
ADRIANO BEDESCHI DE SOUZA
EDUARDO HISASHI SATO

EMULAC'AO DO GAMEBOY E GAMEBOY COLOR
PARA A PLATAFORMA PC/WINDOWS

Projeto de Formatura apresentado a
disciplina PCS 2050 – Laborat6rio de
Projeto de Formatura II, da Escola
Polit6cnica da Universidade de sao Paulo.

Area de Concentragao:
Engenharia de Computagao

Orientador:
Prof. Dr. Francisco En6as da Cunha Lemos

sao Paulo
2004

AGRADECIMENTOS

Ao orientador Prof. Dr. Francisco En6as da Cunha Lemos, pela confianga

apresentada na equipe.

A todos que, direta ou indiretamente, colaboraram no desenvolvimento deste

trabalho

RESUMO

O trabalho apresenta a construgao de um emulador em software do videogame

portatil GameBoy, e sua versao com cores, GameBoy Color, criados pela Nintendo.

Para o desenvolvimento do mesmo foram estudados m6todos de emulagao e

arquitetura de computadores. O texto apresenta os m6todos e procedimentos

utilizados para a emulag50 do portatil, cujo hardware 6 descrito detalhadamente. Os

dados contidos no texto sao frutos de um dificil trabalho de procura por informag6es

sobre o funcionamento do GameBoy e seus variantes.

ABSTRACT

This project presents the writing of a software-based Gameboy emulator, and its

color version, Gameboy Color, both of which are handheld videogame systems

created by Nintendo. In order to write the emulator, the authors had to study

emulation and computer architecture. This document presents methods and

procedures that were used on the handheld’s emulation, the hardware of which is

thoroughly described on this text. The data contained herein was gained through a

hard work of searching for information on the workings of the Gameboy System and

its variants.

SUMARIO

1 INTRODU('Ao.. 1

1.1

1.2

1.3

C)bjetivo ... 1
Nlotivagao .. 1
C)rganizagao do docurnento ... 2

2 EMULA('Ao.. 4

2.1 Emulagao e suas aplicag6es ... 4
2.2 M6todos de emulagh .. 5

2.2.1 Recompilagao estatica.. 5
2.2.2 Recompilagaodinamica... 6
2.2.3 Emulagao interpretativa... 6

3 NINTENDO GAMEBOY.. 9

3 . 1 Hist6ria do GameBoy 9

3.2 Descrigao do funcionamento e hardware do GameBoy............................. 10
3.2.1 Resumo das caracteristicas do hardware ... 12

3.2.2 O processador (CPU)..,................................ 13
3.2.3 O mapearnento de mem6ria... 16
3.2.4 Areas reservadas no primeiro bloco de ROM.. 17
3.2.5 Tiposdecartucho... 20

3.2.5.1 b4BCI...20
3.2.5.2 MBC2...21
3.2.5.3 MBC3...22
3.2.5.4 MBC5...23

3.2.6 Seqti6ncia de inicializagao... 23
3.2.7 O controlador de video – VDP (Video Display Processor) 25
3.2.8 Extens6es do VDP no GameBoy Color... 28
3.2.9 Os dispositivos de E/S ... 28
3.2.10 O controlador de som – PSG (Programmable Sound Generator) 29
3.2.11 Timer.. 30
3.2.12 Interrupg6es ... 30

3.2.12.1 Varredura vertical.. 30
3.2.12.2 LCDC Status.. 31
3.2.12.3 Timer overflow .. 31

3.2.12.4 High-to-lowP10-P13 ... 31
4 ESPECIFICA('Ao DO PROJETO ..__.______________._____________. 32

4.1
4.2
4.3

4.4

Especificagao funcional ... 32
Requisitos nao frmcionais .. 35
Plataforma.. 35
Estrutu:ra do emulador.. 36

5 METODOLOGiA.. 38

6 PROJETO E IMPLEMENTA(,'Ao ... 39
6.1

6.2
Considerag6es gerais.. 39
A divisao em m6dulos ... 39

6.2.1 M6dulos de emulagao .. 40
Outros m6dulos.. 41

A emulagao da CPU... 43
A emulagao do Vl)P .. 48
A implementagao do PSG.. 50
A implementagao do acesso a mem6ria... 51
A implementagao do loop de emulagao... 54
M6dulo Controls .. 55

6.2.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

M6dulo Disassembler .. 56
M6dulo Header Viewer ... 58

M6dulo Map Viewer.. 59
M6dulo Memory Viewer ... 60
M6dulo OAM Viewer.. 61
M6dulo Tile Viewer... 62

6.11
6.12
6.13
6.14

7

8

TESTES E AVALIA(,'Ao ... 63

CONSIDERA('6ES FINAIS .. 65
8.1

8.2
Conquistas.. 65
Continuidade do projeto... 65

ANEXO A – LISTA DE REGISTRADORES DE E/S E SUAS
FUNCIONALIDADES ________._.____._______________________________. 66

ANEXO B – LISTA DE INSTRU(,'6ES DO PROCESSADOR DO GAMEBOY

ANEXO C – CRONOGRAMA FINAL DO PROJETO __..___.____________. 77

LISTA DE REFER£NCIAS .„..___________.___________________________. 78

AP£NDICE I – CD COM ARQUIVOS DO PROJETO .. 1

LISTA DE FIGURAS

Figura I – Loop principal de um emulador interpretativo..7

Figura 2 – GameBoy e GameBoy Color...10

Figura 3 – Principais componentes de hardware do GameBoy..................................11

Figura 4 – Principais componentes de hardware do GameBoy (cartucho)................. 11

Figura 5 – 280 CPU..13

Figura 6 – Background ejanela no GameBoy..26

Figura 7 – 280.asm – Macro que implementa as instrug6es na forma LD r, r’..........43

Figura 8 – 280.asm – Macro que implementa as instrug6es na forma ADD A, X.....44

Figura 9 – Pseudoc6digo da rotina E:xecuteOpcode...45

Figura 10 – Rotina ExecuteOpcode..46

Figura 1 1 – 280.asm –variaveis globais que representam os registradores da CPU

emulada...47

Figura 12 – Emulator.asm – Parte do loop de emulagao que faz chamada as rotinas

do m6dulo VI)P..49

Figura 13 – Memory.asm – Parte da rotina MemoryMapInit que descobre qual chip

MBC utilizar...52

Figura 14 – Loop de emulagao..54

Figura 15 –£)fsassemb/er...56

Figura 16 – Header newer...58

Figura 17 – A/ap Ffewer...59

Figura 18 – Memory Kfewer...60

Figura 19 – OAM newer...61

Figura 20 – Ti/e rfewer...62

LISTA DE ABREVIATURAS E SIGLAS

GB – GameBoy.

GBP – GameBoy Pocket.

GBC – GameBoy Color.

GBA – GameBoy Advance.

ROM – Read Only Memory , norrnalmente utilizada para representar osjogos do

GameBoy.

RAM – Random Access Memory .

VRAM – Video RAM.

OAM – Object Attribute Memory.

MBC – Memory Bank Controller .

TDT – Tile Data Table Register .

TIMA – :Firmer Counter Register .

TMA – Timer Modulo Register .

TAC – Timer Control Register .

IF – Interrupt Flag Register .

LCDC – LCD Control Register .

STAT – LCDC Status Register .

DMA – Direct Memory access.

IE – Interrupt EnableRegister .

LISTA DE SiMBOLOS

$ - Simbolo utilizado para representar nameros hexadecimais. Exemplo: $FF

LISTA DE TABELAS

Tabela I – Caracteristicas do hardware do GameBoy..12

Tabela 2 – Registradores do 280..13

Tabela 3 – Instrug6es adicionais do processador do GameBoy em relagao ao 280...14

Tabela 4 – Instrug6es excluidas do processador 280..15

Tabela 5 – Instrug6es com opcodes alterados em relagao ao 280..............................15

Tabela 6 – Mapeamento da mem6ria do GameBoy..16

Tabela 7 – Areas reservadas no primeiro bloco de ROM dos cartuchos....................17

Tabela 8 – Valores iniciais dos registradores e pilha do GameBoy...........................24

Tabela 9 – Exemplo de representagao de uma linha de um caractere........................27

Tabela 10 – Cores obtidas no exemplo apresentado na tabela 9.................................27

Tabela 1 1 – Atributos dos sprites no GameBoy...28

Tabela 12 – Estrutura do emulador...36

Tabela 13 – Carnada de emulagao..37

Tabela 14 – M6dulos de emulagao...40

Tabela 15 – M6dulos de gerenciamento...41

Tabela 16 – Testes..63

1 INTRODU(,'AO

Este t6pico apresenta o objetivo do trabalho, a motivagao e justificativa para a

realizagao do mesmo, e a organizagao do documento, com a descrigao de seus

principais capitulos.

1.1 Objetivo

O objetivo do projeto foi o desenvolvimento de um emulador, em software, do
videogame portatil GameBoy, e sua versao com cores, GameBoy Color,

comercializados pela Nintendo. o emulador deve aceitar os mesmos dados, executar

os mesmos programas e produzir os mesmos resultados que o computador emulado.

Desse modo, com o programa desenvolvido 6 possivel jogar imagens de jogos

(ROM’s) feitos para GameBoy em um computador IBM PC com sistema operacional

Windows.

1.2 Motivagao

O motivo da escolha deste projeto pela equipe 6 o de que o mesmo permitiu

aprendizado nas seguintes areas de computagao:

• Emulagao: Entender como um emulador, tao utilizado hoje em dia, funciona.

Esta foi a principal razao para a equipe.

• Arquitetura e organizagao de computadores: A arquitetura do GameBoy teve

que ser estudada e entendida. Nisso inclui-se o processador, a entrada e saida,

os perif6ricos, o mapeamento de mem6ria etc. A16m disso, foi fundamental

conhecer bem a linguagem assembly da CPU emulada. Durante o

desenvolvimento tamb6m foram trabalhados conceitos de organizagao

computacional como interrupg6es, DMA, timing dos dispositivos e outros.

2

• Arquitetura do IBM PC: Como o projeto foi implementado totalmente em

linguagem assembly, a arquitetura do PC, caracteristicas e conjtmto de

ins&ug6es dos processadores x86 foram estudados e entendidos com bom

grau de profundidade.

• Otimizagao de c6digo: Uma das vantagens que a linguagem assembly

proporciona 6 o alto desempenho dos programas produzidos. Por6m,

desenvolver programas em assembly sem o devido cuidado ou atengao gera

programas com desempenho igual ou muitas vezes pior que programas

gerados por compiladores com otimizagao. Durante o desenvolvimento do

projeto foram estudadas algumas t6cnicas de otimizagao em assembly,

levando em consideragao a arquitetura dos PC’s e o funcionamento interno

dos processadores da familia IA-32 e compativeis.

O estudo das areas acima citadas representou grande parte do desafio para o

desenvolvimento do projeto, pois o profundo entendimento de varios aspectos das

mesmas foi necessario para que alcangassemos sucesso no desenvolvimento do

srsterna.

1.3 Organizagao do documento

Este documento esti organizado da seguinte forma: No capitulo 2 (Emulagao) 6

discutido o conceito de emulagao, e sao apresentados os m6todos de emulagao mais

utilizados. No capitulo 3 (.Nintendo GameBoy) o portatil emulado 6 descrito

minuciosamente. No capitulo 4 (Especificagao do Projeto) sao apresentados os

requisitos funcionais e nao funcionais do emulador, alan da descrigao de sua

estrutura. No capitulo 5 (Metodologia) sao discutidas as caracteristicas e

peculiaridades do projeto e a conseqa6ncia dos mesmos no processo de

desenvolvimento do emulador. No capitulo 6 (Projeto e Implementagao) os

algoritmos e id6ias utilizados na implementagao do trabalho sao apresentados. No

capitulo 7 (Testes e Avaliagao), sao exibidos os resultados da aplicagao de alguns

testes na versao final do ernulador. No capitulo 8 (Considerag6es Finais) sao

3

mostradas as conquistas que a equipe acredita ter alcangado, e tamb6m a opiniao

sobre futuros melhoramentos no projeto.

Existem tr6s anexos no documento. O anexo A cont6m a lista de registradores de E/S

do port6til e suas funcionalidades. O anexo B cont6m a lista de instrug6es do

processador do GameBoy. O anexo C cont6m o cronograma final do projeto.

O draco ap6ndice deste documento apresenta o CD com os arquivos do projeto.

2 EMULA('AO

2.1 Emulagao e suas aplicag6es

Um emulador 6 um sistema que duplica todas as funcionalidades de outro sistema,

permitindo que um computador de uma determinada plataforma execute programas

escritos para uma plataforma diferente. O emulador deve aceitar os mesmos dados,

executar os mesmos programas e produzir os mesmos resultados que o computador

emulado.

As aplicag6es mais comuns de emuladores sao:

• Emuladores podem servir como ferramenta de desenvolvimento de software.

Ex: desenvolver programas para Palm/PocketPC, celulares, videogames etc

em uma m£quina Windows/Intel.

• Rodar programas ou jogos escritos para rodar em hardware que nao se

encontra mais disponivel no mercado.

A16m disso, muitos emuladores existentes, alan de serem capazes de rodar

programas de outras plataformas fielmente, apresentam recursos extras nao

existentes na plataforma emulada. Exemplos:

• Fenamentas de debug (depuragao): Janelas que exibem informag6es sobre o

estado atual da maquina emulada, tais como: o conte6do dos registradores da

CPU, o estado atual dos dispositivos de E/S, o c6digo atualmente em

execugao desmontado (disassembled) etc. Podem estar presentes tamb6m

controles de fluxo de programa (breakpoints , step-in, step-over , step-out etc)

5

• Savestates'. Muitos emuladores permitem salvar o estado atual da maquina

emulada em arquivos, de tal forma que seja possivel recupera-lo mais tarde.

• Filtros de imagem: Podem suavizar a imagem original gerada pela maquina

emulada e simular o aspecto de uma tela de TV.

Existem centenas de sites na Internet dedicados a emulagao. A grande maioria dos

computadores dos altimos 20 anos ja foi emulada de alguma maneira. Esse crescente

interesse nesse assunto 6 devido ao fato de que o grande poder de processamento

dispon£vel nos PC’s atuais tem permitido a talentosos programadores produzirem

emuladores para maquina complexas, que rodam em tempo real e permitem as

pessoas executarem programas oujogos que jamais estariam disponiveis nos PC’s.

Um emulador 6 um programa extremamente desafiante para se escrever (admitindo

emulagao em software). A sua construgao envolve uma grande quantidade de

pesquisa aliada a um certo grau de iniciativa necessaria para preencher os vazios na

informagao disponivel. Tamb6m 6 necessado o completo entendimento do hardware

a ser emulado, bem como habilidade para construir os algoritmos, muitas vezes

complexos, a serem utilizados na emulagao.

2.2 M6todos de emulagao

Existem basicamente tr6s m6todos de emulagao:

2.2.1 Recompilagao est£tica

Neste caso, o emulador traduz o c6digo binario do programa para o c6digo de

maquina da plataforma desejada. O programa resultante podera ser rodado

diretamente em um PC, por exemplo, sem o uso de outro programa. Apesar deste

6

m6todo ter uma boa performance, ha casos em que 6 impossivel utiliza-lo. Um

exemplo 6 o caso de programas que se auto modificam.

2.2.2 Recompilagao dinamica

Este m6todo d basicamente o mesmo que o anterior. Mas com recompilagao

dinamica, ao inv6s de traduzir todo o programa de uma s6 vez, o processo 6 feito por

partes durante a execugao do mesmo cada vez que uma instrugao de JUMP ou CALL

6 encontrada. Esse m6todo pode ser combinado com o de recompilagao estatica.

2.2.3 Emulagao interpretativa

O emulador 16 o c6digo binario do program% o decodifica e executa as ag6es

apropriadas sobre os registradores, sobre a mem6ria e sobre os dispositivos de E/S

emulados. As vantagens desse m6todo sao: facilidade para depuragao e facilidade

para sincronizar todos os dispositivos emulados. A desvantagem 6 que este m6todo

toma bastante tempo de processamento.

Este foi o m6todo de emulagao escolhido para o projeto. Primeiro pela facilidade de

implementagao. Segundo porque para obter alta compatibilidade (rodar tantos jogos

quanto for possivel) 6 necessario que a sincronizagao da CPU com os perif6ricos seja

perfeita, o que 6 dificil de se conseguir com os outros dois m6todos. Terceiro porque

o poder de processamento dos PC’s atuais 6 ordens de grandeza maior que a maquina

a ser emulada, sendo possivel assim, atrav6s deste m6todo, emular um GameBoy

rodando em sua velocidade nativa sem problemas.

7

O loop principal de emulagao interpretativa de um videogame pode ser representado

pelo fluxograma abaixo:

1-lnido

2- Inicializa
m6dulos de

3-Processa
entrada

4-Busca opcode

5-Executa opcode

OU a
de desnhar

linha

idas ;
linhas foram

ienhadq

Figura I – Loop principal de um emulador interpretativo

O passo 2 acima inicializa as variaveis globais do programa, a16m de ajustar o

conteado dos registradores da CPU, os dispositivos de E/S, e as mem6rias em seus

valores iniciais. O passo 3 verifica a entrada do usuario, o que significa verificar se o

usuario pressionou alguma tecla. Em seguida uma estrutura de dados representando

os controles do videogame emulado 6 preenchida de acordo.

8

Um programa de computador 6 composto por c6digo binario (c6digo de maquina).

TaI c6digo por sua vez 6 composto por uma seqii6ncia de opcodes , onde cada opcode

representa uma instrugao de CPU. A CPU do GameBoy, por exemplo, tem instrug6es

com opcodes que variam em tamanho de 1 a 4 bytes.

Um emulador interpretativo funciona de modo muito semelhante a um processador

real. o passo 4 do fluxograma acima 16 o pr6ximo opcode a ser executado do c6digo

binario do programa. O passo 5 executa a instrugao representada pelo opcode

buscado anteriormente, atualizando o estado da CPU emulada.

3 NINTENDO GAMEBOY

3.1 Hist6ria do GameBoy

O GameBoy 6 um videogame port6til projetado e produzido pela Nintendo. Ele

possuiu uma tela LCD em preto e branco capaz de exibir quatro niveis de cinza, uma

CPU 280 modificada rodando a 4Mhz e 4 canais de som. Seus jogos sao

armazenados em chips ROM, os quais sao colocados em placas de circuito e

embalados em cartuchos plasticos para protegao. Os cartuchos sao mais caros de se

produzir do que midias magn6ticas ou CD’s, por6m sao muito mais robustos e faceis

de se utilizar.

A versao original foi langada em 1988 para competir com produtos rh'ais de outras

empresas de jogos eletr6nicos. Devido ao seu prego relativamente baixo e a grande

gama de jogos disponiveis, o GameBoy rapidamente dominou o mercado. Hoje em

dia seu irmao mais novo, e muito mais poderoso, o GameBoy Advance, ainda

domina o mercado de videogames portateis.

O GameBoy passou por duas transformag6es e melhoramentos no decorrer de sua

estadia no mercado. A primeira alteragao veio com o langamento do GameBoy

Pocket, o qual nao continha diferengas na especificagao do hardware, mas era bem

mellor, e possu ia uma tela melhor (menos ghosts) e utilizava apenas duas baterias (ao

inv6s das quatro do GameBoy normal). A segunda modificagao no portatil, e a mais

significativa, veio com o langamento do GameBoy Color, com capacidade de

exibigao de 64 cores simultaneamente. O GBC 6 compativel com as vers6es

anteriores, por6m a velocidade da CPU e o tamanho da mem6ria de video foram

dobradas

10

ndop+do
t+-

1+++

#1r+ iii111#9

Figura 2 – GameBoy e GameBoy Color

3.2 Descritao do funcionamento e hardware do GameBoy

Os dados apresentados nesta segao foram obtidos atrav6s de diversos documentos

retirados do site Devrs [5], conversas com outros autores de emuladores, e testes

realizados pela pr6pria equipe. Nesta segao sao citados diversos registradores de E/S

presentes no GameBoy. A lista desses registradores e suas respectivas fung6es

podem ser encontradas no anexo A.

11

urq= - -- -–- – – -– – - - r-–---r –– - ----r - –--–- - –- --– – - ’ – - –- – –---– - +rA fi

Concctor da LCD

Caatrolador de Video

CPU, RAM c PSG

il
+ !!,

Nl?:IhE;
*rt

Volual

In&a vcanelho

Porta serial

Coatrolador de US

eC:have L@a/Desbga

VRA}£ ,f-t acA

E @ :&J&?#84

-i
auto-faIante

Collector de Cartucho

Termhais das pi!1las,

O Gameboy Color pmcisa de

sma de bnc de Mda UII:';;;$ b Jt&~:' n#rIg I doa$ plhas AA para 6mionx

Figura 3 – Principais componentes de hardware do GameBoy

jq

$:

Figura 4 – Principais componentes de hardware do GameBoy (cartucho)

12

3.2.1 Resumo das caracteristicas do hardware

A tabela a seguir exibe as pdncipais caracteristicas do hardware do GameBoy.

13

3.2.2 O processador (CPU)

A CPU do GameBoy 6 um processador similar ao 280 da Zilog. Trata-se de um

processador de 8 bits com databus de 16 bits. Apesar de rigorosamente a CPU do

GameBoy nao ser um 280, referiremos a ele como taI. A descrigao completa do 280

e de suas instrug6es do 280 encontra-se em seu manual do usuario [1].

Processador
10.bit Aldress Bus

mhmB

Mem6ria Entrada / Saida

Figura 5 – 280 CPU

Os registradores do 280 sao:

Registrador(es)

A

F

B, C, D, E, H, L

SP

PC

Tabela 2

Descrigao

Acumulador (8 bW

Registrador deybgs (8 bits)

Registradores de uso geral (8 bits)

Registrador de pilha (16 bits)

Program COIlnfer (16 bits)

Registradores do 280

14

O registrador F do processador do GameBoy nao utiliza as flags de paridade e

overflow . As flags existentes sao as seguintes:

• Z– Ativo caso o resultado da altima operagao 6 zero.

• N – Ativo caso a iltima operagao foi uma subtragao.

• H – Ativo caso tenha ocorrido um carry-out na metade menos significativa

dos valores utilizados na iltima operagao (bit 3).

• C – Ativo caso tenha oconido um carry-out na Qltima operagao.

Tamb6m podemos acessar os registradores de 8 bits como registradores de 16 bits.

Registrador(es)

BC, DE, HL

Descrigao

1MBMMEaBa

O Conjunto de instrug6es da CPU do GameBoy 6 o mesmo do 280, com, com apenas

algumas inclus6es, exclus6es e alterag6es de opcode .

As instrug6es adicionais em relagao ao 280 sao as seguintes.

ODCOde (0x)

!!:m

22

Instrugao Descrigao

ADD sM][[][L aMI::18g
Escreve A em (HL) e
incrementa HL

Escreve A em (HL) e
decrementa HL

Escreve (HL) em A e
incrementa HL

Escreve (HL) em A e
decrementa HL

Utilizado para acessar os

registradores de E/S (serao

explicados mais adiante)

LDI (HL), A

32

2A

LDD (HL), A

LDI A, (HL)

3A LDD A, (HL)

FO nn LD A, ($FF00 + nn)

15

F2 LD A, ($FFOO + C)

LD ($FF00 + nn), A

LD ($FFOO + C), A

LD (aabb), SP

LD HL, SP + nn

EQ nn

E2

08 bb aa Escreve SP em (aabb)

nn = o//se/ de 8 bitsF8 nn

Para o processador e a tela

at6 que um botao seja

pressionado

Troca nibbles mais e

menos significativos do

acumulador

10 STOP

CB 3A SWAP A

Tabela 3 – Instrug6es adicionais do processador do GameBoy em relagao ao 280

As instrug6es excluidas em relagao ao 280 sao as seguintes.

Instrugao

B&a inst,.ga, qu, „tgW@,gig@WgIRlIII
Toda instrugao IN / OUT

Toda instrugao EX

Toda instrugao com opcocJe iniciado por ED

Toda instrugao de pulo, chamada e retorno condicionais em relagao as/7ags de

paridade e overflow , inexistentes no processador do GameBoy

Tabela 4 – Instrug6es excluidas do processador 280

As instrug6es com opcodes alterados sao as seguintes.

Instrugao

LD A, (a@gBI
LD (aabb), A

RETI

Tabela 5

Opcode no 280 (0x) Opcode no GB (0x)

3A WEll FAj®IEE!

32 bb aa EA bb aa

ED 4D D9

Instrug6es com opcocies alterados em relagao ao 280

16

o namero de clocks utilizados por cada instrugao do processador do GameBoy 6

diferente do apresentado pelo 280 normal. A lista das instrug6es do processador com

os respectivos timings esti no anexo B.

3.2.3 O mapeamento de mem6ria

o mapeamento da mem6ria no GameBoy 6 apresentado na tabela abaixo, sao 64KB

enderegados.

Mem6ria Enderego (0x) Notas

Interrupt Enable
Register

e

desabilitam determinadas

interrupg6es.

Utilizada pela pilha.

Escritas nesta area configuram
dispositivos de E/S. Leituras
recebem dados provindos dos
rllesrnos.

FFFF

RAM interna de pilha FF80-FFFE

Portas de E/S FFOO-FF7E

Sprite Attribute
Memory (OAM)

Dados sobre os sprites sao
armazenados nesta regiao de
mem6rla.

RAM principal tamb6m pode ser
escrita e lida atrav6s desta area.

FEOO-FEFF

C6pia da mem6ria
principal
Mem6ria principal –
8KB RAM (x8 no
GBC)

EOOO-FDFF

COOO-DFFF RAM principal. Paginavel apenas no
GBC.

I

de mem6ria RAM presentes em
alguns cartuchos.

Mem6ria de video. Paginavel apenas
no (3BC.

8KB RAM paginavel AOOO-BFFF

8KB Video RAM

(x2 no GBC)
8000-9FFF

16KB ROM

paginavel

I

de mem6ria ROM provindos dos
cartuchos.

4000-7FFF

; T Toe = P P IIar a o s P r i rr1 e i r o s

Tabela 6 – Mapeamento da mem6ria do GameBoy

17

3.2.4 Areas resewadas no primeiro bloco de ROM

A seguir 6 apresentado o header que todo cartucho possui, situado no primeiro bank

da ROM. Essa area 6 reservada.

Enderego (0x)

RST $00 C@Bl
RST $08 chama este enderego,

RST $10chama este enderego,

RST $18 chama este enderego.

RST $20 chama este enderego

RST $28 chama este enderego

RST $30 chama este enderego

RST $38 chama este enderego

Interrupgao de varredura vertical.

Interrupgao de status do LCDC.

Interrupgao de overy7ow do Fi/7zer.

Interrupgao de comunicagao serial

Interrupgao P10–P13.

Ponte inicial de execugao de um ROM. Normalmente aqui

sao encontrados instrug6es NOP e JP.

Nintendo logo Gogos nao rodam se estiver errado):
CE ED 66 66 CC OD 00 OB 03 73 00 83 00 OC 00 OD

00 08 11 IF 88 89 00 OE DC CC 6E E6 DD DD D9 99
BB BB 67 63 6E OE EC CC DD DC 99 9F BB B9 33 3E

Titulo do jogo em ASCII em letras maiasculas. Se for

menor que 16 bytes, o restante 6 preenchido com $00’s.

$80 significa que o jogo 6 para GBC, $00 significa que o

jogo 6 para qualquer outro variante do GB

Nibh/e mais significativo do c6digo de licenga.

Nibble menos significativo do c6digo de licenga.

Indicador de GB e SGB. $00 indica GameBoy e $03 indica

[escrig50

KIWI

0008

0010

0018

0020

0028

0030

0038

0040

0048

0050

0058

0060

0100 - 0103

0104 – 0133

0134 – 0142

0143

0144

0145

0146

18

que sao utilizadas fung6es do Super GameBoy.

Tipo de cartucho:

$00 – ROM apenas

$01 – ROM + MBCI

$02 – ROM + MBCI + RAM

$03 – ROM + MBCI + RAM + BATT

$05 – ROM + MBC2

v06 – ROM + MBC2 + BATTERy

$08 – ROM + RAM

$09 – ROM + RAM + BATTERY

$OB – ROM + MMMO I

SOC – ROM + MMMOI + SRAM

$OD – ROM + MMMOI + SRAM + BATTERY

$OF – ROM + MBC3 + TIMER + BATTERY

$ 10 – ROM + MBC3 + TIMER + RAM + BATTERy

$11 – ROM + MBC3

$ 12 – ROM + MBC3 + RAM

$ 13 – ROM + MBC3 + RAM + BATTERY

$19 – ROM + MBC5

SIA – ROM + MBC5 + RAM

$ 1B – ROM + MBC5 +RAM + BATTERY

SIC – ROM + MBC5 + RUMBLE

SID – ROM + MBC5 + RUMBLE + SRAM

$ 1E – ROM + MBC5 + RUMBLE + SRAM + BATTERY

S IF – Procket Camera

$FD – Bandai TAMA5

$FE – Hudson HuC-3

$FF – Hudson HuC- 1

Tamanho da ROM:

$00 – 256 Kb = 32 KB = 2 banks

$01 – 512 Kb = 64 KB = 4 banks

$02 – 1 Mbit = 128 KB = 8 banks

0147

0148

19

$03 – 2 Mbit = 256 KB = 16 banks

$04 – 4 Mbit = 512 KB = 32 banks

$05 – 8 Mbit = 1 MByte = 64 banks

$06 – 16 Mbit = 2 MByte = 128 banks

$52 – 9 Mbit = 1,1 MByte = 72 banks

$53 – 10 Mbit = 1,2 MByte = 80 banks

$54 – 12 Mbit = 1,5 MByte = 96 banks

Tamanho da RAM:

$00 – Sem RAM

$01 – 16 Kb = 2 KB = 1 bank

$02 – 64 Kb = 8 KB = 1 bank

$03 – 256 Kb = 32 KB = 4 banks

$04 – 1 Mbit = 128 KB = 16 banks

C6digo de destino:

$00 – Japao

$01 - 1nternacional

0149

014A

C6digo de licenga:

$33 – Checar 0144 e 0145 para obter o c6digo

$79 – Accolade

$ A4 - Konami

$00

014B

014C

014D
Valor de checagem complementar Gogos nao rodam se

estiver enado).

Checksum (byte mais significativo primeiro) produzido

pela adigao de todos os bytes do cartucho exceto os dois

bytes de checksum. O checksum sera entao os dois bytes

menos significativos do valor calculado.

Tabela 7 – Xr

014E – 014F

20

3.2.5 Tipos de cartucho

A seguir sao apresentados os tipos de cartucho para GameBoy, indicados pelo byte

localizado no enderego 0x0147, como mostrado anteriormente. Os cartuchos com

mais de 32KB precisam do chip MBC para mapear os blocos da ROM.

Note que a area de mem6ria 0000-7FFF 6 usada tanto para ler a ROM, como para

escrever nos registradores de controle dos MBC’s, como sera mostrado a seguir.

3.2.5.1 MBCI

0000-3FFF - ROM Bank $00 (Leitura apenas)

Esta area sempre cont6m os primeiros 16KB da ROM (primeiro bloco).

4000-7FFF - ROM Bank $01 - $7F (Leitura apenas)

Esta area pode conter qualquer bloco a partir do segundo bloco da ROM,

permitindo o enderegamento de atC 125 blocos (quase 2 Mbytes). Como

descrito abaixo, os blocos de namero $20, $40 e $60 nao podem ser

utilizados, resultando nos 125 blocos possiveis.

A000-BFFF - RAM Bank $00 - $03, se necess£rio (Leitura e Escrita)

Esta area 6 usada para enderegar mem6ria RANd do cartucho, se existir. Esta

RAM extema C normalmente acompanhada de um bateria, permitindo

armazenar no cartucho posig6es de jogos ou pontuag6es, mesmo ap6s o

GameBoy ter sido desligado.

0000-IFFF - RAM Enable (Escrita apenas)

Para acessar a mem6ria RAM do cartucho, 6 preciso antes habilita-la

escrevendo nesta area da mem6ria. Escrevendo um valor com 0Ah nos 4 bits

menos significativos habilita a RAM, qualquer outro valor a desabilita.

21

2000-3FFF - ROM Bank Number (Escrita apenas)

Escrevendo nesta area de mem6ria seleciona os 5 bits menos significativos do

nQmero do bloco da ROM a ser mapeado. Quando $00 6 escrito, o MBC

traduz que o bloco $01 deve ser utilizado, nao permitindo que o bloco 0 seja

mapeado fora de sua area reservada (0000-3FFF). O mesmo acontece para os

blocos $20, $40 e $60. Qualquer tentativa de enderegar estes blocos da ROM

sera redirecionada para os blocos $21, $41 e $61, respectivamente.

4000-5FFF - RAM Bank Number - or - Upper Bits of ROM Bank

Number (Escrita apenas)

Escrevendo dois bits nesta area de mem6ria pode-se selecionar o bloco da

RAM a ser mapeado na mem6ria, ou entao os dois bits podem representar os

dois bits mais signincativos do nQmero do bloco da ROM a ser mapeado. O

significado dos dois bits depende do modo selecionado (veja abaixo).

6000-7FFF - ROM/RAM Mode Select (Escrita apenas)

Indica o significado dos dois bits descritos acima. Escrevendo-se $00 nesta

area de mem6ria seleciona o ROM Banking Mode . Escrevendo-se $01 6

selecionado o RAM Banking Mode . Quando o modo selecionado for o da

ROM, o bloco da RAM mapeado deve ser o 0.

3.2.5.2 MBC2

0000-3FFF - ROM Bank $00 (Leitura apenas)

Igual ao MBCI.

4000-7FFF - ROM Bank $01-$0F (Leitura apenas)

Igual ao MBCI, por6m apenas o mapeamento dos 16 primeiros blocos C

suportado.

22

AOOO-AIFF – 512 x 4 bits RAM, embutido no chip MBC2 (Leitura e

Escrita)

O MB(:2 nao suporta RAM externa, ao inv6s disso ele ja possui embutido no

seu chip 512 x 4 bits de RAM. Como os dados dessa RAM consistem apenas

de 4 bits, apenas os 4 bits menos significativos sao utilizados ao escrever ou

ler nela.

0000-IFFF - RAM Enable (Escrita apenas)

Escrevendo nesta area, como no MBCI, habilita ou desabilita a RAM do

MBC2. O bit menos significativo do byte mais significativo do enderego

precisa ser 0 para habilitar ou desabilitar a RAM do MBC2. Por exemplo, os

seguintes enderegos podem ser utilizados: 0000-00FF, 0200-02FF, 0400-

04FF, ..., IE00-1 EFF. A area de mem6ria sugerida e 0000-00FF.

2000-3FFF - ROM Bank Number Wscrita apenas)

Escrevendo um valor (XXXXBBBB – X = qualquer, B = bits para selegao do

bloco) em 2000-3FFF selecionara um bloco da ROM a ser mapeado em 4000-

7FFF. O bit menos significativo do byte mais significativo do enderego

precisa ser 1 para selecionar o bloco da ROM. Por exemplo, os seguintes

enderegos podem ser utilizados: 2100-21FF, 2300-23FF, 2500-25FF,

3F00-3FFF. A area de mem6ria sugerida 6 2100-21FF.

I

I 3.2.5.3 MBC3

Similar ao MBCI, exceto pelo fato de poder acessar todos os 16 Mbits da ROM sem
necessidade de escrever em 4000-5FFF. Escrevendo um valor (XBBBBBBB – X =
qualquer, B = bits para selegao do blOOD) em 2000-3FFF selecionara um bloco da
ROM a ser mapeado em 4000-7FFF.

O MBC3 possui um RTC (Real Time Clock) nao encontrado em qualquer outro
MBC

23

3.2.5.4 MBC5

Similar ao MBC3, por6m podendo acessar at6 64 MBits de ROM e at6 1 Mbit de
RAM. Os 8 bits menos significativos dos 9 bits utilizados para selecionar o bloco sao
escritos em 2000-2FFF, enquanto que o bit mais significativo 6 escrito no bit menos
significativo da area 3000-3FFF.

Escrevendo um valor (XXXXBBBB – X = qualquer, B = bits para selegao do bloco)
em 4000-5FFF selecionara um bloco da RAM a ser mapeado em AOOO-BFFF.

O MBC5 foi criado para garantir a execugao em dupla velocidade no GameBoy
Color, mas os outros MBC’s tamb6m rodam sem problemas com velocidade
duplicada no GBC.

3.2.6 Seqii6ncia de inicializagao

Quando o GameBoy 6 ligado, um programa de 256 bytes no inicio da mem6ria d

executado. Este programa esti localizado em uma ROM embutida no GameBoy.

A primeira coisa que o programa faz 6 ler as posig6es $104 - $133 do cartucho e

colocar este logo da Nintendo na tela. Ap6s isso, as posig6es $104 - $133 sao

novamente lidas, mas desta vez elas sao comparadas com uma tabela interna mantida

pelo GameBoy. Caso exista alguma diferenga entres os dados, o GameBoy trava.

Em seguida o GameBoy calcula a soma dos bytes do cartucho e faz a comparagao do

checksum, como explicado anteriormente.

Em caso de sucesso nos testes, a ROM embutida no GameBoy 6 desativada e a

execugao do cartucho inicia na posigao $100, com os seguintes valores iniciais para

os registradores e para a pilha.

24

Registrador /

Posigao de mem6ria
Valor Inicial

$01 para o GB

$FF para o GBP

$ 11 para o GBC

SBO

$00

$13

$OOD8

$01 4D

$FFFE

$00

$00

$00

$80

$BF

$F3

$BF

$3F

$00

$BF

$7F

SFF

$9F

$BF

$FF

$00

$00

$BF

$77

$F3

A

F

B

C

DE

HL

SP

($FF05)

($FF06)

($FF07)

(SFF 10)

($FFI I)

(SFF 12)

($FF 14)

($FF 16)

(SFF 17)

($FF 19)

(SFF 1 A)

(SFF 1 B)

($FF 1 C)

(SFF 1 E)

($FF20)

($FF2 1)

($FF22)

($FF23)

($FF24)

($FF25)

25

($FF26) SF 1

($FF40) $91

$00($FF42)

no($FF43)

($FF45) $00

($FF47) SFC

$FF($FF48)

SFF($FF49)

$00($FF4A)

$00($FF4B)

($FFFF) $00

miRarms dos registrmm) GameBoy

3.2.7 Ocontrolador de video – VDP ('Video Display Processor)

Os graficos do GameBoy sao compostos por 3 camadas; a camada de background, a

camada de janela, e a camada de sprites . Em uma determinada parte de mem6ria de

video (VRAM) sao definidos caracteres de 8x8 pixels. No GameBoy normal cada

pixel pode tem um de quatro 4 tons de cinza disponiveis, ou seja, sao necessarios 2

bits para representar cada pixel. Como cada caractere tem 8+8=64 pixels, cada

caractere ocupa 16 bytes na VRAM. No caso do GameBoy Color, que possui o dobro

de mem6ria de video em relagao ao GameBoy normal, cada pixel pode ter at6 8

cores

A camada de background 6 composta por uma matriz de 32x32 caracteres de 8x8

pixels. Logo, as dimens6es em pixels dessa camada 6 de 256x256. Por6m, apenas um

pedago de tamanho 160x144 pixels dessa area de 6 mostrado no display. O

programador pode escolher qual pedago sera exibido alterando o valor de

registradores do VDP (registradores 0xFF42, scroll X, e 0xFF43, scroll Y). Esses

registradores determinam a posigao da area exibida, como mostra a figura abaixo.

26

Scroll x

256

Area Visivel

Figura 6 – Background ejanela no GameBoy

Uma area da VRAM denominada Background Tile Map cont6m os caracteres a

serem exibidos na tela pela camada de background. Esse mapa 6 organizado em 32

linhas de 32 bytes cada. Cada byte cont6m o n6mero do caractere a ser exibido. Os

caracteres sao retirados do Tile Data Table (TDT), localizado em $8000-$8FFF ou

$8800-$97FF. No primeiro caso, os tiles sao numerados de 0 a 255 (ou seja, o

caractere 0 fica na posigao $8000). No segundo caso, os tiles sao numerados de -128

a 127 (ou seja, o caractere 0 nca na posigao $9000). O enderego do TDT a ser usado

para a camada de background 6 selecionado atrav6s do registrador LCDC.

Existem dois diferentes Background Tile Maps . O primeiro esti localizado em

$9800-$9BFF. O segundo em $9C00-$9FFF. Apenas um deles pode estar ativo em

um determinado momento. A escolha de qual deles deve estar ativo tamb6m d feita

atrav6s do registrador LCDC.

A camada de janela C similar a camada de background. EIa 6 composta por uma

matriz de 160x144 pixels. As coordenadas de posicionamento da janela (reguladas

pelos registradores WNDPOSX e WNDPOSY) sao dadas em relagao a parte visivel

da camada de background. A janela pode ser ativada ou desativada atrav6s do

registrador LCDC.

27

As imagens dos caracteres (d/es) sao armazenadas na TDT como ja foi mencionado.

Cada imagem de 8x8 pixels ocupa 16 bytes, onde cada dois bytes representam uma

linha.

Byte Valor hexa Valor bingrio
0 111001110xE7

0OxBD

Tabela 9 – Exemplo de representagao de uma linha de um caractere.

As cores correspondentes ao exemplo apresentado na tabela acima sao obtidas da

segurnte maneira.

Pixel
0

2

4

5

6

7
Tabela 10

CorByte 0 Valor do parByte 1
1 11 3

010

!
111

0 10

100 2

11 3

0 01

11 3

Cores obtidas no exemplo apresentado na tabela 9

A cor pode entao ser tirada da palheta, que 6 determinada pelo registrador BGP

($FF47).

Como foi dito anteriormente, existem duas TDT’s, uma em $8000-8FFF, e outra em

$8800-97FF. A primeira pode ser utilizada para os sprites , para o background e para

ajanela. Ja a segunda nao pode ser utilizada pelos sprites .

A camada de sprites 6 composta por caracteres de 8x8 ou 8x16 pixels. O VDP pode

exibir at6 40 sprites , por6m, devido a limitagao do hardware, apenas 10 sprites

podem aparecer por linha. Os sprites possuem o mesmo formato que os caracteres, e

os mesmo podem ser obtidos a partir do segundo TDT apenas. Os sprites possuem

atributos, os quais estao localizados na Sprite Attribute Table (tamb6m denominado

28

Object Attribute Memory – OAM), que flea mapeado em $FE00-$FE9F. A OAM 6

dividida em 40 blocos de 4 bytes cada, onde cada bloco representa um dos 40 sprites .

A tabela a seguir mostra o significados dos 4 bytes de atributos de um sprite .

DescrigaoByte
no

POSiQaO x na tela
2 1

Flags
• Bit 7 – Prioridade: Se este bit esa zerado,

o sprite 6 exibido acima do background e
dajanela. So o bit esti com valor 1, o
sprite ficara escondido pelas cores 1, 2 e 3
do background ejanela (o sprite sempre
prevalece sobre a cor 0).
Bit 6 – Flip vertical.
Bit 5 – Flip horizontal.
Bit 4 – N6mero da palheta a ser utilizada.
As cores do sprite sao tiradas do
registrador OBPI caso este bit esteja com
valor 1, e OBPO caso contrario.

Tabela 1 1 – Atributos dos sprites no GameBoy.

3.2.8 Extens6es do VDP no GameBoy Color

Existem basicamente duas diferengas entre VDP do GameBoy descrito acima e o

VDP do GameBoy Color. Em primeiro lugar, o namero de palhetas foi aumentado de

3 para 16, 8 para o background e 8 para a foreground Ganela e sprites) . A segunda

diferenga esti no tamanho da VRAM, que foi dobrada no GBC.

3.2.9 Os dispositivos de E/S

Os tr6s principais dispositivos do GameBoy sao o controle, o PSG e o link serial.

Todos funcionam atrav6s da escrita e leitura dos registradores de E/S localizados em

29

$FF00-$FF7E. A lista de todos os registradores e suas respectivas fung6es pode ser

encontrada no anexo A.

3.2.10 O controlador de som – PSG (Programmable Sound Generator)

O controlador de som do GameBoy 6 composto por 4 canais de som pseudo-est6reo:

• Canal 1 :

- Produz ondas quadradas com duty cyc/e.variavel, e funQ6es frequency

£weep e envelope. A funQao frequency sweep permite que se tenham

efeitos de “portamento” nos quais a freqa6ncia aumenta ou diminui

durante o playback. A velocidade com a qual a freqii6ncia aumenta ou

diminui C controlavel.

Canal 2:

- Produz ondas quadradas com duty cycle variavel e fungao envelope . O

canal 2 6 id6ntico ao canal 1, sem a fungao frequency sweep. A fungao

envelope permite ter efeitos de fade-in e fade-out, nos quais o volume do

som produzido aumenta ou diminui gradativamente. O canal possui 4 bits

de resolugao, de modo a poder produzir 16 diferentes niveis de amplitude.

Canal 3 :

- Atua como um DAC (Digital-to-Analog Converter) de 4 bits que toca

repetidamente um padrao de amostras de audio. Esse padrao d definivel

pelo usuario.

Canal 4:

- Produz pseudo ru ido branco com fungao envelope . O ruido 6 gerado por

um contador polinomial, tamb6m conhecido como Linear -Feeedback

Shift Register (LFSR). LFSRs sao um tipo de contador binario que tem a

caracteristica especial de nao contar na seqQ6ncia binaria crescente

normal

•

•

•

30

3.2.11 Timer

O GameBoy possui um timer cuja freq06ncia pode ser 4096 Hz, 16384 Hz, 65536 Hz

ou 262144 Hz. O valor da freqti6ncia 6 selecionado pelo registrador TAC ($FF07). o

registrador TIMA ($FF05) 6 incrementado com esta freqti6ncia. Quando o mesmo

sofre overflow , cIe gera uma interrupgao, e o seu valor 6 entgo reiniciado para o valor

do registrador TMA (Timer Modulo).

3.2.12 Interrupg6es

A flag IME (Interrupt Master Enable) do processador do GB pode ser resetada pela

instrugao DI, proibindo a execugao de qualquer tipo de interrupgao. A instrugao El

habilita novamente as interrupg6es, sendo que estas sao reguladas pelo registrador IE

e IF do GameBoy. As interrupg6es funcionam da seguinte forma:

Quando uma intenupgao 6 gerada, a flag IF do processador 6 ativada.

Caso a flag IME estiver ativada e a flag do registrador IE conespondente a

intemrpgao gerada tamb6m estiver ativada, as tr6s ag6es seguintes sao executadas.

- Desativa IME para prevenir novas interrupg6es.

- o PC (Program Counter) 6 colocado na pilha.

- E feito um pulo para o enderego da interrupgao.

Ao retornar da interrupgao, o registrador IF 6 zerado e a Wag IME reativada.

3.2.12.1 Varredura vertical

Esta interrupgao ocorre aproximadamente 60 vezes por segundo, sempre no inicio do

periodo de varredura vertical. Durante este tempo, que dura aproximadamente 1,1

31

ms, o hardware de video nao esti acessando a VRAM, estando portanto livre para ser

acessado pelo programa.

3.2.12.2 LCDC Status

Existem varias raz6es para esta interrupgao ocorrer, como descrito pelo registrador

STAT ($FF40). Uma razao comum 6 para indicar ao usuario quando o VDP esti para

desenhar uma linha do LCD.

3.2.12.3 Timer overflow

Esta interrupgao ocorre quando o registrador TIMA ($FF05) muda de $FF para $00.

3.2.12.4 High-to-low P10-P13

Esta interrupgao ocorre na transigao de qualquer uma das linhas de entrada do

controle do GameBoy de 1 para 0, descrita pelo registrador Pl ($FF00).

32

4 ESPECIFICA('Ao DO PROJETO

4.1 Especificagao funcional

A fungao principal do emulador seM rodar jogos comerciais do GameBoy e

GameBoy Color na plataforma PC/Windows. o emulador devera ter uma taxa de

compatibilidade maior que 50%.

O emulador deve tamb6m disponibilizar diversos recursos nao existentes no

GameBoy.

As ftmg6es desempenhadas pelo sistema emulador sao divididas nos seguintes

grllpos:

1. Fung6es de carregamento de programa e estado:

1.1. Abrir ROM – carrega o programa no emulador e o executa.

1.2. Fechar ROM – termina a execugao do programa.

1.3. Salvar estado – salva o estado atual do sistema emulador (valores dos

registradores do cpu, mem6ria etc).

1.4. Carregar estado salvo – carrega o estado do sistema previamente

salvo

As ftmg6es para salvar e carregar estado (save states) sao comumente utilizadas em

emuladores de video games para salvar o jogo permitindo que o usuario o continue

posteriormente, agao q a maioria dosjogos nao disponibiliza.

2. Fung6es de controle do CPU:

2.1. Reiniciar CPU – reinicializa o sistema emulado.

2.2. Pausar CPU – pausa a emulagao.

33

3. Fung6es de controle de video:

3.1. Alterar modo de exibigao:

3.1.1. Exibigao normal – apresenta a imagem de video do GameBoy

em seu tamanho real sem nenhuma escala ou filtro aplicado.

3.1.2. Exibigao em tamanho dobrado – apresenta a imagem com o

dobro do tamanho original sem aplicagao de filtro.

3.1.3. Exibigao em tamanho dobrado com scarrlines – apresenta a

imagem com o dobro do tamanho original e com scanlines na

mesma, simulando o aspecto de uma tela na TV.

3.2. Alterar palheta de video:

3.2.1. Utilizagao da palheta normal – utiliza a palheta do GameBoy

normalmente.

3.2.2. Selegao manual das cores da palheta (GameBoy normal

apenas) – permite que o usuario altere as 4 cores da palheta do

GameBoy normal.

3.2.3. Utilizagao da palheta em tons de cinza (GameBoy Color

apenas) – altera as cores da palheta para tons de cinza.

3.2.4. Utilizagao da palheta negativa (GameBoy Color apenas)

altera as cores da palheta para suas complementares.

3.3. Ativar ou desativar camadas de imagem:

3.3.1. Camada de Background – permite ativar ou desativar a

exibigao da camada de background na imagem final.

3.3.2. Camada de Sprites – permite ativar ou desativar a exibigao da

camada de sprites na imagem final.

3.3.3. Camada de Janela - permite ativar ou desativar a exibigao da

camada de janela na imagem final.

3.4. Eliminar limite de sprites por scanline do hardware do GameBoy –

permite exibir mais do que 10 sprites por scanline .

34

4. Fung6es de controle de som:

4.1. Ativar ou desativar som:

4.1.1. Canal de onda quadrada I – permite ativar ou desativar a agao

do canal no som final emulado.

4.1.2. Canal de onda quadrada Il – permite ativar ou desativar a agao

do canal no som final emulado.

4. 1.3. Canal de wave – permite ativar ou desativar a agao do canal no

som final emulado.

4.1.4. Canal de ruido branco – permite ativar ou desativar a agao do

canal no som final emulado

5. Fung6es de debug do sistema - Janelas que exibem informag6es sobre o

estado atual da maquina emulada:

5.1. Disassembler – possibilita a visualizagao em linguagem assembly do

programa canegado no emulador, assim como a execugao passo a

passo do program% com atomicidade representada por uma instrugao

da CPU.

5.2. Header newer – possibilita a visualizagao do cabegalho do programa

carregado no emulador.

5.3. Memory newer – possibilita a visualizagao da mem6ria do

GameBoy enquanto o programa carregado 6 executado.

5.4. Map F£ewer – possibilita a visualizagao gr£fica da parte da mem6ria

de video destinada a guardar o background da imagem.

5.5. Tile Ffewer - possibilita a visualizagao grafica da parte da mem6ria

de video destinada a guardar os tiles disponiveis para a construgao da

lmagern.

5.6. OAM Viewer - possibilita a visualizagao grafica dos sprites correntes

de acordo com sua tabela de definigao, assim como seus atributos.

35

4.2 Requisitos nao funcionais

1. O emulador deve apresentar uma interface simples para o usuario,

permitindo a ativagao e alteragao de parametros dos recursos disponiveis

pelo sistema. A entrada de controle do GameBoy sera emulada atrav6s de

seu mapeamento para o teclado.

2. O emulador deve apresentar uma performance elevada, podendo ser

executado em velocidade maxima mesmo em computadores antigos como

Pentium’s 100 MHz.

3 . O programa deve ser robusto, para que nao trave caso sejam abertos

arquivos de ROM’s defeituosas ou arquivos que nao sejam ROM’s.

4.3 Plataforma

O emulador sera desenvolvido em linguagem Assembly para processadores Intel da

familia IA-32. A familia IA-32 inclui os processadores x86 langados pela Intel desde

o Pentium at6 o Pentium IV

O emulador deve rodar em computadores com os sistemas operacionais Windows 98,

Windows NT, Windows2000, Windows XP e Windows 2003

36

4.4 Estrutura do emulador

O emulador foi divido de acordo com o diagrama abaixo:

GUI Emula9ao Grafcos

Controles

Tabela 12 – Estrutura do emulador

•

•

•

•

GUI – Graphical User Interface: E a interface com o usuario. E composta de

janelas graficas e das rotinas que controlam a 16gica de interagao com o

usuarlo .

Emulagao: Esta camada implementa o loop principal da emulagao

rnterpretativa.

Graficos: Essa camada 6 responsavel por exibir o buffer de display na tela e

aplicar os filtros de imagem

Controles: Controla os dispositivos de entrada (no caso o teclado).

A camada de emulagao sera dividida em m6dulos correspondentes aos componentes

do hardware do GameBoy. Cada m6dulo sera desenvolvido procurando-se separar o

mAimo possivel a 16gica dos componentes do hardware emulado.

37

Abaixo est50 apresentados os principais componentes da camada de emulagao. A

subdivisao desta camada nos m6dulos finais 6 apresentada no capitulo 6 (Projeto e

Implantagao).

Camada de EmulaQao

Tabela 13 – Camada de emulagao

A natureza do projeto do emulador faz com que a dificuldade do mesmo nao esteja

na sua estruturagao, e sim em sua implementagao.

38

5 METODOLOGIA

Como a equipe consta de apenas dois integrantes, todo o processo que envolveu o

estudo de tecnologias e estudo do GameBoy, assim como o planejamento e posterior

implementagao dos m6dulos do projeto, foi efetuado por ambos os membros em sua

totalidade

O projeto, apesar de ter como produto final um software, 6 fruto de um extenso

estudo baseado em hardware, tanto do sistema a ser emulado, como do sistema

emulador. Esta caracteristica do trabalho fez com que panes do software fossem

remodeladas e novamente programadas constantemente.

A divisao de tarefas para a implementagao do sistema nao p6de ser feita de modo

muito modular, pois neste projeto especffico, cada m6dulo do sistema e muito

dependente dos outros, ou seja, foi preciso muitas vezes que ambos os membros da

equipe trabalhassem em conjunto com o mesmo m6dulo. A16m disso, o perfeito

entendimento de como foi programado cada m6dulo foi sempre necessario para o

desenvolvimento dos m6dulos seguintes. Um fato importante 6 que a escolha pela

implementagao do emulador totalmente em assembly eliminou a possibilidade de

utilizagao de orientagao a objetos para o desenvolvimento do emulador.

Com relagao aos testes efetuados, cabe ressaltar que o tmico m6dulo capaz de ser

testado separadamente foi o processador emulado. Todos os outros m6dulos nao

puderam ser testados individualmente, pois sao interdependentes, e os mesmo

praticamente nao funcionam sem a exist6ncia dos outros.

Com os fatos apresentados, pode-se concluir que nenhuma metodologia especifica

foi utilizada na construgao do emulador. As caracteristicas apresentadas pelo projeto

o tornam peculiar quanto ao processo de sua construgao.

39

6 PROJETO E IMPLEMENTAq' AO

6.1 Considerag6es gerais

o projeto foi implementado em linguagem assembly para a familia x86 e

compativeis. O montador (assembler) utilizado foi o Masm 6.14 da Microsoft.

Nao foi utilizada nenhuma biblioteca extra, fora a API do Windows.

6.2 A divisao em m6dulos

O projeto foi feito em linguagem assembly, que nao requer que os programas

sejam estruturados tampouco sigam o paradigma da orientagao de objetos. Por isso o

programa foi estruturado em sub-rotinas (fung6es) e m6dulos (conjuntos de flmg6es,

macros e variaveis globais).

Os m6dulos foram divididos em basicamente dois grupos: o primeiro C o dos

m6dulos que lidam diretamente com emulagao, e o segundo sao os m6dulos

restantes, que lidam entre outras coisas com criagao e gerenciamento de janelas,

caixas de dialogo, multimidia etc.

Cada m6dulo 6 composto fisicamente de um ou mais arquivos fonte de

extensao “. ASM” e um ou mais arquivos de inclusao com extensao “.INC”.

\ Os m6dulos escolhidos foram os seguintes:

40

6.2.1 M6dulos de emulagao

N16dulo Arqui\’o fonte
Arquivo de

inclusao
Fungao

Emula o jM
(controle) do

gameboy

Principal m6dulo do

programa. Cont6m o

loop de emulagao.

Emulagao da CPU e

fung6es conelatas.

Mapeia a mem6ria.

Lida com entrada e

saida

M6dulo de

emulagao do VDP

do Gameboy.

Controls Controls.asm I Controls.inc

Emulator Emulator.asm 1 Emulator.inc

280Core
280Core.asm,

Instset.asm

Instset.inc,

C)pcode.inc

Memory Memory.asm I Memory.inc

VDP VDP.asm I VDP.inc

Tabela 14 – M6dulos de emulagao

41

6.2.2 Outros m6dulos

IV16dulo Arquivo fonte Arquivo de inclusao Fungao

Disassembler.inc,

rnnernonlcs.inc)

mnemonicsCB.inc

MREM
frmg6es de debug.Disassembler Disassembler.asm

Cont6m fung6es para

exibir as imagens

geradas na emulagao na

tela.

Caixa de di£logo com

informag6es sobre o

cartucho canegado.

Caixa de Dialogo e

fung6es para exibir

informag6es e auxiliar na

depuragao do programa.

Cont6m o ponto de

entrada do programa.

Caixa de dialogo com

informag6es sobre a

tabela de caracteres do

VDP.

Caixa de dialogo que

exibe contetrdo da

mem6ria mapeada no

Gameboy .

Caixa de dialogo com

informag6es sobre a

tabela de atributos de

sprites do VDP.

Display Display .asm Display.inc

Header

Viewer
HeaderViewer.asm HeaderViewer.inc

Logger Logger.asm Logger.inc

Main Main.asm

Map Viewer MapViewer.asm MapViewer.inc

Memory

Viewer

MemoryViewer.asm

MemoryViewerCon

trol.asm

MemoryViewer .inc

MemoryViewerContr

ol.inc

OAM

Viewer
OAMViewer.asm OAMViewer.inc

42

Fung6es para gerar som

pela placa de som do

computador

Caixa de dialogo com

Sound Sound.asm I Sound.inc

TileViewer.asm
TileViewer.inc

WakaTileControl.as
WakaTileControl.inc

In

TileViewer
informag6es sobre os

caracteres definidos na

VRAM

Tabela 15 – M6dulos de gerenciamento

43

6.3 A emulagao da CPU

A emulagao do processador principal (CPU) consiste basicamente em executar

instrug6es a partir do c6digo de maquina do programa a ser executado. Isso significa

ler seqiiencialmente bytes do programa (fetch) e executar os opcodes (instrug6es) que

eles representam (execute).

Essas duas ag6es sao implementadas pela rotina ExecuteOpcode do

m6dulo 280Core e por um conjunto de fung6es que cont6m uma rotina para cada

instrugao do conjunto de instrug6es do 280. Abaixo a macro que implementa as

instrug6es da forma LD r, r

LD r,
LD rl r2 macro opcode : RE:Q, regl : RE:Q, rec;2 : REQ

inst&opcode :

ifdifi <regl>, <regA>
mov al, reg2
mov regl, al

dh, reg2
else

mov
endi f

inc est PC++

ret
en(im

Figura 7 280.asm – Macro que implementa as instrug6es na forma LD r, r

A macro acima 6 expandida uma vez para cada combinagao possivel de r e r’,

onde r, r’ e { A, B, C, D, E, H, L} .

44

Um exemplo de instrugao um pouco mais complexa 6 a instrugao ADD A, X:

; ADD
DO ADD macro

xor
xor

ecxr ecx
dI, dl

bh, dh
dh, bl

mov
add

set z ah

adc
shI
or

ec}{/ ecx
ecx, 4
dI, cl

bh, bl
bh, dh

ah, 1
dI, ah

bh, OIOH
bh, 1
dl, bh

seta flag CF

xor
xor

r or
or ; seta flag Z

and
shI
or

endm
; seta flag H

Figura 8 – 280.asm – Macro que implementa as instrug6es na forma ADD A, X

Portanto, para cada uma das 512 instrug6es do 280 temos uma macro

semelhante as mostradas acima, que quando chamadas sao expandidas em fung6es

que executam as instrug6es.

45

A rotina ExecuteOpcode 6 responsavel por pegar o c6digo de maquina do

programa em execugao, decodificar cada instrugao do programa, calcular o enderego

da fbngao que implementa essas instrug6es e chamar a fungao adequada. Esta rotina,

a16m disso retorna o nUmero de ciclos gastos pela CPU para executar as instrug6es.

Esse valor 6 utilizado no loop de emulagao (que sera abordado adiante) para

sincronizar os dispositivos de Entrada/Saida, de taI modo que chamadas as rotinas de

emulagao do VDP ou PSG, por exemplo, sejam feitas nos momentos corretos. A16m

disso, o n6mero de ciclos gastos 6 fundamental para executar as mudangas de modo

associadas ao controlador de video. Ha que se destacar que esse sincronismo entre os

diversos dispositivos emulados tem um grande impacto na compatibilidade do

software rodado pelo emulador.

Em pseudoc6digo:

while (programaRodando)

proximo opcode = ReadMemory (PC) ;

endereco funcao = vetorDeEnderecos [proximo_opcode] ;

ciclos gastos = ChamaFuncaoDeImplementagao (endereco_funcao) ;

PC = PC + 1;
return ciclos gastos ;

}

Figura 9 – Pseudoc6digo da rotina ExecuteOpcode

46

E a rotina propriamente dita:

ExecuteOpcode :

test reg HALT, 1
j z no HALT

;AQUI "HALT 111

mov eax, 4
ret

no HALT :

; Fetch
rrlovzx
mov

est, regPC
edi, est

; est <– PC
edi <– est

call ReadMemory ; eax <– opcode

rrlovzx
rrlovzx

ek)p, OPSTATES[eax]
edx, regAF I edx <- AF

; Execute
; chama rotlna de execu(fao do opcode
call dword ptr [switch_OpCode + 4*eax]

mov
mov

regAF, dx
regPC, si

; atualiza globais

; retorna numero de ciclos gastos
mov eax, ebp
ret

Figura 10 – Rotina ExecuteOpcode

47

Para poder executar as instrug6es, a16m dessas fung6es sao definidas

variaveis globais que guardam o conteado dos registradores da CPU. As macros de

implementagao de instrug6es mostradas acima executam suas ag6es alterando os

valores dessas variaveis.

Existe uma variavel para cada registrador:

. data

regAF
regF
regA

regBC
regC
regB

regDE
regt:
regD

regHL
regl
regH

regPC
regSP

LABEL word
db OBOH

db OOIH

LABEL word
db 013H
db OOOH

LABEL word
db OD8H
db OOOH

LABEL word
db 04DH
db OOIH

dw 00100H
dw 0FFFEH

Figura 1 1 – 280.asm –Variaveis globais que representam os registradores da CPU emulada

48

6.4 A emulagao do VDP

A emulagao do VDP (controlador de video) 6 tratada no m6dulo VDP,

composto pelos arquivos VDP.asm e VDP.inc. Esse m6dulo cont6m rotinas que

transformam o conteQdo da mem6ria de video (VRAM mapeada em $8000 - $9FFF)

em uma imagem de 160 linhas que 6 mostrada na tela.

A imagem formada 6 composta de 3 camadas: background, window Ganela) e

sprites . Tais camadas tdm que ser renderizadas levando se em conta aspectos como

as prioridades e, a inversao no eixo X e Y dos caracteres. Esses atributos sao

configurados em bytes situados dentro da VRAM.

O m6dulo VDP possui uma rotina que renderiza cada uma das 3 camadas.

Cada uma dessas rotinas desenha por vez uma linha das 160 linhas que comp6em

cada quadro de emulagao. Elas recebem como parametro o nQmero da linha a ser

desenhada

As rotinas sao as seguintes:

- DrawScanline

- DrawWindow

- DrawScanlineSprites / DrawScanlineSprites16

A fungao dessas rotinas 6 basicamente interpretar o conte fIdO da VRAM e

gerar valores RGB conespondentes.

Todos os quadros de emulagao (sao produzidos 60 quadros por segundo) sao

desenhados primeiramente num buffer, para depois serem jogados para a tela. Essa

t6cnica 6 chamada Double Buffer 6 utilizada para evitar que seja possivel enxergar a

imagem se formando na tela e para conseguir uma maior fluidez e velocidade na

animagao. As rotinas enumeradas logo acima desenham no double buffer . A rotina

49

que desenha a double buffer na tela chama-se Ref reshScreen e encontra-se no

m6dulo Display.

O conteado do registrador LCDC (LCD Control) determina varios aspectos

da configuragao do controla dor de video. O bit 2 desse registrador determina se os

sprites terao tamanho de 8x8 pixels ou 8x16 pixels. No primeiro caso a rotina

DrawS can line Sprites deve ser chamada, no segundo a rotina

Draw ScanlineSprites16 deve ser chamada para renderizar os sprites .

Para se gerar uma scarrline completa com as tr6s camadas precisamos chamar tr6s

das fung6es acima mencionadas na seguinte ordem: primeiro DrawScanline, em

seguida DrawWindow e por altimo DrawScanlineSprites, ou
DrawScanlineSprites16. Isto 6 feito no loop de emulagao. Abaixo o trecho do loop

que faz chamada a esse m6dulo:

Desenha Scanllne
pushad

DrawScanlinecall
020Halmov
alreg LCDCtest

lz no window
DrawWindowcall

no window :
mov al, 04H
test reg LCDC, al
j z 8x8
call DrawScanLineSpri tes 16
jmp done render scanline

8x8 : call DrawScanLineSprites
done render scanline :

poE)ad

Figura 12 – Emulator.asm – Parte do loop de emulagao que faz chamada as rotinas do m6dulo VDP

50

6.5 A implementagao do PSG

A implementagao do PSG 6 tratada no m6dulo PSG. A principal

funcionalidade desse m6dulo, que 6 geragao de amostras de audio na freqa6ncia de

441 00Hz.

A maior dificuldade na emulagao do chip prov6m do fato do mesmo

funcionar a uma freqa6ncia diferente e que nao 6 nem maltipla nem um divisor das

freqa6ncias de saida das placas de som dos PC’s (131072 Hz). Assim varias

convers6es e ajustes t6m que ser feitos para que a emulagao possa produzir 44100

amostras de audio por segundo. O estado interno do PSG 6 mantido em vadaveis

globais, com valores convertidos com base 44100.

A primeira rotina desse m6dulo 6 a PSGInit . Esta rotina calcula os periodos

de tempo 1/256 s, 1/128 s e 1/64 s em termos de amostras a 44100Hz e armazena

esses valores em variaveis globais. Esses valores sao utilizados nas fung6es de

envelope, sound sweep e sound length dos canais de audio do PSG.

A rotina PSG IO administra as escritas aos registradores do PSG ($FF10 a

$FF40). A rotina executa os calculos necessarios de conversao de freqti6ncias, de

acordo com o registrador escrito e armazena o resultado dos calculos nas variaveis

globais de estado.

A rotina PSG Write Samples, gera amostras de audio a freqti6ncia de

44100Hz e as escreve num buffer. Esse buffer 6 passado periodicamente para a placa

de som

51

6.6 A implementagao do acesso a mem6ria

O ac:esso a mem6ria no emulador deve se comportar exatamente como ocorre num

GameBoy real. Tal comportamento esti implementado no m6dulo Memory atrav6s

das rotinas de leitura ReadMemory, ReadMemoryW, e das rotinas de escrita

WriteMemory e WrlteMemoryW. Todos os acessos a mem6ria dentro do

emulador sao feitos atrav6s dessas rotinas.

Essas rotinas emulam o funcionamento dos chips MBC e a maneira como eles

mapeiam os chips de mem6ria no espago enderegado pelo processador.

A16m das rotinas de leitura e escrita, o m6dulo Memory possui rotinas para alocagao

e liberagao de mem6ria para o carregamento de cartuchos (MemAlloc e MemFree),

possui uma frmgao para carregamento de imagem de cartucho a partir de disco

(LoadFile) e uma fungao que inicializa o sistema de mapeamento de mem6ria

(MemoryMaplnit).

A rotina MemoryMapInit descobre a partir da imagem de jogo carregada qual dos

chips MBC o cartucho que cont6m ojogo possui. Isso 6 feito analisando-se o byte de

enderego $0147 do chip de mem6ria ROM do cartucho. Abaixo um trecho da rotina

que faz isso:

52

mov
mov

ebx, cartROM
al, [ebx + CARTRIDGE TYPE OFFSET]

al, 00h
eF
mapperType, NO MAPPER
hasRAM, 0
hasBatery, 0
_done set mapper

al, Olh
er
mapper Type, MBCI
hasR;\M, 0
hasBatery, 0
_done set mapper

al, 02h
er
mapperType, MBCI
hasRAM, 1
hasBatery, 0
_done set mapper

cmp
jnz
mo V

mov
mov
] mp

cmp
lnz
mov
mov
mov
I mp

e @ :

e e : cmp
1 nz
mov
mov
mov
I mp

; etc

Figura 13 – Memory.asm – Parte da rotina MemoryMapInit que descobre qual chip MBC utilizar.

Uma vez inicializado o mapeamento de mem6ria, as rotinas de leitura e escrita ao

serem chamadas se comportarao de acordo com o chip MBC detectado.

Quando o programa tenta escrever um byte em algum enderego situado entre $0000 e

$8000, enderegos nos quais os bancos de mem6ria enxergados sao configurados, a

rotina WriteMemory se reconfigura de taI modo que subseqQentes leituras feitas

atrav6s da rotina ReadMemory retornem o conteado da mem6ria referente ao

banco selecionado.

Isso 6 feito atrav6s de apontadores. Por exemplo, se alterarmos o nQmero do banco

que 6 enxergado nas posig6es de enderego entre 84000 e $7FFF para o banco 3 do

cartucho, fazemos o apontador apontar para esse banco:

53

Pseudoc6digo:

offset TAMANHO BANCO * numero do banco;
apontador = & (ROM [0]) + offset;

Assim, quando for feita uma leitura nas posig6es de enderego entre $4000 e $7FFF,

faz-se:

Pseudoc6digo:

return apontador[endereqo – $4000] ;

Abm de implementar o comportamento dos chips MBC, as rotinas ReadMemory e

WriteMemory implementam a comunicagao com dispositivos de E/S que sao os

timers , o controlador Qgamepad) e o acesso ao DMA.

54

6.7 A implementagao do \oop de emulagao

O loop de emulagao 6 a parte mais importante do emulador. Ele 6 implementado

pela rotina EmulatorRunDebug. Ele 6 responsavel por acionar todas os m6dulos

de emulagao do emulador de maneira sincronizada. O fluxograma abaixo ilustra o

comportamento do loop'.

Inicio

Emulagao
ativa ?

nao

Executa Opcode

VDP Mudou _ sim
de modo ?

Hora de
desenhar

nova linha ?

Muda o modo do
VDP

sim
Desenha

Linha

Interrupgao do
VDP ?

_sim s! Adidona pend6ncia de interrupgao VDP

Timer
Expirou ?

sim
Adiciona Dend6ncia de interruDcao do Timer

Hora de
Incrementar
Registrador

DIV ?

Hora de acionar
o PSG ?

Alguma
InterrupQao
Pendente ?

r

slrrl
Aciona o PSG

sim
Executa Interrupg6es pendentes

Figura 14 – Loop de emulagao.

55

6.8 B416dulo Controls

Esse m6dulo possui apenas uma ftmgao: UpdateControls . Essa rotina

emIIIa o gamepad do gameboy, de modo que o teclado do PC funcione como

controlador do emulador. Os bot6es do gamepad estao mapeados para teclas do

teclado da seguinte maneira:

- CIma: seta para crma

- baixo: seta para baixo

- esquerda: seta para esquerda

- direita: seta para direita

- boBo A: 'x’

- botao B: 'z’

- select : 'a’

- start: 's’

A fungao UpdateControls verifica se as teclas seta para cima, seta para baixo,

seta para esquerda, seta para direita, 'x’, 'z’, 'a’ e 's’ estao pressionadas ou nao e

armazena o resultado em variaveis globais. A fungao ReadMemory utiliza essas

variaveis quando 6 feita uma leitura ao enderego do gamepad ($FF00).

56

6.9 IV16dulo Disassembler

O M6dulo Disassembler implementa a seguinte caixa de dialogo:

DtsassemI>tel

T-ma
11858
q 1 87H
11 89}}
1 1 BCN
11 gl)A
11 grt i
111 IB
1113H
1 1 1 itN
11 1 SH
1117H
111 96
1118}:
111 CH
111 EN
1 1 21 Fi

1122H
112 :+H

W
38 Fg
FQ eo
21 l+3 FF
47
E6 B1
FE gO
28 81
3 it
78
EG 62
FE 68
26 81
35
Fe 88
21 1+2 FF
47
Ea 68
FE 68

Ma
JR NC F9H
LD A fFF eDN)
Lb }}L FF43N
LD B A

AND B1 H
CP 68}{
JR NZ 81 H
iNC (HL)
Li) A B

AHI) 82H
CP gOH
JR NZ 61 N
DEC (HL)
LB A (FF BOy)
LD HL FF 1+2}{
LD 8 A
AND 68H
CP gOH

AF:

BC:

DE:

HL:

PC:

SP:

IFF:

0060

1 FaQ

0000

FF42

1104

FFFE

li

it
ii
ii

i

LIZ
[y]N

[IH
P]c

Di$playMode: 2

ScanBrie: a
IE:

iF:

IME

08000000

00008001

00000000

SO<: a

SW: 42

!! QdBs: 70228

TMA

TIMA

liam tk:ks

timu cycles

a

a

a

a

[] A button

[] B button

nnt

II E
[Next scwline] [Rake$ J

Figura 15 – Disassemb ter .

[StH)Qa I

ned fran i Close]

Trata-se de uma janela que mostra o pedago do programa atualmente sendo

executado pelo emulador. A janela possui tamb6m bot6es com fung6es de debug

(depuragao) de c6digo 280. Estas funcionalidades sao de grande valia para

desenvolvedores de software para Gameboy.

57

AS luncronalrcla(les sao:

• Step in: executa uma instrugao.

• Step out'. executa infinitas instrug6es at6 que uma instrugao RET seja

alcangada.

Next scanline'. executa instrug6es at6 que a scanline corrente seja totalmente

desenhada.

Next frame: executa instrug6es at6 que o quadro corrente seja completamente

desenhado.

Wait PC: executa instrug6es at6 que a execugao do programa atinja o

enderego inserido pelo usuario na caixa de texto dajanela.

Go'. executa instrug6es at6 que seja gasta a quantidade de ciclos de clock da

CPU inserida pelo usuario na caixa de texto dajanela

•

•

•

•

58

6.10 M6dulo Header Viewer

O M6dulo Header Viewer implementa a seguinte caixa de di£logo:

IS Rom A,'d„ vi,,'„

[8{BO'aIB3 1 Beghrti®Code:

[tHC14 ' CH::3] $aoling Nintendo graphic:

ca C3 SO at

aE ED 66 66 CC aD DO aB 03 73 aa 83 00 OC aD
aa aa 1:1 IF ee 89 aD DE: iE CC 6E EE DD DD Dg
BB BB 67 63 6E QE EC CC Da Da 99 gr 68 89 33

[OK I

DOUBIE DRACOIT

00 --> not aBC

[a134 - 0142]
[8143]
I aM I
iat45 1

[0146]
1 0147]
{a48 }
l0149]
{a14A]

[0148]
jol 4G I
iat4D)

[014E .at4F]

Game tale:

GamebW type:

LEwIsee code (tigh}

Licensee code gow]:

GB / 568 irxiicatoc

Cartridge type:

RaM size:

RAM size:

Destination code:

Licensee code:

Mask ROM Vetsion number:

Complement check:

Checksum;

a

a

aa

at
02

gO

al
SO

aa

FO

sr

--> GB
--> RCM + MBC:L

–> tHat n 128KByte
--> Kane

--> Non - Japanese

--> Ualnchrr !

B banks

DB

Figura 16 – Header Fiewer

Essa janela exibe informag6es a respeito da imagem de cartucho carregada, que

ficam disponiveis nos enderegos $0100 a $014F.

59

6.11 M6dulo Map Viewer

O M6dulo Map Viewer implementa a seguinte caixa de dialogo:

DOU8LEDRReaR
{gc8B8s€)qJ£gg§ CDRP

k8C§9899wE ggtVR&:uIELY
LICENSED BY NINTENDO

F89APb8g g8kXDXN

a

Char Base

<A> 088800

e>{6;gg®

Map Base

{}) 089800

o Qx9CaD

Befresh

Figura \I – Map newer

Essa janela exibe o conteado da parte da mem6ria de video que contem a camada de

background ejanela.

60

6.12 M6dulo Memory Viewer

O M6dulo Memory Viewer implementa a seguinte caixa de dialogo:

Memory Viewer , {{ ;=q.HIT ;';+ {- if sj

bmw . ROM

EMIitI!? ’} ,

==n=n
+

EAP[#B]s•£l•5ls•sll•q5•q5•!b•ils•sB•5lIHsl5•asm5b•5l!• IasIDEItil
8818 1 BB 80 QQ 00 80 80 88 08 GB 68 BQ no 88 BQ BQ 00 B
8828 B FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF H
0030 B FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF B
6048 1 C3 78 88 QD 88 DO gO 06 C3 63 au gO 88 GB 00 88 H CP

8650 H C3 63 Ba 80 08 BQ 08 BB C3 64 80 08 DB 88 80 BG B dC

6069 B C3 63 80 DQ FS C5 DS ES CD Ba 07 E1 D1 61 F1 D9 B C

6870 B FS CS DS ES Fa 47 C6 A7 28 20 FA FF TF EA 47 C6 B G H,C
US8888 1 FS CD 56 24 FA 11 Cb 67 28 85 CD BB 31 18 83 CD H (1

C0898 B BB 31 F1 EA 80 28 AF EA 47 C6 E1 D1 C1 Ft D9 CD B 1

80A8 B 03 40 FB 10 Cb EA gO 28 E1 D1 C1 F1 F1 D9 D9 FS B ,a
BOBO B C5 DS ES CD 77 85 E1 D1 C1 F1 D9 FS CS 05 ES CO 1 tJ
0860 B aD ID CD 96 IE Fa 19 Cb EA DO 20 E1 D1 C1 F1 D9 B
8BD8 H 80 OO 80 80 08 80 80 88 08 88 80 gB 86 88 aD 86 H
BDE8 B FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF E
68FO B FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF B

ff0108 B gO C3 50 01 CE ED 66 66 CC OD 08 gB 03 73 06 83 B P S

D118 B 08 OC 80 BD 08 88 11 IF 88 89 08 QE DC CC 6E £6 H n

8128 B DO DD 09 99 BB BB 67 63 6E gE EC CC DO nc 99 gF S gCR
3>DOUBLE .DRACO8130 B 88 89 33 3E ItIl ItF 55 +2 llC IiS 26 hIt 52 1+1 47 l+F E

I81l+8 S bE 08 08 88 DB 08 89 01 02 88 Bl SD 88 FB SF DB E N V

Figura 18 – Memory 7iewer

Trata-se de uma janela que exibe o conte6do atual de toda a mem6ria.

61

6.13 M6dulo OAM Viewer

O M6dulo Memory Viewer implementa a seguinte caixa de dialogo:

• ; t:I

h:
@,I

pUT

SpIke

i!i
><pas

X pas

Pattern #

120

185

209

a
a
a
U

Priority

Y Flip

X Flip

Palette

Figura 19 – OAM Viewer

Essa janela exibe o conteQdo da parte da mem6ria de video que contem a camada de

sprites e os seus respectivos atributos.

62

6.14 M6dulo Tile Viewer

O M6dulo Tile Viewer implementa a seguinte caixa de dialogo:

,+e

£ha! Base

o o®ooo

€>ox©Qa

C

Figura 20 – Tile newer

Essajanela exibe todas as definig6es de caracteres atualmente na mem6ria de video.

63

7 TESTES E AVALIA(,'AO

Os testes efetuados para avaliagao do emulador consistiram basicamente em rodar os

jogos do GameBoy e GameBoy Color no emulador e comparar o funcionamento em

ambos os sistemas (os jogos foram obtidos na Internet em sites especializados). A16m

dos jogos muitos programas de demonstragao foram utilizados para testar diversas
caracteristicas do sistema emulado.

Os seguintes testes foram aplicados a versao final do emulador:

Resultado

Test©B
funcionalidades do

prograrna nos srstemas
operacionais Windows
98 / NT / 2000 / XP /
2003 .
Testar a

compatibilidade do
emulador atrav6s da

execugao de mais de
200 ROM’s de GB e
GBC.

Ftmcionalidade completa
em todos os sistemas
operaclonals .

70% de compatibilidade.

Testar a robustez do
programa ao tentar
executar ROM’s
defeituosas ou arquivos
que nao sao ROM’s

Testar a performance
do emulador atrav6s da
execugao do mesmo em
maquinas antigas com
processadores
relativamente lentos.

Tabela

O programa nao trava.

O emulador roda com

velocidade maxima (60
quadros por segundo)
mesmo em srstemas
antigos como 486s

16 – Testes

Tamb6m conseguimos obter uma interface amigavel para o emulador, caracteristica

esperada quando foram definidos os requisitos do projeto.

64

Com os dados obtidos nos testes a equipe chegou a conclusao de que o produto final

do projeto satisfez todos os seus requisitos funcionais e nao fLmcionais, estando de

acordo com suas especificag6es.

65

8 CONSIDERA(,'6ES FINAIS

8.1 Conquistas

A equipe acredita que ap6s o longo caminho tornado pelo trabalho, todas as

expectativas com relagao ao aprendizado provindo do projeto foram alcangadas.

Foram estudados varios aspectos ligados a emulagao e arquitetura de computadores.

O completo entendimento do hardware do GameBoy permitiu uma melhor visao de

como diversos tipos de computadores funcionam. O estudo de 16gicas de otimizagao

ajudaram a melhoras as habilidades de programagao dos membros da equipe, a16m de

prover valiosas informag6es sobre o processo de compilagao de linguagem de alto

nivel. Por6m, a principal conquista esti no fato de que a equipe pode aprender como

os emuladores funcionam, como sao projetados e construidos. Como citado no inicio

do documento, esse aprendizado foi a principal razao para a escolha do projeto pela

equlpe .

8.2 Continuidade do projeto

Apesar de o projeto ter sido concluido com sucesso, o produto final do mesmo pode

ser melhorado de vadas maneiras. o aumento da compatibilidade do emulador, assim

como a adigao de novos filtros de imagem seriam os primeiros objetivos em uma

possivel continuagao do projeto.

66

ANEXO A – LISTA DE REGISTRADORES DE E/S E SUAS

FUNCIONALIDADES

FF00 – Pl (Leitura e Escrita)

Registrador para leitura de informag6es do controle do GameBoy e para

determinagao do tipo do sistema.

Bit 7 – nao utilizado

Bit 6 – nao utilizado

Bit 5 – P15 porta de saida

Bit 4 – P14 porta de saida

Bit 3 –P13 porta de entrada

Bit 2 – P12 porta de entrada

Bit 1 – PII porta de entrada

Bit 0 –P10 porta de entrada

Escrevendo-se $20 no registrador, ativa-se P14 (1ow -active) . Lendo entao o

registrador, os bits menos significativos vao representar, respectivamente, os

bot6es: Direita, Esquerda, Cima e Baixo.

Escrevendo-se $10 no registrador, ativa-se P15 (1ow -active). Lendo entao o

registrador, os bits menos significativos vao representar, respectivamente, os

bot6es: A, B, Select e Start.

FF01 – SB (Leitura e Escrita)

Dado para transfer6ncia serial.

1 byte de dado a ser lido ou escrito.

FF02 – SC (Leitura e Escrita)

Serial Control

67

Bit 7 – Flag de infcio de transfer6ncia.

0: Sem transfer6ncia

1 : Inicia transfer6ncia

Bit 0 – Shift Clock

0: Clock externo (500 KHz m&imo)

1 : Clock interno (8192 Hz)

A transfer6ncia 6 iniciada ativando o bit 7 do registrador. A transmissao e

recepgao serial sao simultaneas. O dado recebido 6 automaticamente

armazenado no registrador SB.

FF04 – DIV (Leitura e Escrita)

DIvider Register

Este registrador 6 incrementado 16384 vezes por segundo. Escrever qualquer

valor nele o zera.

FF05 – TIMA (Leitura e Escrita)

Timer Counter

Este timer 6 incrementado pelo clock especificado pelo registrador TAC

($FF07). O timer gera interrupgao quando sofre overflow .

FF06 – TMA (Leitura e Escrita)

Timer Modulo

Quando o TIMA sofre overflow , o valor deste registrador C carregado nele.

68

FF07 – TAC (Leitura e Escrita)

Timer Control

Bit 2

0: Para o timer

1 : Inicia o timer

Bits 1 + 0 – Selegao do clock

00: 4,096 KHz

01: 262,144 KHz

10: 65,536 KHz

11: 16,384 KHz

FFOF – IF (Leitura e Escrita)

Interrupt Flag

Bit 4 – Transigao high to /ow ocorrida nas portas de entrada PIC) - P13. Pulo

para $0060

Bit 3 – Transfer6ncia serial completa. Pulo para $0058

Bit 2 – Timer overflow . Pulo para $0050.

Bit 1 – LCDC (ver registrador STAT). Pulo para $0048.

Bit 0 – Varredura vertical. Pulo para $0040.

A prioridade das interrupg6es 6 decrescente tal que a intenupgao por

varredura vertical tem a maior preced6ncia dentre as interrupg6es.

FF10 – FF3F – Registradores do PSG

A descrigao dos mesmo esti no documento GBSOUND [6].

69

FF40 – LCDC (Leitura e Escrita)

LCD Control

Bit 7 – Controle da operagao do LCD

0: Desativar LCD.

1 : Ativar LCD.

Bit 6 – Selegao do mapa de caracteres dajanela

0: $9800-$9BFF

1 : $9COO-$9FFF

Bit 5 – Exibigao dajanela

0: Desligado.

1 : Ativado.

Bit 4 – Selegao do TDT para o background e janela

0: $8800-$97FF

1 : $8000-$8FFF

Bit 3 – Selegao do mapa de caracteres do background

0: $9800-$9BFF

1 : $9COO-$9FFF

Bit 2 – Tamanho do Sprite

0: 8x8.

1 : 8x16. (largura x comprimento).

Bit 1 – Exibigao dos sprites

0: Desligado.

1 : Ativado.

Bit 0 – Exibigao do background e janela

0: Desligado.

1 : Ativado.

FF4 1 – STAT (Leitura e Escrita)

LCDC Status

70

Bits 6-3 – Selegao de intemupg6es do LCD ativas

Bit 6 – Flag de coincid6ncia.

Bit 5 – Modo 10

Bit 4 – Modo 01

Bit 3 – Modo 00

0: Desativado

1 : Ativado

Bit 2 – Flag de coincid&ncia.

0: LYC diferente de Ly

1 : LYC igual ao LY.

Bit 1-0 – Mode Flag

00: Varredura horizontal (CPU pode acessar a VRAM).

01: Varredura vertical (CPU pode acessar a VRAM).

10: Acesso a OAM.

11 : Acesso a OAM e a VRAM.

FF42 – SCY (Leitura e Escrita)

Scroll Y

Byte com valor do scroll Y do background.

FF43 – SCX (Leitura e Escrita)

Scroll X

Byte com valor do scroll X do background

71

FF44 – LY (Leitura apenas)

LCDC coordenada Y

Este registrador indica a scanlirle que esti sendo desenhada no momento.

Valores de 144 a 153 indicam varredura vertical.

FF45 – LYC (Leitura e Escrita)

LY Compare

Este registrador se compara com o LY, caso os valores sejam iguais ele causa

a ativagao doWag de coincid6ncia do registrador STAT.

FF46 – DMA (Escrita apenas)

No GB pode-se efetuar uma transfer&ncia por DMA da ROM ou RAM para a

OAM ($FE00-$FE9F). A transfer6ncia dos 40828 bits demora 160ms para ser

concluida. Para executar a transfer6ncia basta escrever o enderego inicial dos

dados neste registrador.

FF47 – BGP (Leitura e Escrita)

Palheta para o background e janela.

Bit 7-6 – Nivel de cinza para a cor 11 (normalmente a cor mais escura)

Bit 5-4 – Nivel de cinza para a cor 10

Bit 3-2 – Nivel de cinza para a cor 01

Bit 1-0 – Nivel de cinza para a cor 00 (normalmente a cor mais cIara)

72

FF48 – OBPO (Leitura e Escrita)

Object Palette Data 0

Primeira palheta (0) para os sprites

Funciona do mesmo modo que o registrador BGP

transparente.

FF49 – OBPI (Leitura e Escrita)

Object Palette Data I

Primeira palheta (1) para os sprites

Funciona do mesmo modo que o registrador BGP

transparente.

FF4A – WY (Leitura e Escrita)

Posigao Y dajanela no background.

WY deve estar entre 0 e 143 inclusos.

FF4B – WX (Leitura e Escrita)

Posigao X dajanela no background.

WX deve estar entre 0 e 166 inclusos

($FF47), por6m a cor 0 6

($FF47), por6m a cor 0 6

73

FFFF – IE (Leitura e Escrita)

Interrupt Enable

Bit 4 – Transigao high to /ow oconida nas portas de entrada Plo - P13. Pulo

para $0060

Bit 3 – Transfer6ncia serial completa. Pulo para $0058

Bit 2 – Timer overflow . Pulo para $0050.

Bit 1 – LCDC (ver registrador STAT). Pulo para $0048.

Bit 0 – Varredura vertical. Pulo para $0040.

0: Desabilita interrupgao.

1 : Habilita intemupg50.

74

ANEXO B – LISTA DE INSTRU(,'6ES DO PROCESSADOR DO GAMEBOY

As listas a seguir apresentam as instrug6es do processador do GameBoy, seus

respectivos opcodes e o nflmero de ciclos que cada instrugao toma.

8bit Load Commands
Id
Id
Id

r/ rl
XX 4

8

8

8

12
8

8

16
8

8

16
12

XX nn
r=r
r =n
r= (HL)
(HL) =rId

r (HL)r
CHL) / r

XX
7x
36 nn
OA
IA
FA
02
12
EA
FO nn

Id
Id
Id
Id
Id

(HL) rn
Ar (BC)
Ar C DE)
Al (nn >
(BC) rA

Id
Id
Id

FF00+n)
Id

FF00+n)
Id

FFOO+C)
Id

FFOO+C)

C DE > / A
< nn) / A
A, (FF00+n) read from io-port n (memory

(FF00+n) , A E:0 nn 12

8

8

8

8

8

8

write to io-port n (memory

, (FF00+C)A F2

E2

22
2A
32
3A

read from io-port C (memory

(rroo+c) , A write to lo–port C (memory

Idl
Idi
Idd
Idd

(HL) / A
Ar (HL)
(HL) rA

Ar (HL)

(HL) =A, HL=HL+1
A= (HL) , HL=HL+1
(HL) =A, HL=HL–1

A= (HL) , HL=HL–1

16bit Load Commands
Id rr, nn

SP)
Id SP, HL
push rr

BC, DE, HL, AF)
poP rr

BC, DE, HL, AF)

xl nn nn 12 rr=nn (rr may be BC, DE, HL or

r9
x5

xl

8

16
SP=HL
SP=SP-2 (SP) =rr (rr may be

(rr may be12 (AF) rr= (SP) SP=SP+2

8bit Arithmetic/Logical Commands
add
add

A, r
A, n

8x
C6 nn
86

4

8

zOhc
zOhc
zOhc
zOhc
zOhc
zOhc
zlhc
zlhc
zlhc
zlhc
zlhc
zlhc
z010

A=A+ r
A=A+ n
A=A+ (HL)
A=A+r+cy
A=A+n+cy
A=A+ (HL) +Cy
A=A- r
A=A-n
A=A- (HL)
k=k-t–c]
A=A-n-cy
A=A- (HL) -cy
A=A & r

add
adc

Al (HL > 8

adc
A, r 4

A, n
8x

adc
8

Al (HL >
CE nn

sub
8E 8

sub
r 9x

sub
sbc

n
(HL)

D6 nn
96

sbc
sbc

A, r
A, n
Ar (HL)

9x

and r
9E
Ax

75

and
and
xor
xor
xor
or
or
or
CP
CP
CP
inc
inc
dec
dec
daa
cpl

n
(HL)
r
n
(HL)
r
n
(HL)
r
rl
(HL)
r
(HL)
r
(HL)

E:6 nn
A6
Ax
EE nn
AE
Bx
F6 nn
B6
Bx
FE nn
BE
XX
34
XX
35
27
2F

8

8

4

8

8

4

8

8

4

8

8

4

12
4

12
4

4

z010 A=A & n
zC)10 A=A & (HL)
z000
z000
z000
z000 A=A I r
z000 A=A 1 n
z000 A=A 1 (HL)
zlhc compare A-r
zlhc compare A–n
zlhc compare A- (HL)
zoh- r=r+1
zOh– (HL) = (HL) +1
zlh– r=r-1
zlh– (HL) = (HL) - 1
z–0x decimal adjust
–11- A = A xor FF

akI<u

16bit Arithmetic/Logical Commands
x9 8add HL, rr

BC, DE, HL, SP
inc rr

-0hc HL =

rr =

HI,+r r ; rr may be

; rr may be
BC, DE, HL, SP

dec rr
BC, DE, HL, SP

add SP, dd
signed number

Id HL. SP+dd
signed number

x3 8 rr+1

xB 8

00hc

0 C)hc

rr =

SP =

HL =

rr -1 ; rr may be

B8 16 SP +/-

SP +/–

dd ; dd is 8blt

F8 12 dd ; dd is 8bit

Rotate and Shift Commands
r lca
rIa
r rca
rr a
rIc r
rIc (HL)
rl r
rl (HL)
r r C r
rrc {HL)
rr r
rr (HL)
sla r
sla (HL)
swap r
swap (HL)
sra r
sra (HL)
sr 1 r
srI (HL)

07
17
OF
IF
CB 0x
CB 06
CB lx
CB 16
CB 0x
CB OE
CB lx
CB IE
CB 2x
CB 26
CB 3x
CB 36
CB 2x
CB 2E
CB 3x
CB 3E

4

4

4

4

8

16
8

16
8

16
8

16
8

16
8

16
8

16
8

16

000c
000c
000c
000c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z00c
z000
z000
z00c
z00c
z00c
z00c

rotate akku left
rotate akku left through carry
rotate akku right:
rotate akku right through carry
rotate left
rotate left
rotate left through carry
rotate left through carry
rotate right
rotate right
rotate right through carry
rotate right through carry
shift left arithmetic (bC)=0)
shift left arithmetic (bC)=0)
exchange low/hi–nibble
exchange low/hi–nibble
shift right arithmetic (b7=b7)
shift right arithmetic (b7=b7)
shift right logical (b7=0)
shift right logical (b7=0)

Singlebit Operation Commands
bit n, r CB xx 8 z01- test bit n
bit n, (HL) CB xx 12 z01- test bit n
set n, r CB xx 8 –--- set bit n

76

set n, (HL) CB xx
res n, r CB xx
res n, (HL) CB xx

16
8

16

set bIt n
reset bit n
reset bit n

CPU Control Commands
ccf 3F
scf 37
nop 00
halt 76

(low power)
stop

low power)
di

4

4

4

N + 4

00c
001

cy=cy xor I
cy=1
no operation
halt until Interrupt occurs

10 00 low power standby mode (VERY

F3
rB

disable interrupts , IME=0
enable interrupts , IME=1

Jump Commands
]P
IP
IP
jr

7bit)
j r f , PC+dd

nz/ Z/ ncr C
call nn

PC=nn
call f , nn
ret
ret
ret i

(IME=1)

f

nn
HL
f , nn
PC+dd

C3 nn nn 16
E9 4
xx nn nn 16; 12
18 dd 12

jump to nn, PC=nn
jump to HL, PC=HL
condItIonal jump if nz , z, nc, c
relative jump to nn (PC=PC+/-

xx dd 12 ; 8 conditional relative jump if

CD nn nn 24 call to nn, SP=SP-2 , (SP) =PC,

xx nn nn 24 ; 12
C9 16
xx 20 ; 8
D9 16

conditional call if nz, z, nc, c
return, PC= (SP) , SP=SP+2
conditional return if nz, z, nc, c
return and enable interrupts

rst XX 16 call to 00 , 08 , 10 , 18 , 20 , 28 , 30 , 38

77

ANEXO C – CRONOGRAMA FINAL DO PROJETO

B)
a)
E
ID2
al
QL3a
03
a)

nc

ala
a3la

LU

a
C
ID

lb
<

a
IU
rD3
la
LU

a
C
ID
=D
qC

ala
a
3la

LU

a
C
eD

6
qC

a
la
a3la
IfI
aC
LB

lb
qC

0
la
b
3la

LU

a
C
as

IB
qC

D
la
rD3ID
LU

aCa
6
<

0
la
rD
3la

LLI

aC
ID

llb
<

a
la
rD3la
LU

a
[

IB

IB
qC

D
la
a3la

LU

a
C
ID

la
<C

aCa
6
<

D
la
a3
IB
LU

aC
IB

IB
<

0
la
b3
la
LU

a
C
la

B
qC

0
la
al3la
LU

elLa
B)
el
a)U
a)
la
al
a

IdF

e
L+a
a)

LE

1+
Q
Qsr
r

Lt

al
1+
Q
U
qH
hI

=

LL

F)
sr
a
e
CO
r

LE

qr
qF
a
kal

LI

V)
sra
ka
al
Lt

qFq
ka
a)
Lt

b
1+a
ab
al

LE

eD

srq
aa
r

LI

F'P
qF
a
Q
Hr
al

LE

al

C

r
qF
aa
nI
al

LI

el
IdF

IE
FI

LE

r

qat
qFq
Qa
qF

LE

q+
Qa
lap
al

IE

sO
aal
IE
F)

LE

E
DI

LL
.E

IHr

e
Laal
r
C0
X

la
e
Q
C)
C
a
X

la
Q
Ub
r
C0
X

ldF
Q
U
ldF
nI
C0X

V
Q
Q

X

qP
al
Ca

IdF

e
EIf)
C
a

=

qr
e
EIf)
C
0=

qr
e
Qal
C0

=

qF

Q
er\I
Ca

=

qr
Q
e0r)
Ca
E

la
e
aa)
r
Ca

=

Hr
a
Qa)
'P
Ca
X

qr
Q
Qb
r\1
Ca
E

qr
qa
IEtrial
C0E

qF

aa
IEtf)
al
Ca
X

1=
CD

a

Ca
B
3r\

02b
ID
la
in
r

03
>

ID
la
a
qP

el>
IDla
tf)

Inbala
Dal

e)b
IBla
0
r

elb
lala
a
CV

el e. DO abuSha ba ala alan
OID DO
al a FI x–

al

B)b
la
laa
r

Oleleobbba a ala la la
D)b
in
la
ar)a

r
a
r\1

a
C)

a
tOtyaal
8
Ea
ID
aal
a

10
ty
eDL
MC
Q
E
a)
IU
al
la
a
E
as

61a
a
aU
a
E
a)
E
'S
a
>

C
a)
el
a)a

nbla
aal
a)
E
IDal
a)

la
a
t
a)
E
S0
>

Cal
0)
a)a

LI

a
Ea
L)
a)
la
0
>

:e
g)
aa
eg

hB
a

a
E
al
E
'S

a
a

a)
E
B
al
a)a
eD

M
LU

a
>

C
al
el
alla
a)
la
al
t
a)

'6
E

la
a
E

03
BICa
' C)
-U
<
g)
al
la
IB
la

a
T
a)

la
C0
OC3
LL
a)
la

E
>
0
>
Ca]
el
a)a

()
C/)a
ala
a
T
al
E
'S

a)

hI
on

C

0
>

C
al
B)

la
ala
ala
tya

iT-

ba
JO
a)
Ea
()
aIU
ID

5
BHe3
ar
rD
in
IB
ala3
M
LU

3a
L)
la
D
0
a)

\32
a
la
a
t

LI

al
E
'S
a
)

C
a)
el
a)a

0
al
.g
E
al
ala
a
E
al
E
'Sa

>C
a)
0)
a)a

a
IID
CP
lat
a)

E3
LI
a
U
a
la
a

IIB
CP
a
N
IB
3
a

aa
>

ala
a
E
al
E
’Sa

>

C
a)
e)
a)a

()
cr)a
a
la
a
E
al
E
'S
D
>

C
al
el
a)
InI

D
al
B
E
a
a
la
B)
a)
Ma)
b-

el
a)
M3
aT
a)
el
a)
Ma)
b-

ala
CPa
T
al
E3
C)
0a

a)
EaZ
je
B)
ab-

el
a)
T
al
F-

78

LISTA DE REFERENCIAS

[1] ZiLOG Worldwide Headquarters. 280 Family CPU User Manual. Campbell:

2001. 306 P.

[2] Intel Corporation. Intel. IA-32 Intel Architecture Optimization Reference

Manual. 2004

[3] Intel Corporation. Intel. IA-32 Intel Architecture Developer’s Manual Volume

1 : Basic Architecture. 2004.

[4] Intel Corporation. Intel. IA-32 Intel Architecture Developer’s Manual Volume

2A/2B: Instruction Set Reference. 2004.

[5] Frohwein. J. EUA. Apresenta informag6es sobre desenvolvimento de software

para alguns videogames. Disponivel em: <http://www.devrs.com>. Acesso em: 03

de dezembro de 2004.

[6] Belogic Software. Apresenta informag6es sobre o PSG do GBA, que 6 o

mesmo do GB e GBC. Disponivel em: <http://belogic.com/gba>. Acesso em: 03 de

dezembro de 2004

1

APENDICE I – CD COM ARQUIVOS DO PROJETO

O CD do projeto, PCS2050-01-CD-2004, cont6m os seguintes diret6rios e arquivos:

/readme.txt

Arquivo contendo informag6es sobre o CD.

/docs/

Diret6rio contendo toda a documentagao do projeto, incluido o documento final.

/src

Diret6rio contendo os arquivos fonte do emulador.

/bin

Diret6rio contendo o executavel da 61tima versao do emulador.

/roms

Diret6rio contendo algumas ROM’s de jogos de GameBoy para serem testadas no

emulador

