F, such that F ⊆ L ⊆ K. Furthermore, the topology

given by profinite group agree with the Krull topology, i.e., the topology generated by the local base

Ui := Gal(K/Li) where Li is a finite Galois extension of F.

Proof. See Theorem 2.11.1 of [25].

The Fundamental Theorem of Galois Theory can now be formulated in terms of profinite

groups.
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Theorem 1.4.15. Let K/F be a Galois extension with Galois group G := Gal(K/F). We denote the set

of intermediate fields F ⊆ L ⊆ K by I(K/F), and the set of closed subgroups of G by S(G). Then, there

is a bijection between I(K/F) and S(G) as follows:

ϕ : I(K/F) −→ S(G)

L 7−→ Gal(K/L).

Its inverse is

ψ : S(G) −→ I(K/F)

H 7−→ KH

where KH denotes the fixed subfield of K under H.

Proof. See Theorem 2.11.3 of [25].

Remark 1.4.16. In a topological group, every open subset is also closed, ensuring that the function is

well-defined.

Definition 1.4.17. Let K be a field with separable closure ksep, and let G = Gal(ksep/k) be a topological

group equipped with profinite topology. In this case, Hq(G, S) is called the q-th Galois cohomology of

G on S.

Let G be a profinite group. We denote the canonical topology of CG-Set by TG. It is easy

to check that a family {Ui
ϕi−→ U}i∈I of morphisms in CG-Set is a family of universal effective

epimorphisms if and only if U =
⋃

i∈I ϕi(Ui).

Proposition 1.4.18. Let G be a profinite group. The functor

ϕ : CG-Set −→ Sh(CG-Set, TG)

Z 7−→ homG(−, Z)

is an equivalence of categories, where hom(X, Z) denotes the set of all morphisms X → Z in the category

CG-Set. The quasi-inverse of the functor ϕ is the functor

ψ : Sh(CG-Set, TG) −→ CG-Set

F 7−→ lim−→
H

F(G/H).
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Here for every open normal subgroup H of G, the quotient group G/H is viewed as a continuous G-

module via left multiplication. We define a continuous G-structure on the set F(G/H) as follows:

For g ∈ G/H and s ∈ F(G/H) we set gs = F(Rg)(s), where Rg : G → G is the G-map given by

g′ 7→ g′ · g.

Moreover, if H and H′ are both open normal subgroups of G with H ⊆ H′, the canonical G-homomorphism

G/H → G/H′ induces a map F(G/H) → F(G/H′). The inductive limit is taken over all open nor-

mal subgroups of G, ordered by inclusion. Thus, lim−→H
F(G/H) has a natural structure of a continuous

G-sets.

Proof. On the one hand, ψ ◦ ϕ(Z) = lim−→H
homG(G/H, Z) for each object Z ∈ CG-Set. We have a

canonical identification

lim−→
H

homG(G/H, Z) = lim−→
H

ZH =
⋃
H

ZH = Z.

The first equality holds because a G-map ϕ : G/H → Z is completely determined by the value of

ϕ(1) ∈ ZH. The second equality follows from the fact that ZH ∩ ZH′ = ZHH′ . The third equality

follows from the definition of a continuous G-set, which is based on the equivalence criterion for

continuity. On the other hand,

ϕ ◦ ψ(F) = homG(−, lim−→
H

F(G/H)).

Now, it suffices to prove that there is an isomorphism of sheaves from F to homG(−, lim−→H
F(G/H)),

functorial in F.

Let U be a continuous G-set. Since U =
⋃

H UH, the family {UH → U} of all inclusions

UH ↪→ U is a covering in the topology TG. So, we obtain an exact diagram

F(U)→∏
H

F(UH)⇒ ∏
H,H′

F(UH ×U UH′).

Note that UH ×U UH′ = UH ∩UH′ = UHH′ , then we have a canonical identification

F(U) = {(sH) ∈∏ F(UH) : sH |UHH′ = sH′ |UHH′ } = lim←− F(UH).

It’s easy to see that the family {G/H
φu−→ UH}u∈UH , where φu(gH) = gu, is a covering in the

topology TG (here, φu is well defined since u is H-invariant). Then, For a sheaf F we have the

exact diagram

F(UH)→ ∏
u∈UH

F(G/H)⇒ ∏
u,v∈UH

F(G/H ×UH G/H)
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corredsponding to the covering. This shows that the image of the injective map

F(UH)→ ∏
u∈UH

F(G/H) = hom(UH, F(G/H))

is precisely the subset homG/H(UH, F(G/H)) of G/H-maps from UH to F(G/H) : In details, the

map F(UH)→ ∏u∈UH F(G/H) is given by

Ψ : F(UH) −→ ∏
u∈UH

F(G/H) = hom(UH, F(G/H))

α 7−→ Ψ(α)

with

Ψ(α) : UH −→ F(G/H)

u 7−→ F(φu)(α).

The map Ψ(α) is a G/H-map, since for each gH ∈ G/H, we have

gH ·Ψ(α)(u) = gH · F(φu)(α) = F(RgH)F(φu)(α) = F(φu ◦RgH)(α) = F(φgu)(α) = Ψ(α)(gHu).

This implies Im(Ψ) ⊆ homG/H(UH, F(G/H)). To prove the other inclusion, assume that

r = (ru)u∈UH is G/H-equivariant, i.e.,

gH · ru = F(Rg)ru = rg·u

for each g ∈ G. we want to show that for any u, v ∈ UH,

F(p1)(ru) = F(p2)(rv) ∈ F({(jH, kH) ∈ G/H × G/H : j · u = k · v}).

Let Eu,v = { f H ∈ G/H : f · u = v}. And consider the map

G/H × Eu,v −→ G/H ×UH G/H

(jH, kH) 7−→ (jkH, jH)

From the definition of Eu,v, this map is well-defined, and in fact, consider G/H × Eu,v as the
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disjoint union ⨿ f∈Eu,v
G, this map is G/H-equivariant, and is component-wise given by the maps

i f : G/H −→ G/H ×UH G/H = {(jH, kH) : j · u = k f · u}

gH 7−→ (g f H, gH).

The map G/H × Eu,v −→ G/H ×UH G/H has an inverse (jH, kH) 7→ (kH, k−1 jH). The map

(jH, kH) 7→ (kH, k−1 jH) is well-defined ( i.e., (kH, k−1 jH) ∈ G/H × Eu,v ) since

k−1 j · u = k−1k · v = v.

This map is G/H-equivariant, because of

( f jH, f kH) 7→ ( f kH, k−1 f−1 f jH) = ( f kH, k−1 jH) = f H · (kH, k−1 jH).

So, the map G/H× Eu,v −→ G/H×UH G/H is an isomorphism. Because F is a sheaf, F(⨿ A) =

∏ F(A), in particular,

F(G/H ×UH G/H) ∼= F(G/H × Eu,v) ∼= ∏
f∈Eu,v

F(G/H)

So by construction an element x ∈ F(G/H ×UH G/H) maps to the family (F(i f )(x)) f∈Eu,v . Since

this is an isomorphism, to prove F(p1)(ru) = F(p2)(rv), it is sufficient to prove this equality after

applying F(i f ) for all f ∈ Eu,v. Before computing, note that

pλ ◦ i f (gH) = pλ(g f H, gH) =


g f H, if λ = 1

gH, if λ = 2,

i.e., p1 ◦ i f = R f H and p2 ◦ i f = idG/H. Now, we obtain

F(i f )F(p1)(ru) =F(p1 ◦ i f )(ru) = F(R f H)(ru) = r f u = rv

=F(idG/H(rv)) = F(p2 ◦ i f ) = F(i f )F(p2)(rv).

So, from the sheaf condition, the image of map F(UH) → ∏u∈UH F(G/H) = hom(UH, F(G/H))

is precisely the subset homG/H(UH, F(G/H)). This map

F(UH)→ homG/H(UH, F(G/H))
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is functorial in UH, so is an isomorphism of sheaves, and it is functorial in F.

We want to show next that the map F(G/H) → lim−→H′
F(G/H′) induces a canonical isomor-

phism

homG/H(UH, F(G/H))→ homG(UH, lim−→
H′

F(G/H′)).

To show this, note that given a normal subgroup H′ ⊆ H, the family {π : G/H′ → G/H} is a

covering in TG. So there is an associated exact diagram

F(G/H)→ F(G/H′)⇒ F(G/H′ ×G/H G/H′).

We use the previous strategy to show that the image of the map F(G/H)→ F(G/H′) is the sub-

set F(G/H′)H/H′ of H/H′ invariant elements in F(G/H′): Let’s prove that for any x ∈ F(G/H),

F(π)(x) is H/H′-invariant first. Let hH′ be any element in H/H′, we have

hH′F(π)(x) = F(RhH′)F(π)(x) = F(π ◦ RhH′)(x),

but π ◦ RhH′(gH′) = π(ghH′) = gH · hH = gH = π(gH′), thus

hH′F(π)(x) = F(π ◦ RhH′)(x) = F(π)(x).

As before, to show that any H/H′- invariant element y is an element of the image of the map

F(G/H)→ F(G/H′), it is sufficient to prove that F(p1)(y) = F(p2)(y). Firstly, We note that

G/H′ ×G/H G/H′ = {(jH′, kH′) ∈ G/H′ × G/H′ : jH = kH}

and the map

⨿
hH′∈H/H′

G/H′ = G/H′ × H/H′ −→ G/H′ ×G/H G/H′

(gH′, hH′) 7−→ (gH′, ghH′)

is an isomorphism of G/H′-sets with inverse

(jH′, kH′) 7→ (jH′, j−1kH′).

It is easy to check that those maps are well-defined and are G/H′ equivariant. Because F is a
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sheaf, we have

F(G/H′ ×G/H G/H′) ∼= ∏
hH′∈H/H′

F(G/H′).

So by construction an element x ∈ F(G/H′×G/H G/H′) maps to the family (F(ihH′)(x))hH′∈H/H′ ,

where ihH′ is a G/H′-map from G/H′ to G/H′ ×G/H G/H′ given by g 7→ (gH′, ghH′). Since this

is an isomorphism, to prove F(p1)(y) = F(p2)(y), it is sufficient to prove this equality after

applying F(ihH′) for all hH′ ∈ H/H′. Since p1 ◦ ihH′ = idG/H′ and p2 ◦ ihH′ = RhH′ , we have

F(ihH′)F(p1)(y) = F(p1 ◦ ihH′)(y) = F(idG/H′)(y) = y = hH′ · y

= F(RhH′)(y) = F(p2 ◦ ihH′) = F(ihH′)F(p2)(y)

as desired. So the map F(G/H) → F(G/H′) identifies the set F(G/H) with the set of H/H′-

invariant elements in F(G/H′).

Therefore the map F(G/H) → lim−→H′
F(G/H′) identifies the set F(G/H) with the subset

(lim−→H′
F(G/H′))H of H-invariant elements in lim−→H′

F(G/H′). Hence the map

homG/H(UH, F(G/H))→ homG(UH, lim−→
H′

F(G/H′)).

is in fact an isomorphism.

Putting all together, we obtain the canonical isomorphisms

F(U) = lim←−
H

F(UH)

∼= lim←−
H

homG/H(UH, F(G/H))

∼= lim←−
H

homG(UH, lim−→
H′

F(G/H′))

∼= homG(lim−→
H

UH, lim−→
H′

F(G/H′))

∼= homG(U, lim−→
H′

F(G/H′))

which are functorial both in U and in F. This completes the proof of the proposition.

This implies

Corollary 1.4.19. The category CG-Mod is equivalent to the category Ab(CG-Mod, TG). The equiva-

lence is given by the mutually quasi-inverse functors A 7→ homG(−, A) and F 7→ lim−→H
F(G/H).

In the final part of this work, these theorems will be used to explore the relationship between

Galois cohomology and étale cohomology.
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Chapter 2

Étale site and its sheaves

This chapter focuses on the main subject of the thesis: the étale site. In the first section, we

summarize key results from commutative algebra needed to define étale morphisms of schemes

and present some essential properties of these morphisms to support the continuation of our

work.

In the second section, we define étale sheaves, prove a criterion for checking whether a presheaf

is a sheaf, show that any representable presheaf is a sheaf, and provide several classical examples

of étale sheaves.

At the end of the chapter, we introduce the direct image functor and inverse image functor be-

tween categories of sheaves on étale sites, which are essential tools for studying the relationship

between categories of sheaves on two different étale sites.

2.1 Étale morphism

An étale morphism is the analogue in algebraic geometry of local homeomorphism in topology

and a covering of Riemann surfaces with no branch point in complex analysis.

Definition 2.1.1. A ring homomorphism ψ : A→ B is flat if the tensor product functor from A-modules

to B-modules given by M 7→ B⊗A M is exact. One also says that B is a flat A-algebra.

Remark 2.1.2. The tensor product functor is always right exact functor. This definition is equivalent to:

for every injective linear map ϕ : M→ N of A- modules, the map

B⊗A ϕ : B⊗A M −→ B⊗A N

b⊗ k 7−→ b⊗ ϕ(k).

is also injective.
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From this characterization, the map B⊗A idA is injective, in particular, the map 1⊗ a 7→ ψ(a)⊗

1 is injective. Hence, flat map ψ is always injective.

The flatness is a local property.

Proposition 2.1.3. If ψ : A→ B is flat, then the following statements are equivalent:

1. B is a flat A-module;

2. Bp is a flat Aψ−1(p)-module for every prime ideal p of B;

This motivates the definition of a flat morphism of schemes.

Definition 2.1.4. A morphism ψ : Y → X of schemes is flat if the local homomorphisms OX,ψ(Y) →

OY,y are flat for all y ∈ Y.

Remark 2.1.5. A flat morphism ϕ : Y → X of varieties is the analogue in algebraic geometry of continu-

ous family of manifolds Yx = ϕ−1(x) parametrized by the points of X in differential topology. If ϕ is flat

then,

dim ϕ−1(x) = dim Y− dim X

for all x ∈ X with Yx ̸= ∅. This resembles the preimage theorem in differential topology.

Here are some well-known facts about flat ring maps that will be useful for developing the

next part of the work.

Remark 2.1.6. • Let ψ : A→ B be a ring homomorphism. If B is a free A-module, then ψ is flat.

• Let R be a ring. And let S ⊆ R be a multiplicative subset. Then the localization S−1R is a flat

R-algebra (see Lemma 10.39.18. Part I of [31]).

• A composition of flat ring maps is a flat.

Definition 2.1.7. A local homomorphism ϕ : A → B of local rings is unramified if B/mB is finite

separable field extension of A/mA.

Definition 2.1.8. A locally of finite presentation morphism f : Y → X of schemes is unramified if the

local homomorphisms OX, f (y) → OY,y are unramified (i.e., κ(y) is a finite separable field extension of

κ( f (y))) for every y ∈ Y.

Proposition 2.1.9. Let f : Y → X be a morphism of schemes. The following properties are equivalent:

1. f is unramified.

2. For every x ∈ X, the x-fiber decomposes as Yx =
⊔

i∈I Spec ki, where ki/κ(x) is a finite and

separable field extension, for every i ∈ I.
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3. f is locally of finite presentation, and the diagonal map ∆ f : Y → Y×X Y is an open immersion.

Proof. See Proposition 3.2 and 3.5 of [20].

Remark 2.1.10. Let f : Y → X be a finite morphism between smooth connected affine curves over C,

and let y be a closed point of Y. We then have the local ring homomorphism f # : OX, f (y) → OY,y Since

OY,y is a discrete valuation ring, there is a unique integer ey > 0 such that f #(m f (y))OY,y = mey
y . This

integer is called the ramification index or multiplicity of y over f (y). Since κ(y) = κ( f (y)) = C, f is

unramified at y if and only if ey = 1. So a flat unramified morphism is the analogue in algebraic geometry

of a covering of Riemann surfaces with no branch point in complex analysis.

Definition 2.1.11. A morphism f : Y → X of schemes is étale if it is flat and unramified. A homomor-

phism A→ Y of rings is étale if the corresponding morphism of schemes is étale.

This definition of an étale morphism may seem abstract at first glance, but there is a more

concrete description of étale morphisms that can make them easier to understand.

Proposition 2.1.12. Let A be a ring, and let f (x) ∈ A[x] be a monic polynomial. If b ∈ A[x]/( f (x)),

and if the derivate f ′(x) is invertible in (A[x]/ f (x))b, then the canonical homomorphism A→ (A[x]/ f (x))b

is étale. In this case, the algebra (A[x]/ f (x))b, is called standard étale algebra, the canonical homo-

morphism i : A→ (A[x]/ f (x))b is called standard étale homomorphism.

Proof. Since f (x) is monic, B := A[T]/ f (T) is a free A-module, and in particular A[T]/ f (T) is a

flat A-module. Moreover, since (A[T]/ f (T))b is a localization of (A[T]/ f (T)), it is flat B-module.

Hence, (A[T]/ f (T))b is a flat A-module. By Proposition 2.1.3, the corresponding morphism of

schemes is flat.

Next, we show that the corresponding morphism of schemes is unramified. This morphism is

locally of finite presentation, so we only need to prove that for any p ∈ Spec B with b /∈ p (since

any prime ideal of Bb corresponds to a prime ideal of B that does not contains b), the induced

homomorphism

Frac(A/q)→ Frac((Bb)/pBb) = Frac(B/p)

of fields is a finite separable extension, where q = i−1(pBb).

Note that p is the image of a prime ideal p in A[x] under the projection map A[x] → B, where

( f ) ⊆ p. Therefore, q = p ∩ A. Since q is a prime ideal, q[x] is a prime ideal of A[x] contained in

p. Thus, there exists a homomorphism

j : (A/q)[x] ∼= A[x]/q[x] −→ A[x]/p.
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By the isomorphism theorem, we have

(A/q)[x]/Ker(j) ∼= A[x]/p.

Now, let K denote the field of fractions of A/q. By the same reasoning, we obtain B/p ∼= A[x]/p.

From the identification (A/q)[x]/Ker(j) ∼= A[x]/p, we obtain a sequence of homomorphisms

(A/q)[x] −→ (A/q)[x]/Ker(j) −→ Frac(A[x]/p) ∼= Frac(B/p).

For any non-zero a + q ∈ A/q, the image of a + q under the homomorphism

(A/q)[x]→ Frac(A[x]/p)

is non-zero, since a /∈ q = p∩ A. Therefore, there is a homomorphism induced by the localization

(A/q)[x] //

��

Frac(A[x]/p)

K[x] = (A/q \ {0})−1(A/q)[x]

h

88
.

By the isomorphism theorem, there is an injective homomorphism

h̃ : K[x]/Ker(h)→ Frac(A[x]/p).

Now:

• Since K[x] is a PID, the prime ideal Ker(h) is a maximal ideal, so K[x]/Ker(h) is a field;

• Since (A/q)[x]→ (A/q)[x]/Ker(j) ∼= A[x]/p is surjective, we have A[x]/p ⊆ Im(h̃).

Thus, since the field of fractions of A[x]/p is the least field containing A[x]/p, h̃ is an isomor-

phism. That is,

K[x]/Ker(h) ∼= Frac(A[x]/p) ∼= Frac(B/p) ∼= Frac(Bb/pBb).

Finally, it suffices to show that K[x]/Ker(h) is a finite separable extension. Let f , f ′ denote the

image of f and f ′ in K[x]. Since p ⊇ ( f ), we have f ∈ Ker(h). But K[x] is a PID, there exists an

irreducible factor f0 of f such that Ker(h) = ( f0). Because f ′(x) is invertible in (A[x]/ f (x))b, it
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is also invertible in K[x]/Ker(h). The following equality:

( f )′ = ( f0 f1)
′ = f ′0 f1 + f0 f ′1

shows that f ′0 is invertible in K[x]/Ker(h), which implies that there exist g0, g1 ∈ K[x] such that

g0 f0 + g1 f ′0 = 1.

Thus, gcd( f0, f ′0) = 1, which means f0 is a separable polynomial in K[x]. Therefore K[x]/Ker(h)

is a finite separable extension of K = A/q, as desired.

Definition 2.1.13. An étale morphism f : Y → X is said to be standard if it is isomorphic to the

Spec (A[x]/ f (x))b −→ Spec A

where the induced ring homomorphism A→ (A[x]/ f (x))b is a standard étale homomorphism.

Theorem 2.1.14. For any étale morphism f : Y → X and y ∈ Y, there exist open affine neighborhoods

V of y and U of f (y) such that f (V) ⊆ U and the restriction f |V : V → U is a standard étale morphism.

Proof. See Theorem 3.14 of [20].

There are some important properties of étale morphisms.

Proposition 2.1.15. 1. Every open immersion is étale.

2. Every base change of an étale morphism is étale.

3. The composite of two étale morphisms is étale.

4. If f ◦ g and f are étale, then g is also étale,

5. Every étale morphism is quasi-finite and open.

Proof. See section 2 (chapter I) of [21] or 29.36 of [31].

Now, we observe some immediate consequences of the previous proposition.

Corollary 2.1.16. 1. The diagonal map of étale map is étale.

2. The kernel map of étale maps is étale.

3. If U is an open subset of a scheme X, then the inclusion U ↪→ X is étale.
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Proof. They are consequences of 2) and 1) of the previous proposition.

Definition 2.1.17. We denote by Et/X the category whose objects are the étale morphisms U → X and

whose morphisms are the X-morphism f : U → V. This category is referred to as the category of étale

schemes over X (if X = Spec A, it is also called the category of étale schemes over A, denoted Et/A).

From 4) of Proposition 2.1.15, we deduce that each morphism of Et/X is an étale morphism.

Proposition 2.1.18. Let k be a field and X be a k-scheme. Then X → Spec k is étale if and only if we can

write X as a disjoint union of spectrum of finite and separable field extensions of k.

Proof. The proposition follows from Proposition 2.1.9 and from the fact that −⊗k OX,x is exact

for every x ∈ X (flatness).

Corollary 2.1.19. The category Et/k of étale schemes over a field k admits arbitrary coproduct.

2.2 Étale sheaf

The site Xet that we are interested in is called the étale site on X. The underlying category of

site Xet is Et/X, and the coverings of this site are the surjective families of étale morphisms

{ fi : Ui → U} in Et/X, i.e., the families of étale morphisms satisfying U =
⋃

fi(Ui).

Since every open immersion is an étale morphism, the étale topology is finer than the Zariski

topology. Consequently, the étale topology provides a cohomology theory that detects more

information than the Zariski topology. For example, the cohomology defined on the étale topol-

ogy with values in a constant sheaf can be non-trivial, whereas any constant sheaf in the Zariski

topology is acyclic.

An étale sheaf is a sheaf on Et/X. And the étale cohomology, denoted Hn
et(X,−), is the sheaf

cohomology on Xet.

Here is an important notion for studying étale sheaves, strict localization, although we will

not go into it in depth.

Definition 2.2.1. A geometric point of a scheme X is a morphism x : Spec R→ X with R a separably

closed field. An étale neighborhood of a geometric point x : Spec R→ X is an étale morphism U → X

together with another geometric point u : Spec R→ U lying over x, i.e., the diagram

Spec R U

X

u

x
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commutes.

The local ring at x for the étale topology or strictly local ring at x is

OX,x := lim−→
(U,u)

Γ(U,OU)

where the limit is over the connected affine étale neighborhoods (U, u) of x.

There is a criterion that simplifies checking whether a presheaf is an étale sheaf.

Proposition 2.2.2. Let F be a presheaf on Xet. If F satisfies the sheaf condition for Zariski open coverings

and for any étale coverings (V → U) (a single map) with V and U affine schemes, then F is an étale sheaf.

Proof. We use the Corollary 1.3.14. So, given any covering {Ui → U} it suffices to find a refine-

ment {Vj → U} which satisfies the sheaf condition.

Let {Ui → U} be an arbitrary covering in Xet. We choose an affine open covering

U =
⋃
j∈J

Wj

of U. This provides for each j a covering

Ui ×U Wj →Wj

in Xet. Let {Uijk} be an affine open cover of Ui ×U Wj for each i, j. Then, we obtain a refinement

{Uijk →Wj} → {Ui ×U Wj →Wj}

of {Ui ×U Wj → Wj}. As an affine scheme, Wj is quasi-compact. Moreover, the map Uijk → Wj

is open, since they are étale morphisms. Therefore, we can refine the covering {Uijk → Wj} by a

finite subcovering {Ujl →Wj} :

{Ujl →Wj} → {Uijk →Wj}.

If we compose the covering {Ujl → Wj} with the Zariski covering {Wj → U}, we obtain a

covering

{Ujl → U}

together with a natural refinement map

{Ujl → U} → {Ui → U}
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If we show that {Ujl → U} satisfies the sheaf condition, then we prove the proposition. By

construction, {Ujl → U} is a composite of {Wj → U} and {Ujl →Wj}. So, if F satisfies the sheaf

condition for {Wj → U} and all coverings {Ujl → Wj}, then F satisfies the sheaf condition for

the composite.

Note that

1. {Wj → U} is a Zariski covering;

2. {Ujl →Wj} is a finite family of morphisms of affine schemes.

So, from hypothesis, F satisfies the sheaf condition for {Wj → U}.

Since {Ujl → Wj} is a finite family of morphisms of affine schemes, we can form an affine

scheme ⨿l Ujl , which allows us to write the covering {Ujl →Wj} as a composite of the coverings

{Ujl →⨿
l

Ujl} and {⨿
l

Ujl →Wj}.

The left covering is a Zariski covering and the right covering is a family consisted of a unique

morphism of affine schemes. by the hypothesis, F satisfies sheaf condition for both coverings,

and so for the composite {Ujl →Wj}.

Recall that a flat homomorphism f : A → B is faithfully flat if it satisfies one of the following

equivalent conditions:

1. If M is an A-module such that M⊗R N = 0, then M = 0.

2. A sequence of A-module

M′ → M→ M′′

is exact if and only if the sequence obtained by tensoring over A with B

M′ ⊗A B→ M⊗A B→ M′′ ⊗A B

is exact.

3. The induced map Spec B→ Spec A is surjective.

For this reason, a surjective étale morphism (V → U) of affine schemes corresponding to a faith-

fully flat homomorphism of rings A → B. So, to check the second condition of above criterion,

we shall usually make use only the faithfully flat ring homomorphism.
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Example 2.2.3 (The structure sheaf). Let X be a scheme. For any étale morphism U → X, define

OXet(U) = Γ(U,OU). By Proposition 2.2.2, this is a sheaf on Xet. Obviously, its restriction to Zariski

open coverings is a sheaf, so it suffices to establish the following result.

Proposition 2.2.4. For every faithfully flat homomorphism f : A→ B, the sequence

0→ A
f−→ B

i2−i1−−→ B⊗A B

is exact, where i2 − i1 is given by b 7→ 1⊗ b− b⊗ 1.

Proof. Consider the inclusion homomorphism

B⊗ f : B⊗A A −→ B⊗A B

b⊗ a = f (a)b⊗ 1 7−→ b⊗ f (a) = f (a)b⊗ 1.

The homomorphism B ⊗ f has a section, namely, the map m : b ⊗ b′ 7→ bb′ ⊗ 1. In particular,

B⊗ f is injective, i.e., the sequence 0→ B⊗A A
B⊗ f−−→ B×A B is exact. Moreover, the sequence

0→ B
B⊗ f−−→ B⊗A B h−→ B⊗A B⊗A B

is exact, where h = B⊗ (i2 − i1) = idB ⊗ (i2 − i1). To prove this, let

k : B⊗A (B⊗A B)
(1,2)−−→ B⊗A B⊗ B

i2·((B⊗ f )◦m)−−−−−−−→ (B⊗A B)

b⊗ b′ ⊗ b′′ 7−→ b′ ⊗ b⊗ b′′ 7−→ (1⊗ b′) · [(B⊗ f ) ◦m](b⊗ b′′) = (bb′′ ⊗ b′)

be a homomorphism. Then

k ◦ h(b⊗ b′) = k(b⊗ (1⊗ b′ − b′ ⊗ 1)) = k(b⊗ 1⊗ b′)− k(b⊗ b′ ⊗ 1) = bb′ ⊗ 1− b⊗ b′.

Thus, if b⊗ b′ ∈ Ker(h), we have b⊗ b′ = bb′ ⊗ 1 = B⊗ f (bb′ ⊗ 1) ∈ Im(B⊗ f ). On the other

hand, it is clear that h ◦ (B⊗ f )(b⊗ 1) = b⊗ (1⊗ 1− 1⊗ 1) = 0.

Since f is faithfully flat, we have that the sequence

0→ A
f−→ B

i2−i1−−→ B⊗A B

is exact.
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Proposition 2.2.5. Let X be a scheme, and let Z be an X-scheme. Then the presheaf

hZ : Et/X −→ Set

U 7−→ homEt/X(U, Z)

is a sheaf on the étale topology.

Proof. Let us prove the proposition in the case where Z = Spec C is affine. It is easy to see that

functor hZ satisfies the sheaf criterion for open Zariski coverings. Therefore, it suffices to show

that

homRings(C, A) homRings(C, B) homRings(C, B⊗A B)

is exact for any faithfully flat map A → B. But this follows immediately from Proposition 2.2.4,

since homRings(C,−) is left exact. So, by Proposition 2.2.2, hZ is an étale sheaf.

Now, we prove the general case. Let Z be an arbitrary scheme, and let {Zi}i∈I be an affine

open cover. By sheaf criterion 2.2.2 we only have to check the sheaf condition for surjective étale

morphism h : V → U of affine schemes U, V. Firstly, we show the injectivity of the map

homEt/X(U, Z)→ homEt/X(V, Z).

Let f , g : U → Z be two morphisms such that the composites V → U → Z coincide. Since h is

surjective, we know that f , g agree as functions of sets. Now, let Ui := f−1(Zi) = g−1(Zi) and

Vi := h−1(Ui). Since Zi is affine, hZi is a sheaf. In particular, we have that the following map is

injective

homEt/X(Ui, Zi)→ homEt/X(Vi, Zi).

This means that f |Ui = g|Ui for each i ∈ I, which implies that f = g.

Next, we show existence of gluing. Let g ∈ homEt/X(V, Z) be an element such that both

morphisms

homEt/X(V, Z) homEt/X(V ×U V, Z)
−◦p

−◦q

agree, i.e., g ◦ q = g ◦ p, where p, q are projection maps of fiber product V ×U V. We need to

show that there is a morphism f ∈ homEt/X(U, Z) such that g = f ◦ h. Define Vi := g−1(Zi) and

Ui := h(Vi). We know that Vi is open in V, and since h is étale (and hence open), it follows that

Ui is also open, implying that they are schemes. We know that the composites

Vi ×Ui Vi Vi Zi

pi

qi

g|Vi
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agree. Since Zi is affine, the g|Vi factor uniquely through fi : Ui → Zi. Now, we demonstrate that

fi|Ui∩Uj = f j|Ui∩Uj .

Let Vi,j := Vi ×U Vj, and let Uij := Im(hi|Vi,j : Vi,j
pi−→ Vi ↪→ V h−→ U). The morphism hi|Vi,j is a

composite of étale morphisms, so it is also étale. Thus, Ui,j is an open subset. Since hi|Vi,j(Vi,j) =

Ui,j is open, the morphism of schemes

Vi,j → Vi ↪→ V h−→ U

factor through

Vi,j
hi,j−→ Ui,j ↪→ U.

Since Ui,j is an open subset, the morphism Ui,j ↪→ U is étale. Therefore, by 4) of Proposition

2.1.15, hi,j is an étale morphism. Since hi,j is surjective and gi|Vi,j(Vi,j) ⊆ Zi, the morphism gi|Vi,j

factors uniquely through fi,j : Ui,j → Zi, hence, by uniqueness fi|Ui,j = fi,j and similarly with i, j

reversed. Since g ◦ p = g ◦ q, we have gi|Vi,j = gj|Vi,j , thus, by uniqueness, fi,j = f j,i. From the

properties of fiber product, we have

Ui ∩Uj = h(Vi) ∩ h(Vi) ⊆ Ui,j.

Thus, in particular, fi|Ui∩Uj = f j|Ui∩Uj . By Lemma 1.1.25, the fi glue together to a morphism

f : U → X such that g = f ◦ h. This shows that

homEt/X(U, Z) homEt/X(V, Z) homEt/X(V ×U V, Z)

is exact.

So, we can identify schemes with sheaves on the étale topology.

Remark 2.2.6. If Z has a group structure, then hZ is a sheaf of groups.

Example 2.2.7. 1. Let Ga = Spec Z[x] be an affine scheme (affine line). Note that

homSchemes(U, Ga) = homRings(Z[x],OU(U)).

Any ring map from Z[x] to another ring is completely determined by where x maps to, which can

be any element of OU(U). So the maps in homSchemes(U, Ga) correspond to elements of OU(U)
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regarded as an abelian group. By the previous proposition,

Ga,X := Ga ×Spec Z[x] X : Et/X → Ab

is an étale sheaf on Xet, and for any étale X-scheme U,

Ga,X(U) = homEt/X(U, Ga,X)

= homSchemes(U, Ga)

= homRings(Z[t], Γ(U,OU))

= Γ(U,OU),

where the second equality is guaranteed by universal property of fiber product, and Γ(U,OU) is

regarded as an abelian group.

2. Let Gm = Spec Z[x, x−1] be an affine scheme (affine line with the origin omitted). Any ring map

from Z[x, x−1] to another ring R is uniquely determined by the image of x. Since x is invertible in

Z[x, x−1], the image under the homomorphism must be an invertible element in R. So, by the same

reasoning, we have Gm(U) = OU(U)× for any scheme U. Furthermore, Gm,X := Gm×Spec Z[x] X

is an étale sheaf on Xet and for any étale X-scheme U, we have Gm,X(U) = Γ(U,O×U ).

3. Let µn = Spec Z[x]/(xn − 1). Any ring map from Z[x]/(xn − 1) to another ring R is uniquely

determined by the image of x = x + (xn − 1). Since xn = 1 in Z[x]/(xn − 1), the image under

the homomorphism must be an element of order n in R. So,

µn(U) := {x ∈ Γ(U,OU) : xn = 1}

for any scheme U. Furthermore, µn,X = µn ×Spec Z X is an étale sheaf on Xet and for any étale

X-scheme U, we have

µn,X(U) = {x ∈ Γ(U,OU) : xn = 1}.

Remark 2.2.8. Let X be a scheme. For any natural number n, we can define a sheaf morphism

nU : Gm,X(U) −→ Gm,X(U)

s 7−→ sn.

It is easy to see that µn,X is a kernel of the map Gm,X
n−→ Gm,X, so we have the following exact sequence of
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abelian sheaves on Xet

0→ µn,X → Gm,X
n−→ Gm,X.

The map Gm,X
n−→ Gm,X is surjective under suitable assumptions on n.

Theorem 2.2.9. Let X be a scheme. Let n be invertible on X, i.e., n is invertible in OX(X). Then there is

an exact sequence

0→ µn,X → Gm,X
n−→ Gm,X → 0

of morphisms of abelian sheaves on Xet. This sequence is called the Kummer sequence on X.

Proof. We only have to show that the map Gm,X
n−→ Gm,X is surjective. For an étale X-scheme U,

and s ∈ Gm,X(U) = Γ(U,OU)
×. If we can find a covering {Ui → U} of U in Xet such that the

map si ∈ Gm,X(Ui) = Γ(Ui,OUi)
×, induced by s, are n-th power in Γ(Ui,OUi)

×. Then, from the

definition of the abelian sheaf, s is also an n-th power in Γ(Ui,OUi)
×. Since any scheme has an

open affine covering, we can assume that U is an affine scheme.

But this is a consequence of the following observation: if A is a ring with n invertible in A, and

s ∈ A×, then the A-algebra B := A[t]/(tn − s) is free of rank n, in particular the inclusion map

i : A ↪→ A[t]/(tn − s) is faithfully flat, i.e., Spec(i) : Spec B → Spec A is surjective. Since d
dt (t

n −

s) = ntn−1 has an inverse t
ns in A[t]/(tn − s), the map i is a standard étale homomorphism, in

particular étale. Moreover, we have tn
= s where t is the image of t in A[t]/(tn − s).

Example 2.2.10. Let A be a discrete abelian group. We denote by AX or simply A the sheaf associated to

the presheaf U 7→ A for étale X-schemes U. AX is called the constant sheaf with value in A. This sheaf

is representable, as demonstrated on page 99 of [32]:

AX(U) = homEt/X(U, ⨿
A

X).

2.3 Direct and inverse image

Next, we introduce the direct image and inverse image functors, which are specific geometric

morphisms in the étale topology. These functors serve as tools for studying the relationship

between the categories of sheaves on two different étale sites. These functors are analogous to

the direct image and inverse image functors for sheaves on topological spaces.

Definition 2.3.1. Let π : Y → X be a morphism of schemes, and let P be a presheaf on Yet. The direct

image functor π∗ : Psh(Yet)→ Psh(Xet) is given by

π∗P(U) = P(U ×X Y),
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where U → X is an étale morphism. Since U ×X Y → Y is étale (because it is a base change of étale

morphism), π∗ is well-defined.

Lemma 2.3.2. If F is a sheaf, then also is π∗F.

Proof. For an étale morphism U → X, let UY denote the scheme U ×X Y. Then U 7→ UY is a

functor taking étale maps to étale maps, surjective families of maps to surjective families, and

fiber products over X to fiber products over Y.

Let {Ui → U}i∈I be an étale covering in Et/X of . Then {(Ui)Y → UY} is an étale covering in

Et/Y. And so

F(UY) ∏i∈I F((Ui)Y) ∏i,j∈I F((Ui)Y ×Y (Uj)Y)

is exact. But this is equal to the sequence

π∗F(U) ∏i∈I(π∗F)(Ui) ∏i,j∈I(π∗F)(Ui ×X Uj)

which is also exact, as required..

So the restriction of π∗

π∗ : Sh(Yet)→ Sh(Xet)

is well defined.

Proposition 2.3.3. If the morphism π is finite, then the functor π∗ is exact.

Proof. See Proposition 8.3 and 8.4 of [21].

Let π : Y → X be a morphism of schemes. Now, we define a left adjoint for the functor π∗. Let

P be a presheaf on Xet. For V → Y étale, we define

P†(V) := lim−→ P(U)

where the injective limit runs over the commutative diagrams

V

��

// U

��
Y // X

with U → X étale. It is easy to see that P† is a preshaef. And for any presheaf Q on Y, there are

natural bijections between the following:
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• morphism P† → Q;

• families of functions P(U) → Q(V), indexed by commutative diagrams as described

above, and compatible with restriction maps;

• morphism P→ π∗Q.

Hence,

homYet(P†, Q) ∼= homXet(P, π∗Q), (2.1)

functorially in P and Q.

In general, P† is not necessarily a sheaf, even if P is. Therefore, we define:

Definition 2.3.4. Let π : Y → X be a morphism of schemes, and let P be a presheaf on Yet. The inverse

image functor π∗ : Sh(Xet)→ Sh(Yet) is given by

π∗P = a(P†),

where a(P†) is the étale sheaf associated with P†.

Proposition 2.3.5. The direct image functor π∗ : Sh(Yet)→ Sh(Xet) is a right adjoint to π∗.

Proof. The proof follows from the isomorphisms

homYet(π
∗F, G) ∼= homYet(F†, G) ∼= homXet(F, π∗G).

The first isomorphism uses the fact that sheafification is the left adjoint to the inclusion, and the

second follows from the isomorphism 2.1.

Proposition 2.3.6. Let π : Y → X be a morphism of schemes. The inverse image functor π∗ is exact.

Proof. See Remark 8.9 [21] or 1.4.2, Chapter II of [32].

By Lemma 1.2.35, the direct image functor preserves injective objects.

Proposition 2.3.7. Let π : U → X be an étale morphism of schemes. The inverse image functor π∗ has

an exact left adjoint j!. In particular, π∗ preserves injective objects.

Proof. See Remark 8.16 of [21].

These properties are crucial for exploring the relationship between étale cohomology on two

different étale sites.
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Chapter 3

Real Algebra and Real Spectrum

In this chapter, we present some basic facts and concepts from real algebra and real algebraic

geometry. The main references are [3], [2], [1], and [19]. In the first section, we introduce the

positive cone, an algebraic description of the ”positive set”, and the notion of a real closed field,

which serves as an analogue to algebraically closed fields in real algebra and real algebraic ge-

ometry.

In the second section, we introduce real ideals and prove the Real Nullstellensatz, which es-

tablishes a correspondence between real points and orderings in the coordinate rings.

In the third section, we present real closed valuation rings, convexity, and Archimedean prop-

erty. We will also prove that a ring is a real closed valuation ring if and only if it is a convex

subring of a real closed field.

In the final section, we introduce another key concept of the thesis: the real spectrum. We will

explain why the real spectrum is useful in real algebraic geometry and provide a comparison

between the Zariski spectrum and the real spectrum. Moreover, we will prove that the real

spectrum of a real valuation ring is homeomorphic to its Zariski spectrum.

3.1 Cone and real field

In this thesis, an ordering of a field refers to a linear ordering that is compatible with both addi-

tion and multiplication.

Definition 3.1.1. An (compatible) ordering of a field K is a total order relation ≤ with additional

axioms:

For any x, y, z ∈ K

i - x ≤ y =⇒ x + z ≤ y + z;
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ii - x ≥ 0, y ≥ 0 =⇒ xy ≥ 0.

An ordered field is a field K equipped with an ordering ≤, denoted (K,≤).

Remark 3.1.2. The last axiom can be replaced by (z ≥ 0, x ≥ y =⇒ xz ≥ yz).

There are several ways to study the ordering of a field; one of them is through the positive set

of the field.

Definition 3.1.3 (Cone). A cone in a field K is a subset P ⊆ K with induced operations satisfying the

following properties:

i - P + P ⊆ P;

ii - P · P ⊆ P;

iii - ∑ K2 ⊂ P.

where ∑ K2 is the set of sums of squares of K.

We will say that a cone is proper if −1 /∈ P;

We will say that a cone is positive if it is proper and P ∪−P = K.

Remark 3.1.4. Note that if the cone P is proper, then P ∩ −P = 0. Furthermore, the set of sums of

squares forms a cone, and it is contained in every other cone.

Proposition 3.1.5. ∑ K2 \ {0} is a multiplicative group.

Proof. 1 = 12 ∈ ∑ K2 \ {0}.

Now, let x, y ∈ ∑ K2 \ {0} be two elements such that x = x2
1 + ... + x2

n and y = y2
1 + ... + y2

m.

We have that

xy = (x2
1 + ... + x2

n)(y
2
1 + ... + y2

m) =
n

∑
i=1

m

∑
j=1

x2
i y2

j

and

x−1 =
x
x2 =

( x1

x

)2
+

( x2

x

)2
+ ... +

( xn

x

)2
.

Therefore, ∑ K2 \ {0} is a group.

Now, we prove that in a field, the ordering and the positive cone are equivalent notions.

Proposition 3.1.6. If K is a field and P ⊂ K is a positive cone, then the relation ≥ (is sometimes also

denoted by ≥P) defined by

x ≥ y ⇐⇒ x− y ∈ P

is an ordering.
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Proof. Let’s check the axioms, let a, b, c ∈ K

i - a− a = 0 ∈ P is equivalent to a ≤ a

ii - (a− b ∈ P, b− c ∈ P =⇒ a− c ∈ P) is equivalent to (a ≥ b, b ≥ c =⇒ a ≥ c)

iii - (a− b ∈ P, b− a ∈ P =⇒ a = b) is equivalent to (a ≤ b, b ≤ a =⇒ a = b)

iv - a− b ∈ K ⇐⇒ a− b ∈ P or a− b ∈ −P is equivalent to a ≤ b or b ≤ a

v - a− b = a + c− (b + c) ∈ P is equivalent to (a ≤ b =⇒ a + c ≤ b + c)

vi - (a ∈ P, b ∈ P =⇒ ab ∈ P) is equivalent to a, b ≥ 0 =⇒ ab ≥ 0

Proposition 3.1.7. Let (K,≤) be an ordered field, the subset P := {x ∈ K : x ≥ 0} is a positive cone of

K.

Proof. Let a, b ∈ P, c ∈ K, then we have:

i - a + b ≥ 0 is equivalent to a + b ∈ P

ii - ab ≥ 0 is equivalent to ab ∈ P.

iii - If c ≥ 0, then c2 ≥ 0; if c < 0, then −c > 0. Therefore c2 = (−c)2 ≥ 0, So we have c2 ∈ P.

From the previous items, ∑ K2 ⊂ P.

iv - Suppose that −1 ∈ P. Then, we have 0 = −1 + 1 ≥ 0 + 1 = 1. Since 0 ̸= 1 we have 0 > 1,

which implies that 1 /∈ P, a contradiction, as 1 = 12 ∈ P by the previous item.

v - By the definition of linear ordering, we have either c ≤ 0, or c ≥ 0, therefore P ∪−P = K.

So, there is a bijective correspondence between positive cones and compatible orderings. For

this reason, studying an ordering of field is equivalent to studying a positive cone of a field.

Since a cone has an algebraic structure, so it gains the advantage in some situations compared to

the order relation.

Thus, we sometimes use the following definition of an ordered field.

Definition 3.1.8. An ordered field is a field together with a positive cone, in other words, an ordered

field is a pair (K, P), where K is a field and P ⊂ K is a positive cone.
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Notation 3.1.9. Let (K, P) be an ordered field, and let a, b be two elements of K such that a <P b. We will

denote the open interval between a and b in P (i.e., the set {x ∈ K : a <P x <P b}) by (a, b)P. similarly,

we denote the closed interval between a and b in P by [a, b]P.

Definition 3.1.10 (Real Field). A (formally) real field is a field that has an ordering, or equivalently,

has a positive cone.

The concepts of a ”formally real field” and an ”ordered field” are not the same. A ”formally

real field” is a field that has an ordering. In contrast, an ”ordered field” is a field that is equipped

with a total ordering that is compatible with the field operations.

Lemma 3.1.11. Let P ∈ K be a proper cone.

i - If −a /∈ P, then P[a] = {x + ay : x, y ∈ P} is a proper cone of K.

ii - The cone P is contained in a positive cone of K

Proof. i - It is clear that P ⊂ P[a] = {x + ay : x, y ∈ P} is a cone, we need to prove that

−1 /∈ P[a]: Suppose by absurdity, x + ay = −1 for some x, y ∈ P, if y = 0, we have

x = −1 ∈ P, contradicts hypothesis, if y ̸= 0, then y admits a inverse, therefore

x + ay = −1 ⇐⇒ −ay = x + 1 ⇐⇒ −a = (1/y)2y(x + 1) ∈ P,

contradicts hypothesis again. Thus we conclude that P is a proper cone.

ii - Using Zorn’s lemma, there exists a maximal proper cone Q that contains P, we need to

prove that Q∪−Q = K: Let−a /∈ Q, (it exists because−1 /∈ Q,) thus, by the previous item,

we have Q[a] is a proper cone. Since Q is maximal, Q = Q[a] and therefore a ∈ Q[a] = Q,

as desired.

This lemma tells us that a positive cone is a maximal proper cone and if a field admits a proper

cone, then it admits a positive cone, that is, it admits an ordering. Since the set of sums of squares

is a cone contained in every other cone, we have the following theorem:

Theorem 3.1.12. A field R is real if and only if −1 /∈ ∑ R2.

We had probably heard that the field of complex numbers has no order, with this, we can

easily conclude that a complex number does not have an ordering compatible with addition and

multiplication.
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Proposition 3.1.13. Let F be a field with char(F) = 0 and P be a proper cone of F. Then P is the

intersection of all positive cones of F containing P.

Proof. The cone P is necessarily contained in this intersection. If a /∈ P, then P[−a] is a proper

cone by the Lemma 3.1.11 (i). Moreover the Lemma 3.1.11 (ii) ensures that there exists a positive

cone containing P[−a] but not a.

Corollary 3.1.14. If F is a real field, then ∑ F2 is the intersection of all positive cones of F.

Definition 3.1.15 (Real Closed Field). Let R be a real field, R is said to be real closed if has no

nontrivial algebraic extension that can be ordered.

We have some equivalence of real closed field.

Theorem 3.1.16. Let R be a real field, the following properties are equivalent:

i - R is real closed.

ii - R(2) = {x2 : x ∈ R} is a unique positive cone of R, and every polynomial of R[X], of odd degree,

has a root in R.

iii - R(i) = R[X]/ < X2 + 1 > is an algebraically closed field.

iv - Let a, b ∈ R, p ∈ R[X]. If p(a)p(b) < 0, then p has a root x ∈ R such that a < x < b.

Proof. i) =⇒ ii) Let a ∈ R, if
√

a /∈ R then R′ = R[X]/ < X2 − a > is a nontrivial algebraic

extension of R. Since R is a real closed field, R′ is not a real field, therefore −1 ∈ ∑(R′)2, that is,

−1 =
n

∑
i=1

(xi + yi
√

a)2 =
n

∑
i=1

x2
i + a

n

∑
i=1

y2
i ,

for some xi, yi ∈ R. Since R is a real field, we have −1 ̸= ∑n
i=1 x2

i , this implies that 0 ̸= ∑n
i=1 y2

i .

Since the set of non-zero sums of squares is a group (see Proposition 3.1.5),

−a = (
n

∑
i=1

y2
i )
−1(1 +

n

∑
i=1

x2
i ) ∈∑ R2,

So, we can state that R = ∑ R2 ∪ −∑ R2, i.e., ∑ R2 is a positive cone (a maximal proper cone).

Since ∑ R2 is contained in every positive cone, we conclude that ∑ R2 is the unique positive

cone. Moreover, the equation above indicates that if
√

a /∈ R then a is negative, this is logically

equivalent to every positive element admits a square root in R. Therefore R(2) = ∑ R2 is a unique

positive cone.
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It remains to show that every polynomial in R[X] of odd degree admits a root. Let’s do it by

induction: Let ϕ(n): If f ∈ R[X], deg( f ) ≤ 2n + 1 and deg( f ) ∈ (2N+ 1), then there exists x ∈ R

such that f (x) = 0.

• n = 0: any polynomial f = aX + b with a ̸= 0 always vanishes in −b
a ,

• ϕ(n) implies ϕ(n + 1): Let f ∈ R[X] be a polynomial of odd degree such that deg( f ) ≤

2n + 3. If deg( f ) < 2n + 3, then deg( f ) ≤ 2n + 1, consequently f has a root. Suppose that

deg( f ) = 2n + 3 and it does not have a root. Then f is irreducible: suppose not, f = gh,

where 2n + 3 > deg(g) and deg(h) > 0. Since deg( f ) is an odd and since

deg( f ) = deg(g) + deg(h),

at least one between g and h has an odd degree, but this implies that f has a root by the

hypothesis of induction, contradicts the hypothesis.

Since f is irreducible, R′ = R[X]/ f R[X] is an algebraic extension of R, and repeating the

previous argument, we obtain

−1 = (
n

∑
i=1

h2
i ) + f g ∈∑(R′)2,

where deg(hi) < 2n + 3.

Since deg(∑n
i=1 h2

i ) < 4n + 6 is an even, deg(g) < 2n + 3 is an odd, therefore by the induc-

tion hypothesis, g admits a root x. So, we have

−1 = (
n

∑
i=1

h2
i (x)) + f (x)g(x) =

n

∑
i=1

h2
i (x) ∈∑ R2,

contradicts the hypothesis. Thus, by principle of induction, every polynomial in R[X] of

odd degree admits a root.

ii) =⇒ iii) For this implication, we need the following lemma:

Lemma 3.1.17. Let K be a field, let f ∈ K[X] be a polynomial of degree n, and let x1, ..., xn be roots of

f in an algebraically closed field C that contains K. If Q(X1, ...Xn) ∈ K[X1, ...Xn] is symmetric, (i.e.,

Q(X1, ...Xn) = Q(Xσ(1), ...Xσ(n)) for any σ ∈ Sn), then Q(x1, ...xn) ∈ K (See Proposition 2.24 of [2]).

We want to prove that all even-degree polynomials have roots in R(i). We apply induction on

ϕ(n): If f ∈ R[X], p := deg( f ) = 2nm and m ∈ (2N + 1), then there exists x ∈ R(i) such that

f (x) = 0.
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• n = 0: This case follows from the hypothesis.

• ϕ(n) implies ϕ(n + 1): Let x1, ..., xp be all the roots of f counting multiplicities in an alge-

braically closed field C, since R(i) is an algebraic extension, R(i) ⊂ C. Now for each h ∈ Z

we define

Qh(X1, ..., Xp, X) = ∏
λ<µ

(X− Xλ − Xµ − hXλXµ).

This polynomial is symmetric in X1, ..., Xp, therefore, by the lemma above, we have

Qh(x1, ..., xp, X) ∈ R[X] with deg(Qh(x1, ..., xp, X)) = (p
2) = p(p−1)

2 . Note that p − 1 is

an odd, by the induction hypothesis, Qh(x1, ..., xp, X) has a root in R(i), that is, there ex-

ist λ and µ such that xλ + xµ + hxλxµ ∈ R(i). Since h ∈ Z is arbitrary, Z is infinite

and combinations of λ and µ are finite, there exist λ, µ, h and h′ with h ̸= h′ such that

xλ + xµ + hxλxµ ∈ R(i) and xλ + xµ + h′xλxµ ∈ R(i). Thus, we have xλ + xµ ∈ R(i) and

xλxµ ∈ R(i). Note that xλ and xµ are roots of X2 − (xλ + xµ)X + xλxµ ∈ R(i)[X]. The dis-

criminant of this polynomial is (xλ − xµ)2 ≥ 0. From the hypothesis, the square root of the

discriminant exists, hence the roots xλ, xµ of f are inside R(i).

Therefore, every polynomial in R[X] has a root in R(i).

It remains to show that f ∈ R(i)[X] also has a root in R(i). In this case we have f = g + hi,

where g, h ∈ R[x]. Since f f = (g + hi)(g− hi) = g2 + h2 ∈ R[x], there exists x ∈ R(i) such that

f f (x) = 0, i.e., either f (x) = 0 or f (x) = 0. If f (x) = 0, we have what we need. If f (x) = 0 we

have f (x) = 0. Thus, f has a root in R(i), as desired.

iii) =⇒ i) Since R(i) is algebraically closed and contains R, the only proper algebraic ex-

tension of R is R(i) which is not real (−1 = i2 ∈ ∑ R(i)2), it suffices to prove that R is real.

Since there does not exist i ∈ R such that i2 = −1, if we can prove that all sums of squares are

squares, we conclude the proof: By the hypothesis, for every a, b ∈ R, there exist c, d ∈ R, such

that a + ib = (c + id)2, multiplying both sides by the conjugate we obtain a2 + b2 = (c2 + d2)2.

iii) =⇒ iv): Let f ∈ R[X], and let a, b ∈ R such that f (a) f (b) < 0. Since R(i)[X] is

algebraically closed, then f can be written as linear factors f = (X − a1 − b1i)....(X − an − bni).

Since at a and b, f has opposite sign, then some factors have opposite sign at a and at b. Without

loss of generality, suppose that (a− a1 − b1i) > 0 and (b− a1 − b1i) < 0. Since R[i] is not a real

field, we have b1 = 0, therefore a1 ∈ R satisfies b < a1 < a and is a root of f .

iv) =⇒ ii): Since a monic polynomial of odd degree f (x) ∈ R[X] tends to +∞ (respectively

−∞) when x tends to +∞ (respectively −∞), there exist a, b ∈ R such that f (a) f (b) < 0, by the

hypothesis, f admits a root in R.

We need to prove that all positive numbers in R admit a square root: If p ∈ R is a non-
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zero positive element (for 0 is trivial), we consider f (X) = X2 − p. since f (0) = −p < 0 and

f (p + 1) = p2 + p + 1 > 0, by the hypothesis, f admits a root in R as desired.

Every real field has a real closed extension, and this extension is unique up to isomorphism.

Definition 3.1.18. A real closure of a real field is an algebraic extension that is also a real closed field.

Theorem 3.1.19. Every ordered field F has a real closure. If R and R′ are two real closures of F, then

there is a unique F-isomorphism ϕ : R→ R′.

Proof. See 1.3.2 of [3].

Proposition 3.1.20. Let F be an ordered field, let R be a real closure of F, and let R′ be a real closed

extension of F whose ordering extends that of F. Then there exists a unique F-homomorphism ϕ : R→ R′.

In particular, if R′ is also a real closure of F, then the homomorphism ϕ is an isomorphism.

Proof. This is the Proposition 1.3.4 of [3].

3.2 Real Nullstellensatz

First, we prove the Artin-Lang homomorphism theorem using a result from model theory. This

theorem will then be applied to prove the Real Nullstellensatz.

Theorem 3.2.1 (Artin-Lang homomorphism theorem). Let R′ and R be real closed fields such that

R ⊂ R′, and let A be an R-algebra of finite type. If there exists a homomorphism of R-algebras ϕ : A →

R′, then there exists a homomorphism of R-algebras ψ : A→ R.

Proof. Since A is an Algebra of finite type, it can be represented by R[X1, ..., Xn]/I for some nat-

ural n, furthermore by Hilbert’s basis theorem, I is finitely generated, that is, there exist P1, ..., Pm

as generators of I. Let ϕ : R[X1, ..., Xn]/I → R′ be a homomorphism, by definition of homomor-

phism,

0 = ϕ(Pi) = ϕ(Pi(X1, ..., Xn)) = Pi(ϕ(X1), ...ϕ(Xn))

for i = 1, ..., m. This means

R′ |= (∃X1)...(∃Xn)(P1(X1, ..., Xn) = ... = Pm(X1, ..., Xn) = 0).

Since the theory of real closed fields is model complete (see 3.3.16 of [18]), we have

R |= (∃X1)...(∃Xn)(P1(X1, ..., Xn) = ... = Pm(X1, ..., Xn) = 0).
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In other words, there exists (a1, ..., an) ∈ Rn such that P1(a1, ..., an) = ... = Pm(a1, ..., an) = 0.

Finally, we can define an R-homomorphism ψ : R[X1, ..., Xn] → R with ψ(Xi) = ai. Since

(a1, ..., an) is a solution of P1(X1, ..., Xn) = ...Pm(X1, ..., Xn) = 0,

ψ(P1(X1, ..., Xn)) = ... = ψ(Pm(X1, ..., Xn)) = 0.

This implies that I ⊂ Ker ψ, therefore by homomorphism theorem, we have a homomorphism

ψ : R[X1, ..., Xn]/I → R such that the following diagram commutes

R
ψ //

π
��

R′

R/I.
ψ

<<

Definition 3.2.2. Let A be a ring (commutative with unity). An ideal I of A is said to be real ideal if

and only if, for any a1, ..., an ∈ A, we have

a2
1 + .... + a2

n ∈ I implies that ai ∈ I f or i = 1, ..., n.

Hilbert’s Nullstellensatz theorem is restricted to algebraically closed fields, however, it is

amazing that we can establish an analogue of the Nullstellensatz for real closed fields using

real ideal. Let us prove some results about real ideals firstly, and then we prove the Real Null-

stellensatz.

Lemma 3.2.3. Every real ideal I of a ring A is a radical ideal. Furthermore, if A is Noetherian, then every

minimal prime ideal that contains I is real. In particular, if A is Noetherian and I is a real ideal of A, then

there exist finite prime real ideals p1, ..., pq such that I =
⋂q

i=1 pi

Proof. If an ∈ I, then we have

• If n is an even, then, by definition of a real ideal, a
n
2 ∈ I;

• If n is an odd, then since an+1 = a · an ∈ I, by definition of a real ideal, a
n+1

2 ∈ I

In both cases, the power decreases, indicating that through iterative processing, we can conclude

that a ∈ I. This demonstrates that I is a radical ideal.

Since I is a radical, then we have
⋂

p∈Spec(I) p = I. Let p be a minimal prime ideal of I. Since

A is Noetherian, there are p1, ..., pq ∈ Spec(I) minimal prime ideals of I such that
⋂n

i=1 pi = I. If
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q = 1, we are done, since p1 = I is real. Suppose that q > 1, if p1 is not real, then there exist

a1, .., ak ∈ A− p1 such as a2
1 + ... + a2

k ∈ p1. We choose bi ∈ pi − p1 (this set is nonempty, since

p1 is minimal), for i = 2, ..., q, and define b := ∏
q
i=2 bi. Then (a1b)2 + ... + (akb)2 ∈ ⋂n

i=1 pi = I,

since I is real, a1b ∈ I ⊆ p1, contradicts that a1b /∈ p1 (since a1, b /∈ p1). Since p1 is arbitrary, we

conclude that all minimal prime ideals containing I are real.

Lemma 3.2.4. Let A be a ring (commutative with unity), and let I be a prime ideal of A. I is real if and

only if the field of fractions of A/I is real.

Proof. It is easy to see that a field F is real if and only if for all x1, ..., xn ∈ F, ∑n
i=1 x2

i = 0 implies

that x1 = ... = xn = 0. The proof follows directly from the definition of a real ideal and this

equivalence.

Lemma 3.2.5. Let A be a ring (commutative with unity), I an ideal of A. Then,

R
√

I = {a ∈ A : ∃m ∈N, ∃b1, ..., bn ∈ A a2m + b2
1 + ... + b2

n ∈ I}

is the smallest real ideal of A containing I. The ideal R
√

I is said to be the real radical of I. Moreover, if

A is Noetherian, then R
√

I is equal to the intersection of all real prime ideals containing I (or I is proper A,

in which case there is no prime ideal that contains I).

Proof. Let’s prove R
√

I is a ideal first. The difficult part is to verify that R
√

I is closed under addi-

tion. Suppose

a2m + b2
1 + ... + b2

n ∈ I and (a′)2m′ + (b′1)
2 + ... + (b′n)

2 ∈ I.

We can write

(a + a′)2(m+m′) + (a− a′)2(m+m′) = a2mc + (a′)2m′c′,

where c and c′ are the sum of the squares of the elements of A. Then

c(a2m + b2
1 + ... + b2

n) + c′((a′)2m′ + (b′1)
2 + ... + (b′n)

2) ∈ I,

i.e.,

(a + a′)2(m+m′) + (a− a′)2(m+m′) + c(b2
1 + ... + b2

n) + c′((b′1)
2 + ... + (b′n)

2) ∈ I,

therefore, a + a′ ∈ R
√

I.

It is straightforward to observe that R
√

I is real. Here is some immediate facts about real radi-

cals:

• If I, J are ideals with I ⊆ J, then R
√

I ⊆ R
√

J.
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• Every real ideal is itself real radical.

Hence, for every real ideal J containing I, R
√

I ⊆ R
√

J = J, this demonstrates that R
√

I is the

smallest real ideal containing I.

By the Lemma 3.2.3, any minimal prime ideal of R
√

I is a real prime ideal containing I. Since a

real radical ideal is radical,

R
√

I ⊆
⋂

p is real prime ideal containing I

p ⊆
⋂

p is minimal prime ideal of R√I

p =
R
√

I

i.e., R
√

I is the intersection of all real prime ideals containing I.

For the last statement, the assumption that A is Noetherian can be omitted, see the Proposition

4.1.7 of [3].

Theorem 3.2.6. Let R be a real closed field and I an ideal of R[X1, ..., Xn]. Then I = I(V(I)) if and only

if I is real.

Proof. Assume that I = I(V(I)). If P1, ..., Ps are polynomials such that P2
1 + ... + P2

s ∈ I, then

Pi(x) = 0 for every x ∈ V(I) and i = 1, ..., s. Hence, Pi ∈ I, for i = 1, ..., s. We prove that I is real.

We begin by proving the theorem for the case of a real prime ideal, and then generalize it to

any real ideal. Assume that J is a real prime ideal. It is clear that J ⊆ I(V(J)), so we need to

prove that for any P ∈ R[X1, ..., Xn] \ J, P /∈ I(V(J)). We denote the image of P in the residue ring

B := R[X1, ..., Xn]/J by P. We choose an ordering of the field of fractions of B, which is possible

by Lemma 3.2.4, let R1 be a real closure of this ordered field. Let A := BP be a ring. It is clear

that A is a finite type R-algebra that is contained in R1 (there is an inclusion homomorphism),

by the Artin-Lang homomorphism Theorem 3.2.1, there is a homomorphism of the R-algebra

ψ : A → R. We define x = (ψ(X1), ..., ψ(Xn)). Then Q(x) = ψ(Q) = ψ(0) = 0 for all Q ∈ J,

therefore x ∈ V(J). However, since P is invertible in A, P(x) = ψ(P) ̸= 0, this shows that

P /∈ I(V(J)). Hence, J = I(V(J)).

Now, let I be a arbitrary real ideal. By Lemma 3.2.3, there exist real prime ideals p1, ..., pq ∈

Spec(I) such that
⋂n

i=1 pi = I. Thus, f ∈ I(V(I)) implies that f (x) = 0 for all x ∈ V(I) =⋃n
i=1 V(pi), i.e., f ∈ ⋂n

i=1 pi = I. This shows that I ⊆ I(V(I)), since I(V(I)) ⊆ I is obvious, we

conclude that I = I(V(I)).

Corollary 3.2.7 (Nullstellensatz real). Let R be a real closed field and I be an ideal of R[X1, ..., Xn].

Then R
√

I = I(V(I)).

Proof. Use R
√

I equal to the intersection of all real prime ideals containing I and apply the previ-

ous theorem.
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Corollary 3.2.8. Let Z ⊆ Rn be an irreducible algebraic set, and let I ⊆ R[Z] be an ideal. Then,

IZ(V(I)) := {P ∈ R[Z] : P(x) = 0 ∀x ∈ V(I)} = R
√

I

.

Unlike algebraic sets defined by a non-constant polynomial f in an algebraically closed field,

an algebraic set defined by a non-constant polynomial in a real closed field can be empty. For

example, the maximal ideal (X2 + 1) ⊆ R[X] corresponds to an empty algebraic set. The Real

Nullstellensatz ensures that R
√

I = I(V(∅)) = R[X1, ..., Xn], so a ideal I corresponds to a non-

empty algebraic set in Rn if and only if I is contained in a real ideal. For this reason, a maximal

ideal corresponds to a point if and only if it is real.

Theorem 3.2.9. Let R be a real closed field, and let A = R[X1, ..., Xn]. Then an ideal m is a real maximal

ideal of A if and only if m is of the form (X1 − a1, ..., Xn − an) for some a1, ..., an ∈ R.

Proof. Let a = (a1, ..., an) ∈ Rn be any element, and let m = (X1 − a1, ..., Xn − an). The function

A → R, with p 7→ p(a) is trivially a homomorphism with kernel equal to m. Therefore, by the

isomorphism theorem, we have A/m ∼= R, so m is maximal, and by the Lemma 3.2.4, m is real.

Let m be a maximal and real ideal. Since A is a finite type R-algebra, A/m is a real algebraic

extension of R. By the definition of real closed field, R = A/m. Therefore, there is a natural

isomorphism

ϕ : R ↪→ A π−→ A/m = R.

Let bi := π(Xi) and ai := ϕ−1(bi). Then for each i, we have

Xi − ai ∈ ker π = m.

And therefore,

(X1 − a1, ..., Xn − an) ⊆ m.

But (X1 − a1, ..., Xn − an) is a maximal ideal, hence, we have the equality (X1 − a1, ..., Xn − an) =

m.

Hence, there is a bridge connecting the orderings and the real algebraic sets.

Corollary 3.2.10. Let R be a real closed field and let A = R[X1, ..., Xn]. The maps V : {ideals o f A} →

{subsets o f An
R}, I : {subsets o f An

R} → {ideals o f A} induce the bijective functions between

• {algebraic sets in An
R} and {real ideals o f A};
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• {irreducible sets in An
R} and {real prime ideals o f A};

• {points in An
R} and {real and maximal ideals o f A}

Proof. The proof follows from Theorem 3.2.7 and Theorem 3.2.9.

In particular, the ordering of a field is closely related to the real points of algebraic varieties.

This connection allows the ordering of a field to be used in the study of Diophantine equations

via the Hasse principle. Given a polynomial equation f (x) = 0 with rational coefficients, if it

has a rational solution, then it also has a real solution and a solution in the p-adic numbers. A

polynomial f (x) is said to satisfy the Hasse principle if the reverse is also true. If f (x) satisfies

the Hasse principle, then an ordering on the coordinate ring associated with f (x) can be seen

as part of the ”structure” of a rational point. By identifying corresponding ”parts” of a rational

point in the p-adic field, these local solutions can be combined to form a global solution.

3.3 Convex subring

In this section, we present real closed valuation rings, convexity, and Archimedean property. We

will also prove that a ring is a real closed valuation ring if and only if it is a convex subring of a

real closed field.

Definition 3.3.1. A real closed valuation ring is a valuation ring whose residue field and whose field

of fractions are both real closed.

Definition 3.3.2. Let (K, P) be an ordered field. A subset M ⊆ K is said to be P-convex if

a, b ∈ M, c ∈ K, a <P c <P b =⇒ c ∈ M.

The smallest P-convex set that contains a given set M ⊆ K is called the P-convex hull of M in K.

Proposition 3.3.3. If (K, P) is an ordered field, every P-convex subring of K is a valuation ring of K.

Proof. Let B ⊆ K be a P-convex subring. Since 1 ∈ B, we have [−1, 1]P ⊆ B. So if a ∈ K× satisfies

|a| ≤P 1, then a ∈ B. If |a| >P 1, then a−1 ∈ B. Hence B is a valuation ring.

Proposition 3.3.4. Let (K, P) be an ordered field and let A be a subring of K.

1. The P-convex hull of A in K is a subring of K. In particular, it is a valuation ring of K.

2. A is P-convex in K if and only if [0, 1]P ⊆ A.

3. If A is P-convex in K, then so is every A-submodule of K.
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Proof. 1. Let B be a P-convex hull of A in K. Then

B =
⋃

a∈A

[−|a|, |a|]

which is clearly an additive subgroup of K. It remains to prove that B is closed by mul-

tiplication. If x, y ∈ B, then x ∈ [−a, a]P and y ∈ [−b, b]P for some a, b ∈ A. Since

−ab ≤P xy ≤P ab, we have xy ∈ B as desired.

2. If A is P-convex in K, it’s obvious that the interval [0, 1]P is a subset of A. Assume [0, 1]P ⊆

A. Then, for every a, b ∈ A and c ∈ K such that a <P c <P b, we have a + t(b− a) ∈ A for

all t ∈ [0, 1]P. In particular, c = a + c−a
b−a (b− a).

3. Let M be an A-submodule of K. If x ∈ M such that x ≥P 0, then

[−x, x]P = {ax : a ∈ K, a ∈ [−1, 1]P}

is contained in Ax ⊆ M, which shows that M is P-convex.

Corollary 3.3.5. Let (K, P) be an ordered field and let B be a valuation ring of K. The following properties

are equivalent:

1. B is P-convex in K.

2. Every prime ideal p is P-convex in B.

3. If p is a prime ideal, then, for every a ∈ p, one has −1 <P a <P 1.

4. For every a ∈ mB, one has −1 <P a <P 1.

Proof. 1) =⇒ 2) : holds by the previous proposition.

2) =⇒ 3) : if 1 <P a, then 1 ∈ p, a contradiction.

3) =⇒ 4) : by the hypothesis, such property holds for the maximal ideal mB.

4) =⇒ 1) It suffices to show [0, 1]P ⊆ B. Let x ∈ [0, 1]P, if x /∈ B, we have x−1 ∈ B, hence,

x−1 ∈ mB. But x−1 >P 1, this is a contradiction.

Let (K, P) be an ordered field. And let B be a P-convex subring of K. It’s intuitive that the

ordering P induces an ordering on the quotient field of κ(p), where p is a prime ideal of B. We

will now discuss how this ordering can be constructed. Let p be a prime ideal of B, and let
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κ(p) = Frac(B/p) be its quotient field. We will denote the image of a in κ(p) by a. The subset

Pp :=
{

a
b

: a, b ∈ B, a, b ≥P 0, b /∈ p

}

of κ(p) forms a positive cone in κ(p). It is clear that Pp · Pp ⊆ Pp, Pp + Pp ⊆ Pp, and Pp ∪ −Pp =

κ(p). Now, assume that −1 ∈ Pp, then there exist a, b ∈ B with a, b ≥P 0 and b /∈ p for which

−1 = a
b
. This implies that a + b ∈ p. However, since 0 ≤ b ≤P a + b, by the previous proposition,

p is P-convex, we must have b ∈ p, which is a contradiction. Therefore, we conclude that:

Corollary 3.3.6. If B is a convex subring of an ordered field (K, P), then B is a valuation ring of K, and

the quotient field κ(p) is real for every p ∈ Spec B.

If K is a real closed field, we have stronger results.

Proposition 3.3.7. Let R be a real closed field. For every convex subring B of R and p ∈ Spec B. The

quotient field κ(p) of B is real closed.

Proof. Let f ∈ B[t] be a monic polynomial of odd degree. Since R is real closed, f has a root

x ∈ R. Because of B is a valuation ring, B is normal, therefore x ∈ B. Since every polynomial

f ∈ κ(p)[t] has a representative f ∈ B[t], every polynomial in κ(p)[t] of odd degree has a root.

Moreover, the set of squares in κ(p) is a positive cone R(2)
p corresponding to the R(2) of κ(p). So

κ(p) is real closed.

In particular we have

Corollary 3.3.8. A ring is a real closed valuation ring if and only if it is a convex subring of a real closed

field.

Proof. The previous proposition guarantees that every convex subring of a real closed field is a

real closed valuation ring. Let B be a real closed valuation ring. Now we will prove that B is a

convex subring of its field of fractions. Note that the unique positive cone of κ = B/mB is

P := {a2 : a ∈ B}

since κ is real closed. From the definition of positive cone, −1 /∈ P, hence a2 + 1 /∈ mB for every

a ∈ B. In other words, x <P 1 for every x ∈ mB. Hence, by multiplying both sides by −1, we

obtain x > −1 for every x ∈ mB. From the Corollary 3.3.5, B is a convex subring.

Definition 3.3.9. Let (K, P) be an ordered field and A be a subring of K. We say that K is (relatively)

archimedean over A with respect to P if, for every b ∈ K, there is a ∈ A such that b ≤P a. It is equivalent

to say that K is the P-convex hull of A in K.
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Proposition 3.3.10. If (K, P) is an ordered field, then the real closure R of K is archimedean over K.

Proof. Let x ∈ R be a non zero element, from the definition of algebraic extension, there exist

a0, ..., an ∈ K and an irreducible polynomial f (X) = a0 + ... + anX ∈ K[X] such that f (x) = 0. If

|x| > y for every y ∈ K, we have |r||x| > |r| y
|r| = y for every r ∈ K× and y ∈ K. So,

0 = |a0 + ... + anxn| ≥ |a1x... + anxn| − |a0| ≥ |a1 + a2x + ... + anxn−1||x| − |a0|

Since f (X) is irreducible, |a1 + a2x + ... + anxn−1| ̸= 0, hence 0 ≥ y− |a0| for every y ∈ K, this is

a contradiction.

3.4 Real spectrum

The Zariski spectrum of a ring A is the space of all prime ideals with a (closed) topology given

by the ”algebraic subset”. The idea of real spectrum of a ring A is analogous, it’s the space of all

ordering of the ring with a (open) topology given by the ”open semi-algebraic subset”.

First, we characterize the ordering of the ring by cone.

Definition 3.4.1. Let A be a commutative ring . A cone P of A is a subset of A satisfying:

1. P + P ⊆ P;

2. P · P ⊆ P;

3. ∑ K2 ⊆ P.

where ∑ K2 is the set of all the sums of the squares of the elements of K.

The cone P is said to be proper if −1 /∈ P.

In general, we cannot define an ordering even if a proper cone exists, because we cannot assign

a sign to certain elements, such as zero divisors. Therefore, we can only define an ordering for

a domain, specifically in the quotient ring A/p where p is a prime ideal. Since every ordering

of a domain can be extended to its quotient field (field of fractions), and every ordering of the

field induces an ordering on the domain, we can focus on the ordering of the quotient field. This

motivates us to define the prime cone, rather than the positive cone.

Definition 3.4.2. Let A be a commutative ring. A prime cone P of A is a proper cone of A satisfying:

ab ∈ P =⇒ a ∈ P or − b ∈ P.

Proposition 3.4.3. Let P be a prime cone of A, then:
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1. P ∪−P = A.

2. P ∩−P is a prime ideal of A, called the support of P and denoted by supp(P).

Proof. See the Proposition 4.3.2 of [3]

Proposition 3.4.4. Let A be a commutative ring. A subset P ⊆ A is a prime cone if and only if there

exists an ordered field (F,≤) and a homomorphism ϕ : A→ F, such that P = {a ∈ A : ϕ(a) ≥ 0}.

Proof. See the Proposition 4.3.4 of [3].

Proposition 3.4.5. Let A be a commutative ring. A subset P ⊆ A is a prime cone if and only if the image

of P under the canonical homomorphism A→ κ(supp(P))

P =

{
a
b
∈ κ(supp(P)) : ab ∈ P

}

is the positive cone of an ordering of κ(supp(P)). In particular, supp(P) is a real prime ideal.

Proof. See Proposition 4.3.4 and 4.3.5 of [3].

We have three equivalent definitions of points in the real spectrum.

Proposition 3.4.6. Let A be a ring. The following data sets are equivalent:

1. a prime cone α of A.

2. a pair (p,≤), where p is a prime ideal of A and α is an ordering of the quotient field κ(p).

3. An equivalent class of homomorphisms ϕ : A→ R with values in a real closed field, the equivalence

relation is given by: ϕ : A→ R and ϕ′ : A→ R′ are equivalent if and only if there is a commutative

diagram
R

A R′′

R′

ϕ

ϕ′

where R′′ is also a real closed field.

In detail, one goes from 1) to 2) by taking (p,≤) = (supp(α),≤α), from 2) to 3) by taking ϕ : A →

κ(p)→ R, where R is the real closure of κ(p) for≤, and from 3) to 1) by taking α = {a ∈ A : ϕ(a) ≤ 0}.

Notation 3.4.7. Let A be a commutative ring. Let (p, α) be a pair where p is a prime ideal of A and α is

an ordering of the quotient field κ(p). The real closure of the ordered field (κ(p), α) is written by κ(α).

For a ∈ A, we writes
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1. a(α) ≥ 0 (or a ≥α 0) if and only if the image of a in κ(α) is positive or equal to zero.

2. a(α) > 0 (or a >α 0) if and only if the image of a in κ(α) is strictly positive.

3. a(α) = 0 (or a =α 0) if and only if the image of a in κ(α) is equal to zero.

Definition 3.4.8. The real spectrum of A, denoted by Sper A, is the topological space whose points are

the pairs (p, α), where p is a prime ideal of A and α is an ordering of the quotient field κ(p). And the

topology of Sper A is given by the basis of open subsets

U(a1, ..., an) = {(p, α) ∈ Sper A : a1(α) > 0, ..., an(α) > 0}

where a1, ..., an ∈ A. This topology is known as the Harrison topology.

Remark 3.4.9. The subset U(a) defines a sub-basis of open subsets.

There are different ways to define the real spectrum, since we can describe the ordering of a

ring by prime cone and homomorphism of ring into an ordered field.

Example 3.4.10. The real spectrum of a field is simply the space of its orderings.

Example 3.4.11. The real spectrum of a real closed field is a point.

Proposition 3.4.12. Let ϕ : A→ B be a ring homomorphism. If β is a prime cone of B, then ϕ−1(β) is a

prime cone of A, and the mapping

Sper(ϕ) : Sper B −→ Sper A

β 7−→ ϕ−1(β)

is a continuous mapping. In the language of the category theory, Sper is a contravariant functor from the

category of commutative rings with unit to the category of topological spaces.

Proof. If ab ∈ ϕ−1(β), then ϕ(a)ϕ(b) ∈ β, from the definition of the prime cone, or ϕ(a) ∈ β or

−ϕ(b) ∈ β. Hence, or a ∈ ϕ−1(β) or −b ∈ ϕ−1(β), this shows that ϕ−1(β) is a prime cone. The

continuity follows from the equality

(Sper(ϕ))−1(U(a1, ..., an)) = U(ϕ(a1), ..., ϕ(an)).
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Proposition 3.4.13. The support map given by

supp : Sper A −→ Sper B

α 7−→ supp(α)

is a continuous map, whose image is the set of real prime ideals of A. In the language of the category

theory, the support map is a natural transformation from the functor Sper to the functor Spec.

Proof. Since p ∈ Sper A is real if and only if its quotient field κ(p) is real, it is clear that the image

of supp is the set of real prime ideals. Since D(a) = {p ∈ Spec A : a /∈ p} is a basic open subset

of Spec A and the pre-image

supp−1(D(a)) = {α : a(α) > 0 or a(α) < 0} = U(a) ∪U(−a)

is the open subset of Sper A, the support map is continuous.

For a real closed valuation ring, the real spectrum and the Zariski spectrum are homeomor-

phic.

Proposition 3.4.14. If B is a real closed valuation ring, we have the support map supp : Sper B →

Spec B is a homeomorphism.

Proof. Since supp is always continuous, it suffices to show that supp is an open bijection. From

Proposition 3.3.7, the map supp is a bijection. Note that the ordering of the quotient field κ(p)

of B is induced by the real closed field Frac(B), so, if the image of a ∈ B in any quotient field

κ(p) is positive (resp. negative), then a(α) ≥ 0 (resp. a(α) ≤ 0) for all α ∈ Sper B. Hence,

supp(U(a)) = D(a) or supp(U(a)) = ∅, since both are open subset of Spec B, the map supp is

open.

Remark 3.4.15. Every real spectrum is homeomorphic to a Zariski spectrum, since the real spectrum is a

spectral space.

Proposition 3.4.16. Let R be a closed real field, and V an algebraic set in Rn. Then the function ϕ : V →

Sper(R[V]), defined by z 7→ Pz = { f ∈ R[V] : f (x) > 0}, is injective and induces a homeomorphism

from V (with Euclidean topology) to ϕ(V).

Proof. The subset Px forms a prime cone of R[V]: f (x)g(x) > 0 implies that f (x) > 0 or −g(x) >

0. It is clear that if x ̸= y, then Px ̸= Py. Let U( f1, ..., fm) be a basic open subset. Then, we have

E( f1, ..., fm) := ϕ−1(U( f1, ..., fm)) = {x ∈ V : f1(x) > 0, ..., fm(x) > 0},
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which forms a basis for the Euclidean topology on V. Moreover, by definition,

ϕ(E( f1, ..., fm)) = U( f1, ..., fm) ∩ ϕ(V).

Therefore, ϕ is injective and induces a homeomorphism.

This is a very interesting result; we not only have an embedding, but also an embedding with

the Euclidean topology.

Any point of an algebraic set over an algebraically closed field corresponds bijectively to a

closed point in its associated Zariski spectrum. However, this does not hold in the real spectrum.

For example, the set of closed points of Sper(R[X]) is R ∪ {−∞,+∞} (for more details, see

Example 7.1.4 of [3]).

Let R be a real closed field. An R-valued point of X := Spec A is a morphism of schemes

Spec R → Spec A, which corresponds to a homomorphism A → R of rings. From the third

equivalent condition for ordering in a ring, the real spectrum Sper A can be interpreted as the

collection of real points (
⋃

R X(R))/ ∼ of X quotient by an equivalent relation, where R run

through all real closed fields.

Hence, if Sper A = ∅, then the Zariski spectrum has no real points. The converse holds when

A is an integral domain that is a finite-type R-algebra, where R is a real closed field.

Proposition 3.4.17. Let R be a real closed field, and let A be an integral domain that is a finite-type

R-algebra. Then, Sper A = ∅ if and only if the set of R-valued points (Spec A)(R) = ∅.

Proof. In this case A corresponds to an irreducible R-algebraic set V (i.e., A = R[V]), and an

R-valued point Spec R → Spec A corresponds to a ring homomorphism ϕ : A → R, which

represents a point (ϕ(X1), ..., ϕ(Xn)) of V. Therefore, it suffices to prove that V = ∅ if and only

if Sper R[V] = ∅.

Assume Sper R[V] = ∅. The previous proposition ensures that there exists an injective map

V ↪→ Sper R[V]. Therefore, we conclude that V = ∅.

Assume V = ∅, by the Real Nullstellensatz, for any prime ideal p, we have

R
√
p = I(V(p)) = I(∅) = R[V] ̸= p,

which implies that p is not real. Hence, by the second equivalence of points in the real spectrum,

we obtain Sper R[V] = ∅.
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The real spectrum can be generalized to a scheme X. The natural way to do this is by glueing

together the local real spectra, as detailed below:

Let X =
⋃

i∈I Spec Ai be a scheme, where Spec Ai forms an open affine covering of X, the real

spectrum Sper OX(Spec Ai) = Sper Ai can be glued together. The resulting topological space is

called the real spectrum of X, denoted by Xr.

Now we describe the real spectrum of a scheme and show that it is independent of the choice

of covering. Let p be a point in X, by the definition of scheme, the point p belongs to an open

affine subscheme p ∈ Spec A ⊆ X. Hence, p corresponds to a prime ideal of A, and the quotient

field κ(p) coincides with the residue field Ap/pAp = (A/p)pA/p = Frac(A/p) (since localization

is an exact functor). This means that a point (p, α) ∈ Sper OX(Spec A) = SperA corresponds

bijectively to an ordering of the residue field κ(p) of OX,p. Therefore, each point of Xr can be

identified as a pair (x, α) where x ∈ X and α is a positive cone/ordering of the residue field κ(x)

of OX,x, which is independent of the choice of covering.

Definition 3.4.18. Let X be a scheme, the real spectrum of X, denoted by Xr is a topological space

consisting of pairs (x, α), where x ∈ X and α is a positive cone of the residue field κ(x). The topology of

Xr is given by the basis of open sets

U(a1, ..., an) = {(p, α) ∈ Sper A : a1(α) > 0, ..., an(α) > 0}

where A is the ring corresponding to an open affine subscheme Spec A of X and a1, ..., an ∈ A.

Since the support map is continuous in affine case, we have

Proposition 3.4.19. The support map given by

supp : Xr −→ X

(p, α) 7−→ p

is continuous.

The functor ( )r is also a covariant functor from the category of schemes to the category of

topological spaces.

Proposition 3.4.20. If f : Y → X is a morphism of schemes, then f induces a continuous map between

the real spectral

fr : Yr −→ Xr

(y, α) 7−→ ( f (y), f #
y
−1
(α))
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where f #
y : κ( f (y))→ κ(y) is a homomorphism induced by the map f #

y : OX, f (y) → OY,y of fibers/stalks.

Just as with the real spectrum of rings, we also have a categorical description of Xr : The

elements of Xr can be identified with equivalence classes of morphisms of schemes f : Spec R→

X, where R is a real closed field. Two morphisms f ′ : Spec R′ → X and f ′′ : Spec R′′ → X lie in

the same equivalence class if and only if there exists a commutative diagram

Spec R′

Spec R X

Spec R′′

f ′

f ′′

where R is also a real closed field.
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Chapter 4

Specialization

In this chapter, we introduce the concept of specialization in the real spectrum of schemes, which

will be an important tool for our subsequent discussion. Readers who are willing to accept the

final results presented in later sections may choose to skip this chapter.

In the first section, we present some basic facts about specialization in arbitrary topological

spaces. In the second section, we discuss specialization in the real spectrum. Finally, at the

end of the chapter, we provide a categorical description of specialization in real spectrum. The

references for this chapter are [3] and [27].

4.1 Specialization in a topological space

In topology, the specialization relation provides a way to examine the closeness or ”relation”

between points in a space, particularly in spaces where the separation properties (like those of

T1 spaces) are weaker.

Definition 4.1.1. 1. Let X be a topological space and x, y be two points of X. We say that y is a

specialization of x or x is a generalization of y, denoted by x ⇝ y, if y ∈ {x} (closure of {x}).

2. A subset T ⊆ X is stable under specialization if for any x′ ∈ T and every specialization x′ ⇝ x

we have x ∈ T.

3. A subset T ⊆ X is stable under generalization if for any x ∈ T and every specialization x′ ⇝ x

we have x′ ∈ T.

Definition 4.1.2. Let f : X → Y be a function of topological spaces. We say f preserves specialization

(or generalization) if for any x, x′ ∈ X,

x′ ⇝ x ⇒ f (x′)⇝ f (x).
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Proposition 4.1.3. The specialization relation is an ordering relation.

Proof. The specialization relation is reflexive, since x ∈ {x}. If x ∈ {x′} and x′ ∈ {x}, then

we have {x} ⊆ {x′} and {x′} ⊆ {x}, therefore, the specialization relation is anti-symmetric. If

x ∈ {x′} and x′ ∈ {x′′}, then x ∈ {x′} ⊆ {x′′}, which shows that the relation is transitive.

Proposition 4.1.4. Let X be a topological space.

1. Every closed subset of X is stable under specialization.

2. A subset T ⊆ X is stable under specialization if and only if the complement X \ T of T is stable

under generalization.

3. Every open subset of X is stable under generalization.

Proof. Statement (1) is immediate from the definition. Statement (2) can be easily proven by

contrapositive, and statement (3) follows from (1) and (2) by considering the complement.

Definition 4.1.5. Let f : X → Y be a continuous function of topological spaces.

1. The function f is generalizing if, for any y′ ⇝ y in Y and x ∈ X with f (x) = y, there exists a

generalization x′ ⇝ x of x in X such that f (x′) = y′.

2. The function f is specializing if, for any y′ ⇝ y in Y and x′ ∈ X with f (x′) = y′, there exists a

specialization x′ ⇝ x of x′ in X such that f (x) = y.

Proposition 4.1.6. Let f : X → Y be a continuous map of topological spaces.

1. If f is generalizing, and if T ⊆ X is stable under generalization, then f (T) ⊆ Y is stable under

generalization.

2. If f is specializing, and if T ⊆ X is stable under specialization, then f (T) ⊆ Y is stable under

specialization.

Proof. Let y′ ⇝ y be a specialization in Y where y ∈ f (T). So there is an x ∈ T such that

f (x) = y. By the definition of generalizing, there exists a generalization x′ ⇝ x of x in X such

that f (x′) = y′. Since T is stable under specialization, x ∈ T, and then y ∈ f (T). Therefore f (T)

is stable under specialization.

The proof of the other statements is identical.

94



CHAPTER 4. SPECIALIZATION 4.2. SPECIALIZATION IN THE REAL SPECTRUM

4.2 Specialization in the real spectrum

Specialization plays an important role in the study of the real spectrum, but we will not discuss

it systematically; instead, we will focus on selected facts that we will use later.

Proposition 4.2.1. Let ξ ′, ξ be two points of Sper A, where A is a commutative ring with unit. The

following conditions are equivalent:

1. ξ ′ ⇝ ξ.

2. For every a ∈ A, if a >ξ 0, then a >ξ ′ 0.

3. For every a ∈ A, if a ≥ξ ′ 0, then a ≥ξ 0.

4. If we identify points of the real spectrum with prime cones, then ξ ′ ⊆ ξ.

Proof. The last three statements are clearly equivalent. Statements (1) and (2) are both equivalent

to

ξ ∈ U(a1, ..., an)⇒ ξ ′ ∈ U(a1, ..., an),

so they are also equivalent.

Remark 4.2.2. If ξ ′ ⇝ ξ, then supp(ξ ′) = ξ ′ ∩ −ξ ′ ⊆ ξ ∩ −ξ = supp(ξ). Thus, there is a canonical

map Asupp(ξ) → Asupp(ξ ′). In general, this homomorphism is not a local homomorphism.

Remark 4.2.3. Every Zariski spectrum of a local domain has a generic point and a closed point.

Lemma 4.2.4. Let A be a local domain, and let ξ ′, ξ be two points of Sper A. Let B be the convex hull of

A in κ(ξ ′). If ξ ′ ⇝ ξ and the support of ξ ′ (resp. ξ) is the generic point (resp. closed point) of Spec A,

then mA ⊆ mB. In particular, there is a homomorphism (A/mA, ξ)→ B/mB that preserves the ordering.

Proof. Suppose there exists x ∈ mA \ mB. Since B is a valuation ring (and in particular, a local

domain), we know that x−1 ∈ B. Since B is the convex hull of A in κ(ξ ′), there exists y ∈ A such

that 1
|x| ≤ξ ′ y. In other words, we have 1 ≤ξ ′ |x|y.

By the previous proposition, it follows that 1 ≤ξ |x|y. However, |x|y ∈ mA, implying that the

image of |x|y in κ(supp(ξ)) = A/mA is zero. This leads to a contradiction.

Therefore, we conclude that there exists a canonical local homomorphism A → B, which in-

duces a homomorphism between the fields (A/mA, ξ)→ B/mB. This homomorphism preserves

the ordering, since ξ ′ is a generalization of ξ.

Proposition 4.2.5. Let α be an element of Sper A. The specializations of α are totally ordered with respect

to the specialization. Specifically, if α⇝ β and α⇝ γ, then either β⇝ γ or γ⇝ β.
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Proof. Suppose the conclusion is false. Then there exist elements b ∈ β \ γ and c ∈ γ \ β. By the

definition of the prime cone, we know that either b− c ∈ α or c− b ∈ α. In the first case, we have

b = c + (b− c) ∈ γ, while in the second case c = b + (c− b) ∈ β. In both cases, we arrive at a

contradiction, so the conclusion must be true.

The following result will be used in the next chapter. We do not introduce the notion of con-

structible sets here, as it appears only once in this thesis. This is just a brief comment; for more

details, see Chapter 7 of [3].

Theorem 4.2.6. Let C be a constructible sets of Sper A. Then C is a closed (resp. open) subset if and only

if it is stable under specialization (resp. generalization).

Proof. See 7.1.22 of [3].

Remark 4.2.7. Every basic open set in Sper A is constructible and thus stable under generalization.

If f : Sper A → Sper B is generalizing and maps constructible subsets to constructible ones, from

Proposition 4.1.6, f (U) is constructible and stable under generalization for every basic open U of Sper A.

Hence, f (U) is an open subset of Sper B, which means that f is an open map.

If a real spectrum has a generic point, then it is totally ordered by the specialization rela-

tion. Since every local domain admits both a closed point and a generic point, and since the

real spectrum and the Zariski spectrum of a real closed valuation ring are homeomorphic, both

spectrums have a closed point and a generic point, and are totally ordered by the specialization

relation. This allows us to describe the specialization in the real spectrum in terms of the real

closed valuation rings.

Definition 4.2.8. Let v : V → X be a morphism of schemes, where V is spectrum of a real closed

valuation ring. The specialization in Xr determined by v is given by vr(ζ ′) ⇝ vr(ζ), where ζ ′ (resp.

ζ) is the generic point (resp. closed point) of Vr.

Remark 4.2.9. Since vr is continuous, we have vr({ζ ′}) ⊆ vr({ζ ′}), and vr({ζ ′}) is an irreducible

component.

Any specialization ξ ′ ⇝ ξ in Xr is determined in this way. In fact there is a unique minimal

choice of v, i.e., there is a morphism v : V → X, with V is the spectrum of a real closed valuation

ring, such that v determines the specialization ξ ′ ⇝ ξ. Furthermore, if v′ : V ′ → X is another
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morphism that determines ξ ′ ⇝ ξ, then v′ factors uniquely as

V ′

X

V.

v′

v

Existence: Consider an affine open neighborhood U = Spec(A) of supp(ξ). Since every open set

is stable under generalization, supp(ξ ′) ∈ U. We obtain the ring homomorphism

A→ Asupp(ξ) = OX,supp(ξ).

By the Proposition 4.2.1, the specialization ξ ′ ⇝ ξ implies that supp(ξ ′) ⊆ supp(ξ). Therefore,

we have a ring homomorphism Asupp(ξ) → Asupp(ξ ′). This gives a sequence of homomorphisms

OX,supp(ξ) = Asupp(ξ) → κ(supp(ξ ′))→ κ(ξ ′).

Let B be the convex hull of the imageOX,supp(ξ) ofOX,supp(ξ) in κ(ξ ′). We then obtain the following

sequence of ring homomorphisms:

A→ OX,supp(ξ) → OX,supp(ξ) → B (4.1)

which induces a morphism v : Spec B→ X

Spec B Spec OX,supp(ξ) Spec A = U

X.

v

We need to show that the specialization ξ ′ ⇝ ξ is determined by v. From the diagram above,

it is clear that v(0) = supp(ξ ′). Now, we prove that v(mB) = supp(ξ): From the diagram above,

it suffices to prove that the image supp(ξ) of supp(ξ) in OX,supp(ξ) is contained in mB. Suppose,

for the sake of contradiction, that there exists some x ∈ supp(ξ) \mB. Since B is a local domain,

we have x−1 ∈ B. By the definition of convex hull, there exists an element p
q ∈ OX,supp(ξ) such

that q >ξ ′ 0 and |x|−1 ≤ξ ′
p
q . This implies that 0 <ξ ′ q ≤ξ ′ |x|p. Since the homomorphism

OX,supp(ξ) → OX,supp(ξ) is surjective, there exist elements |x| ∈ supp(ξ), and p, q ∈ A such
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that q /∈ supp(ξ) correspond to |x|, p, and q. By Proposition 4.2.1, we know that 0 ≤ξ q ≤ξ |x|p.

However, since |x|p ∈ supp(ξ) and q /∈ supp(ξ), this leads to the contradiction 0 <ξ q ≤ 0. Thus,

we conclude that x ∈ mB, and therefore, supp(ξ) ⊆ mB. This implies that v(mB) = supp(ξ), as

desired.

Since Sper B ∼= Spec B and the ordering on B is induced by κ(ξ ′), we have vr(supp−1(0)) = ξ ′

and vr(supp−1(mB)) = ξ, as desired.

Minimality: Let v′ : V ′ → X be a morphism of schemes that determines the specialization ξ ′ ⇝ ξ,

where V ′ = Spec B′ for some real-closed valuation ring B′. Since any open subset is stable under

generalization and B′ has a generic point, the morphism v′ factors as

V ′ → Spec A ↪→ X

where Spec A is an open affine subscheme of X containing ξ ′. Let φ : A → B′ be the ring

homomorphism corresponding to the morphism V ′ → Spec A. Since v′(mB′) = supp(ξ), by the

universal property of localization, the map A→ B′ factors through

A→ OX,supp(ξ) → B′.

Since v′ determines the specialization ξ ′ ⇝ ξ, we have φ−1(0) = supp(ξ ′). Applying the isomor-

phism theorem, we obtain a commutative diagram

A OX,supp(ξ) Im φ B′.

OX,supp(ξ)/supp(ξ ′)OX,supp(ξ)

From the construction of v, we have Im (φ) ∼= OX,supp(ξ)/supp(ξ ′)OX,supp(ξ)
∼= OX,supp(ξ). Let f

be the isomorphism between OX,supp(ξ) and Im (φ). Now, let conv(Im φ) denote the convex hull

of Im (φ) in the quotient field Frac(B′) = κ(ξ ′) (this equality holds, because v′r(supp−1(mB)) =

ξ ′ ). Since the convex hull is the smallest convex ring containing Im(φ), there exists a inclusion

A OX,supp(ξ) Im φ B′.

conv(Im (φ))
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Since Im(ϕ) ∼= OX,supp(ξ), we expect that conv(Im (φ)) is isomorphic to B. The isomorphism

f : OX,supp(ξ) → Im (φ)

can be extended to an isomorphism

f0 : κ(supp(ξ ′))→ Frac(Im (φ))

of fields of fractions. Since the isomorphism f0 preserves ordering by construction, it induces an

isomorphism g between the real closures of these fields, namely κ(ξ ′).

Finally, the restriction f of g to B is an order-preserving isomorphism between B and conv(Im (φ)):

By the definition of convex hull, for every x ∈ conv(Im (φ)), there exist a, b ∈ Im(φ) such

that a ≤ x ≤ b. This implies that f−1(a) ≤ f
−1
(x) ≤ f−1(b), so f

−1
(x) ∈ Im (φ). Hence,

conv(Im(φ)) ⊆ Im( f ). Conversely, by a similar reasoning, we can show that conv(Im(φ)) ⊇

Im( f ).

This establishes the existence of the following commutative diagram

A B Spec B′ Spec A X.

≡

B′ Spec B

Uniqueness: This is straightforward to prove.

Lemma 4.2.10. Let f : Y → X be a morphism of schemes, and suppose that for every y ∈ Y the field

extension κ(y) ⊇ κ( f (y)) is algebraic (so, f could be étale).

1. If ξ ∈ Xr is represented by a morphism of schemes, α : Spec R → X, where R is a real closed field,

then the natural map

homScheme/X(Spec R, Y) −→ Yr (4.2)

h 7−→ (h(∗), αh) (4.3)

(where αh denotes the ordering induced by h) is a bijection from the set on the left to f−1
r (ξ), the

real spectrum fiber of ξ ∈ Yr. Here, ∗ denotes the unique prime ideal 0 of R.

2. Let v : V → X be a morphism of schemes, where V is the spectrum of a real closed valuation ring.

Suppose that a specialization η′ ⇝ η in Yr is given, such that the specialization fr(η′) ⇝ fr(η)
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in Xr is the specialization determined by v. Then there is a unique X-morphism V → Y that

determines η′ ⇝ η.

Proof. (1) : If f−1
r (ξ) = ∅, then there does not exist a morphism m : Spec R → Y that makes the

following diagram commute.

Sper R

Xr.

Yr

αr

mr

fr

Therefore, homScheme/X(Spec R, Y) = ∅.

We suppose that f−1
r (ξ) ̸= ∅, in particular f−1(supp(ξ)) ̸= ∅. Since the diagram

Spec R

X

Y

α

m

f

factors through

Spec R Spec κ(α(∗)) X,

Spec κ(m(∗))

Y

we can reduce to the case where X and Y are Zariski spectrums of fields. Assume that R is the

real closure of the field associated with ξ ∈ Xr. Let X = Spec K, and Y = Spec F. Note that

for each η ∈ f−1
r (ξ), the map Spec−1( f ) is order-preserving. We first prove that for a given

η ∈ f−1
r (ξ), there exists a morphism Spec R→ Y such that α(Spec R→ Y) = η. Since R is a real

closed field, this is equivalent to finding a homomorphism from (F, η) to R.
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The morphism f and α induce the homomorphisms of rings.

R

(K, ξ)

(F, η)

Let R′ be a real closure of (F, η), and denote the inclusion by i : (F, η) ↪→ R′. Since Spec−1 ( f ) is

an ordering-preserve map, and F : K is an algebraic extension, we have that the real closure R′

of (F, η) is also a real closure of (K, ξ).

R

R′ (K, ξ)

(F, η)

i

Hence, by Proposition 3.1.20, there exists a unique isomorphism ϕ from R to R′ that extends

i ◦ Spec−1 ( f ). Therefore, there is a homomorphism from (F, η) to R; in other words, the map 4.2

is surjective onto f−1
r (ξ).

It remains to show that the map 4.2 is injective. Suppose that m1, m2 : F → R are induced by

X-morphisms and that m−1
1 (R(2)) = m−1

2 (R(2)), meaning they induce the same ordering. Then,

m1 and m2 factor through F → R′ → R, where R′ is the real closure of (F, m−1
1 (R(2))). The

uniqueness of isomorphisms between real closures (Theorem 3.1.19) ensures that m1 = m2.

(2) : We begin by proving uniqueness. Suppose v1, v2 : V = Spec B → Y take work. Define

two new morphisms ṽ1, ṽ2 : Spec (Frac(B)) → V → Y, where the map Spec (Frac(B)) → V is

induced by the inclusion. By the hypothesis, we have ṽi(0) = vi(0) for i = 1, 2. However, by

item (1), we know that ṽ1 = ṽ2, which implies that v1(0) = v2(0). Since 0 is the generic point,

v1 = v2 as function. The equality of the sheaf maps follows from ṽ1 = ṽ2.

It remains to show the existence. Since V = Spec B is the spectrum of a real closed valuation

ring. As in the previous argument, we reduce to the case where X = Spec M, Y = Spec N with

M and N being local domains, where f is induced by a local inclusion M ⊆ N, and the support

of η′ (resp. η) corresponds to the generic point (resp. the closed point) of Y.

Let ξ ′ := fr(η′) and ξ := fr(η). Let K be the field of fractions of M, L the field of fractions of N,

and let L → R be the real closure of L with respect to η′. Thus K ⊆ L ↪→ R is the real closure of
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K with respect to ξ ′. Without loss of generality, suppose that v is minimal for the specialization

ξ ′ ⇝ ξ, i.e., B is the convex hull of M in R (with v induced by M ⊆ B). Therefore, what remains

to be shown is that N ⊆ B, which induces the diagram on the right below:

ξ ′ ⇝ ξ

M Sper M

B =⇒ g⇝ c Vr

N Sper N

η′ ⇝ η.

Let C ⊇ B be the convex hull of N in R. Consider the sequence of homomorphisms

M
(i)−→ κ(ξ)

(ii)−→ κ(η)
(iii)−−→ κC (4.4)

where κ(ξ) (resp. κ(η)) is a real closure of residue field κM (resp. κN) of M (resp. N), and κC is

the residue field of C. We now explain the morphisms in the positions (i), (ii) and (iii) :

(i) : The morphism is induced by the canonical map M→ κM ↪→ κ(ξ);

(ii) : Since κM ⊆ κN is an algebraic field extension, we have a κM-isomorphism κ(ξ) → κ(η) (by

Proposition 3.1.20);

(iii) : By Lemma 4.2.4, there exists a homomorphism that preserves the ordering κN → κC. Since

C is a real closed valuation ring, κC is a real closed field. So, by Proposition 3.1.20, there exists an

extension κ(η)→ κC.

Since κM is archimedean over the image of M, and κ(ξ) is also archimedean over the image of

κM (by the archimedean property of real closures 3.3.10), it follows that κ(ξ) is archimedean over

the image of M. Furthermore, since (ii) is an isomorphism, κ(η) is archimedean over the image

of M. The field κC is also archimedean over the image of M, since κC is the convex hull of N.

Finally, since the image of M in κC is contained in B/mC, and B is the convex hull of M in R, it

follows that B = C.

The first part of the lemma provides a categorical perspective on the ordering induced by a
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morphism of schemes, while the second part guarantees that the specialization relation has the

lifting property.

With this lemma, we conclude this chapter, which provides the technical groundwork for the

next one.
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Chapter 5

Real Étale Topos

In this chapter, we introduce another Grothendieck topology, the real étale site Xret, and prove

that the real étale topos, the category of sheaves on this site, is equivalent to the category of

sheaves on the associated real spectrum. The primary reference for this chapter is [27].

In the first section, we use the tools developed in the previous chapter to show that the functor

( )r preserves pullbacks in Et/X, and that if f : X → Y is an étale morphism, then fr is a local

homeomorphism.

In the second section, we prove that the topos Sh(Xr) is equivalent to the topos Sh(Xret).

5.1 Real étale site and real spectrum

We now define the real étale site of a scheme X and its Grothendieck topos

Definition 5.1.1. A family { f i : Ui → U}i∈I of morphisms of schemes is said to be real surjective if

and only if

Ur =
⋃
i∈I

f i
r(U

i
r).

It is easy to see that the collection of real surjective families forms a Grothendieck topology.

Definition 5.1.2. Let X be a scheme. The topology on Et/X defined by the real surjective families is

called the real étale topology of X, abbreviated ”ret”. The site (Et/X, ret) is called the real étale site

of X and is denoted by Xret. The category Sh(Xret) of sheaves on Xret is called the real étale topos of X.

Before continuing, I would like to recall some facts about Henselian rings.

Remark 5.1.3. 1. Let A be a local ring, X = Spec A, and let x be the unique closed point of X. The

ring A is Henselian, if and only if, for any étale morphism f : Y → X and for every point y ∈ Y

such that f (y) = x and the residue fields satisfy κ(y) = κ(x), there exists a section s : X → Y to

f , that is, f ◦ s = idX. (See Lemma 10.153.3., Chapter I of [31])
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2. Every real closed valuation ring is Henselian ([7]).

The étale morphism is the analogue of a local homeomorphism in topology, and the map ( )r

reflects this analogy. Specifically, if f is an étale morphism, then the fr is a local homeomorphism.

Lemma 5.1.4. For any étale morpism f : Y → X, the map fr : Yr → Xr is open.

Proof. Since a locally open map is open, we may assume without loss of generality that X and

Y are affine. In this case, the morphism f is finitely presented. A consequence of the Tarski-

Seidenberg theorem is that if f is finitely presented, then the map fr sends constructible sets to

constructible sets (see [8] Prop. 2.3). Therefore, it suffices to show that fr is generalizing (see

Remark 4.2.7), that is, given η ∈ Yr and ξ ′ ∈ Xr such that ξ ′ ⇝ fr(η), we need to find η′ ∈ Yr

such that η′ ⇝ η and fr(η′) = ξ ′.

Let ξ ′ ⇝ fr(η) be represented by a morphism v : V → X, where V = Spec R is the spectrum

of a real closed valuation ring R. Let z ↪→ V denote the inclusion of the closed point of V. Using

Lemma 4.2.10, we have a commutative diagram

z Y

V X

f

v

In the commutative diagram, z→ Y represents the point η. It is sufficient to show that the dotted

lift exists, leaving the diagram commutative. To do this, consider the pullback of the pair (v, f )

V ×X Y Y

V X.

q

p f

v

Since f is étale, its base change p is also étale, Let w = z⊗X supp(η) ∈ V ×X Y be a point. Then

we have p(w) = z. Since p is étale, the residue field κ(w) is algebraic over κ(z). The residue field

κ(z) of a real closed valuation ring R is real closed, and since κ(w) inherits an ordering induced

by η and κ(z), we have κ(w) = κ(x). By the Henselian property of real closed valuation rings,
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there exists a section s : V → V ×X Y of p. Thus, we have a commutative diagram as follows:

z Y

V ×X Y

V

V X

f

q

p

q◦s

s

id

v

Proposition 5.1.5. Let the following square

Y×X Z Z

Y X

q

p g

f

be a pullback (fiber product) of schemes, and assume that f and g are étale. Then the natural map

γ : (Y×X Z)r −→ Yr ×Xr Zr

(I, α) 7−→ (pr(I, α), qr(I, α))

is a homeomorphism (the right hand side is the pullback in the sense of topological spaces).

Proof. Write W := Y ×X Z. Note that q and p are also étale, since they are base changes of étale

morphism. From Lemma 4.2.10, it follows that γ is bijective. Specifically, if ζ ∈ Zr is represented

by α : z→ Z, with z the spectrum of a real closed field, then the diagram

homScheme/Z(z, W) homScheme/X(z, Y)

q−1
r (ζ) f−1

r (gr(ζ))
γ

commutes. The top horizontal arrow is obtained by composing the Z-morphism from z to W
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with the map p
z

z Z W Z

W Y X,

α

α q

p g
q

f

and its bijectivity follows from the universal property of the pullback. The vertical arrows are

the maps given by Lemma 4.2.10. Since

f−1
r (gr(ζ)) = {η ∈ Yr : fr(η) = gr(ζ)}

= Yr ×Xr {ζ},

the map γ is a bijection.

The map γ is continuous and open because the projections

pr1(γ(I, α)) = pr(I, α) and pr2(γ(I, α)) = qr(I, α)

are continuous and open (by Lemma 5.1.4). Therefore, γ is a homeomorphism.

Corollary 5.1.6. For any scheme X, the real spectrum functor

( )r : Et/X −→ Top/Xr

U 7−→ Ur

preserves pullbacks, and therefore it preserves all finite inverse limits. In particular, ( )r preserves

monomorphisms.

Proposition 5.1.7. For any étale morpism f : Y → X, the map fr : Yr → Xr is a local homeomorphism.

Proof. By Lemma 5.1.4, the map fr is open. Since f is étale (and in particular, unramified), the

diagonal map Y → Y×X Y is an open immersion (by Proposition 2.1.9), it factors through

Y ∼= U ↪→ Y×X Y,

where U is an open subscheme of Y×X Y. Corollary 5.1.6 ensures that the functor ( )r preserves
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monomorphisms, so the diagonal map Yr → Yr ×Xr Yr factors through

Yr ∼= Ur = supp−1(U) ↪→ Yr ×Xr Yr.

It shows that the diagonal map Yr → Yr ×Xr Yr is an open immersion.

Since a map g : V → W of topological spaces is a local homeomorphism if and only if both g

and the diagonal V → V ×W V are open maps, the proposition follows.

5.2 Real étale topos is spatial

We now prove that the real étale topos is spatial, i.e., equivalent to the category of sheaves on a

topological space.

Theorem 5.2.1. For any scheme X, the topos Sh(Xret) and the topos Sh(Xr) are naturally equivalent.

We will follow Scheiderer’s proof ([27]), which uses an auxiliary site. Let us discuss it now.

Let X be a scheme. Define Xaux = (C, aux) to be the following site:

• An object of C is a pair (U, W) with U ∈ Et/X and W an open subset of Ur.

• An arrow (U′, W ′) → (U, W) in C is a morphism f : U′ → U of X-schemes such that

fr(W ′) ⊆W. In particular, f is étale.

• Let f : (U′, W ′) −→ (U, W) and g : (U′′, W ′′) −→ (U, W) be two arrows, the pair (U′ ×U

U′′, W ′ ×W W ′′) is clearly the pullback of f and g

(U′ ×U U′′, W ′ ×W W ′′) (U′, W ′)

(U′′, W ′′) (U, W).

q

p f

g

Thus, the pullback always exists, and consequently, all finite inverse limits exist.

• A family { fi : (Ui, Wi) → (U, W)}i∈I of arrows in C is a covering of (U, W) if and only if

W =
⋃

i∈I( fi)r(Wi).

Regard the space Xr as a site in the usual way. Both Et/X and O(Xr) (the category of open

subsets of Xr) are full subcategories of C in canonical way.

These inclusions define morphisms of sites

Xret
φ←− Xaux

ψ−→ Xr.
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Lemma 5.2.2. The morphism φ defines an equivalence of categories Sh(Xret) ∼= Sh(Xaux).

Proof. Since φ transforms coverings into coverings and preserves fiber products, the Comparison

Lemma (1.3.22) implies that the topos morphism φ : Sh(Xaux) → Sh(Xret) is an equivalence,

provided that each object (U, W) of C can be covered by objects (V, Vr) with V ∈ Et/U. In other

words, given ξ ∈ Ur and an open neighborhood W of ξ in Ur, we have to find an étale morphism

f : V → U with ξ ∈ fr(Vr) ⊆ W. We can assume that U is an affine scheme U = Spec A, and

that W = U(a) is an open sub-base. Since W is non-empty, it follows that 2 is not zero-divisor in

A. Consider the canonical morphisms

A
ϕ1−→ B = (A[T]/(T2 − a)A[T])

ϕ2−→ B2a,

since

(T2 − a)′(T/2a) =
2T2

2a
=

2a
2a

= 1,

ϕ2 ◦ ϕ1 is a standard étale homomorphism. Hence, we have an étale morphism of schemes f

induced by ϕ2 ◦ ϕ1. Since a is a square and a is a unit ( 2
2a is a inverse of a), we have fr(Sper B2a) ⊆

W.

It remains to show that ξ ∈ fr(Sper B2a). Since (A[T]/(T2− a)A[T]) is a free A-module of rank

2, ϕ1 is faithfully flat, i.e.,

Spec(ϕ1) : Spec B→ Spec A

is surjective. By the hypothesis, ξ(2a) = 2ξ(a) > ξ(a) > 0, in particular

supp ξ ∈ DA(2a) = {p ∈ Spec A : 2a /∈ p}.

Therefore, Spec(ϕ1)
−1(supp ξ) ⊆ DB(2a). But

Spec(ϕ2) : Spec B2a ∼= DB(2a)→ Spec B

is an open immersion, so there exists q ∈ Spec B2a such that f (q) = supp ξ. It is now clear that

there is an ”extension” of ξ via f , which implies ξ ∈ fr(Sper Ba).

It remains to show that the topos morphism induced by ψ is also an equivalence.

Let S ∈ Sh(Xaux). For every U ∈ Et/X the map given by W 7→ S(U, W) (for W ⊆ Ur open)

defines a sheaf on Ur, which we denote by SU . If f : V → U is a morphism in Et/X, the restriction

maps of S define an fr-morphism from SU to SV , i.e., a sheaf map f ∗r SU ⇒ SV on Vr. To be more

precise, for each open W ⊆ Vr open, we have fr(W) ⊆ fr(W). Hence, the morphism f is an arrow
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from (V, W) to (U, fr(W)). Thus, there is a restriction map S( f ) : S(U, fr(W)) → S(V, W). To

ensure that f ∗r SU ⇒ SV is a sheaf map, we need to show that the following diagram commutes

W S(U, fr(W)) S(V, W)

W ′ S(U, fr(W ′)) S(V, W ′),

S( f )

S(idU) S(idV)

S( f )

but it is elementary

S( f ) ◦ S(idU) = S(idU ◦ f ) = S( f ) = S( f ◦ idV) = S(idV) ◦ S( f ).

Lemma 5.2.3. The sheaf map f ∗r SU ⇒ SV is an isomorphism.

Proof. It is enough to show that, for any f : U → X étale, the sheaf map f ∗r SX ⇒ SU is an

isomorphism: Let g : V → U be an étale morphism of schemes, since the map f ∗r SX ⇒ SU and

the map g∗r f ∗r SX = ( f ◦ g)∗r SX ⇒ SV are isomorphisms, g∗r SU → SV is a sheaf isomorphism.

Since fr is a local homeomorphism, there exists an open subset W of Ur such that fr|W is

injetive, i.e., an open immersion. Since f : (U, W) → (X, fr(W)) is a covering in C, by the

definition of sheaf, we have an exact sequence (of sets):

( f ∗r SX)(W) = SX( fr(W)) SU(W) SU×XU(W ×Xr W)i
pr∗1

pr∗2

with W×Xr W ⊆ Ur×Xr Ur = (U×X U)r (by Corollary 5.1.6). Since fr|W is injective, the diagonal

map W → W ×Xr W is bijective. So the diagonal morphism (U, W) → (U ×X U, W ×Xr W) is a

covering in C, in particular SU×XU(W ×Xr W)→ S(U, W) is injective (because it is an equalizer).

But this implies that the two maps pr∗1 , pr∗2 in the sheaf condition coincide, since the pullback

diagram

(U, W)

(U ×X U, W ×Xr W) (U, W)

(U, W) (X, Xr)

∆ id

id
pr1

pr2
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induces a sequence of morphisms

S(U, W) S(U ×X U, W ×Xr W) S(U, W)
pr∗1

pr∗2

S(∆)

which means that pr∗1 = pr∗2 . Therefore, the sheaf map ( f ∗r SX)(W) → SU(W) is bijective, since

Ker (pr∗1 , pr∗2) = Im i.

Since fr is a local homeomorphism, Ur has a basis {Wi} of open sets such that fr|Wi is injective

for every i. Since the sheaf map f ∗r SX ⇒ SU is a bijection on every basic open, it is a global

isomorphism.

We now prove that Sh(Xret) and Sh(Xr) are equivalent. We denote the geometric morphism

induced by ψ ( resp. φ) by (ψ∗, ψ∗) : Sh(Xaux)→ Sh(Xr) ( resp. (φ∗, φ∗) : Sh(Xaux)→ Sh(Xret) ).

Sh(Xret) Sh(Xaux) Sh(Xr)
φ∗

φ∗ ψ∗

ψ∗

Proof. For F ∈ Sh(Xr), the sheaf ψ∗F on Sh(Xaux) is the sheaf associated with the presheaf

(U, W) 7→ F( fr(W)), where f : U → X denotes the structural morphism of U ∈ Et/X. Us-

ing Proposition 5.1.7, we have

(ψ∗F)(U, W) = ( f ∗r F)(W) i.e., (ψ∗F)U = f ∗r F.

On the other hand, ψ∗ associates S ∈ Sh(Xaux) to SX ∈ Sh(Xr). So Lemma 5.2.3 ensures that

ψ∗ψ∗S → S is an isomorphism. Since the other adjunction map F → ψ∗ψ∗F is also an isomor-

phism, we have that Sh(Xaux) and Sh(Xr) are equivalent. By the Lemma 5.2.2, the topos Sh(Xret)

and the topos Sh(Xr) are naturally equivalent.

Now, by glueing these morphisms, we obtain a topos maps #, ♭ between Sh(Xret) and Sh(Xr)

Sh(Xret) Sh(Xr)
#

♭

given by

Sh(Xret) ∋ G 7−→ G# := ψ∗φ
∗G ∈ Sh(Xr);

Sh(Xr) ∋ F 7−→ F♭ := ϕ∗ψ
∗F ∈ Sh(Xret).

So the compositions ♭ ◦ # and # ◦ ♭ are naturally isomorphic to the identity functors. Which means
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In detail, the map ♭ acts as shown in the commutative diagram:

Sh(Xr) ∋ F ψ∗F : (U, W) 7−→ f ∗r F(W) = F( fr(W))

F♭ = φ∗ f ∗r F : U 7−→ H0(Ur, f ∗r F) = F( fr(Ur))

ψ∗

♭
φ∗

To make G# more explicit, we need to introduce some additional notation. Fix an open subset

W of Xr, and let IW be the category of all pairs (U, s), where U ∈ Et/X and s : W → Ur is a

continuous section of Ur → Xr over W. This leads to the following commutative diagram:

U Ur W

X Xr.

fr

s

And an arrow (U′, s′)→ (U, s) in IW is an X-morphism f : U′ → U such that s = fr ◦ s′

Xr W

X U′ U′r

U Ur.

s′

s

fr

The category IW is a left filtering: Given a diagram

(Ker ( f , g), s) (V, s) (U, s′)

X

h
f

g

q p

where p, q are étale morphisms such that p ◦ f = p ◦ g = q, and h is the kernel/equalizer of f

and g. By the definition of a morphism in IW , the section s : W → Vr satisfies fr ◦ s = gr ◦ s. Then

h is étale, and hr : (Ker( f , g))r → Vr is the kernel of fr and gr by Proposition 5.1.6, thus s factors

uniquely through hr.

Let W ′ ⊆ W be an inclusion of open subsets of Xr, there is a natural functor IW → IW ′ given
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5.2. REAL ÉTALE TOPOS IS SPATIAL CHAPTER 5. REAL ÉTALE TOPOS

by restriction. Hence if P is a presheaf on Et/X, then the functor P† : Xr → Set given by

P†(W) = lim−→
(U,s)∈Iop

W

P(U)

is a presheaf on the topological space Xr.

Now we are ready to describe the maps # and ♭.

Theorem 5.2.4. 1. If F is a sheaf on Xr, then F♭ is the sheaf on Xret which sends (U
f−→ X) ∈ Et/X

to H0(Ur, f ∗r F) = F( fr(Ur)).

2. If P is a presheaf on Et/X and G is the associated sheaf respect to real étale topology ret, then G# is

the sheaf on Xr which is associated to the presheaf P♭. In diagrammatic form, this implies that the

diagram

Psh(Et/X) Psh(Xr)

Sh(Xret) Sh(Xr)

†

araret

#

commutes.

Proof. (1) : We have already established.

(2) : Let x be the Zariski spectrum of a real closed field R, and let α : x → X be a morphism of

schemes, representing a point ξ ∈ Xr. Then the stalk of the presheaf P† in ξ is

P†
ξ = lim−→

W⊆Xr open
ξ∈W

P†(W) = lim−→
x→U

X

P(U)

where the second direct limit is taken over the category of all X-morphism from x into étale X-

Scheme U.

Consider the natural morphism P → G = aret(P) of presheaves on Et/X. For any ξ as above

the induced map P†
ξ → G†

ξ is bijective (the key point is that Sh(Xret) is spatial). Hence the induced

map P† → G† of presheaves on Xr (a topological space) becomes an isomorphism if we applying

the sheafification functor, since it is bijective on stalks.

This shows that it suffices to prove the case when P = G is a sheaf on Xret. Since # and ♭

are known to be quasi-inverses of each other, it is enough to prove for any sheaf F on Xr, F is
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isomorphic to the sheaf associated to (F♭)†, in other words, the diagram

PSh(Xret) PSh(Xr)

Sh(Xret) Sh(Xr)

†

ar

#

♭

is commutative.

Let G := F♭ be the image of F by ♭. Let W ⊆ Xr be an open subset, and let (U, s) ∈ IW . Since

the diagram

Ur Xr

W

fr

s

commutes and fr is open (By Lemma 5.1.4), we have fr(Ur) ⊇ W = fr ◦ s(W) is an open subset.

Therefore, there is a natural map s∗ : G(U) = ( f ∗r F)(Ur)→ F(W) = (s∗ f ∗r F)(W) = F( fr ◦ s(W))

induced by restriction, namely the pullback by s.

These maps fit together to give a morphism G♭ → F of presheaves on Xr. But the stalk maps

G†
ξ → Fξ are bijective

lim−→
W⊆Xr open

ξ∈W

G†(W) = lim−→
W⊆Xr open

ξ∈W

lim−→
(U,s)∈IW

F( fr(Ur)) = lim−→
W⊆Xr open

ξ∈W

F(W).

Therefore F ∼= ar(G†) as desired.

The composite map ar ◦ # generalizes the construction introduced by Coste and Roy in [26] to

define the abstract Nash sheaf on the real spectrum. If we restrict this construction to étale A-

algebras, and consider the étale structure sheaf, i.e., OX(B) = B for every étale B-algebra, then

ar ◦ #(OX) exactly gives the abstract Nash sheaf defined in [26]. This shows that the Nash sheaf is

the natural ”structure” sheaf for the real spectrum. Moreover, when A = R[x1, ..., xn], the abstract

Nash sheaf corresponds (though not identically or isomorphically) to the classical Nash sheaf,

whose sections are collections of algebraic and analytic functions. This correspondence follows

from Artin-Mazur’s description of the Nash sheaf. Therefore, the Nash sheaf is a fundamental

object in the study of real algebraic geometry.
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Chapter 6

Glueing sites

In this chapter, we investigate the ”glueing” of the étale topos and the real étale topos, a concept

introduced by Claus Scheiderer in his work on real and étale cohomology ([27]). In the first chap-

ter, we construct the b-topology and show that this category can be viewed, in practice, as a space

obtained by glueing the categories of sheaves Sh(Xet) and Sh(Xret). As a result, we demonstrate

that the canonical functors between these topoi possess favorable properties in second section.

6.1 A glued space

The result from chapter before allows us to replace Xr by Xret, a site modeled on the category

Et/X as Xet. A natural question arises: is there a relationship between Xet and Xret (or Xr)?

The two topologies Xet and Xret cannot be directly compared because neither is finer nor

coarser than the other. However, we can attempt a comparison via an intermediate topology:

the intersection of the two topologies, i.e., the finest common coarsening of b of et and ret. We

denote the site (Et/X, b) by Xb.

Intuitively, the topos Sh(Xb) contains both Sh(Xet) and Sh(Xret). In this section, we will show

that Sh(Xet) is an open subtopos of Sh(Xb), while Sh(Xret) is its closed complement. As a conse-

quence, Xb can be understood as the result of glueing Sh(Xret) to Sh(Xet).

Definition 6.1.1. Let X be a scheme. The topology on Et/X which is the intersection of the étale and the

real étale topology, denoted by b. Thus, a family {Ui → U}i∈I in Et/X is a covering for the topology b

if and only if it is both surjective and real surjective. We denote the site (Et/X, b) by Xb. Moreover, we

write

j = (j∗, j∗) : Sh(Xet)→ Sh(Xb)

and

i = (i∗, i∗) : Sh(Xret)→ Sh(Xb)
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for the canonical topos embeddings.

Remark 6.1.2. Since the morphisms j∗ and i∗ are embeddings, their left adjoints j∗, i∗ are shefification

functors.

Let us verify that Proposition 1.3.32 applies. For Y a scheme and p a prime number, let Y(p) be

the largest open subscheme of Y on which p is invertible. If ξpn is a primitive pn-th root of unity,

then Y(p)[ξpn ] := Y(p) ×spec Z spec Z[ξpn ]
pr1−→ Y(p) is an étale covering (since, in the affine case,

Y(p)[ξpn ] is a finite free Y(p)-module, therefore pr1 is faithful flat), where Z[ξpn ] denotes the group

ring generated by ξpn .

Consider two morphisms obtained by composing with the inclusion map

Y(2)[
√
−1]

pr1−→ Y

and

Y(3)[ξ3]
pr1−→ Y.

Since
√
−1 is a sum of squares in the residue fields of Y(2)[

√
−1] and Y(3)[ξ3], both schemes have

empty real spectrum, therefore empty sieve is a real étale covering of Y(2)[
√
−1] and Y(3)[ξ3]. We

need to show that these two morphisms form an étale covering. Suppose Y = Spec A is affine,

by the definition of Y(p), we have

Y(2) ⊇ D(2) = {p ∈ Y : 2 /∈ p}

and Y(3) ⊇ D(3). Therefore, Y = Y(2) ∪Y(3) (if p ∈ Y does not belong to both subschemes, 2, 3 ∈ p

and so 1 ∈ p, this is a contradiction). Hence, Y(2)[
√
−1] and Y(3)[ξ3] cover Y in the étale topology.

By Proposition 1.3.32 we therefore get,

Proposition 6.1.3. The morphism j : Sh(Xet)→ Sh(Xb) is an open topos embedding, and i : Sh(Xret)→

Sh(Xb) is the embedding of the closed complement.

Now, we will define the glueing functor such that relates Sh(Xet) and Sh(Xret).

Definition 6.1.4. The glueing functor is the functor ρ := i∗ j∗ : Sh(Xet)→ Sh(Xret).

Proposition 6.1.5. The glueing functor is left exact, i.e., preserves finite inverse limits.

Proof. This result holds for any open subtopos and its closed complement (see [SGA4.IV.9.5.4]

[12]). In particular, it applies to the real étale topos and the étale topos by Proposition 6.1.3.
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Consider triples (B, A, ϕ), where B ∈ Sh(Xret), A ∈ Sh(Xet) and ϕ : B → ρA is a morphism of

sheaves on Xret. If (B, A, ϕ) and (B′, A′, ϕ′) are such triples, a morphism between (B, A, ϕ) and

(B′, A′, ϕ′) is a pair (m, m′), where m ∈ Sh(Xret)(B, B′) and m′ ∈ Sh(Xet)(A, A′) such that the

following diagram

B ρ(A)

B′ ρ(A′)

ϕ

m ρ(m′)

ϕ′

commutes. These triples with morphisms as defined above form a category which is denoted

(Sh(Xret), Sh(Xet), ρ). For more general construction of such category, see [12].

We have a natural functor

In : Sh(Xb)→ (Sh(Xret), Sh(Xet), ρ)

given by

F (i∗F, j∗F, ϕF : i∗F → i∗ j∗ j∗F = ρj∗F)

F′ (i∗F′, j∗F′, ϕF′ : i∗F′ → ρj∗F′)

n (i∗n,j∗n)

Here ϕF comes from the adjunction map F
adj−→ j∗ j∗F via functor i∗, i.e., ϕF = i∗(adj).

By [12][SGA.IV.9.5], the functor In is an equivalence.

Proposition 6.1.6. The functor In is an equivalence of categories between Sh(Xb) and (Sh(Xret), Sh(Xet), ρ).

A quasi-inverse is given by the functor which sends a triple (B, A, ϕ : B→ ρA) to the Pullback in Sh(Xb)

i∗B×i∗ρA j∗A j∗A

i∗B i∗ρA

adj

i∗B

This result holds for any open subtopos and its closed complement.

This proposition guarantees that Sh(Xb) is a space constructed by glueing the categories of

sheaves Sh(Xet) and Sh(Xret). This facilitates the study of the canonical morphisms between

these toposes.
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6.2 Some useful morphism

Identifying Sh(Xb) with (Sh(Xret), Sh(Xet), ρ) via the above equivalence, we obtain

j∗ : Sh(Xet)→ Sh(Xb) A 7→ (ρA, A, id : ρA→ ρA)

j∗ : Sh(Xb)→ Sh(Xet) (B, A, ϕ) 7→ A

i∗ : Sh(Xret)→ Sh(Xb) B 7→ (B, ∗, B→ ∗)

i∗ : Sh(Xb)→ Sh(Xret) (B, A, ϕ) 7→ B.

Corollary 6.2.1. The functor j∗ : Sh(Xb)→ Sh(Xet) has a left adjoint

j! : Sh(Xet) −→ Sh(Xb)

A 7−→ (∅, A, ∅→ ρA)

where ∅ is the initial sheaf.

Proof. For every F ∈ Sh(Xet) and G = (B, A, ϕ) ∈ (Sh(Xret), Sh(Xet), ρ) ∼= Sh(Xb), a morphism

(m, m′) from j!F to G satisfies
∅ ρF

B ρA.

m ρ(m′)

ϕ

Since ∅ is an initial object, the morphism (m, m′) is uniquely determined by m′. Hence,

hom(j!F, G) ∼= hom(F, A) ∼= hom(F, j∗G).

We have the same result for the sheaves of abelian groups:

Corollary 6.2.2. 1. The functor j∗ : Ab(Xb)→ Ab(Xet) has an exact additive left adoint

j! : Ab(Xet)→ Ab(Xb)

A 7→ (0, A, 0→ ρA),

called ”extension by zero”, where 0 is the zero sheaf. In particular, j∗ is an exact additive functor.
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2. The functor i∗ : Ab(Xret)→ Ab(Xb) has a right adjoint

i! : Ab(Xb)→ Ab(Xret)

(B, A, ϕ : B→ ρA) 7→ Ker ϕ.

In particular, the additive functor i∗ is exact.

Proof. (1): The same reasoning as in the previous corollary applies here. The functor j! is clearly

an exact additive functor.

(2): For every F ∈ Sh(Xret) and G = (B, A, ϕ) ∈ (Sh(Xret), Sh(Xet), ρ) ∼= Sh(Xb), a morphism

(m, m′) from i∗F to G satisfies
F ρ0 = 0

B ρA

m 0 ρ(m′)

ϕ

Hence, ϕ ◦m = 0 = 0 ◦m. By the universal property of the kernel,

F

Ker m B ρA

m

ϕ

0

there exists a unique morphism from F to Ker m. Therefore, we have

hom(F, Ker ϕ) = hom(i∗F, G)

as desired.

The two functors j! (for set-valued and abelian sheaves, respectively) do not coincide on

abelian sheaves.

Corollary 6.2.3. For every F ∈ Ab(Xb) there are natural exact sequences (of adjunction map) on Ab(Xb)

0→ j! j∗F → F → i∗i∗F → 0

and

0→ i∗i!F → F → j∗ j∗F.
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In particular, for A ∈ Ab(Xet) there is a natural exact sequence on Ab(Xb)

0→ j! A→ j∗A→ i∗ρA→ 0.

Proof. Identifying the sheaf F with (B, A, ϕ), these sequences are equivalent to

0→ (0, A, 0→ ρA)→ (B, A, ϕ)→ (B, 0, B→ 0)→ 0

and

0→ (Ker ϕ, 0, Ker ϕ→ 0)→ (B, A, ϕ)→ (ρA, A, id).

The verification of exactness of these sequences is trivial.

Corollary 6.2.4. Let X be a scheme, for every object U ∈ Et/X, ϵet(U) = ϵb(U) = hU , while ϵret(U) =

ρhU .

Proof. Since hU is an étale sheaf, we have ϵet(U) = hU , and therefore ϵb(U) = hU . Identifying the

hU with j∗(hU) = (ρhU , hU , id), the ret-sheafification of hU is

ϵret(U) = aret(hU) = i∗(ρhU , hU , id) = ρhU .

Example 6.2.5. The b- topology coincides with the étale topology if and only if Xr = ∅. Thus the most

basic proper example for the b-topology arises from X = Spec R with R a real closed field.

Let G = Gal(R(
√
−1)/R), which is isomorphic to Z2. Then Sh(Xb) is equivalent to the category of

all triples (B, A, ϕ : B→ AG), where

• B is a set,

• A a continuous G-set,

• ϕ is a map,

• and AG denotes the elements of A fixed by G.

This equivalence follows from the correspondence between Sh((Spec k)et) and CG-Set, which will be

established in the next chapter.

Notation 6.2.6. If t ∈ {et, b, ret} and M is a set, denote by Mt the constant sheaf on Xt with value in

M.
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Proposition 6.2.7. j∗ and ρ preserve constant sheaves. That is: if M is a set, then j∗Met = Mb and

ρMet = Mret.

Proof. Mt is the coproduct in Sh(Xt) of M copies of the constant sheaf ∗. Since j∗ is an ”inclusion”,

there is a canonical sheaf isomorphism,

Mb = ⨿
M

j∗(∗) = ⨿
M
∗ −→ j∗(⨿

M
∗) = j∗(Met).

After applying i∗, we obtain a sheaf morphism

Mret −→ ρMet.

We need to verify that the morphism above is an isomorphism. However, this follows immedi-

ately, since the induced fiber maps are isomorphisms, and Xret is spatial.
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Chapter 7

Applications

In the last chapter, we discuss the relationship between Galois cohomology and étale cohomol-

ogy on a spectrum of fields, as well as the interplay among real points, orderings, and cohomo-

logical dimensions. The primary references for this chapter are [27] and [32].

In the first section, we prove that the category Spec (ket) is equivalent to the category CG-Set,

and that the category Ab((Spec k)et) is equivalent to the category CG-Mod. As a corollary, we de-

duce that the étale cohomology of a field k coincides with the Galois cohomology of the absolute

Galois group Gal(ksep/k).

In the second section, we discuss a bit about the connection between order and cohomological

dimension, especially in the context of 2-torsion sheaves.

7.1 Galois and Étale cohomology

Let k be a field. Let ksep be the separable closure of k and let G denote the Galois group of

Gal(ksep/k) equipped with the canonical structure of a profinite group.

For each k-scheme X, we denote by X(ksep) the set of k-morphism Spec ksep → X, called the

set of ksep-valued points on X. A ksep-valued point of X corresponds uniquely to a point x ∈ X

together with a k-homomorphism κ(x)→ ksep.

The group G acts from the left on X(ksep): Let g ∈ G, we define the action of g on a point

Spec ksep → X by composing it from the left with the induced morphism Spec(g) : Spec ksep →

Spec ksep. By the Fundamental Theorem of Galois Theory if H is an open subgroup of G, then we

can identify the set of fixed points X(ksep)H with the set X(k′) of all k′-valued points on X. Here

k′ is the fixed field of H, and the inclusion X(k′) ⊆ X(ksep) is induced by the canonical morphism

Spec ksep → Spec k′. Since X(ksep) =
⋃

H X(ksep)H, G acts continuously on X(ksep).

Let TG denote the canonical topology on the category CG-Set. We have
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Theorem 7.1.1. The functor

f : Et/k −→ CG-Set

X 7−→ X(ksep)

is an equivalence of topologies between the étale site CG-Set equipped with the canonical topology TG and

Spec(k)et, i.e., the functor f is an equivalence of underlying categories, and that both f and any functor

quasi-inverse to f are morphisms of topologies.

Proof. First note that (X ×Z Y)(ksep) ∼= X(ksep) ×Z(ksep) Y(ksep), hence f commutes with fiber

products.

Let {Ui → U} be a family of étale morphism of k-schemes. We want to show that {Ui → U}

is a covering in Spec(k)et if and only if {Ui(ksep) → U(ksep)} is a covering in TG. Since both

categories have arbitrary (direct) sums/coproducts (By Corollary 2.1.19) and since f commutes

with sums, it is sufficient to show that a morphism Y → X of étale k-schemes is surjective if and

only if Y(ksep)→ X(ksep) is surjective.

• Assume that Y → X is surjective. Let x ∈ X and let a k-homomorphism κ(x) → ksep be

given. If y ∈ Y lies above x, by the definition of étale morphism the extension κ(y)/κ(x) is

finite and separable, and therefore κ(x)→ ksep extends to a k-homomorphism κ(y)→ ksep.

But this means that y(ksep) 7→ x(ksep) is surjective.

• Now, assume that y(ksep) 7→ x(ksep) is surjective. Let x ∈ X. Since κ(x)/k is finite and

separable, there is a ksep-valued point corresponding to x. If we take any ksep-valued point

of Y lying above it, then the corresponding point y ∈ Y lies above x. Hence Y → X is onto.

It remains to show that f is an equivalence of categories. To prove this we first show the

existence of the left adjoint functor ad f of f , and then check that the adjoint morphisms are

isomorphisms..

To show the existence of ad f it is enough to check that the functor

X 7−→ homG(U, X(ksep))

is representable for all continuous G-sets U.

Now, each continuous G-set is equal to the direct sum of its orbits, and each orbit is isomorphic

to a continuous G-set of the form G/H for an open subgroup H of G (by orbit-stabilizer theorem).
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So it is sufficient to show that the functors

X 7→ homG(G/H, X(ksep))

are representable, since the category of étale k-schemes has arbitrary coproducts.

Let k′ be the fixed field of the open subgroup H. Then Spec k′ is an étale k-scheme, and we

have the isomorphisms

homG(G/H, X(ksep)) ∼= X(ksep)H ∼= X(k′) = homk(Spec k′, X),

which are functorial in X. Hence X 7→ homG(G/H, X(ksep)) is represented by the object Spec k′.

The adjoint map G/H → f (ad f (G/H)) = Spec(k′)(ksep) is a G-map, which sends the class e ·H

to the ksep-valued point Spec ksep → Spec k′ corresponding to the inclusion k′ ⊆ ksep. But this

map is an isomorphism. Since f and ad f commute with the direct sums/coproducts, we obtain

id ∼= f ◦ ad f . Analogue, we obtain id ∼= ad f ◦ f which completes the proof of the theorem.

Corollary 7.1.2. Let k be a field, and let ksep be the separable closure of k. Let G = Gal(ksep/k) be the

topological group equipped with profinite topology. Then we have

Sh((Spec k)et) ∼= CG-Set

Proof. By Proposition 1.4.18 and the Theorem above, for any sheaf F ∈ Sh((Spec k)et), the map

F 7−→ F ◦ ad f 7−→ lim−→
H

F(ad f (G/H)) = lim−→
k′

F(Spec k′)

defines an equivalence of categories between Sh((Spec k)et) and CG-Set.

By Proposition 1.4.18 and the Corollary above, the map

F 7−→ lim−→
k′

F(Spec k′) 7−→ homG(−, lim−→
k′

F(Spec k′))

defines an equivalence of categories between Sh((Spec k)et) and Sh(CG-Set, TG). Since Spec k

corresponds to (Spec k)(ksep) = {e}, we obtain

Γ(Spec k, F) ∼= Γ(e, homG(−, lim−→
k′

F(Spec k′))) ∼= (lim−→
k′

F(Spec k′))G.

Therefore, we have:
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Corollary 7.1.3. Let k be a field, and let ksep be the separable closure of k. Let G = Gal(ksep/k) be a

topological group equipped with profinite topology. Then we have

1. The functor

Ab((Spec k)et) −→ CG-Mod

F 7−→ lim−→
k′

F(Spec k′)

is an equivalence between the category of abelian sheaves on Spec(k)et and the category of continu-

ous G-modules. Here k′ runs through all finite (or only through all finite normal) extensions of k in

ksep.

2. For every abelian sheaves F on Spec(k)et we have ∂-functorial isomorphisms

Hi
et(Spec k, F) ∼= Hi(G, lim−→

k′
F(Spec k′)),

where right-hand side denotes Galois-cohomology.

One can check that lim−→k′
F(Spec k′) is exactly the stalk FSpec ksep = lim−→U,u

F(U) of F at the point

Spec k, where the limit is over the affine étale neighborhoods (U, u) of Spec ksep (See [21]).

Corollary 7.1.4. Let k be the separably closed. Then the functor F 7→ F(Spec k) is an equivalence

between the category of abelian sheaves on Spec(k)et and the category Ab. So for all sheaves F on Spec(k)et

we have

Hi
et(Spec k, F) = 0

for i > 0.

Remark 7.1.5. Let T denote the set of involutions in G, i.e., set of elements of order 2. This set is a closed

subset of G, and acts by conjugation. By the Artin–Schreier theorem, the quotient topological space T/G

is the real spectrum Sper k.

Upon identifying Et/k with CG-Set, the real étale topology ret on CG-Set is defined as follows: a

family {Ui → U}i∈I is a covering if and only if {Ut
i → Ut}i∈I is a surjective family for every t ∈ T,

where Ut denotes the t-invariant of U.

Therefore, a {Ui → U}i∈I is a covering in the b-topology if and only if {Ut
i → Ut}i∈I is a surjective

family for every t ∈ T
⋃{id}.

For further details, see Section 9 of [27].

128



CHAPTER 7. APPLICATIONS 7.2. ORDERING AND ÉTALE COHOMOLOGY

7.2 Ordering and étale cohomology

In the this section, we discuss a bit about the connection between order and cohomological di-

mension, especially in the context of 2-torsion sheaves.

Given a ring A, if we want to ”eliminate” the ordering of the residue fields of A, a natural ap-

proach is to add the square root of−1 to A. This construction can be realized by taking the tensor

product. Consider the tensor product A⊗Z Z[
√
−1] of A and Z[

√
−1] over Z. An element of

the ring A ⊗Z Z[
√
−1] is of the form c ⊗Z a + bi. By the definition of the tensor product, we

have:

c⊗Z a + bi = c⊗Z a + c⊗Z bi = ac⊗Z 1 + bc⊗Z i.

Thus, every element of A ⊗Z Z[
√
−1] can be written as x ⊗Z 1 + y ⊗Z i, where x, y ∈ A. In

other words, every element of A⊗Z Z[
√
−1] decomposes into a real part and an imaginary part,

similar to a complex number.

This idea also extends to arbitrary schemes. Let X be a scheme, and define

X′ := X×Spec Z Spec Z[
√
−1]

X′ X

Spec Z[
√
−1] Spec Z

π

(The map π is independent of the choice of the rightward arrow). Since the morphism Spec Z[
√
−1]→

Spec Z is étale, the morphism π is also étale. Therefore, π induces the geometric morphism. We

will write π = (π∗, π∗) : Sh(X′et) → Sh(Xet), instead of πet = (π∗et, πet ∗). Since π is finite, by

Proposition 2.3.3, the direct image functor π∗ is exact.

Definition 7.2.1. Let X = (C, τ) be a site, p a prime number, and F ∈ Ab(X) a sheaf.

1. We say that F is p-primary torsion if for every object U ∈ C, the section Γ(U, F) is a p-torsion

abelian group, i.e., for every x ∈ F(U), x has order pn, for some n ∈N.

2. We say that F is torsion if for every object, the section Γ(U, F) is a torsion abelian group.

Definition 7.2.2. Let X = (C, τ) be a site, and let p be a prime number.

1. The cohomological p-dimension cdp(X) of X is defined as the largest integer n for which there

exists a p-primary torsion sheaf F on X such that Hn(X, F) ̸= 0. If no such integer exists, we write

cdp(X) = ∞.
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2. The cohomological dimension cd(X) of X is defined as the largest integer n for which there exists

an abelian sheaf F such that Hn(X, F) ̸= 0.

Proposition 7.2.3. Let X be a scheme and p a prime number. The following equalities hold:

• Hn
ret(X, A) = Hn

b (X, i∗A);

• Hn
et(X′, A) = Hn

et(X, π∗A)

Proof. Since i∗ and π∗ are exact, by Lemma 1.2.35, i∗ and π∗ preserve the injective objects.

Since i∗ is exact and represents an ”inclusion” functor, by Proposition 1.2.36, we have

Hn
ret(X, A) = RnΓ(A) = Rn(Γ ◦ i∗)(A) = RnΓ(i∗A) = Hn

b (X, i∗A)

for every A ∈ Ab(Xret) and n ≥ 0.

Note that

Γ(X′, A) = A(X′) = A(X×X X′) = π∗A(X) = Γ(X, π∗A)

for every A ∈ Ab(X′et). Then the section functor RnΓX′ coincides with RnΓX ◦ π∗. Since π∗ is

exact, by the Proposition 1.2.36 again, we obtain

Hn
et(X′, A) = RnΓX′(A) = RnΓX ◦ π∗(A) = RnΓX(π∗A) = Hn

et(X, π∗A).

Corollary 7.2.4. Let X be a scheme and p a prime number. The following inequalities hold:

cdp(Xr) ≤ cdp(Xb), cdp(X′et) ≤ cdp(Xet), cd(Xr) ≤ cd(Xb), cd(X′et) ≤ cd(Xet).

Proof. Note that i∗ and π∗ maps p-primary torsion sheaves to p-primary torsion sheaves. By

the previous proposition, if there exists an abelian sheaf (resp. p-primary torsion abelian sheaf)

A ∈ Ab(Xret) such that Hn
ret(X, A) ̸= 0, then there is also an abelian sheaf (resp. p-primary

torsion abelian sheaf) i∗A ∈ Ab(Xb) such that Hn
b (X, i∗A) ̸= 0. In particular, the inequalities

cdp(Xr) ≤ cdp(Xb) and cd(Xr) ≤ cd(Xb) hold.

By a similar argument, the inequalities cdp(X′et) ≤ cdp(Xet) and cd(X′et) ≤ cd(Xet) hold.

Now we state the theorem that relates cdp(Xr) and cdp(X′et).

Theorem 7.2.5. If X is a scheme such that 2 is invertible in O(X), then cdp(Xr) ≤ cdp(X′et) for all

prime numbers p.
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Proof. The proof of the theorem is quite technical; for this reason, we will omit it. The reader can

find the proof in Sections 4, 5, and 7 (Part I) of [27].

Combining the theorem and the previous proposition, we obtain the following corollary.

Corollary 7.2.6. If X is a scheme such that 2 is invertible in O(X) then cdp(Xr) ≤ cdp(Xet) for all

prime numbers p.

This corollary can be interpreted as the ordering is an information that can be extracted from

the étale cohomology.

We provide further discussion on it.

Proposition 7.2.7. If k is a real closed field, then H1
et(Spec k, µ2,Spec k) ∼= Z/2Z.

Proof. By Corollary 7.1.3, it is enough to show that H1(G, µ2) ∼= Z/2Z, where G = Gal(k[
√
−1]/k) =

Gal(ksep/k). It is clear that 2 is invertible in k and k[
√
−1], so the Kummer sequence

1→ µ2 → k[
√
−1]× 2−→ (k[

√
−1]×)2 = k[

√
−1]× → 1

is exact. Applying the functor Hi(G,−), we obtain the long exact sequence:

1→ µ2 → k× 2−→ k× → H1(G, µ2)→ H1(G, k[
√
−1]×)→ ....

From Hilbert’s Theorem 90, we know that H1(G, k[
√
−1]×) = 0, so the map k× → H1(G, µ2) is

surjective. By the isomorphism theorem, we obtain

k×/(k×)2 ∼= H1(G, µ2).

Finally, since any element of a real closed field can be written as (−1)nx2, we conclude that

H1
et(Spec k, µ2,Spec k) ∼= H1(G, µ2) ∼= k×/(k×)2 ∼= Z/2Z.

Proposition 7.2.8. If k is a real closed field, then cd2(Spec(k)et) = +∞.

Proof. Let k′ = k[
√
−1]. Since k is a real closed field, k′ is algebraically closed, and in particular,

is separably closed. By Corollary 7.1.4, for all sheaves F on Spec(k)et we have

Hi
et(Spec k, F) = 0
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for i > 0. Thus, cd2(Spec(k′)et) = 0. However, by the previous proposition, we have

cd2(Spec(k)et) ≥ 1.

Therefore, we conclude that:

cd2(Spec(k)et) > cd2(Spec(k′)et)

Now, by the following proposition

Proposition 7.2.9. Let k′ be an algebraic extension of a field k, let p be a prime, and let Gk = Gal(ksep/k)

(resp. Gk′ = Gal(k′sep/k)). Then cdp(Gk′) ≤ cdp(Gk), and there is equality if

• cdp(Gk) < +∞ and [Gk : Gk′ ] < +∞.

Here, the index [Gk : Gk′ ] is the lcm (in the supernatural number sense) of the values of the index [Gk, U]

where U ranges over the open normal subgroups of Gk containing Gk′ . If |Gk| is finite, then this definition

coincides with the classical definition, since any finite Hausdorff space is necessarily discrete.

Proof. See Proposition 10, II.4.1 of [28].

We have cd2(Spec(k)et) = +∞ or [Gk : Gk′ ] = ∞. But since [k′ : k] = 2 and |Gk| is finite, by

Fundamental Theorem of Galois Theory, [Gk : Gk′ ] = 2. Hence we obtain cd2(Spec(k)et) = +∞

as desired.

In [34], M. Artin and J.L. Verdier introduced Artin-Verdier Duality and also presented a theo-

rem that generalizes the previous proposition.: It says that

1. An algebraic variety X over R has no real point if and only if cd2(Xet) < +∞.

2. For a filed K of finite type, k is a real field if and only if cd2(Spec(k)et).

Later, Claus Scheiderer extended this theorem to arbitrary schemes, using the theory he devel-

oped in his book [27].

Theorem 7.2.10. Let X be a scheme.

1. If Xr ̸= ∅, then cd2(Xet) = ∞.

2. If X is quasi-compact and quasi-separated, and if 2 is invertible on X, and If cd2(X′et) is finite and

the real spectrum of X is empty then also cd2(Xet) is finite.

I would like to express my sincere gratitude to the reader for the time and attention given to

this work.
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