ADRIANO BEDESCHI DE SOUZA
EDUARDO HISASHI SATO

EMULACAO DO GAMEBOY E GAMEBOY COLOR
PARA A PLATAFORMA PC/WINDOWS

Projeto de Formatura apresentado a
disciplina PCS 2050 — Laboratério de
Projeto de Formatura I1, da Escola
Politécnica da Universidade de S&o Paulo.

Area de Concentragdo:
Engenharia de Computac@o

Orientador:
Prof. Dr. Francisco Enéas da Cunha Lemos

Sao Paulo
2004

AGRADECIMENTOS

Ao orientador Prof. Dr. Francisco Enéas da Cunha Lemos, pela confianga

apresentada na equipe.

A todos que, direta ou indiretamente, colaboraram no desenvolvimento deste

trabalho.

RESUMO

O ftrabalho apresenta a constru¢do de um emulador em software do videogame
portatil GameBoy, e sua versdo com cores, GameBoy Color, criados pela Nintendo.
Para o desenvolvimento do mesmo foram estudados métodos de emulagdo e
arquitetura de computadores. O texto apresenta os métodos e procedimentos
utilizados para a emulag¢@o do portatil, cujo hardware é descrito detalhadamente. Os
dados contidos no texto séo frutos de um dificil trabalho de procura por informagoes

sobre o funcionamento do GameBoy e seus variantes.

ABSTRACT

This project presents the writing of a software-based Gameboy emulator, and its
color version, Gameboy Color, both of which are handheld videogame systems
created by Nintendo. In order to write the emulator, the authors had to study
emulation and computer architecture. This document presents methods and
procedures that were used on the handheld’s emulation, the hardware of which is
thoroughly described on this text. The data contained herein was gained through a
hard work of searching for information on the workings of the Gameboy System and

its variants.

1

4

5

SUMARIO

INTRODUCAO..ccuciiusisisisiscussinsaniinins

1.1 Objetivo ..
1.2 Motlvaq,ao .
1.3 Organizagéo do documento

EMUBACAD s msnammimsnia s i s s e 4

2.1 Emulag@o € suas apliCagOescvvveeeriverireerieiiesseesnesessseeessessasssessseenes
23 MedosdeeMulatn uvainnsnm s S s

2.2.1 Recompilacdo estatica............

2.2.2 Reocompilagho dIRBIICA vt maiimississit sl

2.2.3 Emulagdo interpretativa........

NINTENDO GAMEBOYccccccnniunenissasaens

3.1 Historia do GameBoy ...

3.2 Descrigdo do funcnonamento e hardware do GameBoy

3.2.1 Resumo das caracteristicas do hardware ..

3.2.2 O processador (CPU)...
3.2.3 O mapeamento de memoria..

3.2.4 Areas reservadas no primeiro bloco de ROM

3.2.5 Tipos de cartucho.

3.25.1 MBc1..ﬁ.ﬁ.IﬁIIIIIZIIIIIIZIII

3.253 MBC3...
3.2.54 MBCs.. SRR
3.2.6 Seqiiéncia de 1n101ahza(;a0

3.2.7 O controlador de video — VDP (\:’Ideo Dlsplay Processor)
3.2.8 Extensdes do VDP no GameBoy Color...

3.2.9 Osdispositivos de E/S ..

3.2.10 O controlador de som — PSG (Programmable Sound Generator)

3.2.11 Timer...
3.2.12 Interrupgoes
3.2.12.1 Varredura vertlcal

3.2.12.2 LCDC Status

3.2.12.3 Timer overflow

3.2.12.4 Fgh0-loW PI0-P13 oo

ESPECIFICACAO DO PROJETO ...

4.1 Especificaglo RnCIOnal......ouumasinimaismmsmsismsiissississssinsein
4.2 Requisitos ndo funcionais............coecvennenne

4.3 Plataforma...

44 Estrutura do emulador

METODOLOGIA.......ccceruesanssanssensens

6 PROJETO E IMPLEMENTACAOccoceeerrernensasessasanes .39

6.1 CoOnSIACTATEES HTAIS c.uviissvsisisssibsrcivisisssibiamsisoisisisssviasissssssssssippgisssvmsminsay 39
6.2 A divisH0 €M MOAUIOSveveevereerereieerereereere e esesseseeres e ssasiessessssssssssessares 39

§2.1 MOdulos e EBtIaRRD i..cosivnmimsisnssisssmisas s sasreowy

6.2.2 OUroS MOAUIOS.cccviiererrerererrerersensesesserississsassssesseessarsssssesssssensssenssss &1
63 Amulaeio 38 CPU . cmmummiawesisssmssisissssivsionivimsssi 5
6.4 A emulacio do VDPcccccovieierienienrninnsserssesesssnenssssssssssssssssssssssensesess 48
65 Aimplementacto do PSG usiniisriisisiississisissistisiisinissiasisisnisns 0
6.6 A implementagfo do acesso & MEMOTIA.c.cevvvrvvieeiesirinsirireraenienseiseises I 1
6.7 A implementagdo do loop de emulago.........ceevevveierinccresiiresrcnsnnenininnns 94
B8 MODUI0 COMMOIS ittt st s vaces D
6.9 MOAUlo DiSaSSEMDIETccrereeerrierrerreeireesearsesesensesessrsssessresssssssssssssssess 90
610 Modilo Header VICWEE wivsvnnmnarmiisbissmmmmmiatinsaniandmin D8
6:11. Mbédula Map VIBWEL usasnsmsnmmmmsimsomnesmvesiss o 23
6.12 MOdulo MemOTY VIEWETc.cvevevereeenreseesnseriessiosssesassesssesssssnsasisasssssasnsness 00
6513 MOFulo QAM VISHEE i smsnmsmsansmnssssimisssmizaspmeiiin OL
6.14 MOAUIO Tile VIEWET......oreeerererinresssirseseresseeseesssessssessssescsssssssssssssssssssssnes 02

7 TESTES E AVALIACAO......ccccovuveee S . Se—— — 63
8 CONSIDERACOES FINAIS...ccorssssisssssmmssnsosssinmssssirassissse 65

8.1 CONCTBIAR. cissisummssves i i ke s iR s v ks e DD
8.2 Contlnulclade do pro_]eto R A Ak neBet s Rl T saneba st)

ANEXO A - LISTA DE REGISTRADORES DE E/S E SUAS
FUNCIONALIDADESccciverucsssinsesssssssnesssssssnessnssnssussssesassanssssssassasssssssssasssnsassases 66

ANEXO B - LISTA DE INSTRUCOES DO PROCESSADOR DO GAMEBOY
L I e panp ey I R 74

LISTA DE REFERENCIASoooovssusensesssssasssssossssassssssssssssans 78
APENDICE I - CD COM ARQUIVOS DO PROJETO.......... 1

LISTA DE FIGURAS

Figura 1 — Loop principal de um emulador interpretativo........cccccevvrecerieninneiiennnn. 7
Figura'd — GamieBoy & GameBoy Color. ... s ssinvssissasiissain] 0
Figura 3 — Principais componentes de hardware do GameBoy.........ccoviviiiiiniiinnnnn 11
Figura 4 — Principais componentes de hardware do GameBoy (cartucho).................11
Figiita § —Z80 CPULi ity ss ottt a1 3
Figura 6 — Background e janela no GameBoy........cccceveveerieiinrincneseniccinisncneinennnnn 20
Figura 7 — Z80.asm — Macro que implementa as instrugdes na forma LD r, r'.......... 43
Figura 8 — Z80.asm — Macro que implementa as instrugdes na forma ADD A, X.....44
Figura 9 — Pseudocédigo da rotina ExecuteOpcode......ueneincrinnenniasnssnniesnienn .45
Figura 10 — Rotina EXeCUt@O0PCOAE. ..ioiirireieererreiiesriereersessenseensessesssersessesnenee 40
Figura 11 — Z80.asm —Varidveis globais que representam os registradores da CPU
EIMUIAAA. ...ttt s eseesre e st sbesrneenaessnasnnessnesnsaesuanrnanseensensd T
Figura 12 — Emulator.asm — Parte do loop de emulag¢éo que faz chamada as rotinas
40 Ao VD mmcumirarmiamenmiis s vmmnmmismsienarnsanmsndd
Figura 13 — Memory.asm — Parte da rotina MemoryMaplnit que descobre qual chip
Figuta 14— Loop A6 EtABCA0: v.uvsssmsimisisssimasissssississismm pomi@issinsanmiicmad
P RArn LD = DS IR BIOP, oo coivmsunncimsiveonsissnion s s S AR AR RSB SNSRI
Pifiiita 16 — Hedder VIBWer . wussvanmunsssiasimiiimsns i G niiwnisi 5
FIGUIA 17 — MAD VIEWET.c...eeeeeieeeeereeiecreiceeteeiessestesae s s siassseestesns s sseenasnsenenesnsess DD
Frgiith 18 — Menior) FIoWaE. ...connmnmmmminiaiseiisssiissaimtsdisisemsisa 00
Figura 19 — QOAM VIEWEF.......couvvierereserssirsssssessesssessssessssssssasessassssssessesssssssnessesssensessO 1
Bigirn. 20 = Tile WIEWER.. .cosavissmssivsmnsssisosossisiisdssisissnss ssanesssasasmaimanisianssssmnssO L

LISTA DE ABREVIATURAS E SIGLAS

GB — GameBoy.

GBP — GameBoy Pocket.

GBC — GameBoy Color.

GBA — GameBoy Advance.
ROM — Read Only Memory, normalmente utilizada para representar os jogos do
GameBoy.

RAM — Random Access Memory.
VRAM — Video RAM.

OAM — Object Attribute Memory.
MBC — Memory Bank Controller.
TDT — Tile Data Table Register.
TIMA — Timer Counter Register.
TMA — Timer Modulo Register.
TAC — Timer Control Register.
IF — Interrupt Flag Register.
LCDC — LCD Control Register.
STAT — LCDC Status Register.
DMA — Direct Memory Access.
IE — Interrupt EnableRegister .

LISTA DE SIMBOLOS

$ - Simbolo utilizado para representar nimeros hexadecimais. Exemplo: $FF

LISTA DE TABELAS

Tabela 1 — Caracteristicas do hardware do GameBoy...........c.cveeuveveeeerereeeerren 12
Tabela 2 — Registradores do Z80...........c.ooevrvevveivmieeeeeeesrersenens wal 3
Tabela 3 — Instru¢des adicionais do processador do GameBoy em relagéo ao Z80...14
Tabela 4 — Instrugdes excluidas do processador Z80.............. 1.
Tabela 5 — Instrugdes com opcodes alterados em relagdio ao Z80............ccovvenn..nn 15
Tabela 6 — Mapeamento da memoéria do GameBoy................... e 16
Tabela 7 — Areas reservadas no primeiro bloco de ROM dos cartuchos....................17
Tabela 8 — Valores iniciais dos registradores € pilha do GameBoy..........................24
Tabela 9 — Exemplo de representagdo de uma linha de um caractere.......................27
Tabela 10 — Cores obtidas no exemplo apresentado na tabela 9...............cccoevevrnnnnn. 27
Tabela 11 — Atributos dos sprites 10 GAMEBOY...........cccvevereereeirreeeeeeeeenseeereseeen 28
Tabela 12 — Estrutura do emulador................ 36
Tabela 13 — Camada de emulago............ccceovneveevenvenen 37
Tabela 14 — Modulos de emulagfo............eeeveverieeeseeiereeeeeseeeseeeesesesessessessssseeneen 40
Tabela 15 — M6dulos de gerenciamento...........c..ceveeeeveeeeceereerireesseseesseesesesessesssnnen 1
Tabela. 16 — Testes . ninummmnmniminsis ...03

1 INTRODUCAO

Este topico apresenta o objetivo do trabalho, a motivagdo e justificativa para a
realizagdo do mesmo, e a organizagdo do documento, com a descricdo de seus

principais capitulos.

1.1 Objetivo

O objetivo do projeto foi o desenvolvimento de um emulador, em software, do
videogame portatii GameBoy, e sua versio com cores, GameBoy Color,
comercializados pela Nintendo. O emulador deve aceitar os mesmos dados, executar
0Ss mesmos programas € produzir os mesmos resultados que o computador emulado.
Desse modo, com o programa desenvolvido é possivel jogar imagens de jogos
(ROM’s) feitos para GameBoy em um computador IBM PC com sistema operacional

Windows.

1.2 Motivacao

O motivo da escolha deste projeto pela equipe € o de que o mesmo permitiu

aprendizado nas seguintes areas de computag@o:

¢ Emulagdo: Entender como um emulador, tdo utilizado hoje em dia, funciona.

Esta foi a principal razéo para a equipe.

e Arquitetura e organizagdo de computadores: A arquitetura do GameBoy teve
que ser estudada e entendida. Nisso inclui-se o processador, a entrada e saida,
os periféricos, 0 mapeamento de memoria etc. Além disso, foi fundamental
conhecer bem a linguagem assembly da CPU emulada. Durante o
desenvolvimento também foram trabalhados conceitos de organizagdo

computacional como interrupgdes, DMA, timing dos dispositivos e outros.

e Arquitetura do IBM PC: Como o projeto foi implementado totalmente em
linguagem assembly, a arquitetura do PC, caracteristicas e conjunto de
instru¢Ses dos processadores x86 foram estudados e entendidos com bom

grau de profundidade.

e Otimizagdo de cédigo: Uma das vantagens que a linguagem assembly
proporciona € o alto desempenho dos programas produzidos. Porém,
desenvolver programas em assembly sem o devido cuidado ou atengfio gera
programas com desempenho igual ou muitas vezes pior que programas
gerados por compiladores com otimizagdo. Durante o desenvolvimento do
projeto foram estudadas algumas técnicas de otimizagdo em assembly,
levando em consideragéo a arquitetura dos PC’s e o funcionamento interno

dos processadores da familia IA-32 e compativeis.

O estudo das dreas acima citadas representou grande parte do desafio para o
desenvolvimento do projeto, pois o profundo entendimento de vérios aspectos das
mesmas foi necessdrio para que alcangdssemos sucesso no desenvolvimento do

sistema.

1.3 Organizagio do documento

Este documento esta organizado da seguinte forma: No capitulo 2 (Emulagdo) é
discutido o conceito de emulagdo, e sdo apresentados os métodos de emulagio mais
utilizados. No capitulo 3 (Nintendo GameBoy) o portatil emulado é descrito
minuciosamente. No capitulo 4 (Especificagio do Projeto) sdo apresentados os
requisitos funcionais e ndo funcionais do emulador, além da descricio de sua
estrutura. No capitulo 5 (Metodologia) sdo discutidas as caracteristicas e
peculiaridades do projeto e a conseqiiéncia dos mesmos no processo de
desenvolvimento do emulador. No capitulo 6 (Projeto e Implementagdo) os
algoritmos e idéias utilizados na implementagdio do trabalho sdo apresentados. No
capitulo 7 (Testes e Avaliagdo), sdo exibidos os resultados da aplicagdo de alguns

testes na versdo final do emulador. No capitulo 8 (Consideragdes Finais) sio

mostradas as conquistas que a equipe acredita ter alcangado, e também a opinido

sobre futuros melhoramentos no projeto.
Existem trés anexos no documento. O anexo A contém a lista de registradores de E/S
do portatil e suas funcionalidades. O anexo B contém a lista de instrugdes do

processador do GameBoy. O anexo C contém o cronograma final do projeto.

O tunico apéndice deste documento apresenta o CD com os arquivos do projeto.

2 EMULACAO

2.1 Emulacio e suas aplicagoes

Um emulador € um sistema que duplica todas as funcionalidades de outro sistema,

permitindo que um computador de uma determinada plataforma execute programas
escritos para uma plataforma diferente. O emulador deve aceitar os mesmos dados,
executar os mesmos programas e produzir os mesmos resultados que o computador

emulado.

As aplicagdes mais comuns de emuladores sdo:

e Emuladores podem servir como ferramenta de desenvolvimento de software.
Ex: desenvolver programas para Palm/PocketPC, celulares, videogames etc

em uma maquina Windows/Intel.

e Rodar programas ou jogos escritos para rodar em hardware que ndo se

encontra mais disponivel no mercado.

Além disso, muitos emuladores existentes, além de serem capazes de rodar
programas de outras plataformas fielmente, apresentam recursos extras néo

existentes na plataforma emulada. Exemplos:

e Ferramentas de debug (depuragéo): Janelas que exibem informagdes sobre o
estado atual da maquina emulada, tais como: o conteido dos registradores da
CPU, o estado atual dos dispositivos de E/S, o codigo atualmente em
execu¢do desmontado (disassembled) etc. Podem estar presentes também

controles de fluxo de programa (breakpoints, step-in, step-over, step-out etc)

e Savestates: Muitos emuladores permitem salvar o estado atual da maquina

emulada em arquivos, de tal forma que seja possivel recuperd-lo mais tarde.

e Filtros de imagem: Podem suavizar a imagem original gerada pela maquina

emulada e simular o aspecto de uma tela de TV.

Existem centenas de sifes na Internet dedicados & emulagdo. A grande maioria dos
computadores dos tltimos 20 anos ja foi emulada de alguma maneira. Esse crescente
interesse nesse assunto é devido ao fato de que o grande poder de processamento
disponivel nos PC’s atuais tem permitido a talentosos programadores produzirem
emuladores para maquina complexas, que rodam em tempo real e permitem as

essoas executarem programas ou jogos que jamais estariam disponiveis nos PC’s.
p progr jogos que] p

Um emulador é um programa extremamente desafiante para se escrever (admitindo
emulagdo em software). A sua construgdo envolve uma grande quantidade de
pesquisa aliada a um certo grau de iniciativa necessaria para preencher os vazios na
informagdo disponivel. Também € necessario o completo entendimento do hardware
a ser emulado, bem como habilidade para construir os algoritmos, muitas vezes

complexos, a serem utilizados na emulagéo.

2.2 Meétodos de emulagio

Existem basicamente trés métodos de emulagéo:

2.2.1 Recompilagio estatica

Neste caso, o emulador traduz o codigo binario do programa para o codigo de
méquina da plataforma desejada. O programa resultante poderd ser rodado

diretamente em um PC, por exemplo, sem o uso de outro programa. Apesar deste

método ter uma boa performance, hd casos em que € impossivel utiliza-lo. Um

exemplo € o caso de programas que se auto modificam.

2.2.2 Recompila¢io dinimica

Este método € basicamente o mesmo que o anterior. Mas com recompilagéo
dinimica, ao invés de traduzir todo o programa de uma sé vez, o processo € feito por
partes durante a execugdo do mesmo cada vez que uma instrugdo de JUMP ou CALL

¢ encontrada. Esse método pode ser combinado com o de recompilagdo estéatica.

2.2.3 Emulagao interpretativa

O emulador 1€ o cddigo binario do programa, o decodifica e executa as agdes
apropriadas sobre os registradores, sobre a memoria e sobre os dispositivos de E/S
emulados. As vantagens desse método sfo: facilidade para depuragédo e facilidade
para sincronizar todos os dispositivos emulados. A desvantagem € que este método

toma bastante tempo de processamento.

Este foi o método de emulagdo escolhido para o projeto. Primeiro pela facilidade de
implementag@io. Segundo porque para obter alta compatibilidade (rodar tantos jogos
quanto for possivel) € necessario que a sincronizagao da CPU com os periféricos seja
perfeita, o que € dificil de se conseguir com os outros dois métodos. Terceiro porque
o poder de processamento dos PC’s atuais € ordens de grandeza maior que a maquina
a ser emulada, sendo possivel assim, através deste método, emular um GameBoy

rodando em sua velocidade nativa sem problemas.

O loop principal de emulaggo interpretativa de um videogame pode ser representado

pelo fluxograma abaixo:

1-Inicio

v

2- Inicializa
médulos de
Emulagido

.

3-Processa
entrada

4-Busca opcode |«

5-Executa opcode nao

de sim

Figura 1 — Loop principal de um emulador interpretativo

O passo 2 acima inicializa as varidveis globais do programa, além de ajustar o
contetudo dos registradores da CPU, os dispositivos de E/S, e as memérias em seus
valores iniciais. O passo 3 verifica a entrada do usudrio, o que significa verificar se o
usuario pressionou alguma tecla. Em seguida uma estrutura de dados representando

os controles do videogame emulado € preenchida de acordo.

Um programa de computador é composto por codigo binario (cédigo de maquina).
Tal cédigo por sua vez € composto por uma seqii€ncia de opcodes, onde cada opcode
representa uma instru¢éo de CPU. A CPU do GameBoy, por exemplo, tem instrugdes

com opcodes que variam em tamanho de 1 a 4 bytes.

Um emulador interpretativo funciona de modo muito semelhante a um processador
real. O passo 4 do fluxograma acima 1& o préximo opcode a ser executado do c6digo
bindrio do programa. O passo 5 executa a instru¢do representada pelo opcode

buscado anteriormente, atualizando o estado da CPU emulada.

3 NINTENDO GAMEBOY

3.1 Histéria do GameBoy

O GameBoy é um videogame portatil projetado e produzido pela Nintendo. Ele
possuiu uma tela LCD em preto e branco capaz de exibir quatro niveis de cinza, uma
CPU Z80 modificada rodando a 4Mhz e 4 canais de som. Seus jogos sdo
armazenados em chips ROM, os quais sfo colocados em placas de circuito e
embalados em cartuchos plasticos para protegdo. Os cartuchos sdo mais caros de se
produzir do que midias magnéticas ou CD’s, porém sdo muito mais robustos e faceis

de se utilizar.

A versdo original foi langada em 1988 para competir com produtos rivais de outras
empresas de jogos eletrénicos. Devido ao seu prego relativamente baixo e a grande
gama de jogos disponiveis, 0 GameBoy rapidamente dominou o mercado. Hoje em
dia seu irmfo mais novo, e muito mais poderoso, o GameBoy Advance, ainda

domina o mercado de videogames portateis.

O GameBoy passou por duas transformagdes e melhoramentos no decorrer de sua
estadia no mercado. A primeira alteragdo veio com o langamento do GameBoy
Pocket, o qual ndo continha diferengas na especificagdo do hardware, mas era bem
menor, e possuia uma tela melhor (menos ghosts) e utilizava apenas duas baterias (ao
invés das quatro do GameBoy normal). A segunda modificagdo no portatil, e a mais
significativa, veio com o langamento do GameBoy Color, com capacidade de
exibi¢do de 64 cores simultaneamente. O GBC é compativel com as versdes

anteriores, porém a velocidade da CPU e o tamanho da memoéria de video foram
dobradas.

10

3.2 Descri¢ao do funcionamento e hardware do GameBoy

Os dados apresentados nesta se¢do foram obtidos através de diversos documentos
retirados do site Devrs [5], conversas com outros autores de emuladores, e testes
realizados pela propria equipe. Nesta secdo sdo citados diversos registradores de E/S
presentes no GameBoy. A lista desses registradores e suas respectivas fungoes

podem ser encontradas no anexo A.

11

A figura abaixo mostra os principais componentes de hardware do GameBoy

Conector do LCD

Infra vermetho

Controlador de Video

Porta senial

CPU,RAM e PSG

Controlador de EfS

Chave Liga / Desliga

Volume

auto-falante

Conector de Cartucho

Saida de fone de ouvido

Termnais das pilhas.
O Gameboy Color precisa de
duas pilhas AA para funcionar

MBC (Memory Bank
Selector)

Bateria

RAM

ROM

Figura 4 — Principais componentes de hardware do GameBoy (cartucho)

3.2.1 Resumo das caracteristicas do hardware

A tabela a seguir exibe as principais caracteristicas do hardware do GameBoy.

12

Componente / Caracteristica

CPU 8 bits (similar ao Z80)
. 4,194304 MHz
Velocidade do clock (8,388 MHz para o GBC)
Memoria principal 8KB
Memoria de video (VRAM) 8KB
Sincronismo horizontal 9198 KHz
Sincronismo vertical 59,73 Hz
Tamanho da tela 2,6 polegadas
Cores 4 niveis de cinza
(32768 cores para o GBC)
Resolugdo 160x144 pixels (20x18 tiles)
Numero maximo de sprites 40
Numero méximo de sprites por linha 10

Tamanho dos sprites

8x8 e 8x16 pixels

Som

4 canais com som pseudo-estéreo

Tabela 1 — Caracteristicas do hardware do GameBoy

3.2.2 O processador (CPU)

13

A CPU do GameBoy é um processador similar ao Z80 da Zilog. Trata-se de um

processador de 8 bits com databus de 16 bits. Apesar de rigorosamente a CPU do

GameBoy nfo ser um Z80, referiremos a ele como tal. A descrigdo completa do Z80

e de suas instrugdes do Z80 encontra-se em seu manual do usuario [1].

18-bit Address Bus

Processador

B-bit Eﬁlta Hus

donkrolpds

—_— =

b b e

Memaria

Entrada / Saida

Os registradores do Z80 sdo:

Registrador(es)

Figura 5 — Z80 CPU

Descriciio

A Acumulador (8 bits)
F Registrador de flags (8 bits)
B.C. D EN L Registradores de uso geral (8 bits)
SP Registrador de pilha (16 bits)
PC Program Counter (16 bits)

Tabela 2 — Registradores do Z80

14

O registrador F do processador do GameBoy ndo utiliza as flags de paridade e
overflow. As flags existentes sdo as seguintes:
e 7 — Ativo caso o resultado da tltima operagdo € zero.
e N — Ativo caso a tltima operagdo foi uma subtragdo.
e H — Ativo caso tenha ocorrido um carry-out na metade menos significativa
dos valores utilizados na ultima operag@o (bit 3).

e C — Ativo caso tenha ocorrido um carry-out na ultima operagao.

Também podemos acessar os registradores de 8 bits como registradores de 16 bits.

Registrador(es) Descri¢ao

BC, DE, HL Registradores de uso geral (16 bits)

O Conjunto de instrugdes da CPU do GameBoy ¢ o mesmo do Z80, com, com apenas

algumas inclusdes, exclusdes e alteragdes de opcode.

As instrugdes adicionais em relagfo ao Z80 sdo as seguintes.

Opcode (0x) Instrucio Descri¢io

ADD SP, nn nn = offset de 8 bits
Escreve A em (HL) e
22 LDI (HL), A)
incrementa HL
Escreve Aem (HL) e
32 LDD (HL), A
decrementa HL
Escreve (HL) em A e
2A LDI A, (HL)
incrementa HL
Escreve (HL)em A e
3A LDD A, (HL)
decrementa HL
Utilizado para acessar os
FO nn LD A, ($FF00 + nn) registradores de E/S (serdo
explicados mais adiante)

15

F2 LD A, ($FF00 + C) ---
EO nn LD ($FF00 + nn), A ---
E2 LD ($FF00 +C), A ---
08 bb aa LD (aabb), SP Escreve SP em (aabb)
F8 nn LD HL, SP + nn nn = offset de 8 bits
Para o processador ¢ a tela
10 STOP até que um botédo seja
pressionado
Troca nibbles mais e
CB 3A SWAP A menos significativos do
acumulador

Tabela 3 — Instrugdes adicionais do processador do GameBoy em relagio ao Z80

As instrugoes excluidas em relagdo ao Z80 sdo as seguintes.

Toda instrugéo que utiliza os registradores IX e IY

Toda instrugdo IN / OUT

Toda instrugdo EX

Toda instrugéio com opcode iniciado por ED

Toda instrugao de pulo, chamada e retorno condicionais em relagéo as flags de

paridade e overflow, inexistentes no processador do GameBoy

Tabela 4 — Instrugdes excluidas do processador Z80

As instrugdes com opcodes alterados sdo as seguintes.

Instrucio Opcode no Z80 (0x) Opcode no GB (0x)
LD A, (aabb) 3Abbaa FA bb aa
LD (aabb), A 32 bb aa EA bb aa
RETI ED 4D D9

Tabela 5 — Instrugdes com opcodes alterados em relagdo ao Z80

16

O nimero de clocks utilizados por cada instru¢do do processador do GameBoy €

diferente do apresentado pelo Z80 normal. A lista das instrugdes do processador com

os respectivos timings estd no anexo B.

3.2.3 O mapeamento de memdria

O mapeamento da memoria no GameBoy € apresentado na tabela abaixo, sdo 64KB

enderecados.

Memoria Endereco (0x)

Escritas neste local habilitam e
FFFF desabilitam determinadas
interrupgdes.

RAM interna de pilha FF80-FFFE | Utilizada pela pilha.

Escritas nesta area configuram

Interrupt Enable
Register

Portas de E/S FFO0-FF7E dispositivos de E/S. _Lelturas
recebem dados provindos dos
mesmos.

. 2 Dados sobre os sprites sdo
Sprife Attrigute FEOO-FEFF | armazenados nesta regiao de
Memory (OAM) =

memoria.

qulf_i da memoria EO00-FDEF RAM prn_lmpal tan}bcm pogie ser

principal escrita e lida através desta area.

Meméria principal — e it it

KB RAM (x8 no CO000-DFFF RAM principal. Paginavel apenas no

GBC) GBC.

Area na qual so paginados blocos
8KB RAM paginavel AQ000-BFFF | de memdria RAM presentes em
alguns cartuchos.

8KB Video RAM Meméria de video. Paginavel apenas
8000-9FFF '
(x2 no GBC) no GBC.

Area na qual sdo paginados blocos
16K_B,ROM 4000-7FFF | de memdria ROM provindos dos
paginavel

cartuchos.
16KB ROM bloco #0 0000-3FFF Area reser_’vada para os primeiros

16KB do jogo.

Tabela 6 — Mapeamento da meméria do GameBoy

17

3.2.4 Areas reservadas no primeiro bloco de ROM

A seguir € apresentado o header que todo cartucho possui, situado no primeiro bank

da ROM. Essa area é reservada.

Endereco (0x) Descricio

0000 RST $00 chama este endereco.
0008 RST $08 chama este enderego.
0010 RST $10 chama este enderego.
0018 RST $18 chama este enderego.
0020 RST $20 chama este enderego.
0028 RST $28 chama este enderego.
0030 RST $30 chama este enderego.
0038 RST $38 chama este endereco.
0040 Interrupgdo de varredura vertical.
0048 Interrupgdo de status do LCDC.
0050 Interrupgdo de overflow do Timer.
0058 Interrupgdo de comunicagdo serial.
0060 Interrupgdo P10 —P13.
T Ponto inicial de execugdo de um ROM. Normalmente aqui
sdo encontrados instrugdes NOP e JP.
Nintendo logo (jogos ndo rodam se estiver errado):
0104 — 0133 CE ED 66 66 CC 0D 00 OB 03 73 00 83 00 0C 00 0D
00 08 11 1F 88 89 00 OE DC CC 6E E6 DD DD D9 99
BB BB 67 63 6E OE EC CC DD DC 99 9F BB B9 33 3E
PO Titulo do jogo em ASCII em letras maitisculas. Se for
menor que 16 bytes, o restante € preenchido com $00’s.
$80 significa que o jogo é para GBC, $00 significa que o
o jogo € para qualquer outro variante do GB.
0144 Nibble mais significativo do codigo de licenga.
0145 Nibble menos significativo do codigo de licenga.

0146 Indicador de GB e SGB. $00 indica GameBoy e $03 indica

18

que sdo utilizadas fungdes do Super GameBoy.

0147

Tipo de cartucho:

$00 — ROM apenas

$01 —ROM + MBCl1

$02 — ROM + MBCI + RAM

$03 —ROM + MBC1 + RAM + BATT

$05 — ROM + MBC2

v06 —ROM + MBC2 + BATTERY

$08 —ROM + RAM

$09 —ROM + RAM + BATTERY

$0B — ROM + MMMO1

$0C — ROM + MMMO1 + SRAM

$0D — ROM + MMMO1 + SRAM + BATTERY
$0F — ROM + MBC3 + TIMER + BATTERY
$10 —ROM + MBC3 + TIMER + RAM + BATTERY
$11 —ROM + MBC3

$12 —ROM + MBC3 + RAM

$13 —ROM + MBC3 + RAM + BATTERY

$19 —ROM + MBC5

$1A -~ ROM + MBC5 + RAM

$1B —ROM + MBC5 +RAM + BATTERY
$1C —ROM + MBC5 + RUMBLE

$1D — ROM + MBC5 + RUMBLE + SRAM
$1E —ROM + MBC5 + RUMBLE + SRAM + BATTERY
$1F — Procket Camera

$FD — Bandai TAMAS

$FE — Hudson HuC-3

$FF — Hudson HuC-1

0148

Tamanho da ROM:

$00 — 256 Kb =32 KB = 2 banks
$01 — 512 Kb = 64 KB = 4 banks
$02 — 1 Mbit = 128 KB = 8 banks

$03 — 2 Mbit = 256 KB = 16 banks
$04 — 4 Mbit = 512 KB = 32 banks
$05 — 8 Mbit = 1 MByte = 64 banks
$06 — 16 Mbit = 2 MByte = 128 banks
$52 — 9 Mbit = 1,1 MByte = 72 banks
$53 — 10 Mbit = 1,2 MByte = 80 banks
$54 — 12 Mbit = 1,5 MByte = 96 banks

Tamanho da RAM:

$00 — Sem RAM

$01 —16 Kb=2KB =1 bank

$02 — 64 Kb =8 KB = 1 bank

$03 — 256 Kb = 32 KB = 4 banks
$04 — 1 Mbit = 128 KB = 16 banks

0149

Cddigo de destino:
014A $00 — Japdo

$01 - Internacional

Codigo de licenga:

$33 — Checar 0144 e 0145 para obter o codigo
$79 — Accolade

$A4 - Konami

014B

014C $00

— Valor de checagem complementar (jogos nfo rodam se

estiver errado).

Checksum (byte mais significativo primeiro) produzido

pela adi¢do de todos os bytes do cartucho exceto os dois
014E — 014F
bytes de checksum. O checksum sera entio os dois bytes

menos significativos do valor calculado.

Tabela 7 — Areas reservadas no primeiro bloco de ROM dos cartuchos.

20

3.2.5 Tipos de cartucho

A seguir sdo apresentados os tipos de cartucho para GameBoy, indicados pelo byte
localizado no enderego 0x0147, como mostrado anteriormente. Os cartuchos com

mais de 32KB precisam do chip MBC para mapear os blocos da ROM.

Note que a 4rea de memoria 0000-7FFF ¢ usada tanto para ler a ROM, como para

escrever nos registradores de controle dos MBC’s, como sera mostrado a seguir.

3.2.5.1 MBC1

0000-3FFF - ROM Bank $00 (Leitura apenas)

Esta area sempre contém os primeiros 16KB da ROM (primeiro bloco).

4000-7FFF - ROM Bank $01 - $7F (Leitura apenas)

Esta area pode conter qualquer bloco a partir do segundo bloco da ROM,
permitindo o enderecamento de até 125 blocos (quase 2 Mbytes). Como
descrito abaixo, os blocos de nimero $20, $40 e $60 ndo podem ser

utilizados, resultando nos 125 blocos possiveis.

A000-BFFF - RAM Bank $00 - $03, se necessario (Leitura e Escrita)

Esta éarea € usada para enderecar meméria RAM do cartucho, se existir. Esta
RAM externa ¢ normalmente acompanhada de um bateria, permitindo
armazenar no cartucho posi¢des de jogos ou pontuagdes, mesmo apds o

GameBoy ter sido desligado.

0000-1FFF - RAM Enable (Escrita apenas)
Para acessar a memoria RAM do cartucho, € preciso antes habilita-la
escrevendo nesta area da memoria. Escrevendo um valor com 0Ah nos 4 bits

menos significativos habilita a RAM, qualquer outro valor a desabilita.

21

2000-3FFF - ROM Bank Number (Escrita apenas)

Escrevendo nesta drea de memoria seleciona os 5 bits menos significativos do
nimero do bloco da ROM a ser mapeado. Quando $00 € escrito, 0 MBC
traduz que o bloco $01 deve ser utilizado, ndo permitindo que o bloco 0 seja
mapeado fora de sua 4rea reservada (0000-3FFF). O mesmo acontece para os
blocos $20, $40 e $60. Qualquer tentativa de enderegar estes blocos da ROM

sera redirecionada para os blocos $21, $41 e $61, respectivamente.

4000-5FFF - RAM Bank Number - or - Upper Bits of ROM Bank
Number (Escrita apenas)

Escrevendo dois bits nesta area de meméria pode-se selecionar o bloco da
RAM a ser mapeado na memoria, ou entdo os dois bits podem representar os
dois bits mais significativos do nimero do bloco da ROM a ser mapeado. O

significado dos dois bits depende do modo selecionado (veja abaixo).

6000-7FFF - ROM/RAM Mode Select (Escrita apenas)

Indica o significado dos dois bits descritos acima. Escrevendo-se $00 nesta
drea de memoria seleciona 0 ROM Banking Mode. Escrevendo-se $01 €
selecionado 0 RAM Banking Mode. Quando o modo selecionado for o da
ROM, o bloco da RAM mapeado deve ser o 0.

3.25.2 MBC2

0000-3FFF - ROM Bank $00 (Leitura apenas)
Igual ao MBCl.

4000-7FFF - ROM Bank $01-$0F (Leitura apenas)
Igual a0 MBCI, porém apenas o mapeamento dos 16 primeiros blocos ¢é

suportado.

22

A000-A1FF - 512 x 4 bits RAM, embutido no chip MBC2 (Leitura e
Escrita)

O MBC2 ndo suporta RAM externa, ao invés disso ele ja possui embutido no
seu chip 512 x 4 bits de RAM. Como os dados dessa RAM consistem apenas
de 4 bits, apenas os 4 bits menos significativos sdo utilizados ao escrever ou

ler nela.

0000-1FFF - RAM Enable (Escrita apenas)

Escrevendo nesta area, como no MBCI, habilita ou desabilita a RAM do
MBC2. O bit menos significativo do byte mais significativo do enderego
precisa ser 0 para habilitar ou desabilitar a RAM do MBC2. Por exemplo, os
seguintes enderegos podem ser utilizados: 0000-00FF, 0200-02FF, 0400-
04FF, ..., IE00-1EFF. A area de memoria sugerida ¢ 0000-00FF.

2000-3FFF - ROM Bank Number (Escrita apenas)

Escrevendo um valor (XXXXBBBB — X = qualquer, B = bits para sele¢éo do
bloco) em 2000-3FFF selecionard um bloco da ROM a ser mapeado em 4000-
7FFF. O bit menos significativo do byte mais significativo do endereco
precisa ser 1 para selecionar o bloco da ROM. Por exemplo, os seguintes
enderegos podem ser utilizados: 2100-21FF, 2300-23FF, 2500-25FF, ...,
3F00-3FFF. A area de memoria sugerida € 2100-21FF.

3.25.3 MBC3

Similar ao MBCI1, exceto pelo fato de poder acessar todos os 16 Mbits da ROM sem
necessidade de escrever em 4000-5FFF. Escrevendo um valor (XBBBBBBB — X =
qualquer, B = bits para selegdo do bloco) em 2000-3FFF selecionard um bloco da
ROM a ser mapeado em 4000-7FFF.

O MBC3 possui um RTC (Real Time Clock) ndo encontrado em qualquer outro
MBC.

23

3.254 MBCS

Similar a0 MBC3, porém podendo acessar até 64 MBits de ROM e até 1 Mbit de
RAM. Os 8 bits menos significativos dos 9 bits utilizados para selecionar o bloco séo
escritos em 2000-2FFF, enquanto que o bit mais significativo ¢ escrito no bit menos
significativo da area 3000-3FFF.

Escrevendo um valor (XXXXBBBB — X = qualquer, B = bits para sele¢éo do bloco)
em 4000-5FFF selecionard um bloco da RAM a ser mapeado em A000-BFFF.

O MBCS5 foi criado para garantir a execugdo em dupla velocidade no GameBoy
Color, mas os outros MBC’s também rodam sem problemas com velocidade
duplicada no GBC.

3.2.6 Seqiiéncia de inicializacio

Quando o GameBoy € ligado, um programa de 256 bytes no inicio da memoria €

executado. Este programa esta localizado em uma ROM embutida no GameBoy.

A primeira coisa que o programa faz € ler as posi¢des $104 - $133 do cartucho e
colocar este logo da Nintendo na tela. Apds isso, as posigdes $104 - $133 sdo
novamente lidas, mas desta vez elas sio comparadas com uma tabela interna mantida

pelo GameBoy. Caso exista alguma diferenca entres os dados, o GameBoy trava.

Em seguida o GameBoy calcula a soma dos bytes do cartucho e faz a comparagéo do

checksum, como explicado anteriormente.

Em caso de sucesso nos testes, a ROM embutida no GameBoy ¢ desativada ¢ a
execugdo do cartucho inicia na posigao $100, com os seguintes valores iniciais para

os registradores e para a pilha.

Registrador /

Valor Inicial

Posicdo de memadria

$01 para o GB
A $FF para o GBP
$11 para o GBC
F $B0
B $00
G $13
DE $00D8
HL $014D
SP $FFFE
(8FFO05) $00
($FF06) $00
($FF07) $00
($FF10) $80
($FF11) $BF
($FF12) $F3
(SFF14) $BF
(SFF16) $3F
($FF17) $00
($FF19) $BF
(SFF1A) $7F
($FF1B) $FF
($FF1C) $9F
($FF1E) $BF
($FF20) $FF
(SFF21) $00
($FF22) $00
($FF23) $BF
($FF24) $77
($FF25) $F3

24

25

($FF26) $F1
(SFF40) $91
(SFF42) $00
($FF43) $00
($FF45) $00
($FF47) $FC
(SFF48) $FF
(SFF49) $FF
(SFF4A) $00
(SFF4B) $00
(SFFFF) $00

Tabela 8 — Valores iniciais dos registradores e pilha do GameBoy.

3.2.7 O controlador de video — VDP (Video Display Processor)

Os gréficos do GameBoy sdo compostos por 3 camadas; a camada de background, a
camada de janela, e a camada de sprites. Em uma determinada parte de memoria de
video (VRAM) sdo definidos caracteres de 8x8 pixels. No GameBoy normal cada
pixel pode tem um de quatro 4 tons de cinza disponiveis, ou seja, sao necessarios 2
bits para representar cada pixel. Como cada caractere tem 8%8=64 pixels, cada
caractere ocupa 16 bytes na VRAM. No caso do GameBoy Color, que possui o dobro
de memoria de video em relagdo ao GameBoy normal, cada pixel pode ter até 8

cores.

A camada de background é composta por uma matriz de 32x32 caracteres de 8x8
pixels. Logo, as dimensdes em pixels dessa camada € de 256x256. Porém, apenas um
pedago de tamanho 160x144 pixels dessa area de € mostrado no display. O
programador pode escolher qual pedago serd exibido alterando o valor de
registradores do VDP (registradores 0xFF42, scroll X, e 0xFF43, scroll Y). Esses

registradores determinam a posigdo da 4rea exibida, como mostra a figura abaixo.

26

Scroll y 256

l 160

Scroll x

144 256

Background

Area Visivel

Figura 6 — Background e janela no GameBoy

Uma area da VRAM denominada Background Tile Map contém os caracteres a
serem exibidos na tela pela camada de background. Esse mapa é organizado em 32
linhas de 32 bytes cada. Cada byte contém o niimero do caractere a ser exibido. Os
caracteres sdo retirados do Tile Data Table (TDT), localizado em $8000-$8FFF ou
$8800-$97FF. No primeiro caso, os files sdo numerados de 0 a 255 (ou seja, o
caractere O fica na posigdo $8000). No segundo caso, os tiles sdo numerados de -128
a 127 (ou seja, o caractere 0 fica na posigdo $9000). O enderego do TDT a ser usado

para a camada de background ¢ selecionado através do registrador LCDC.

Existem dois diferentes Background Tile Maps. O primeiro esta localizado em
$9800-$9BFF. O segundo em $9C00-$9FFF. Apenas um deles pode estar ativo em
um determinado momento. A escolha de qual deles deve estar ativo também ¢ feita

através do registrador LCDC.

A camada de janela € similar a camada de background. Ela é composta por uma
matriz de 160x144 pixels. As coordenadas de posicionamento da janela (reguladas
pelos registradores WNDPOSX e WNDPOSY) sdo dadas em relagiio a parte visivel
da camada de background. A janela pode ser ativada ou desativada através do

registrador LCDC.

27

As imagens dos caracteres (tiles) sdo armazenadas na TDT como ja foi mencionado.

Cada imagem de 8x8 pixels ocupa 16 bytes, onde cada dois bytes representam uma
linha.

Byte Valor hexa Valor binario
0 OxE7 11100111
1 0xBD 10111101

Tabela 9 — Exemplo de representagdo de uma linha de um caractere.

As cores correspondentes ao exemplo apresentado na tabela acima sdo obtidas da

seguinte maneira.

ytel Byte0 Valor do par or

0 1 1 11 3

1 0 1 01 1

2 1 1 11 3

3 1 0 10 2

4 1 0 10 2

5 1 1 11 3

6 0 1 01 1

7 1 1 11 3
Tabela 10 — Cores obtidas no exemplo apresentado na tabela 9.

A cor pode entdo ser tirada da palheta, que é determinada pelo registrador BGP

(SFF47).

Como foi dito anteriormente, existem duas TDT’s, uma em $8000-8FFF, e oufra em
$8800-97FF. A primeira pode ser utilizada para os sprifes, para o background e para

a janela. Ja a segunda nfo pode ser utilizada pelos sprites.

A camada de sprites é composta por caracteres de 8x8 ou 8x16 pixels. O VDP pode
exibir até 40 sprites, porém, devido a limitagdo do hardware, apenas 10 sprites
podem aparecer por linha. Os sprites possuem o mesmo formato que os caracteres, e
os mesmo podem ser obtidos a partir do segundo TDT apenas. Os sprites possuem

atributos, os quais estdo localizados na Sprite Attribute Table (também denominado

28

Object Attribute Memory — OAM), que fica mapeado em $FE00-$FE9F. A OAM ¢é

dividida em 40 blocos de 4 bytes cada, onde cada bloco representa um dos 40 sprites.

A tabela a seguir mostra o significados dos 4 bytes de atributos de um sprite.

0 | Posigdo y na tela.

1 Posi¢do X na tela.
2 | Namero do caractere.
Flags:
e Bit 7 Prioridade: Se este bit esta zerado,

o sprite é exibido acima do background e
da janela. Se o bit estd com valor 1, o
sprite ficara escondido pelas cores 1,2 € 3
do background e janela (o sprite sempre

3 prevalece sobre a cor 0).

e Bit 6 — Flip vertical.

e Bit 5 — Flip horizontal.

e Bit 4 — Numero da palheta a ser utilizada.
As cores do sprite sdo tiradas do
registrador OBP1 caso este bit esteja com
valor 1, e OBP0 caso contrario.

Tabela 11 — Atributos dos sprites no GameBoy.

3.2.8 Extensdes do VDP no GameBoy Color

Existem basicamente duas diferengas entre VDP do GameBoy descrito acima e o
VDP do GameBoy Color. Em primeiro lugar, o nimero de palhetas foi aumentado de
3 para 16, 8 para o background e 8 para o foreground (janela e sprites). A segunda

diferenca estd no tamanho da VRAM, que foi dobrada no GBC.

3.2.9 Os dispositivos de E/S

Os trés principais dispositivos do GameBoy sdo o controle, o PSG e o link serial.

Todos funcionam através da escrita e leitura dos registradores de E/S localizados em

29

$FF00-$FF7E. A lista de todos os registradores e suas respectivas fungdes pode ser

encontrada no anexo A.

3.2.10 O controlador de som — PSG (Programmable Sound Generator)

O controlador de som do GameBoy é composto por 4 canais de som pseudo-estéreo:

e Canal 1:
- Produz ondas quadradas com duty cycle.variavel, e fungdes frequency
sweep e envelope. A fungo frequency sweep permite que se tenham
efeitos de “portamento” nos quais a freqiiéncia aumenta ou diminui
durante o playback. A velocidade com a qual a freqgiiéncia aumenta ou
diminui é controlavel.

e C(Canal 2:
- Produz ondas quadradas com duty cycle variavel e fungdo envelope. O
canal 2 ¢ idéntico ao canal 1, sem a fungdo frequency sweep. A fungio
envelope permite ter efeitos de fade-in e fade-out, nos quais o volume do
som produzido aumenta ou diminui gradativamente. O canal possui 4 bits
de resolugdo, de modo a poder produzir 16 diferentes niveis de amplitude.

e (Canal 3:
- Atua como um DAC (Digital-to-Analog Converter) de 4 bits que toca
repetidamente um padriio de amostras de dudio. Esse padréo é definivel
pelo usuario.

e C(Canal 4:
- Produz pseudo ruido branco com fun¢@o envelope. O ruido é gerado por
um contador polinomial, também conhecido como Linear-Feeedback
Shift Register (LFSR). LFSRs sdo um tipo de contador binario que tem a
caracteristica especial de ndo contar na seqiiéncia binaria crescente

normal.

30

3.2.11 Timer

O GameBoy possui um timer cuja freqiiéncia pode ser 4096 Hz, 16384 Hz, 65536 Hz
ou 262144 Hz. O valor da freqiiéncia € selecionado pelo registrador TAC ($FF07). O
registrador TIMA ($FF05) é incrementado com esta freqiiéncia. Quando o mesmo
sofre overflow, ele gera uma interrupg@o, e o seu valor ¢ entéo reiniciado para o valor

do registrador TMA (Timer Modulo).

3.2.12 Interrupg¢oes

A flag IME (Interrupt Master Enable) do processador do GB pode ser resetada pela
instru¢iio DI, proibindo a execugfo de qualquer tipo de interrupgdo. A instrugéo EI
habilita novamente as interrupgdes, sendo que estas sdo reguladas pelo registrador IE

e IF do GameBoy. As interrupgdes funcionam da seguinte forma:

Quando uma interrup¢io € gerada, a flag IF do processador € ativada.

Caso a flag IME estiver ativada e a flag do registrador IE correspondente a
interrupgio gerada também estiver ativada, as trés agdes seguintes sdo executadas.

- Desativa IME para prevenir novas interrupgdes.

- O PC (Program Counter) é colocado na pilha.

- E feito um pulo para o enderego da interrupgao.

Ao retornar da interrupcdo, o registrador IF é zerado e a flag IME reativada.

3.2.12.1 Varredura vertical

Esta interrupgéo ocorre aproximadamente 60 vezes por segundo, sempre no inicio do

periodo de varredura vertical. Durante este tempo, que dura aproximadamente 1,1

31

ms, 0 hardware de video n#o estd acessando a VRAM, estando portanto livre para ser

acessado pelo programa.

3.2.12.2 LCDC Status

Existem varias razdes para esta interrup¢fio ocorrer, como descrito pelo registrador
STAT ($FF40). Uma razéio comum ¢ para indicar ao usuario quando o VDP est4 para

desenhar uma linha do L.CD.

3.2.12.3 Timer overflow

Esta interrupgéo ocorre quando o registrador TIMA ($FF05) muda de $FF para $00.

3.2.12.4 High-to-low P10-P13

Esta interrupgdo ocorre na transigdo de qualquer uma das linhas de entrada do

controle do GameBoy de 1 para 0, descrita pelo registrador P1 ($FF00).

32

4 ESPECIFICACAO DO PROJETO

4.1 Especificacdo funcional

A fungdo principal do emulador serd rodar jogos comerciais do GameBoy e
GameBoy Color na plataforma PC/Windows. O emulador devera ter uma taxa de

compatibilidade maior que 50%.

O emulador deve também disponibilizar diversos recursos nfo existentes no

GameBoy.

As fungdes desempenhadas pelo sistema emulador sfio divididas nos seguintes

grupos:

1. Fungdes de carregamento de programa e estado:
1.1. Abrir ROM — carrega o programa no emulador e o executa.
1.2. Fechar ROM — termina a execugdo do programa.

1.3. Salvar estado — salva o estado atual do sistema emulador (valores dos

registradores do cpu, memoria etc).

1.4. Carregar estado salvo — carrega o estado do sistema previamente

salvo.

As fungdes para salvar e carregar estado (save states) sio comumente utilizadas em
emuladores de video games para salvar o jogo permitindo que o usuério o continue

posteriormente, agdo q a maioria dos jogos néo disponibiliza.

2. Fungdes de controle do CPU:
2.1. Reiniciar CPU - reinicializa o sistema emulado.

2.2. Pausar CPU — pausa a emulagio.

33

3. Fungdes de controle de video:
3.1. Alterar modo de exibigdo:
3.1.1. Exibigdo normal — apresenta a imagem de video do GameBoy
em seu tamanho real sem nenhuma escala ou filtro aplicado.
3.1.2. Exibi¢do em tamanho dobrado — apresenta a imagem com o
dobro do tamanho original sem aplicaggo de filtro.
3.1.3. Exibi¢do em tamanho dobrado com scanlines — apresenta a
imagem com o dobro do tamanho original e com scanlines na

mesma, simulando o aspecto de uma tela na TV,

3.2. Alterar palheta de video:

3.2.1. Utilizagdo da palheta normal — utiliza a palheta do GameBoy
normalmente.

3.2.2. Selecdo manual das cores da palheta (GameBoy normal
apenas) — permite que o usudrio altere as 4 cores da palheta do
GameBoy normal.

3.2.3. Utilizagdo da palheta em tons de cinza (GameBoy Color
apenas) — altera as cores da palheta para tons de cinza.

3.2.4. Utilizagdo da palheta negativa (GameBoy Color apenas) —

altera as cores da palheta para suas complementares.

3.3. Ativar ou desativar camadas de imagem:
3.3.1. Camada de Background — permite ativar ou desativar a
exibigdo da camada de background na imagem final.
3.3.2. Camada de Sprites — permite ativar ou desativar a exibicdo da
camada de sprites na imagem final.
3.3.3. Camada de Janela - permite ativar ou desativar a exibicdo da

camada de janela na imagem final.

3.4. Eliminar limite de sprites por scanline do hardware do GameBoy —

permite exibir mais do que 10 sprites por scanline.

34

4. Fungdes de controle de som:

4.1.

Ativar ou desativar som:

4.1.1. Canal de onda quadrada I — permite ativar ou desativar a agfo
do canal no som final emulado.

4.1.2. Canal de onda quadrada II — permite ativar ou desativar a agfio
do canal no som final emulado.

4.1.3. Canal de wave — permite ativar ou desativar a agéo do canal no
som final emulado.

4.1.4. Canal de ruido branco — permite ativar ou desativar a acio do

canal no som final emulado.

5. Fungdes de debug do sistema - Janelas que exibem informagées sobre o

estado atual da maquina emulada:

5.1

5.2

5.3.

5.4.

3.5,

5.6.

Disassembler — possibilita a visualizagdo em linguagem assembly do
programa carregado no emulador, assim como a execugdo passo a
passo do programa, com atomicidade representada por uma instrugio
da CPU.

Header Viewer — possibilita a visualizagdo do cabegalho do programa
carregado no emulador.

Memory Viewer — possibilita a visualizagdo da memoria do
GameBoy enquanto o programa carregado € executado.

Map Viewer — possibilita a visualizagdo grafica da parte da meméria
de video destinada a guardar o background da imagem.

Tile Viewer - possibilita a visualizagdo grafica da parte da meméria
de video destinada a guardar os files disponiveis para a constru¢do da
imagem.

OAM Viewer - possibilita a visualizagdo grafica dos sprites correntes

de acordo com sua tabela de defini¢do, assim como seus atributos.

35

4.2 Requisitos niio funcionais

1. O emulador deve apresentar uma interface simples para o usudrio,
permitindo a ativago e alteragio de pardmetros dos recursos disponiveis
pelo sistema. A entrada de controle do GameBoy sera emulada através de

seu mapeamento para o teclado.

2. O emulador deve apresentar uma performance elevada, podendo ser

executado em velocidade méxima mesmo em computadores antigos como

Pentium’s 100 MHz.

3. O programa deve ser robusto, para que ndo trave caso sejam abertos

arquivos de ROM’s defeituosas ou arquivos que no sejam ROM’s.

4.3 Plataforma

O emulador serd desenvolvido em linguagem Assembly para processadores Intel da
familia IA-32. A familia IA-32 inclui os processadores x86 lancados pela Intel desde
o Pentium até o Pentium IV.

O emulador deve rodar em computadores com os sistemas operacionais Windows 98,

Windows NT, Windows2000, Windows XP e Windows 2003.

36

4.4 Estrutura do emulador

O emulador foi divido de acordo com o diagrama abaixo:

GUI Emulagdo Gréafcos

Controles

Tabela 12 — Estrutura do emulador

* GUI - Graphical User Interface: E a interface com o usuério. E composta de
janelas gréficas e das rotinas que controlam a légica de interagdo com o
usuario.

* Emulagdo: Esta camada implementa o loop principal da emulagdo
interpretativa.

* Graficos: Essa camada é responsavel por exibir o buffer de display na tela e
aplicar os filtros de imagem

* Controles: Controla os dispositivos de entrada (no caso o teclado).

A camada de emulagdo ser4 dividida em médulos correspondentes aos componentes
do hardware do GameBoy. Cada médulo ser4 desenvolvido procurando-se separar o

maximo possivel a logica dos componentes do hardware emulado.

Abaixo estdo apresentados os principais componentes da camada de emulacdo. A

subdivisao desta camada nos médulos finais é apresentada no capitulo 6 (Projeto e

Implanta¢io).

Camada de Emulagéo

CPU

Meméria

VDP

PSG

Controle

Tabela 13 — Camada de emulagio

37

A natureza do projeto do emulador faz com que a dificuldade do mesmo néo esteja

na sua estruturagdo, e sim em sua implementag#o.

38

5 METODOLOGIA

Como a equipe consta de apenas dois integrantes, todo o processo que envolveu o
estudo de tecnologias e estudo do GameBoy, assim como o planejamento e posterior

implementagéo dos mddulos do projeto, foi efetuado por ambos 0s membros em sua
totalidade.

O projeto, apesar de ter como produto final um software, é fruto de um extenso
estudo baseado em hardware, tanto do sistema a ser emulado, como do sistema
emulador. Esta caracteristica do trabalho fez com que partes do software fossem

remodeladas e novamente programadas constantemente.

A divisdo de tarefas para a implementacdo do sistema ndo pdde ser feita de modo
muito modular, pois neste projeto especifico, cada médulo do sistema é muito
dependente dos outros, ou seja, foi preciso muitas vezes que ambos os membros da
equipe trabalhassem em conjunto com o mesmo moédulo. Além disso, o perfeito
entendimento de como foi programado cada médulo foi sempre necessario para o
desenvolvimento dos mddulos seguintes. Um fato importante é que a escolha pela
implementacdo do emulador totalmente em assembly eliminou a possibilidade de

utilizag¢@o de orientagdo a objetos para o desenvolvimento do emulador.

Com relagdo aos testes efetuados, cabe ressaltar que o unico médulo capaz de ser
testado separadamente foi o processador emulado. Todos os outros médulos néo
puderam ser testados individualmente, pois sdo interdependentes, e os mesmo

praticamente ndo funcionam sem a existéncia dos outros.

Com os fatos apresentados, pode-se concluir que nenhuma metodologia especifica
foi utilizada na constru¢do do emulador. As caracteristicas apresentadas pelo projeto

o tornam peculiar quanto ao processo de sua construgao.

39

6 PROJETO E IMPLEMENTACAO

6.1 Consideracoes gerais

O projeto foi implementado em linguagem assembly para a familia x86 e
compativeis. O montador (assembler) utilizado foi o Masm 6.14 da Microsoft.

Nao foi utilizada nenhuma biblioteca extra, fora a API do Windows.

6.2 A divisdao em moédulos

O projeto foi feito em linguagem assembly, que néo requer que os programas
sejam estruturados tampouco sigam o paradigma da orientagdo de objetos. Por isso o
programa foi estruturado em sub-rotinas (fun¢des) e mddulos (conjuntos de fungdes,

macros e variaveis globais).

Os moédulos foram divididos em basicamente dois grupos: o primeiro € o dos
modulos que lidam diretamente com emulagdo, e o segundo sdo os mddulos
restantes, que lidam entre outras coisas com criagdo e gerenciamento de janelas,

caixas de didlogo, multimidia etc.

Cada moédulo é composto fisicamente de um ou mais arquivos fonte de

extensdo “. ASM” e um ou mais arquivos de inclusdo com extensao “.INC”.

Os modulos escolhidos foram os seguintes:

6.2.1

Moédulos de emulagio

Arquivo de

40

Moédulo Arquivo fonte
inclusido
Emula o joypad
Controls Controls.asm Controls.inc (controle) do
gameboy
Principal médulo do
Emulator Emulator.asm Emulator.inc | programa. Contém o
loop de emulagéo.
e 7Z80Core.asm, Instset.inc, Emulacdo da CPU e
Instset.asm Opcode.inc fungoes correlatas.
Mapeia a memdria.
Memory Memory.asm Memory.inc | Lida com entrada e
saida.
Moédulo de
VDP VDP.asm VDP.inc emulac¢do do VDP

do Gameboy.

Tabela 14 — Médulos de emulagio

6.2.2 Outros modulos

Modulo

Disassembler

Arquivo fonte

Disassembler.asm

Arquivo de inclusdo

Disassembler.inc,
mnemonics.inc,

mnemonicsCB.inc

41

Funcio

Caixa de didlogo com

fungdes de debug.

Display

Display.asm

Display.inc

Contém fung¢Ges para
exibir as imagens
geradas na emulagdo na

tela.

Header

Viewer

HeaderViewer.asm

HeaderViewer.inc

Caixa de dialogo com
informagoes sobre o

cartucho carregado.

Logger

Logger.asm

Logger.inc

Caixa de Didlogo e
fungdes para exibir
informagdes e auxiliar na

depuragdo do programa.

Main

Main.asm

Contém o ponto de

entrada do programa.

Map Viewer

MapViewer.asm

MapViewer.inc

Caixa de didlogo com
informagdes sobre a
tabela de caracteres do

VDP.

Memory

Viewer

MemoryViewer.asm
MemoryViewerCon

trol.asm

MemoryViewer.inc
MemoryViewerContr

ol.inc

Caixa de didlogo que
exibe contetido da
memoria mapeada no

Gameboy.

OAM

Viewer

OAMViewer.asm

OAMViewer.inc

Caixa de didlogo com
informagdes sobre a
tabela de atributos de

sprites do VDP.

42

Fungdes para gerar som

Sound Sound.asm Sound.inc pela placa de som do
computador.
Caixa de didlogo com
TileViewer.asm o) ;
TileViewer.inc informagdes sobre os
TileViewer | WakaTileControl.as] .)
WakaTileControl.inc | caracteres definidos na
m

VRAM.

Tabela 15 — Modulos de gerenciamento

43

6.3 A emulagio da CPU

A emulagio do processador principal (CPU) consiste basicamente em executar
instrugdes a partir do codigo de maquina do programa a ser executado. Isso significa
ler seqiiencialmente bytes do programa (fetch) e executar os opcodes (instrugdes) que

eles representam (execute).

Essas duas agdes sdo implementadas pela rotina ExecuteOpcode do
médulo Z80Core e por um conjunto de fungdes que contém uma rotina para cada
instrugdo do conjunto de instrugdes do Z80. Abaixo a macro que implementa as

instrugdes da forma LD r, r":

s LD X, et
LD rl r2 macro opcode:REQ, reqgl:REQ, reg2:REQ

insté&opcode:

ifdifi <regl>, <regh>

mov al, reg2
mov regl, al
else
mov dh, reg?
endif
inc esi ; PC++
ret

endm

Figura 7 — Z80.asm — Macro que implementa as instrugdes na forma LD r, r

A macro acima ¢ expandida uma vez para cada combinag@o possivel derer’,

onder,r" € {A,B,C,D,E, H,L}.

44

Um exemplo de instrugdo um pouco mais complexa ¢ a instrugio ADD A, X:

; ADD
DO _ADD macro

XOor
Xor

mov
add

setz ah

adc
shl
or

Xor
Xor

ror
or

and

shl

or
endm

ecx, ecx

dl, dl

bh, dh

dh, bl

ecx; ecx

ecx, 4

di; ¢l ; seta flag CF
bh, bl

bh, dh

ah, 1

dl, ah ; seta flag 2
bh, 010H

bh, 1

dl, bh ; seta flag H

Figura 8 — Z80.asm — Macro que implementa as instrugdes na forma ADD A, X

Portanto, para cada uma das 512 instru¢des do Z80 temos uma macro

semelhante as mostradas acima, que quando chamadas sdo expandidas em funcdes

que executam as instrugdes.

45

A rotina ExecuteOpcode ¢ responsavel por pegar o c6digo de maquina do
programa em execug¢do, decodificar cada instru¢do do programa, calcular o enderego
da fungio que implementa essas instrugdes e chamar a fungéio adequada. Esta rotina,
além disso retorna o numero de ciclos gastos pela CPU para executar as instrugdes.
Esse valor ¢ utilizado no loop de emulagio (que serd abordado adiante) para
sincronizar os dispositivos de Entrada/Saida, de tal modo que chamadas as rotinas de
emulagdo do VDP ou PSG, por exemplo, sejam feitas nos momentos corretos. Além
disso, o niimero de ciclos gastos é fundamental para executar as mudangas de modo
associadas ao controlador de video. Ha que se destacar que esse sincronismo entre os

diversos dispositivos emulados tem um grande impacto na compatibilidade do

software rodado pelo emulador.

Em pseudocédigo:

while (programaRodando) {
proximo opcode = ReadMemory (PC);
endereco_funcao = vetorDeEnderecos[proximo_opcode] ;

cicleos _gastos = ChamaFuncaoDeImplementagdo (endereco funcao);

PC = PC + 1;
return ciclos _gastos;

Figura 9 — Pseudocodigo da rotina ExecuteOpcode

E a rotina propriamente dita:

46

ExecuteOpcode:

test reg HALT, 1
FE _no_HALT

;AQUI "HALT 1"

mov eax, 4
ret
_no HALT:
; Fetch
movzx esi, regPC ; esi <— PC
mov edi, esi ; edi <- esi
call ReadMemory ; eax <- opcode
movzx ebp, OPSTATES [eax]
mMovzZx edx, regAF ; edx <- AF
; Execute

; chama rotina de execu¢do do opcode
call dword ptr[_switch OpCode + 4*eax]

mowv regAF, dx ; atualiza globais
mov regPC, si

i retorna numero de ciclos gastos
mowv eax, ebp
ret

Figura 10 — Rotina ExecuteOpcode

47

Para poder executar as instrucdes, além dessas fungGes sdo definidas
variaveis globais que guardam o contetido dos registradores da CPU. As macros de
implementagdo de instrugdes mostradas acima executam suas agdes alterando os

valores dessas variaveis.

Existe uma variavel para cada registrador:

.data

regAF LABEL word
regF db OBOH
regh db 001H
regBC LABEL word
regC db 013H
regB db 000H
regDE LABEL word
regE db ODBH
regD db 000H
regHL LABEL word
regL db 04DH
regH db 001H
regPC dw 00100H
regSP dw OFFFEH

Figura 11 — Z80.asm —Varidveis globais que representam os registradores da CPU emulada

48

6.4 A emulagao do VDP

A emulacdio do VDP (controlador de video) é tratada no moédulo VDP,
composto pelos arquivos VDP.asm e VDP.inc. Esse médulo contém rotinas que
transformam o contetido da meméria de video (VRAM mapeada em $8000 - $9FFF)

em uma imagem de 160 linhas que é mostrada na tela.

A imagem formada é composta de 3 camadas: background, window (janela) e
sprites. Tais camadas tém que ser renderizadas levando se em conta aspectos como
as prioridades e, a inversfio no eixo X ¢ Y dos caracteres. Esses atributos séo

configurados em bytes situados dentro da VRAM.

O médulo VDP possui uma rotina que renderiza cada uma das 3 camadas.
Cada uma dessas rotinas desenha por vez uma linha das 160 linhas que compdem

cada quadro de emulagdo. Elas recebem como pardmetro o niimero da linha a ser
desenhada.

As rotinas sfo as seguintes:

- DrawScanline
- DrawWindow

- DrawScanlineSprites/DrawScanlineSpritesl6

A fungdo dessas rotinas é basicamente interpretar o conteiido da VRAM e

gerar valores RGB correspondentes.

Todos os quadros de emulagéo (séo produzidos 60 quadros por segundo) s&o
desenhados primeiramente num buffer, para depois serem jogados para a tela. Essa
técnica é chamada Double Buffer ¢ utilizada para evitar que seja possivel enxergar a
imagem se formando na tela e para conseguir uma maior fluidez e velocidade na

animacdo. As rotinas enumeradas logo acima desenham no double buffer. A rotina

49

que desenha o double buffer na tela chama-se RefreshScreen e encontra-se no

modulo Display.

O conteudo do registrador LCDC (LCD Control) determina vérios aspectos
da configuragdo do controla dor de video. O bit 2 desse registrador determina se os
sprites terdo tamanho de 8x8 pixels ou 8x16 pixels. No primeiro caso a rotina
DrawScanlineSprites deve ser chamada, no segundo a rotina

DrawScanlineSprites16 deve ser chamada para renderizar os sprites.

Para se gerar uma scanline completa com as trés camadas precisamos chamar trés
das fungdes acima mencionadas na seguinte ordem: primeiro DrawScanline, em
seguida DrawWindow e por ultimo DrawScanlineSprites, ou
DrawScanlineSprites16. Isto € feito no loop de emulag@o. Abaixo o trecho do loop

que faz chamada a esse modulo:

; Desenha Scanline
pushad
call DrawScanline
mov al, 020H
test reg LCDC, al
i no window
call DrawWindow
__no_window:

mov al, 04H

test reg LCDC, al

jz 8x8

call DrawScanLineSpritesl6

jmp __done render scanline
_ Bx8: call DrawScanLineSprites
__done render scanline:

- popad

Figura 12 — Emulator.asm — Parte do loop de emulag@o que faz chamada as rotinas do médulo VDP

50

6.5 A implementagdo do PSG

A implementagio do PSG ¢é tratada no médulo PSG. A principal

funcionalidade desse modulo, que ¢ geragdo de amostras de dudio na freqiiéncia de
44100Hz.

A maior dificuldade na emulagdo do chip provém do fato do mesmo
funcionar a uma freqiiéncia diferente e que ndo é nem multipla nem um divisor das
freqiiéncias de saida das placas de som dos PC’s (131072 Hz). Assim vdrias
conversdes e ajustes tém que ser feitos para que a emulagdo possa produzir 44100
amostras de 4udio por segundo. O estado interno do PSG ¢ mantido em varidveis

globais, com valores convertidos com base 44100.

A primeira rotina desse médulo é a PSGInit. Esta rotina calcula os periodos
de tempo 1/256 s, 1/128 s e 1/64 s em termos de amostras a 44100Hz e armazena
esses valores em varidveis globais. Esses valores sdo utilizados nas fungbes de

envelope, sound sweep e sound length dos canais de dudio do PSG.

A rotina PSG_IO administra as escritas aos registradores do PSG ($FF10 a
$FF40). A rotina executa os cdlculos necessarios de converséo de freqiiéncias, de
acordo com o registrador escrito e armazena o resultado dos calculos nas variaveis

globais de estado.

A rotina PSG Write Samples, gera amostras de 4udio a freqiiéncia de
44100Hz e as escreve num buffer. Esse buffer é passado periodicamente para a placa

de som.

51

6.6 A implementac¢io do acesso a memoria

O acesso 4 memoria no emulador deve se comportar exatamente como ocorre num
GameBoy real. Tal comportamento estd implementado no médulo Memory através
das rotinas de leitura ReadMemory, ReadMemoryW, e das rotinas de escrita
WriteMemory e WriteMemoryW. Todos os acessos a memoéria dentro do

emulador sdo feitos através dessas rotinas.

Essas rotinas emulam o funcionamento dos chips MBC e a maneira como eles

mapeiam os chips de memoria no espago enderegado pelo processador.

Além das rotinas de leitura e escrita, 0 médulo Memory possui rotinas para alocagdo
e liberacdo de memoria para o carregamento de cartuchos (MemAlloc e MemFree),
possui uma fungfio para carregamento de imagem de cartucho a partir de disco
(LoadFile) e uma fungio que inicializa o sistema de mapeamento de memoria

(MemoryMapInit).

A rotina MemoryMapInit descobre a partir da imagem de jogo carregada qual dos
chips MBC o cartucho que contém o jogo possui. Isso ¢ feito analisando-se o byte de
endereco $0147 do chip de meméria ROM do cartucho. Abaixo um trecho da rotina

que faz isso:

52

mov ebx, cartROM

mov al, [ebx + CARTRIDGE TYPE OFFSET]

cmp al, 00h

jnz @F

mov mapperType, NO MAPPER

mov hasRAM, 0

mov hasBatery, 0

jmp _done_set mapper
@@: cmp al, 0Olh

Jiz @Fr

mov mapperType, MBC1l

mov hasRAM, O

mov hasBatery, 0

jmp _done_set_mapper
@@: cmp al, 02h

jnz QF

mov mapperType, MBC1

mov hasRAM, 1

mov hasBatery, 0

jmp _done_set_mapper
b | P

Figura 13 — Memory.asm — Parte da rotina MemoryMaplnit que descobre qual chip MBC utilizar.

Uma vez inicializado o mapeamento de memodria, as rotinas de leitura e escrita ao

serem chamadas se comportaréo de acordo com o chip MBC detectado.

Quando o programa tenta escrever um byte em algum enderego situado entre $0000 e
$8000, enderecos nos quais os bancos de memoria enxergados sdo configurados, a
rotina WriteMemory se reconfigura de tal modo que subseqiientes leituras feitas
através da rotina ReadMemory retornem o conteido da meméria referente ao

banco selecionado.

Isso ¢ feito através de apontadores. Por exemplo, se alterarmos o numero do banco
que ¢é enxergado nas posigdes de enderego entre $4000 e $7FFF para o banco 3 do

cartucho, fazemos o apontador apontar para esse banco:

53

Pseudocédigo:

offset = TAMANHO_ BANCO * numero_do_banco;
apontador = & (ROM[0]) + offset;

Assim, quando for feita uma leitura nas posi¢des de enderego entre $4000 e $7FFF,

faz-se:

Pseudocodigo:

return apontador[endereco - $4000];

Além de implementar o comportamento dos chips MBC, as rotinas ReadMemory e
WriteMemory implementam a comunicagdo com dispositivos de E/S que sdo os

timers, o controlador (gamepad) e o acesso ao DMA.

54

6.7 A implementacio do loop de emulagio

O loop de emulagio ¢ a parte mais importante do emulador. Ele & implementado
pela rotina EmulatorRunDebug. Ele ¢ responsavel por acionar todas os mddulos

de emulagfio do emulador de maneira sincronizada. O fluxograma abaixo ilustra o

comportamento do loop:

> Inicio

|I

Emulagdo
ativa ?

Hora de
desenhar
nova linha ?

sim
Muda o modo do Def.;enha
VDP Linha
|

=

VDP Mudou
de modo ?

Interrupgéo do

Adiciona pendéncia de interrupgo VDP
VDP ?

Timer

Expirou ? Adiciona pendéncia de interrupcéo do 'nmer—l

";]f_lncremenda DIV —I

Hora de
Incrementar
Registrador

DIV ?

sim

Hora de acionar

> Aciona o PSG |
o PSG? = 1
Alguma
Interrupgdo
Pendeﬁ?ea ? Executa Interrupgdes pendentgl

Figura 14 — Loop de emulagio.

55

6.8 Modulo Controls

Esse médulo possui apenas uma fungfio: UpdateControls. Essa rotina
emula o gamepad do gameboy, de modo que o teclado do PC funcione como
controlador do emulador. Os botses do gamepad estdo mapeados para teclas do

teclado da seguinte maneira:

- cima: seta para cima

- baixo: seta para baixo

- esquerda: seta para esquerda

- direita: seta para direita

- botdo A: ‘x’ |
- botdo B: ‘7’

- select : “a’

- start: ‘s’

A fungdo UpdateControls verifica se as teclas seta para cima, seta para baixo,
seta para esquerda, seta para direita, ‘x’, ‘z’, ‘a’ e ‘s’ estio pressionadas ou néio e
armazena o resultado em varidveis globais. A fun¢do ReadMemory utiliza essas

varidveis quando ¢ feita uma leitura ao enderego do gamepad ($FF00).

56

6.9 Médulo Disassembler

O Modulo Disassembler implementa a seguinte caixa de dialogo:

AF: 0050
BC: 1F00
DE: 0000
HL: FF42
RE: 1104
SE: FFFE
IFF;
[z
[VIN
[JH
¥c
Display Mode: 2 IE: 00000000 SC¢: 0
Scanline: 0 IF: 00000001 SCY: 42
Cycles: 70220 IME: 00000000
TMA 0 [A button
TIMA: 0 [[]8 button
timer ticks g Wait PC
timer cycles 0

Step aut

Next frame | Refresh f Close

_-]-:_i‘,.gura‘.‘ 15— b:’;c;s';‘emb:’er.

T
i
i |

Trata-se de uma janela que mostra o pedago do programa atualmente sendo
executado pelo emulador. A janela possui também botdes com fungdes de debug
(depuragdo) de codigo Z80. Estas funcionalidades sdo de grande valia para

desenvolvedores de software para Gameboy.

57

As funcionalidades sio:

® Step in: executa uma instrugdo.
® Step out: executa infinitas instrugdes até que uma instrugdo RET seja

alcangada.

® Next scanline: executa instrugdes até que a scanline corrente seja totalmente
desenhada.

® Next frame: executa instrugdes até que o quadro corrente seja completamente
desenhado.

e Wait PC: executa instrugdes até que a execugdo do programa atinja o
endereco inserido pelo usurio na caixa de texto da janela.

* Go: executa instrugdes até que seja gasta a quantidade de ciclos de clock da

CPU inserida pelo usuério na caixa de texto da janela

6.10 Moédulo Header Viewer

O Médulo Header Viewer implementa a seguinte caixa de didlogo:

M ROW Header Vi

CWer

58

Essa janela exibe informagdes a respeito da imagem de cartucho carregada, que

[0100-0103] Beginning Code: 00 €3 50 01
[0104-0133] Scroling Nintendo graphic: CE ED 66 66 ¢C 0D 00 0B 03 73 00 23 00 0C 00
00 08 11 1F 88 £9 00 OE DC CC 6E E6 DD DD D8
BB BB 67 &3 6E (OE EC CC DD DC 99 9F BB BS 33
[OK]
[0134-0142] Game title: DOUBLE DRAGON
[0143] Gameboy type: 00 --> not GRC
[0144] Licensee code (high): 0
[0145] Licensee code (low): 0
[0146] GB / SGB Indicator: 60 --> GB
[0147] Cartridge type: 01 --> ROM + MBC1
[0148] ROM size: 02 --> 1¥bit = 128KByte = & banks
[0149] RAM size: 00 --> None
[0144] Destination code; 01 --> Non - Japanese
[0148] Licensee code: 5D --> Unknown !
[014C) Mask ROM Version number: an
[014D] Complement check: Fo
[D14E -014F | Checksum: 5F DR
Figura 16 — Header Viewer

ficam disponiveis nos enderegos $0100 a $014F.

6.11 Moédulo Map Viewer

O Médulo Map Viewer implementa a seguinte caixa de didlogo:

M 11ap Viewer

DOUBLE DRRGON'
TACNEBR AT YRy

LICENSED BY NINTENDO

FBEaTRAY BNktod™

Char Base Map Basa
> 0x8000 {#) 0x9800
(& {0xB800 {2 0x9C00

......

Close l

Figura 17 — Map Viewer

59

Essa janela exibe o contetido da parte da meméria de video que contem a camada de

background e janela.

60

6.12 Moédulo Memory Viewer

O Médulo Memory Viewer implementa a seguinte caixa de di4logo:

| 0+0000 - ROM v

LiESES)
8010 ') '
6626

0030

UL

0058

6068

80786

oe8e

0090

oeno

osBoO

0ece

0808

BOE®

8OF 0

8108

8118

61208

61380

0148

Jump

Figura 18 — Memory Viewer

Trata-se de uma janela que exibe o contetido atual de toda a meméria.

61

6.13 Moédulo OAM Viewer

O Médulo Memory Viewer implementa a seguinte caixa de didlogo:

.' OAM Viewer
X pos 120
Y pos 105
Pattem # 209
Priotity O
Y Flip |
% Flip |:]
Palette]
| Befiesh L Gose]

Figura 19 - OAM Viewer

Essa janela exibe o contetido da parte da memoéria de video que contem a camada de

sprites € 0s seus respectivos atributos.

6.14 Mobdulo Tile Viewer

O Médulo Tile Viewer implementa a seguinte caixa de didlogo:

Char Base
(C 0x8000
(%) 08800

Close |

Essa janela exibe todas as definigGes de caracteres atualmente na meméria de video.

Figura 20 — Tile Viewer

62

63

7 TESTES E AVALIACAO

Os testes efetuados para avaliagéio do emulador consistiram basicamente em rodar os
jogos do GameBoy e GameBoy Color no emulador e comparar o funcionamento em
ambos os sistemas (os jogos foram obtidos na Internet em sites especializados). Além
dos jogos muitos programas de demonstragdo foram utilizados para testar diversas

caracteristicas do sistema emulado.

Os seguintes testes foram aplicados a versdo final do emulador:

Testar as
funcionalidades do
programa nos sistemas
operacionais Windows e
98 /NT/2000/Xpy | OPeERCIODAS,
2003.

Testar a
compatibilidade do
emulador através da
execu¢do de mais de
200 ROM’s de GB e
GBC.

Testar a robustez do
programa ao tentar
executar ROM’s O programa ndo trava.
defeituosas ou arquivos
que ndo sdo ROM’s

Funcionalidade completa
em todos os sistemas

70% de compatibilidade.

Testar a performance
do emulador através da
execu¢do do mesmo em
maquinas antigas com
processadores
relativamente lentos.

Tabela 16 — Testes

O emulador roda com
velocidade maxima (60
quadros por segundo)
mesmo em sistemas
antigos como 486s

Também conseguimos obter uma interface amigavel para o emulador, caracteristica

esperada quando foram definidos os requisitos do projeto.

64

Com os dados obtidos nos testes a equipe chegou & conclusio de que o produto final

do projeto satisfez todos os seus requisitos funcionais e ndo funcionais, estando de

acordo com suas especificagdes.

65

8 CONSIDERACOES FINAIS

8.1 Conquistas

A equipe acredita que apés o longo caminho tomado pelo trabalho, todas as
expectativas com relagdo ao aprendizado provindo do projeto foram alcancadas.
Foram estudados vérios aspectos ligados a emulagdo e arquitetura de computadores.
O completo entendimento do hardware do GameBoy permitiu uma melhor visio de
como diversos tipos de computadores funcionam. O estudo de l6gicas de otimizagio
ajudaram a melhoras as habilidades de programagdo dos membros da equipe, além de
prover valiosas informagdes sobre o processo de compila¢io de linguagem de alto
nivel. Porém, a principal conquista esta no fato de que a equipe pode aprender como
os emuladores funcionam, como sio projetados e construidos. Como citado no inicio
do documento, esse aprendizado foi a principal razdo para a escolha do projeto pela

equipe.

8.2 Continuidade do projeto

Apesar de o projeto ter sido concluido com sucesso, o produto final do mesmo pode
ser melhorado de vérias maneiras. O aumento da compatibilidade do emulador, assim
como a adig¢do de novos filtros de imagem seriam os primeiros objetivos em uma

possivel continuagéio do projeto.

66

ANEXO A - LISTA DE REGISTRADORES DE E/S E SUAS
FUNCIONALIDADES

FF00 - P1 (Leitura e Escrita)

Registrador para leitura de informagdes do controle do GameBoy e para

determinagdo do tipo do sistema.

Bit 7 — ndo utilizado

Bit 6 — nio utilizado

Bit 5—P15 porta de saida
Bit 4 — P14 porta de saida
Bit 3 — P13 porta de entrada
Bit 2 — P12 porta de entrada
Bit 1 — P11 porta de entrada
Bit 0 - P10 porta de entrada

Escrevendo-se $20 no registrador, ativa-se P14 (low-active). Lendo entdo o
registrador, os bits menos significativos vio representar, respectivamente, os
botdes: Direita, Esquerda, Cima e Baixo.

Escrevendo-se $10 no registrador, ativa-se P15 (low-active). Lendo entdo o
registrador, os bits menos significativos véo representar, respectivamente, os

botdes: A, B, Select e Start.

FFO1 - SB (Leitura e Escrita)

Dado para transferéncia serial.

1 byte de dado a ser lido ou escrito.

FF02 - SC (Leitura e Escrita)

Serial Control.

67

Bit 7 — Flag de inicio de transferéncia.
0: Sem transferéncia
1: Inicia transferéncia
Bit 0 — Shift Clock
0: Clock externo (500 KHz maximo)
1: Clock interno (8192 Hz)

A transferéncia ¢ iniciada ativando o bit 7 do registrador. A transmissio e
recepgdo serial sdo simultdneas. O dado recebido ¢ automaticamente

armazenado no registrador SB.

FF04 — DIV (Leitura e Escrita)
DIvider Register

Este registrador ¢ incrementado 16384 vezes por segundo. Escrever qualquer

valor nele o zera.
FF05 — TIMA (Leitura e Escrita)
Timer Counter

Este timer ¢ incrementado pelo clock especificado pelo registrador TAC

($FF07). O timer gera interrupgo quando sofre overflow.

FF06 — TMA (Leitura e Escrita)
Timer Modulo

Quando o TIMA sofre overflow, o valor deste registrador é carregado nele.

68

FFO7 - TAC (Leitura e Escrita)

Timer Control

Bit 2
0: Péra o timer
1: Inicia o timer
Bits 1 + 0 — Sele¢ao do clock
00: 4,096 KHz
01: 262,144 KHz
10: 65,536 KHz
11: 16,384 KHz

FFOF —IF (Leitura e Escrita)

Interrupt Flag

Bit 4 — Transi¢do high to low ocorrida nas portas de entrada P10 - P13. Pulo
para $0060

Bit 3 — Transferéncia serial completa. Pulo para $0058

Bit 2 — Timer overflow. Pulo para $0050.

Bit 1 - LCDC (ver registrador STAT). Pulo para $0048.

Bit 0 — Varredura vertical. Pulo para $0040.

A prioridade das interrupgdes é decrescente tal que a interrupgdo por

varredura vertical tem a maior precedéncia dentre as interrupgdes.

FF10 — FF3F — Registradores do PSG

A descrigdo dos mesmo est4 no documento GBSOUND [6].

FF40 — LCDC (Leitura e Escrita)

LCD Control

Bit 7 — Controle da operacdo do LCD
0: Desativar LCD.
1: Ativar LCD.
Bit 6 — Sele¢éio do mapa de caracteres da janela
0: $9800-$9BFF
1: $9C00-$9FFF
Bit 5 — Exibi¢do da janela
0: Desligado.
1: Ativado.
Bit 4 — Sele¢do do TDT para o background e janela
0: $8800-$97FF
1: $8000-$8FFF
Bit 3 — Sele¢@o do mapa de caracteres do background
0: $9800-$9BFF
1: $9C00-$9FFF
Bit 2 — Tamanho do Sprite
0: 8x8.
1: 8x16. (largura x comprimento).
Bit 1 — Exibi¢&o dos sprites
0: Desligado.
1: Ativado.
Bit 0 — Exibi¢do do background e janela
0: Desligado.
1: Ativado.

FF41 — STAT (Leitura e Escrita)

LCDC Status

Bits 6-3 — Selegio de interrupgdes do LCD ativas
Bit 6 — Flag de coincidéncia.
Bit 5 — Modo 10
Bit 4 — Modo 01
Bit 3 — Modo 00
0: Desativado

1: Ativado
Bit 2 — Flag de coincidéncia.

0: LYC diferente de LY.
1: LYCigualao LY.

Bit 1-0 — Mode Flag
00: Varredura horizontal (CPU pode acessar a VRAM).
01: Varredura vertical (CPU pode acessar a VRAM).
10: Acesso a OAM.
11: Acesso 8 OAM e 4 VRAM.
FF42 - SCY (Leitura e Escrita)
Scroll Y
Byte com valor do scroll Y do background.
FF43 — SCX (Leitura e Escrita)

Scroll X

Byte com valor do scroll X do background.

71

FF44 — LY (Leitura apenas)

LCDC coordenada Y

Este registrador indica a scanline que estd sendo desenhada no momento.

Valores de 144 a 153 indicam varredura vertical.
FF45 — LYC (Leitura e Escrita)
LY Compare

Este registrador se compara com o LY, caso os valores sejam iguais ele causa

a ativagdo do flag de coincidéncia do registrador STAT.

FF46 — DMA (Escrita apenas)

No GB pode-se efetuar uma transferéncia por DMA da ROM ou RAM para a
OAM ($FE00-$FE9F). A transferéncia dos 40*28 bits demora 160ms para ser
concluida. Para executar a transferéncia basta escrever o enderego inicial dos

dados neste registrador.
FF47 — BGP (Leitura e Escrita)
Palheta para o background e janela.

Bit 7-6 — Nivel de cinza para a cor 11 (normalmente a cor mais escura)
Bit 5-4 — Nivel de cinza para a cor 10
Bit 3-2 — Nivel de cinza para a cor 01

Bit 1-0 — Nivel de cinza para a cor 00 (normalmente a cor mais clara)

72

FF48 — OBPO (Leitura e Escrita)

Object Palette Data ()

Primeira palheta (0) para os sprites

Funciona do mesmo modo que o registrador BGP ($FF47), porém a cor 0 é

transparente.

FF49 — OBP1 (Leitura e Escrita)

Object Palette Data 1

Primeira palheta (1) para os sprites

Funciona do mesmo modo que o registrador BGP ($FF47), porém a cor 0 é

transparente.

FF4A — WY (Leitura e Escrita)

Posigdo Y da janela no background.

WY deve estar entre 0 e 143 inclusos.

FF4B — WX (Leitura e Escrita)

Posi¢do X da janela no background.

WX deve estar entre 0 e 166 inclusos.

73

FFFF — IE (Leitura e Escrita)

Interrupt Enable

Bit 4 — Transi¢do high to low ocorrida nas portas de entrada P10 - P13. Pulo
para $0060
Bit 3 — Transferéncia serial completa. Pulo para $0058
Bit 2 — Timer overflow. Pulo para $0050.
Bit 1 — LCDC (ver registrador STAT). Pulo para $0048.
Bit 0 — Varredura vertical. Pulo para $0040.
0: Desabilita interrupgio.

1: Habilita interrupcéo.

74

ANEXO B — LISTA DE INSTRUCOES DO PROCESSADOR DO GAMEBOY

As listas a seguir apresentam as instrugdes do processador do GameBoy, seus

respectivos opcodes e o numero de ciclos que cada instrucdo toma.

8bit Load Commands

1d r, T XX 4

1d rin XX nn 8

1d r; (HL) XX 8

1d (HL) , r T 8

1d (HL) , n 36 nn 12

1d A, (BC) 0A 8

1d A, (DE) 12 g8

1d A, (nn) FA 16

1d (BC) ,A 02 8

1ld (DE) , A 12 8

1d (nn),A EA 16

1d A, (FFO0+n) FO nn 12
FFOO+n)

1d (FF00+n),A EO nn 12
FF0O+n)

1d A, (FF00+C) F2 8
FEOO+C)

1d (FFO0+C) ,A E2 8
FFOO+C)

1di (HL),A 22 B8

1di A, (HL) 2R 8

ldd (HL),A 32 8

ldd A, (HL) 34 8
16bit Load Commands

1d rr,nn xl nn nn 12
SP)

1d SP, HL F9 8

push rr x5 16
BC, DE, HL, AF)

pop rr x1 12

BC, DE, HL, AF)

8bit Arithmetic/Logical Commands

add A, r 8x 4
add A,n Cé nn 8
add A, (HL) 86 8
adc A,r Bx 4
adc A,n CE nn 8
adec A, (HL) 8E 8
sub r 9x 4
sub n D6 nn 8
sub (HL) 96 8
sbc A, r 9x 4
sbc A,n DE nn 8
sbc A, (HL) 9E 8
and r Ax 4

(AF)

z0hc
z0he
z0Ohc
z0hc
z0hc
z0hec
zlhc
zlhe
zlhe
zlhe
zlhc
zlhe
z010

read from io-port n (memory
write to io-port n (memory
read from io-port C (memory

write to io-port C (memory

(HL)=A, HL=HL+1
A=(HL), HL=HL+1
(HL)=A, HL=HL-1
A=(HL), HL=HL-1

rr=nn (rr may be BC,DE,HL or
SP=HL

SP=5P-2 (8P)=rr (rr may be

rr=(SP) SP=SP+2 (rr may be

A=RA+r

A=A+n

A=A+ (HL)
A=A+r+cy
A=A+n+cy
A=A+ (HL) +cy
A=A-r

A=A-n

A=A- (HL)
A=A-r-cy
A=A-n-cy
A=A- (HL)-cy
A=A & T

and n E6 nn g8
and (HL) A6 8
Xor r Ax 4
X0r n EE nn g
Xor {HL) AE 8
or r Bx 4
or n F6 nn 8
or (HL) B6 g
cp r Bx 4
cp n FE nn 8
cp (HL) BE 8
inc r XX 4
inc (HL) 34 12
dec r XX 4
dec (HL) 35 12
daa 27 4
cpl 2F 4

16bit Arithmetic/Logical Commands

add HL,rr x9 8
BC, DE, HL, SP

inc rr %3 8
BC, DE, HL, SP

dec rr xB 8
BC,DE, HL, SP

add SP,dd E8 16
signed number

1d HL, SP+dd F8 T

signed number

Rotate and Shift Commands

rlca 07 4
rla TF 4
rrca oF 4
rra 1F 4
rle r CB 0x 8
rlc (HL) CB 06 16
rl r CB 1x 8
rl (HL) CB 16 16
rre ¢ CB 0Ox 8
rrc (HL) CB OE 16
Y r CB 1x 8
rr (HL) CB 1E 16
sla r CB 2x 8
sla (HL) CB 26 16
swap r CB 3x 8
swap (HL) CB 36 16
sra r CB 2x 8
sra (HL) CB 2E 16
srl r CB 3x 8
srl (HL) CB 3E 16
Singlebit Operation Commands
bit n,r CB xx 8
bit n, (HL) CB xx 12

set n,r CB xx 8

z010
z010
z000
z000
z000
z000
z000
z000
zlhc
zlhe
zlhe
z0h-
zOh-
zlh-
zlh-
z-0x
ll

-0he

00hc

00he

000c
000c
000c
000c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z000
z000
z00c
z00c
z00c
z00c

z01-
z01-

A=A |
A=A |

(HL)

compare A-r
compare A-n
compare A-(HL)

r=r+1l
(HL)=(HL) +1
r=r-1
(HL)=(HL)-1

75

decimal adjust akku
A = A xor FF

HL

HL+rr

rr = rr+l

rr = rr-1

SP = SP +/-

HL = 8P +/-

rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate

shift
shift
shift
shift

akku
akku
akku
akku
left
left
left
left

right
right

irr may be
;rr may be
;Yr may be
dd ;dd is 8bit

dd ;dd is 8bit

left
left through carry
right
right through carry

through carry
through carry

right through carry
right through carry
shift left arithmetic (b0=0)
shift left arithmetic (b0=0)
exchange low/hi-nibble
exchange low/hi-nibble

right
right
right
right

test bit n
test bit n
set bit n

arithmetic (b7=b7)
arithmetic (b7=b7)
logical (b7=0)
logical (b7=0)

set n, (HL) CB =x

res n,r CB xx

res n, (HL) CB xx
CPU Control Commands

cct 3F

scf 37

nop 00

halt 76
(low power)

stop 10 00
low power)

di F3

el FB
Jump Commands

jp nn C3 nn

ip HL E9

ip f,nn ¥x® nn

jr PC+dd 18 dd
Tbit)

Jjr £, PC+dd Xx dd
NZ;2; NG C

call nn CD nn
PC=nn

call f,nn XX nn

ret co

ret f XX

reti D9
(IME=1)

rst n XX

nn

nn

nn

nn

16 ———=

4 g s
16;12
12

12;8

24
24;12 ———-
16
20;8
16

16 ===-

76

set bit n
reset bit n
reset bit n

cy=ey ®oxr 1

cy=1

no operation

halt until interrupt occurs

low power standby mode (VERY

disable interrupts, IME=0
enable interrupts, IME=1

jump to nn, PC=nn
jump to HL, PC=HL
conditional jump if nz,z,nc,c
relative jump to nn (PC=PC+/-

conditional relative jump if

call to nn, SP=SP-2, (SP)=PC,
conditional call if nz,z,nc,c
return, PC=(SP), SP=SP+2
conditional return if nZz; 2,Nc; e

return and enable interrupts

call to 00,08,10,18,20,28, 30,38

77

ANEXO C - CRONOGRAMA FINAL DO PROJETO

OpJenp3 'ouslpy PCWE M POVOWSZ UOW SABp OE sajsa|

opJenp3 'ouslpy El vOCWEWS PIVDWSZ UOW SABp OE opdejuswnaog

0pJsnp3 'ouBLpY ZlL PIIOWZZ U bO/E/ZZ UOW SABp OZ SIBUOIOIPY S3RBRIBUOIIUNY 8p OLSILIAI0AUSSAQ

Op.enp3 'ouslpy Ll pOMBIFT 14 POMEEL UOW sAsp QL sajsnly a sajsa)

opJenpg 8 vO//PZ A POVBIEL UOW sAep O| ©Sd Op OjuaWIAlpAUasap op ogdazisuly

ouslpy 6 PIVE/OL M4 POVRYOE UOW sABp (L (pedawsl) |00 ap oAlpsodsIp Op OWSWIAIDAUSSE(

opasnp3 9 POMB/OL M4 PO/RIZUOW sABP DE ©Sd 0p OSWIAAUaS3Q

ouBlpY L puBriZ 4 BIVRIZUOW iSABR OZ ddA Op OJUSWIAIDAUaSaq

op4enp3 YOIHOE WS pOYUSUOW sAep Oz opdEuawnaop Bp ogdezianyy

ouslpy S bOAUDENL wviSUOW shAep g NdD 8P 03jaNN Op DU3WIABAUSS3(

opisnp3 'ouslipy v pOI4E 14 povarlz uoW sAsp gl odyojoid op sajsa)

Op4Bnp3 'ouslipy E vO/BL W4 pOVSIFZ UOW sABp OZ odijojo.id op oBwAloAUasaq

op.lenp3 'ouslpy Z OIS/ LE 144 pOrGiL L UDW sAeBp g .umwun_ﬁﬁ.ﬁ v4ed opde.isuoiuap ap vws.Boid Op OJUBWIA|0AUBSa(

OpJenpg 'ouslipy b vO/SipL M POVSYEUOW sABp Q| OJUBWIAIOAUSS3R ap alUalgWe Op DUawIdajagels]

| Openp3'ouslpy PUBOE W4 vO/ZLUOW sABp G| Aocjawes op eanjaynkie Bp opnis3
| sawey soinosay ‘siossagepaid| uyswy | e wopeng | - - awenysay

78

LISTA DE REFERENCIAS

[1] ZiLOG Worldwide Headquarters. Z80 Family CPU User Manual. Campbell:
2001. 306 p.

[2] Intel Corporation. Intel. IA-32 Intel Architecture Optimization Reference
Manual. 2004.

[3] Intel Corporation. Intel. IA-32 Intel Architecture Developer’s Manual Volume
1: Basic Architecture. 2004,

[4] Intel Corporation. Intel. IA-32 Intel Architecture Developer’s Manual Volume
2A/2B: Instruction Set Reference. 2004.

[5] Frohwein. J. EUA. Apresenta informacdes sobre desenvolvimento de software
para alguns videogames. Disponivel em: <http://www.devrs.com>. Acesso em: 03
de dezembro de 2004.

[6] Belogic Software. Apresenta informagdes sobre o PSG do GBA, que é o
mesmo do GB e GBC. Disponivel em: <http://belogic.com/gba>. Acesso em: 03 de
dezembro de 2004.

APENDICE I - CD COM ARQUIVOS DO PROJETO

O CD do projeto, PCS2050-01-CD-2004, contém os seguintes diretérios e arquivos:

/readme.txt

Arquivo contendo informagdes sobre o CD.

/docs/

Diretério contendo toda a documentagéo do projeto, incluido o documento final.

/src

Diretoério contendo os arquivos fonte do emulador.

/bin

Diretorio contendo o executdvel da tiltima versdo do emulador.

/roms

Diretério contendo algumas ROM’s de jogos de GameBoy para serem testadas no

emulador.

