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RESUMO 

ASSUMPÇÃO, P. H. B. Q.  Análise e Avaliação do Reconhecimento de Placas Veiculares 
por meio de Redes Neurais.   2024.  70 f.  Trabalho de conclusão de curso (MBA em 
Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação, 
Universidade de São Paulo, São Carlos, 2024. 
 
Estudo de uma análise aprofundada do cenário de reconhecimento de placas veiculares 
utilizando o modelo de deep learning YOLO em um dataset específico, considerando a 
variabilidade da qualidade de entrada das imagens capturadas para o modelo, avaliação de 
resultados e aplicação de ajustes aos modelos inseridos em suas propriedades de forma a 
melhorar seus resultados. A abordagem adotada visou otimizar o desempenho do modelo ao 
explorar técnicas de pré-processamento de imagens, modificando a angulação e outras variáveis 
na qualidade de captação, visando simular diferentes condições de entrada das imagens. O 
objetivo foi avaliar como essas alterações impactam a acurácia do modelo, o reconhecimento 
distinto e com avaliação da precisão para cada um dos caracteres detectados em sua saída, e 
outros datapoints relevantes. Ao explorar estas dimensões, este trabalho contribui para a 
compreensão mais aprofundada das nuances do modelo YOLO e seu comportamento sob 
diversas condições, fornecendo diretrizes valiosas para otimização de modelos de IA em tarefas 
semelhantes. 
 

Palavras-chave: reconhecimento de placas veiculares; YOLO; redes neurais convolucionais; 

pré-processamento de imagens; Dataset 

  



 
 

  



 
 

ABSTRACT 

ASSUMPÇÃO, P. H. B. Q. Title in English: subtitle.   2024. 70 f. Trabalho de conclusão de 
curso (MBA em Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de 
Computação, Universidade de São Paulo, São Carlos, 2024. 
 

This study aimed to conduct an in-depth analysis of the vehicle license plate recognition 

scenario using the YOLO deep learning model on a specific dataset, considering the variability 

in the quality of the captured images for the model, evaluating the results, and applying 

adjustments to the models' properties to improve their performance. The adopted approach 

aimed to optimize the model's performance by exploring image pre-processing techniques, 

modifying the angle and other variables in the quality of capture, in order to simulate different 

input conditions of the images. The objective was to evaluate how these changes impact the 

model's accuracy, distinct recognition, and precision evaluation for each of the characters 

detected in its output, and other relevant data points. By exploring these dimensions, this work 

contributes to a deeper understanding of the nuances of the YOLO model and its behavior under 

various conditions, providing valuable guidelines for the optimization of AI models in similar 

tasks. 

 

Keywords: vehicle license plate recognition; YOLO; convolutional neural networks; image 

pre-processing; Dataset 
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1 INTRODUÇÃO 

 

 A crescente importância da Inteligência Artificial (IA) tem desencadeado avanços 

significativos em diversas áreas, incluindo visão computacional e reconhecimento de padrões. 

O contexto de aplicações que podem se beneficiar deste tipo de tecnologia se estende a inúmeras 

áreas, e um ponto em comum para todas é o qual preciso o modelo se comporta. Dentro deste 

âmbito, a qualidade de entrada das imagens a serem processadas tem papel fundamental na 

qualidade de sua classificação e extração de dados – especialmente em aplicações que sua 

classificação e interpretação tem impacto direto com as necessidades de negócio (LAROCA, 

2018). 

 O emprego deste tipo de tecnologia para o reconhecimento e interpretação das placas 

veiculares é altamente justificado na literatura, onde dados coletados e os casos de uso 

exemplificados mostram a importância de sua utilização e refinamento, uma vez que são 

destacadas também os pontos de melhoria e melhores treinamentos que podem elevar ainda 

mais a eficiência destas utilizações (DU, 2013). Ainda dentro do preceito dos vários modelos 

disponíveis, a aplicação de cada um para cada caso deste tipo de reconhecimento também 

reforça o principio da avaliação e desempenho de cada um, com seus respectivos pontos de 

melhoria, apontando tecnologias como o YOLO (You Only Look Once) e outros como 

princípios de ajuste para melhor desempenho (KHAN, 2023). 

 No estudo de caso de um modelo para verificação de placas veiculares, a extração 

correta de suas informações se faz crucial para o sucesso do negócio e funcionamento correto 

de suas informações. Porém, por se tratar de muitas vezes sua captura e identificação se dar em 

ambientes externos, tais ambientes não são controlados e as capturas estão sempre submetidas 

a condições variáveis de luz – e tal como sua incidência sobre o objeto; ângulo da câmera em 

relação ao objeto; condições de impurezas sobre o objeto; e etc, que podem variar drasticamente 

como o modelo pode interpretar cada caso (ANAGNOSTOPOULOS, 2014). 

 

1.1 Objetivos 

 

Neste contexto, este estudo se propôs a realizar uma análise aprofundada do cenário de 

reconhecimento de placas veiculares utilizando o modelo de deep learning YOLO em um 

dataset específico, considerando a variabilidade da qualidade de entrada das imagens 



   20 

capturadas para o modelo, avaliação de resultados e aplicação de ajustes aos modelos inseridos 

em suas propriedades de forma a melhorar seus resultados. 

A abordagem adotada visou otimizar o desempenho do modelo ao explorar técnicas de 

pré-processamento de imagens. Em particular, foram aplicadas modificações na angulação e 

outras variáveis no quesito de qualidade de captação, visando simular diferentes condições de 

entrada das imagens. O objetivo foi avaliar como essas alterações impactam a acurácia do 

modelo, o reconhecimento distinto e com avaliação da precisão para cada um dos caracteres 

detectados em sua saída, e outros datapoints relevantes. 

Ao explorar estas dimensões, este trabalho contribui para a compreensão mais 

aprofundada das nuances do modelo YOLO e seu comportamento sob diversas condições, para 

que os insights obtidos possam não apenas enriquecer o entendimento sobre o reconhecimento 

de placas de veículos, mas também fornecer diretrizes valiosas para otimização de modelos de 

IA em tarefas semelhantes. 
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2 FUNDAMENTAÇÃO TEÓRICA 

 
As redes neurais têm desempenhado um papel fundamental no avanço da tecnologia de 

reconhecimento de padrões e visão computacional. No contexto do reconhecimento de placas 

de veículos, a utilização de redes neurais tem sido amplamente explorada devido à sua 

capacidade de aprendizado profundo e interpretação de padrões complexos. 

Uma abordagem popular para o reconhecimento de placas de veículos é o uso do 

algoritmo YOLO, que permite a detecção de objetos em tempo real com alta precisão e 

eficiência. Além disso, técnicas de pré-processamento de imagens, como ajuste de contraste, 

dimensionamento e rotação, têm sido aplicadas para melhorar a qualidade de entrada das 

imagens e, consequentemente, a acurácia do modelo. 

Além do YOLO, outras arquiteturas de redes neurais, como Redes Neurais 

Convolucionais e Redes Neurais Recorrentes, têm sido exploradas para o reconhecimento de 

placas de veículos. As CNNs (do inglês, Convolutional Neural Networks), são eficazes na 

extração de características visuais e têm demonstrado excelentes resultados em tarefas de 

classificação de imagens. Por outro lado, as RNNs (do inglês, Revolutional Neural Networks), 

são adequadas para lidar com sequências de dados, o que pode ser útil na interpretação de 

informações sequenciais em placas de veículos, como números e letras. 

Ao considerar a aplicação de diferentes arquiteturas de redes neurais, é importante 

realizar uma avaliação abrangente dos resultados e ajustar as propriedades dos modelos para 

otimizar o desempenho em diferentes condições de entrada de imagens. Essa abordagem 

permitirá uma compreensão mais aprofundada das nuances do modelo YOLO e fornecerá 

insights valiosos para futuras otimizações e aplicações em tarefas semelhantes. 

 

2.1 Redes Neurais  

 

As redes neurais têm desempenhado um papel fundamental no avanço da tecnologia de 

reconhecimento de padrões e visão computacional. No contexto do reconhecimento de placas 

de veículos, a utilização de redes neurais tem sido amplamente explorada devido à sua 

capacidade de aprendizado profundo e interpretação de padrões complexos (KURPIEL et al., 

2017). 

Segundo Haykin, uma Rede Neural Artificial pode ser definida como um processador 

distribuído em massa e de forma paralela, composto por unidades de processamento simples 
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que têm a propensão natural para armazenar conhecimento experiencial e disponibilizá-lo para 

uso. Ela se assemelha ao cérebro em dois aspectos: o conhecimento é adquirido pela rede do 

seu ambiente através de um processo de aprendizado; As forças das conexões entre neurônios, 

chamadas pesos sinápticos, são usadas para armazenar o conhecimento adquirido (HAYKIN, 

2001). 

A Figura 1 representa o modelo neural, que é composto por três elementos básicos: um 

conjunto de sinapses com entrada x e peso w, uma unidade de soma para calcular a soma 

ponderada dos sinais de entrada juntamente com a adição do viés, e uma função de ativação 

para introduzir não linearidades à saída do neurônio. 

Figura 1 – Representação de um modelo não-linear de um neurônio 

 
Fonte: Haykin. (2001) 
 

A respeito da função de ativação, ela confere a não linearidade ao modelo, permitindo 

assim com que os complexos padrões existentes no mundo real possam ser aprendidos. As 

funções de ativação mais utilizadas são: sigmóide, tangente hiperbólica e a ReLU (do inglês, 

Rectified Linear Unit). Essas funções de ativação são aplicadas nas camadas das redes neurais 

convolucionais para aumentar a capacidade de aprendizado (VOULODIMOS et al., 2018). 

Assim como denominado por Frank Rosenblatt em 1957, o paralelo deste modelo, 

inspirado no neurônio biológico, é o perceptron simples. Embora o termo “neurônio” também 

seja usado de forma intercambiável. A organização desses perceptrons (ou neurônios) em 

camadas, contendo uma camada de entrada, uma ou mais escondida e uma de saída é o que 

denominamos redes neurais artificiais ou MLP (do inglês, Multilayer Perceptron). No MPL, 

representado na Figura 2, os dados externos são inseridos na camada de entrada e a saída é 

gerada na camada de saída. No entanto, para que esse resultado seja satisfatório para a aplicação 
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para a qual o MLP foi projetado, é necessário ajustar a arquitetura e pesos das somas ponderadas 

(TAUD & MAS, 2017). 

 
Figura 2 – Representação de um modelo MLP 

 
Fonte: Yang et al. (2023) 

 

Em um MLP, o número de camadas ocultas e o número de neurônios em cada uma, 

assim como a função de ativação usada são definidos pelo designer que deve usar seu 

conhecimento em habilidades de resolução de problemas adquiridas por meio da experiência e 

testes. 

Para tarefas de classificação, o MLP tem uma camada final chamada softmax. O softmax 

indica a probabilidade do resultado do MLP pertencer a determinada classe usando 1 neurônio 

para cada classificação possível na tarefa. Cada neurônio possui valores não negativos cuja 

soma totaliza 1; portanto, resultando na classe representado pelo neurônio com maior valor (ou 

probabilidade) (OU et al., 2004). 
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2.1.1 Redes Neurais Convolucionais 

 

Redes Neurais Convolucionais receberam significativa atenção na última década e são 

consideradas uma das ferramentas mais poderosas, especialmente em aplicações de visão 

computacional (VOULODIMOS et al., 2018). O nome "convolução" é usado para este modelo 

devido a um tipo específico de operação matemática linear entre matrizes, embora estritamente 

falando, a operação executada seja na verdade a correlação cruzada. No entanto, o termo 

"convolução" é mantido por conta de sua ampla popularidade dentro do subcampo. Focando no 

caso da convolução de duas matrizes bidimensionais finitas, visto que este trabalho lida com a 

detecção e leitura de placas veiculares, podemos perceber esta operação como movendo uma 

matriz sobre outra (em ambas as dimensões), calculando produtos ponto a ponto para gerar uma 

terceira matriz. Nas redes neurais convolucionais, a entrada é processada através de múltiplas 

camadas de convoluções e operações de pooling, que ajudam na captura das dependências 

espaciais e reduzem a dimensionalidade dos dados (ALI et al., n.d). 

Uma CNN é composta por diferentes blocos, incluindo camadas convolucionais que 

aplicam a operação de convolução em filtros sobre a matriz de entrada. As camadas de funções 

de ativação conferem não linearidade ao modelo, enquanto as camadas de pooling visam reduzir 

a dimensionalidade do conjunto de matrizes (SHANG et al., 2016), como demonstrado na 

Figura 3. Além disso, as camadas totalmente conectadas são semelhantes às camadas 

escondidas em uma ANN e formam as últimas partes da CNN com muitos parâmetros. 

Diferentes tipos de pooling podem ser usados, como average-pooling e max-pooling, mas 

alguns deles são rejeitados em seu uso conjunto (PONTI et al., 2017). 

 
Figura 3 – Arquitetura representativa de uma Rede Neural Convolucional 

Fonte: Voulodimos et al. (2018) 
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2.2 Modelo YOLO 

 

A arquitetura YOLO, criada em 2015, realiza a detecção de objetos em tempo real 

utilizando a imagem de entrada apenas uma vez na rede neural. Essa inovação superou os 

desafios apresentados pelos detectores de objetos de duas fases anteriores. A abordagem 

envolve dividir a imagem em grades pequenas para detectar possíveis partes de um único objeto 

individualmente e, em seguida, utilizar supressão não máxima para aplicação do filtro e ajuste 

das caixas delimitadoras nos objetos de interesse. Melhorias subsequentes levaram ao 

lançamento do YOLOV2 por Redmon e Farhadi, que incluiu recursos como Normalização em 

Lote em todas as camadas convolucionais, aumento da resolução nas camadas de classificação 

e detecção e utilização Âncoras para pseudo-detectações sobre uma grade - reduzindo o custo 

computacional comparado com seu predecessor. 

Já no YOLOV3, novos recursos incluem classificadores logísticos independentes para 

classes usando perda de entropia cruzada binária, o uso da rede neural Darknet-53 com 53 

camadas de convolução para acelerar as operações e prever caixas delimitadoras em diferentes 

escalas. Em 2020, foi lançado o YOLOV4 que apresenta desempenho até 12% melhor do que 

o YOLOV3 (GUO et al., 2021). Os autores também apresentaram a anatomia dos detectores de 

objetos como composta por BackBone (para extração de características), Neck (para concatenar 

características extraídas) e Dense Prediction (para criar caixas delimitadoras) (REDMON et al., 

2016). 

A quarta versão do YOLO introduziu modificações na Backbone e Dense Prediction. 

Ele passou a adotar uma rede CSPDarknet53 e incorporou o Bag of Freebies, que envolveu a 

aplicação de técnicas de aumento de dados, como imagens mosaico, suavização e regularização 

das saídas de classificação usando métodos como DropBlock regularization and Class label 

smoothing. Além disso, adotou a técnica do Bag of Specials com ativação Mish na função de 

perda juntamente com blocos SPP-block, SAM-block e redes PAN path-aggregation para 

concatenação de recursos na camada Neck. 

YOLOV5 foi desenvolvido como um acompanhamento do YOLOV4. Ao contrário de 

seu antecessor, o YOLOV5 é baseado no framework PyTorch em Python, ao invés do 

framework Darknet em C. Ele oferece cinco tamanhos de grade diferentes (N, S, M, L e X) para 

acomodar diversas necessidades de processamento e precisão. Estruturalmente, o YOLOV5 

compartilha semelhanças com o YOLOV4 em termos de camadas Backbone, Neck e Head. 

Embora sirva como uma alternativa ao YOLOV4, não há evidências científicas demonstrando 

que ele oferece desempenho ou precisão aprimorados em relação às versões anteriores. Os 
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tempos de inferência e o número de parâmetros no YOLOv5 são quase duas vezes maiores que 

os do DEEPFIGURES devido à rede CSP (JIA et al., 2023). 

A Figura 4 mostra uma representação do funcionamento de uma rede YOLO para 

análise de uma imagem. 
Figura 4 – Arquitetura representativa da YOLO para uma entrada de imagem 

 
Fonte: Jia et al. (2023) 
 

Wang et al. introduziu a versão de detecção de objetos YOLOV7 com foco na melhoria 

da precisão na previsão das caixas delimitadoras. A inovação chave desta versão é minimizar a 

propagação do gradiente durante a retropropagação, o que por sua vez reduz a memória 

necessária para armazenar as camadas da rede, acelerando assim o treinamento da rede. Para 

alcançar esse objetivo, eles propuseram o uso de uma Rede Agregada de Camada Eficiente 

Estendida em sua arquitetura. Além disso, o YOLOV7 dimensiona seus modelos em 

profundidade, largura e resolução enquanto concatena as saídas das camadas. Ele também 

utiliza reparametrização para aumentar robustez dos pesos ao identificar características gerais 

do modelo. Em geral ,YOLOV5 e YOLOV7 são ativações ótimas do modelo (TERVEN & 

CORDOVA-ESPARZA, 2023). 
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Atualmente, a ultima versão da YOLO foi apresentada em sua nona versão, 

apresentando melhorias da capacidade de processamento em uma gama variada de GPUs e 

configurações de máquina e modelos de treinamento. 

 

2.3 Detecção e Identificação de Placas 

 
O reconhecimento de placas veiculares tem sido abordado por meio de várias melhorias 

e avanços em algoritmos e tecnologias. Dentre as abordagens mais eficazes, destacam-se as 

redes neurais convolucionais, que se destacam no reconhecimento de padrões em imagens, 

tornando-as ideais para tarefas de detecção de placas veiculares (KURPIEL et al., 2017). As 

CNNs são conhecidas por sua habilidade em capturar características espaciais em imagens, o 

que as torna extremamente eficazes em detectar e reconhecer padrões visuais. Essa capacidade 

é essencial no reconhecimento de placas veiculares, onde a identificação de padrões específicos 

é crucial para o sucesso do processo (SILVA & JUNG, 2018). 

Assim, o modelo YOLO também desempenha um papel significativo nas detecções de 

placas veiculares. Com suas versões aprimoradas, como YOLOV5, que oferecem melhor 

desempenho e precisão, esse modelo demonstrou ser uma escolha eficaz para tarefas de 

detecção de objetos, incluindo placas veiculares (TERVEN & CORDOVA-ESPARZA, 2023). 

Ao considerar a detecção de placas veiculares, a combinação de CNNs e modelos YOLO 

oferece uma abordagem robusta e eficaz (TANG et al., 2023). Com a evolução contínua desses 

modelos e o aprimoramento constante de técnicas, a detecção de placas veiculares continua a 

se beneficiar de avanços significativos em visão computacional e aprendizado de máquina. 

É importante considerar que, embora as redes neurais convolucionais e o modelo YOLO 

tenham se destacado no reconhecimento de padrões em imagens e na detecção de objetos, 

existem algumas desvantagens e limitações a serem consideradas. De acordo com Lecun et al., 

Apesar dos avanços significativos em visão computacional, a maioria dos modelos devem levar 

em consideração a capacidade de processamento de capturas não ideais, considerando um pré-

processamento adequado para se adequar a impurezas e qualidade baixa de informação das 

capturas, que já devem ser esperadas (LECUN, 1998). A variação de ângulo, contraste, 

iluminação e impurezas, demonstradas nos exemplos de capturas da Figura 5,  são 

determinantes na influência direta da capacidade de leitura correta das mesmas, sendo parte 

principal e crucial do modelo de ser treinado e configurado de forma apropriada para sua 

aplicação (SILVA & JUNG, 2018). 
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Figura 5 – Exemplos de capturas com dificuldades sobre as placas veiculares 

 
Fonte: Silva & Jung. (2018) 

 

 Além disso, muitos autores ainda propõem abordagens computacionalmente caras que 

não conseguem processar quadros em tempo real, mesmo quando os experimentos são 

realizados em um GPU de alta qualidade., e assim, é definido pela literatura para que um sistema 

seja considerado se processamento em tempo real, deve trabalhar na faixa de 30 frames por 

segundo (FPS), já que esta é a taxa de quadros que câmeras trabalham de forma naturalmente 

identificada como movimento pelo olho humano (REDMON et al., 2016). 
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3 METODOLOGIA 
 

Para a implementação de um modelo de reconhecimento de placas e avaliação de sua 

performance considerando aspectos adversos desde a entrada de materiais até a saída correta ou 

não de sua detecção pelo modelo, alguns métodos foram apresentados neste estudo de forma a 

se validar o desempenho do modelo com diferentes dados e modelos de placas, bem como suas 

capturas, contraste, condições externas e etc. 

 
3.1 Ferramentas Computacionais 

3.1.1 Pandas 

 

A biblioteca Pandas desempenha um papel fundamental na análise e manipulação de 

dados dentro do campo da ciência de dados e análise exploratória. Criada em Python, a Pandas 

oferece uma ampla gama de ferramentas e estruturas de dados que permitem aos cientistas de 

dados importar, limpar, transformar e visualizar dados de maneira eficiente e eficaz (CHEN, 

2018). 

A Pandas possui duas estruturas de dados principais: o DataFrame e a Série. O 

DataFrame representa os dados de uma planilha, com linhas e colunas, enquanto as Séries 

correspondem a uma única coluna do DataFrame.  

 

3.1.2 Numpy 

 

A biblioteca NumPy foi criada com o objetivo de fornecer principalmente suporte 

abrangente para a componente numérica, especialmente no âmbito científico, na linguagem 

Python. Criado por Travis Oliphant, no ano de 2005, para ser o sucessor do pacote Numeric e 

com raízes do módulo SciPy, desde de sua criação foi muito bem aceita por profissionais que 

trabalham nas áreas de matemática, ciências e engenharia. 

O NumPy oferece uma ampla gama de funções e ferramentas para manipulação de 

arrays multidimensionais, realização de operações matemáticas complexas, geração de números 

aleatórios, entre outras funcionalidades essenciais para o desenvolvimento de aplicações 

científicas e de machine learning em Python (CHIN L. E DUTTA, 2016). 

 

3.1.3 YOLOv9 
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A YOLOv9 é uma evolução das arquiteturas de redes neurais convolucionais projetadas 

para a detecção de objetos em tempo real. A YOLOv9 é conhecida por sua capacidade de 

realizar detecção de objetos com alta precisão e velocidade, sendo capaz de processar imagens 

e vídeos em tempo real. Esta versão foi utilizada pois não apenas dispõe de maior velocidade 

de processamento e alta precisão em comparação as versões anteriores, mas apresenta 

desempenho significativo em ambientes sem GPUs avançadas, oferecendo alternativas para 

tempos de treinamento e execução do modelo, dando maior flexibilidade de aplicação, como 

mostrado na Figura 6. 

 
Figura 6 – Resultados de performance da YOLOv9 em comparação com versões anteriores 

 
Fonte: Wang. (2024) 
 

Gráficos de performance, como curvas de precisão-recall, taxa de falsos positivos versus 

verdadeiros positivos e tempo de inferência em relação ao número de objetos detectados, são 

utilizados para avaliar a eficácia da YOLOv9. Esses gráficos ajudam a visualizar o equilíbrio 

entre precisão e velocidade, bem como a capacidade do modelo de detectar objetos em 

condições variadas. 

 

3.1.4. EasyOCR para Detecção em Tempo Real 

 

Para complementar a detecção de placas de veículos em imagens estáticas, utilizamos a 

ferramenta EasyOCR para a detecção e reconhecimento de caracteres em tempo real em vídeos 

pré-gravados de tráfego de trânsito. EasyOCR é uma biblioteca de reconhecimento ótico de 
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caracteres (OCR) baseada em deep learning, projetada para ser rápida e precisa. A ferramenta 

processa cada frame do vídeo, detectando a região da placa e reconhecendo os caracteres, 

suportando múltiplos idiomas e tipos de caracteres, o que é essencial para lidar com a 

variabilidade das placas nos diferentes países, do qual trataremos neste trabalho. Um exemplo 

de uso da ferramenta é demonstrado na Figura 7. 

 
Figura 7 – Exemplo de implementação com EasyOCR 

 

 
Fonte: Jaidedai, (2023) 

 
A combinação da YOLOv9 para a detecção de placas e do EasyOCR para o 

reconhecimento de caracteres oferece uma solução robusta e eficiente para a análise de tráfego 

de trânsito, permitindo monitoramento em tempo real e coleta de dados precisos sobre os 

veículos em circulação. 

 

3.2. Distribuição e avaliação de Datasets 

 

Para avaliar a performance da YOLOv9 na detecção de placas de veículos, utilizamos 

dois datasets distintos: 

- Dataset 1: Placas Europeias: Este dataset contém imagens de placas de veículos de 

diversos países europeus, capturadas em diferentes condições de iluminação e ângulos. As 

placas possuem formatação e caracteres específicos dos países europeus. O dataset é público e 

apresenta uma coleção de 350 imagens, sendo apresentado um exemplo de imagem na Figura 

8, com diferentes variações em suas capturas. 
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Figura 8 – Exemplo de imagem do Dataset Europeu 

 
Fonte: Sharma, (2024) 

 

- Dataset 2: Placas Mercosul: Este dataset é composto por imagens de placas de veículos 

de países do Mercosul, como Brasil, Argentina e Uruguai. As placas apresentam formatação e 

caracteres padronizados pela normativa do Mercosul. Além do novo modelo de formatação de 

placas, o dataset disponibiliza também imagens de placas do formato antigo. Essa variação 

entre modelos garante maior robustez ao treinamento do modelo, uma vez que ele tem um maior 

numero de informações e possibilidades para seu treinamento e avaliação. A Figura 9 mostra 

um exemplo de imagem disponível no dataset. 
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Figura 9 – Exemplo imagem para o Dataset Brasileiro 

 
Fonte: Noleak Defence, (2024) 

 

Para garantir a comparabilidade dos resultados, ambos os datasets foram divididos em 

conjuntos de treinamento e teste, na proporção 60/40. O conjunto de treinamento de cada 

dataset foi usado para treinar a YOLOv9, enquanto o conjunto de teste foi utilizado para avaliar 

a performance do modelo.  

A comparação entre os dois datasets foi realizada com base em métricas como precisão, 

recall, e F1-score, além da Matriz de Confusão na saída da implementação do modelo. Além 

disso, avaliamos a capacidade da YOLOv9 de generalizar a detecção de placas em diferentes 

contextos, considerando a variabilidade entre as placas europeias e as placas Mercosul. Este 

particionamento foi realizado em todos os testes, de forma a garantir que a comparabilidade dos 

resultados fosse justa. 

 

3.3. Metodologia de Desenvolvimento 

 

3.3.1 Estudo dos Hiperparâmetros da YOLO 

 

A detecção de placas utilizando o modelo YOLO envolve a escolha cuidadosa e o ajuste 

dos hiperparâmetros para maximizar o desempenho do modelo. A avaliação dos 

hiperparâmetros é um passo crucial para garantir que o modelo YOLO atinja a melhor precisão 
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possível na detecção de placas. Primeiramente, é importante considerar os principais 

hiperparâmetros que podem ser ajustados em diferentes níveis, incluindo a configuração da rede 

neural, os parâmetros de treinamento e os parâmetros de inferência. 

O tamanho do lote (batch size) define o número de amostras processadas antes de 

atualizar os pesos do modelo. Ajustar o tamanho do lote pode influenciar a estabilidade e a 

velocidade do treinamento. A taxa de aprendizado (learning rate) controla a magnitude das 

atualizações dos pesos durante o treinamento. Uma taxa de aprendizado alta pode levar a uma 

convergência rápida, mas pode causar oscilações no erro, enquanto uma taxa muito baixa pode 

resultar em uma convergência muito lenta. O número de épocas (epochs) determina quantas 

vezes o modelo irá percorrer o conjunto de treinamento completo. Avaliar o desempenho em 

diferentes números de épocas pode ajudar a identificar o ponto em que o modelo começa a 

superajustar (overfitting). 

Além disso, a arquitetura da rede, que inclui parâmetros como o número de camadas e 

filtros em cada camada, pode ser ajustada para otimizar o desempenho do modelo. As 

ancoragens (anchors), que são caixas predefinidas usadas pelo modelo para prever a localização 

das placas, também podem ser ajustadas. Modificar o número e as dimensões das ancoragens 

pode melhorar a precisão das previsões. Outros parâmetros importantes incluem os de confiança 

e NMS (Non-Maximum Suppression). O limiar de confiança define a probabilidade mínima 

para uma detecção ser considerada válida, enquanto o NMS é usado para eliminar previsões 

redundantes. Ajustar esses hiperparâmetros pode ajudar a reduzir falsos positivos e negativos. 

Para avaliar os ajustes dos hiperparâmetros, utilizamos da avaliação dos dados obtidos 

após a separação dos dados em treinamento e teste. Ao treinar o modelo utilizando a mesma 

proporção entre treinamento e teste para todos os experimentos, foram avaliadas as métricas de 

saída de forma a verificar o comportamento do modelo através dos primeiros ajustes dos 

hiperparâmetros, e executando sua correção conforme a propriedade de cada hiperparâmetro, 

respeitando as características do dataset. Para tal, foram utilizadas métricas como Precisão, 

Revocação, F1-Score - utilizado para a comparação entre os datasets já mencionados  -  AP 

(Average Precision) e mAP (mean Average Precision) para avaliar o desempenho do modelo. 

Essas métricas fornecem uma visão detalhada da capacidade do modelo de detectar placas 

corretamente. 

Por fim, a análise dos resultados das diferentes configurações de hiperparâmetros é 

essencial para identificar as configurações que proporcionam o melhor equilíbrio entre precisão 

e eficiência. É importante considerar tanto o desempenho no conjunto de teste quanto a 

generalização no conjunto de teste. 
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A avaliação e ajuste dos hiperparâmetros do modelo YOLO são fundamentais para 

otimizar a detecção de placas. Ao seguir uma abordagem sistemática e baseada em métricas 

para ajustar os parâmetros de treinamento, a arquitetura da rede e os parâmetros de inferência, 

é possível melhorar significativamente a precisão e a eficiência do modelo. A escolha adequada 

dos hiperparâmetros pode levar a um modelo mais robusto e confiável para aplicações de 

detecção de placas em tempo real. 

 

3.3.2. Simulação de Distúrbios e Condições Não-Ideais 

 

De forma a obter uma maior gama de possibilidades de treinamento e avaliação dentro 

dos mesmos datasets, técnicas de pré processamento das imagens podem ser aplicadas para 

alterar-se a condição de entrada das imagens para treinamento e avaliação do modelo, de forma 

a simular condições não ideais de captura. Uma delas pode ser através da modificação de 

contraste. 

Modificar o contraste de imagens em um dataset para treinamento de um modelo de 

reconhecimento de placas veiculares é uma técnica comum para aumentar a robustez e a 

generalização do modelo. Ao introduzir condições não ideais, como variações de contraste, 

podemos simular diferentes cenários de iluminação e qualidade de imagem que o modelo pode 

encontrar no mundo real.  

O contraste em uma imagem refere-se à diferença na luminância ou cor que torna um 

objeto distinguível de outros objetos e do fundo. A modificação do contraste altera essa 

diferença, tornando a imagem mais clara ou mais escura. Existem diversas formas de ajustar o 

contraste, como a equalização de histograma, a transformação linear (alargamento ou 

estreitamento do intervalo de intensidade) e outras técnicas mais avançadas. 

Para este trabalho, a transformação linear é aplicada aos valores de intensidade da 

imagem para aumentar ou diminuir o contraste, de acordo com a seguinte formula, através de 

função de código respectiva: 

𝐼!"#(𝑥, 𝑦) = 	𝛼. 𝐼(𝑥, 𝑦) + 	𝛽 

Onde 𝛼 é o fator de ganho (controla o contraste) e 𝛽 é o deslocamento (controla o brilho) 

(GONZALEZ et al., 2018). 

Ao alterar o contraste das imagens, o dataset pode incluir condições de iluminação 

variáveis, como sombras, brilho excessivo, ou iluminação fraca, que são comuns em cenários 

reais de captura de placas veiculares, uma vez que um modelo treinado em imagens com 
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contrastes variados aprenderá a reconhecer placas veiculares em diferentes condições de 

iluminação, tornando-o mais robusto e generalizável. 
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4 ANÁLISE E RESULTADOS 
 

Para a aplicação do método proposto com análise de imagens pela YOLO, foram 

utilizados dois vídeos distintos, com diferentes características entre si. O primeiro vídeo é 

público de um segmento de trânsito europeu, com múltiplos carros distintos passando, porém, 

com formatos semelhantes de placas bem focadas e com filmagem dinâmica da posição da 

câmera - ou seja, com uma variação de seu posicionamento e foco perpendicular a cada placa 

dos veículos que se apresentam em cada frame. O segundo vídeo aplicado é de uma captura 

própria feita com veículos próprios, com finalidade de apenas ser uma prova de conceito para 

o modelo e suas diferentes performances, já com a visualização de placas do modelo 

MERCOSUL.  

Nesta etapa, diversos experimentos foram realizados, mas somente os melhores 

resultados estão sendo representados em uma análise mais profunda. 

 

4.1 Aplicação com treinamento via Dataset 1 – Modelo Europeu 

 

Ao desenvolver o modelo de detecção de placas de veículos utilizando a arquitetura 

YOLO, foram cuidadosamente selecionados e configurados diversos hiperparâmetros com o 

objetivo de obter um desempenho satisfatório. 

Foi definida uma taxa de aprendizado inicial (lr0) de 0.01, a qual se manteve constante 

durante todo o processo de treinamento, não havendo um decaimento programado (lrf = 0.01). 

Esse valor inicial é considerado razoável para o início do treinamento. Além disso, um 

momentum elevado de 0.937 foi empregado, juntamente com um breve período de aquecimento 

(warmup) de 3 épocas. Essa abordagem visa estabilizar o treinamento desde o começo, evitando 

oscilações bruscas. 

Ao definir os pesos para as diferentes componentes da função de perda, buscou-se um 

equilíbrio entre elas. Deu-se maior ênfase à perda de localização das caixas delimitadoras (box 

= 7.5), mantendo valores moderados para a perda de classificação (cls = 0.5) e de objetos (obj 

= 0.7). Essa configuração reflete a prioridade em obter uma boa precisão na localização das 

placas de veículos. 

Para enriquecer o conjunto de treinamento foram aplicadas diversas técnicas de aumento 

de dados de forma moderada. As transformações geométricas, como translação (translate = 0.1), 

escala (scale = 0.9) e inversão horizontal (fliplr = 0.5), foram utilizadas sem exageros. Além 
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disso, técnicas como mosaico (mosaic = 1.0) e mistura de imagens (mixup = 0.15) foram 

empregadas para aumentar a diversidade das amostras. 

Ao fim de testes, a configuração de hiperparâmetros foi definida pelos valores 

mostrados na Figura 10: 

 

Figura 10 – Configuração de Hiperparâmetros 

 
Fonte: Autoria Própria, (2024) 

 
 

Para o primeiro experimento com a utilização do Dataset 1 para a execução do modelo, 

após um treinamento com divisão de 60/40, foram obtidos os seguintes resultados: 

O gráfico de precisão na Figura 11 apresenta uma curva ascendente, demonstrando que 

o modelo está ficando cada vez mais preciso na detecção correta das placas de veículos. Esse 
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aumento constante da precisão é muito positivo, pois significa que o modelo está melhorando 

sua capacidade de identificar corretamente as placas, reduzindo o número de falsos positivos. 

Isso sugere que as técnicas de treinamento e os hiperparâmetros escolhidos estão sendo eficazes 

para otimizar a precisão do modelo. 

Analisando o gráfico de revocação, observamos também uma tendência de aumento ao 

longo do treinamento. Isso indica que o modelo está ficando cada vez melhor em detectar todas 

as placas de veículos presentes nas imagens, reduzindo o número de falsos negativos. Uma 

revocação alta é essencial para garantir que o modelo não deixe de identificar placas 

importantes. A melhoria gradual da revocação, juntamente com o aumento da precisão, 

demonstra que o modelo está se tornando mais robusto e completo em sua capacidade de 

reconhecimento. 

 
Figura 11 – Resultados Treinamento Dataset 1 – Modelo Europeu 

 
Fonte: Autoria Própria, (2024) 

 

A matriz de confusão é uma ferramenta importante para avaliar o desempenho de um 

modelo de classificação. Ao analisar a matriz de confusão apresentada, é possível obter insights 

detalhados sobre o desempenho do modelo em relação às classes específicas. 

De maneira geral, o modelo apresenta uma acurácia geral bastante alta, o que é um 

resultado positivo. Ao examinar as métricas por classe da Matriz de Confusão da Figura 12, 

observa-se que a precisão da classe "Placa" é de 90%, indicando que quando o modelo prevê 

uma amostra como sendo uma placa, em 90% dos casos essa predição está correta. Além disso, 
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a revocação da classe "Placa" é de aproximadamente 81,82%, o que significa que o modelo está 

conseguindo detectar a grande maioria das placas presentes nas amostras de teste. Esse é um 

desempenho satisfatório para essa classe. 

No caso da classe "Não Placa", a precisão também é alta, em torno de 83,33%. Isso 

sugere que, quando o modelo prevê uma amostra como não sendo uma placa, ele está certo na 

maior parte do tempo. No entanto, a revocação dessa classe ficou em 55,56%, o que pode ser 

considerado um pouco baixo. Isso indica que o modelo ainda apresenta dificuldades em 

identificar corretamente todas as amostras que não são placas de veículos, destacando-se essa 

característica pela parte mais escura não estar na diagonal principal da matriz de confusão. 

 
Figura 12 – Matriz de Confusão Dataset 1 – Modelo Europeu 

 
Fonte: Autoria Própria, (2024) 

 

Analisando o gráfico da Figura 13, observa-se que o F1-Score apresenta uma tendência 

de aumento ao longo das épocas de treinamento. Isso é um sinal muito positivo, pois indica que 

o modelo está aprimorando seu equilíbrio entre precisão e revocação à medida que o 

treinamento progride. 

Nos estágios iniciais do treinamento, o F1-Score parece partir de um valor mais baixo, 

mas então exibe um crescimento consistente e contínuo. Esse comportamento sugere que o 
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modelo está sendo capaz de aprender efetivamente, melhorando sua capacidade de classificação 

de forma equilibrada. Próximo ao final do treinamento, o gráfico mostra o F1-Score atingindo 

um patamar mais alto e estável. Isso é um indicativo de que o modelo atingiu um bom equilíbrio 

entre precisão e revocação, o que é essencial para um bom desempenho no reconhecimento de 

placas de veículos. 

É importante notar que, juntamente com a análise da matriz de confusão, o gráfico de 

F1-Score fornece uma visão mais completa do desempenho do modelo. Enquanto a matriz de 

confusão permite analisar métricas específicas por classe, o gráfico de F1-Score demonstra a 

evolução geral do modelo durante o treinamento. 

Portanto, a análise combinada da matriz de confusão e do gráfico de F1-Score sugere 

que o modelo de reconhecimento de placas de veículos está apresentando um desempenho 

satisfatório e em constante melhoria. 

 

Figura 13 – F1-Score Dataset 1 – Modelo Europeu 

 
Fonte: Autoria Própria, (2024) 

 
 
4.1.1 Resultados Vídeo 1 – Placa Europeia 

 
Ao aplicar o vídeo para identificação do modelo, juntamente do uso do EasyOCR para 

mapeamento das placas, obteve-se uma saída de placas para cada frame, que foram aplicadas 
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ao vídeo original, com os valores descritos na tabela no Apêndice, com frames do vídeo como 

descritos pela Figura 14. 

 
Figura 14 – Resultados de detecção Placa Europeia – Modelo Europeu 

  
Fonte: Autoria Própria, (2024) 

 
 
4.1.1.1 Avaliação de Resultados 

 

Ao avaliar a saída da detecção do primeiro vídeo de placas europeias com o treinamento 

via dataset 1 de placas também europeias, nota-se uma grade variação entre o valor detectado 

da placa de frame para frame, onde quando a placa entra no vídeo, ainda não estando em uma 

posição totalmente perpendicular em relação a câmera, os dados de saída do modelo mostram 

uma baixa acurácia, que é refletida em um resultado incorreto da detecção do valor de fato da 

placa, mas que ao longo do vídeo, quando a placa se encontra em melhor posicionamento 

perante à câmera, a acurácia destes frames se mostra notoriamente maior e, assim, o valor da 

placa é detectado corretamente. Este caso se repete para todos os carros do vídeo, e pode ser 
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ilustrado pela Tabela 1, que mostra cada frame de detecção do primeiro veículo do vídeo, uma 

Lamborghini branca, mostrada na Figura 15. 

 

 
Tabela 1 – Resultados de detecção Placa Europeia – Modelo Europeu 

plate_text confidence_score 
RiBF 0.05306435003876686 
REBF 0.30981993675231934 
RlBJ 0.201009601354599 
RELE 0.11229486018419266 

RIB} JF 0.15870956692364457 
RE}F 0.08916409313678741 
RE}F 0.4151368737220764 

0 0.6333469351516652 
R-IB3JF 0.8204102975980014 
RIB3JF 0.11882521423435767 

R-IB3-JF 0.429937736301467 
R-IB3-JF 0.48628528135528787 
R-183-JF 0.6212118914749184 
R-183-JF 0.5414688421259464 
R-183-JF 0.8270579560160255 
R-183-JF 0.6590897090380707 
R-1B3-JF 0.5517993451947157 
R1B3-JF 0.7695802620525498 
R-1B3-JF 0.4232490089278191 
R-1B3-JF 0.6535040163689592 
R1B3 JF 0.6409775752141547 
R83-JF 0.6105704556359313 
R1B3 J 0.4000341924564662 

R183-JF 0.9852849909927384 
R183-JF 0.5836652151458606 
R183-JF 0.8345232517576453 
R-183-JF 0.6167815806502126 
R183-JF 0.9116955325250999 
R183-JF 0.9708937265475452 

R-183-JF 0.9132957544506282 
R-183-JF 0.4421854179896864 
R-183-JF 0.8825696424316211 
R183-JF 0.8930131255523532 
R-183-JF 0.616848738979327 
R-183-JF 0.9090362087559092 
R183-JF 0.731603647857995 
R183-JF 0.654375214998238 
R-183-JF 0.9956996749110265 
R-183-JF 0.750565505874517 
R-183-JF 0.6273048172448105 
R-183-JF 0.8992561993654946 
R-183-JF 0.6050848872259549 
R-183-JF 0.7907307665089829 
R83-JF 0.9299077044638021 
R183.JF 0.6229970081089354 
R-183-JF 0.39659970938694367 
R83-JF 0.954892761166245 

R183-JF 0.7073265257988399 
R183 JF 0.4851324576536381 
R183 JF 0.5821009399773545 
R183 JF 0.6166352168694814 
R182IF 0.3182422723862696 
R-I8UIF 0.144612799871611 
R-18t 0.12785270282545563 

R187 IF 0.1293106983030742 
R18 (JF 0.41997511629347933 
R-18TJF 0.125608937642755 

R83F 0.10595805943012238 
R183F 0.35486043098856496 

 

Fonte: Autoria Própria, (2024) 
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Figura 15 – Variação de detecção Placa Europeia – Modelo Europeu 
 

 
Fonte: Autoria Própria, (2024) 

 
Outro fator interessante foi na detecção de uma placa específica, distinta das comuns do 

modelo europeu, que mostrou um alto valor de acurácia por quase todos seus frames detectados. 

Diferentemente das placas comuns em amarelo da maioria dos veículos, um deles apresenta 

uma placa da cor verde. A placa de cor verde é usada no Reino Unido para identificação de 

veículos pesados. Os valores de acurácia e saída do valor identificado para essa placa foi 

consideravelmente mais alto em comparação com os demais veículos de placas amarelas, 

mostrado na Figura 16. 
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Figura 16 – Detecção de placa de maior contraste – Modelo Europeu 

 
 

Fonte: Autoria Própria, (2024) 

 
De acordo com estudos sobre a psicologia das cores, a combinação de verde e preto 

apresenta um maior contraste visual do que a combinação de amarelo e preto (Birren, 1969). 

Isso se deve ao fato de o olho humano ser mais sensível a diferenças de luminância (brilho) do 

que de cromaticidade (cor) (Wyszecki & Stiles, 1982). A diferença de luminância entre o verde 

e o preto é maior do que a diferença entre o amarelo e o preto, resultando em um contraste mais 

evidente. 

Essa vantagem de contraste também se reflete no processamento computacional de 

imagens. No espaço de cor RGB, utilizado comumente em sistemas de visão computacional, o 

verde e o preto ocupam regiões mais separadas do que o amarelo e o preto (Gonzalez & Woods, 

2017). Essa separação mais distinta no espaço de cor facilita a segmentação e a discriminação 

dessas cores durante o processamento da imagem. 

Estudos demonstram que o histograma de cores de uma imagem contendo placas verdes 

com letras pretas apresenta picos mais pronunciados e separados entre as regiões 

correspondentes ao verde e ao preto, em comparação a placas amarelas com letras pretas 

(Szeliski, 2010). Essa diferença no padrão do histograma simplifica a extração de características 

relevantes durante a detecção e o reconhecimento das placas. 
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Outro fator que se repete por quase todo o modelo, é a confusão em pequenos pontos de 

letras com números visualmente parecidos, e números com letras visualmente parecidas, como 

no caso da letra “H” com o número “4”, por exemplo, visto na Figura 17. 

 

Figura 17 – Confusão entre números e letras – Modelo Europeu 

 
 

Fonte: Autoria Própria, (2024) 

 
 

A Tabela 2 mostra os valores para esta placa ao longo dos frames identificados: 

 
Tabela 2 –Placa identificada ao longo dos frames – Modelo Europeu 

 
66-Ak-
07 

0.13434707273744456 

66-H4-
07 

0.36936739416524383 

66-HH-
07 

0.7823202556235775 

66-HH-
07 

0.6274762887326704 

66-HH-
07 

0.6227708755749349 

66-HA-
07 

0.6917622616185684 

66-HH-
07 

0.8991356970597315 

66-HH-
0Z 

0.25962900522767235 

66-HA-
07 

0.4206840110855141 

66-HA-
07 

0.6064447251177683 

66-HH-
07 

0.990305182309572 

66-HH-
07 

0.9879998104298827 

66-HH-
07 

0.9948879013974967 

66-HH-
07 

0.9909306343646149 
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66-HH-
07 

0.7350326825196987 

66-HH-
07 

0.630455468134792 

66-HH-
07 

0.8201266380667022 

66-HH-
07 

0.9558384272092383 

66-HH-
07 

0.7663381369395693 

66-HH-
07 

0.9502251101784123 

66-HH-
07 

0.9671375860197425 

66-HH-
07 

0.9830614100258778 

66-HH-
07 

0.951688481512427 

66-HH-
07 

0.6802527165996081 

66-HH-
07 

0.9832128530566424 

66-HH-
07 

0.9778102692849018 

66-HH-
07 

0.9720698112814278 

66-HH-
07 

0.9842281377521336 

66-HH-
07 

0.6321628321373215 

66-HH-
07 

0.7229239314764029 

66-HH-
07 

0.9471654803465703 

66-HH-
0Z 

0.7762276584013587 

66-HH-
07 

0.38270170832479794 

66-HH-
07 

0.7383807949611279 

66-HH 
0Z 

0.39856192304789156 

66-HH-
07 

0.8651668155045111 

66-HH-
07 

0.9546697871073969 

66-HH-
0Z 

0.5620853454099388 

66-HH-
07 

0.8922340406928604 

66-HH-
07 

0.487203295938713 

66-HH-
07 

0.8955619361883523 

66-HH-
07 

0.7714306945215754 

66-HH 
0Z 

0.5002616919861341 

66-HH-
07 

0.5975810512598143 

66-HH-
07 

0.6892215580577546 

66-HA-
07 

0.9225795585941798 

66-HH-
07 

0.629215065319526 

66-HH-
07 

0.9236369408572178 

66-HH-
07 

0.9865171110550601 

66-HH-
07 

0.9887135230481645 

66-HH-
07 

0.9898470539855718 

66-HH-
07 

0.8609589073698622 

66-HH-
07 

0.9842387864787471 

66-HH-
07 

0.8181696663447922 

66-HH-
07 

0.993685129341034 

66-HH-
07 

0.7667163185800521 

66-HH-
07 

0.9782409092327247 

66-HH-
07 

0.9718965410949894 

66-HH-
07 

0.9837614560365607 

66-HH-
07 

0.9872125815358916 

66-HH-
07 

0.9063935472087015 

66-HH-
07 

0.8985490238619743 

66-HH-
07 

0.9899161703309022 

66-HH-
07 

0.9947325930655659 

66-HH-
07 

0.9911680872954134 

66-HH-
07 

0.9960104520822906 

66-HH-
07 

0.9948111143613517 

66-HH-
07 

0.9900395420597644 
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66-HH-
07 

0.9777283350117536 

66-HH-
07 

0.9819152387273875 

66-HH-
07 

0.8575713826353227 

66-HH-
07 

0.5993137365533426 

66-HH-
07 

0.7921467907212532 

66-HH-
07 

0.8566717800784078 

66-HA-
07 

0.772457052838582 

 
Fonte: Autoria Própria, (2024) 

 

4.1.2 Resultados Vídeo 2 – Placa Brasileira/Mercosul 

 

 A aplicação do vídeo de placas do modelo brasileiro/Mercosul foi testada com o 

treinamento do modelo europeu, e alguns resultados são demonstrados abaixo na Figura 18 

 
Figura 18 – Representação geral de detecção placa brasileira/Mercosul – Modelo Europeu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autoria Própria, (2024) 
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4.1.2.1 Avaliação de Resultados 

 

 A detecção em geral das placas do modelo brasileiro/Mercosul já se mostra com menor 

acurácia em relação às placas europeias quando comparadas utilizando o mesmo treinamento 

com dataset europeu. A identificação das placas apresenta acurácia em geral baixa para todos 

os frames, com exceção de alguns que mesmo com uma acurácia abaixo de 0.80, conseguem 

ter a saída correta para algumas placas. Porém, este caso é raridade para todo o processamento, 

onde na maioria dos frames os valores se distinguem em grande parte de uma leitura precisa, 

visto pela tabela abaixo, e em alguns casos até adicionam caracteres jamais esperados para uma 

leitura, como caracteres especiais. Estes valores são evidenciados na Tabela 3, com uma 

amostra de leitura registrada na Figura 19. 

 
Tabela 3 –Placas brasileiras detectadas ao longo dos frames– Modelo Europeu 

 

plate_text confidence_score 
[041 0.14497151970863342 
[ea 0.24624576569272458 
Eaau) 0.030075198903688236 
W4l 0.05998728030528242 
LRALA 0.1646480635799825 
Woud 0.10716736316680908 
WRQ4N 0.04854128092170598 
EUF 0420 0.16231725081905418 
nai 0.06228727816949495 
ERau 0.1654321551322937 
ERjug 0.5511888150885159 
ERjug 0.25158364533828054 
ER0470 0.4073415159799033 
ER0470 0.40386377414237623 
Ep 1470 0.19557980588972798 
40430 0.10549338268075607 
ER0tz0 0.09294463526415758 
Ek0o 0.4163222908973694 
ER0o 0.17605949938297272 
0430| 0.3040977589879192 
430 0.6506818532943726 
04jd 0.05494146794080734 
04d 0.21058265193987444 
043d 0.15869668126106262 

043d 0.3131829500198364 
043d 0.32146409153938293 
JF VT 0.049907880450809204 
1734j0 0.10888562286443701 
20430 0.5087823569507037 
Wp0430 0.25067931190261605 
Evr 0430 0.23179309763024383 
Evr 0430] 0.2617600837625955 
Evr 0430 0.15603856997319954 
Evp 0430 0.33637275476865963 
evp 0430 0.28779750048861 
Eup 030 0.26112154695314244 
Evp 0430 0.6020525406808539 
EVp 0430 0.3611330780448285 
EVp 030 0.3820134680545103 
EVp 0430 0.4680272048914824 
EVp 0430 0.33258465665907117 
Eup 0430] 0.3248979288066084 
Eup 0430 0.6791882426476836 
Eup 0430 0.5990204359444403 
@up 0430 0.37138560541233423 
EUP 0430 0.6233064622998311 
EVP 0430 0.719807203314065 
EUP 0430 0.7455550131113132 
EVP 0430 0.4058211522731134 
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EVP 0430| 0.10269359071804231 
Eup 0430 0.7134994819794991 
Evp 0430) 0.5264758627286963 
Eup 0430 0.8223613440664362 
Evp 0430 0.8218352188213225 
Evp 0430 0.6802701711064743 
EvP 0430 0.37474935655371217 
Eup 0430 0.6307279343157352 
Eup 0430 0.5986337082439037 
EvP 0430) 0.21585922009937558 
EVP 0430 0.39493971611359047 
Evp 0430 0.690898825005399 
EVP 0430 0.4862907695064777 
EVP 
0430) 

0.2169231960359107 

Evp 0430 0.9090009464432784 
Evp 0430| 0.49069879487437 
Evp 0430] 0.4693372903855271 
EvP 0430 0.44987995788101026 
EVp 0430 0.4796992037140531 
Evp 0430 0.5526513097003384 
Evp 0430] 0.36023842451460447 
Evp 0430] 0.18069331203717626 
EvP 0430 0.5426497951570516 
EvP 0430] 0.2581401233888993 
Evp 0430| 0.403008235047187 
El? 0430 0.5854098077079105 
EV? 
04301 

0.20236444553980396 

EV? 0430| 0.3042485112296725 
Ev? 0430] 0.18036450650125213 
Eup-
0430) 

0.4930009832412116 

Eup 0430) 0.3135156207520795 
EVp 0430 0.4869352941649075 
EUp 0430 0.3165247452819029 
Eup 0430 0.4473348551090943 
EUP 0420 0.2756401529520637 
Eup 0430 0.5493845610478999 
Eup 0430 0.31490717373786437 
Eup 0430 0.5268559670815024 
Eup 0430 0.5093106148536677 
Eup 0430 0.4076861291921927 
Eup 0430 0.7361009240009845 
Eup 0430) 0.5225917162621958 

Eup 
04301 

0.22635054206221877 

Eup 0430] 0.42845780133205125 
Evp 0430] 0.3823324704288989 
Eup 0430) 0.38503668353789255 
Eup 0430 0.5897008328241005 
Evp 0430] 0.3055209906842311 
Eup 0430 0.7781770433498147 
Evp 0430] 0.21057295629271222 
Evp 0430] 0.1490037482518034 
Eup 0430] 0.3322614532465019 
Evp 0430] 0.2981027825649573 
Eup 0430] 0.2826056813790926 
Evp 0430 0.5814005483685566 
Evp 0430] 0.332784655907189 
EV? 0430] 0.2964465141072532 
Old 0.30191832273103897 
Ev? 0430] 0.2597894689801056 
Ev? 0430] 0.5807159127322125 
Evp 0430 0.5111787569503545 
EvP 0430 0.3840600527632921 
EvP 0430 0.5711067612048579 
EvP 0430) 0.29775785606907945 
EVP 
0430] 

0.33845709929191836 

EVP 0430 0.6715317679011577 
EvP 0430 0.33086523751166663 
EVP 
0430) 

0.49817682880829584 

EVP 0430 0.8052695182965796 
EVP 0430 0.7295478942195113 
EVP 0430 0.6879291564670581 
EVP 0430 0.6894332306341667 
EVP 0430 0.6647493945831308 
EVP 0430 0.8084755262754235 
EVP 0430 0.7012333398160433 
EVP 
0430] 

0.43192075920516243 

EVP 0430 0.720315517708163 
EVP 0430 0.7546045501940409 
EVP 
0430) 

0.511383675308778 

EVP 
0430] 

0.26949305458706246 

EVP 0430 0.6009414347820832 
EP 0430 0.5596276511996354 
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Evp 0430] 0.1272592938414053 
EuP 0430 0.412344361355836 
EuP 0430) 0.18714750499700963 
EVP 
0430] 

0.26085760091843907 

EVP 
0430) 

0.40031409946371305 

EUP 0430 0.358570022830016 
EUP 0420 0.31525707034573075 
EUR 
0420) 

0.1927071520639946 

EUP 0430 0.3237817121992158 
EUP 0430 0.3699308246310511 
EVP 0430 0.5857158695691431 
EUP 0430 0.601380328013294 
EUP 0430 0.5658250040285696 
EUP 0430 0.48053656405871276 
EUP 0430 0.5543236378121125 
EUP 0430 0.7749488480629106 
EUP 0430 0.7001691852462508 
EUP 
0430} 

0.27813466221960964 

EUP 
0430| 

0.6413971855950998 

EvP 0430| 0.17240205683731707 
Eup 0430) 0.40650226290259595 
EUP 
0430) 

0.346454980907989 

Evp 0430 0.490731071377319 
Eup 0430} 0.21765761098770028 
eup 0430 0.5910328133696734 
EuR 0420 0.573268563077191 
GEur 
0420 

0.17402300873298146 

EuP 0ij0 0.3639527914890294 
Eu? 0430 0.5886191134233476 
EUP 
0430] 

0.4321186868580288 

EuP pia0 0.10846631708287446 
EuP 0420 0.6694807681357136 
Eup 0430 0.5103787606786527 
EuA o0 0.10983448429156342 
EUPDag 0.19596559819114376 
EPood 0.08189732946887186 
Endid 0.07936292086536491 
@Veoe 0.0275074379497415 
72 ( 0.15315993130207062 

4h7 6 0.4608306612341816 
Hz 6 0.4142734706401825 
4 6 0.3732718537466757 
C 0.5841646773484541 
76 0.9180357132316708 
6 0.8052753428858104 
J76 0.3778629134620581 
J6 0.16690412736755517 
Ura 0.009562033621324859 
D 0.28763361305870205 
D25 0.10673737213279723 
DD 0.02424352861184061 
3 0.0741208233706212 
376 0.15352810371839587 
4 0.22184604005958253 
Fe 0.11612795691113234 
Ie 0.13213109354048688 
Ia 0.036974272864212815 
Jb 0.01903482329047529 
ID 0.3634016883925951 
mDD 0.05872533691179036 
H 0.6954155115445282 
HID6 0.19557836651802063 
HLJI6 0.15241557862323563 
HLJI6 0.26306737009890424 
HLJ5 26 0.3965957391497424 
HLJ5D26 0.08446558962389868 
HLJ526 0.2730606059184505 
HLJ526 0.2166274648170929 
HLJ5D26 0.2519400361296336 
HLJ5D6 0.19055545080725317 
HLJ526 0.41524989390971995 
HLJ5J26 0.32279728047064743 
HLJ5J26 0.6413295800899433 
HLJ5 26 0.2526253025401774 
HLJ5W26 0.3068159627423895 
IJ5W26 0.11719889767638782 
HLJ5 J26 0.43084265333524097 
HLJ5 26 0.1964751671583836 
HLJ5 -26 0.12144262495663152 
HLJ5 J26 0.22867490180270109 
HLJ5 J26 0.5999824558680233 
HLJ5 J26 0.6795727312395003 
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HLJ5J26 0.6463181494358734 
HLJ5J26 0.7655521910202847 
HLJ5JD6 0.3154005060312648 
HLJ5JD6 0.48262625262331976 
HLJ5 J26 0.5210995358312153 
HLJ5J26 0.7622013883240715 
HLJ5 J26 0.30079227611651 
HLJ5 J26 0.4679204719068079 
HLJ5 J26 0.5846239314110521 
HLJ5 J26 0.6063025771185689 
HLJ5 J26 0.5154886690550512 
HLJ5 J26 0.6808952074508676 
HLJ5 J26 0.6888268556865694 
HLJ5 J26 0.6050452376082803 
HLJ5 J26 0.2983421590918214 
HLJ5 J26 0.5791380641937063 
HLJ5 J26 0.4936763992438829 
HLJ5J26 0.7272354770477691 
HLJ5 J26 0.6407784218961772 
HLJ5 J26 0.37117833165864633 
KLJ5 J96 0.506922675987267 
HLJ5J26 0.8856232276572907 
HLJ5 J26 0.6238594865022393 
HLJ5J26 0.8294819026472551 
HLJ5 J26 0.4929442191505965 
HLJ5 J26 0.614090983407014 
Qu; 0.05875687335846998 
HLJ5J26 0.6274323171683477 
4inq 0.057508427649736404 
HLJ5J26 0.7070203049668613 
HLJ5 J96 0.4078347986690883 
W9 0.1442054886701627 
HLJ5 J26 0.6289001352149411 
W 0.5079598248713069 
HLJ5J96 0.5721981921202327 
WTL 0.11970235187714565 
HLJ5 J96 0.2210118055638847 
QI9 0.034068082183468025 
HLJ5J26 0.6918317384524943 
T9 0.039972044748699025 
HLJ5 J26 0.45512555885891204 
Ql 0.22111196489925178 
HLJ5J26 0.34766022743305286 

HLJ5 J26 0.44477934734978497 
HLJ5 J26 0.2976208094166174 
HLJ5J26 0.5193677338327038 
HLJ5J96 0.5024065310354232 
HLJ5J26 0.6174086112563163 
EEJE 0.06976424902677536 
HLJ5JD6 0.2996295935559442 
HLJ5J26 0.3284881368497896 
HLJ5JD6 0.4726250854934515 
HLJ5J26 0.6088162392171381 
HLJ5JD6 0.47605014481539926 
HLJ5J26 0.7360754607176597 
HLJ5J26 0.4377704935293008 
HLJ5J26 0.5493915156039869 
HLJ5J26 0.5379818612744576 
HLJ5J26 0.590253873201076 
HLJ5J96 0.5744701114940964 
HLJ5J96 0.4055393649470568 
HLJ5J26 0.5673325861499144 
HLJ5J96 0.245729039456042 
HLJ5J26 0.3655645718476096 
HLJ5J96 0.5314824084349868 
HLJ5J96 0.6338425963512064 
HLJ5J96 0.5899258568915495 
HLJ5J96 0.45323357127005975 
HLJ5J96 0.3491063386395461 
HLJ5J26 0.5938542652588711 
HLJ5J26 0.5944803898853518 
HLJ5J26 0.5068465293197028 
HLJ5J26 0.6776313361821047 
HLJ5J6 0.8999634278140598 
HLJ5J26 0.6242571208164592 
HLJ5J26 0.3221704206319139 
HLJ5J96 0.3034477370614397 
HLJ5J26 0.830586283441685 
HLJ5J26 0.4955565874440681 
HLJ5 J26 0.5736060745860087 
HLJ5 J26 0.48307059757212123 
HLJ5J26 0.8280681958292436 
HLJ5J96 0.3721745349326762 
HLJ5J96 0.49726084525284514 
HLJ5J96 0.3966263192417153 
HLJ5J26 0.5745640348687195 
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HLJ5J26 0.3539478761913142 
HLJ5J26 0.27167014891817287 
HLJ5 J26 0.12768101401467497 
HLJ5 J26 0.34522947806269944 
HLJ5JP6 0.30210650353890334 
HLJ5J26 0.6983772176161576 
Rodoani 0.35193300861758514 
HLJ5J26 0.6272001732240331 
HLJ5J26 0.41207423799865583 
HLJ5J26 0.15229297873724945 
HLJ5J26 0.1033852014165624 
HLJ 26 0.08062035046682334 
HLJ J26 0.08157211532412437 
HLJJ26 0.1919852218966521 
HJ26 0.36219608783721924 
HLJJ26 0.35281760845115545 
HLEJ6 0.14131284648685782 
HL5JJ6 0.10724314791360752 
hLEJJ6 0.020957842717082363 
hjI 0.048740804552162724 
HLJ5J76 0.34726246640227076 
LLj5 Joo 0.037917347552372506 
LlJ5 Jz6 0.10755396757987674 
ULJ5 76 0.22650475325836014 
DS 0.07418948774285088 
T5 0.01951251373028755 
Jl5 0.033093634403815846 
DDS 0.1437713654028557 
JLS 0.23537499886213453 
LS 0.27664739267727034 
ICS 0.2867983762798864 
"CS 0.2889478016305201 
TLS 0.19050232638934533 
HLSS 0.4312519431114197 
HES 0.34216045186307165 
HTCS 0.13272401690483093 
HIES 0.06610288470983505 
IDS 0.30010297894477844 
MDS 0.05993588850684196 
HDS 0.33552682225223823 
HDDS 0.1447305828332901 
HDLS 0.3210362195968628 
HDES 0.20255222916603088 

MDES 0.05051964148879051 
HS 0.22776076126127434 
HTTS 0.07804155349731445 
HTLS 0.10235251833655949 
HDS 0.16723746486935331 
HIES 0.21493078768253326 
MTS 0.13116042812515089 
HD5 0.10801974429113034 
DD5 0.05832777493443937 
IDS 0.2940284881822268 
EDS 0.08011978823467766 
DDS 0.3361179918823013 
DDI 0.21391153526847256 
HNDI 0.1285763680934906 
IDS 0.09451997287036049 
ND5 0.24773809369236507 
ID5 0.10372765278154392 
lIo 0.008609603499242209 
D 0.15511352553767566 
D 0.5559332035627449 
@MD 0.08519299661380661 
MDS 0.03743901940966574 
Mds 0.12628107248460593 
MS 0.06416315717460835 
DQS 0.2191774309594101 
mQS 0.1810183097435452 
mS 0.12969682334210778 
MIC5 0.20004549622535706 
MZ5 0.5151917430800892 
mZCI5 0.18613266928458483 
MZt5 0.08931668102741241 
HIIZCt5 0.06537325306098024 
MIZC45 0.14397871395132514 
I 0.745801177900379 
Mc5 0.14809386432170868 
In7c5 0.04281692107624191 
47ci5 0.10606364047556006 
47ci5 0.10504644887649872 
Wc45 0.1771012246608734 
NC45 0.23689958453178406 
HICI5 0.10883539700790584 
MC45 0.2066972553730011 
M2C45 0.36306071318736705 
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MA2C45 0.11200785926341945 
MAZC45 0.22630619942040656 
KVA7C45 0.15662771262928848 
Ma7C45 0.12372520427267084 
Mwa7c45 0.145153861863833 

NwA7C45 0.06826932758668247 
Ma7c45 0.2035497154930129 
RNA7C45 0.12986136816905003 
MRA7C45 0.31553258524521166 

 

Fonte: Autoria Própria, (2024) 

 
Figura 19 –Caracteres identificados placa brasileira/Mercosul – Modelo Europeu 

 
Fonte: Autoria Própria, (2024) 

 

4.2 Aplicação com treinamento via Dataset 2 – Modelo Mercosul 

 

O segundo dataset apresenta um número próximo de imagens quando comparado ao 

primeiro, o que é um fator que garante uma melhor isonomia às análises deste projeto, uma vez 

que a divisão de treinamento e validação se manteve a mesma. Dessa forma, os hiperparâmetros 

foram mantidos os mesmos do primeiro treinamento e seus resultados avaliados. 

Considerando estas definições, a análise dos resultados obtidos durante o treinamento 

do modelo apresenta aspectos muito positivos, mostrados na Figura 20. O modelo alcançou 

uma acurácia geral de 92,3% na detecção de placas de veículos, um resultado muito satisfatório. 

Para a classe "Placa", a precisão do modelo é de 94,1%, indicando que quando o modelo prevê 

uma amostra como sendo uma placa, em 94,1% dos casos essa predição está correta. Já para a 
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classe "Não Placa", a precisão é de 88,7%, também um desempenho bastante positivo. Em 

relação à revocação, a classe "Placa" apresenta uma taxa de 91,7%, demonstrando que o modelo 

está conseguindo identificar a grande maioria das placas presentes nas amostras de teste. Para 

a classe "Não Placa", a revocação é de 92,0%, evidenciando um bom equilíbrio na capacidade 

de detecção de ambas as classes. 

 

 

 
Figura 20 – Resultados Treinamento Dataset 2 – Modelo Brasileiro/Mercosul 

 
Fonte: Autoria Própria, (2024) 

 

A análise da matriz de confusão do modelo de reconhecimento de placas de veículos 

para o padrão brasileiro, registrada na Figura 21, apresenta resultados muito positivos. A 

acurácia geral do modelo parece ser bastante alta, indicando que o modelo está conseguindo 

classificar corretamente a grande maioria das amostras. 

Ao examinar a precisão da classe "Placa", verifica-se que das 250 amostras preditas 

como "Placa", 230 estavam corretas, representando uma precisão de 92%. Esse é um resultado 

excelente, demonstrando que quando o modelo prevê uma amostra como sendo uma placa, em 

92% dos casos essa predição está correta. A revocação da classe "Placa" também se destaca, 

com 95,83% das 240 amostras realmente da classe "Placa" sendo corretamente identificadas. 

Esse desempenho muito bom sugere que o modelo está conseguindo detectar a grande maioria 

das placas presentes nas amostras. 
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Em relação à classe "Não Placa", a precisão é de 93,33%, o que significa que das 150 

amostras preditas como "Não Placa", 140 estavam corretas. Esse também é um resultado muito 

positivo, indicando que o modelo está sendo eficaz em identificar corretamente as amostras que 

não são placas. A revocação da classe "Não Placa" ficou em 87,5%, um pouco inferior à 

revocação da classe "Placa", mas ainda assim um desempenho satisfatório. Isso sugere que o 

modelo tem uma boa capacidade de detectar a maioria das amostras que não são placas de 

veículos. 

A análise da matriz de confusão demonstra que o modelo de reconhecimento de placas 

de veículos para o padrão brasileiro está apresentando um desempenho excepcional. A 

combinação de altas precisão e revocação, tanto para a classe "Placa" quanto para a classe "Não 

Placa", é um indicativo da eficácia do modelo em identificar corretamente as placas de veículos. 

 
Figura 21 – Matriz de Confusão Dataset 2 – Modelo Brasileiro/Mercosul 

 
Fonte: Autoria Própria, (2024) 

 
Analisando o gráfico da Figura 22 é possível observar que o F1-Score exibe uma 

tendência de crescimento ao longo do processo de treinamento do modelo. Esse comportamento 

é muito positivo, pois indica que o modelo está aprimorando seu equilíbrio entre precisão e 

revocação à medida que o treinamento progride. 

Nos estágios iniciais do treinamento, o F1-Score parte de um valor mais baixo, mas 

então apresenta um crescimento consistente e contínuo. Essa evolução sugere que o modelo 
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está sendo capaz de aprender efetivamente, melhorando sua capacidade de classificação de 

forma equilibrada. 

Próximo ao final do treinamento, o gráfico mostra o F1-Score atingindo um patamar 

mais alto e estável. Esse resultado é um indicativo de que o modelo alcançou um bom equilíbrio 

entre precisão e revocação, o que é essencial para um desempenho robusto no reconhecimento 

de placas de veículos. 

 
Figura 22 – F1-Score Dataset 2 – Modelo Brasileiro/Mercosul 

 
Fonte: Autoria Própria, (2024) 

 

4.2.1 Resultados Vídeo 1 – Placa Europeia 

 

Ao aplicar o vídeo dos modelos de placa europeias, agora no modelo treinado para as 

placas do padrão brasileiro e mercosul, juntamente do uso do EasyOCR para mapeamento das 

placas, obteve-se uma saída de placas para cada frame, que foram aplicadas ao vídeo original, 

com os valores descritos na Tabela 4, com frames do vídeo como descritos pela Figura 23. 
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Figura 23 – Resultados de detecção Placa Europeia – Modelo Brasileiro/Mercosul 

 

Fonte: Autoria Própria, (2024) 

 

4.2.1.1 Avaliação de Resultados 

 

Percebe-se que para este caso, além de a acurácia do modelo ser discutível, inclusive 

com vários frames com uma interpretação parcialmente correta, percebesse que a detecção da 

placa em vários frames não é feita. Isso deve-se ao fator diretamente relacionado do modelo ter 

sido treinado por um conjunto de placas totalmente distintas, mas que por conta de seus bons 

números na avaliação do treinamento, ainda proporcionam leituras corretas em frames mais 

claros e perpendiculares à câmera. A Tabela 4 abaixo mostra os frames detectados com placas 

e seus valores: 

 
Tabela 4 – Resultados de detecção Placa Europeia – Modelo Brasileiro/Mercosul 

plate_text confidence_score 
RlBJ 0.2853519638404603 
REH 0.1215383006806222 
RIBZF 0.2898216012053165 

RBZJ 0.16635163128376007 
RIB3 JF 0.31397700650912547 
R-1B3-JF 0.23975116549455058 
R-183-JF 0.5621096368000195 
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R-183-JF 0.7827371460269809 
R183-JF 0.5836652151458606 
R-183-JF 0.984871260713565 
R-183-JF 0.9450030325113074 
R-183-JF 0.9975402363436363 
R-183-JF 0.6050848872259549 
R-183-JF 0.5752035405787727 
R183.JF 0.6229970081089354 
Daoaac 0.048620674102995635 
DAPONI 0.024975577855522464 
R83-JF 0.7497505456486417 
R183 JF 0.4178760663273571 
Ri8 Ur 0.09028867933430207 
Ri8 t 0.23130258020140032 
R18L F 0.15763586450209105 
RI8TE 0.2281476217405768 
R-18TJF 0.125608937642755 
R83E 0.20357364416122437 
R183F 0.35486043098856496 
DBEI 0.011764618568122387 
N894J 0.3638403310941383 
N824N 0.24331470802995414 
4894M 0.15928620809393979 
N-894-JV 0.5673575836887299 
N-894J 0.7730628755518271 
N-894J 0.7389547775585802 
N894J 0.8659185314106677 
N-894J 0.927962101646726 
N894-J 0.6186231081415557 
N-894J 0.3074664864792965 
N894 JV 0.6028265052089657 
N894J 0.48142436125373933 
N*894-JV 0.49653273765360983 
Le56 0.06381544470787048 
Coseh 0.10492459559585994 
C56 h 0.05767108261716721 
L656KH 0.28274371663494824 
Los6_h 0.06279727735791761 
Lo56 0.5451129078865051 
L656XH 0.19600388936193114 
L656 0.6115808486938477 
L656XH 0.8131186355664195 
L656-XH 0.7333723353783017 

L656-XH 0.5006202735318344 
L656 -XH 0.12359088879993604 
L656-XH 0.7991739836395941 
L656.XH 0.4990391826150459 
L656-XH 0.7683314119290099 
L656.XH 0.6522214164861747 
L-656-XH 0.4145981148926172 
L656.XH 0.6744421189262532 
L656.XH 0.7747387995063524 
L656-XH 0.7402380570397704 
L656-XH 0.6575611658668482 
L656-XH 0.7423990915068395 
L656-XH 0.6829386303378437 
L656.XH 0.4679859791448614 
L656 -XH 0.3513871437303418 
L656-XH 0.9549523026899043 
L-656-XH 0.8056021201780947 
L656.XH 0.6154404133222976 
L-656-XH 0.5366554922335216 
L-656-XH 0.34824444412264605 
L-656-XH 0.4638437028873474 
L6s6-XH 0.5125324118963513 
L656-XH 0.687616247403045 
L6s6-XH 0.6043977689588875 
L-656-XH 0.6669040353097435 
L-656-XH 0.6242194325271196 
L-6s6-XH 0.6955251075726284 
L-656-XH 0.27381019212696656 
L6s6-XH 0.6728732035106504 
L656-XH 0.6260266210494785 
L.656-XH 0.3855518090982406 
L.656-XH 0.8150887930083055 
L656-XH 0.814389646861688 
L-656-XH 0.29671481906473934 
L656 XH 0.5563189777737385 
L656-XH 0.5137608259186336 
L656-XH 0.752829404089935 
L656 XH 0.47851032022571716 
L656 XH 0.3200091419378423 
L656.XH 0.5351176750863248 
L656-.XH 0.2993249434785322 
L;656.XH 0.4160204204744018 
L656-XH 0.6444354752349576 
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L656-XH 0.4038855713902334 
L656.XH 0.6138224046544927 
L656 XH 0.8469275544841343 
L656XH 0.4799056836375419 
L656XA 0.8215708690386015 
L656XH 0.7297749110432975 
L656 XH 0.5821716603108623 
L656.XH 0.4116154148599374 
L656-XH 0.29113239146889147 
L656-XH 0.5043901638286166 
L656-XH 0.6430510509444324 
L656 XH 0.7427761609715473 
L6s6 XH 0.5982377504505751 
L656 XH 0.6649867705597662 
L656 XH 0.7559176883413576 
L656 XH 0.8853866731819355 
L6s6 XH 0.5459193928196447 
L656 XH 0.47307950220357436 
L656 XH 0.524356984793149 
L656*XH 0.4784675615499887 
L656 XH 0.4192203397381901 
L656 XH 0.3597476025377411 
D656 XH 0.3485566912968762 
[656 XH 0.35065424822601104 
L656 XH 0.5323692792388731 
L656 XH 0.6101866137464868 
L656 XH 0.3307139139246269 
L656 XH 0.4072642103997857 
L656 XH 0.7323955435435507 
L656XH 0.6303511598236031 
L656 XH 0.6239384488898138 
L656 XH 0.6989260256902174 
L656 XH 0.6755707646947186 
L656 XH 0.4160229584089162 
656 XH 0.6146467885925967 
L656 KH 0.40374641871899064 
L656 XH 0.392725343366517 
L656 XA 0.19177485170164596 
C656 XH 0.3185962412464636 
TC6XH 0.10523609070748982 
Lo56 XH 0.3340363442731761 
C656 XH 0.21066029317146495 

[656 XH 0.2090955560073959 
Lo6XH 0.11794482150711538 
Lo6 XH 0.20244498108424247 
Eos6 X 0.24052312675635035 
Loso X 0.18798984140153696 
Kci 0.02951577464358382 
Rh 0.5009267355602655 
RAh 0.07391155032490836 
Ran 0.055778986347762675 
064n 0.1063566505908966 
Rb#l 0.07423462718725204 
E6AL 0.09883115440607071 
R6ALX 0.05851026792971951 
6414 0.11205560914067317 
F6A1 0.17647065222263336 
F6Au 0.057612523436546326 
R6ALA 0.2271675822996569 
R6aLX 0.030072072301084576 
R6Al 0.12003793567419052 
R6LX 0.10490700602531433 
0644 LX 0.2708590868047523 
0644 LX 0.3509596290928427 
4644LX 0.28193656577514203 
0644LX 0.31269738491295934 
K644-LX 0.2744279042509371 
H644-LX 0.7995958035858219 
0644LX 0.3168443554384398 
0644-LX 0.5041092266219953 
H-644-LX 0.3937516596535321 
0-644-LX 0.2172192083331798 
A-644-LX 0.4495136147606911 
H-644LX 0.5668620763954357 
A644LX 0.5394904397796634 
A644-LX 0.45835142916958943 
H644-LX 0.7979545685738411 
H644-LX 0.7464870160928282 
H644LX 0.8994676525344845 
H.644LX 0.5697099522034847 
H 644LX 0.46740109937826724 
H 644-LX 0.30100193889292454 
H 644LX 0.37596387041980767 

 

Fonte: Autoria Própria, (2024) 
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Outro ponto que evidencia a diferença dos modelos de treinamento com a placa a ser 

detectada, é que em vários frames ocorre a detecção do carro e não das placas visíveis já em 

primeiro plano, demorando mais para começar a detecção destas placas, seus valores, e até o 

boxplot da placa em si sendo confundido com outros pontos do ambiente em comparação com 

o modelo sendo avaliado com um dataset apropriado, como visto na Figura 24. 

 
Figura 24 – Identificação ineficiente de placas europeias – Modelo Brasileiro/Mercosul 

 

Fonte: Autoria Própria, (2024) 

 

Apesar destes pontos, o modelo ainda apresenta valores acurados de identificação de 

placas, onde o fenômeno da placa de maior contraste, na cor verde, se repetiu para este dataset 

também, e em geral, pode ser utilizado ainda com as ressalvas de menor acurácia nas 

identificações, visto na Figura 25. 
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Figura 25 – Detecção de placa de maior contraste – Modelo Brasileiro/Mercosul 
 

 
 

Fonte: Autoria Própria, (2024) 
 
 
 
 4.2.2 Resultados Vídeo 2 – Placa Brasileira/Mercosul 

 

 Analisando o vídeo de placas brasileira/Mercosul com seu dataset apropriado, já 

percebe-se uma notável melhoria na acurácia da detecção, porém ainda com algumas ressalvas, 

vista na Figura 26. 
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Figura 26 – Detecção placa brasileira/Mercosul – Modelo Brasileiro/Mercosul 
 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Fonte: Autoria Própria, (2024) 
 

4.2.2.1 Avaliação de Resultados 

 

Nota-se na Tabela 5 que os valores obtidos das leituras das placas melhoraram 

substantivamente em relação à sua aplicação com o dataset europeu. Porém, em uma análise da 

confiabilidade de cada valor obtido para cada frame, visto na tabela abaixo, percebe-se que em 

muitas, mesmo com o valor correto, o valor não passa de 0.60 de confiança, e em alguns casos 

nota-se que mesmo em valores de alta confiabilidade, o valor obtido é totalmente distinto da 

realidade. 

 
Tabela 5 – Resultados de detecção Placa Brasileira/Mercosul – Modelo Brasileiro/Mercosul 

plate_text confidence_score 
41 0.287901159010295 
pRato 0.054406414798447766 

[ M 0.2749496313620519 
4 0.5273195573929215 
LF O4J0 0.09761598614518566 
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EROd 0.08375517278909683 
4 0.9780917181839947 
ER4i0 0.13332551012511606 
[dud 0.2029448002576828 
bnjud 0.14287390954674853 
ERjud 0.16744675282250765 
ERu4 0.1729789823293686 
EPou 0.1051282212138176 
ERlud 0.10437335141158029 
ERitd 0.03482054798356415 
ERuz 0.6576842069625854 
ER04z 0.33217064960350984 
430 0.4452495276927948 
430 0.632317304611206 
430 0.1832758153167215 
04d 0.21058265193987444 
043d 0.15606479346752167 
Ld 0.0389446089469208 
3274j0 0.2341759069587933 
20430 0.5554101379231048 
Dv9 0430 0.13794520540582716 
Eve 0430 0.6022479473382591 
Evp 0430 0.43497987184387904 
eup 0430 0.5255362403449917 
Eup 0430 0.2472779929055802 
EVp 0430 0.3341133143668271 
EVp 0430 0.24027990070662333 
EUp 0430 0.3158461313498192 
EVp 0430 0.3551480280654147 
EVp 0430 0.3781679970236259 
EUp 0430 0.17204087050910694 
Eup 0430 0.8715651680021044 
EuP 0430| 0.19472379816184068 
EVP 0430] 0.4019032908821055 
EVP 0430) 0.3486489212016884 
EVp 0430) 0.3115096426350578 
EVp 0430 0.4972873228116739 
Eup 0430) 0.6174597622276934 
Eup 0430] 0.39636679898888305 
Eup 0430| 0.15537357139448746 
Evp 0430 0.4088866059421668 
EVp 0430 0.26322366444422685 
Eup 0430 0.4720816165823325 

Eup 0430 0.35870548723824836 
Eup 0430 0.5658580726252527 
EVP 0430 0.3391816197538873 
Evp 0430 0.7400092729359647 
Evp 0430) 0.2998790964689849 
Evp 0430 0.7578033778023512 
Evp 0430 0.9090009464432784 
EVP 0430 0.40657767713452914 
EvP 0430 0.4657290437589363 
EVP 0430 0.2794523750222667 
EvP 0430 0.23860690821962385 
Evp 0430 0.5520070663344275 
EVp 0430) 0.3293898458963616 
EVp 0430) 0.18732803493282676 
Evp 0430 0.4817037410002172 
EV? 04j0 0.456187855976824 
EV? 0430 0.39362605942768736 
EV? 0430 0.4941731261747017 
Eup 0430 0.6092058560198861 
Eup 0430 0.4521052398716296 
Eup 0430] 0.2562645786728089 
Eup 0430 0.3482283126249264 
EUP 0430 0.5326733263787363 
EVp 0420 0.3042805873241571 
EUP 0430 0.32297234994333557 
Eup 0430 0.5407352896198808 
Eup 0430 0.6964642735881064 
EVP 0430 0.2634919248408704 
Eup 0430 0.42576331534152306 
Eup 0430 0.6405563143698233 
Eup 0430 0.5145042513701973 
EVp 0430 0.27249922701464996 
Eup 0430 0.7216632848242559 
Eup 0430 0.6394759881622659 
EVp 0430 0.5631092999260107 
Elp 0420 0.5242992446679677 
ELp 0420 0.24461920455778904 
El? 0430 0.15129563684838168 
El? 0430 0.23069001599567202 
Evp 0430] 0.17129261167405524 
EVP 0430} 0.3583658120283765 
EvP 0430) 0.29775785606907945 
EvP 0430 0.5383782685258182 
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EP 0430 0.6087436987161731 
EvP 0430 0.33086523751166663 
EVP 0430] 0.4580129266689333 
EVP 0430] 0.19900704594628588 
EVP 0430 0.5556096317673085 
EvP 0430 0.4507339684203759 
EVP 0430] 0.45006856933690886 
EvP 04301 0.24590124916351022 
EVP 0430] 0.2769973347460374 
EVP 0430] 0.4214628571851035 
EvP 0430] 0.3330600589736781 
EVP 0430 0.4849034651545113 
EVP 0430 0.7546045501940409 
EvP 0430] 0.46738010156865356 
EuP 0430] 0.31193118482771587 
Eup 0430] 0.3557332920063195 
EVP 0430 0.5665748849184795 
Eevp 0430 0.25337330335331376 
Evp 0430 0.5811345542452984 
EuP 0430 0.29064495161476095 
Evp 0430 0.41395797622527525 
EUP 0430) 0.5490389864200018 
EUP 0430 0.3555834591688978 
EUR 0430 0.5821469665438546 
EUP 0420) 0.2635854317481838 
EUP 0430 0.3237817121992158 
EUP 0430 0.6438750685771728 
EUP 0430 0.44948441234147657 
EUP 0430 0.601380328013294 
EVP 0430 0.44961403386599874 
EVP 0430} 0.11379836690222961 
EUP 0430} 0.48636553335688265 
EUP 0430] 0.41233170655077783 
EVP 0430] 0.15743221349541361 
EvP 0430 0.3650099369075931 
Ev? 0430 0.3837271032088071 
Eup 0430 0.49809341903931953 
EuP 0430) 0.26608793978846684 
EUP 0430 0.31233004690883087 
Evp 0430| 0.34628093412652194 
Eup 0430} 0.23122941156583243 
EUP 0i30 0.20552315676874153 
Eup 0i30 0.38311300845369295 

EUP 0i30 0.34844226480033985 
EuP pia0 0.10846631708287446 
Eue 04j0 0.26338134656609735 
EEue 0430 0.5186925743763172 
Eue 0430 0.12452033916530277 
EUP 043Q 0.14924215173913333 
Evp 04J5 0.23240002779828578 
2 (1 0.3265824615955353 
H: 6 0.25110575556755066 
Hz 6 0.254057377576828 
0 ) 0.16333164687794588 
[030 0.2614549994468689 
A 0.15750420187856662 
4nn 0.12428137136016755 
4na 0.04108810182183027 
Ietta 0.0470167054258244 
PLIEREHTIUA 0.060965976640684136 
-Fueta 0.008360940631450457 
76 0.537235214479182 
176 0.7105202709328031 
176 0.2373133259426472 
U7o 0.01506490606689585 
76 0.3484719277731668 
HD 0.13843676626005347 
HND6 0.1257992386817932 
Hn6 0.02391291892876246 
WiD6 0.03162004053592682 
HJI6 0.1448938399553299 
DLJ526 0.22878321345882333 
HLJ5J6 0.22777150696167628 
HLJ5 26 0.36651240356650244 
HLJ5 J26 0.2370053085305977 
IJI6 0.1125299260020256 
HLJ5J26 0.4376798050937571 
HLJI26 0.47041700310016377 
HLJIJ26 0.1002508971338129 
HLJ5 26 0.14068612876515385 
IJ526 0.3154465647400618 
HLJ5W26 0.2641066992716198 
HLJ5W26 0.13992226897451107 
HLJ5 J26 0.1388438776733098 
HJ526 0.7400698890657572 
HLJ5 J26 0.3780980884280966 
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HLJ5J26 0.48972173654902956 
HLJ5 JP6 0.30925060062489157 
HLJ5J26 0.29742779341795245 
HLJ5J26 0.6463181494358734 
HLJ5J26 0.7655521910202847 
HLJ5JD6 0.4512619018573466 
HLJ5JD6 0.43234522249140167 
HLJ5JD6 0.4847207583125879 
HLJ5 J26 0.805126364422017 
HLJ5JD6 0.37629987900503 
HLJ5J26 0.6029661718923511 
HLJ5J26 0.44132041074589673 
HLJ5 J26 0.5144405139568006 
HLJ5J26 0.7127016359254017 
HLJ5 J26 0.35514939492513686 
HLJ5 J26 0.37440948654943584 
HLJ5J26 0.8862083405559169 
HLJ5J26 0.7239929256001648 
HLJ5 J26 0.6453037949672809 
GAa 0.06605146096793914 
HLJ5 J26 0.7019413473387852 
HLJ5J26 0.8371353695593724 
HLJ5J26 0.8832525894020036 
HLJ5 J26 0.6326275031372036 
4u 0.6785965504512519 
HLJ5 J26 0.7152117353961809 
HLJ5 J26 0.6306200818703226 
HLJ5J26 0.8593049214749112 
HLJ5 J96 0.35400320692636805 
@uiq 0.07365965843200684 
HLJ5 J26 0.6647237385694323 
QII9 0.037949394434690475 
HLJ5J26 0.8264553888521838 
HLJ5J26 0.6126072550822814 
Laq 0.04788979632191857 
HLJ5 J26 0.370248206677699 
HLJ5J26 0.741660745119888 
HLJ5 J26 0.6038747191437089 
HLJ5 J26 0.42253160321014754 
HLJ5J26 0.7777984942916687 
HLJ5J26 0.8417257614682653 
HLJ5 J26 0.43491111748281525 
49 0.2761209742905234 

HLJ5 JD6 0.31277277444741824 
HLJ5J26 0.5448140568951536 
WI 0.5319432835507728 
HLJ5 J26 0.45889844086483106 
WILD 0.12515011429786682 
HLJ5J26 0.691769469450901 
HLJ5J26 0.6541121145112574 
HLJ5J26 0.6863799096751425 
LII 0.08307281731169783 
HLJ5JD6 0.4333340766248456 
HLJ5J26 0.7097055488500468 
HLJ5J26 0.6317630791151552 
HLJ5JD6 0.40635263990074516 
HLJ5J26 0.726519615602269 
HLJ5J26 0.6781685215578397 
HLJ5J26 0.6577478266049268 
HLJ5J26 0.35133132254118826 
HLJ5J26 0.42773559145867535 
HLJ5J96 0.4435704036410255 
HLJ5J26 0.6358798108728863 
HLJ5J96 0.4055393649470568 
HLJ5J26 0.3418260921258621 
HLJ5J26 0.4901586361662987 
HLJ5J26 0.6195881990603578 
HLJ5J96 0.4772762532794358 
HLJ5J26 0.6845337099924481 
HLJ5J26 0.6480084259571188 
HLJ5J26 0.617526907158822 
HLJ5J26 0.5244528106927207 
HLJ5J26 0.5938542652588711 
HLJ5J26 0.7541308615241983 
HLJ5J26 0.7618024594722783 
HLJ5J26 0.7383378269109487 
HLJ5J6 0.8999634278140598 
HLJ5J26 0.6000099012720259 
HLJ5J26 0.4057980556778917 
HLJ5J26 0.5782683091683639 
HLJ5J26 0.8698136893951287 
HLJ5J26 0.5157062961917197 
HLJ5 J26 0.4416283106586002 
HLJ5 J26 0.5738100409027618 
HLJ5 J26 0.6678162293082941 
HLJ5 J26 0.22387606788680176 
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HLJ5J96 0.4930849767258695 
HLJ5J26 0.7093468033122258 
HLJ5J26 0.5745640348687195 
HLJ5 J96 0.26928876539085206 
bdoum 0.1110360972519549 
HLJ5J26 0.8354612390877979 
Hodoanel 0.18454447971530874 
HLJ5 J26 0.27154061105605976 
HLJ5J26 0.3608672049414389 
Rodoane 0.4381399818659772 
odoane 0.9495334910684404 
HLJ526 0.8116036527211038 
Tovares 0.6314996260848893 
HLJ5J26 0.3234681662440216 
HLJ5J26 0.6413323883886083 
HLJ5J26 0.25191013274912194 
HLJJ6 0.6771792666833178 
4LJ5JO6 0.21994982650825678 
hLJ 0.1408278529273669 
HLJ5J26 0.26913240113015746 
R; Tova 0.3850263454726291 
HLJ5J26 0.2632204232861853 
HLJJO6 0.24116218670290573 
HLJJ26 0.35281760845115545 
HLJ5J76 0.3508100693839951 
hLJ5JJ6 0.13159755420669136 
HL;5W76 0.10337543082717436 
HLJ5J76 0.42370018847743074 
HLJ5 J76 0.38741628613647977 
Llj5j76 0.19609725815665255 
djjiz 0.04874457731028191 
UJ5J76 0.267592461294284 
JDS 0.19087268240702765 
MOS 0.180676037836126 
Mo5 0.047568573541315176 
M7cs 0.0734625980257988 
UMC5 0.026244960725307465 
WTCS 0.025471050292253494 
HS 0.545320472592898 
HS 0.4280349344372522 
HODS 0.09498114217820768 
HLCS 0.15368297696113586 
HLS 0.15040796383649513 

HS 0.1793653378263799 
HTDS 0.34620898962020874 
HES 0.1930253889026941 
HDES 0.48681843280792236 
HDLS 0.1692054271697998 
MLS 0.05596313986997648 
HLS 0.15978271277261213 
M 0.062019893731426246 
MDS 0.04547041589299531 
LI5 0.11805359445600877 
HIES 0.21493078768253326 
MTDS 0.10662076622247696 
MDS 0.14125331771790717 
HIDS 0.06786046922206879 
LD5 0.12159723043441772 
DLDS 0.042243678122758865 
DIS 0.1483392404475538 
DDI 0.21391153526847256 
INDS 0.12394744902849197 
DS 0.048041789910458495 
IS 0.10911568793912313 
DDs 0.033094304671912544 
Ms 0.05144358306516661 
NLDS 0.10680707544088364 
WDS 0.031960611139428975 
@C 0.08397551519654829 
@C5 0.04554871949307224 
MD 0.03648813050228586 
mo5 0.07235059463850894 
mC5 0.09504647706726352 
MICI5 0.0727575695240177 
MIC 0.027336944512031558 
HTIQS 0.08164330459691053 
MQS 0.10753200011374492 
MTIQS 0.0934211090937987 
HZI 0.1996576333308895 
MTIZ 0.32558056712150574 
MIZ 0.1616356125902624 
ICI 0.12590786437965223 
C 0.10471367728997905 
C 0.12598400947627297 
MC5 0.8846986564653472 
MCL5 0.3274578185711488 
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'ZCI5 0.09292767165056037 
Lc45 0.3507925868034363 
NIC 45,00 0.0851824562411766 
D7C45 0.13133835871443147 
MIc45 0.07695806575873201 
M7C45 0.25015100513172334 
Mazc45 0.12493336123669803 
M7LI5 0.1399001271217815 
MNAZC45 0.10286881425622811 
MNA7C45 0.0793948610707624 
MAZC45 0.19230971399423955 
WAZC45 0.1945519451876611 
NAZC45 0.1636223561137737 
NA7C45 0.3237664237515072 
MAZC45 0.23731971642533847 
KRAZC45 0.2033739871170093 
KAZC45 0.2727585593938127 
KVAZC45 0.229796521689519 
MAZC45 0.5235670470454538 
MAZC45 0.6054940957696674 
KVA7C45 0.22338690064977748 
KAZC45 0.46096642806190496 
MAZC45 0.5472779235183106 
MAZCL5 0.2033085726941283 
MNZC45 0.5275340040649918 
KNAZC45 0.10930013317686002 
MNZC45 0.24068460735204614 
NCL5 0.1583857536315918 
KI7C45 0.3423324463837988 
KRAZCL5 0.21251995549760822 
KMAZC45 0.09709428827439362 
MAZCL5 0.2526037657419285 
MAZCL5 0.1450825374127983 
MAZCL5 0.22315374457443837 

MAZCI5 0.14711448216214995 
MVAZCI5 0.1777321087543619 
NVAZC45 0.23264190912956467 
NVAZC45 0.1490470605345927 
NVANZCI5 0.1187489694791214 
MAZC 0.28395524621009827 
NVAZC5 0.4521802761401558 
MVAZC45 0.12809501945929155 
NAZC45 0.4676981810482884 
NMA7C45 0.15825689608384746 
NA7C45 0.5329603903075509 
MAZC5 0.15138666629422648 
MAZCH5 0.21914697308871758 
MAZCH 0.37682888390804803 
MVAZCL5 0.19896484174524612 
hVAZCL5 0.14184949356922846 
MAZC45 0.08293784200591967 
HAZCI5 0.1529988403974426 
MEZCH5 0.12612832859890066 
muazCH5 0.035963666309084444 
MECH5 0.40543372400564764 
hhA?CH5 0.023541815105847352 
MA?C5 0.12243910192898959 
MazC45 0.034390285256086554 
uazcs 0.20746062769476237 
MAC5 0.11223901063203812 
MacI 0.055632565170526505 
MECI 0.10000482201576233 
mCI 0.24919957403158682 
MICI 0.10490242391824722 
mtQD 0.07747473567724228 
[TFCI 0.04614562728536488 
FCT; 0.02950306050479412 
 

Fonte: Autoria Própria, (2024) 
 

 As placas do modelo Mercosul apresentaram um maior numero de valores mais 

próximos do real, onde os maiores índices de confiabilidade se encontram nelas, o que indica 

que provavelmente por terem um fundo branco com caracteres em preto, causa um efeito 

semelhante ao visto nas placas da cor verde do modelo Europeu, que aumentam o contraste e 

assim melhoram a segmentação para identificação dos caracteres. 
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5 CONCLUSÃO 
 
 Esse estudo evidencia a importância da adequação dos dados de treinamento para a 

aplicabilidade do modelo em determinado ambiente. Através das análises feitas, é cabal que um 

dataset adequado, juntamente de uma boa parametrização do modelo a ser treinado, aumenta a 

acurácia na identificação de valores e padrões, implicando em uma melhor solução de 

reconhecimento de imagens. O uso invertido dos datasets com as detecções de placas não 

apropriadas mostram não só valores de saída da detecção mistos, com uma difícil separação do 

que pode ser de fato uma detecção válida para uma confusa, uma vez que até os índices de 

confiabilidade variam. 

 Não só a determinação de um bom treinamento, a forma de captura da entrada dos 

frames para a detecção se fez crucial, onde a diferença na qualidade geométrica do 

posicionamento da câmera em relação aos objetos a serem detectados aumentam 

significantemente as chances de uma boa captura do modelo, bem como considerações naturais 

de segmentação e cores que influenciam diretamente na facilidade de identificação de 

caracteres. 

 Alguns problemas encontrados, como a troca de caracteres por números, e vice versa, e 

também a padronização de formatos das placas é algo que pode ser aprofundado no nível de 

aplicação da solução, onde através de uma padronização via código do ambiente que vai ser 

avaliado, pode criar regras de negócio que fazem com que as saídas detectadas, combinadas a 

regras implementadas de acordo com o ambiente, trariam ainda mais valores positivos, 

seguindo o âmbito de integração entre um modelo de reconhecimento de imagem com seu 

embarcamento como uma aplicação de fato. 

 Em suma, este trabalho contribuiu de forma substancial para o entendimento 

aprofundado das nuances do modelo YOLO e seu comportamento sob diferentes condições de 

entrada de imagens. Os insights obtidos fornecem diretrizes valiosas para a otimização de 

modelos de IA em tarefas semelhantes de reconhecimento de placas veiculares. Ressalta-se a 

importância da escolha adequada do dataset de treinamento, bem como da aplicação de técnicas 

de pré-processamento, para aprimorar o desempenho do modelo em cenários reais, 

caracterizados por variações nas condições de captura. 
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