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RESUMO

CHEN, HAOYU Topologia de Grothendieck em geometria algébrica e geometria algébrica real. 2024.
135 p. Monografia (Bacharelado em Matematica) — Instituto de Matematica e Estatistica, Univer-

sidade de Sao Paulo, Sdo Paulo, 22 Semestre de 2024.

A nogao de topologia de Grothendieck, introduzida por Alexander Grothendieck juntamente
com a topologia étale, visa definir feixes em categorias arbitrarias e suas cohomologias, como
parte da tentativa de provar a conjectura de Weil, que acabou sendo bem-sucedida. Neste tra-
balho, exploramos as topologias de Grothendieck na categoria de morfismos étale em um es-
quema X, incluindo a topologia étale e a topologia real étale. Estudamos também que a categoria
de feixes na topologia real étale de um esquema X é equivalente a categoria de feixes em espec-
tro real associado ao esquema X. Por fim, discutimos a relacdo entre a cohomologia de Galois e
a cohomologia étale sobre um corpo, além das interagdes entre pontos reais, ordens e dimensao

cohomoldégica.

Palavras-chave: feixes, topologias de Grothendieck, geometria algébrica, geometria algébrica

real e cohomologia de Galois



ABSTRACT

CHEN, HAOYU Grothendieck topologies in algebraic geometry and real algebraic geometry. 2024.
135 p. Monografia (Bacharelado em Matematica) — Instituto de Matematica e Estatistica, Univer-

sidade de Sao Paulo, Sdo Paulo, 2° Semestre de 2024.

The notion of Grothendieck topology, introduced by Alexander Grothendieck together with
the étale topology, aims to define sheaves on arbitrary categories and their cohomologies, as part
of the attempt to prove Weil’s conjecture, which ended up being successful. In this work, we
explore the Grothendieck topologies in the category of étale morphisms on a scheme X, including
the étale topology and the real étale topology. We also study that the category of sheaves on the
real étale topology of a scheme X is equivalent to the category of sheaves on the real spectrum
associated to the scheme X. Finally, we discuss the relationship between Galois cohomology and
étale cohomology over a field, in addition to the interactions between real points, orders and

cohomological dimension.

Keywords: sheaves, Grothendieck topologies, algebraic geometry, real algebraic geometry and

Galois cohomology
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Preface

Algebraic geometry is a branch of mathematics that traces its origins back to ancient civiliza-
tions, where geometric problems were often framed in terms of algebraic equations and vice
versa. Initially, the focus was on the vanishing sets of collections of polynomials with coeffi-
cients in fields such as C, R, C or finite field IF;. The primary aim was to study the geometry of
these vanishing sets rather than to solve polynomial equations explicitly. This involves concepts
such as dimension, degree, genus, irreducibility, regularity, and normality in the context of these
varieties.

Between the 19th and 20th centuries, the field of algebraic geometry evolved to focus on al-
gebraic varieties, i.e. spaces that can be locally identified with the vanishing sets of polynomial
collections, such as projective varieties. This change led to significant results such as Bézout’s
theorem, the Riemann-Roch theorem, the GAGA principle, and Chow’s lemma. As a result,
algebraic geometry has become a vibrant intersection of many branches of mathematics.

A significant milestone in algebraic geometry was Hilbert’s Nullstellensatz, proven by David
Hilbert at the end of the 19th century. This theorem established a crucial link between the com-
mon zero sets of polynomial systems and the ideals of polynomial rings, allowing geometric
properties to be explored through pure algebra. It also demonstrated that for any algebraically
closed field k, the category of irreducible algebraic sets over k is contravariantly equivalent to the
category of finitely generated k-algebras.

In the early 20th century, significant advancements were made in various areas of mathe-
matics, particularly in topology. Henri Poincaré introduced the field in his work ”Analysis Si-
tus” (1895), which laid the groundwork for concepts such as fundamental groups and singular
homology. In the latter half of the century, mathematicians like Veblen, Alexander, Lefschetz,
and Cech developed various methods for associating (co)homology groups with topological
spaces. This progress was further clarified by Eilenberg and Steenrod, who demonstrated that
any (co)homology theory constructed in a concrete and purposeful manner on topological spaces

was equivalent, provided it satisfied a short list of axioms known as the Eilenberg-Steenrod ax-
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ioms.

In the 1940s, Leray sought to understand the relationship between the cohomology groups of
two spaces X and Y connected by a continuous map from Y to X. This exploration led to the
introduction of sheaves, which are local systems of coefficient groups, as well as the develop-
ment of sheaf cohomology and spectral sequences. Later, in his influential 1957 Tohoku paper
([13]), Grothendieck demonstrated that the category of sheaves of abelian groups on a topolog-
ical space forms an abelian category with enough injectives. This allowed for the definition of
the cohomology groups of sheaves on a space X as the right derived functors of the functor that

assigns to each sheaf its abelian group of global sections, which is a left exact functor.

To develop homological algebra, S. Mac Lane and S. Eilenberg introduced category theory,
focusing on natural transformations and functors. In this framework, Grothendieck and Serre’s
school reformulated algebraic geometry using the language of category theory, commutative
algebra, sheaf theory, and its cohomology. They introduced the concept of schemes in place of

algebraic varieties, allowing classical algebraic geometry to be expressed through schemes.

One key advantage of schemes is that they do not require a priori embedding in affine or
projective spaces; they can be realized geometrically with coordinates in any field or ring. This
flexibility means that base change is a natural operation for schemes. Additionally, schemes are
topological spaces equipped with sheaves, enabling the use of sheaf cohomology as a powerful

tool in the study of their properties.

However, this foundation proved inadequate for certain situations, such as establishing a co-
homology theory necessary for the Weil conjectures. The Zariski topology is quite coarse, leading
to the result that for any irreducible topological space X, the cohomology group H" (X, F) = 0 for
all constant sheaves and all n > 0. A revolutionary solution to this problem was introduced by
the concept of a site or Grothendieck topology. This topology does not follow the usual sense of
topology; rather, it generalizes the notion of an open cover to arbitrary categories. For example,
in the étale topology, not only are open subschemes is considered open, but any étale morphism
U — X is also regarded as an open subset. This enriched perspective on the Zariski topology
allowed for the development of a more robust cohomological framework, effectively addressing

the requirements of the Weil conjectures.

The real spectrum emerged from the work of Coste and Coste-Roy in the early 1980s, as they
investigated the topos of real étale sheaves Sh(specA,e) for a commutative ring with unit A
([9]). Their motivating question was whether this topos is spatial; that is, whether there exists a
category of sheaves on some topological space that is equivalent to the category of sheaves on

the real étale site. The answer is affirmative, and the topological space that satisfies this condition
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is known as the real spectrum of A.

Later, Claus Scheiderer demonstrated that for any scheme X, the category of sheaves on the
real spectrum X, is naturally equivalent to the category of sheaves on the real étale topology of
Et/X. This finding encouraged further exploration of the relationship between real étale topol-
ogy and étale topology. While neither topology was finer than the other, Scheiderer proposed a
comparison through an intermediate topology b, defined as the intersection of both topologies.
This approach proved successful, as the category of sheaves on b is equivalent to the glued cate-
gory of Sh(X,¢) and Sh(Xyet). Scheiderer utilized this result to uncover the deep connections that
exist between the étale site of a scheme X and the orderings of the residue fields of X.

This work aims to study various Grothendieck topologies on the category of étale morphisms
into a scheme X such as étale topology and real étale topology. In this thesis, a ring refers to a
commutative ring with 1. We assume that the reader possesses a solid understanding of com-
mutative algebra, category theory, and algebraic geometry. In the first chapter, we will summa-
rize the fundamental notions and results that will be referenced throughout the thesis, without
delving into extensive details on these subjects, due to the limited time available to address the
“unbounded” mathematical world. The second chapter focuses on the main object of the thesis,
the étale site, where we define the étale topology and provide some classical examples of étale
sheaves. The third chapter offers a brief overview of real algebraic geometry, covering topics
such as real closed fields, the real Nullstellensatz, real valuation rings, and the real spectrum.
In chapter four, we present the specialization in the real spectrum of schemes, which serves as
an important tool for our next discussion, the reader may skip this chapter if they are willing
to accept the ultimate results presented in later sections. In chapter five, we introduce another
Grothendieck topology, the real étale site X,.;, and prove that the real étale topos, the category
of sheaves on this site, is spatial. Chapter six explores the ”"gluing” of the étale topos and the
real étale topos, a concept utilized by Claus Scheiderer in his work on real and étale cohomology.
Finally, in the last chapter, we discuss the relationship between Galois cohomology and étale
cohomology on a spectrum of fields, as well as the interplay among real points, orderings, and

cohomological dimensions.
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Chapter 1

Prerequisites

We summarize the fundamental notions and results that will be referenced throughout the thesis,
without delving into extensive details on these subjects. We will recommend some valuable
references at the beginning of each section for those who want to gain a deeper understanding

of these subjects.

1.1 Algebraic Geometry

In this section, we will not delve into the details of classical algebraic geometry; instead, we
will cover only the basic concepts necessary to introduce modern algebraic geometry. The main

references for this part are [15] (for classic algebraic geometry), [14], [29], and [17].
Definition 1.1.1. Let k be a field.

i- IfS C k[X,..., Xn], then we define
V(S) :={x e Ax :p(x) =0,Vp € S}
ii- If Y C A%, then we define

1Y) = {f € K[X1,, Xo] : f(x) =0, Vx € Y}

iii - A subset X C A} is an algebraic set in A" if there exists S C k[X1, ..., Xy] such that X = V(S).
Lemma 1.1.2. i- If X C A¥, then I(X) is a radical ideal.

ii- IfI,] Ck[Xy,..., Xy] are two subsets such that I C ], then V(]) C V(I).

iii - If X and Y are algebraic sets such that X CY C A", then I(Y) C I(X).

5



1.1. ALGEBRAIC GEOMETRY CHAPTER 1. PREREQUISITES

iv - If X is an algebraic set, then X = V(I1(X)).
v- If X, Y C A¥ are algebraic sets, then X UY = V(I(X) N I(Y)) and XNY = V(I(X) + I(Y)).
vi- Q@ and Al are algebraic sets.

Using the last two items, we can define a closed topology on A%, known as the Zariski topol-

ogy, in which the closed subsets are algebraic sets.
Definition 1.1.3. Let V C AY be an algebraic set,

* V is said to be reducible if and only if there exists two closed subsets V1,Vo C V in subspace

=

topology (induced by Zariski topology) such that V1 UV, = V.
* V issaid to be irreducible if it is not reducible.
This definition is a specific case of an irreducible topological space.

Theorem 1.1.4 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field, and let A = k[Xq, ..., Xu],
then,

a- An algebraic set X C A} is irreducible if and only if 1(X) is a prime ideal. (It is not necessary to

assume that the field is algebraically closed.)

b- m C A is a maximal ideal if and only if m is of the form
m = (Xl — al,...,Xn — (Zn) = I(P)

for some P = (ay,...,a,) € Al.
c- If] € Aideal, then V(]) # @.

d- If ] C Aideal, then

Proof. the proof of item a) can be found in Proposition 1.8 of [15], and b), c¢), and d) in Theorem
1.15 of [15]. O

Corollary 1.1.5. Let k be an algebraically closed field, and let A = k[Xy,..., Xu]. The maps V :
{ideals of A} — {subsets of A}}, I : {subsets of A}} — {ideals of A} induce the bijective

functions between
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* {algebraic sets in A}'} and {radical ideals of A};
o {irreducible algebraic sets in A}'} and {prime ideals of A};
* {points in A}'} and {maximal ideals of A}.

Definition 1.1.6. A polynomial function on an algebraic set V. C A} isamap f : V — k such that
there exists a polynomial p € k[Xq, ..., X,] with f(x) = p(x) forallx € V.

Definition 1.1.7. Let V' C be an algebraic set. The coordinate ring of V is defined by
k[V] :=k[X1,... Xu| /I(V).
Since for any p and g € k[Xj, ..., X;,;] we have
plv=4glv < (p=9)lv =0 = p—gelV)
For this reason, the coordinate ring of V can be identified as
k[V]={f: f:V — kis a polynomial function}

Let Irr(k) be a category whose objects are affine varieties in k", for some . For any affine varieties
X C k', Y C k", amorphism ¢ : X — Y is a map that can be expressed by polynomials
in the coordinate, i.e., there exist polynomials fi, ..., fiu € k[X, ..., Xyx] such that for each point
(a1,...,an) € X,

p(ay, ...,an) = (f1(a1, ..., an), ., fm(a1, ..., an))

(this map is also called a polynomial map).
Now, let f : X — Y be a morphism between affine varieties. For g € k[Y] we define f*(g) :=

g o f. Since g is a polynomial function. Thus we have a map between k-algebras

£ K[Y] — k[X]

g f(8g)=g0f
Moreover, this map is a homomorphism of the k-algebra, since
ff@1+&)=@+g)of=giof+g0of=f(g1)+f(g)

f(g1-8)=(81-8)of=(g10f) (g20f)=f(g1) f(g)

7



1.1. ALGEBRAIC GEOMETRY CHAPTER 1. PREREQUISITES

and for any constant ¢ € k, it is clear that f*(c) = c.

Since
(80 f) (W) =ho(gof)=(hog)of=g"(h)of=f (g (M),
and since
(idx)*(f) = foidy = f = idyy),
the map

V — k[V]

f: V=W f* 1 k[W] — k[V]

defines a contravariant functor between category Irr(k) and the category of finitely generated

k-algebras which are integral domains. In addition,
Theorem 1.1.8. The functor above is a contravariant equivalences of categories.

Therefore, to study algebraic sets, it is sufficient to focus on the prime ideals of associated
polynomial rings.

Since concepts such as singularity, normality, and projective algebraic sets will not be used in
our work, we will not introduce them here.

Now, we will review some basic notions of sheaves on topological spaces, which will be used
to define schemes, a generalization of algebraic varieties.

For any topological space X, we define a category O(X), whose objects are the open subsets of

X, and the only morphisms are the inclusion maps.

Definition 1.1.9. Let X be a topological space. A presheaf F of sets (resp. rings, abelian groups, groups,

etc.) in X is a contravariant functor F : O(X) — Set.

If F is a presheaf on X, the set F(U) is called the sections of the presheaf F on the open set
U, and sometimes we use the notation I'(U, F) instead of F(U). We call the maps F(V — U) by

restriction maps, and we sometimes use s|y instead of F(V < U)(s), for s € F(U).
Definition 1.1.10. A presheaf F on a topological space X is a sheaf if it satisfies the following axioms:

1. If U is an open subset of X, if {U,}ic; is an open covering of U, and if s,s' € F(U) is an element

such that s|y, = s'|y, foralli € I, thens =s'.

2. If U is an open set, if {U, }ic is an open covering of U, and if we have elements s; € F(U;) for each

8



CHAPTER 1. PREREQUISITES 1.1. ALGEBRAIC GEOMETRY

i € I such that for every i,j € I, the equality
silunu; = sjluny;

holds, then there is an element s € F(U) such that s|y, = s; for every i € 1.

Example 1.1.11. Let V be an irreducible projective curve. Since V is a Riemann surface (see [22]),
holomorphic functions can be defined on any open subset of the topology that gives V its Riemann surface

structure. The functor given by

H:O(V) —> Set

U —— {holomorphic function on U }

is a sheaf on V. Moreover, since V is compact, the maximum modulus theorem implies that H(V) = C

(see Theorem 1.37 of [22]).

Example 1.1.12. Let V C C" be an algebraic set equipped with Zariski topology, the functor given by

O :0(V) — Ring
u— {Z :p,q €C[V], q(x) #0Vx € U}

is a sheaf on V. This sheaf is know as structure sheaf of V or regular function sheaf, This name reflects its
role in capturing the local properties of algebraic set V, such as dimension and singularity.

If V is an irreducible projective curve, we have O (V') = C (see Theorem 2.35 of [15]) which coincides
with H(V).

Now, we will introduce the germ of the sections of a presheaf at some point.

Definition 1.1.13. If F is a presheaf on X, and x is a point of X, we define the fiber (stalk) Fy of F at x
to be the direct (injective) limit
lim F u).
UeO(X)
xel
Definition 1.1.14. A morphism of sheaves (presheaves) is a natural transformation between con-

travariant functors. So, an isomorphism of sheaves (presheaves) is a morphism ¢ : F — G which has

two-side inverse, i.e., exists a morphism of sheaves  : G — F such that ¢ o p = idg and ¢ o ¢ = idr.

Proposition 1.1.15. Let ¢ : F — G be a morphism of sheaves on a topological space X. Then ¢ is an
isomomorphism if and only if the induced map on the fiber ¢, : F, — Gy is an isomorphism (which

depends on the type of sheaves) for every P € X.
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Proof. See Proposition 1.1, IT of [14] O

Given a presheaf F on a topological space X, we can construct the sheaf F* as follows. For any

open set U, let F*(U) be the set of functions s : U — Uy Fr such that
e Forany x € U, s(x) € Fy;

e For any x € U, there is a neighborhood V of x, contained in U, and an element t € F(V),

such that for every y € V, the germ t, of t at y coincides with s(y).

The sheaf F* is called the sheaf associated to the presheaf F. This construction define a functor
( )* : F — F* from the category of presheaves X to the category of sheaves on X, called
sheafification. Moreover, the sheafification is the left adjoint functor of inclusion functor from

category of sheaves on X to the category of presheaves on X.

Definition 1.1.16. Let f : X — Y be a continuous map of topological spaces. Given a sheaf F on X, we
define the direct image sheaf f.F on Y by (f.F)(V) = F(f~1(V)) for every open subset V C Y. Given
a sheaf G on Y, we define the inverse image sheaf f*G on X by the sheaf associated to the presheaf

U~ lim G(V)
Veo(Y)
Vof(U)

for every open subset U D X.
Both constructions define functors and, moreover, form an adjoint pair.

Definition 1.1.17. Let X be a topological space, and let Z be a subspace of X (i.e., a subset equipped with
induced topology). Let i : Z — X be the inclusion map. Given a sheaf F on X, we define the restriction

of F to Z by i*F, we often denote it by F|.

Hilbert-Nullstellensatz theorem established bijective correspondence between prime ideals
and irreducible algebraic sets, so instead of working on algebraic sets, we can study Zariski

spectrum Spec. Let’s define a topology on its spectrum.

Definition 1.1.18. Let A be a ring, and let a C A be an ideal, we define the subset V(a) C SpecA to be

the set of all prime ideals of A that contain a.

Lemma 1.1.19. Let A be a ring,

a- Ifaand b are two ideals of A, then V(ab) = V(a) UV (D).
b- If{a;} is a family of ideals of A, then V(Y a;) = NV (a;).

10
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c- Ifaand b are two ideals of A, V(a) C V(b) ifand only if Vb C \/a

This lemma allows us to define a closed topology on Spec A in which the closed subsets are of
the form V(a). We observe that this topology “coincides” with the Zariski topology on algebraic
set (in a certain sense), for this reason, this topology is also called Zariski’s Topology.

For any element f € A, we denote by D(f) the open complement of V((f)). One can easily
show that open subsets of the form D(f) form a base for the topology of Spec A.

Now, let us define a ring sheaf (sheaf whose codomain is the category Ring) O on SpecA
that is an analogue to the regular function sheaf. For each prime ideal p C A, let A, be the
localization of A in p. For an open U C Spec A, we define O(U) to be the set of functions
s: U = peu Ap = Upeul(x, Ap) 1 x € Ay}, such that s(p) € A, for each p, and each p, there
exists a neighborhood V of p that is contained in U, and elements a, f € A, such that for each
qgeV,fé&qgands(q) =a/fin A,

Of course, the sums and products of functions from O(U) are functions from O(U), and iden-
tity always is in each A,. Therefore, O(U) is a commutative ring with unity. If V C U are two
open rings, the natural restriction map O(U) — O(V) is a ring homomorphism, which shows
that O is a presheaf. Finally, the last condition of the definition of O guarantees that it is a sheaf.

This sheaf is called a spectrum or structure sheaf on Spec A.
Proposition 1.1.20. Let A be a ring, and let O be a spectrum sheaf on Spec A
1. Forall p € Spec A, the stalk O, is isomorphic to the local ring A,
2. O(Spec A) = A.
Proof. See Proposition 3.1, 3.2 of [17]. O

It is well known that the localization k[V], of a coordinate ring k[V] provides local information
about the associated algebraic set. For example, the tangent space can be defined as the dual
space of k-module m,/m?2, where m, is the maximal ideal of the localization k[V] by the prime
ideal p := {f € k[V] : f(x) = 0}. This proposition ensures that we can study the local properties
of an algebraic set through Spec k[V], as well as its topological properties.

A natural way to approach geometry is to study additional structures on a topology. For

example, Riemann surfaces and the holomorphic functions defined on them.

Definition 1.1.21. A ringed space is a pair (X, Ox), where X is a topological space and Ox is a ring
sheaf on X. A ringed space morphism from (X, Ox) to (Y, Oy) is a pair (f, f*) of a continuous function
f: X — Y and a natural transformation f*: Oy — f,0 = Oxo f~L

11
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A ringed space (X, Ox) is a locally ringed space if and only if for every point x € X, the stalk Ox
is a local ring. A morphism of locally ringed spaces is a ringed space morphism (f, f*) such that for every
point x € X, fﬂ : Oy f(x) = Oxx is a local ring homomorphism.

A locally ringed space isomorphism is a morphism whose components are invertible, i.e., f is a homeo-

morphism and f* is a natural isomorphism.
The following result motivates the definition of a scheme.
Theorem 1.1.22. 1. If Aisaring, then (Spec(A), O) is a locally ringed space.

2. If ¢ : A — B is a ring homomorphism, then ¢ induces a locally ringed space morphism
(f,fﬁ) : (SPEC B, OSpec B) — (Spec A, OSpec A)'

3. If A and B are rings, then any locally ringed space morphism from Spec B to Spec A is induced by

a ring homomorphism ¢ : A — B in (2).
Proof. See Proposition 3.14, 2 of [17]. O

Definition 1.1.23. An affine scheme is a locally ringed space that is isomorphic to (Spec A, O) for some
ring A. A scheme is a locally ringed space (X, Ox) such that for every point it has an open neighborhood
U C X such that (U, Ox|yr) is an affine scheme. A morphism of schemes is a morphism of a locally ringed
space, analogously to isomorphism. We called X the underlying topological space of scheme (X, Ox), and

Oy its structure sheaf.
There are some well-known facts about schemes.

Proposition 1.1.24. Let (X, Ox) be a scheme, and let U C X be any open subset, then (U, Ox|y) is a

scheme.
Proof. See 3.9,2 of [17]. O

Lemma 1.1.25. Let X,Y be two schemes. We suppose given an open covering {U;}icy of Y and the
morphism f; : Y — X of schemes such that fi|lunu; = fjlunu; for every i,j € I. Then there exists a

unique morphism f : Y — X such that f|y, = fi.

Proposition 1.1.26. If Y is an affine scheme, then for any scheme X, the canonical map

px,y : homge (X, Y) — homcgings (Oy(Y), Ox(X))
(f. f) — fAY) - Oy(Y) = £.0x(Y) = Ox(X)

12
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is a bijection and ”functorial” in X in the sense that for any morphism of schemes h : Z — X, we have

pz,y © homsey(h,Y) = homcrings(Oy(Y), 8% (X)) o px,y
Proof. See Proposition 3.25, 2 of [17]. O
Now, we will define some special schemes.

Definition 1.1.27. 1. A scheme X is quasi-compact or compact if its underlying topological space

is quasi-compact.
2. A scheme X is connected if its underlying topological space is connected.
3. A scheme X is irreducible if its underlying topological space is irreducible.

4. A scheme X is reduced if for every open subset U, the ring Ox(U) is reduced, i.e., no nilpotent

elements.
5. A scheme X is integral if for every open subset U, the ring Ox(U) is an integral domain.

6. A scheme X is locally noetherian if it has an open cover by affine subschemes (Spec A;)ic1, where

each A; is a noetherian ring.

7. A scheme X is noetherian if it is locally noetherian and quasi-compact (compact but not necessarily
Hausdorff space). Equivalently, X is noetherian if it can be covered by a finite number of open affine

subsets Spec A; with A; noetherian.
Proposition 1.1.28. Every affine scheme is quasi-compact.

Proof. Let X = Spec A be an affine scheme, and let {D(f)} scr be a covering of X consisting of

basic open set. Then,

X=JD(f)=UX\V((f) =X\ V()

feF feF feF

So,
o= V() =V(()

feF feF
which implies 1 € }_cp(f). From the definition of sum of the ideals, there are fi, ..., f, € F and
ai, ..., a, € A such that

arfi+ ... +anfn =1
SO, g = ﬂi:l,...,n V((fl))/ this says that X = Uizl,...,n D(fl) O

Corollary 1.1.29. A scheme X is quasi-compact if and only if X is a finite union of open affine subscheme.

13
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Proof. If the scheme is quasi-compact then it is obviously a finite union of affine schemes. If X is
a finite union of open affine subschemes, then X is a finite union of open quasi-compact subsets,

and therefore, X is quasi-compact. O

Proposition 1.1.30. A scheme X is locally noetherian if and only if for every open affine subscheme
U = Spec A, A is a noetherian ring. In particular, an affine scheme X = Spec A is noetherian if and

only if A is a noetherian ring.
Proof. See 3.46,2 of [17]. O

The Grothendieck’s relative point of view is that much of algebraic geometry should be devel-
oped for a morphism of schemes Y — X, i.e., we are more interested in properties of Y relative

to X rather than the internal geometry of Y.

Definition 1.1.31. Let X be a fixed scheme. A scheme over X or X-Scheme is a scheme Y, together with
a morphism of schemes fy : Y — X.If Y and Z are X-schemes, a morphism of Y to Z is a morphism of

scheme ¢ : Y — Z such that fz o ¢ = fy. We will denote the category of all X-schemes by Sch(X).
In the language of the schemes, a variety is defined in the following way.

Definition 1.1.32. Let k be a field. An affine variety over k is the affine scheme isomorphic to the
(Spec A, O) for some finitely generated algebra A over k. An algebraic variety is a k-scheme X such
that there exists a finite covering {Uy, ..., U, }, where each U; is an affine open subscheme that is an affine

varieties over k.

The following result shows that the notion of a scheme and an algebraic variety generalize the

notion of ”variety” in classical sense.

Proposition 1.1.33. Let k be an algebraically closed field. And let V be an algebraic set over k. The
topological space is homeomorphic to the set of closed points of underlying topological space of Spec k[V],
and its sheaf of reqular functions is obtained by restricting the structure sheaf of Spec k[V| via this

homeomorphism.

Proof. See Proposition 2.6, II of [14]. In this reference, Hartshorne has established this result for

arbitrary varieties in the classical sense, including projective and quasi-affine varieties. O
Here is a powerful lemma used in many results of scheme theory

Lemma 1.1.34. Let S be a scheme. Let { X }ic; be a family of S-schemes. For each i # j, suppose given an
open subscheme U;; C X;. Suppose also given for each i # j an isomorphism of S-schemes fi; : Xij — Xj;

such that

14
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1. fii = idxi;
2. fii(Xij N Xie) = Xji N Xjgs
3. fik = fjk Ofij on Xi]' — Xir.

Then there exists an S-scheme X, unique up to isomorphism, with open immersions (of S-schemes) g; :

Xi — X such that g; = gj o fij on Xjj, and that X = U;c; &i(Xi).
Proof. See Lemma 3.33, 2 of [17] O
We will now introduce the concept of a point in the context of schemes.

Notation 1.1.35. Let 711 : Y — X and 715 : Z — X be two X-schemes, the set of X-morphism between
them, homx(Z,Y), is also denoted by Y (Z) provided there is no confusion (if Z = Spec A, is denoted by
Y (A) as well).

Definition 1.1.36. Let 7w : ¥ — X be an X-scheme. A section of X is a morphism of X-schemes
s : X — Y such that T o s = idx. The set of all sections of Y is exactly the set homx(X,Y) = Y(X) (here
X represents idx : X — X).

Example 1.1.37. Let X be a scheme over a field k. Then we can identify X (k) with the set of points x € X
such that k(x) = k: Let s € X(k) be a section, and let x be the image of the point of Spec k. Then the
homomorphism s% induces a homomorphism of fields x(x) — k. Since x(x) is a k-algebra, x(x) = k.
Conversely, if k(x) = k, then there exists a unique section Spec k — X (the composition of the canonical

morphism Spec Ox x — X and morphism induced by Ox » — «(x)) whose image is x.
This motivates the following definition:

Definition 1.1.38. Let X be a scheme over a field k. And let k' be any field extension of k. The points of
X (k') is called k-rational points or k-valued points of X (here k' represents k — k').

Remark 1.1.39. The assumption that k' is a field extension of k arises from the fact that the k-scheme
Spec k' — Spec k corresponds to a field homomorphism k — k', which is always injective. This injectivity
holds because the unique prime ideal of a field is O, implying that the kernel of a field homomorphism must
be 0.

As mentioned above, if k' = k, then Y (k) is the set of points x € X such that x(x) =k

There are some special morphisms of schemes

Definition 1.1.40. A morphism f : Y — X of schemes is quasi-compact if X can be covered by open

affine subschemes V; such that the pre-images f~1(V;) are quasi-compact.

15
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Proposition 1.1.41. If f : Y — X is a morphism of affine schemes, then f is quasi-compact.

Proof. f~1(X) = Y is quasi-compact, since Y is an affine scheme. O

Definition 1.1.42. A homomorphism ¢ : A — B is of finite type if B is a finitely generated (or finite

type) A-algebra, i.e., B is isomorphic to A[x1, ..., xu|/ I for some n and some ideal I C Alx, ..., Xp].

Definition 1.1.43. 1. A morphism f : Y — X of schemes is of finite type at y € Y if there exists an
affine open neighborhood U = Spec B C Y of y and an affine open subscheme V = Spec A C X
with f(U) C V such that the induced ring homomorphism A — B is of finite type.

2. A morphism f : Y — X of schemes is locally of finite type if it is of finite type at every point
of Y. Equivalently, f is locally finite type if X has an open covering by affine subschemes V; =
Spec A; such that for each i, f~1(V;) = Ujej Ui j is covered by open affine subschemes of Y, and

the restriction of f to U, j induces a finite type ring homomorphism A; — B, ;.

3. Amorphism f : Y — X of schemes is of finite type if f is locally of finite presentation and quasi-
compact. Equivalently, f is finite type if X has an open covering by affine subschemes V; = Spec A,
such that for each i, f~1(V;) = Ujej Ui is covered by finitely many open affine subschemes of Y,
and the restriction of f to U; ; induces a finite type ring homomorphism A; — B, ;. In this case, we

say X is of finite type over Y

Definition 1.1.44. The morphism f : Y — X is finite if X can be covered by affine open schemes Spec A;
such that each f~1(Spec A;) = Spec B; C Y is affine, and B, is a finitely generated A;-module. In this

case, we say X is finite over Y.

Definition 1.1.45. A homomorphism ¢ : A — B is of finite presentation if B is isomorphic to
AlX1, ey Xn)/ (f1, s fn) as a finite type A-algebra for some n, m and some polynomials f;.

Definition 1.1.46. 1. A morphism f : Y — X of schemes is of finite presentation at y € Y if
there exists an affine open neighborhood U = Spec B C Y of y and an affine open subscheme
V = Spec A C X with f(U) C V such that the induced ring homomorphism A — B is of finite

presentation.

2. A morphism f : Y — X of schemes is locally of finite presentation if it is of finite presentation
at every point of Y. Equivalently, f is locally finite presented if X has an open cover by affine
subschemes V; = Spec A; such that for each i, f~1(V;) = Ujej Uij is covered by open affine
subschemes of Y, and the restriction of f to U;; induces a finite presented ring homomorphism

A — Bl',]'.

16
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Definition 1.1.47. An open subscheme of a scheme (X, Ox) is a scheme (U, O|1) where U is an open
subspace of X, and O |y is the restriction of the structure sheaf of X. An open immersion is a morphism

f + X — Y which induces an isomorphism of X with an open subscheme of Y.

Definition 1.1.48. A closed immersion is a morphism f : Y — X of schemes such that f induces a
homeomorphism of Y onto a closed subset of X, and furthermore the map f* : Ox — f.Oy of sheaves on
X is surjective. A closed subscheme of a scheme X is an equivalence class of closed immersions, where
wesay f:Y — Xand f': Z — X are equivalent if and only if there is an isomorphism i : Y — Z such
that f = f'oi.

Since we have the concept of a base space, we also have the notion of a base change.
Definition 1.1.49. Let X be a scheme, and let (Y,Y — X) and (Z,Z — X) (in short, Y and Z) be

X-schemes. A fiber product or pullback of Y and Z over X, denoted Y X x Z, to be a scheme, together
with morphisms p1 : Y xx Z — Y and p; : Y Xx Z — Z that satisfies the following property:

1. The diagram

YxxZ —"” 7

T

Y

|

is commutative;

2. Forany scheme W, and for any morphisms f : W — Y and g : W — Z which makes a commutative

diagram
w—=2 7
f ‘/
Y — X

4

there exists a unique morphism 0 : W — Y xx Z such that f = py1ofand g = p2 o 6.
The morphisms py and py are called the projection morphisms of the fiber product onto its factors.

Theorem 1.1.50. For any X-schemes Y and Z, the fiber product Y X x Z exists, and is unique up to

isomorphism.

Proof. The uniqueness can easily be deduced from the universal property of a pullback in a
general category. For existence, the idea is first to construct products for affine schemes and
the glue. Let us note that if (Y xx Z) exists, ,then for any open subscheme U of Y, the fiber

product of U and Y also exists. It suffices for this to take U xx Z := p; L(U), and the projection

17
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morphism can be taken the restrictions of p; and p, to the open subset p~!(U). furthermore,
given the symmetry of the definition, if (Y xx Z, p1, p2) exists, then (Z xx Y, p2, p1) is the fiber
product of Z and Y.

* Let us first suppose that X = Spec A, Y = Spec B and Z = Spec Z are affine schemes.
Set W = Spec(B®, C) and p (resp. g) be the morphism corresponding to the canonical
homomorphism B — B®4 Cwithb — b® 1 (resp. C — B®4 C with ¢ — 1 ® c). Since the
tensor product of rings is pushout and Spec is a contravariant equivalence of categories,

(W, p,q) is the fiber product of Y and Z over X.

* Let us now suppose X and Z are affine schemes, and Y arbitrary. Let {Y;};c] be a covering
of Y by affine open subschemes. From the first case, the fiber product (Y; xx Z, pi, qi)
exists for every i € I. For any pair i,j, the pre-image p; ' (Y; N Y;) and pj’l(Yi NY;) are
canonically isomorphic to (Y; NY;) xx Z, which gives an isomorphism of fiber products
fipit(inY;) — pj_l (Y; NY;). From the uniqueness of the isomorphism of fiber products
pt(iNY;NY) xx Z = p ' (YiNnYjNYy) xx Z, we have fy = fi o f;;. Then, we can
glue the X-schemes Y; xx Z to an X-scheme W by Lemma 1.1.34. As each Y; xx Z can
be considered as a Y-scheme and a Z-scheme via the projection morphisms, and as the f;;
are compatible with the structures of Y-schemes and of Z-schemes, we obtain projection
morphisms p: W — X, g : W — Y by gluing. Then (W, p,q) is the fiber product of Y and
Z over X.

* Let us now suppose X is affine, and Y, Z arbitrary. We cover Z by affine open subscheme
Z;. Then the fiber products of Y and Z; exist by symmetry of the fiber product. By gluing

the Y x x Z; as above, we obtain the existence of the fiber product.

* Let us suppose that X, Y and Z are arbitrary schemes. Let {X;};c; be an affine open
covering of X. Let f : Y — X and g : Z — X be the structural morphisms, Y; := f~1(X;),
and Z; := ¢~'(X;). Note that any X;- scheme is an X-schemes in a natural way. It follows,
the fiber product of Y; and Z; over X; is also their fiber product over S. Thus, repeats the

same argument, the fiber product (Y xx Z, p,q) exists.

O]

An important application of fiber products is to the notion of base change. Let X be a fixed
scheme, and let Y — X and Y’ — X be morphism of schemes. Then there is a pullback X' =
Y xx Y’ and two projection morphisms p; : ¥ xx Y — Yand pp : Y xx Y’ — Y. We say that

p1:Y xxY' — Y is the base change of the morphism Y’ — X via the morphism Y — X.

18
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Definition 1.1.51. Let f : Y — X be a morphism of schemes. The diagonal morphism is a morphism
A Y — Y xXx Y whose composition with both projection maps p1,p2 : Y xxY — Y is the identity
map of Y, i.e., p1 o A = pp o A = idy. By universal property of fiber product, the diagonal morphism is

unique.

Definition 1.1.52. A morphism of schemes f : Y — X is separated if its diagonal morphism A is a

closed immersion. In this case, we say X is separated over Y.
Proposition 1.1.53. If f : Y — X is a morphism of affine schemes, then f is separated.
Proof. Let Y = Spec A, X = Spec B. Then A is a B-algebra, and Y xx Y = Spec A ®p A is also

affine. The diagonal morphism A is induced by diagonal homomorphism

ARpA — A

a®a — ada'.

This is a surjective homomorphism of rings, since 2 ® 1 — a. Hence A is a closed immersion. []

Definition 1.1.54. A morphism f : Y — X of schemes is quasi-separated if the diagonal map A : Y —

Y xx Y is quasi-compact.

Quasi-separated morphisms were introduced by Grothendieck and Dieudonné as a general-

ization of separated morphisms.
Proposition 1.1.55. A closed immersion is quasi-compact.

Proof. Let f : Y — X be a closed immersion, and let {V;};c; be an open covering by affine
subschemes. Since f(Y) NV; is a closed subset of V; and V; is quasi-compact (by Proposition
1.1.28), f(Y) NV} is quasi-compact. Because of f : Y — f(Y) is a homeomorphism, we have that
FYV;) = fYV; N f(Y)) is quasi-compact as desired. O

Corollary 1.1.56. A separated morphism of schemes is quasi-separated.

Definition 1.1.57. A morphism f : Y — X of schemes is of finite presentation if f is locally finite

presentation, quasi-compact, and quasi-separated.

Definition 1.1.58. 1. A morphism f : Y — X is universally closed if it is closed, and for any
morphism Y' — X, the corresponding morphism f' 1Y xxY' — Y’ obtained by base change is

also closed.

2. A morphism f : Y — X is proper if it is separated, of finite type, and universally closed.
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We summarize some immediate observations of these morphisms.
Remark 1.1.59. Let f : Y — X be a morphism of schemes.

1. If X and Y are affine schemes, then f is separated, quasi-compact.

2. If f is finite, then f is of finite-type.

3. If f is of finite presentation at some point y € Y, then f is of finite-type at y.

4. If X is locally noetherian, then f is of finite presentation at y € Y if and only if f is of finite

presentation at y.
5. If f is separated, then f is quasi-separated.

We will not present the projective scheme or other fundamental concepts of algebraic geome-

try, such as normality and singularity.
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1.2 Abelian Category

In this section, we introduce the fundamental concepts of abelian categories, with the main ref-

erences being [4], [35], and [32].
Definition 1.2.1. A pre-additive category is a category C together with an abelian group structure on
each set home (A, B) of morphisms such that the composition maps

o : home(A,B) x home(B,C) — home(A,C)

(f,g)—gof

are group homomorphism for all objects A, B, C € C.

Definition 1.2.2. Given two objects A, B in a pre-additive category A, a biproduct of A and B is a
quintuple (P, pa, PB,Sa, Sg) such that

1. Pisan object in A;
2. pa:P— A pg:P— B,sp: A— Pandsp: B — P are morphisms in A;
3. paosa =ida, pposp =idp, paosg=0,and pposa =0;
4. andspopa+spopp = idp.
The object P is written by A @ B in general.

Proposition 1.2.3. Let A be a pre-additive category, and let A, B be objects in A. Then, the following

statements hold

1. If (P,pa,pB,Sa,sp) is a biproduct, then (P,pa, pp) is a product of A, B, and (P,sa,sp) is a
coproduct of A, B.

2. The biproduct of A, B exists, if and only if, the product (resp. coproduct) of A, B exists.
Proof. See Proposition 1.2.4 of [4]. O

Definition 1.2.4. A pre-additive category is additive if it has a zero object and every finite set of objects

has a biproduct.

Definition 1.2.5. A functor F : A — B between pre-additive categories is additive if it is a group

homomorphism on each hom-set in A.

Proposition 1.2.6. A functor between addtive categories is additive if and only if it preserves all biproduct

diagrams.
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Proof. See Proposition 1.3.4 of [4]. O
Definition 1.2.7. A category is abelian if it is additive and

1. it has all kernels and cokernels,

2. every monomorphism is the kernel of some morphism, and

3. every epimorphism is the cokernel of some morphism.

Theorem 1.2.8. A category A is abelian if and only if it is additive, if all kernels and cokernels exist, and

if the natural map Coim(f) — Im(f) is an isomorphism for all morphisms f € A.
This means that the first isomorphism theorem holds in the abelian category.
Proposition 1.2.9. Let f : A — B be a morphism in an abelian category, then
1. fis a monomorphism if and only if Ker(f) = 0.
2. f is an epimorphism if and only if Coker(f) = 0.
Proof. See Proposition 1.5.4 of [4]. O

Given all these properties, the notion of an exact sequence is well-defined in the abelian cate-
gory.

Definition 1.2.10. Let A be an abelian category. A sequence

o A IS A A DA A,

of A is said to be exact if Im (f;) = Ker (fit1).

Definition 1.2.11. A short exact sequence is an exact sequence of the form

0 AL Aad a0

which means that the map f is a monomorphism, g is an epimorphism, and Ker (g) = Im (f).

Definition 1.2.12. A functor is said to be left-exact (resp. right-exact) if it preserves all finite limits

(resp. colimits).

This is the general definition of a left (right) exact functor. In the context of abelian categories,
the concepts of left and right exactness coincide with the standard definitions, which we will

state in the following proposition..
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Proposition 1.2.13. Let A and A’ be abelian categories, and let F : A — A’ be a covariant functor.
Then, F is

1. left-exact if and only if whenever

oA Lad a0

is exact then

18 exact;

2. right-exact if and only if whenever

0 AL ad a0

is exact then

FA) 22 Feay B8 pamy — 0

is exact.
Proof. See Proposition 1.11.2 of [4]. d

Definition 1.2.14. A covariant functor between abelian categories is said to be exact if it is both left exact

and right exact.
The contravariant version is similar.

Proposition 1.2.15. Let A and A’ be abelian categories, and let G : A — A’ be a contravariant functor.

Then, G is

1. left-exact if and only if whenever

oA Lad a0

is exact then
0 — G(A") 9 ga) ) g(ay
1s exact;

2. right-exact if and only if whenever

0 AL ad a0
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is exact then

G(f)

S8, gay L2 gany — o

G(A/l)

is exact.

Remark 1.2.16. Let F : A — A’ be a functor between abelian categories. If F is either left or right exact,
then it preserves either the biproduct or the bicoproduct. Therefore, by Proposition 1.2.6, F is an additive

functor.
Now we will state the famous snake lemma without any proof.

Proposition 1.2.17. In an abelian category, If the following diagram is commutative,

AL p %, ¢C 0
|
0 aLp Lo

where 0 is the zero object. And if the rows are exact sequences, then there is an exact sequence relating the

kernels and cokernels of a, b, and c:
d
Ker a — Ker b — Ker ¢ — coker a — coker b — coker ¢

where d is a morphism, called connecting morphism.

Here, we present the cochain complex and its associated cohomology groups in the abelian

category.

Definition 1.2.18. * A cochain complex A* in an abelian category A is a sequence
* n—1 d! n d n+1
AVt AT — AT AT —
of A such that for each n € Z, d"*' o d" = 0 for all n. So there is a factorization

A" — Tm (d") — Ker (d"+1) — A™H1,

* A morphism of cochain complexes f : A* — B* is a family of morphisms (f"),cz such that all

the diagrams

n

A" & ; An—H

fn ‘/ n+1

n

B" B Bn+1
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are commutative.
* The category of cochain complexes of an abelian category A is denoted by CoCh(.A).
* A homotopy h between a pair of morphisms of cochain complexes f, g : A* — B* is a family of

morphisms (h" : A" — B"~1) such that

fn _gn —_ dg_lohn+hn+10dg

dnfl an
An—l A AN A An+1
n
h" &n f hn+1
Bn—l B" Bn+1
! dy

or all n, this diagram is not necessarily commutative. Two morphisms f, ¢ : A* — B* are said to
g y P 8

be homotopic if a homotopy between f and g exists, and is denoted by f ~ g.

* A morphism f : A* — B* of cochain complexes is a homotopy equivalence if there exists a
morphism g : B* — A* such that there exists a homotopy between f o g and idp-, and there exists a
homotopy between g o f and id 5«. If there exists a homotopy equivalence between A* and B*, then

we say that A* and B* are homotopy equivalent.

e Foranyn € Z, the n-th cohomology group of a cochain complex A* is the quocient

Hn(A*) _ Ker (dn)

@ Coker(Im (d"!) — Ker (d")).

A morphism f : A* — B* induces functionally, for each 1, a morphism H"*!(f) = f*"+! .
H""Y(A*) — H"t1(B*) of A (or simply f*) To show this, we see the following commutative

diagram

im(d”) coker(d” )

A" ——— Ker(coker(d’)) = Im(d") Artl Coker(d")
fn fn+1
n " " im(dy) il coker(dy) "
B" ———— Ker(coker(dy)) = Im(d}) B Coker(d}).

The definition of morphism of cochain complexes and the universal property of Coker(d’; ) pro-
vide a unique morphism y : Coker(d") — Coker(d%™) with y o coker(d’;) = coker(d}) o f"*1.
But then coker(d}) o f"™ oim(d",) = u o coker(d") oim(d’;) = 0, from the universal property

of Ker(coker(d})), there exists a unique morphism v : Ker(coker(d’)) — Ker(coker(d})) with
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im(d%) ov = f"*1 oim(d"). By the same argument, since
ngrl ofn+1 Oker(dZJrl) — fn+2 OdTrl Oker(dfrl) =0,

there is a unique morphism 7 : Ker(d’,"™) — Ker(d3*!) with ker(d};*!) o7 = f"*1 o ker(d’}1).

With all this, we obtain a diagram

) 1 ker(d"™) 1
A" Im(d}) — s Ker(d™H) At
fn v 7]‘ fn+1

Y’ 11 ker(d™) 1
B" — 5 Im(dl) ——— Ker(dit!) 8 L, pn+l,

We will prove that this diagram commutes, i.e., 77 0 = ¢’ o v. Note that
ker(di™) oy ov =im(d}) ov = f" M oim(d}) = " oker(d’™!) o p = ker(di) oo y.

Since ker(d™) is a monomorphism, we have ¢/ o v = 7 o . So, from the universal property
of the Coker(y), there is a unique f*"*1 : H"*1(A*) = Coker(¢) — H""!(B*) = Coker(y')

making the diagram

Im(dh) — s Ker(d) — ) Coker(yp)
v ’7[ fr
Im(d}) _r Ker(dp™) coker(y') Coker(y)

commute.

By the uniqueness, we have (f o g)*" = f*" o ¢*", id*" = (idpn(s-)), and (f +g)*" = f*" +
¢*".So H" : CoCh(A) — A is an additive covariant functor.

Proposition 1.2.19. If two morphisms f, g : A* — B* are homotopic, then

ot =g H'(A*) — H"(B").

Proof. We will prove that (f — g)*" = 0 for each n. From the previous construction, (f — g)*" is
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induced by a commutative diagram

AT () — Y Ker(dy) ) g
(f-g)" ! v‘ U] (f=g)"
n—1 n—1 Y " ker(d})
Bl — & Im(d% ') ——— Ker(d}}) —— = B,

Let i be a homotopy between f and g, by the definition, we have

= (f —g)" oker(d}) = (W ody +dt ' oh") o ker(d)
= d%’l oh" oker(d") = ker(d}) oy o (coim(d%’l) oh" oker(d’)).

Let 7' := coim(d} ') o " o ker(d"), so that m = ker(d%) o ¢/ o 7. On the other hand, 7 =

ker(d}) o1, since ker(d}) is a monomorphism, we have 7 = ¢’ o 7’. Then we obtain
(f — g)*" o coker(y) = coker(¢") o = coker(¢') o ¢’ o 7’ = 0.
Since coker(¢) is an epimorphism, we conclude that (f — g)* = 0. O

Corollary 1.2.20. If f : A* — B* is a homotopy equivalence, then f*" is an isomorphism for every
ne-z.

Proof. From the definition of homotopy equivalence, there is a morphism g : B* — A* of cochain
complexes such that f o g ~ idp- and g o f ~ id4-. By the previous proposition, we have f*" o

g = (fog)"" = (idyn(g-) and g"" o f*"" = (g o f)*" = (idpn(4+)) as desired. O
Proposition 1.2.21. 1. The category CoCh(.A) is an abelian category.
2. A sequence of cochain complexes
04" L 50 50
is exact if and only if
0—an Lpr&onsg
is exact for every n € Z.

Proof. For item 1), see 1.2.3 of [35]. The item 2) follows from the definition of the morphism of

cochain complexes. O

27



1.2. ABELIAN CATEGORY CHAPTER 1. PREREQUISITES

Now, we will introduce the right exact functor and discuss some basic facts about it.

Definition 1.2.22. An object I in a category C is said to be injective if for every monomorphism g : X —
Y and every morphism g : X — I there exists a morphism h : Y — I (no need to be unique) extending g

toY, i.e., the following diagram commutes

>

%Y
8
h

—

~

Proposition 1.2.23. Let A be an abelian category. If

015835 co0

is an exact sequence in A such that I is injective, then the sequence splits, i.e., there is an isomorphism h
from B to the direct sum of I and C, such that h o f is the natural injection of A into the direct sum, and

g o h™ 1 is the natural projection of the direct sum onto C, so the sequence
ho oh™!
012 ac¥c—o0

is exact.

Proof. From the properties of a short exact sequence, the morphism f is a monomorphism. By
the definition of an injective object, there is a r : B — I such that v o f = id;. Now consider

morphism idg — f or : B — B. We have

(idy — for)of =f—forof=f—f=0,

which implies that there exists a unique morphism s : B — C such that so g = idp — f or, since

g = coker(f). We have already for+sog =idg, gof =0,andro f = id;. We have also
gosog=go(idg—for)=g—gofor=g=idcog,
hence g os = idc, since g is an epimorphism. Finally
rosog=ro(idg—for)=r—rofor=r—r=0,

thus r os = 0, since g is an epimorphism. This concludes that the quintuple (B,7,4,f,s) is the
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biproduct of I and C. O

Definition 1.2.24. An abelian category A is said to have sufficiently many injective objects if for

every object X € A there exists a monomorphism from A into an injective object in A.

Example 1.2.25. The category Ab of abelian groups is an abelian category which has sufficiently many

injective objects.

Definition 1.2.26. Let A, A’ be two abelian categories. A covariant o-functor from A to A’ is a system

F = (F');>0 of covariant exact functors

A A

together with a connecting morphism d : F'(A") — F'*1(A’) defined for each i > 0 and each short exact

sequence 0 — A" — A — A" — 0in A, satisfying the following properties:

1. For every commutative diagram with exact rows

0 A A A" 0
0 B’ B B” 0

in A, the diagram

FI(A") —2—— FiH1(A")

|

Fi(B//) % Pz‘+1(B/)
is commutative for all i > 0.

2. For every exact sequence

0—-A -A—=A"—0
in A the long sequence
0— F(A") = F'(A — F°(A") — FY{(A") = F}Y(A) — ...
is exact in A'.

Definition 1.2.27. Let F = (F');>q and F' = (F");>q be two d-functors from an abelian category A to
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another abelian category A’. A morphism from F to F' is a system f = (f');>0 of functorial morphisms
froF — (F)

which satisfies the following property:
For any exact sequence

0—-A -A—=A"—0

in A the diagram
Fz’(A//) Fi+1 (A/)
f"(A”)J lf’“(fl’)
(F/)i(A//) - (F/)i-i-l(A/)
commutes.

Definition 1.2.28. A o-functor F = (F');>q from the abelian category A to the abelian category A’ is
called universal if each morphism O : F* — (F")° of functors has a unique extension to a morphism

f: F — F of o-functors.

Definition 1.2.29. An additive covariant functor F : A — A’ from an abelian category to an additive
category is called effaceable if for every object A € A, there is a monomorphism m : A — M in A such
that F(m) =0

Theorem 1.2.30. Let A be an abelian category with sufficiently many injective objects, then

1. A functor F : A — A’ is effaceable if and only if F(M) = 0 for all injective objects M € A;

2. An exact O-functor F = (F') from A’ to an abelian category A’ is universal if and only if F' is
effaceable for every i > 0.

Proof. (1) : Assume that F is effaceable, and let M be an injective object in \A. By definition, there
is a monomorphism m : M — N in A with F(m) = 0. From the definition of the injective object,

there is a commutative diagram

M—" N
idMl .
M.

This implies idp(y;) = F(idy) = F(n) o F(m) = 0, so F(M) = 0. The converse is obvious, since
A has sufficient many injective, for every object A € A, there is a monomorphism m : A — M

with M injective. Since F(M) = 0, F(m) = 0.
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(2) : see 2.1.2 of [32]. O

Definition 1.2.31. Let F : A — A’ be a left exact additive covariant functor between abelian categories.
The right derived functor of F is the universal exact o-functor from A to A’ that extends F. If it exists,
it is unique up to isomorphism. We will denote it by (R'F);>q, and R'F is called the i-th right derived
functor of F.

Theorem 1.2.32. Let A be an abelian category with sufficiently many injective objects, and let A’ be
an abelian category. Then for every left exact additive covariant functor F : A — A’ the right derived

functor (R'F) ;> exists.
Proof. Since A has sufficiently many injective objects, every object A € A has an injective reso-
lution, i.e., there is an exact sequence
M*(A): 0= A— M - M — ..
where M are injective objects in .A.
We will use the following facts from [6], ch. V:

1. If M*(A) and M*(A’) are injective resolutions of A and A’ in A, then every morphism u :
A — A’ extends to a morphism M*(A) — M*(A’) of CoCh(.A), and any two extensions of
u are homotopic. In particular, the injective resolution M*(A) of A is uniquely determined

up to homotopy equivalent.

2. Any exact sequence 0 - A’ - A — A” — 0in A extends to an exact sequence
0— M*(A") - M*(A) - M*(A") =0

in CoCh(A).

Given an object A € A, and an injective resolution of A
M*(A):0— A — M’ — M — ...
Since F is left exact which preserves kernel, the sequence
F(M*(A)) : F(0) — F(A) — F(M°) = F(M') — ...

is a cochain complexes, and since additive functor preserves homotopy, F(M*(A)) is uniquely

determined up to the homotopy equivalence, i.e., for any injective resolutions M*(A) and M*(A)’
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of A, the cochain complexes F(M*(A)) and F(M*(A)’) are homotopy equivalent. Hence, the

system of functor given by

ROF(A) = HY(F(M"(A))) = Ker (F(M?) — F(M"))

_ Ker (F(M') — F(M'1))
~ Im (F(Mi-1) — F(M?))’

R'F(A) = H'(F(M*(A))) i>1

is well-defined. Moreover, for any morphism u : A — A’ in A, we have a unique extension
M*(u) : M*(A) — M*(A’) up to homotopy, so the morphism RIF(u) = H'(M*(u)) : R'F(A) —
R'F(A’) is also well-defined. For this reason, R'F is an additive covariant functor.

Since F is left exact, ROF = F. For each i > 0 the R'F are effaceable, since for an injective

object M € A an injective resolution of M is given by 0 — M 1y M = 0, from which we have

R'F(M) = 0 for each i > 0, so by Theorem 1.2.30, if (R'F);> is a @-functor, then it is universal.

Now, we will prove that R'F is a d-functor. Given a short exact sequence
0A A= A" =0,
from 2), it is extendable to a short exact sequence
0— M*(A") - M*(A) - M*"(A") =0
for suitably chosen resolutions. Since Mi(A’) is injective, all exact sequences
0— M(A) = M(A) — M(A") =0

split and therefore

0 — F(M'(A") — F(M'(A)) — F(M'(A")) =0

is exact. The exact sequence
0— F(M*(A")) = F(M*(A)) = F(M*(A")) =0
of complexes in A’ yields. The connecting homomorphisms
0:R'F(A”) — RTF(A)

are provided by the snake lemma, so that the long cohomology sequence becomes exact and the

d’s functorial for short exact sequences in A. Hence, (R'F);> is a right derived functor of F. [
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From the construction, we can interpret that the right derived functors (R'F);~q “measure” the

failure of exactness of the left-exact functor F.

Definition 1.2.33. Let A and B be abelian categories having sufficiently many injectives, and let F :

A — B be an additive covariant functor. An F-acyclic object, is an object X in A such that
R'F(X)=0 foralli>0.
Remark 1.2.34. In the proof of the previous theorem,, we saw that for any left exact additive functor F,

every injective object is an F-acyclic object.

Lemma 1.2.35. Let A and B be abelian categories such that A has enough injectives. Let G : A — B
be a right adjoint additive functor with F : B — A left adjoint to G. Then the following conditions are

equivalent:

1. The functor F preserves injective maps.
2. The functor F is exact.

3. The functor G preserves injectives, i.e., sends injective object into injective object.

Proof. See Lemma 12.29.1 of [31]. O

Proposition 1.2.36. Let L; and Ly be left exact functors from abelian categories with enough injective

objects. And let L = Ly o Ly. If Ly preserves injective objects and X is an Lq-acyclic object, then
(R'L)(X) = (R"Ly) (L1 X).

In particular, the above equality holds if Ly is an exact functor that preserves injective objects.

Proof. Let

0O—-X—>Iy—6LH— ..

be an injective resolution of X. By hypotheses on Ly,
0— L1 X —Lily —» L1 — ..

is an injective resolution of L1 X, which can be used to compute the (R"L;)(L; X). Now we have

 Ker (L(I") = L(I"*Y))  Ker (Ly(LyI") — Ly(LyI'*1))
" Im (L(IY) = L(I")  Im (Lo(Li 1Y) — Lo(Li D))

R'L(X) = R'Ly(L1(X))

as desired. O
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1.3 Grothendieck Topology

In this section, we introduce the Grothendieck topology, sheaves on Grothendieck topology, and
sheafification, with the main references being [5], [16], [32], [20], [12], [33], and [10].

To define a sheaf, it is not necessary to have a topological space. Grothendieck shows that
it suffices to have a category C together with, for each object U € C, a set of families of maps

{U; — U} ey, called the coverings of U, satisfying the following axioms:

1. For every covering {U; — U}y and every morphism V — U in C, the pullbacks (fiber

products) U; xy; V exist, and {U; x; V — V'} is a covering of V;

2. If {U; — U}iey is a covering of U, and for each i € I, {V;; — Ur}jej, is a covering of U;,

then the family {V;; — U; — U}, is a covering of U;
3. For every object U € C, the single family {id : U — U} is a covering of U.

These axioms generalize the notion of an open covering in a topological space. For any open
subset U and V with V' C U, and for any open covering U = [J;c; U; of U, the first axiom asserts
that the family {U; NV : i € I} forms an open covering of V. The second and third axioms are

more straightforward.

Definition 1.3.1. The system of coverings satisfying the above axioms is called a Grothendieck pre-

topology, or simply topology, and C together with a topology T is called a site.

Definition 1.3.2. A morphism f : (C',7') — (C,7) of topologies is a functor f : C — C’ of the

underlying categories with the following two properties:
1. If {U; kN U} is a covering of (C, T), then { f(Uj;) /@i, f(U)} is also a covering of (C', ).

2. For each covering {U; — U} of (C, T) and a morphism V — U in C, the canonical morphism

fUi xu V) = f(Ui) X gy f(V)
is an isomorphism for all i.

A morphism of topologies f : (C’,7') — (C,7) is actually a functor in the opposite direc-
tion, which aligns better with our intuition from topological spaces. Some authors may define
a morphism of topologies f : (C',7") — (C, ) as a functor C' — C, as in [32], because of this is
the definition used in SGA4 (the seminar, not the book). However, since this approach was not

adopted in the published version, we will use the definition given above.
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Definition 1.3.3. A presheaf of sets on a site C; = (C, T) is a contravariant functor F : C — Set. A
morphism between presheaves is just a natural transformation, We will denote the category of presheaf

of sets on a site Cr by Psh(Cr).

Definition 1.3.4. A presheaf F on a site Cr is separated if, for any coverings {U; — U}, the canonical
map
F(u) — JTF()
i
is injective.

Notation 1.3.5. If ¢ : U — V is a morphism of C, then we sometimes denote F(¢) : F(V) — F(U) by

a +— aly (this can be confuse, since there may be more than one morphism from U to V).

Similarly, a presheaf of abelian groups or rings on C: is a contravariant functor from C to the
category of abelian group or rings.
The concept of a presheaf on a site does not depend on the coverings, whereas the notion of a

sheaf does depend on them.
Definition 1.3.6. A sheaf on site C: is a presheaf F that satisfies the sheaf condition: the diagram

F(pry)
F(U) ——— Ilier F(U;) —o [ jerxr F(Ui xu Uj)
pr2

is exact (i.e., an equalizer) for every covering {U; — U}, where (U; xy Uj) is the fiber product of

(U; — U,U; — U), and the left morphism is induced by the product.
Hence F is a sheaf if the map

F(U) — [TF(U;)
f = (f’ui)iel

identifies F(U) with the subset of the product consisting of families ( f;) such that

fi|Ui><uUj = fj’UiXuU/

for every i,j € I x I. We denote the category of sheaves of sets on C by Sh(Cr), and the category
of sheaves of abelian groups by Ab(Cz). It is easy to see that Sh(Cr) is a full faithful subcategory
of Psh(Cv).

Theorem 1.3.7. The category Ab(Cr) is an abelian category with sufficiently many injective objects.
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Proof. (see [32] Section 3 of Chapter I). O

Hence, the right derived functors R7f exist for each given left exact additive functor from
Ab(Cy) to Ab. For a fixed object U € C, we consider the section functor I'y; : Ab(C;) — Ab

defined by T';(F) = F(U), this functor is left exact functor, so there is a right derived functor.

Definition 1.3.8. For an abelian sheaf F on Ab(C+) we define the g-th (sheaf) cohomology group of
U with values in F by
HI(U,F) = RITy(F).

The sheaf cohomology “measures” the lack of exactness of the global section functor I'(X, —).
In addition, it also “measures” the capability to ”lift local data to global” in certain situations.
Here’s a summary of how it works:

Let X be a topological space and F a sheaf on X. Consider a cover {U; };c; of X, and sections
fi € F(U;) over each open set U;. Let G C F be a subsheaf, and assume that for all i,j € I,
the difference f; — f; € G(U; N U;j). One might ask wether f’s ”"glue” to a global section f €
F(X) such that f|y, — fi € G(U;) for each i. This is a generalization of the Cousin’s problem:
Given an open cover {U;};ec; of C, and meromorphic functions f; defined on each U;, where
fi — fj is holomorphic on U; N U;. Is there a meromorphic function f on C such that f|y, — f; is
holomorphic for each i?

This problem is closely related to the exactness of the global section functor I'(X, —). Let
f; € (F/G)(U;) be the image of f; under the projection F — F/G. The sections f; glue in the
quotient sheaf F/G, since f, — 7]. =0 € (F/G)(U; N Uj), and by the sheaf property, there exists
an element f € (F/G)(X). Therefore, the f;’s can be lifted to a global section f € F(X) such
that |y, — f; € G(U;) if and only if the global section f lies in the image of the map (I'(X, F) —
I'(X,F/G)).

Since I'( X, —) is left exact, we have the following exact sequence:
0 -T(X,G) - T(X,F) - T(X,F/G) = H(X,G).

Hence, the f;’s can be lifted to a global section f € F(X) if and only if the first cohomology group
HY(X,G) is trivial.

There is another approach to sheaves, defined using a Grothendieck topology (rather than just
a pretopology). We will explain how this construction works.

Let C be a category and c be an object in C. A sieve on c is a subfunctor of the functor h, =
hom(—, c), which assigns to each object x € C the set of morphism from x to c. Let S be a sieve

onc,and let f : ¢ — ¢ be amorphism in C, We denote the pullback S xj_hy of S along f by f*S.
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More concretely, for each object x € C, we have

f*S(x)={g:x— :fogeS(x)}

Definition 1.3.9. A Grothendieck topology | on a category C is functor from C to Set such that J(c)
is a set of distinguished sieves on ¢ (whose element is called a covering sieve) for each object ¢ € C,

satisfying the following axioms:
1. IfS € J(c) and f : ¢ — cis a morphism of C, then the pullback f*S € J(c');

2. Let S € J(c),, and let T be any sieve on c. Suppose that for every object ¢’ € C and every morphism
f:c — cinS(c’), the pullback sieve f*T € J(c'). Then T € J(c);

3. For every object ¢ € C, h. € J(c).
If C is a category and | is a Grothendieck topology on C, then the pair (C, ]) is also called a site.

These axioms are analogous to the axioms of a Grothendieck pretopology.
For any pretopology, the collection of all sieves that contain some covering family from the

pretopology is a Grothendieck topology. So, there is no ambiguity in site.

Definition 1.3.10. In the sense of Grothendieck topology, a sheaf F on site (C, ]) is a presheaf on C such
that for every object ¢ € C and every covering sieve S € ](c), the natural map hom(h., F) — hom(S, F)

induced by the inclusion S — h, is a bijection (This definition is equivalent to the previous one).

There is a consequence of Yoneda’s lemma which characterizes the set hom(R, F) even if F is

not a sheaf.

Proposition 1.3.11. Let C be a category, and let F : C — Set be a presheaf. If R is a sieve on X € C, then

hom(R, F) = lim F(U)
(U—=X)eC/R

where C /R is the comma category.

Proof. See Proposition 4.6 of [23]. O

Given a presheaf F, we can construct a sheaf from it through a process called sheafifica-
tion. This process defines a functor, and in fact, sheafification is a left adjoint to the inclusion
functor from Sh(C) to Psh(C). Let’s explore this concept further, particularly in the context of
Grothendieck’s pre-topology.
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We will work with the site (C, 7). For simplicity, we will often denote the site by C instead of
(C, 7).

LetUd = {U; = U}je;and V = {Vi — U}ker be two coverings of U. We say that the pair
(¢ : K= L{Vk — Uy }rex) is a refinement of U by V, if the compositions Vi — Uy — U is
equal to the Vi — U.

Let F be a presheaf of sets on C, and let i/ = {U; — U};c; be a covering of U. We denote the

equalizer

{(Si)iel € HF(UZ') : Si|Ui><uU/ = Sj|Ui><uUj Vi, j e I}

iel

by F(U). It is clear that the refinement of U by V induces a commutative diagram

e /\

VXuV qu(l,

N

Vi Uy(j)

For this reason, there is a map F(U) — F(V) defined by (s;) — (sp(x)|v;)-

Let I be the category of all coverings of U: the objects are the coverings of U in C, and a
morphism from V to U is the refinement of ¢ by V. Note that Ij; is not empty since {idy;} is a
covering of U. According to the previous remarks, the construction &/ — F(U) defines a con-

travariant functor from I;; to Set. We define

FH(U) = lim FU).

uer’

Now, we turn the collection of sets F*(U) into a presheaf. Let V — U be a morphism in C. From

the definition of the covering, there is a natural morphism I;; — Iy given by
{Ui — U} — {ul xyV — V}

Similarly, there is a functorial map of sets F({U; — U}) — F({U; xyV — V}) defined by
(si) = (silu;x,v)- Hence, by generalities of colimits we obtain a canonical map F*(U) — F* (V).

This construction defines a presheaf F'. Of course, if F is a sheaf on C, then F*© = F.

Proposition 1.3.12. 1. If F is a presheaf on C, then F is a separated sheaf.
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2. If F is a separated sheaf, then F* is a sheaf.
Hence, the presheaf F* := F*% is always a sheaf.

Proof. see [16] 5.111 O

F* is called the sheaf associated to F. As noted above, this process defines a functor known as

sheafification.

ar : Psh(C) —» Sh(C)

F+—s F*,

Moreover:
Theorem 1.3.13. The functor a is a left adjoint of the inclusion functor i : Sh(C) — Psh(C).
Proof. see [16] 6.111 . O
Corollary 1.3.14. For any presheaf F on a site T, the following are equivalent:
1. F is a sheaf.

2. For any covering {U; — U}icy in T there exists a refinement {U; — U} of {U; — U} in T, such
that
F(U) — [[F(U) = F(Uj xy U})

1s exact.
Proof. See1.3.1.4 of [32] m

Sheafification of presheaves of abelian groups, groups, rings, etc., is defined in the same way,
and sheafification is exact when the category is abelian.

Next, we will summarize the canonical topology of a given category.

Definition 1.3.15. Let C be a category. Recall, a morphism in C is called an epimorphism if the canonical
map hom(V,Z) — hom(U, Z) is injective for every object Z € C. A morphism U — V is an effective

epimorphism, if the diagram
hom(V,Z) — hom(U, Z) = hom(U xv U,Z)

is exact for every Z € C, where the two right-hand maps are induced by the projections of U x v U onto the
left and right factor. A morphism U — V is called a universal effective epimorphism, if U xy W — W

is an effective epimorphism for every morphism W — V in C.
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These notions generalize to families of morphisms {U; — V }ic : A family {U; — V }ic; is a family
of epimorphisms if {hom(V,Z) — [lic hom(U;, Z)} is injective for every Z € C. It is a family of

effective epimorphisms if the diagram

hom(V,Z) — | [hom(U;, Z) = [ | hom(U; xv Uj, Z)

iel ijel

is exact for every object Z € C. A family of effective epimorphisms is a family of universal effective
epimorphisms if {U; xy W — W} is a family of effective epimorphisms for every morphism W — V in
C.

Definition 1.3.16. Let C be a category. The canonical topology T of C is the collection of all family of

universal effective epimorphisms in C.

Remark 1.3.17. To show that canonical topology is Grothendieck’s (pre-)topology, see I. 1.3 of [32] and
IV, 1of [11]

There are some immediate facts
Proposition 1.3.18. 1. Every representable presheaf of sets is a sheaf on (C, T).

2. The canonical topology is the finest topology on C such that all representable presheaves of sets are

sheaves.
Definition 1.3.19. A Grothendieck topos is a category equivalent to the category of sheaves on a site.

In this thesis, we will not consider elementary toposes. Thus, we will sometimes use the term
“topos” in place of “Grothendieck topos.”
The notions of direct image and inverse image functors in the category of sheaves on a topo-

logical space generalize to the concept of a geometric morphism in a topos.

Definition 1.3.20. If E and F are toposes, a geometric morphism f : E — F consists of a pair of adjoint

functors (f*, fx)
f**F—E and f,:E—F

such that the left adjoint functor f* preserves finite limits. The left adjoint f* is called the inverse image

of the geometric morphism, and the right adjoint f. is called the direct image of the geometric morphism.

Theorem 1.3.21. Let f : C., — Cy be a morphism of sites, with C and C' small. Then precomposition

with f defines a functor between the categories of presheaves

(=)o f:Psh(Cy) — Psh(Cz).
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Moreover, there is a geometric morphism between the categories of sheaves

(f*, f+) : Sh(C7) = Sh(Cr)

where f, is the restriction of (—) o f to sheaves.
Proof. See [30]. N

Theorem 1.3.22 (Comparison Lemma). Let C, C be two small categories, and let T (resp. T') be a
Grothendieck topology on C (resp. C'). Let u : C — C' be a fully faithful functor that induces a morphism
of Grothendieck topologies. If every object X € C' has a covering {u(U;) — X}cj by objects of C, then u

induces an equivalence of categories of sheaves (of sets) (u*, u) : Sh(C;) — Sh(C.,).
Proof. SeeI11.4.1. of [12] O

We introduce the notion of a topology in a topos. For more details, see [12], [33], [10], and

Chapter 7, part 1 of [31].

Definition 1.3.23. Let C be a category, and let T and T’ be two Grothendieck topologies on C. The inter-
section topology T N T’ of topologies T and T’ is the finest topology on C that is coarser than both T and

T,

In the sense of [12] (SGA4 IV.9), an embedding is defined as follows.

Definition 1.3.24. Let f : Sh(C;) — Sh(Cy) be a morphism of topoi. We say that f is a embedding if
and only if it is fully faithful.

Example 1.3.25. Let C be a category, and let T, T’ be its topologies. Let T N T’ denote the intersection

topology of T and T'. The canonical morphisms of topologies induce geometric morphisms

i= () : Sh(Ce) = Sh(Copwr) and i = (i*,iy) : Sh(Co) — Sh(Corver).

Moreover, the right adjoins j. and i, are embeddings.
Definition 1.3.26. [12] (SGA4)

1. The subtopos E C Sh(C) is open if there exists a subsheaf F of the final object of Sh(C) such that
E = Sh(C/F).

2. The subtopos E' C Sh(C) is closed if there exists a subsheaf F of the final object of Sh(C) such that

E'={G € Sh(C) : pry : F x G — F is an isomorphism)} .

41



1.3. GROTHENDIECK TOPOLOGY CHAPTER 1. PREREQUISITES

3. They are complement for each other if they are defined by the same F.

Remark 1.3.27. if F is a subsheaf of the final object of Sh(C), then the topoi Sh(C/F) and {G € Sh(C :
F x G — F is an isomorphism)} are subtopoi of Sh(C) (See 7.43 of [31]).

Remark 1.3.28. The term “open” in the above definition refers to the open sets in the Lawvere-Tierney
topology.

Definition 1.3.29. Let f : Sh(Cr) — Sh(Cy) be an embedding. We say f is an open (resp. closed)

immersion if the essential image of f is an open (resp. closed) subtopos.

Example 1.3.30. If X is a topological space, then topos Sh(X)/F is equivalent to Sh(U) for some open
subset U of X.

Notation 1.3.31. Denote by e, the composition

h

Co ——— 5 Psh(Cy) ——=—— Sh(Cy)
a hom(—,a)

f fol

b hom(—,b)

where a. is the sheafification with respect to topology T.

Proposition 1.3.32. Let C be a category, and let T, T’ be its topologies. Let T N T’ denote the intersection
topology of T and T'. Let j = (j*,j«) : Sh(Cy) — Sh(Cyny) and i = (i*,i.) : Sh(Cy) — Sh(Crnr)
be the canonical geometric morphisms induced by “inclusion” maps. The following properties are equiva-

lent:

1. j. makes Sh(C+) an open subtopos of Sh(Cyny), while i, makes Sh(Cy) its closed complement;

2. Every object X € C has a covering sieve R with respect to T such that, for every U — X in R, the

empty sieve is T'-covering for U.
Proof. Let @ be the initial object of Sh(Cr). By [12] (SGA4.11.4.6.1), the empty sieve is T/-covering
for U € Cif and only if e/ (U) = D.
Write W := i, (D) = i.(ax(D)), by the definition of sheafification, we have

* ifer(X) =0y,
W(X) =

& otherwise.
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Therefore W is a subsheaf of the final sheaf *.

(2) = (1) : Firstly, we show that j is isomorphic to the embedding corresponding to the
open subtopos Sh(Crn¢)/W. For F € Sh(Cyny ), the T-sheaf j*F is the T-sheaf associated to the
presheaf F. If X € C satisfies €./(X) = @, then e (U) = @ holds also for all U — X, since the
initial object of the topos is strict and the functor €,/ induces a morphism of sheaves e (U) —

€v(X) = @p. Therefore, every T-covering sieve of U is also a T N T'-covering, consequently,
(J*F)(X) = F(X) ifeq(X)=Dp. (1.1)
Hence, the map W x j,j*F is a T N 7’-sheaf given by

F(X) ifeq(X) =00y,
X —

& otherwise.

Soif F € Sh(Crny) has Psh(F,W) # &, then F — W X j,j*F is an isomorphism. Therefore, every
F € Sh(Crnr) /W satisfies F = W x j,j*F.

Note that for each U € C, by equality 1.1, if e (U) = @, we have j*W(U) = W(U) = =x.
By the hypothesis (2), every X € C has a covering sieve R with respect to T such that, for every
U — X in R, the empty sieve is 7/-covering for U, so j*W(U) = « for every U € C/R. Applying

Proposition 1.3.11, we obtain

J*W(X) = hom(hx, j*W) = hom(R,j*W) = lim FWU) = m k=
(U—=X)eC/R (U—=X)eC/R

Therefore, j*W = x is the final sheaf. Hence for every A € Sh(C;) we have j*(W x j,A) = A.
Then the restriction of j* to Sh(Cynr)/W is an equivalence of categories from Sh(Crq)/W to
Sh(C¢), a quasi-inverse being given by A — W x j. A.

In other words, j, is isomorphic to the open embedding corresponding to the open subtopos

Sh(Carver)/W.

Now, we will prove that i, is isomorphic to the closed complement embedding of j.. The

closed complement of Sh(Cyny) /W is the full subcategory

E:={F € Sh(Ciny) : pr1: W x F — W is an isomorphism}
= {F: F(X) = * for all X with e (X) = @y}
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The functor i, takes values in E, since for any B € Sh(Cy), we have
(i.B)(X) = hom(hx, B) = hom(ex(X),B) (X €C).

Hence, i.(Sh(C:)) C E. It remains to prove that i, (Sh(C;)) 2 E, or in other words, that every
F € Eis a T'-sheaf.

Let F € Eand X € C, and let R’ be a t'-covering sieve of X. It is sufficient to show that
F(X) = Hom(R', F) (the definition of sheaf). By the hypothesis (2) there is a T-covering sieve R
of X consisting of objects which are covered by empty sieve under 7. Now R U R’ is a covering

sieve for TN 7’. Since F is a sheaf for T N 7/, the upper horizontal map in the following diagram

F(X) ——— hom(RUR,F) =lim . F(U)

|

hom (R, F) = Uiy yecsp F(U)

(RUR’)

is bijective. Since F € E, we have F(U) = « for each (U — X) € C/R. This implies that the right
hand vertical map between the 1'&1’5 is bijective. Hence so is the diagonal map, as desired.

(1) = (2) : See (2.2) of [27]. O
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1.4 Galois cohomology

In the first half of the 20th century, the concept of group cohomology was well developed, fo-
cusing on invariants associated with a group G equipped with a G-module S. This provided a
purely algebraic tool for studying group representations, drawing analogies with the topological
case. A notable application was in the context of Galois groups, leading to the notion of Galois
cohomology, which became an important tool in the modern development of number theory.

In this section, we present some fundamental concepts of group cohomology, profinite groups,

and Galois cohomology, with the primary references being [25] and [24].

Definition 1.4.1. A topological group G is a topological space that is also a group such that the group

operation

:GxG—G
(a,b) — ab,
and the inverse map
1:.G6—G (1.2)
2 a1 (13)

are continuous.

A morphism of topological groups is a continuous group homomorphism.

Definition 1.4.2. Given a topological group G, a G-set is a set S equipped with a G-actionon S, i.e., a

function - : G xS — 'S, (g,s) — g - s satisfies the following two axioms:
*¢-5=s5;

e g-(h-s)=gh-s.

In this case, the topology doesn’t matter.

A continuous G-sets S is a set S equipped with an G-action G X S — S that is continuous when S is
given the discrete topology.

A morphism of G-sets is a function f : S — T such that g - f(s) = f(g-s) forevery g € Gands € S.
This morphism is called G-equivariant map.

The category of G-sets (resp. continuous G-sets), denoted G-Set (CG-Set), is a category consists of

G-sets (resp. continuous G-sets), with morphisms given by G-equivariant maps.
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Definition 1.4.3. Given a topological group G, A G-module (resp. continuous G-module) is a G-set

(resp. continuous G-set) M equipped with an abelian group operation, denoted (M, +), such that

g (x+y)=g-x+gy

forevery g € G, x,y € M.

A morphism of G-modules is a morphism of G-sets f : M — N which is also a group homomorphism.
The category of G-modules (resp. continuous G-modules), denoted G-Mod (CG-Mod), is a category

that consists of G-modules (resp. continuous G-modules), with morphisms given by G-equivariant maps

that are also group homomorphisms.

Definition 1.4.4. Let S be a G-set. For all x € S, the orbit of x, denoted G - x, is the set

{g-x:g€G}.

Given a subset T C S, the stabilizer of T, denoted Stab(T), is the set

{g€G:g-x=x VxeT}.

We write Stab(x) instead of Stab({x}). it is immediate that Stab(T) is a subgroup of G.
Given a subset L C G, the L-invariant of S, denoted SL is the set

{xeS:g-x=x VgelL}

Remark 1.4.5. If S is a G-module, S* is a subgroup of S.

If f :+ S — T is a morphism of G-set, then f preserves invariant element, i.e., Stab(x) C Stab(f(x))
for all x € X. In particular, if x € S* fora L C G, then f(x) € TL, in other words, f(S*) C TL.

A G-set S is continuous if and only if the subgroup Stab(x) is open subset of G for each x € S.

Definition 1.4.6. Let L be a subset of a topological group G, we define the L-invariant functor as

( )t G-Set — Set

S+— St

and for a morphism f : S — T of G-sets, f* is the induced restriction, as noted in the previous remark..

We will use the same name and notation for the analogous functors CG-Set — Set, G-Mod — Ab,
and CG-Mod — Ab.
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Proposition 1.4.7. Given a topological group G, the category CG-Mod is abelian and has sufficiently

many injectives. Moreover, the G-invariant functor
( )t:CG-Mod — Set

is left exact.

Proof. See [31], Lem. 19.3.1. O
From this definition, we can define the group cohomology.

Definition 1.4.8. Given a topological group G, a G-module S, and a q > 0, we define the q-th (group)
cohomology of G, with coefficients in the S by

H7(G,S) = R1( )S(S).

Here is the famous theorem about group cohomology.

Theorem 1.4.9 (Hilbert’s Theorem 90). If L/K is a finite Galois extension of fields with Galois group
G = Gal(L/K), then the first cohomology group of G, with coefficients in L*, is trivial:

HY(G,L*) = {1}.

A particularly important case for us is Galois cohomology, which is defined by taking G to be
the absolute Galois group of a field, i.e., Gal(k*°" / k), where k°°? denotes the separable closure of
k, i.e., the maximal Galois extension of k. To define Galois cohomology, we first need to equip G
with a topology. While it would be possible to use the discrete topology, this is not convenient
for our purposes. Instead, we adopt the profinite topology on Gal(k**? /k), which is natural for

the study of such Galois groups.

Definition 1.4.10. A profinite group is a topological group that is isomorphic to the inverse limit (or

projective limit) of a system (cofiltered diagram) of discrete finite groups.

Since the cofiltered limit of a system of discrete finite groups can be viewed as a “subspace”
of the product of these groups, we can equip it with the subspace topology inherited from the
product topology on the Cartesian product of the finite groups in the system.

There are some useful properties of profinite groups.
Theorem 1.4.11. Let G be a topological group. Then the following are equivalent:
1. G is profinite.
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2. G is compact, Hausdorff, and totally disconnected.

3. The identity 1 admits a local base U such that each U € U is an open normal subgroup of G with
finite index and

G =lim G/U.
Ueld

Proof. See Theorem 2.1.3 of [25] O

Proposition 1.4.12. Let G be a profinite group and U be the set of all open normal subgroups of G. Then
Nuew H = {1}.

Proof. See Theorem 2.1.3 of [25]. O

Proposition 1.4.13. Let G be a profinite group, and let U be the set of all open normal subgroups of G. If
A is a G-set equipped with discrete topology, then A is a continuous G-set (i.e., the action is continuous)

if and only if A = Uyey AY.

Proof. Assume A is a continuous G-set, then stab(x) is an open subgroup of G for each x € A.
By the previous proposition, for any x € A there is an open normal subgroup H contained in
stab(x). Therefore, x € A%*() C AH as desired.

Assume A = ey AY, we need to prove that the action f : G X A — A is continuous. Since
the topological space A is discrete, it suffices to show that the preimage f~!(b) is an open subset,
for every b € A. Fixab € A, since A = Uycy AY, there exists an open normal subgroup H
such that b € AM. Thus, for any (g,a) € f~1(b), Hg x {a} is an open subset of (g,a) such that
Hg x {a} C f~1(b). Therefore, f~1(b) is an open subset as desired. O

The following theorem shows that the Galois group is a profinite group.

Theorem 1.4.14. For any field F, and any Galois extension K
Gal(K/F) = lim Gal(L/F),
L

where L runs over finite Galois extensions of F, such that F C L C K. Furthermore, the topology
given by profinite group agree with the Krull topology, i.e., the topology generated by the local base
U; := Gal(K/L;) where L; is a finite Galois extension of F.

Proof. See Theorem 2.11.1 of [25]. O

The Fundamental Theorem of Galois Theory can now be formulated in terms of profinite

groups.
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Theorem 1.4.15. Let K/F be a Galois extension with Galois group G := Gal(K/F). We denote the set
of intermediate fields F C L C K by I(K/F), and the set of closed subgroups of G by S(G). Then, there
is a bijection between 1(K/F) and S(G) as follows:

¢: [(K/F) — S(G)
L — Gal(K/L).

Its inverse is

¥ :S(G) — I(K/F)
H+— KH

where K™ denotes the fixed subfield of K under H.

Proof. See Theorem 2.11.3 of [25]. O

Remark 1.4.16. In a topological group, every open subset is also closed, ensuring that the function is

well-defined.

Definition 1.4.17. Let K be a field with separable closure k*F, and let G = Gal(k*P /k) be a topological
group equipped with profinite topology. In this case, H1(G, S) is called the q-th Galois cohomology of
GonS.

Let G be a profinite group. We denote the canonical topology of CG-Set by Ti. It is easy
to check that a family {U; LN U}icr of morphisms in CG-Set is a family of universal effective

epimorphisms if and only if U = U;c; ¢i(U;).

Proposition 1.4.18. Let G be a profinite group. The functor

¢ : CG-Set —» Sh(CG-Set, T)

Z — homg(—,Z)

is an equivalence of categories, where hom (X, Z) denotes the set of all morphisms X — Z in the category

CG-Set. The quasi-inverse of the functor ¢ is the functor

¢ : Sh(CG-Set, Tg) —> CG-Set
F+— lim F(G/H).
W
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Here for every open normal subgroup H of G, the quotient group G/ H is viewed as a continuous G-
module via left multiplication. We define a continuous G-structure on the set F(G/H) as follows:

Forg € G/Hands € F(G/H) we set gs = F(Rq)(s), where Ry : G — G is the G-map given by
ggg

Moreover, if H and H' are both open normal subgroups of G with H C H', the canonical G-homomorphism
G/H — G/H' induces a map F(G/H) — F(G/H'). The inductive limit is taken over all open nor-
mal subgroups of G, ordered by inclusion. Thus, ligH F(G/H) has a natural structure of a continuous

G-sets.

Proof. On the one hand, ¢ o ¢(Z) = lim, homg(G/H, Z) for each object Z € CG-Set. We have a

canonical identification

lim homg(G/H,Z) =lim 2" = | Jz" = Z.
H H H
The first equality holds because a G-map ¢ : G/H — Z is completely determined by the value of
¢(1) € Z". The second equality follows from the fact that Z" N ZH" = ZHH', The third equality
follows from the definition of a continuous G-set, which is based on the equivalence criterion for

continuity. On the other hand,
¢ o y(F) = homg(—,lim F(G/H)).
H

Now, it suffices to prove that there is an isomorphism of sheaves from F to homg(—, lim, F (G/H)),
functorial in F.
Let U be a continuous G-set. Since U = |Jy U, the family {U" — U} of all inclusions

UH < U is a covering in the topology Tg. So, we obtain an exact diagram

F(U) — [TFu®) = [T Fu? <y u').
H H,H'

Note that UM xy; Ut = uf nuf = UH", then we have a canonical identification

F(U) = {(s") € [TEUM) ¢ 57| = 6| g } = lim F(UM).

It's easy to see that the family {G/H % UH}, _u, where @, (¢H) = gu, is a covering in the
topology T¢ (here, ¢, is well defined since u is H-invariant). Then, For a sheaf F we have the
exact diagram

Fu"y — J] F(G/H)= ][] F(G/H xyn G/H)

uelt upelt
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corredsponding to the covering. This shows that the image of the injective map

F(u")y — [ F(G/H) = hom(U",F(G/H))

uclUH

is precisely the subset homg, (U, F(G/H)) of G/H-maps from U to F(G/H) : In details, the
map F(U™) — [T,cyx F(G/H) is given by

Y:F(U"y — J] F(G/H) = hom(U",F(G/H))

uclt

a— ¥(a)
with

¥(a): U — F(G/H)

u — F(@y)(a).
The map ¥ («) is a G/ H-map, since for each gH € G/H, we have
gH-¥(a)(u) = gH-F(gu) () = F(Rgn)F(@u)(a) = F(@uoRgn)(a) = F(@gu) () = ¥ (a)(gHu).

This implies Im(¥) C homg,y(UH, F(G/H)). To prove the other inclusion, assume that

r = (ry),eyr is G/ H-equivariant, i.e.,
gH -1, = F(Rg)ry =gy
for each g € G. we want to show that for any u,v € U",
F(p1)(ru) = F(p2)(ry) € F{(jH,kH) € G/HXx G/H :j-u =k-v}).
LetE,o ={fH € G/H: f-u =v}. And consider the map

G/H x E,y — G/H xyu G/H

(jH,kH) — (jkH, jH)

From the definition of E, ;, this map is well-defined, and in fact, consider G/H x E,, as the
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disjoint union ] | FEEus G, this map is G/ H-equivariant, and is component-wise given by the maps

ir:G/H — G/Hxyn G/H = {(jH,kH) : j-u=kf -u}

gH— (¢fH,gH).

The map G/H x E,, — G/H x;u G/H has an inverse (jH,kH) — (kH,k 'jH). The map
(jH,kH) — (kH,k 'jH) is well-defined (i.e., (kH,k"'jH) € G/H x E, ;) since

kliou=klk-v=no.
This map is G/ H-equivariant, because of
(fiH, fkH) — (fkH, k™' 7' fjH) = (fkH,k™'jH) = fH - (kH, k™ 'jH).

So, the map G/H X E,, — G/H xyn G/H is an isomorphism. Because F is a sheaf, F(I[A) =
[TF(A), in particular,

F(G/H xyu G/H) 2 F(G/H x E,,) = [] F(G/H)
f€E.»

So by construction an element x € F(G/H xu G/H) maps to the family (F(if)(x))feg,,- Since
this is an isomorphism, to prove F(p1)(r,) = F(p2)(ry), it is sufficient to prove this equality after

applying F(if) for all f € E, ,. Before computing, note that

, gfH, ifA=1
proif(gH) = pr(gfH,gH) =
gH, ifA=2,

i.e, proif = Rsyand pp oif = idg,y. Now, we obtain

F(ip)E(p1)(ru) =F(p1oif)(ru) = F(Rgu)(ru) = 15 = 10
=F(idc (o)) = F(p20if) = F(if)F(p2)(r0).

So, from the sheaf condition, the image of map F(U") — [1,cyn F(G/H) = hom(U",F(G/H))
is precisely the subset homg (U, F(G/H)). This map

F(U") — homg, y(UH, F(G/H))
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is functorial in UH, so is an isomorphism of sheaves, and it is functorial in F.

We want to show next that the map F(G/H) — lim, , F (G/H') induces a canonical isomor-
phism

homgu(U", F(G/H)) — homg(U",lim F(G/H')).
HI

To show this, note that given a normal subgroup H' C H, the family {7 : G/H' — G/H}isa

covering in T. So there is an associated exact diagram
F(G/H) — F(G/H') = F(G/H' xg/u G/H').

We use the previous strategy to show that the image of the map F(G/H) — F(G/H’) is the sub-
set F(G/H')"/H of H/H' invariant elements in F(G/H'): Let’s prove that for any x € F(G/H),
F(r)(x) is H/ H'-invariant first. Let nH' be any element in H/H’, we have

hH'F(7r) (x) = F(Rupy ) F (1) (x) = F(7 0 Rypyr) (x),
but o Ry (¢H') = n(ghH') = ¢H - hH = ¢H = n(¢H’), thus
hH'F(m)(x) = F(7 o Ry ) (x) = F(7)(x).

As before, to show that any H/H’- invariant element y is an element of the image of the map

F(G/H) — F(G/H), itis sufficient to prove that F(p1)(y) = F(p2)(y). Firstly, We note that
G/H x¢,u G/H = {(jH,kH') € G/H' x G/H': jH = kH}
and the map

[I G/H =G/H xH/H — G/H' x/uG/H'
hH'€eH/H'

(gH',hH') — (gH',ghH')
is an isomorphism of G/ H’-sets with inverse
(jH',kH') — (jH',j'kH").

It is easy to check that those maps are well-defined and are G/H’ equivariant. Because F is a
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sheaf, we have

F(G/H,XG/HG/I‘I/)g H F(G/H/)
hH'eH/H'

So by construction an elementx € F(G/H' X, G/H') maps to the family (F (ipg' ) (X)) nmren,/ .
where iy, is a G/ H'-map from G/H' to G/H' xg,q G/H' givenby ¢ — (¢H’,¢hH'). Since this
is an isomorphism, to prove F(p1)(y) = F(p2)(y), it is sufficient to prove this equality after

applying F (i) for all hkH' € H/H'. Since p1 o iy = idg,p and pp o iy = Ry, we have

F(inw )F(p1)(y) = F(p1oinw)(y) = Flidg/m)(y) =y =hH' -y
= F(Rupr)(y) = F(p2 oinpr) = Finw )F(p2)(y)

as desired. So the map F(G/H) — F(G/H') identifies the set F(G/H) with the set of H/H'-
invariant elements in F(G/H’).

Therefore the map F(G/H) — lim, F (G/H') identifies the set F(G/H) with the subset
(liqu/ F(G/H'))H of H-invariant elements in lim,, F(G/H’). Hence the map

homeg,u (U™, F(G/H)) — homg(U",lim F(G/H')).
H/

is in fact an isomorphism.

Putting all together, we obtain the canonical isomorphisms

F(U) = lim F(u")

H

&= @homG/H(UH, F(G/H))
H

o @homG(UH,@F(G/H/))
H H

= home(lim UM, lim F(G/H'))

H H’

= homG(U,ligiF(G/H'))
H/

which are functorial both in U and in F. This completes the proof of the proposition. O

This implies
Corollary 1.4.19. The category CG-Mod is equivalent to the category Ab(CG-Mod, T). The equiva-
lence is given by the mutually quasi-inverse functors A — homg(—, A) and F — lim  F(G/H).

In the final part of this work, these theorems will be used to explore the relationship between

Galois cohomology and étale cohomology.
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Chapter 2

Etale site and its sheaves

This chapter focuses on the main subject of the thesis: the étale site. In the first section, we
summarize key results from commutative algebra needed to define étale morphisms of schemes
and present some essential properties of these morphisms to support the continuation of our
work.

In the second section, we define étale sheaves, prove a criterion for checking whether a presheaf
is a sheaf, show that any representable presheaf is a sheaf, and provide several classical examples
of étale sheaves.

At the end of the chapter, we introduce the direct image functor and inverse image functor be-
tween categories of sheaves on étale sites, which are essential tools for studying the relationship

between categories of sheaves on two different étale sites.

2.1 Etale morphism

An étale morphism is the analogue in algebraic geometry of local homeomorphism in topology

and a covering of Riemann surfaces with no branch point in complex analysis.

Definition 2.1.1. A ring homomorphism 1 : A — B is flat if the tensor product functor from A-modules
to B-modules given by M+ B ® 4 M is exact. One also says that B is a flat A-algebra.

Remark 2.1.2. The tensor product functor is always right exact functor. This definition is equivalent to:

for every injective linear map ¢ : M — N of A- modules, the map

BRa¢p:BRaM — B4 N

b@k— b ¢(k).

is also injective.
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From this characterization, the map B ® 4 id 4 is injective, in particular, themap 1 ®@a — (a) ®
1 is injective. Hence, flat map ¢ is always injective.

The flatness is a local property.
Proposition 2.1.3. If i : A — B is flat, then the following statements are equivalent:
1. Bisaflat A-module;
2. Byisaflat Ay-1(y,)-module for every prime ideal p of B;
This motivates the definition of a flat morphism of schemes.

Definition 2.1.4. A morphism  : Y — X of schemes is flat if the local homomorphisms Oy yy) —
Oy, areflat forally € Y.

Remark 2.1.5. A flat morphism ¢ : Y — X of varieties is the analogue in algebraic geometry of continu-
ous family of manifolds Y, = ¢~ (x) parametrized by the points of X in differential topology. If ¢ is flat
then,

dim¢!(x) = dimY — dim X

forall x € X with Y, # @. This resembles the preimage theorem in differential topology.

Here are some well-known facts about flat ring maps that will be useful for developing the

next part of the work.
Remark 2.1.6. e Letyp: A — B bearing homomorphism. If B is a free A-module, then  is flat.

» Let R be aring. And let S C R be a multiplicative subset. Then the localization S™'R is a flat
R-algebra (see Lemma 10.39.18. Part I of [31]).

* A composition of flat ring maps is a flat.

Definition 2.1.7. A local homomorphism ¢ : A — B of local rings is unramified if B/mp is finite

separable field extension of A/m4.

Definition 2.1.8. A locally of finite presentation morphism f : Y — X of schemes is unramified if the

local homomorphisms O r(,) — Oy, are unramified (i.e., x(y) is a finite separable field extension of

k(f(y))) foreveryy € Y.

Proposition 2.1.9. Let f : Y — X be a morphism of schemes. The following properties are equivalent:

1. f is unramified.

2. For every x € X, the x-fiber decomposes as Yy = |l;c; Spec ki, where k;/x(x) is a finite and

separable field extension, for every i € 1.
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3. f islocally of finite presentation, and the diagonal map Ay : Y — Y X x Y is an open immersion.

Proof. See Proposition 3.2 and 3.5 of [20]. O

Remark 2.1.10. Let f : Y — X be a finite morphism between smooth connected affine curves over C,
and let y be a closed point of Y. We then have the local ring homomorphism f* : Ox f(y) — Oy, Since
Oy is a discrete valuation ring, there is a unique integer e, > 0 such that f*(m £y))Ovy = m;y. This
integer is called the ramification index or multiplicity of y over f(y). Since x(y) = x(f(y)) = C, f is
unramified at y if and only if e, = 1. So a flat unramified morphism is the analogue in algebraic geometry

of a covering of Riemann surfaces with no branch point in complex analysis.

Definition 2.1.11. A morphism f : Y — X of schemes is étale if it is flat and unramified. A homomor-

phism A — Y of rings is étale if the corresponding morphism of schemes is étale.

This definition of an étale morphism may seem abstract at first glance, but there is a more

concrete description of étale morphisms that can make them easier to understand.

Proposition 2.1.12. Let A be a ring, and let f(x) € A[x] be a monic polynomial. If b € A[x]/(f(x)),
and if the derivate f'(x) is invertible in (A[x]/ f(x))p, then the canonical homomorphism A — (A[x]/ f(x))s
is étale. In this case, the algebra (A[x]/ f(x))y, is called standard étale algebra, the canonical homo-

morphism i : A — (Alx]/ f(x))yp is called standard étale homomorphism.

Proof. Since f(x) is monic, B := A[T]/f(T) is a free A-module, and in particular A[T]/f(T) is a
flat A-module. Moreover, since (A[T]/ f(T)); is alocalization of (A[T]/ f(T)), itis flat B-module.
Hence, (A[T]/f(T)); is a flat A-module. By Proposition 2.1.3, the corresponding morphism of
schemes is flat.

Next, we show that the corresponding morphism of schemes is unramified. This morphism is
locally of finite presentation, so we only need to prove that for any p € Spec B with b € p (since
any prime ideal of B, corresponds to a prime ideal of B that does not contains b), the induced
homomorphism

Frac(A/q) — Frac((By)/pBy) = Frac(B/p)

of fields is a finite separable extension, where q = i~ (pBy).
Note that p is the image of a prime ideal p in A[x] under the projection map A[x] — B, where
(f) C p. Therefore, g = p N A. Since q is a prime ideal, q[x] is a prime ideal of A[x] contained in

p. Thus, there exists a homomorphism

j: (A/a)[x] = Alx]/alx] — Alx]/p.
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By the isomorphism theorem, we have

(A/q)[x]/Ker(j) = Alx]/p.

Now, let K denote the field of fractions of A/q. By the same reasoning, we obtain B/p = A[x]/p.

From the identification (A/q)[x]/Ker(j) = A[x]/p, we obtain a sequence of homomorphisms

(A/q)[x] — (A/q)[x]/Ker(j) — Frac(A[x]/p) = Frac(B/p).

For any non-zero a + q € A/q, the image of a + g under the homomorphism

(A/q)[x] — Frac(A[x]/p)

isnon-zero, since a ¢ q = p N A. Therefore, there is a homomorphism induced by the localization

(A/q)[x] Frac(A[x]/p) .

7
-

-~
-
-

-~ h

-~

Klx] = (A/q\ {0})(4/q)[x]

By the isomorphism theorem, there is an injective homomorphism
h : K[x]/Ker(h) — Frac(Alx]/p).
Now:
e Since K[x] is a PID, the prime ideal Ker(h) is a maximal ideal, so K[x]/Ker(h) is a field;
e Since (A/q)[x] — (A/q)[x]/Ker(j) = A[x]/p is surjective, we have A[x]/p C Im(h).

Thus, since the field of fractions of A[x]/p is the least field containing A[x]/p, i is an isomor-

phism. That is,
K[x]/Ker(h) = Frac(A[x]/p) = Frac(B/p) = Frac(By/pBp).

Finally, it suffices to show that K[x] /Ker(h) is a finite separable extension. Let f, f denote the
image of f and f’ in K[x]. Since p 2 (f), we have f € Ker(h). But K[x] is a PID, there exists an
irreducible factor f; of f such that Ker(h) = (fo). Because f'(x) is invertible in (A[x]/f(x))y, it
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is also invertible in K[x]/Ker(h). The following equality:

(f) = (fofr)' = fofr + fofi

shows that f] is invertible in K[x]/Ker(h), which implies that there exist go, g1 € K[x] such that

gofo+gifo=1.

Thus, gcd(fo, f;) = 1, which means f; is a separable polynomial in K[x]. Therefore K|[x]/Ker(h)

is a finite separable extension of K = A/q, as desired. O

Definition 2.1.13. An étale morphism f : Y — X is said to be standard if it is isomorphic to the
Spec (A[x]/f(x)), —> Spec A

where the induced ring homomorphism A — (A[x]/ f(x))y is a standard étale homomorphism.

Theorem 2.1.14. For any étale morphism f : Y — X and y € Y, there exist open affine neighborhoods
Vof yand U of f(y) such that f(V') C U and the restriction f|y : V — U is a standard étale morphism.

Proof. See Theorem 3.14 of [20]. O
There are some important properties of étale morphisms.
Proposition 2.1.15. 1. Every open immersion is étale.
2. Every base change of an étale morphism is étale.
3. The composite of two étale morphisms is étale.
4. If f o gand f are étale, then g is also étale,
5. Every étale morphism is quasi-finite and open.
Proof. See section 2 (chapter I) of [21] or 29.36 of [31]. O
Now, we observe some immediate consequences of the previous proposition.
Corollary 2.1.16. 1. The diagonal map of étale map is étale.
2. The kernel map of étale maps is étale.

3. If U is an open subset of a scheme X, then the inclusion U — X is étale.
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Proof. They are consequences of 2) and 1) of the previous proposition. O

Definition 2.1.17. We denote by Et /X the category whose objects are the étale morphisms U — X and
whose morphisms are the X-morphism f : U — V. This category is referred to as the category of étale

schemes over X (if X = Spec A, it is also called the category of étale schemes over A, denoted Et/ A).
From 4) of Proposition 2.1.15, we deduce that each morphism of Et/ X is an étale morphism.

Proposition 2.1.18. Let k be a field and X be a k-scheme. Then X — Spec k is étale if and only if we can

write X as a disjoint union of spectrum of finite and separable field extensions of k.

Proof. The proposition follows from Proposition 2.1.9 and from the fact that — ®; Ox x is exact

for every x € X (flatness). O

Corollary 2.1.19. The category Et/k of étale schemes over a field k admits arbitrary coproduct.

2.2 FEtale sheaf

The site X, that we are interested in is called the étale site on X. The underlying category of
site X,+ is Et/X, and the coverings of this site are the surjective families of étale morphisms
{fi : U; — U} in Et/X, i.e., the families of étale morphisms satisfying U = | fi(U;).

Since every open immersion is an étale morphism, the étale topology is finer than the Zariski
topology. Consequently, the étale topology provides a cohomology theory that detects more
information than the Zariski topology. For example, the cohomology defined on the étale topol-
ogy with values in a constant sheaf can be non-trivial, whereas any constant sheaf in the Zariski
topology is acyclic.

An étale sheaf is a sheaf on Et/X. And the étale cohomology, denoted H,(X, —), is the sheaf
cohomology on X;.

Here is an important notion for studying étale sheaves, strict localization, although we will

not go into it in depth.

Definition 2.2.1. A geometric point of a scheme X is a morphism X : Spec R — X with R a separably
closed field. An étale neighborhood of a geometric point x : Spec R — X is an étale morphism U — X

together with another geometric point u : Spec R — U lying over X, i.e., the diagram

Spec R — s u
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commuites.

The local ring at X for the étale topology or strictly local ring at X is

OX,? = hg F(U, Ou)
(Um)

where the limit is over the connected affine étale neighborhoods (U, u) of X.
There is a criterion that simplifies checking whether a presheaf is an étale sheaf.

Proposition 2.2.2. Let F be a presheaf on X,;. If F satisfies the sheaf condition for Zariski open coverings

and for any étale coverings (V — U) (a single map) with V and U affine schemes, then F is an étale sheaf.

Proof. We use the Corollary 1.3.14. So, given any covering {U; — U} it suffices to find a refine-
ment {V; — U} which satisfies the sheaf condition.

Let {U; — U} be an arbitrary covering in X,;. We choose an affine open covering

u=Uw
i€l
of U. This provides for each j a covering
U; xy W] — W]

in X,t. Let {Ujj } be an affine open cover of U; xy W; for each i, j. Then, we obtain a refinement
{ui]'k — I/V]} — {Ui Xu W] — I/V]}

of {U; xy W; — W;}. As an affine scheme, W; is quasi-compact. Moreover, the map U;jx — W;
is open, since they are étale morphisms. Therefore, we can refine the covering {U;x — W;} by a

finite subcovering {U;; — W} :
{Ujy = Wi} = {Uijx = W;}.

If we compose the covering {U; — W;} with the Zariski covering {W; — U}, we obtain a
covering

{uy — u}
together with a natural refinement map

{U]-l — U} — {U;, —» u}
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If we show that {U;; — U} satisfies the sheaf condition, then we prove the proposition. By
construction, {U;; — U} is a composite of {W; — U} and {U;; — W;}. So, if F satisfies the sheaf
condition for {W; — U} and all coverings {U;; — W;}, then F satisfies the sheaf condition for
the composite.

Note that
1. {W; — U} is a Zariski covering;
2. {Uj — W;} is a finite family of morphisms of affine schemes.

So, from hypothesis, F satisfies the sheaf condition for {W; — U}.
Since {Uj; — W;} is a finite family of morphisms of affine schemes, we can form an affine

scheme [ ; Uj;, which allows us to write the covering {Ujl — Wj} as a composite of the coverings
{Ujl — HU],} and {H Uﬂ — W]}
1 1

The left covering is a Zariski covering and the right covering is a family consisted of a unique
morphism of affine schemes. by the hypothesis, F satisfies sheaf condition for both coverings,

and so for the composite {U;; — W;}. O

Recall that a flat homomorphism f : A — B is faithfully flat if it satisfies one of the following

equivalent conditions:
1. If M is an A-module such that M ®g N = 0, then M = 0.

2. A sequence of A-module

M- M- M

is exact if and only if the sequence obtained by tensoring over A with B
M,®AB—>M®AB—>M”®AB

is exact.
3. The induced map Spec B — Spec A is surjective.

For this reason, a surjective étale morphism (V — U) of affine schemes corresponding to a faith-
fully flat homomorphism of rings A — B. So, to check the second condition of above criterion,

we shall usually make use only the faithfully flat ring homomorphism.
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Example 2.2.3 (The structure sheaf). Let X be a scheme. For any étale morphism U — X, define
Ox,(U) = T(U,Oy). By Proposition 2.2.2, this is a sheaf on X,r. Obviously, its restriction to Zariski

open coverings is a sheaf, so it suffices to establish the following result.

Proposition 2.2.4. For every faithfully flat homomorphism f : A — B, the sequence

05AL B2 B, B

is exact, where ip — iy is given by b — 1 @b —-b® 1.

Proof. Consider the inclusion homomorphism

BRf:B®asA— B®yB
ba=fa)b@1+—b® f(a) = f(a)b 1.

The homomorphism B ® f has a section, namely, the map m : b® V' — bb’ ® 1. In particular,

B
B ® f is injective, i.e., the sequence 0 — B®4 A 59l B x A B is exact. Moreover, the sequence
B
0-B-L BosB L BosBosB

is exact, where h = B® (ip —i1) = idg ® (ip — i1). To prove this, let

(12) i ((Bof)om)

k:B®4(B®4sB) > B@sB®B > (B®4 B)

bt @b — bbb — (1@0V)-[(B® f)om](bab") = (b @)
be a homomorphism. Then
koh(b@b) =k(b@ 1@V -0 ®1))=k(bo1eV)—k(bab @1)=b'21-bxVb.

Thus, if b ® b’ € Ker(h), wehave b @b = b’ ®1 = B® f(bb' ® 1) € Im(B ® f). On the other
hand, itis clear thatho (B f)(b®1) =b® (1®1-1®1) = 0.

Since f is faithfully flat, we have that the sequence

05AL B2 B, B

is exact. ]
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Proposition 2.2.5. Let X be a scheme, and let Z be an X-scheme. Then the presheaf

hy : Et/X —> Set

u— homEt/X(U,Z)

is a sheaf on the étale topology.

Proof. Let us prove the proposition in the case where Z = Spec C is affine. It is easy to see that
functor hy satisfies the sheaf criterion for open Zariski coverings. Therefore, it suffices to show

that
homRings(C, A) ————— hompings(C, B) 2 hompiugs(C, B ®a B)

is exact for any faithfully flat map A — B. But this follows immediately from Proposition 2.2.4,
since hompings (C, —) is left exact. So, by Proposition 2.2.2, 7 is an étale sheaf.

Now, we prove the general case. Let Z be an arbitrary scheme, and let {Z;};c; be an affine
open cover. By sheaf criterion 2.2.2 we only have to check the sheaf condition for surjective étale

morphism i : V — U of affine schemes U, V. Firstly, we show the injectivity of the map
homEt/x(U, Z) — homEt/X(V, Z)

Let f,g: U — Z be two morphisms such that the composites V. — U — Z coincide. Since h is
surjective, we know that f, ¢ agree as functions of sets. Now, let U; := f~1(Z;) = ¢~(Z;) and
V; := h=}(U;). Since Z; is affine, h 7, is a sheaf. In particular, we have that the following map is
injective

homgy/x (Ui, Z;) — homgix(Vi, Zi).
This means that f|y, = g|u, for each i € I, which implies that f = g.

Next, we show existence of gluing. Let ¢ € homg;,x(V,Z) be an element such that both

morphisms

—op
homg x(V,Z) _:Oqi homes x(V xy 'V, Z)

agree, i.e, goq = go p, where p, g are projection maps of fiber product V x; V. We need to
show that there is a morphism f € homg;,x(U, Z) such that ¢ = f o h. Define V; := ¢~1(Z;) and
U; := h(V;). We know that V; is open in V, and since # is étale (and hence open), it follows that

U; is also open, implying that they are schemes. We know that the composites

Vixu Vi == =3 Vi ———— Z
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agree. Since Z; is affine, the g|y, factor uniquely through f; : U; — Z;. Now, we demonstrate that

fi’ll,ﬂuj - f]|u,ﬂll]

Let V;; := V; xy V}, and let U;; := Im(hi|vl.,], Vi v v LN U). The morphism hi|v,,j isa

composite of étale morphisms, so it is also étale. Thus, U; ; is an open subset. Since I;|y, (Vi;) =

U j is open, the morphism of schemes
Vo Viesviu

factor through

B
Vi,j i> ul',]' — U.

Since U;,; is an open subset, the morphism U;; < U is étale. Therefore, by 4) of Proposition
2.1.15, h;; is an étale morphism. Since ; ; is surjective and g;|v,.(V;;) C Z;, the morphism g;|v;,
factors uniquely through f;; : U;; — Z;, hence, by uniqueness f;|u,; = fi; and similarly with i,
reversed. Since go p = gogq, we have gi|v;, = gjlv,, thus, by uniqueness, f;; = f;;. From the

properties of fiber product, we have

U;NU; = h(V;) Nh(V;) C Uy

Thus, in particular, fi’u,-mu]- = fj\u,-muj- By Lemma 1.1.25, the f; glue together to a morphism

f U — X such that ¢ = f o h. This shows that

homEt/X(U,Z) —_— hOWlEt/X(V,Z) :; hOWlEt/X(V Xu V,Z)

is exact. ]

So, we can identify schemes with sheaves on the étale topology.
Remark 2.2.6. If Z has a group structure, then hyz is a sheaf of groups.

Example 2.2.7. 1. Let G, = Spec Z|[x] be an affine scheme (affine line). Note that
homscpemes (U, Ga) = homRings (Z [x]/ Ou(u) )

Any ring map from Z[x| to another ring is completely determined by where x maps to, which can

be any element of Oy (U). So the maps in homgepemes(U, G,) correspond to elements of Oy (U)

65



2.2. ETALE SHEAF CHAPTER 2. ETALE SITE AND ITS SHEAVES

regarded as an abelian group. By the previous proposition,
Gu,X =Gy, XSpecZ[x} X:Et/X — Ab
is an étale sheaf on X, and for any étale X-scheme U,

Gy x(U) = homg;,x(U, Gy x)
= homgenemes (U, Gy)
= hompings(Z[t], T (U, Ou))
=T(U,Oy),

where the second equality is guaranteed by universal property of fiber product, and I'(U, Oy) is

regarded as an abelian group.

2. Let G,y = Spec Z|x,x 1] be an affine scheme (affine line with the origin omitted). Any ring map
from Z|x,x~ ] to another ring R is uniquely determined by the image of x. Since x is invertible in
Z|x,x~ 1], the image under the homomorphism must be an invertible element in R. So, by the same
reasoning, we have G, (U) = Oy (U)* for any scheme U. Furthermore, Gy x := Gm X spec z[x] X

is an étale sheaf on X and for any étale X-scheme U, we have G, x (U) = I'(U, OF;).

3. Let u, = Spec Z[x]/(x" —1). Any ring map from Z[x]/(x" — 1) to another ring R is uniquely
determined by the image of x = x + (x" — 1). Since X" = 1 in Z[x]/(x" — 1), the image under

the homomorphism must be an element of order n in R. So,
un(U) :={x eI'(U,Oy) : x" =1}

for any scheme U. Furthermore, pyx = pn X specz X is an étale sheaf on X and for any étale
X-scheme U, we have

unx(U) ={x €T(U,Oy) : x" =1}.
Remark 2.2.8. Let X be a scheme. For any natural number n, we can define a sheaf morphism

ny: Gm,X(U) — Gm,X(U)

s — s,

It is easy to see that p,, x is a kernel of the map G, x — Gy, x, so we have the following exact sequence of
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abelian sheaves on X,

n
0— UnX — Gm,X — Gm,X-
The map G, x LN Gy, x is surjective under suitable assumptions on .

Theorem 2.2.9. Let X be a scheme. Let n be invertible on X, i.e., n is invertible in Ox (X). Then there is
an exact sequence

0— UnX — Gm,X £> Gm,X —0
of morphisms of abelian sheaves on X,;. This sequence is called the Kummer sequence on X.

Proof. We only have to show that the map G,, x N Gy, x is surjective. For an étale X-scheme U,
and s € G,,x(U) = T'(U, Oy)*. If we can find a covering {U; — U} of U in X, such that the
map s; € G, x(U;) = T'(U;, Oy,)*, induced by s, are n-th power in I'(U;, Oy, ) *. Then, from the
definition of the abelian sheaf, s is also an n-th power in I'(U;, Oy,)*. Since any scheme has an
open affine covering, we can assume that U is an affine scheme.

But this is a consequence of the following observation: if A is a ring with n invertible in A, and
s € A%, then the A-algebra B := A[t]/(t" —s) is free of rank #, in particular the inclusion map
it A< A[t]/(t" — s) is faithfully flat, i.e., Spec(i) : Spec B — Spec A is surjective. Since 4 (" —
s) = nt""! has an inverse L in A[t]/(t" —s), the map i is a standard étale homomorphism, in

particular étale. Moreover, we have f' = s where 7 is the image of t in A[t]/(t" —s). O

Example 2.2.10. Let A be a discrete abelian group. We denote by Ax or simply A the sheaf associated to
the presheaf U — A for étale X-schemes U. Ax is called the constant sheaf with value in A. This sheaf

is representable, as demonstrated on page 99 of [32]:

Ax(U) = homg/x (U, ] [ X).
A

2.3 Direct and inverse image

Next, we introduce the direct image and inverse image functors, which are specific geometric
morphisms in the étale topology. These functors serve as tools for studying the relationship
between the categories of sheaves on two different étale sites. These functors are analogous to

the direct image and inverse image functors for sheaves on topological spaces.
Definition 2.3.1. Let 7t : Y — X be a morphism of schemes, and let P be a presheaf on Y. The direct
image functor 71, : Psh(Ye) — Psh(X,) is given by

m.P(U) =P(U xxY),
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where U — X is an étale morphism. Since U Xx Y — Y is étale (because it is a base change of étale

morphism), 7t is well-defined.
Lemma 2.3.2. If F is a sheaf, then also is 7T, F.

Proof. For an étale morphism U — X, let Uy denote the scheme U xx Y. Then U — Uy is a
functor taking étale maps to étale maps, surjective families of maps to surjective families, and
fiber products over X to fiber products over Y.

Let {U; — U};c; be an étale covering in Et/ X of . Then {(U;)y — Uy} is an étale covering in
Et/Y. And so

F(Uy) —— TLer F((Ui)y) /¢ TLijer F((Wi)y xy (Uj)y)

is exact. But this is equal to the sequence
. F(U) ———— Tlier(mF)(Ui) ———= TTijes (70 F) (Ui xx Uj)

which is also exact, as required.. O

So the restriction of 7,

7T, Sh(Yar) — Sh(Xer)

is well defined.
Proposition 2.3.3. If the morphism 7t is finite, then the functor 7, is exact.

Proof. See Proposition 8.3 and 8.4 of [21]. O

Let 7 : Y — X be a morphism of schemes. Now, we define a left adjoint for the functor 7,. Let

P be a presheaf on X,;. For V — Y étale, we define
P'(V) := lim P(U)
where the injective limit runs over the commutative diagrams

|4 u

Y X

with U — X étale. It is easy to see that P' is a preshaef. And for any presheaf Q on Y, there are

natural bijections between the following;:
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¢ morphism Pt = Q;

e families of functions P(U) — Q(V), indexed by commutative diagrams as described

above, and compatible with restriction maps;
¢ morphism P — 7, Q.
Hence,
homy,, (PY, Q) = homy, (P, .Q), (2.1)
functorially in P and Q.
In general, Pt isnot necessarily a sheaf, even if P is. Therefore, we define:
Definition 2.3.4. Let 7w : Y — X be a morphism of schemes, and let P be a presheaf on Y. The inverse
image functor 7v* : Sh(Xet) — Sh(Ye) is given by

P = a(P"),

where a(PY) is the étale sheaf associated with P*.
Proposition 2.3.5. The direct image functor 7t, : Sh(Yer) — Sh(Xet) is a right adjoint to 7t*.

Proof. The proof follows from the isomorphisms

homy, (7*F, G) = homy, (F', G) = homx,, (F, .G).
The first isomorphism uses the fact that sheafification is the left adjoint to the inclusion, and the
second follows from the isomorphism 2.1. O
Proposition 2.3.6. Let 7w : Y — X be a morphism of schemes. The inverse image functor 7t is exact.
Proof. See Remark 8.9 [21] or 1.4.2, Chapter II of [32]. O

By Lemma 1.2.35, the direct image functor preserves injective objects.

Proposition 2.3.7. Let 7t : U — X be an étale morphism of schemes. The inverse image functor 7t has

an exact left adjoint ji. In particular, 7v* preserves injective objects.
Proof. See Remark 8.16 of [21]. O

These properties are crucial for exploring the relationship between étale cohomology on two

different étale sites.
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Chapter 3

Real Algebra and Real Spectrum

In this chapter, we present some basic facts and concepts from real algebra and real algebraic
geometry. The main references are [3], [2], [1], and [19]. In the first section, we introduce the
positive cone, an algebraic description of the “positive set”, and the notion of a real closed field,
which serves as an analogue to algebraically closed fields in real algebra and real algebraic ge-
ometry.

In the second section, we introduce real ideals and prove the Real Nullstellensatz, which es-
tablishes a correspondence between real points and orderings in the coordinate rings.

In the third section, we present real closed valuation rings, convexity, and Archimedean prop-
erty. We will also prove that a ring is a real closed valuation ring if and only if it is a convex
subring of a real closed field.

In the final section, we introduce another key concept of the thesis: the real spectrum. We will
explain why the real spectrum is useful in real algebraic geometry and provide a comparison
between the Zariski spectrum and the real spectrum. Moreover, we will prove that the real

spectrum of a real valuation ring is homeomorphic to its Zariski spectrum.

3.1 Cone and real field

In this thesis, an ordering of a field refers to a linear ordering that is compatible with both addi-

tion and multiplication.

Definition 3.1.1. An (compatible) ordering of a field K is a total order relation < with additional
axioms:
Forany x,y,z € K

i-x<y = x+z<y+z
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ii-x>0,y>0 = xy >0.
An ordered field is a field K equipped with an ordering <, denoted (K, <).
Remark 3.1.2. The last axiom can be replaced by (z > 0,x >y = xz > yz).

There are several ways to study the ordering of a field; one of them is through the positive set

of the field.

Definition 3.1.3 (Cone). A cone in a field K is a subset P C K with induced operations satisfying the

following properties:

i- P+PCP;
ii- P-PCP;
iii- Y. K*> C P.

where Y_ K? is the set of sums of squares of K.
We will say that a cone is proper if —1 ¢ P;
We will say that a cone is positive if it is proper and P U —P = K.

Remark 3.1.4. Note that if the cone P is proper, then P N —P = 0. Furthermore, the set of sums of

squares forms a cone, and it is contained in every other cone.
Proposition 3.1.5. Y"K?\ {0} is a multiplicative group.

Proof. 1 =12 € Y K2\ {0}.
Now, let x,y € K2\ {0} be two elements such that x = x5 + ... + x3 and y = y? + ... + y2,.
We have that
xy= (3 4+ ..+ 32+ YR = iix y]2
i=1j=

and

Therefore, )" K2\ {0} is a group. O
Now, we prove that in a field, the ordering and the positive cone are equivalent notions.

Proposition 3.1.6. If K is a field and P C K is a positive cone, then the relation > (is sometimes also
denoted by >p) defined by

x>y < x—yeP
is an ordering.
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Proof. Let’s check the axioms, leta,b,c € K

i-a—a=0¢c Pisequivalenttoa <a

ii- (@a—beP,b—ce€P = a—c¢€ P)isequivalentto (a > b,b>c = a>c)

iii- (a—beP,b—acP = a=b)isequivalentto (a <b,b<a = a=D0)

iv-a—-beK < a—bcPora—bec —Pisequivalenttoa <borb <a
v-a—b=a+c—(b+c) € Pisequivalentto (a <b = a+c<b+c)

vi- (1€ P,b e P = ab e P)isequivalenttoa,b >0 = ab >0

O

Proposition 3.1.7. Let (K, <) be an ordered field, the subset P := {x € K : x > 0} is a positive cone of
K.

Proof. Leta,b € P,c € K, then we have:
i- a4+b>0isequivalenttoa+b € P
ii- ab > 0 is equivalent to ab € P.

iii - If c > 0, then ¢* > 0; if ¢ < 0, then —c > 0. Therefore c*> = (—c)? > 0, So we have c*> € P.

From the previous items, ) K% C P.

iv - Suppose that —1 € P. Then, wehave0 = —1+1>0+1 = 1. Since 0 # 1 we have 0 > 1,

which implies that 1 ¢ P, a contradiction, as 1 = 12 € P by the previous item.
v - By the definition of linear ordering, we have either ¢ < 0, or ¢ > 0, therefore PU —P = K.

O

So, there is a bijective correspondence between positive cones and compatible orderings. For
this reason, studying an ordering of field is equivalent to studying a positive cone of a field.
Since a cone has an algebraic structure, so it gains the advantage in some situations compared to
the order relation.

Thus, we sometimes use the following definition of an ordered field.

Definition 3.1.8. An ordered field is a field together with a positive cone, in other words, an ordered

field is a pair (K, P), where K is a field and P C K is a positive cone.
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Notation 3.1.9. Let (K, P) be an ordered field, and let a, b be two elements of K such that a <p b. We will
denote the open interval between a and b in P (i.e., the set {x € K:a <p x <p b}) by (a,b)p. similarly,

we denote the closed interval between a and b in P by [a, b]p.

Definition 3.1.10 (Real Field). A (formally) real field is a field that has an ordering, or equivalently,

has a positive cone.

The concepts of a “formally real field” and an “ordered field” are not the same. A “formally
real field” is a field that has an ordering. In contrast, an “ordered field” is a field that is equipped

with a total ordering that is compatible with the field operations.
Lemma 3.1.11. Let P € K be a proper cone.
i- If—a ¢ P, then Pla] = {x+ay : x,y € P} isa proper cone of K.
ii - The cone P is contained in a positive cone of K

Proof. i- Itis clear that P C Pla] = {x +ay : x,y € P} is a cone, we need to prove that
—1 ¢ Pla]: Suppose by absurdity, x +ay = —1 for some x,y € P, if y = 0, we have

x = —1 € P, contradicts hypothesis, if y # 0, then y admits a inverse, therefore
xtay=-1 = —ay=x+1 < —a=(1/y)*y(x+1)€P,

contradicts hypothesis again. Thus we conclude that P is a proper cone.

ii - Using Zorn’s lemma, there exists a maximal proper cone Q that contains P, we need to
prove that QU —Q = K: Let —a ¢ Q, (it exists because —1 ¢ Q,) thus, by the previous item,
we have Q[a] is a proper cone. Since Q is maximal, Q = Q[a] and therefore a € Qa] = Q,
as desired.

O]

This lemma tells us that a positive cone is a maximal proper cone and if a field admits a proper
cone, then it admits a positive cone, that is, it admits an ordering. Since the set of sums of squares

is a cone contained in every other cone, we have the following theorem:
Theorem 3.1.12. A field R is real if and only if —1 ¢ Y R?.

We had probably heard that the field of complex numbers has no order, with this, we can
easily conclude that a complex number does not have an ordering compatible with addition and

multiplication.
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Proposition 3.1.13. Let F be a field with char(F) = 0 and P be a proper cone of F. Then P is the

intersection of all positive cones of F containing P.

Proof. The cone P is necessarily contained in this intersection. If 2 ¢ P, then P[—a] is a proper
cone by the Lemma 3.1.11 (i). Moreover the Lemma 3.1.11 (ii) ensures that there exists a positive

cone containing P[—a] but not a. O

Corollary 3.1.14. If F is a real field, then Y F? is the intersection of all positive cones of F.

Definition 3.1.15 (Real Closed Field). Let R be a real field, R is said to be real closed if has no

nontrivial algebraic extension that can be ordered.
We have some equivalence of real closed field.

Theorem 3.1.16. Let R be a real field, the following properties are equivalent:
i- Ris real closed.

ii- R? = {x?: x € R} is a unique positive cone of R, and every polynomial of R[X], of odd degree,

has a root in R.
iii - R(i) = R[X]/ < X%+ 1 > is an algebraically closed field.
iv- Leta,b € R,p € RIX]. If p(a)p(b) <O, then p has a root x € R such thata < x < b.

Proof. i) = ii) Leta € R, if \/a ¢ R then R’ = R[X]/ < X? —a > is a nontrivial algebraic

extension of R. Since R is a real closed field, R’ is not a real field, therefore —1 € ¥(R’)?, that is,

for some x;,y; € R. Since R is a real field, we have —1 # Y} ; x?, this implies that 0 # Y/ ; y2.

Since the set of non-zero sums of squares is a group (see Proposition 3.1.5),

n

= (L) 1Y) e TR,
i=1 1

1=

So, we can state that R = Y R> U — Y R?, i.e., Y R? is a positive cone (a maximal proper cone).
Since Y"R? is contained in every positive cone, we conclude that " R? is the unique positive
cone. Moreover, the equation above indicates that if \/a ¢ R then 4 is negative, this is logically
(2

equivalent to every positive element admits a square root in R. Therefore R?) = ¥~ R? is a unique

positive cone.
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It remains to show that every polynomial in R[X] of odd degree admits a root. Let’s do it by
induction: Let ¢(n): If f € R[X], deg(f) < 2n+1and deg(f) € (2N + 1), then there exists x € R
such that f(x) = 0.

¢ n = 0: any polynomial f = aX + b with a # 0 always vanishes in _Tb,

e ¢(n) implies ¢(n + 1): Let f € R[X] be a polynomial of odd degree such that deg(f) <
2n+ 3. If deg(f) < 2n + 3, then deg(f) < 2n + 1, consequently f has a root. Suppose that
deg(f) = 2n + 3 and it does not have a root. Then f is irreducible: suppose not, f = gh,
where 2n + 3 > deg(g) and deg(h) > 0. Since deg( f) is an odd and since

deg(f) = deg(g) + deg(h),

at least one between g and h has an odd degree, but this implies that f has a root by the

hypothesis of induction, contradicts the hypothesis.

Since f is irreducible, R" = R[X]/fR[X] is an algebraic extension of R, and repeating the

previous argument, we obtain

n

—1= (1 h)+fge ) (R),

i=1

where deg(h;) < 2n + 3.
Since deg (Y} 1 h?) < 4n + 6 is an even, deg(g) < 2n + 3 is an odd, therefore by the induc-

tion hypothesis, ¢ admits a root x. So, we have

n n

—1= (Y n(x)) + f(x)g(x) = Y W (x) € Y R?,

i=1 i=1
contradicts the hypothesis. Thus, by principle of induction, every polynomial in R[X] of

odd degree admits a root.

ii) = iii) For this implication, we need the following lemma:

Lemma 3.1.17. Let K be a field, let f € K[X] be a polynomial of degree n, and let x4, ..., x,, be roots of
f in an algebraically closed field C that contains K. If Q(Xy,...Xn) € K[Xy,...Xn] is symmetric, (i.e.,
Q(Xy,..Xy) = Q(Xg(l), ...X,T(n))for any o € Sy), then Q(x1,...x,) € K (See Proposition 2.24 of [2]).

We want to prove that all even-degree polynomials have roots in R(i). We apply induction on

p(n): If f € R[X], p := deg(f) = 2"mand m € (2N + 1), then there exists x € R(i) such that
f(x) =0.
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¢ n = 0: This case follows from the hypothesis.

e ¢(n) implies ¢(n + 1): Let xy, ..., X, be all the roots of f counting multiplicities in an alge-
braically closed field C, since R(i) is an algebraic extension, R(i) C C. Now foreachh € Z
we define

Qn(X1, . Xp, X) = [[(X = Xp — Xy — hXn X,.).
A<u

This polynomial is symmetric in Xj, ..., X,, therefore, by the lemma above, we have
Qn(x1, ..., xp, X) € R[X] with deg(Qy(x1,....xp, X)) = () = @. Note that p — 1 is
an odd, by the induction hypothesis, Qj,(x1, ..., xp, X) has a root in R(i), that is, there ex-
ist A and p such that x) + x, + hxyx, € R(i). Since h € Z is arbitrary, Z is infinite
and combinations of A and u are finite, there exist A, u,h and h' with h # I’ such that
x) + X, +hxyx, € R(i) and x) + x, + W' x)x, € R(i). Thus, we have x; + x;, € R(i) and
x)xu € R(i). Note that x, and x,, are roots of X* — (x + x,)X + x,x, € R(i)[X]. The dis-
criminant of this polynomial is (x) — x,)? > 0. From the hypothesis, the square root of the

discriminant exists, hence the roots x,, x;, of f are inside R(i).

Therefore, every polynomial in R[X] has a root in R(i).

It remains to show that f € R(i)[X] also has a root in R(i). In this case we have f = ¢ + hi,
where ¢, h € R[x]. Since ff = (g + hi)(g — hi) = ¢> + h* € R]x], there exists x € R(i) such that
ff(x) =0, ie, either f(x) = 0or f(x) = 0. If f(x) = 0, we have what we need. If f(x) = 0 we
have f(Xx) = 0. Thus, f has a root in R(i), as desired.

)
)

iii) == 1) Since R(i) is algebraically closed and contains R, the only proper algebraic ex-
tension of R is R(i) which is not real (—1 = i> € Y R(i)?), it suffices to prove that R is real.
Since there does not exist i € R such that i> = —1, if we can prove that all sums of squares are
squares, we conclude the proof: By the hypothesis, for every a,b € R, there exist ¢c,d € R, such
that a + ib = (c + id)?, multiplying both sides by the conjugate we obtain a* + b = (¢ + d?)2.

iii) = iv): Let f € R[X], and let a,b € R such that f(a)f(b) < 0. Since R(i)[X] is
algebraically closed, then f can be written as linear factors f = (X — a3 — byi)....(X — a, — bui).
Since at 2 and b, f has opposite sign, then some factors have opposite sign at a and at b. Without
loss of generality, suppose that (a —ay — byi) > 0 and (b — a3 — b1i) < 0. Since R[i] is not a real
field, we have b; = 0, therefore a; € R satisfies b < a7 < a and is a root of f.

iv) == ii): Since a monic polynomial of odd degree f(x) € R[X] tends to +oo (respectively
—o0) when x tends to +oo (respectively —o0), there exist a,b € R such that f(a)f(b) < 0, by the
hypothesis, f admits a root in R.

We need to prove that all positive numbers in R admit a square root: If p € R is a non-
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zero positive element (for 0 is trivial), we consider f(X) = X? — p. since f(0) = —p < 0 and

f(p+1) =p?+ p+1>0,by the hypothesis, f admits a root in R as desired. O
Every real field has a real closed extension, and this extension is unique up to isomorphism.
Definition 3.1.18. A real closure of a real field is an algebraic extension that is also a real closed field.

Theorem 3.1.19. Every ordered field F has a real closure. If R and R’ are two real closures of F, then

there is a unique F-isomorphism ¢ : R — R’.
Proof. See 1.3.2 of [3]. O

Proposition 3.1.20. Let F be an ordered field, let R be a real closure of F, and let R’ be a real closed
extension of F whose ordering extends that of F. Then there exists a unique F-homomorphism ¢ : R — R’.

In particular, if R" is also a real closure of F, then the homomorphism ¢ is an isomorphism.

Proof. This is the Proposition 1.3.4 of [3]. O

3.2 Real Nullstellensatz

First, we prove the Artin-Lang homomorphism theorem using a result from model theory. This

theorem will then be applied to prove the Real Nullstellensatz.

Theorem 3.2.1 (Artin-Lang homomorphism theorem). Let R’ and R be real closed fields such that
R C R/, and let A be an R-algebra of finite type. If there exists a homomorphism of R-algebras ¢ : A —
R’, then there exists a homomorphism of R-algebras ¥ : A — R.

Proof. Since A is an Algebra of finite type, it can be represented by R[Xj, ..., X,,] /I for some nat-
ural n, furthermore by Hilbert’s basis theorem, I is finitely generated, that is, there exist Py, ..., P,
as generators of I. Let ¢ : R[Xj, ..., X,]/I — R’ be a homomorphism, by definition of homomor-
phism,

0= §(B) = PP (X1, s X)) = PAS(X0), - p(X0))

fori =1, ...,m. This means
R'E (3X1)..(3X,) (P1(X1, ooy X)) = oo = Pp(Xq, ..., X)) = 0).
Since the theory of real closed fields is model complete (see 3.3.16 of [18]), we have

R E (3X1)..(3X,) (P1(X1, o0y Xp) = o = Pu(X1, .., Xu) = 0).
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In other words, there exists (ay, ..., a,) € R" such that Py (a3, ...,a,) = ... = Py(ay, ..., a,) = 0.
Finally, we can define an R-homomorphism ¢ : R[Xj, ..., X,] — R with ¢(X;) = a;. Since
(a1, ...,ay) is a solution of Py (X, ..., X)) = ...Py(X1, ..., Xu) =0,

P(PLX1) s X)) = oo = P(Pon(X1, ey X)) = 0.

This implies that I C Ker ¢, therefore by homomorphism theorem, we have a homomorphism

¢ : R[X3, ..., Xn|/I — R such that the following diagram commutes

[

R——TR

7
71l //
e 7‘

R/I.

O]

Definition 3.2.2. Let A be a ring (commutative with unity). An ideal I of A is said to be real ideal if

and only if, for any ay, ...,a, € A, we have
a4 ... +a> € Limplies that a; € 1 fori=1,...,n.

Hilbert’s Nullstellensatz theorem is restricted to algebraically closed fields, however, it is
amazing that we can establish an analogue of the Nullstellensatz for real closed fields using
real ideal. Let us prove some results about real ideals firstly, and then we prove the Real Null-

stellensatz.

Lemma 3.2.3. Every real ideal I of a ring A is a radical ideal. Furthermore, if A is Noetherian, then every
minimal prime ideal that contains I is real. In particular, if A is Noetherian and I is a real ideal of A, then

there exist finite prime real ideals py, ..., pg such that I = ﬂ?:1 P

Proof. If a" € I, then we have

¢ Ifnisan even, then, by definition of a real ideal, az €1;

e Ifnisan odd, thensince a"t! =a-a" € I, by definition of a real ideal, ' el

In both cases, the power decreases, indicating that through iterative processing, we can conclude
that a € I. This demonstrates that I is a radical ideal.
Since I is a radical, then we have ,cspec(r) P = I. Let p be a minimal prime ideal of I. Since

A is Noetherian, there are py, ..., p; € Spec(I) minimal prime ideals of I such that N, p; = I. If
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q = 1, we are done, since p; = I is real. Suppose that g > 1, if p; is not real, then there exist
ai,..,a € A —pq such as a% + ..+ a% € p1. We choose b; € p; — p; (this set is nonempty, since
p1 is minimal), for i = 2,...,q, and define b := H?:Z bi. Then (a1b)? + ... + (ab)> € Ny pi = 1,
since I is real, a;b € I C py, contradicts that a1b & p; (since a;,b & p1). Since p; is arbitrary, we

conclude that all minimal prime ideals containing I are real. ]

Lemma 3.2.4. Let A be a ring (commutative with unity), and let I be a prime ideal of A. I is real if and
only if the field of fractions of A/ 1 is real.

Proof. Tt is easy to see that a field F is real if and only if for all xy, ..., x, € F, Y14 xz-2 = 0 implies
that x; = ... = x, = 0. The proof follows directly from the definition of a real ideal and this

equivalence. O

Lemma 3.2.5. Let A be a ring (commutative with unity), I an ideal of A. Then,
Vi={acA:3meN, Iy, . by A a® +b}+..+b2 eI}

is the smallest real ideal of A containing I. The ideal /1 is said to be the real radical of I. Moreover, if
A is Noetherian, then /1 is equal to the intersection of all real prime ideals containing I (or I is proper A,

in which case there is no prime ideal that contains I).

Proof. Let’s prove v/T is a ideal first. The difficult part is to verify that /T is closed under addi-
tion. Suppose

A" 40+ .42 el and (@) + (0} + ...+ (V,)? € L

We can write

(a+ a2 (g — g )20mtm') — g2me g ("2
where ¢ and ¢’ are the sum of the squares of the elements of A. Then
(@ + 02+ . 402+ (@) + (W) + ..+ (b)) e,
ie.,
(a+a )2 Hm) (g — a)20m) Lo 4 L+ 02) 4 (B)2 4 .+ (V)P €,

therefore, a +a’ € V1.
It is straightforward to observe that /T is real. Here is some immediate facts about real radi-

cals:

o If I, ] are ideals with I C J, then v/1 C /7.
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¢ Every real ideal is itself real radical.

Hence, for every real ideal | containing I, Vile /] = ], this demonstrates that YT is the
smallest real ideal containing I.
By the Lemma 3.2.3, any minimal prime ideal of v/1 is a real prime ideal containing I. Since a

real radical ideal is radical,

R R
Vic N pC N p=VI
p is real prime ideal containing I p is minimal prime ideal of V41
i.e., V/I is the intersection of all real prime ideals containing I. O

For the last statement, the assumption that A is Noetherian can be omitted, see the Proposition

4.1.7 of [3].

Theorem 3.2.6. Let R be a real closed field and I an ideal of R[X, ..., Xy]. Then I = I(V (1)) if and only
if I is real.

Proof. Assume that I = I(V(I)). If Py, ..., Ps are polynomials such that P? + ... + P? € I, then
Pi(x) =0foreveryx € V(I)andi =1,..,s. Hence, P; € I, fori = 1,...,s. We prove that I is real.

We begin by proving the theorem for the case of a real prime ideal, and then generalize it to
any real ideal. Assume that | is a real prime ideal. It is clear that ] C I(V(])), so we need to
prove that for any P € R[Xq, ..., Xu] \ J, P € I(V(])). We denote the image of P in the residue ring
B := R[Xy, ..., Xu]/] by P. We choose an ordering of the field of fractions of B, which is possible
by Lemma 3.2.4, let Ry be a real closure of this ordered field. Let A := By be a ring. It is clear
that A is a finite type R-algebra that is contained in R; (there is an inclusion homomorphism),
by the Artin-Lang homomorphism Theorem 3.2.1, there is a homomorphism of the R-algebra
¢ : A — R. We define x = (¢(X7),...,(X,1)). Then Q(x) = ¢(Q) = ¢(0) = 0forall Q € J,
therefore x € V(J). However, since P is invertible in A, P(x) = ¢(P) # 0, this shows that
P& 1(V(])). Hence, ] = I(V(])).

Now, let I be a arbitrary real ideal. By Lemma 3.2.3, there exist real prime ideals py, ..., pg €
Spec(I) such that N, p; = I. Thus, f € I(V(I)) implies that f(x) = 0 forall x € V(I) =
U, V(pi), ie., f € Ny p; = I. This shows that I C I(V(I)), since I(V(I)) C I is obvious, we
conclude that I = I(V(I)). O

Corollary 3.2.7 (Nullstellensatz real). Let R be a real closed field and I be an ideal of R[X1, ..., Xu].
Then /1 = 1(V(I)).

Proof. Use /T equal to the intersection of all real prime ideals containing I and apply the previ-

ous theorem. O
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Corollary 3.2.8. Let Z C R" be an irreducible algebraic set, and let I C R[Z] be an ideal. Then,

I;(V(I)):={P €R[Z] : P(x) =0 Vx e V(I)} = VI

Unlike algebraic sets defined by a non-constant polynomial f in an algebraically closed field,
an algebraic set defined by a non-constant polynomial in a real closed field can be empty. For
example, the maximal ideal (X? 4 1) C IR[X] corresponds to an empty algebraic set. The Real
Nullstellensatz ensures that v/T = I(V(@)) = R[Xj, ..., X,], so a ideal I corresponds to a non-
empty algebraic set in R” if and only if I is contained in a real ideal. For this reason, a maximal

ideal corresponds to a point if and only if it is real.

Theorem 3.2.9. Let R be a real closed field, and let A = R[Xq, ..., Xy|. Then an ideal wm is a real maximal
ideal of A if and only if m is of the form (X1 — ay, ..., Xy, — a,) for some ay, ..., a, € R.

Proof. Leta = (ay,...,a,) € R" be any element, and let m = (X; — a4, ..., X, — a,). The function
A — R, with p — p(a) is trivially a homomorphism with kernel equal to m. Therefore, by the
isomorphism theorem, we have A/m = R, so m is maximal, and by the Lemma 3.2.4, m is real.

Let m be a maximal and real ideal. Since A is a finite type R-algebra, A/m is a real algebraic
extension of R. By the definition of real closed field, R = A/m. Therefore, there is a natural
isomorphism

¢:R‘—>A£>A/m:R.
Let b; := 7t(X;) and a; := ¢! (b;). Then for each i, we have
X;—a; € kerm =m.
And therefore,
(X1 —a1,.. Xy —ay) Cm.

But (X7 — a1, ..., X, — a,) is a maximal ideal, hence, we have the equality (X1 — a3, ..., X —a,) =

m. O
Hence, there is a bridge connecting the orderings and the real algebraic sets.

Corollary 3.2.10. Let R be a real closed field and let A = R[X3, ..., Xu]. The maps V : {ideals of A} —
{subsets of A%}, I: {subsets of A%} — {ideals of A} induce the bijective functions between

o {algebraic sets in Ak} and {real ideals of A};
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e {irreducible sets in A} and {real prime ideals of A};
e {points in A%} and {real and maximal ideals of A}

Proof. The proof follows from Theorem 3.2.7 and Theorem 3.2.9. O

In particular, the ordering of a field is closely related to the real points of algebraic varieties.
This connection allows the ordering of a field to be used in the study of Diophantine equations
via the Hasse principle. Given a polynomial equation f(x) = 0 with rational coefficients, if it
has a rational solution, then it also has a real solution and a solution in the p-adic numbers. A
polynomial f(x) is said to satisfy the Hasse principle if the reverse is also true. If f(x) satisfies
the Hasse principle, then an ordering on the coordinate ring associated with f(x) can be seen
as part of the “structure” of a rational point. By identifying corresponding “parts” of a rational

point in the p-adic field, these local solutions can be combined to form a global solution.

3.3 Convex subring

In this section, we present real closed valuation rings, convexity, and Archimedean property. We
will also prove that a ring is a real closed valuation ring if and only if it is a convex subring of a

real closed field.

Definition 3.3.1. A real closed valuation ring is a valuation ring whose residue field and whose field

of fractions are both real closed.

Definition 3.3.2. Let (K, P) be an ordered field. A subset M C K is said to be P-convex if
a,beM, ceK a<pc<pb = ceM.

The smallest P-convex set that contains a given set M C K is called the P-convex hull of M in K.
Proposition 3.3.3. If (K, P) is an ordered field, every P-convex subring of K is a valuation ring of K.

Proof. Let B C K be a P-convex subring. Since 1 € B, we have [—1,1]p C B. Soif a € K* satisfies

la] <p1,thena € B.If |a| >p 1, thena~! € B. Hence B is a valuation ring. O
Proposition 3.3.4. Let (K, P) be an ordered field and let A be a subring of K.

1. The P-convex hull of A in K is a subring of K. In particular, it is a valuation ring of K.

2. A'is P-convex in K if and only if [0,1]p C A.

3. If A is P-convex in K, then so is every A-submodule of K.
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Proof. 1. Let B be a P-convex hull of A in K. Then
B=JI[-lallal]
acA

which is clearly an additive subgroup of K. It remains to prove that B is closed by mul-
tiplication. If x,y € B, then x € [—a,a]p and y € [—b,b|p for some a,b € A. Since

—ab <p xy <p ab, we have xy € B as desired.

2. If A is P-convex in K, it’s obvious that the interval [0, 1]p is a subset of A. Assume [0,1]p C
A. Then, for every a,b € A and ¢ € K such thata <p ¢ <p b, we havea + t(b —a) € A for
all t € [0,1]p. In particular, ¢ = a + ;=% (b — a).

3. Let M be an A-submodule of K. If x € M such that x >p 0, then
[—x,x]p={ax:a € K,aec[-11]p}

is contained in Ax C M, which shows that M is P-convex.

O]

Corollary 3.3.5. Let (K, P) be an ordered field and let B be a valuation ring of K. The following properties

are equivalent:
1. Bis P-convex in K.
2. Every prime ideal p is P-convex in B.
3. Ifp is a prime ideal, then, for every a € p, one has —1 <p a <p 1.
4. Foreverya € mp,one has —1 <pa <p 1.

Proof. 1) == 2) : holds by the previous proposition.

2) = 3):if 1 <pa, then1 € p, a contradiction.

3) = 4) : by the hypothesis, such property holds for the maximal ideal mp.

4) == 1) It suffices to show [0,1]p C B. Let x € [0,1]p, if x ¢ B, we have x~! € B, hence,

x~1 € mp. But x~! >p 1, this is a contradiction. O

Let (K, P) be an ordered field. And let B be a P-convex subring of K. It’s intuitive that the
ordering P induces an ordering on the quotient field of x(p), where p is a prime ideal of B. We

will now discuss how this ordering can be constructed. Let p be a prime ideal of B, and let
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«(p) = Frac(B/p) be its quotient field. We will denote the image of a in x(p) by a. The subset
P, = {Z:a,beB, a,b>p 0, bgp}

of x(p) forms a positive cone in x(p). It is clear that P, - P, C Py, B, + P, C Py, and B, U —P, =
«(p). Now, assume that —1 € E, then there exist a,b € B with a,b >p 0 and b ¢ p for which
—-1= % This implies that a 4+ b € p. However, since 0 < b <p a + b, by the previous proposition,

p is P-convex, we must have b € p, which is a contradiction. Therefore, we conclude that:

Corollary 3.3.6. If B is a convex subring of an ordered field (K, P), then B is a valuation ring of K, and
the quotient field x(p) is real for every p € Spec B.

If K is a real closed field, we have stronger results.

Proposition 3.3.7. Let R be a real closed field. For every convex subring B of R and p € Spec B. The
quotient field «(p) of B is real closed.

Proof. Let f € BJ[t] be a monic polynomial of odd degree. Since R is real closed, f has a root
x € R. Because of B is a valuation ring, B is normal, therefore x € B. Since every polynomial
f € x(p)[t] has a representative f € B[t], every polynomial in x(p)[t] of odd degree has a root.

Moreover, the set of squares in x(p) is a positive cone R£2) corresponding to the R(?) of x(p). So

Kk(p) is real closed. O

In particular we have

Corollary 3.3.8. A ring is a real closed valuation ring if and only if it is a convex subring of a real closed

field.

Proof. The previous proposition guarantees that every convex subring of a real closed field is a
real closed valuation ring. Let B be a real closed valuation ring. Now we will prove that B is a

convex subring of its field of fractions. Note that the unique positive cone of x = B/mp is
P:={a2:ac B}

since « is real closed. From the definition of positive cone, —1 ¢ P, hence a* + 1 ¢ mgp for every
a € B.In other words, x <p 1 for every x € mp. Hence, by multiplying both sides by —1, we

obtain x > —1 for every x € mp. From the Corollary 3.3.5, B is a convex subring. O

Definition 3.3.9. Let (K, P) be an ordered field and A be a subring of K. We say that K is (relatively)
archimedean over A with respect to P if, for every b € K, thereisa € A suchthat b <p a.lIt is equivalent

to say that K is the P-convex hull of A in K.
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Proposition 3.3.10. If (K, P) is an ordered field, then the real closure R of K is archimedean over K.

Proof. Let x € R be a non zero element, from the definition of algebraic extension, there exist
ag, ...,y € K and an irreducible polynomial f(X) = ag + ... + 2, X € K[X] such that f(x) = 0. If

|x| > y for every y € K, we have |r||x| > \r\‘yﬂ =y forevery r € K* and y € K. So,
0 = |ag+ .. +anx"| > |ayx... + anx"| — |ag| > |a1 + azx + ... + a,x" | x| — |ao|

Since f(X) is irreducible, |a; + axx + ... + a,x" 1| # 0, hence 0 > y — |ag| for every y € K, this is

a contradiction. 0

3.4 Real spectrum

The Zariski spectrum of a ring A is the space of all prime ideals with a (closed) topology given
by the “algebraic subset”. The idea of real spectrum of a ring A is analogous, it’s the space of all
ordering of the ring with a (open) topology given by the “open semi-algebraic subset”.

First, we characterize the ordering of the ring by cone.
Definition 3.4.1. Let A be a commutative ring . A cone P of A is a subset of A satisfying:
1. P+PCP;
2.P-PCP;
3. K> CP.

where Y K? is the set of all the sums of the squares of the elements of K.

The cone P is said to be proper if —1 & P.

In general, we cannot define an ordering even if a proper cone exists, because we cannot assign
a sign to certain elements, such as zero divisors. Therefore, we can only define an ordering for
a domain, specifically in the quotient ring A/p where p is a prime ideal. Since every ordering
of a domain can be extended to its quotient field (field of fractions), and every ordering of the
tield induces an ordering on the domain, we can focus on the ordering of the quotient field. This

motivates us to define the prime cone, rather than the positive cone.

Definition 3.4.2. Let A be a commutative ring. A prime cone P of A is a proper cone of A satisfying:
abe P = acPor —becP.

Proposition 3.4.3. Let P be a prime cone of A, then:
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1. PU-P = A.
2. PN —Pisaprime ideal of A, called the support of P and denoted by supp(P).

Proof. See the Proposition 4.3.2 of [3] O

Proposition 3.4.4. Let A be a commutative ring. A subset P C A is a prime cone if and only if there

exists an ordered field (F, <) and a homomorphism ¢ : A — F,such that P = {a € A : ¢(a) > 0}.

Proof. See the Proposition 4.3.4 of [3]. O

Proposition 3.4.5. Let A be a commutative ring. A subset P C A is a prime cone if and only if the image

of P under the canonical homomorphism A — x(supp(P))

P= {Z € x(supp(P)) :ab € P}

is the positive cone of an ordering of k(supp(P)). In particular, supp(P) is a real prime ideal.
Proof. See Proposition 4.3.4 and 4.3.5 of [3]. O
We have three equivalent definitions of points in the real spectrum.
Proposition 3.4.6. Let A be a ring. The following data sets are equivalent:
1. a prime cone « of A.
2. apair (p, <), where p is a prime ideal of A and w is an ordering of the quotient field x(p).

3. An equivalent class of homomorphisms ¢ : A — R with values in a real closed field, the equivalence
relation is given by: ¢ : A — Rand ¢’ : A — R’ are equivalent if and only if there is a commutative

diagram
R

~_
—

/
A
T
R
where R is also a real closed field.

In detail, one goes from 1) to 2) by taking (p, <) = (supp(a), <a), from 2) to 3) by taking ¢ : A —
«(p) — R, where R is the real closure of k(p) for <,and from 3) to 1) by takinga« = {a € A : ¢(a) < 0}.

Notation 3.4.7. Let A be a commutative ring. Let (p, a) be a pair where p is a prime ideal of A and « is
an ordering of the quotient field x(p). The real closure of the ordered field (x(p), «) is written by x ().

Fora € A, we writes
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1. a(a) > 0 (or a >, 0) if and only if the image of a in k(«) is positive or equal to zero.
2. a(a) > 0 (or a >, 0) if and only if the image of a in k() is strictly positive.
3. a(a) =0 (or a =, 0) if and only if the image of a in x () is equal to zero.

Definition 3.4.8. The real spectrum of A, denoted by Sper A, is the topological space whose points are
the pairs (p,a), where p is a prime ideal of A and « is an ordering of the quotient field x(p). And the
topology of Sper A is given by the basis of open subsets

U(ay,....an) = {(p,a) € Sper A :ay(a) >0,...,a,(a) >0}
where ay, ...,a, € A. This topology is known as the Harrison topology.

Remark 3.4.9. The subset U(a) defines a sub-basis of open subsets.

There are different ways to define the real spectrum, since we can describe the ordering of a

ring by prime cone and homomorphism of ring into an ordered field.
Example 3.4.10. The real spectrum of a field is simply the space of its orderings.
Example 3.4.11. The real spectrum of a real closed field is a point.

Proposition 3.4.12. Let ¢ : A — B be a ring homomorphism. If B is a prime cone of B, then ¢—(B) is a
prime cone of A, and the mapping

Sper(¢) : Sper B — Sper A
B— ¢ '(B)

is a continuous mapping. In the language of the category theory, Sper is a contravariant functor from the

category of commutative rings with unit to the category of topological spaces.

Proof. 1f ab € ¢~1(B), then ¢(a)¢p(b) € B, from the definition of the prime cone, or ¢(a) € B or
—¢(b) € B. Hence, ora € ¢~ 1(B) or —b € ¢~1(B), this shows that ¢~1(p) is a prime cone. The

continuity follows from the equality

(Sper(¢) ™! (U(ay, ., an)) = U(¢(a1), .., p(an)).
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Proposition 3.4.13. The support map given by

supp : Sper A — Sper B

o — supp(w)

is a continuous map, whose image is the set of real prime ideals of A. In the language of the category

theory, the support map is a natural transformation from the functor Sper to the functor Spec.

Proof. Since p € Sper A is real if and only if its quotient field x(p) is real, it is clear that the image
of supp is the set of real prime ideals. Since D(a) = {p € Spec A : a ¢ p} is a basic open subset
of Spec A and the pre-image

supp '(D(a)) = {a:a(a) > 0ora(a) <0} = U(a) UU(—a)

is the open subset of Sper A, the support map is continuous. O

For a real closed valuation ring, the real spectrum and the Zariski spectrum are homeomor-

phic.

Proposition 3.4.14. If B is a real closed valuation ring, we have the support map supp : Sper B —

Spec B is a homeomorphism.

Proof. Since supp is always continuous, it suffices to show that supp is an open bijection. From
Proposition 3.3.7, the map supp is a bijection. Note that the ordering of the quotient field x(p)
of B is induced by the real closed field Frac(B), so, if the image of 2 € B in any quotient field
x(p) is positive (resp. negative), then a(a) > 0 (resp. a(a) < 0) for all « € Sper B. Hence,
supp(U(a)) = D(a) or supp(U(a)) = @, since both are open subset of Spec B, the map supp is
open. O

Remark 3.4.15. Every real spectrum is homeomorphic to a Zariski spectrum, since the real spectrum is a

spectral space.

Proposition 3.4.16. Let R be a closed real field, and V an algebraic set in R". Then the function ¢ : V —
Sper(R[V]), defined by z — P, = {f € R[V]: f(x) > 0}, is injective and induces a homeomorphism
from V (with Euclidean topology) to ¢(V).

Proof. The subset P, forms a prime cone of R[V]: f(x)g(x) > 0implies that f(x) > 0or —g(x) >
0. Itis clear that if x # y, then Py # P,. Let U(f1, ..., fm) be a basic open subset. Then, we have

E(fi, o fn) := ¢ XU (f1, oo fr)) = {x €V : fi(x) >0, ..., fn(x) > 0},
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which forms a basis for the Euclidean topology on V. Moreover, by definition,

PCE(f1/ v fn)) = U(fr,vos fn) OV (V).

Therefore, ¢ is injective and induces a homeomorphism. O

This is a very interesting result; we not only have an embedding, but also an embedding with
the Euclidean topology.

Any point of an algebraic set over an algebraically closed field corresponds bijectively to a
closed point in its associated Zariski spectrum. However, this does not hold in the real spectrum.
For example, the set of closed points of Sper(R[X]) is R U {—co, o0} (for more details, see
Example 7.1.4 of [3]).

Let R be a real closed field. An R-valued point of X := Spec A is a morphism of schemes
Spec R — Spec A, which corresponds to a homomorphism A — R of rings. From the third
equivalent condition for ordering in a ring, the real spectrum Sper A can be interpreted as the
collection of real points (Ug X(R))/ ~ of X quotient by an equivalent relation, where R run
through all real closed fields.

Hence, if Sper A = @, then the Zariski spectrum has no real points. The converse holds when

A is an integral domain that is a finite-type R-algebra, where R is a real closed field.

Proposition 3.4.17. Let R be a real closed field, and let A be an integral domain that is a finite-type
R-algebra. Then, Sper A = @ if and only if the set of R-valued points (Spec A)(R) = @.

Proof. In this case A corresponds to an irreducible R-algebraic set V (i.e., A = R[V]), and an
R-valued point Spec R — Spec A corresponds to a ring homomorphism ¢ : A — R, which
represents a point (¢(X1), ..., (X)) of V. Therefore, it suffices to prove that V = @ if and only
if Sper R[V] = .

Assume Sper R[V] = @. The previous proposition ensures that there exists an injective map
V < Sper R[V]. Therefore, we conclude that V = &.

Assume V = &, by the Real Nullstellensatz, for any prime ideal p, we have

Ve =1(V(p)) = (@) = R[V] #p,

which implies that p is not real. Hence, by the second equivalence of points in the real spectrum,

we obtain Sper R[V] = @.
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The real spectrum can be generalized to a scheme X. The natural way to do this is by glueing
together the local real spectra, as detailed below:

Let X = U;c; Spec A; be a scheme, where Spec A; forms an open affine covering of X, the real
spectrum Sper Ox(Spec A;) = Sper A; can be glued together. The resulting topological space is
called the real spectrum of X, denoted by X,.

Now we describe the real spectrum of a scheme and show that it is independent of the choice
of covering. Let p be a point in X, by the definition of scheme, the point p belongs to an open
affine subscheme p € Spec A C X. Hence, p corresponds to a prime ideal of A, and the quotient
field x(p) coincides with the residue field A, /pA, = (A/p)pasp = Frac(A/p) (since localization
is an exact functor). This means that a point (p,a) € Sper Ox(Spec A) = SperA corresponds
bijectively to an ordering of the residue field «(p) of Ox,. Therefore, each point of X, can be
identified as a pair (x, «) where x € X and « is a positive cone/ordering of the residue field x(x)

of Ox x, which is independent of the choice of covering.

Definition 3.4.18. Let X be a scheme, the real spectrum of X, denoted by X, is a topological space
consisting of pairs (x,a), where x € X and w is a positive cone of the residue field x(x). The topology of

X, is given by the basis of open sets

U(ay,...,an) = {(p,a) € Sper A :ay(a) >0,...,a,(a) >0}

where A is the ring corresponding to an open affine subscheme Spec A of X and ay, ...,a, € A.
Since the support map is continuous in affine case, we have

Proposition 3.4.19. The support map given by

supp : X, — X

(pa) —>p

is continuous.

The functor ( ), is also a covariant functor from the category of schemes to the category of

topological spaces.

Proposition 3.4.20. If f : Y — X is a morphism of schemes, then f induces a continuous map between

the real spectral
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where E* :xk(f(y)) — x(y) is a homomorphism induced by the map f;i = Ox ¢, — Oy, of fibers/stalks.

Just as with the real spectrum of rings, we also have a categorical description of X, : The
elements of X, can be identified with equivalence classes of morphisms of schemes f : Spec R —
X, where R is a real closed field. Two morphisms f’ : Spec R" — X and f” : Spec R” — X lie in

the same equivalence class if and only if there exists a commutative diagram

/
\

Spec R’

\‘
Spec R X
5
Spec R”

where R is also a real closed field.
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Chapter 4

Specialization

In this chapter, we introduce the concept of specialization in the real spectrum of schemes, which
will be an important tool for our subsequent discussion. Readers who are willing to accept the
final results presented in later sections may choose to skip this chapter.

In the first section, we present some basic facts about specialization in arbitrary topological
spaces. In the second section, we discuss specialization in the real spectrum. Finally, at the
end of the chapter, we provide a categorical description of specialization in real spectrum. The

references for this chapter are [3] and [27].

4.1 Specialization in a topological space

In topology, the specialization relation provides a way to examine the closeness or “relation”
between points in a space, particularly in spaces where the separation properties (like those of

T1 spaces) are weaker.

Definition 4.1.1. 1. Let X be a topological space and x,y be two points of X. We say that y is a

specialization of x or x is a generalization of y, denoted by x ~ v, ify € {x} (closure of {x}).

2. Asubset T C X is stable under specialization if for any x' € T and every specialization x' ~ x

we have x € T.

3. Asubset T C X is stable under generalization if for any x € T and every specialization x" ~ x

we have x' € T.
Definition 4.1.2. Let f : X — Y be a function of topological spaces. We say f preserves specialization
(or generalization) if for any x,x' € X,
xsx = f(xX) ~ f(x).
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Proposition 4.1.3. The specialization relation is an ordering relation.

Proof. The specialization relation is reflexive, since x € {x}. If x € {x’} and ¥’ € {x}, then

we have {x} C {x’} and {x’} C {x}, therefore, the specialization relation is anti-symmetric. If

x € {x'} and x’ € {x"}, then x € {x'} C {x”}, which shows that the relation is transitive. O

Proposition 4.1.4. Let X be a topological space.
1. Ewvery closed subset of X is stable under specialization.

2. A subset T C X is stable under specialization if and only if the complement X \ T of T is stable

under generalization.
3. Every open subset of X is stable under generalization.

Proof. Statement (1) is immediate from the definition. Statement (2) can be easily proven by

contrapositive, and statement (3) follows from (1) and (2) by considering the complement. O

Definition 4.1.5. Let f : X — Y be a continuous function of topological spaces.

1. The function f is generalizing if, for any y' ~ y in Y and x € X with f(x) = y, there exists a

generalization x" ~~ x of x in X such that f(x') =y’

2. The function f is specializing if, for any y' ~ yin Y and x' € X with f(x') = y/, there exists a

specialization x" ~ x of X' in X such that f(x) = y.
Proposition 4.1.6. Let f : X — Y be a continuous map of topological spaces.

1. If f is generalizing, and if T C X is stable under generalization, then f(T) C Y is stable under

generalization.

2. If f is specializing, and if T C X is stable under specialization, then f(T) C Y is stable under

specialization.

Proof. Let y' ~ y be a specialization in Y where y € f(T). So there is an x € T such that
f(x) = y. By the definition of generalizing, there exists a generalization x’ ~» x of x in X such
that f(x’) = . Since T is stable under specialization, x € T, and then y € f(T). Therefore f(T)
is stable under specialization.

The proof of the other statements is identical. ]
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4.2 Specialization in the real spectrum

Specialization plays an important role in the study of the real spectrum, but we will not discuss

it systematically; instead, we will focus on selected facts that we will use later.

Proposition 4.2.1. Let &', be two points of Sper A, where A is a commutative ring with unit. The

following conditions are equivalent:
1. &~ ¢
2. Foreverya € A,ifa >¢0,thena >g 0.
3. Foreverya € A, ifa >w 0,thena >¢ 0.
4. If we identify points of the real spectrum with prime cones, then &' C €.

Proof. The last three statements are clearly equivalent. Statements (1) and (2) are both equivalent
to

¢ € U((Zl,...,ﬂn) = C/ S U(al,...,an),
so they are also equivalent. O

Remark 4.2.2. If &' ~~ &, then supp(g') = &' N =& C &N —¢ = supp({). Thus, there is a canonical

map A — A . In general, this homomorphism is not a local homomorphism.

supp(&) supp(&')

Remark 4.2.3. Every Zariski spectrum of a local domain has a generic point and a closed point.

Lemma 4.2.4. Let A be a local domain, and let &', § be two points of Sper A. Let B be the convex hull of
Ain k(&) If & ~~ ¢ and the support of &' (resp. &) is the generic point (resp. closed point) of Spec A,

then m C mp. In particular, there is a homomorphism (A/my, ) — B/mp that preserves the ordering.

Proof. Suppose there exists x € m, \ mp. Since B is a valuation ring (and in particular, a local
domain), we know that x~! € B. Since B is the convex hull of A in x(¢’), there exists y € A such
that ‘17| <@ y. In other words, we have 1 <z |x|y.

By the previous proposition, it follows that 1 < |x|y. However, |x|y € m,4, implying that the
image of |x|y in x(supp(&)) = A/my is zero. This leads to a contradiction.

Therefore, we conclude that there exists a canonical local homomorphism A — B, which in-

duces a homomorphism between the fields (A/m4, ) — B/mp. This homomorphism preserves

the ordering, since &’ is a generalization of . O

Proposition 4.2.5. Let a be an element of Sper A. The specializations of « are totally ordered with respect

to the specialization. Specifically, if « ~~ B and a ~ vy, then either B ~ 7y or y ~> B.
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Proof. Suppose the conclusion is false. Then there exist elements b € §\ v and c € ¢\ B. By the
definition of the prime cone, we know that either b — ¢ € a or c — b € . In the first case, we have
b=c+ (b—c) € v, while in the second case ¢ = b+ (c — b) € B. In both cases, we arrive at a

contradiction, so the conclusion must be true. O

The following result will be used in the next chapter. We do not introduce the notion of con-
structible sets here, as it appears only once in this thesis. This is just a brief comment; for more

details, see Chapter 7 of [3].

Theorem 4.2.6. Let C be a constructible sets of Sper A. Then C is a closed (resp. open) subset if and only

if it is stable under specialization (resp. generalization).

Proof. See 7.1.22 of [3]. O

Remark 4.2.7. Every basic open set in Sper A is constructible and thus stable under generalization.
If f : Sper A — Sper B is generalizing and maps constructible subsets to constructible ones, from
Proposition 4.1.6, f(U) is constructible and stable under generalization for every basic open U of Sper A.

Hence, f(U) is an open subset of Sper B, which means that f is an open map.

If a real spectrum has a generic point, then it is totally ordered by the specialization rela-
tion. Since every local domain admits both a closed point and a generic point, and since the
real spectrum and the Zariski spectrum of a real closed valuation ring are homeomorphic, both
spectrums have a closed point and a generic point, and are totally ordered by the specialization
relation. This allows us to describe the specialization in the real spectrum in terms of the real

closed valuation rings.

Definition 4.2.8. Let v : V — X be a morphism of schemes, where V is spectrum of a real closed
valuation ring. The specialization in X, determined by v is given by v,({’) ~ v,({), where ' (resp.

() is the generic point (resp. closed point) of V.

Remark 4.2.9. Since v, is continuous, we have v,({{'}) C v,({{"'}), and v,({{"'}) is an irreducible

component.

Any specialization ¢’ ~ ¢ in X, is determined in this way. In fact there is a unique minimal
choice of v, i.e., there is a morphism v : V' — X, with V is the spectrum of a real closed valuation

ring, such that v determines the specialization ' ~» ¢. Furthermore, if v’ : V' — X is another
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morphism that determines ¢’ ~~ &, then v’ factors uniquely as

/

Vv
x

v/

V.

Existence: Consider an affine open neighborhood U = Spec(A) of supp(¢). Since every open set

X

is stable under generalization, supp(¢’) € U. We obtain the ring homomorphism

A = Asuppe) = Oxsupp(e)-

By the Proposition 4.2.1, the specialization ¢’ ~ ¢ implies that supp(¢') C supp(&). Therefore,

we have a ring homomorphism A — A This gives a sequence of homomorphisms

supp(S) supp(&’)

OX,supp(é) = Asupp(é) - K(supp(gf/)) — K(‘:/)'

Let B be the convex hull of the image O (&) Of Ox supp(e) in € (¢'). We then obtain the following

sequence of ring homomorphisms:
A — OX,supp(é‘) — OX,supp(r:) — B (4.1)

which induces a morphism v : Spec B — X

Spec B ————— Spec Ox guppie) — Spec A=U

S

We need to show that the specialization ¢’ ~~ ¢ is determined by v. From the diagram above,
it is clear that v(0) = supp(¢’). Now, we prove that v(mp) = supp(¢): From the diagram above,
it suffices to prove that the image supp(¢) of supp(&) in m is contained in mp. Suppose,
for the sake of contradiction, that there exists some X € supp(&) \ mp. Since B is a local domain,
we have ¥ ! € B. By the definition of convex hull, there exists an element % S m such
that 7 >z 0 and [¥| ! <g %. This implies that 0 <z § <# |X|p. Since the homomorphism

Oxsupp(e) — Oxsupp(e) 1 surjective, there exist elements [x| € supp($), and p,q € A such
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that g ¢ supp(¢) correspond to [X|, p, and 7. By Proposition 4.2.1, we know that 0 <z g <¢ |x|p.
However, since |x|p € supp(¢) and q ¢ supp(¢), this leads to the contradiction 0 <z g < 0. Thus,
we conclude that ¥ € mp, and therefore, supp(¢) C mp. This implies that v(mp) = supp(¢), as

desired.

Since Sper B = Spec B and the ordering on B is induced by «(&’), we have v, (supp~1(0)) = &
and v, (supp~!(mg)) = &, as desired.
Minimality: Let v’ : V! — X be a morphism of schemes that determines the specialization ¢’ ~~ ¢,
where V' = Spec B’ for some real-closed valuation ring B’. Since any open subset is stable under

generalization and B’ has a generic point, the morphism v’ factors as
V' — Spec A — X

where Spec A is an open affine subscheme of X containing ¢’. Let ¢ : A — B’ be the ring
homomorphism corresponding to the morphism V' — Spec A. Since v'(mp/) = supp(&), by the

universal property of localization, the map A — B’ factors through
A = Ox qupp(e) — B

Since v’ determines the specialization &’ ~ &, we have ¢~1(0) = supp(¢’). Applying the isomor-

phism theorem, we obtain a commutative diagram

A Ox supp(@) Img —— B'.

|

OX,supp(g) /Supp(g/) OX,supp(@)

From the construction of v, we have Im (@) = Ox g (e)/supPP(E) Ox supp(e) = Ox supp(e)- Let f
be the isomorphism between Ox () and Im (¢). Now, let conv(Im ¢) denote the convex hull
of Im (¢) in the quotient field Frac(B') = x(¢&') (this equality holds, because v (supp~!(mp)) =

¢’ ). Since the convex hull is the smallest convex ring containing Im(¢), there exists a inclusion

A Ox @) Im ¢ B'.

conv(Im (¢))
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Since Im(¢) = Oy gpp(s), We expect that conv(Im (¢)) is isomorphic to B. The isomorphism

f : OX,supp(ﬁ) — Im ((P)

can be extended to an isomorphism

fo: x(supp(¢)) = Frac(Im ()

of fields of fractions. Since the isomorphism f preserves ordering by construction, it induces an
isomorphism g between the real closures of these fields, namely x(&’).

Finally, the restriction f of g to B is an order-preserving isomorphism between B and conv(Im (¢)):
By the definition of convex hull, for every x € conv(Im (¢)), there exist a,b € Im(¢) such
that 2 < x < b. This implies that f~!(a) < 771(9() < f71(b), so fﬁl(x) € Im (¢). Hence,

conv(Im(¢@)) € Im(f). Conversely, by a similar reasoning, we can show that conv(Im(¢)) 2

Im(f).

This establishes the existence of the following commutative diagram

A— B SpecB — 5 Spec A ——— X.

B’ Spec B

Uniqueness: This is straightforward to prove.

Lemma 4.2.10. Let f : Y — X be a morphism of schemes, and suppose that for every y € Y the field
extension k(y) 2 «(f(y)) is algebraic (so, f could be étale).

1. If ¢ € X, is represented by a morphism of schemes, a : Spec R — X, where R is a real closed field,

then the natural map

homScheme/X(Spec R, Y) — Y, (4-2)

h— (h(x),ay) (4.3)
(where a;, denotes the ordering induced by h) is a bijection from the set on the left to f, 1 (¢), the
real spectrum fiber of { € Y,. Here, x denotes the unique prime ideal 0 of R.

2. Let v : V — X be a morphism of schemes, where V is the spectrum of a real closed valuation ring.

Suppose that a specialization 1y’ ~~ 1 in Y, is given, such that the specialization f,(n') ~ fr(1)
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in X, is the specialization determined by v. Then there is a unique X-morphism V. — Y that

determines 11’ ~~ 1.

Proof. (1) :If £, (&) = @, then there does not exist a morphism m : Spec R — Y that makes the

following diagram commute.

Therefore, homscyeme/x(Spec R, Y) = @.
We suppose that f,1(¢) # @, in particular f~!(supp(&)) # @. Since the diagram

Spec R

factors through

Spec R ————— Spec k(a(x)) ——— X,

Spec x(m(x))

Y

we can reduce to the case where X and Y are Zariski spectrums of fields. Assume that R is the
real closure of the field associated with ¢ € X,. Let X = Spec K, and Y = Spec F. Note that
for each 7 € f,71(¢), the map Spec!(f) is order-preserving. We first prove that for a given
11 € £, 1(¢), there exists a morphism Spec R — Y such that a(Spec R — Y) = 7. Since R is a real

closed field, this is equivalent to finding a homomorphism from (F, 77) to R.
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The morphism f and « induce the homomorphisms of rings.

\
)/

R
(K, ¢)

(F,1

Let R’ be a real closure of (F,7), and denote the inclusion by i : (F,7) < R’. Since Spec! (f) is
an ordering-preserve map, and F : K is an algebraic extension, we have that the real closure R’

of (F,n) is also a real closure of (K, ¢).

R
/ \
K ~_. / e
F,1)

\
(F,

Hence, by Proposition 3.1.20, there exists a unique isomorphism ¢ from R to R’ that extends
ioSpec~! (f). Therefore, there is a homomorphism from (F, ) to R; in other words, the map 4.2
is surjective onto £, 1(¢).

It remains to show that the map 4.2 is injective. Suppose that mq,m; : F — R are induced by
X-morphisms and that m; }(R®) = m;!(R?)), meaning they induce the same ordering. Then,

my and my factor through F — R’ — R, where R’ is the real closure of (F,m;!(R?))). The

uniqueness of isomorphisms between real closures (Theorem 3.1.19) ensures that m; = m.

(2) : We begin by proving uniqueness. Suppose v1,v; : V = Spec B — Y take work. Define
two new morphisms 31,3, : Spec (Frac(B)) — V — Y, where the map Spec (Frac(B)) — V is
induced by the inclusion. By the hypothesis, we have 7;(0) = ©v;(0) for i = 1,2. However, by
item (1), we know that 77 = @, which implies that v1(0) = v,(0). Since 0 is the generic point,
v1 = v3 as function. The equality of the sheaf maps follows from 7; = 7.

It remains to show the existence. Since V = Spec B is the spectrum of a real closed valuation
ring. As in the previous argument, we reduce to the case where X = Spec M, Y = Spec N with
M and N being local domains, where f is induced by a local inclusion M C N, and the support

of 7 (resp. 1) corresponds to the generic point (resp. the closed point) of Y.

Let ¢’ := fr(n’) and ¢ := f,(17). Let K be the field of fractions of M, L the field of fractions of N,

and let L — R be the real closure of L with respect to 77’. Thus K C L < R is the real closure of
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K with respect to ¢’. Without loss of generality, suppose that v is minimal for the specialization
&' ~~ ¢, i.e., Bis the convex hull of M in R (with v induced by M C B). Therefore, what remains

to be shown is that N C B, which induces the diagram on the right below:

%

M\B . e w/
N/ \

Sper N

¢'~q

M — x(¢) ﬂ k() — xc (4.4)

where x(¢) (resp. x(77)) is a real closure of residue field xy (resp. xn) of M (resp. N), and k¢ is
the residue field of C. We now explain the morphisms in the positions (i), (i7) and (iii) :

(i) : The morphism is induced by the canonical map M — &y — «(&);

(ii) : Since k)1 C Ky is an algebraic field extension, we have a ky-isomorphism « (&) — «(r) (by
Proposition 3.1.20);

(iii) : By Lemma 4.2.4, there exists a homomorphism that preserves the ordering xy — x¢. Since
C is a real closed valuation ring, «¢ is a real closed field. So, by Proposition 3.1.20, there exists an
extension k(1) — xc.

Since « ) is archimedean over the image of M, and x({) is also archimedean over the image of
iy (by the archimedean property of real closures 3.3.10), it follows that « (&) is archimedean over
the image of M. Furthermore, since (ii) is an isomorphism, x(#) is archimedean over the image
of M. The field xc is also archimedean over the image of M, since «¢ is the convex hull of N.

Finally, since the image of M in k¢ is contained in B/mc, and B is the convex hull of M in R, it

follows that B = C. 0

The first part of the lemma provides a categorical perspective on the ordering induced by a
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morphism of schemes, while the second part guarantees that the specialization relation has the
lifting property.
With this lemma, we conclude this chapter, which provides the technical groundwork for the

next one.
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Chapter 5

Real Etale Topos

In this chapter, we introduce another Grothendieck topology, the real étale site X,,;, and prove
that the real étale topos, the category of sheaves on this site, is equivalent to the category of
sheaves on the associated real spectrum. The primary reference for this chapter is [27].

In the first section, we use the tools developed in the previous chapter to show that the functor
() preserves pullbacks in Et/X, and that if f : X — Y is an étale morphism, then f; is a local
homeomorphism.

In the second section, we prove that the topos Sh(X,) is equivalent to the topos Sh(Xyet).

5.1 Real étale site and real spectrum

We now define the real étale site of a scheme X and its Grothendieck topos

Definition 5.1.1. A family {f : U' — U};c; of morphisms of schemes is said to be real surjective if
and only if

u, = Uf;(ui)

icl
It is easy to see that the collection of real surjective families forms a Grothendieck topology.
Definition 5.1.2. Let X be a scheme. The topology on Et/X defined by the real surjective families is
called the real étale topology of X, abbreviated “ret”. The site (Et/ X, ret) is called the real étale site
of X and is denoted by X,et. The category Sh(Xyet) of sheaves on Xyt is called the real étale topos of X.

Before continuing, I would like to recall some facts about Henselian rings.

Remark 5.1.3. 1. Let A be a local ring, X = Spec A, and let x be the unique closed point of X. The
ring A is Henselian, if and only if, for any étale morphism f : Y — X and for every pointy € Y
such that f(y) = x and the residue fields satisfy x(y) = x(x), there exists a section s : X — Y to
f, thatis, f os = idx. (See Lemma 10.153.3., Chapter I of [31])
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2. Every real closed valuation ring is Henselian ([7]).

The étale morphism is the analogue of a local homeomorphism in topology, and the map ( ),

reflects this analogy. Specifically, if f is an étale morphism, then the f; is a local homeomorphism.

Lemma 5.1.4. For any étale morpism f : Y — X, the map f, : Y, — X, is open.

Proof. Since a locally open map is open, we may assume without loss of generality that X and
Y are affine. In this case, the morphism f is finitely presented. A consequence of the Tarski-
Seidenberg theorem is that if f is finitely presented, then the map f, sends constructible sets to
constructible sets (see [8] Prop. 2.3). Therefore, it suffices to show that f, is generalizing (see
Remark 4.2.7), that is, given 7 € Y, and ¢’ € X, such that ' ~~ f.(17), we need to find ' € Y,
such that 4’ ~ nand f, () = &'

Let ¢’ ~ f+(17) be represented by a morphism v : V — X, where V = Spec R is the spectrum
of a real closed valuation ring R. Let z < V denote the inclusion of the closed point of V. Using

Lemma 4.2.10, we have a commutative diagram

Y

|

A
-
-
-
-
-

f

-
-,
-,
-
-
-
-,

<¢+——n

—F X

In the commutative diagram, z — Y represents the point 7. It is sufficient to show that the dotted

lift exists, leaving the diagram commutative. To do this, consider the pullback of the pair (v, f)

VxxY — 1 Ly

|

1%

|

%

Since f is étale, its base change p is also étale, Let w = z ®x supp(n) € V xx Y be a point. Then
we have p(w) = z. Since p is étale, the residue field «(w) is algebraic over x(z). The residue field
«(z) of a real closed valuation ring R is real closed, and since x(w) inherits an ordering induced

by 1 and «(z), we have x(w) = x(x). By the Henselian property of real closed valuation rings,
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there exists a sections : V. — V xx Y of p. Thus, we have a commutative diagram as follows:

z Y
“ )
VxxY e
\s\ f
s 1%
/
\%4 X

Proposition 5.1.5. Let the following square

YxxZ — 1 7

[

y—-

be a pullback (fiber product) of schemes, and assume that f and g are étale. Then the natural map

v (YXXZ)r—>Yr XX,Zr

(L) — (pr(1, ), q:(1,))

is a homeomorphism (the right hand side is the pullback in the sense of topological spaces).

Proof. Write W := Y xx Z. Note that g and p are also étale, since they are base changes of étale
morphism. From Lemma 4.2.10, it follows that 7 is bijective. Specifically, if € Z, is represented

by a : z = Z, with z the spectrum of a real closed field, then the diagram

homScheme/Z (Z/ W) A — homScheme/X (Z/ Y)

| |

g, '(0) : ()

commutes. The top horizontal arrow is obtained by composing the Z-morphism from z to W
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with the map p
z

\ “
p hg
W y — 1 . x
and its bijectivity follows from the universal property of the pullback. The vertical arrows are

the maps given by Lemma 4.2.10. Since

& (@) ={neY: fr(n) =8:(0)}
=Y, XX, {g}/

the map vy is a bijection.

The map 7 is continuous and open because the projections

pri(v(La)) = p,(L, &) and pra(y(I,4)) = q,(L, «)

are continuous and open (by Lemma 5.1.4). Therefore, -y is a homeomorphism. ]

Corollary 5.1.6. For any scheme X, the real spectrum functor

( )r:Et/X — Top/X,
u—u,

preserves pullbacks, and therefore it preserves all finite inverse limits. In particular, ( ), preserves

monomorphisms.
Proposition 5.1.7. For any étale morpism f : Y — X, the map f, : Y, — X, is a local homeomorphism.

Proof. By Lemma 5.1.4, the map f, is open. Since f is étale (and in particular, unramified), the

diagonal map Y — Y X x Y is an open immersion (by Proposition 2.1.9), it factors through
Y=U<=YxxY,

where U is an open subscheme of Y x x Y. Corollary 5.1.6 ensures that the functor ( ), preserves
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monomorphisms, so the diagonal map Y, — Y; xx, Y, factors through
Y, 2 U, =supp 1(U) = Y, xx, Y.

It shows that the diagonal map Y; — Y; xx, Y; is an open immersion.
Since amap g : V — W of topological spaces is a local homeomorphism if and only if both g

and the diagonal V — V x V are open maps, the proposition follows. ]

5.2 Real étale topos is spatial

We now prove that the real étale topos is spatial, i.e., equivalent to the category of sheaves on a
topological space.

Theorem 5.2.1. For any scheme X, the topos Sh(X,.¢) and the topos Sh(X,) are naturally equivalent.

We will follow Scheiderer’s proof ([27]), which uses an auxiliary site. Let us discuss it now.

Let X be a scheme. Define X,,x = (C, aux) to be the following site:

e An object of C is a pair (U, W) with U € Et/X and W an open subset of U,.

* An arrow (U, W) — (U, W) in C is a morphism f : U’ — U of X-schemes such that
fr(W') C W. In particular, f is étale.

e Letf: (U, W)— (UW)and g: (U",W") — (U, W) be two arrows, the pair (U’ xy
U”, W xw W") is clearly the pullback of f and g

(U <y U", W xw W) ——— (U, W)

\ lf

", wy u,w).

Thus, the pullback always exists, and consequently, all finite inverse limits exist.
e A family {f; : (U;, W;) — (U, W) }icr of arrows in C is a covering of (U, W) if and only if
W = Uier(fi)r(Wh).
Regard the space X, as a site in the usual way. Both Et/X and O(X,) (the category of open

subsets of X;) are full subcategories of C in canonical way.

These inclusions define morphisms of sites

% P
Xret <~ Xaux — Xr-
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Lemma 5.2.2. The morphism ¢ defines an equivalence of categories Sh(Xyet) = Sh(Xaux)-

Proof. Since ¢ transforms coverings into coverings and preserves fiber products, the Comparison
Lemma (1.3.22) implies that the topos morphism ¢ : Sh(Xauy) — Sh(Xyet) is an equivalence,
provided that each object (U, W) of C can be covered by objects (V, V;) with V € Et/U. In other
words, given ¢ € U, and an open neighborhood W of ¢ in U,, we have to find an étale morphism
f:V = Uwith ¢ € f,(V,) C W. We can assume that U is an affine scheme U = Spec A, and
that W = U(a) is an open sub-base. Since W is non-empty, it follows that 2 is not zero-divisor in

A. Consider the canonical morphisms

A% B = (AIT)/(T? = ) AT]) % Ba,

since

272 2
(T7—a)(T/20) = 5~ = ﬁ =1,
¢2 o ¢ is a standard étale homomorphism. Hence, we have an étale morphism of schemes f
induced by ¢, o ¢1. Since a is a square and a is a unit (% is a inverse of a), we have f,(Sper By,) C
W.

It remains to show that ¢ € f,(Sper By,). Since (A[T]/(T? — a) A[T]) is a free A-module of rank
2, ¢y is faithfully flat, i.e.,

Spec(¢1) : Spec B — Spec A

is surjective. By the hypothesis, {(2a) = 2¢(a) > ¢(a) > 0, in particular
supp § € Da(2a) = {p € Spec A :2a ¢ p}.
Therefore, Spec(¢p1) ! (supp &) C Dg(2a). But
Spec(¢z) : Spec By, = Dp(2a) — Spec B
is an open immersion, so there exists q € Spec By, such that f(q) = supp ¢. It is now clear that
there is an “extension” of ¢ via f, which implies ¢ € f,(Sper B,). O

It remains to show that the topos morphism induced by 1 is also an equivalence.

Let S € Sh(Xuux). For every U € Et/X the map given by W — S(U, W) (for W C U, open)
defines a sheaf on U,, which we denote by Sy;. If f : V — U is a morphism in Et/ X, the restriction
maps of S define an f,-morphism from S; to Sy, i.e., a sheaf map f;Sy = Sy on V,. To be more

precise, for each open W C V, open, we have f,(W) C f,(W). Hence, the morphism f is an arrow
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from (V,W) to (U, f+(W)). Thus, there is a restriction map S(f) : S(U, fr(W)) — S(V,W). To

ensure that Sy = Sy is a sheaf map, we need to show that the following diagram commutes

S(f)

W s, fr(W)) ————— S(V, W)
swm‘ lswv)
W’ S(U, f (W)~ SV, W),

but it is elementary
S(f) o S(idu) = S(idu o f) = S(f) = S(f o idy) = S(idv) o S(f).

Lemma 5.2.3. The sheaf map f;Sy = Sy is an isomorphism.

Proof. 1t is enough to show that, for any f : U — X étale, the sheaf map fSx = Sy is an
isomorphism: Let ¢ : V — U be an étale morphism of schemes, since the map f;Sx = Sy and

the map g7 f'Sx = (f 0 g);Sx = Sy are isomorphisms, g; Sy — Sy is a sheaf isomorphism.

Since f, is a local homeomorphism, there exists an open subset W of U, such that f.|w is
injetive, i.e., an open immersion. Since f : (U, W) — (X, f,(W)) is a covering in C, by the
definition of sheaf, we have an exact sequence (of sets):

; pri
(fSx)(W) = Sx(fr(W)) ———— Su(W) ———3 Suxu(W xx, W)
P72
with W xx, W C U, xx, U, = (U xx U), (by Corollary 5.1.6). Since f; | is injective, the diagonal
map W — W xx, W is bijective. So the diagonal morphism (U, W) — (U xx U, W xx, W) is a
covering in C, in particular Syy«, (W xx, W) — S(U, W) is injective (because it is an equalizer).

But this implies that the two maps prj, pr; in the sheaf condition coincide, since the pullback

diagram
(Uu,w)
id
(ll Xx U,W XX, W) o (U,W)
(X, X)
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induces a sequence of morphisms

pri
S(U,W) — 2 S(U xx U, W xx W) — 2L s, w)

pr
which means that pr; = pr3. Therefore, the sheaf map (f,'Sx)(W) — Su(W) is bijective, since
Ker (pri, pry) = Imi.
Since f; is a local homeomorphism, U, has a basis {W;} of open sets such that f, |y, is injective
for every i. Since the sheaf map f;Sx = Sy is a bijection on every basic open, it is a global

isomorphism. O

We now prove that Sh(X,.:) and Sh(X,) are equivalent. We denote the geometric morphism
induced by ¢ (resp. ¢) by (p*, 1) : Sh(Xaux) — Sh(X;) (resp. (¢*, ¢«) : Sh(Xaux) — Sh(Xyet) )-
Px P
Sl’l(Xrgt) <—**> Sh(Xaux) —><¢—* Sh(XT)

¢
Proof. For F € Sh(X,), the sheaf ¢*F on Sh(X,uy) is the sheaf associated with the presheaf
(U, W) — F(f;(W)), where f : U — X denotes the structural morphism of U € Et/X. Us-

ing Proposition 5.1.7, we have

W E)(UW) = (fF)(W) ie, ($*Flu=fF.

On the other hand, ¢, associates S € Sh(Xgux) to Sx € Sh(X;). So Lemma 5.2.3 ensures that
Pp*p.S — S is an isomorphism. Since the other adjunction map F — ,3*F is also an isomor-
phism, we have that Sh(X,,x) and Sh(X,) are equivalent. By the Lemma 5.2.2, the topos Sh(Xye:)
and the topos Sh(X;) are naturally equivalent. O

Now, by glueing these morphisms, we obtain a topos maps #, b between Sh(X,.¢) and Sh(X;)

S (Xer) 4: Sh(X,)

given by

Sh(Xyet) > G — G := .¢*G € Sh(X,);
Sh(X,) 3 F— F> := ¢.¢*F € Sh(Xyer).

So the compositions b o # and # o b are naturally isomorphic to the identity functors. Which means
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In detail, the map b acts as shown in the commutative diagram:

Sh(X,) 3 F — ¥ W F (UW) —s fFE(W) = F(f,(W))

P’ = @.f/F: U+ H(U,, fF) = F(f,(U,))

To make G* more explicit, we need to introduce some additional notation. Fix an open subset
W of X,, and let Iy be the category of all pairs (U,s), where U € Et/X ands : W — U, is a

continuous section of U, — X, over W. This leads to the following commutative diagram:

u u «———Ww
a
X Xy

And an arrow (U’,s") — (U, s) in Iy is an X-morphism f : U’ — U such thats = f, o’

< N7

u

The category Iy is a left filtering: Given a diagram

(Ker (£,8),5) ——"—— (V,5) ————— (U,¢)

where p, g are étale morphisms such that po f = po g = g, and h is the kernel/equalizer of f
and g. By the definition of a morphism in Iy, the section s : W — V; satisfies f, os = g, os. Then
h is étale, and h, : (Ker(f,g)), — V, is the kernel of f, and g, by Proposition 5.1.6, thus s factors
uniquely through #,.

Let W C W be an inclusion of open subsets of X,, there is a natural functor Iy — Iy given
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by restriction. Hence if P is a presheaf on Et/ X, then the functor Pt : X, — Set given by

is a presheaf on the topological space X;.

Now we are ready to describe the maps # and b.

Theorem 5.2.4. 1. If F is a sheaf on X,, then [ is the sheaf on Xyt which sends (U i> X) € Et/X
to HO(Us, £ F) = F(fr(Uy)).

2. If P is a presheaf on Et/ X and G is the associated sheaf respect to real étale topology ret, then G* is
the sheaf on X, which is associated to the presheaf P°. In diagrammatic form, this implies that the

diagram
Psh(Et/X) t Psh(X,)
Sh(Xret) # Sh(X,)
commutes.

Proof. (1) : We have already established.
(2) : Let x be the Zariski spectrum of a real closed field R, and let « : x — X be a morphism of

schemes, representing a point ¢ € X,. Then the stalk of the presheaf P in ¢ is

Pf= lim P'(W)= lim P(U)
WCX, open x—Uu
Zew X

where the second direct limit is taken over the category of all X-morphism from x into étale X-

Scheme U.

Consider the natural morphism P — G = a,(P) of presheaves on Et/X. For any ¢ as above
the induced map Pg — Gg is bijective (the key point is that Sh(X,;) is spatial). Hence the induced
map P* — G of presheaves on X, (a topological space) becomes an isomorphism if we applying

the sheafification functor, since it is bijective on stalks.

This shows that it suffices to prove the case when P = G is a sheaf on X. Since # and b

are known to be quasi-inverses of each other, it is enough to prove for any sheaf F on X, F is
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isomorphic to the sheaf associated to (F’)*, in other words, the diagram

PSh(Xyet) ——— PSh(X,)

is commutative.

Let G := F’ be the image of F by b. Let W C X, be an open subset, and let (U,s) € Iy. Since

the diagram
u, # X;
51\
W

commutes and f, is open (By Lemma 5.1.4), we have f,(U,) 2 W = f, os(W) is an open subset.
Therefore, there is a natural map s* : G(U) = (f;F)(U,;) — F(W) = (s*fF)(W) = F(f, os(W))
induced by restriction, namely the pullback by s.

These maps fit together to give a morphism G* — F of presheaves on X,. But the stalk maps

Gg — F; are bijective

lim  G'(W)= lim  lim F(A(U) = lim  F(W).

WCX, open WCX, open (U,s)Ely WCX, open
Zew Zew cew
Therefore F 22 a,(G") as desired. O

The composite map a, o # generalizes the construction introduced by Coste and Roy in [26] to
define the abstract Nash sheaf on the real spectrum. If we restrict this construction to étale A-
algebras, and consider the étale structure sheaf, i.e., Ox(B) = B for every étale B-algebra, then
a, o #(Ox) exactly gives the abstract Nash sheaf defined in [26]. This shows that the Nash sheaf is
the natural ”structure” sheaf for the real spectrum. Moreover, when A = R|xy, ..., X,,|, the abstract
Nash sheaf corresponds (though not identically or isomorphically) to the classical Nash sheaf,
whose sections are collections of algebraic and analytic functions. This correspondence follows
from Artin-Mazur’s description of the Nash sheaf. Therefore, the Nash sheaf is a fundamental

object in the study of real algebraic geometry.
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Chapter 6

Glueing sites

In this chapter, we investigate the “glueing” of the étale topos and the real étale topos, a concept
introduced by Claus Scheiderer in his work on real and étale cohomology ([27]). In the first chap-
ter, we construct the b-topology and show that this category can be viewed, in practice, as a space
obtained by glueing the categories of sheaves Sh(X,:) and Sh(X,.). As a result, we demonstrate

that the canonical functors between these topoi possess favorable properties in second section.

6.1 A glued space

The result from chapter before allows us to replace X, by X,., a site modeled on the category
Et/X as X A natural question arises: is there a relationship between X, and X, (or X;)?

The two topologies X, and X, cannot be directly compared because neither is finer nor
coarser than the other. However, we can attempt a comparison via an intermediate topology:
the intersection of the two topologies, i.e., the finest common coarsening of b of et and ret. We
denote the site (Et/ X, b) by Xj.

Intuitively, the topos Sh(X;) contains both Sh(X,;) and Sh(Xyet). In this section, we will show
that Sh(X,;) is an open subtopos of Sh(X}), while Sh(X,;) is its closed complement. As a conse-
quence, X, can be understood as the result of glueing Sh(Xyet) to Sh(Xe:).

Definition 6.1.1. Let X be a scheme. The topology on Et/ X which is the intersection of the étale and the
real étale topology, denoted by b. Thus, a family {U; — U }e; in Et/ X is a covering for the topology b
if and only if it is both surjective and real surjective. We denote the site (Et/X,b) by X;,. Moreover, we
write

j=("rj) = Sh(Xet) = Sh(Xp)

and

i= <i*, i*) : Sh<Xret) — Sh(Xb)
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for the canonical topos embeddings.

Remark 6.1.2. Since the morphisms j, and i, are embeddings, their left adjoints j*,1* are shefification

functors.

Let us verify that Proposition 1.3.32 applies. For Y a scheme and p a prime number, let Y, be
the largest open subscheme of Y on which p is invertible. If {,» is a primitive p"-th root of unity,
then Y, [Cpn] := Y(,) Xspec z Spec Z[Gpn] LUEN Y(,) is an étale covering (since, in the affine case,

Y(p)[pr] is a finite free Y|, -module, therefore pry is faithful flat), where Z[¢ ] denotes the group
ring generated by .

Consider two morphisms obtained by composing with the inclusion map
pr
Yo [V-1] =Y
and

Y& 75 Y

Since v/ —1 is a sum of squares in the residue fields of Y|, [v/—1] and Y(3)[Z3], both schemes have
empty real spectrum, therefore empty sieve is a real étale covering of Y(5)[v/ —1] and Y(3)[¢3]. W
need to show that these two morphisms form an étale covering. Suppose Y = Spec A is affine,

by the definition of Y{,), we have
Yo 2D(2)={peY:2¢&p}

and Y(3) 2 D(3). Therefore, Y = Y(2) UY(3 (if p € Y does not belong to both subschemes, 2,3 € p
and so 1 € p, this is a contradiction). Hence, Y(5)[v/—1] and Y(3)[Z3] cover Y in the étale topology.

By Proposition 1.3.32 we therefore get,

Proposition 6.1.3. The morphism j : Sh(Xet) — Sh(Xy) is an open topos embedding, and i : Sh(Xyet) —
Sh(Xy) is the embedding of the closed complement.

Now, we will define the glueing functor such that relates Sh(X,;) and Sh(Xyet ).
Definition 6.1.4. The glueing functor is the functor p := i*j, : Sh(Xet) — Sh(Xyet ).
Proposition 6.1.5. The glueing functor is left exact, i.e., preserves finite inverse limits.

Proof. This result holds for any open subtopos and its closed complement (see [SGA4.IV.9.5.4]
[12]). In particular, it applies to the real étale topos and the étale topos by Proposition 6.1.3. [
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Consider triples (B, A, ¢), where B € Sh(Xyet), A € Sh(Xet) and ¢ : B — pA is a morphism of
sheaves on Xy If (B, A, ¢) and (B, A’,¢’) are such triples, a morphism between (B, A, ¢) and
(B',A’,¢') is a pair (m,m’), where m € Sh(Xyet)(B,B’) and m’ € Sh(X.)(A, A’) such that the

following diagram

B — ¥ oA

commutes. These triples with morphisms as defined above form a category which is denoted

(Sh(Xyet), Sh(Xet), p). For more general construction of such category, see [12].

We have a natural functor

In : Sh(Xp) = (Sh(Xret), Sh(Xet), p)

given by
F (i*F,j*F, ¢ : i*F — i*jj*F = pj*F)
" — (i*n,j*n)
F' (i*F', j*F', ¢p - i*F' — pj*F')

i
Here ¢r comes from the adjunction map F =, j«j*F via functor i*, i.e., ¢r = i*(adj).

By [12][SGA.IV.9.5], the functor In is an equivalence.

Proposition 6.1.6. The functor In is an equivalence of categories between Sh(Xy) and (Sh(Xret), Sh(Xet), p)-
A quasi-inverse is given by the functor which sends a triple (B, A, ¢ : B — pA) to the Pullback in Sh(X})

i.B Xipa A ———— LA

.

ixB B ixpA

This result holds for any open subtopos and its closed complement.

This proposition guarantees that Sh(X;) is a space constructed by glueing the categories of
sheaves Sh(X.) and Sh(X,e). This facilitates the study of the canonical morphisms between

these toposes.
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6.2 Some useful morphism

Identifying Sh(Xj) with (Sh(Xret), Sh(Xet), p) via the above equivalence, we obtain

it Sh(Xet) — Sh(X;) A (0A, A, id : pA — pA)
71 Sh(Xy) — Sh(Xet) (B,A,¢) — A

ix : Sh(Xpet) — Sh(Xy) B+ (B,*,B — x)

i* : Sh(Xp) = Sh(Xrer) (B, A, ¢) — B.

Corollary 6.2.1. The functor j* : Sh(Xy) — Sh(X,) has a left adjoint

j1 : Sl’l(Xet) — Sh(Xb)
Ar— (0,A,0 — pA)

where @ is the initial sheaf.

Proof. For every F € Sh(Xe) and G = (B, A, ¢) € (Sh(Xyet), Sh(Xet), p) = Sh(X}p), a morphism

(m,m') from jiF to G satisfies
@ —— pF

m lp(m’)

B——— pA.

Since @ is an initial object, the morphism (m, m") is uniquely determined by m’. Hence,

hom(jiF, G) = hom(F, A) = hom(F,j*G).

We have the same result for the sheaves of abelian groups:
Corollary 6.2.2. 1. The functor j* : Ab(X}) — Ab(Xet) has an exact additive left adoint

j[ : Ab(Xet) — Ab(Xb)
A (0,A,0— pA),

called "extension by zero”, where 0 is the zero sheaf. In particular, j* is an exact additive functor.
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2. The functor iy : Ab(Xyet) — Ab(Xp) has a right adjoint

it s Ab(Xp) — Ab(Xyet)

(B,A,¢: B — pA) — Ker ¢.
In particular, the additive functor i, is exact.

Proof. (1): The same reasoning as in the previous corollary applies here. The functor j; is clearly
an exact additive functor.
(2): For every F € Sh(Xyet) and G = (B, A, ¢) € (Sh(Xret), Sh(Xet), p) = Sh(X}), a morphism

(m,m') from i.F to G satisfies

there exists a unique morphism from F to Ker m. Therefore, we have
hom(F,Ker ¢) = hom(i.F,G)

as desired. 0

The two functors ji (for set-valued and abelian sheaves, respectively) do not coincide on

abelian sheaves.
Corollary 6.2.3. For every F € Ab(Xy) there are natural exact sequences (of adjunction map) on Ab(Xj)
0—jij F = F = i,"F =0

and

0 — i,i'F — F — j.j*F.
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In particular, for A € Ab(X,t) there is a natural exact sequence on Ab(Xj)
0—=jiA— jA—i,0A— 0.
Proof. 1dentifying the sheaf F with (B, A, ¢), these sequences are equivalent to
0— (0,A,0»pA) — (B,A,¢) — (B,0,B—0) =0

and
0 — (Ker ¢,0,Kerp — 0) — (B, A, ¢) — (pA, A, id).

The verification of exactness of these sequences is trivial. O

Corollary 6.2.4. Let X be a scheme, for every object U € Et/ X, €.(U) = €,(U) = hy, while €, (U) =
phu.

Proof. Since hy; is an étale sheaf, we have e,;(U) = hy;, and therefore €,(U) = hy;. Identifying the
hy with j. (hy) = (phy, hy, id), the ret-sheafification of hyy is

eret(u) = aret(hu) =i (Phu, hllr ld) = PhU

O]

Example 6.2.5. The b- topology coincides with the étale topology if and only if X, = @. Thus the most
basic proper example for the b-topology arises from X = Spec R with R a real closed field.

Let G = Gal(R(v/—1)/R), which is isomorphic to Z,. Then Sh(Xy,) is equivalent to the category of
all triples (B, A, ¢ : B — AC), where

e Bisaset,

e A a continuous G-set,

* ¢ isamap,

o and AC denotes the elements of A fixed by G.

This equivalence follows from the correspondence between Sh((Spec k)et) and CG-Set, which will be

established in the next chapter.

Notation 6.2.6. If t € {et,b,ret} and M is a set, denote by M, the constant sheaf on X; with value in
M.

122



CHAPTER 6. GLUEING SITES 6.2. SOME USEFUL MORPHISM

Proposition 6.2.7. j. and p preserve constant sheaves. That is: if M is a set, then j.M, = M, and

pMet = Mret'

Proof. M, is the coproductin Sh(X;) of M copies of the constant sheaf . Since j, is an “inclusion”,

there is a canonical sheaf isomorphism,
My =] [je(o) = [T — je(L1#) = jo (Mer)-
M M M
After applying i*, we obtain a sheaf morphism
Mret — pM@t'

We need to verify that the morphism above is an isomorphism. However, this follows immedi-

ately, since the induced fiber maps are isomorphisms, and X, is spatial. O
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Chapter 7

Applications

In the last chapter, we discuss the relationship between Galois cohomology and étale cohomol-
ogy on a spectrum of fields, as well as the interplay among real points, orderings, and cohomo-
logical dimensions. The primary references for this chapter are [27] and [32].

In the first section, we prove that the category Spec (k) is equivalent to the category CG-Set,
and that the category Ab((Spec k).t) is equivalent to the category CG-Mod. As a corollary, we de-
duce that the étale cohomology of a field k coincides with the Galois cohomology of the absolute
Galois group Gal (k%7 /k).

In the second section, we discuss a bit about the connection between order and cohomological

dimension, especially in the context of 2-torsion sheaves.

7.1 Galois and Ftale cohomology

Let k be a field. Let k*7 be the separable closure of k and let G denote the Galois group of
Gal (k%P /k) equipped with the canonical structure of a profinite group.

For each k-scheme X, we denote by X (k*7) the set of k-morphism Spec k*F — X, called the
set of k**P-valued points on X. A k**’-valued point of X corresponds uniquely to a point x € X
together with a k-homomorphism #(x) — k*°.

The group G acts from the left on X(k*7): Let g € G, we define the action of g on a point
Spec kP — X by composing it from the left with the induced morphism Spec(g) : Spec kP —
Spec k*F. By the Fundamental Theorem of Galois Theory if H is an open subgroup of G, then we
can identify the set of fixed points X (k*7)H with the set X (k') of all kK-valued points on X. Here
k' is the fixed field of H, and the inclusion X (k') C X (k*F) is induced by the canonical morphism
Spec kP — Spec k'. Since X (k*F) = Uy X(k*P)H, G acts continuously on X (k*7).

Let T denote the canonical topology on the category CG-Set. We have

125



7.1. GALOIS AND ETALE COHOMOLOGY CHAPTER 7. APPLICATIONS

Theorem 7.1.1. The functor

f:Et/k — CG-Set

X —s X(k*P)

is an equivalence of topologies between the étale site CG-Set equipped with the canonical topology T and
Spec(k)et, i.e., the functor f is an equivalence of underlying categories, and that both f and any functor

quasi-inverse to f are morphisms of topologies.

Proof. First note that (X xz Y)(k*7) = X(k*F) Xzqser) Y(k*P), hence f commutes with fiber
products.

Let {U; — U} be a family of étale morphism of k-schemes. We want to show that {U; — U}
is a covering in Spec (k)¢ if and only if {U;(k*?) — U(k*°?)} is a covering in T. Since both
categories have arbitrary (direct) sums/coproducts (By Corollary 2.1.19) and since f commutes
with sums, it is sufficient to show that a morphism Y — X of étale k-schemes is surjective if and

only if Y (k%) — X(k°P) is surjective.

e Assume that Y — X is surjective. Let x € X and let a k-homomorphism x(x) — k*7 be
given. If y € Y lies above x, by the definition of étale morphism the extension «(y)/x(x) is
finite and separable, and therefore x(x) — k°°7 extends to a k-homomorphism «(y) — k*7.

But this means that y(k*°?) — x(k°7) is surjective.

e Now, assume that y(k*?) — x(k*°?) is surjective. Let x € X. Since x(x)/k is finite and
separable, there is a k*F-valued point corresponding to x. If we take any k**”-valued point

of Y lying above it, then the corresponding point y € Y lies above x. Hence Y — X is onto.

It remains to show that f is an equivalence of categories. To prove this we first show the
existence of the left adjoint functor “/f of f, and then check that the adjoint morphisms are

isomorphisms..

To show the existence of * f it is enough to check that the functor
X —— homg (U, X(k*7))

is representable for all continuous G-sets U.

Now, each continuous G-set is equal to the direct sum of its orbits, and each orbit is isomorphic

to a continuous G-set of the form G/ H for an open subgroup H of G (by orbit-stabilizer theorem).
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So it is sufficient to show that the functors
X +— homg(G/H, X(k*F))

are representable, since the category of étale k-schemes has arbitrary coproducts.
Let k" be the fixed field of the open subgroup H. Then Spec k is an étale k-scheme, and we

have the isomorphisms
homg(G/H, X(kP)) = X(k*P)H = X (k') = homy(Spec k', X),

which are functorial in X. Hence X +— homg(G/H, X(k**?)) is represented by the object Spec k'

The adjoint map G/H — f(*f(G/H)) = Spec(k')(k*P) is a G-map, which sends the class e - H
to the k*°7-valued point Spec kP — Spec k' corresponding to the inclusion k' C k7. But this
map is an isomorphism. Since f and * f commute with the direct sums/coproducts, we obtain

id = f o “f Analogue, we obtain id & “f o f which completes the proof of the theorem. [

Corollary 7.1.2. Let k be a field, and let k7 be the separable closure of k. Let G = Gal(k*? /k) be the
topological group equipped with profinite topology. Then we have

Sh((Spec k)et) = CG-Set
Proof. By Proposition 1.4.18 and the Theorem above, for any sheaf F € Sh((Spec k),t), the map
Fr—Fo "f— lim F(“'f(G/H)) = lim F(Spec k')
H K
defines an equivalence of categories between Sh((Spec k).:) and CG-Set. O
By Proposition 1.4.18 and the Corollary above, the map
F — lim F(Spec K) — homg(—,lim F(Spec K))
K K

defines an equivalence of categories between Sh((Spec k).;) and Sh(CG-Set, Ti). Since Spec k

corresponds to (Spec k) (k*?) = {e}, we obtain
I'(Spec k, F) =T (e, homg(—,lim F(Spec k'))) = (lim F(Spec K))e.
K K
Therefore, we have:
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Corollary 7.1.3. Let k be a field, and let k°°7 be the separable closure of k. Let G = Gal(k*? /k) be a
topological group equipped with profinite topology. Then we have

1. The functor

Ab((Spec k)et) —» CG-Mod

F +— lim F(Spec k')
k/

is an equivalence between the category of abelian sheaves on Spec(k )¢+ and the category of continu-

ous G-modules. Here k" runs through all finite (or only through all finite normal) extensions of k in

ksep.
2. For every abelian sheaves F on Spec (k). we have d-functorial isomorphisms
H.,(Spec k, F) = Hi(G,ligiP(Spec K'),
"
where right-hand side denotes Galois-cohomology.

One can check that lim, | F(Spec k') is exactly the stalk Fgpec v = lim  F (U) of F at the point
Spec k, where the limit is over the affine étale neighborhoods (U, u) of Spec k*P (See [21]).

Corollary 7.1.4. Let k be the separably closed. Then the functor F — F(Spec k) is an equivalence
between the category of abelian sheaves on Spec (k). and the category Ab. So for all sheaves F on Spec(k).t

we have

i (Speck,F) =0

fori>0.

Remark 7.1.5. Let T denote the set of involutions in G, i.e., set of elements of order 2. This set is a closed
subset of G, and acts by conjugation. By the Artin—Schreier theorem, the quotient topological space T /G
is the real spectrum Sper k.

Upon identifying Et/k with CG-Set, the real étale topology ret on CG-Set is defined as follows: a
family {U; — U}ic; is a covering if and only if {U! — U'}ic; is a surjective family for every t € T,
where U" denotes the t-invariant of U.

Therefore, a {U; — U }iep is a covering in the b-topology if and only if {U! — U'}ic; is a surjective
family for every t € T J{id}.

For further details, see Section 9 of [27].
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7.2 Ordering and étale cohomology

In the this section, we discuss a bit about the connection between order and cohomological di-
mension, especially in the context of 2-torsion sheaves.

Given a ring A, if we want to “eliminate” the ordering of the residue fields of A, a natural ap-
proach is to add the square root of —1 to A. This construction can be realized by taking the tensor
product. Consider the tensor product A ®z Z[v/—1] of A and Z[\/—1] over Z. An element of
the ring A ®z Z[v/—1] is of the form ¢ ®z a + bi. By the definition of the tensor product, we
have:

cRQza+bi=cRza+cRzbi=acRz1+bcRyI.

Thus, every element of A ®z Z[v/—1] can be written as x ®7z 1 + y ®z i, where x,y € A. In
other words, every element of A ®z Z[+/—1] decomposes into a real part and an imaginary part,
similar to a complex number.

This idea also extends to arbitrary schemes. Let X be a scheme, and define

X' 1= X Xgpec z Spec Z[V/ —1]

X/ s X

|

Spec Z[\/—1] ———— Spec Z

(The map 7 is independent of the choice of the rightward arrow). Since the morphism Spec Z[v/—1] —
Spec Z is étale, the morphism 7t is also étale. Therefore, 7t induces the geometric morphism. We
will write T = (1%, 7t,.) @ Sh(X);,) — Sh(Xet), instead of 71,y = (77}, 7Tet +). Since 7t is finite, by

Proposition 2.3.3, the direct image functor 7, is exact.
Definition 7.2.1. Let X = (C, T) be a site, p a prime number, and F € Ab(X) a sheaf.

1. We say that F is p-primary torsion if for every object U € C, the section T'(U, F) is a p-torsion

abelian group, i.e., for every x € F(U), x has order p", for some n € IN.
2. We say that F is torsion if for every object, the section T (U, F) is a torsion abelian group.
Definition 7.2.2. Let X = (C, T) be a site, and let p be a prime number.

1. The cohomological p-dimension cd,(X) of X is defined as the largest integer n for which there
exists a p-primary torsion sheaf F on X such that H" (X, F) # 0. If no such integer exists, we write

cdp(X) = oo.
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2. The cohomological dimension cd(X) of X is defined as the largest integer n for which there exists
an abelian sheaf F such that H" (X, F) # 0.

Proposition 7.2.3. Let X be a scheme and p a prime number. The following equalities hold:

o HI

ret

(X, A) = H!(X, i, A);
* Hi(X',A) = Hj(X, m.A)

Proof. Since i* and 71* are exact, by Lemma 1.2.35, i, and 7, preserve the injective objects.

Since i, is exact and represents an “inclusion” functor, by Proposition 1.2.36, we have
Hj(X,A) =R'T(A) =R"(Toi,)(A) = R"T(i,A) = H)(X,i,A)

for every A € Ab(Xyet) and n > 0.
Note that
T(X,A) = AX') = A(X xx X') = T A(X) = [(X, 7, A)

for every A € Ab(X],). Then the section functor R"I'y coincides with R"I'x o 7. Since 77, is

exact, by the Proposition 1.2.36 again, we obtain

H(X', A) = R"Ty/(A) = R"Tx o 1,(A) = R'Tx(m,A) = H}(X, . A).

Corollary 7.2.4. Let X be a scheme and p a prime number. The following inequalities hold:

Proof. Note that i, and 7, maps p-primary torsion sheaves to p-primary torsion sheaves. By
the previous proposition, if there exists an abelian sheaf (resp. p-primary torsion abelian sheaf)

A € Ab(Xyt) such that H!

ret

(X,A) # 0, then there is also an abelian sheaf (resp. p-primary
torsion abelian sheaf) i,A € Ab(X}) such that H}}(X,i,A) # 0. In particular, the inequalities
cdy(Xr) < cdp(Xp) and cd(X;) < cd(X}) hold.

By a similar argument, the inequalities cd, (X},) < cd,(X,;) and cd(X};) < cd(X,t) hold. O

Now we state the theorem that relates cd, (X;) and cd,(X},).

Theorem 7.2.5. If X is a scheme such that 2 is invertible in O(X), then cd,(X,) < cdp(X},) for all

prime numbers p.
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Proof. The proof of the theorem is quite technical; for this reason, we will omit it. The reader can

find the proof in Sections 4, 5, and 7 (Part I) of [27]. O
Combining the theorem and the previous proposition, we obtain the following corollary.

Corollary 7.2.6. If X is a scheme such that 2 is invertible in O(X) then cd,(X;) < cdy(Xet) for all

prime numbers p.

This corollary can be interpreted as the ordering is an information that can be extracted from
the étale cohomology.

We provide further discussion on it.
Proposition 7.2.7. If k is a real closed field, then H} (Spec k, Haspeck) = Z./2Z.

Proof. By Corollary 7.1.3, itis enough to show that H! (G, up) & Z /27, where G = Gal(k[\/—1]/k) =
Gal (k%P /k). It is clear that 2 is invertible in k and k[v/—1], so the Kummer sequence

1= 1o = k[V=1 B (K[V=1]*)2 = k[vV—=1]* = 1
is exact. Applying the functor H(G, —), we obtain the long exact sequence:
1= o = K 5 k% = HY(G, u2) — HY(G,k[vV—=1]*) = ...

From Hilbert’s Theorem 90, we know that H'(G, k[v/—1]*) = 0, so the map k* — H(G, up) is

surjective. By the isomorphism theorem, we obtain

K</ (k)? = HY (G, uy).

2

Finally, since any element of a real closed field can be written as (—1)"x*, we conclude that

H2(Spec k, taspeck) = HY(G, o) = k*/ (k*)? 2 Z/2Z.

Proposition 7.2.8. If k is a real closed field, then cdy(Spec(k)et) = +oo.

Proof. Let k' = k[+/—1]. Since k is a real closed field, k" is algebraically closed, and in particular,
is separably closed. By Corollary 7.1.4, for all sheaves F on Spec(k).; we have

Hi,(Spec k,F) =0
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fori > 0. Thus, cda(Spec(k’)t) = 0. However, by the previous proposition, we have
cdy(Spec(k)er) > 1.
Therefore, we conclude that:
cda(Spec(k)et) > cda(Spec(kK')er)

Now, by the following proposition

Proposition 7.2.9. Let k' be an algebraic extension of a field k, let p be a prime, and let Gy, = Gal (k°F /k)
(resp. G = Gal(k"*P /k)). Then cd,(Gy) < cdp(Gy), and there is equality if

* cdy(Gy) < +ooand [Gy : Gp] < +o0.

Here, the index |Gy : Gy/| is the lcm (in the supernatural number sense) of the values of the index |Gy, U]
where U ranges over the open normal subgroups of Gy containing Gy. If |G| is finite, then this definition

coincides with the classical definition, since any finite Hausdorff space is necessarily discrete.
Proof. See Proposition 10, I1.4.1 of [28]. O

We have cdy(Spec(k)et) = +o0 or [Gy : Gp] = oo. But since [k’ : k] = 2 and |G/ is finite, by
Fundamental Theorem of Galois Theory, [Gy : Gy| = 2. Hence we obtain cds(Spec(k)er) = +00

as desired. O

In [34], M. Artin and ].L. Verdier introduced Artin-Verdier Duality and also presented a theo-

rem that generalizes the previous proposition.: It says that
1. An algebraic variety X over R has no real point if and only if cdp(Xe) < +oo.
2. For a filed K of finite type, k is a real field if and only if cdy(Spec(k)t).

Later, Claus Scheiderer extended this theorem to arbitrary schemes, using the theory he devel-

oped in his book [27].
Theorem 7.2.10. Let X be a scheme.
1. If X, # &, then cdy(Xet) = oo.

2. If X is quasi-compact and quasi-separated, and if 2 is invertible on X, and If cd,(X,) is finite and
the real spectrum of X is empty then also cdy(X,t) is finite.

I would like to express my sincere gratitude to the reader for the time and attention given to

this work.
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