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RESUMO

A análise de jogos visa observar, coletar e avaliar os eventos que ocorrem durante
uma partida, podendo focar tanto em um jogador individual quanto no comportamento
coletivo dos jogadores em torno da bola. No entanto, a análise de jogos de futebol não
se limita apenas à correção de erros e à exploração de pontos fracos dos adversários.
No futebol, a dinâmica de jogo é marcada por um constante equilíbrio e desequilíbrio
entre as equipes, resultando em um ritmo que oscila frequentemente e em períodos de
estabilidade que surgem de forma imprevisível. Essa natureza variável e imprevisível levou
os pesquisadores a considerar o futebol como um dos tipos de sistema dinâmico não linear.
Diante disso, o uso de modelos de Markov no futebol apresenta-se como uma ferramenta
eficaz para a análise das dinâmicas de jogo. Formalmente, um processo de Markov é um
processo estocástico em que o próximo estado depende apenas do estado atual. Quando
as variáveis aleatórias {X(t)} estão definidas em um espaço de estados discreto e quando
as transições ocorrem em instantes 0, 1, 2, . . . , k, temos uma Cadeia de Markov em Tempo
Discreto. Neste caso, P(Xk+1 = xk+1 | Xk = xk, Xk−1 = xk−1, . . . , X1 = x1, X0 = x0) =
P(Xk+1 = xk+1 | Xk = xk). A propriedade de Markov é essencial porque simplifica a
análise de sistemas complexos ao eliminar a necessidade de considerar o histórico completo
do sistema. Assim sendo, este estudo aplicou um modelo de cadeia de Markov para
analisar a dinâmica de passes no futebol, identificando os jogadores-chave e otimizando a
estratégia de jogo para melhorar o desempenho da equipe. O objetivo foi utilizar a teoria
das cadeias de Markov para entender a estrutura probabilística das sequências de passes
entre jogadores durante uma partida de futebol. Ao modelar as trocas de passes como um
processo estocástico, o estudo forneceu perspectivas úteis para a elaboração de estratégias
mais eficazes. A matriz de passes do jogador i para o jogador j, foi obtida por meio da
página FootStats, onde as matrizes de adjacência foram fornecidas. Posteriormente, com
base nas matrizes, foi desenvolvido um modelo de cadeia de Markov, em tempo discreto e
com número finito de estados, para representar o comportamento de passes entre jogadores
de uma equipe de futebol.

Palavras-chave: Cadeias de Markov, Análise de Passes, Futebol.



ABSTRACT

Game analysis aims to observe, collect, and evaluate events occurring during a match,
focusing either on an individual player or the collective behavior of players around the
ball. However, the analysis of football games is not limited only to the correction of errors
and the exploration of opponents’ weaknesses. In football, game dynamics are charac-
terized by a constant balance and imbalance between teams, resulting in a rhythm that
frequently oscillates and periods of stability that emerge unpredictably. This variable and
unpredictable nature led researchers to consider football as a type of nonlinear dynamic
system. Considering this, the use of Markov models in football emerges as an effective tool
for analyzing game dynamics. Formally, a Markov process is a stochastic process in which
the next state depends only on the current state. When the random variables {X(t)}
are defined in a discrete state space and transitions occur at time instants 0, 1, 2, . . . , k,
we have a Discrete-Time Markov Chain. In this case, P(Xk+1 = xk+1 | Xk = xk, Xk−1 =
xk−1, . . . , X1 = x1, X0 = x0) = P(Xk+1 = xk+1 | Xk = xk). The Markov property is essen-
tial as it simplifies the analysis of complex systems by eliminating the need to consider
the complete history of the system. Therefore, this study applied a Markov chain model
to analyze passing dynamics in football, identifying key players and optimizing game stra-
tegy to improve team performance. The objective was to use Markov Chains Theory to
understand the probabilistic structure of pass sequences between players during a football
match. By modeling passing game as a stochastic process, the study provided valuable
insights for the development of more effective strategies. The passing matrix from player
i to player j, was obtained through the FootStats platform, where adjacency matrices are
provided. Subsequently, based on these matrices, a Discrete-Time Markov Chain model
with a finite number of states was developed to represent the passing behavior between
players on a football team.

Keywords: Markov Chains, Passing Analysis, Football.
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1 INTRODUÇÃO

Ao longo da história, os seres humanos têm documentado seus comportamentos de

várias maneiras. Exemplos disso incluem os hieróglifos dos antigos egípcios, que repre-

sentavam gestos e movimentos da época, e o estudo dos movimentos de dança por Laban,

conhecido como Laban Notation. Mais recentemente, a análise de movimentos e seus

impactos no esporte tornou-se uma área importante de estudo (CARLING et al., 2007).

A análise de jogos visa observar, coletar e avaliar os eventos que ocorrem durante uma

partida, podendo focar tanto em um jogador individual quanto no comportamento cole-

tivo dos jogadores em torno da bola. Isso permite a geração de dados, que podem variar

em complexidade, para determinar se o plano de jogo está sendo executado conforme

planejado (CARLING et al., 2007; GARGANTA, 2001). Entretanto, com os avanços

tecnológicos presentes, a precisão na análise de jogos melhorou significativamente, graças

ao aperfeiçoamento contínuo dos métodos de análise e à utilização de softwares automa-

tizados que facilitam a avaliação de grandes volumes de dados coletados (MEMMERT;

RAABE, 2018). Essas análises permitem uma melhor preparação para partidas futuras,

ajudando tanto na correção de erros quanto na exploração das fraquezas dos adversários,

além de proporcionar benefícios na aprendizagem dos jogadores sobre a eficácia de suas

performances esportivas (GARGANTA, 2001).

A análise de jogos de futebol, no entanto, não se limita apenas à correção de erros e

à exploração de pontos fracos dos adversários. No futebol, a dinâmica de jogo é marcada

por um constante equilíbrio e desequilíbrio entre as equipes, resultando em um ritmo

que oscila frequentemente e períodos de estabilidade que surgem de forma imprevisível.

Essa natureza variável e imprevisível levou os pesquisadores a considerar o futebol como

um dos tipos de sistema dinâmico não linear, ressaltando sua complexidade. Estudos

sob a perspectiva dos sistemas complexos mostram que atletas e equipes são entidades

adaptativas que interagem de forma dinâmica e não linear com o ambiente em constante

evolução do jogo (CARLING et al., 2008). Essas interações são influenciadas por diversas

restrições e oportunidades, que impactam a tomada de decisão dos jogadores. Portanto, é

crucial entender que uma equipe é mais do que a soma de seus membros; é uma entidade
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coletiva complexa. A análise do jogo pode ser realizada em vários níveis, incluindo a

partida, a equipe, subgrupos e até interações diádicas (GARGANTA, 2009). A aquisição

precisa de informações posicionais é fundamental para compreender como o jogo, como um

sistema dinâmico, e os atletas, como componentes, contribuem para a estratégia coletiva.

Ademais, os sistemas dinâmicos, como o futebol, oferecem uma área interessante para

a aplicação de análises complexas, especialmente quando se considera a adaptação con-

tínua das equipes a variáveis instáveis e imprevisíveis. A natureza do futebol, com suas

rápidas mudanças de estado entre equilíbrio e desequilíbrio, reflete as propriedades in-

trínsecas de tais sistemas, onde pequenas variações nas condições iniciais podem levar a

resultados drasticamente diferentes (ARAÚJO et al., 2006). Isso ressalta a importância

de interação dinâmica e adaptativa entre os atletas.

Diante disso, o uso de modelos de Markov no futebol apresenta-se como uma ferra-

menta eficaz para a análise das dinâmicas de jogo. Com a crescente disponibilidade de

dados e o avanço das técnicas analíticas, a modelagem de processos de Markov oferece

uma abordagem robusta para capturar a complexidade das trocas de passes, transições

de posse e a probabilidade de gols. Um modelo de Markov é um modelo matemático que

descreve um sistema que transita entre estados de acordo com probabilidades de transição

específicas, as quais dependem exclusivamente do estado atual, não dos estados anteriores

(propriedade de Markov).

Formalmente, um processo de Markov é um processo estocástico em que o próximo

estado depende apenas do estado atual. Quando as variáveis aleatórias {X(t)} estão de-

finidas em um espaço de estados discreto e quando as transições ocorrem em instantes

0, 1, 2, . . . , k, temos uma Cadeia de Markov em Tempo Discreto. Neste caso, P(Xk+1 =

xk+1 | Xk = xk, Xk−1 = xk−1, . . . , X1 = x1, X0 = x0) = P(Xk+1 = xk+1 | Xk = xk).

A propriedade de Markov é essencial porque simplifica a análise de sistemas complexos

ao eliminar a necessidade de considerar o histórico completo do sistema. Em muitas

aplicações práticas, essa simplificação permite a construção de modelos que são compu-

tacionalmente viáveis e teoricamente sólidos (ROSS, 2014). Na prática, a construção de

um modelo de Markov requer a definição precisa dos estados e a matriz de transição P ,

M x M , onde M é o número de estados, e cada entrada Pij, representa a probabilidade

de transição do estado i para o estado j em um único passo. A soma de todas as pro-

babilidades de transição de um estado deve ser 1:
∑

j Pij = 1. A simulação de cenários

envolve iterar o processo de Markov ao longo do tempo, utilizando a matriz de transição

para determinar a probabilidade de se mover de um estado a outro. Isso permite prever

distribuições de estados futuros com base nas condições iniciais, utilizando a matriz de
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transição (GRIMMETT; STIRZAKER, 2020).

Na aplicação ao futebol, os modelos de Markov permitem capturar diferentes níveis

das equipes, considerando aspectos como a tendência de marcar ou sofrer gols, bem como

a variação na posse de bola, que pode depender da posição do jogo no campo. Estudos

recentes utilizam discretizações diversas do campo, desde uma divisão simples em zonas

até divisões mais detalhadas, para refletir melhor as forças das equipes e suas estratégias

em diferentes áreas do campo. Essa granularidade é crucial para aprimorar a precisão

das previsões e análises, permitindo uma avaliação mais refinada das estratégias táticas

e dos desempenhos das equipes. Além disso, modelos log-lineares são empregados para

estimar as forças das equipes com base em variáveis como vantagem de jogar em casa,

força ofensiva e defensiva, ajustando-se aos dados de partidas reais para validar a precisão

e a aplicabilidade dos modelos.

No contexto do futebol, por exemplo, um estado pode representar a posse de bola

por uma determinada posição (como atacantes, meio-campistas, defensores, ou goleiro),

enquanto as transições refletem os passes entre essas posições (KIM; CHA, 2022). Esta

modelagem envolve a construção de uma matriz estocástica que define a probabilidade

de cada transição com base em dados empíricos coletados, como os padrões de passe de

um time durante uma temporada. A análise desses padrões nos permite estimar a distri-

buição estável da posse de bola após um número suficiente de transições, fornecendo uma

aproximação satisfatória da realidade, mesmo que a dinâmica do jogo seja intrinsecamente

complexa.

1.1 Objetivo Geral

Desenvolver um modelo de cadeia de Markov para analisar a dinâmica de passes no

futebol, com o objetivo de identificar os jogadores-chave em cada partida. Esse modelo

visa avaliar a importância de cada jogador durante o jogo, permitindo compreender seu

impacto nas transições de posse de bola.
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1.2 Objetivos Específicos

• Modelar a Dinâmica dos Passes: Desenvolver um modelo de cadeia de Markov,

em tempo discreto e com número finito de estados, para representar o comporta-

mento de passes entre jogadores de uma equipe de futebol.

• Analisar as Probabilidades de Transição: Calcular as probabilidades de tran-

sição entre jogadores para entender a probabilidade de ocorrerem passes entre pares

específicos de jogadores.

• Identificar Jogadores-chave: Usar o modelo para destacar os jogadores que mais

influenciam as transições de posse de bola, identificando os jogadores-chave e otimi-

zando a estratégia de jogo para melhorar o desempenho da equipe.

1.3 Justificativa

Este trabalho propõe a utilização da teoria das cadeias de Markov para modelar

a dinâmica de passes no futebol, representando as transições entre jogadores de forma

probabilística. Essa abordagem permite: identificar jogadores-chave de uma determinada

partida, entender a organização tática das equipes e sugerir melhorias nos desempenhos

individuais e coletivos.

A justificativa está na necessidade de ferramentas objetivas para análise de desem-

penho, auxiliando treinadores e analistas na elaboração de estratégias. Além disso, a

aplicação de métodos matemáticos ao esporte promove a interdisciplinaridade e demons-

tra o potencial científico no entendimento do futebol.
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2 FUNDAMENTOS MATEMÁTICOS DAS
CADEIAS DE MARKOV

2.1 Introdução aos Processos Estocásticos

Os processos estocásticos são definidos como uma coleção de variáveis aleatórias in-

dexadas por um parâmetro t ∈ R, frequentemente representando tempo.

X = {X(t0), X(t1), . . . , X(tn)}.

A variável aleatória X(t) é definida em um espaço de estados. A natureza do índice

(discreto ou contínuo), do espaço amostral e da distribuição determina a classificação do

processo em diferentes categorias (MEDHI, 1994), como por exemplo:

• Processos de Poisson: Modelam eventos que ocorrem aleatoriamente ao longo do

tempo, como a chegada de clientes em filas, com base em distribuições exponenciais.

• Processos gaussianos: Fundamentais em estatística e aprendizado de máquina,

sendo utilizados em previsões baseadas em distribuições normais.

• Cadeias de Markov: Caracterizadas pela propriedade de “falta de memória”, são

particularmente úteis para modelar sistemas dinâmicos com transições entre estados.

Um processo de Markov é um processo estocástico em que o próximo estado depende

apenas do estado atual. Essa “falha de memória” é garantida pela propriedade de Markov,

expressa como:

P(X(tk+1) = xk+1 | X(tk) = xk, X(tk−1) = xk−1, . . . , X(t1) = x1, X(t0) = x0) =

P(X(tk+1) = xk+1 | X(tk) = xk),
(2.1)

∀t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1.
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Quando as variáveis aleatórias {X(t)} estão definidas em um espaço de estados dis-

creto e quando as transições ocorrem em instantes 0, 1, 2, . . . , k, temos uma Cadeia de

Markov em Tempo Discreto. Neste caso:

P(Xk+1 = xk+1 | Xk = xk, Xk−1 = xk−1, . . . , X1 = x1, X0 = x0) =

P(Xk+1 = xk+1 | Xk = xk).
(2.2)

2.2 Cadeia de Markov: Definição

Considere uma sequência de variáveis aleatórias X0, X1, X2, . . . , Xk, com k ∈ N, e

suponha que o conjunto de valores possíveis dessas variáveis seja {0, 1, . . . ,M}. É útil

interpretar Xk como o estado de algum sistema no tempo k e, de acordo com essa in-

terpretação, dizer que o sistema está no estado j no tempo k se Xk = j. Diz-se que a

sequência de variáveis aleatórias forma uma cadeia de Markov se, cada vez que o sistema

estiver no estado i, existir alguma probabilidade fixa, a qual chamaremos de Pij, de que

o sistema esteja a seguir no estado j (ROSS, 2014). Isto é, para i0, . . . , ik−1, i, j,

P(Xk+1 = j | Xk = i,Xk−1 = ik−1, . . . , X1 = i1, X0 = i0) =

P(Xk+1 = j | Xk = i) = Pij.
(2.3)

Cada valor Pij representa a probabilidade de transição do estado i para o estado j

da cadeia de Markov, obedecendo à condição de que a soma das probabilidades em cada

linha da matriz seja igual a 1 (ANTON; RORRES, 2012).

Pij ≥ 0,
M∑
j=0

Pij = 1, i = 0, 1, . . . ,M. (2.4)

Essa definição nos diz que as probabilidades de transição podem ser arranjadas por

uma matriz estocástica P , em que cada entrada Pij representa a probabilidade de tran-

sição do estado i para o estado j:
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P =


P00 P01 · · · P0M

P10 P11 · · · P1M

...
... . . . ...

PM0 PM1 · · · PMM

 (2.5)

Em geral, definimos a probabilidade de transição de n passos, representada por P (n)
ij ,

como:

P
(n)
ij = P(Xn+k = j | Xk = i) , ∀n ≥ 0 i, j ≥ 0. (2.6)

Proposição 2.1. (Equação de Chapman-Kolmogorov)

P
(n+m)
ij =

M∑
k=0

P
(n)
ik P

(m)
kj , ∀n,m ≥ 0 i, j ≥ 0. (2.7)

Demonstração.

P
(n+m)
ij = P(Xn+m = j | X0 = i)

=
∑
k

P(Xn+m = j,Xn = k | X0 = i)

=
∑
k

P(Xn+m = j | Xn = k,X0 = i)P(Xn = k | X0 = i)

=
∑
k

P
(m)
kj P

(n)
ik

(2.8)

Se P (n) denota a matriz de probabilidades de transição de n passos, então a equação

(2.7) nos diz que:

P (n+m) = P (n) · P (m). (2.9)
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Isso significa que a matriz P (n) comuta com a matriz P (m), e em particular,

P (2) = P (1+1) = P · P = P 2.

e por indução

P (n) = P (n−1+1) = P n−1 · P = P n. (2.10)

Logo, a matriz de probabilidades de transição de n passos é obtida multiplicando a

matriz P por ela mesma n vezes.

2.3 Classificação dos Estados em Cadeias de Markov

Os estados podem ser classificados como acessíveis, recorrentes, transientes e absor-

ventes, ou ainda, avaliados quanto à irredutibilidade e periodicidade da cadeia (MEYN;

TWEEDIE, 2012).

• Estado Acessível: Um estado j é considerado acessível a partir de um estado i

se existe pelo menos um número finito de passos n > 0 tal que a probabilidade de

transição de i para j em n passos seja positiva, isto é,

P
(n)
ij > 0. (2.11)

A acessibilidade é uma relação unidirecional, isto é, i pode acessar j, mas j pode

não acessar i.

• Comunicabilidade: Dois estados i e j são ditos comunicáveis se são acessíveis

entre si. Isso significa que é possível transitar de i para j em um número finito de

passos, e vice-versa.

P
(n)
ij > 0 , P

(m)
ji > 0 , ∀n,m > 0. (2.12)

O conjunto de todos os estados comunicáveis com i, forma uma classe de comuni-

cação que particiona o espaço de estados.
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• Estado Recorrente e Estado Transiente: Um estado i é dito recorrente se,

dado que o processo entra no estado i, a probabilidade de retornar a i é igual a 1.

Caso contrário, o estado é classificado como transiente, indicando que existe uma

probabilidade positiva de que o processo nunca retorne a i.

∞∑
n=1

P
(n)
ii = ∞. (2.13)

Para estados transientes, esta soma é finita. Essa distinção pode ser justificada pelo

Lema de Borel-Cantelli, mas a demonstração não será abordada aqui.

• Estado Absorvente: Um estado i é classificado como absorvente se, uma vez

alcançado, o processo não pode sair desse estado.

Pii = 1,

Pij = 0, j ̸= i.
(2.14)

• Irredutibilidade: Uma cadeia de Markov é classificada como irredutível se for

possível transitar de qualquer estado i para qualquer outro estado j em um número

finito de passos. Isto é, existe um n > 0 tal que:

P
(n)
ij > 0 , ∀0 ≤ i, j ≤ M. (2.15)

A irredutibilidade garante que todos os estados da cadeia são acessíveis entre si,

o que é uma condição necessária para a ergodicidade da cadeia, assunto que será

discutido na próxima seção.

• Periodicidade: Um estado i é considerado periódico se as visitas a i ocorrerem

apenas em tempos múltiplos de um período d > 1. O período d de um estado i é

definido como o máximo divisor comum de todos os n > 0 para os quais P
(n)
ii > 0.

d = mdc
{
n > 0 : P

(n)
ii > 0

}
. (2.16)

Se d = 1, o estado é classificado como aperiódico, indicando que ele pode ser revisi-

tado em intervalos irregulares de tempo. A periodicidade é um fator relevante para
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determinar a convergência da cadeia para a distribuição estacionária, pois cadeias

aperiódicas facilitam esse comportamento.

2.4 Ergodicidade e Distribuição Estacionária

Para um grande número de cadeias de Markov, P
(n)
ij converge, à medida que n →

∞, para um valor πj que depende somente de j. Isto é, para grandes valores de n, a

probabilidade de se estar em um estado j após n passos é aproximadamente igual a πj

não importando qual tenha sido o estado inicial. As cadeias de Markov que satisfazem

as equações (2.15) e (2.16) quando d = 1 são chamadas de ergódicas. A ergodicidade de

uma cadeia de Markov é uma propriedade importante que implica na existência de uma

distribuição estacionária.

Teorema 2.1. Para uma cadeia de Markov ergódica, existe uma distribuição estacionária

πj > 0, 0 ≤ j ≤ M tal que

πj = lim
n→∞

P
(n)
ij (2.17)

são as únicas soluções não negativas de

πj =
M∑
k=0

πkPkj ,
M∑
j=0

πj = 1.

Demonstração. Como a Proposição (2.1) resulta em

P
(n+1)
ij =

M∑
k=0

P
(n)
ik Pkj

note que existe um limite em (2.17), e para cadeias ergódicas

πj =
M∑
k=0

πkPkj.
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Além disso, como 1 =
∑M

k=0 P
(n)
ik , também obtemos, a partir de (2.17), que

M∑
j=0

πj = 1.

Para provar que essa distribuição estacionária πj é única, vamos supor, por contradi-

ção, que existam duas distribuições estacionárias πj e π
′
j, diferentes. Ambas satisfazem

πj =
M∑
k=0

πkPkj e π
′

j =
M∑
k=0

π
′

kPkj.

A diferença entre essas duas distribuições é definida por:

δj = πj − π
′

j.

Agora temos:

M∑
k=0

δkPkj =
M∑
k=0

πkPkj −
M∑
k=0

π
′

kPkj = πj − π
′

j = δj.

Ou seja, a diferença entre as duas distribuições também é uma solução da equação

M∑
k=0

δkPkj = δj.

Como πj e π
′
j são diferentes, δj não é o vetor nulo. Porém pela irredutibilidade e

aperiodicidade da cadeia, δj deve ser o vetor nulo, pois a única solução não-trivial para∑M
k=0 δkPkj = δj é δj = 0, o que significa que πj = π

′
j. Logo, não pode haver duas

distribuições estacionárias diferentes.
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3 APLICAÇÕES DAS CADEIAS DE MARKOV

3.1 Aplicações em Algumas Áreas

3.1.1 Engenharia: Sistemas de Filas de Espera

Em engenharia, especialmente em sistemas de filas de espera, as cadeias de Markov

são empregadas para modelar a chegada de clientes a um sistema, o tempo de espera e o

serviço prestado. Por exemplo, em uma fila de atendimento, pode-se modelar o número

de clientes no sistema como um processo de Markov. As transições entre os diferentes

estados da fila, como o número de clientes atendidos e o tempo de espera, são regidas por

probabilidades que dependem apenas do número atual de clientes na fila, e não do histórico

anterior. O modelo mais comum utilizado nesses sistemas é o processo de Poisson1 em

conjunto com uma cadeia de Markov, para modelar a chegada de clientes e o tempo de

serviço. O uso de cadeias de Markov permite calcular métricas de desempenho, como o

tempo médio de espera, a probabilidade de uma fila estar cheia, e a utilização do sistema,

sendo essencial para o dimensionamento de recursos e a otimização de processos (ROSS,

2014).

3.1.2 Biologia: Processos de Evolução Genética

No ramo da biologia, as cadeias de Markov têm sido amplamente aplicadas para

modelar processos de evolução genética. Um exemplo clássico é uma sequência de DNA,

que pode ser representada por uma cadeia de Markov em tempo discreto, onde os estados

são definidos pelos quatro tipos de nucleotídeos: Adenina (A), Timina (T), Citosina (C)

e Guanina (G). As transições entre esses estados refletem a probabilidade de mutação

1processo estocástico que descreve eventos que ocorrem de forma aleatória ao longo do tempo, com
a característica de que os eventos são independentes e ocorrem a uma taxa constante média. A principal
característica desse processo é a ocorrência de um número de eventos em um intervalo de tempo fixo,
com uma distribuição de probabilidades que segue a distribuição de Poisson.
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genética ao longo do tempo (GAGNIUC, 2017). Esse modelo é essencial para prever

padrões evolutivos e compreender mecanismos genéticos que influenciam a biodiversidade.

3.1.3 Mercado Financeiro: Processos de Preços de Ações

No contexto do mercado financeiro, a dinâmica dos preços de ativos, como ações,

também pode ser modelada utilizando cadeias de Markov. Nesse modelo, os estados

representam diferentes faixas de preço, e as probabilidades de transição descrevem as

chances do preço de uma ação mudar de uma faixa para outra ao longo de um determinado

período. Ao identificar padrões recorrentes nessas transições, é possível fazer uma análise

das flutuações dos preços, o que pode ser fundamental para a formulação de estratégias

de investimento e até prever as condições do futuro do mercado (FILHO, 2022).

3.1.4 Esportes: Interações entre atletas de uma equipe

As interações entre atletas em esportes coletivos representam um desafio analítico,

sendo um campo promissor para a aplicação de modelos matemáticos que capturam a

dinâmica tática e comportamental, como as cadeias de Markov. Esses modelos fornecem

uma base sólida para compreender dinâmicas táticas e comportamentais, permitindo aná-

lises detalhadas dos padrões de jogo e dos processos de tomada de decisão. A utilização

de cadeias de Markov transcende o futebol, podendo ser aplicada a uma ampla varie-

dade desses esportes, como basquete, vôlei e handebol, adaptando-se às características

específicas de cada modalidade.

No basquete, a análise de sequências de posses de bola pode ser representada como

uma cadeia de estados que incorpora passes, dribles e tentativas de arremesso. Nesse con-

texto, a abordagem de estados absorventes, pode ser usada para estimar a probabilidade

de uma jogada resultar em um ponto no basquete (WOODFIELD; FELLINGHAM, 2018).

No vôlei, a aplicação desses modelos, pode auxiliar na análise das sequências de toques

na bola, identificando padrões entre recepção, levantamento e ataque. Assim, uma boa

base quantitativa é obtida para otimizar decisões táticas e formações em quadra (ROY

et al., 2023). Já no handebol, os modelos permitem mapear transições entre passes e

finalizações, avaliando como as decisões individuais afetam o desempenho coletivo (ROY

et al., 2021). Esses modelos mostram que é possível identificar regiões críticas da quadra

e padrões de movimentação que maximizam as chances de gol, além de avaliar o impacto

de ajustes táticos sobre a eficácia ofensiva e defensiva.
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3.2 Aplicações no Futebol

O futebol, reconhecido por sua popularidade e dinâmica complexa, envolve interações

entre jogadores que podem ser eficientemente representadas por modelos de cadeias de

Markov, destacando padrões e transições táticas. Com a crescente disponibilidade de

dados e o avanço das técnicas analíticas, esses modelos oferecem uma abordagem mate-

mática robusta para analisar as transições de estados que representam eventos no jogo,

como passes, dribles, cruzamentos, interceptações e finalizações.

Considerando a troca de passes entre os jogadores de um time como um dos principais

elementos que determina a dinâmica de uma partida de futebol, pode-se observar que, ao

estar com a posse da bola, o jogador se movimenta para encontrar a melhor alternativa

de passe ou para buscar uma finalização ao gol adversário. Essa dinâmica é influenciada

por fatores como o posicionamento no campo, a distância entre os atletas, a presença de

marcadores e a habilidade técnica dos jogadores, conferindo ao jogo um comportamento

estocástico, onde cada opção de passe apresenta diferentes probabilidades de sucesso.

Entretanto, para efeitos de simplificação, é possível ignorar aspectos como o posiciona-

mento exato dos jogadores em campo, o tempo de posse da bola e até mesmo um ou mais

jogadores que não participam ativamente da dinâmica de troca de passes na partida.

Diante desse cenário, vários estudos estão sendo feitos das mais diversas formas. Uma

aplicação das cadeias de Markov analisando a troca de passes e sua influência no desempe-

nho tático foi feita por (CECCONELLO; OLIVEIRA, 2020). Utilizando dados de alguns

jogos da seleção brasileira, a final da copa do mundo de 2002 e os cinco jogos da campanha

no mundial de 2018, os autores modelaram as transições, onde cada um dos onze jogadores

representam um estado, e analisaram o estado estacionário dessas cadeias, identificando

os jogadores mais relevantes em termos de sua participação na troca de passes ao longo

da partida. Essa análise do estado estacionário da cadeia, vai além e ainda nos permite

identificar estratégias e táticas da dinâmica de um determinado time.
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Para analisar o impacto da posse de bola das equipes de futebol, (KIM; CHA, 2022)

de uma maneira um pouco diferente, construíram uma matriz estocástica utilizando dados

de passes do time do Barcelona na temporada 2020/21. A partir do cálculo da matriz de

probabilidades de transição da posse de bola entre as diferentes posições dos jogadores no

campo como atacantes, meio-campistas, defensores e goleiro, os autores calcularam auto-

valores e vetores do estado estacionário. Nesse processo, o Teorema de Perron-Frobenius

é aplicável, pois ele garante que, para matrizes estocásticas irredutíveis e positivas, existe

um único autovalor dominante e positivo, e o vetor associado a esse autovalor repre-

senta a distribuição estacionária da posse de bola, descrevendo a rapidez da convergência

exponencial do sistema para o estado estacionário. Cabe destacar que a demonstração

do Teorema de Perron-Frobenius não será abordada neste trabalho. Juntamente com a

análise de componentes principais (PCA)1, os autores identificaram padrões táticos e a

correlação entre a posse de bola no meio-campo e o sucesso da equipe. A análise dos

padrões de passe permite estimar a distribuição estável da posse de bola, aproximando-se

da realidade do jogo, apesar de sua complexidade.

Contudo, a aplicação de cadeias de Markov no futebol não se limita à análise de

passes. (ROY et al., 2023) propuseram um framework 2 baseado em Processos de Decisão

de Markov (MDPs)3 que modela a dinâmica ofensiva de equipes de futebol, permitindo

simular diferentes cenários, como a eficácia de estratégias de ataque em zonas específicas

do campo. No contexto da dinâmica ofensiva, os MDPs são particularmente úteis porque

permitem modelar o futebol como uma sequência de decisões, onde o estado do jogo (por

exemplo, zonas do campo onde a bola está) evolui em resposta às ações dos jogadores (por

exemplo, passes, dribles ou chutes). O objetivo é encontrar uma regra que indica qual

ação tomar em cada estado, para que maximize a recompensa total esperada ao longo do

tempo (por exemplo, marcar um gol ou perder a posse de bola). (LIU et al., 2022) propôs

identificar os padrões gerais e ameaçadores de ataque de diferentes estilos de jogo em

partidas de futebol de alto nível, no caso os dados de sequência de ataque das 21 partidas

das três melhores equipes na copa do mundo de 2018 foram coletados com essa finalidade.

As três equipes foram classificadas em dois estilos de jogo: a França foi considerada uma

equipe de jogo direto, enquanto Croácia e Bélgica foram consideradas equipes de posse

1técnica de análise usada para processar conjunto de dados multidimensionais, informando qual va-
riável é mais benéfica em termos de distinção do conjunto de dados, aumentando assim a sua interpreta-
bilidade e preservando o máximo de informações.

2estrutura conceitual que organiza métodos, ferramentas e processos para resolver problemas especí-
ficos de forma sistemática e eficiente.

3modelo matemático usado para representar e resolver problemas de tomada de decisão em ambientes
estocásticos, definido por cinco elementos principais: estados, ações, função de transição, função de
recompensa e fator de desconto.
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de bola. O campo de futebol foi dividido em 12 zonas, e modelos de zona baseados em

matrizes de transição de Markov foram aplicados para avaliar o padrão de ataque nas

21 partidas. Foram realizadas análises descritivas e simulações usando esse modelo. A

combinação de posse de bola e contra-ataque foi uma nova tendência que surgiu na copa

do mundo de 2018.

A integração de técnicas complementares também fortalece o uso das cadeias de Mar-

kov no futebol, especialmente ao lidar com a complexidade e a variabilidade do jogo. A

combinação com os métodos como os citados: PCA, MDPs e modelos de zona, permite

explorar diferentes aspectos do desempenho das equipes. Por exemplo, o PCA é útil para

reduzir a dimensionalidade dos dados, facilitando a identificação de padrões relevantes

em conjuntos de dados extensos e complexos. Os MDPs, por sua vez, adicionam uma

camada de decisão e otimização ao modelo, possibilitando a simulação de cenários táticos

que envolvem escolhas estratégicas em tempo real. Já os modelos de zona organizam o

campo em regiões específicas, permitindo que as transições entre estados representem o

movimento da bola e as ações das equipes de maneira mais detalhada. Essa abordagem

integrada é particularmente vantajosa em situações com dados limitados, onde a escassez

de informações pode ser compensada pela capacidade desses métodos de extrair infor-

mações críticas e ajustar modelos para diferentes estilos de jogo. Assim, as cadeias de

Markov, em conjunto com essas técnicas, tornam-se um ferramental robusto para modelar

a dinâmica do futebol, oferecendo uma análise tática aprofundada, desde a modelagem

de passes até a simulação de cenários ofensivos e defensivos.
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4 METODOLOGIA

4.1 Coleta dos Dados

Os dados dos passes entre os jogadores de uma mesma equipe de todos os 125 jogos da

temporada 2023/24 da UEFA Champions League foram coletados da plataforma Footstats

(FOOTSTATS, 2002), um site 100% gratuito para consumir dados estatísticos de futebol

dos campeonatos, equipes e jogadores de mais de 150 ligas pelo mundo. Cada arquivo

JSON 1 disponibilizado, contém os dados dos passes das duas equipes em determinada

partida. Para cada equipe, o número de passes do jogador i para o jogador j foi registrado

através de uma matriz de adjacência A, quadrada, a qual representa as interações entre

os jogadores.

4.2 Estruturação e Tratamento dos Dados

Para a construção do modelo da cadeia de Markov, transformamos a matriz de adja-

cência A em uma matriz adequada. Para construir a matriz de transição P , normalizamos

a respectiva matriz de adjacência A. Cada elemento Pij foi obtido dividindo-se o número

de passes do jogador i para o jogador j pelo total de passes realizados pelo jogador i,

assegurando que a soma das probabilidades em cada linha fosse igual a 1, conforme a

equação (2.4).

Pij =
Aij∑
Ai

, Pij ≥ 0. (4.1)

1arquivo de texto que armazena e troca informações entre sistemas computacionais, baseado na sintaxe
do objeto JavaScript.
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Para garantir um grau de confiança no modelo, arredondamos cada um dos elementos

Pij para três dígitos significativos. Linhas com somatórios nulos, representando jogadores

que não realizaram passes, e colunas com somatórios nulos, representando jogadores que

não receberam passes, foram tratadas atribuindo valores zero às transições, mantendo a

matriz como estocástica. Veremos adiante que para uma melhor análise e um modelo mais

eficiente, optamos por remover essas linhas e colunas nulas, isto é, com todas as entradas

Pij = 0.

4.3 Construção do Modelo de Cadeia de Markov

O modelo foi desenvolvido para representar a dinâmica dos passes no futebol, utili-

zando uma cadeia de Markov em tempo discreto. Definidas as matrizes de transição P

e considerando válidas as propriedades de que a soma de cada linha deve ser igual a 1 e

que não existem elementos negativos, definimos cada jogador como um estado da cadeia

de Markov, com as transições representando os passes entre eles. Nos certificamos de que

todos os estados relevantes (jogadores) estavam corretamente representados na matriz

quadrada M x M .

De acordo com a equação (2.15), uma cadeia de Markov é irredutível se for possível

atingir qualquer estado j partindo de qualquer estado i (direta ou indiretamente) em um

número finito de passos. Quando a matriz de transição não for irredutível, significa que

existem jogadores que nunca recebem ou nunca passam a bola, podendo haver estados

isolados devido à maneira como os passes são distribuídos.

Como um dos nossos objetivos foi verificar os jogadores mais influentes na equipe,

desconsideramos esses estados com pouca ou nenhuma relevância. Assim, garantimos a

irredutibilidade das matrizes e, uma vez que também fossem aperiódicas, isto é, quando

o fluxo de passes se torna mais imprevisível ou contém probabilidades diferentes de tran-

sição, as cadeias eram ergódicas. Isso nos possibilitou encontrar a única distribuição

estacionária, conforme definido na equação (2.17). Analisando cada valor dessa distribui-

ção estacionária πj, identificamos os jogadores mais influentes, a probabilidade de estarem

envolvidos na rede de passes da equipe no decorrer da partida e verificamos se o jogo era

mais coletivo, ou se o time era mais dependente de alguns jogadores.
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4.4 Validação do Modelo de Cadeia de Markov

A consistência do modelo foi avaliada por meio de algumas validações, incluindo:

análise de convergência para garantir que o modelo converge para uma única distribuição

estacionária, o que é esperado de cadeias de Markov ergódicas, mapas de calor para uma

análise das probabilidades de transição visando entender a probabilidade de ocorrerem

passes entre pares específicos de jogadores e gráficos de rede para representar as conexões

entre os jogadores e verificar se os fluxos previstos pelo modelo fazem sentido.

Para verificar se a matriz de transição P convergia para uma distribuição estacionária

após múltiplas iterações, multiplicamos P sucessivamente, conforme mostrado na equação

(2.10). Em seguida, verificamos se as linhas de P n convergiam para o mesmo vetor

(distribuição estacionária). Por fim, estabelecemos um critério de parada ∥P n+1−P n∥ <

10−5 baseado no valor de tolerância ϵ = 10−5. Esse critério ϵ define o limite de variação

entre as iterações, assegurando que o sistema chegou a uma solução estável.

Mapas de calor foram utilizados para visualizar as probabilidades de transição entre

jogadores. Cada célula do mapa de calor indica a probabilidade de ocorrência de um

passe entre dois jogadores específicos, com cores mais intensas destacando transições mais

frequentes. Essa visualização facilita a identificação de padrões e comportamentos táti-

cos, como jogadores que frequentemente recebem ou iniciam passes, além de evidenciar

possíveis concentrações de jogo em determinados setores ou atletas.

Também foram feitas simulações de sequências de passes para avaliar a estabilidade

do modelo. O ponto de partida escolhido foi o jogador mais influente, identificado pela

distribuição estacionária. Essa abordagem permitiu observar como o fluxo de passes evo-

lui a partir de um jogador central e identificar se a dinâmica de passes se concentra ou

se distribui uniformemente entre os demais jogadores. Ao todo foram feitas 100 simula-

ções para cada um dos times em cada partida. O número de passes de cada sequência

prosseguiu até que o critério de parada ϵ = 10−5 fosse atendido.

Para a análise dessas sequências simuladas, foram gerados gráficos de rede para visua-

lizar as conexões entre os jogadores. Cada nó do gráfico representa um jogador, enquanto

as arestas indicam a direção dos passes entre eles. No nosso modelo o tamanho do nó

permitiu identificar jogadores centrais e subgrupos táticos dentro da equipe, isto é, quanto

maior o nó, mais influente é o jogador para o time naquela sequência simulada. As ares-

tas foram numeradas conforme a sequência foi gerada e seu tamanho foi determinado

conforme a matriz de transição P .
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4.5 Ferramentas Utilizadas

A linguagem de programação R 1 foi utilizada conjuntamente com o RStudio 2 para

todas as etapas do processo, desde a manipulação até a análise dos dados, simulação

e construção de gráficos e mapas de calor. Cada uma das matrizes de adjacência e de

transição foi convertida e armazenada em uma planilha em formato CSV 3. Arquivos

do tipo TXT 4 também foram gerados a fim de mostrar quais foram os jogadores mais

influentes nas partidas e quantos passos foram necessários até a convergência para o vetor

estacionário. Arquivos do tipo PNG 5 foram utlilizados para salvar os mapas de calor,

gráficos da distribuição estacionária e os gráficos de rede. Todos esses arquivos foram

armazenados em um repositório no GitHub 6 (NETO, 2024).

1linguagem e ambiente para computação estatística e gráficos.
2interface gráfica integrada para o R.
3arquivo de texto, do tipo valores separados por vírgulas, usado para armazenar dados que podem

ser importados e exportados em programas como Microsoft Excel, Google Sheets ou LibreOffice Calc.
4arquivo de texto simples que pode ser criado, aberto e editado utilizando programas de processamento

de texto.
5arquivo de imagem rasterizado. O formato é amplamente utilizado em sites para exibir imagens

digitais de alta qualidade.
6plataforma de hospedagem baseada em repositórios e comandos Git, onde é possível armazenar os

códigos, arquivos e o histórico de revisão de cada arquivo.
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5 ESTUDO DE CASO E RESULTADOS

5.1 Seleção dos Jogos

Foram escolhidos os 13 jogos das equipes do Real Madrid e Borussia Dortmund do

campeonato da UEFA Champions League da temporada 2023/24 como amostra para apli-

cação do modelo, por serem as equipes finalistas da competição. Nesses jogos selecionados

podemos ver situações distintas das dinâmicas de passes e estilos de jogos diferentes que

levaram essas duas equipes à grande final.

Jogo Placar Fase Local

1 Real Madrid 1 x 0 Union Berlin Grupos Rodada 1 Casa

2 Napoli 2 x 3 Real Madrid Grupos Rodada 2 Visitante

3 Braga 1 x 2 Real Madrid Grupos Rodada 3 Visitante

4 Real Madrid 3 x 0 Braga Grupos Rodada 4 Casa

5 Real Madrid 4 x 2 Napoli Grupos Rodada 5 Casa

6 Union Berlin 2 x 3 Real Madrid Grupos Rodada 6 Visitante

7 RB Leipzig 0 x 1 Real Madrid Oitavas de Final Ida Visitante

8 Real Madrid 1 x 1 RB Leipzig Oitavas de Final Volta Casa

9 Real Madrid 3 x 3 Manchester City Quartas de Final Ida Casa

10 Manchester City 1 x 1 Real Madrid Quartas de Final Volta Visitante

11 Bayern 2 x 2 Real Madrid Semifinal Ida Visitante

12 Real Madrid 2 x 1 Bayern Semifinal Volta Casa

13 Borussia Dortmund 0 x 2 Real Madrid Final Neutro

Tabela 1: Jogos do Real Madrid na UEFA Champions League 2023/24



37

Jogo Placar Fase Local

1 PSG 2 x 0 Borussia Dortmund Grupos Rodada 1 Visitante

2 Borussia Dortmund 0 x 0 Milan Grupos Rodada 2 Casa

3 Newcastle 0 x 1 Borussia Dortmund Grupos Rodada 3 Visitante

4 Borussia Dortmund 2 x 0 Newcastle Grupos Rodada 4 Casa

5 Milan 1 x 3 Borussia Dortmund Grupos Rodada 5 Visitante

6 Borussia Dortmund 1 x 1 PSG Grupos Rodada 6 Casa

7 PSV 1 x 1 Borussia Dortmund Oitavas de Final Ida Visitante

8 Borussia Dortmund 2 x 0 PSV Oitavas de Final Volta Casa

9 Atlético de Madrid 2 x 1 Borussia Dortmund Quartas de Final Ida Visitante

10 Borussia Dortmund 4 x 2 Atlético de Madrid Quartas de Final Volta Casa

11 Borussia Dortmund 1 x 0 PSG Semifinal Ida Casa

12 PSG 0 x 1 Borussia Dortmund Semifinal Volta Visitante

13 Borussia Dortmund 0 x 2 Real Madrid Final Neutro

Tabela 2: Jogos do Borussia Dortmund na UEFA Champions League 2023/24

5.2 Jogadores Mais Influentes na Rede de Passes

A distribuição estacionária foi calculada para identificar os jogadores mais influentes

na dinâmica de passes de cada uma das duas equipes, conforme ilustrado nas tabelas

(A.1) e (B.1) dos apêndices. Os valores indicam a probabilidade de envolvimento de cada

jogador na rede de passes em estado estacionário.
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Jogo Jogador Probabilidade

1 Lucas Vazquez 0.104

2 Aurelien Tchouameni 0.137

3 Luka Modric 0.13

4 Toni Kroos 0.153

5 Toni Kroos 0.177

6 Luka Modric 0.132

7 Eduardo Camavinga 0.14

8 Toni Kroos 0.125

9 Aurelien Tchouameni 0.147

10 Antonio Rudiger 0.13

11 Toni Kroos 0.164

12 Toni Kroos 0.154

13 Toni Kroos 0.159

Tabela 3: Jogadores mais influentes em cada jogo do Real Madrid na UEFA Champions
League 2023/24

Jogo Jogador Probabilidade

1 Nico Schlotterbeck 0.131

2 Ramy Bensebaini 0.134

3 Nico Schlotterbeck 0.124

4 Nico Schlotterbeck 0.14

5 Julian Ryerson 0.123

6 Mats Hummels 0.133

7 Emre Can 0.127

8 Mats Hummels 0.127

9 Nico Schlotterbeck 0.15

10 Nico Schlotterbeck 0.162

11 Jadon Sancho 0.14

12 Julian Brandt 0.148

13 Nico Schlotterbeck 0.174

Tabela 4: Jogadores mais influentes em cada jogo do Borussia Dortmund na UEFA Cham-
pions League 2023/24
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5.3 Mapas de Calor das Matrizes de Transição

Os mapas de calor foram gerados para uma análise das probabilidades de transição e

uma melhor visualização dos passes entre pares específicos de jogadores.

Figura 1: Mapa de calor representando as transições de passes no Jogo 1 do Real Madrid

Figura 2: Mapa de calor representando as transições de passes no Jogo 2 do Real Madrid
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Figura 3: Mapa de calor representando as transições de passes no Jogo 3 do Real Madrid

Figura 4: Mapa de calor representando as transições de passes no Jogo 4 do Real Madrid
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Figura 5: Mapa de calor representando as transições de passes no Jogo 5 do Real Madrid

Figura 6: Mapa de calor representando as transições de passes no Jogo 6 do Real Madrid
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Figura 7: Mapa de calor representando as transições de passes no Jogo 7 do Real Madrid

Figura 8: Mapa de calor representando as transições de passes no Jogo 8 do Real Madrid
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Figura 9: Mapa de calor representando as transições de passes no Jogo 9 do Real Madrid

Figura 10: Mapa de calor representando as transições de passes no Jogo 10 do Real Madrid
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Figura 11: Mapa de calor representando as transições de passes no Jogo 11 do Real Madrid

Figura 12: Mapa de calor representando as transições de passes no Jogo 12 do Real Madrid
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Figura 13: Mapa de calor representando as transições de passes no Jogo 13 do Real Madrid

Figura 14: Mapa de calor representando as transições de passes no Jogo 1 do Borussia
Dortmund
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Figura 15: Mapa de calor representando as transições de passes no Jogo 2 do Borussia
Dortmund

Figura 16: Mapa de calor representando as transições de passes no Jogo 3 do Borussia
Dortmund
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Figura 17: Mapa de calor representando as transições de passes no Jogo 4 do Borussia
Dortmund

Figura 18: Mapa de calor representando as transições de passes no Jogo 5 do Borussia
Dortmund
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Figura 19: Mapa de calor representando as transições de passes no Jogo 6 do Borussia
Dortmund

Figura 20: Mapa de calor representando as transições de passes no Jogo 7 do Borussia
Dortmund
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Figura 21: Mapa de calor representando as transições de passes no Jogo 8 do Borussia
Dortmund

Figura 22: Mapa de calor representando as transições de passes no Jogo 9 do Borussia
Dortmund
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Figura 23: Mapa de calor representando as transições de passes no Jogo 10 do Borussia
Dortmund

Figura 24: Mapa de calor representando as transições de passes no Jogo 11 do Borussia
Dortmund
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Figura 25: Mapa de calor representando as transições de passes no Jogo 12 do Borussia
Dortmund

Figura 26: Mapa de calor representando as transições de passes no Jogo 13 do Borussia
Dortmund



52

5.4 Simulação de Sequências de Passes e Gráficos de
Rede

Para cada umas das 13 partidas das duas equipes, foram feitas 100 simulações de

sequências de passes atendendo ao critério de parada estabelecido. Para uma melhor

visualização, foram gerados os gráficos de rede. Ao final das simulações, foi calculado o

número médio de passes dos jogadores, totalizando passes dados e recebidos, e disponibi-

lizados num gráfico de barras.

(a) Gráfico de rede da simulação 6 do jogo
final do Real Madrid

(b) Gráfico de rede da simulação 30 do jogo
final do Real Madrid

(c) Gráfico de rede da simulação 72 do jogo
final do Real Madrid

(d) Gráfico de rede da simulação 90 do jogo
final do Real Madrid

Figura 27: Exemplo de algumas simulações de passes do Real Madrid na final
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Figura 28: Gráfico de barras do número médio de passes do Real Madrid na final
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(a) Gráfico de rede da simulação 19 do jogo
final do Borussia Dortmund

(b) Gráfico de rede da simulação 70 do jogo
final do Borussia Dortmund

(c) Gráfico de rede da simulação 99 do jogo
final do Borussia Dortmund

(d) Gráfico de rede da simulação 100 do jogo
final do Borussia Dortmund

Figura 29: Exemplo de algumas simulações de passes do Borussia Dortmund na final
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Figura 30: Gráfico de barras do número médio de passes do Borussia Dortmund na final
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6 DISCUSSÃO

Os resultados indicaram que os jogadores Toni Kroos, pelo Real Madrid, e Nico Schlot-

terbeck, pelo Borussia Dortmund, destacaram-se como os atletas mais influentes das suas

equipes em 6 dos 13 jogos, conforme mostrado nas tabelas (3) e (4), respectivamente.

A alta probabilidade de envolvimento desses atletas na dinâmica de passes, conforme

apontado pela distribuição estacionária, reflete não apenas a função tática que desempe-

nham em suas equipes, mas também a dependência coletiva de suas habilidades para a

manutenção do controle de jogo.

A consistência desses jogadores em diferentes partidas reforça a ideia de que atletas

centrais na rede de passes possuem um impacto significativo na eficiência tática. No caso

de Toni Kroos, por exemplo, seu papel como organizador é evidente pela frequência com

que ele participa de sequências críticas de passes, enquanto Nico Schlotterbeck demonstra

uma função semelhante na defesa e transição do Borussia Dortmund.

Os mapas de calor das matrizes de transição revelaram padrões distintos de distribui-

ção de passes entre os jogadores. No Real Madrid, houve maior concentração de passes

entre o meio-campo e o ataque, o que reflete a busca constante por oportunidades de

finalização. Por outro lado, o Borussia Dortmund apresentou uma maior uniformidade na

distribuição de passes, evidenciando um estilo de jogo mais coletivo e menos dependente

de alguns jogadores. Essa distribuição uniforme foi particularmente evidente na análise

das quartas de final contra o Atlético de Madrid, onde os mapas de calor mostraram me-

nor dependência de um único jogador, como ilustrado em (22) e (23), favorecendo uma

dinâmica tática diversificada. Os resultados destacam a influência do estilo de jogo na

estrutura das matrizes de transição. Enquanto o Real Madrid tende a explorar a habi-

lidade de jogadores-chave para criar jogadas decisivas, o Borussia Dortmund adota uma

abordagem mais equilibrada, com transições distribuídas por várias regiões do campo.
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As simulações realizadas permitiram avaliar a estabilidade do modelo de cadeia de

Markov e a evolução do fluxo de passes ao longo das partidas. Os gráficos de rede gerados

para ambas as equipes mostraram a formação de subgrupos táticos e a relevância de certos

jogadores como nós centrais. Essa representação visual facilitou a identificação de padrões

táticos e de dependências dentro das equipes.

No caso do Real Madrid, jogadores como Toni Kroos e Luka Modric emergiram como

pivôs principais. Esses nós centrais evidenciaram a dependência do time em relação à sua

capacidade de distribuir a bola e controlar o ritmo do jogo. Por outro lado, no Borussia

Dortmund, a aplicação do modelo revelou um padrão de passes mais descentralizado.

Jogadores como Nico Schlotterbeck e Mats Hummels apresentaram transições consistentes

com outros membros da equipe, indicando uma abordagem coletiva mais equilibrada em

comparação ao Real Madrid.
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7 CONCLUSÃO

A propriedade de Markov foi fundamental para modelar as sequências de passes no

futebol, permitindo a identificação de padrões de transição sem a necessidade de considerar

todo o histórico de passes. Este trabalho realizou uma análise detalhada da dinâmica de

passes no futebol utilizando cadeias de Markov. A abordagem adotada mostrou-se eficaz

na análise tática, possibilitando a identificação de padrões de passes, jogadores-chave

e estratégias coletivas nas partidas entre Real Madrid e Borussia Dortmund na UEFA

Champions League 2023/24.

Comparado a outros modelos mencionados ao longo deste estudo, como os baseados

em Processos de Decisão de Markov (MDPs) e a análise por zonas do campo, o modelo

proposto, centrado na interação entre jogadores, oferece simplicidade e clareza na inter-

pretação das probabilidades de transição. No entanto, reconhece-se que a inclusão de

estados definidos por setores do campo, como aplicado em alguns estudos prévios, pode-

ria refinar a análise ao capturar nuances espaciais do jogo. Essa modificação permitiria

identificar com maior precisão as áreas de maior concentração de passes e os padrões

de movimentação associados a diferentes zonas, oferecendo análises ainda mais robustas

sobre a organização tática das equipes.

Além disso, os modelos baseados em MDPs apresentam uma vantagem na capaci-

dade de simular cenários de decisão em tempo real, incorporando variáveis como riscos

e recompensas. No entanto, essa abordagem exige maior complexidade computacional e

dados mais detalhados, o que pode limitar sua aplicabilidade em situações práticas. Já a

utilização de divisões do campo em zonas mostrou-se útil na análise de estratégias ofensi-

vas e defensivas, mas pode não capturar a interação direta entre jogadores com a mesma

granularidade do modelo aqui proposto.
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Conclui-se que o modelo baseado em cadeias de Markov com estados definidos pelos

jogadores representa uma solução eficiente e acessível para a análise tática no futebol.

Entretanto, aprimoramentos futuros poderiam incluir uma combinação das abordagens

analisadas, como a introdução de estados relacionados às posições no campo e a integração

de variáveis contextuais, como condições climáticas e adversidades durante a partida.

O presente trabalho contribui, assim, para a ampliação do uso de métodos matemá-

ticos na análise esportiva, evidenciando o potencial das cadeias de Markov para capturar

a complexidade do futebol e gerar informações relevantes para analistas, treinadores e

equipes. A exploração de modelos mais sofisticados, baseados em dados contextuais e

espaciais, constitui uma direção promissora para investigações futuras.
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APÊNDICE A

A.1 Tabelas das Distribuições Estacionárias

A.1.1 Jogos do Real Madrid

Jogador Probabilidade

Lucas Vazquez 0.104

Eduardo Camavinga 0.103

Luka Modric 0.099

David Alaba 0.095

Jude Bellingham 0.095

Aurelien Tchouameni 0.094

Nacho Fernandez 0.088

Antonio Rudiger 0.082

Rodrygo 0.071

Toni Kroos 0.046

Federico Valverde 0.037

Joselu 0.031

Kepa Arrizabalaga 0.027

Brahim Diaz 0.015

Fran Garcia 0.014

Tabela 5: Estado estacionário, em or-
dem decrescente, da matriz de transição
do jogo 1 do Real Madrid

Jogador Probabilidade

Aurelien Tchouameni 0.137

Jude Bellingham 0.125

Toni Kroos 0.097

Federico Valverde 0.088

Vinicius Junior 0.085

Dani Carvajal 0.084

Nacho Fernandez 0.073

Antonio Rudiger 0.072

Eduardo Camavinga 0.071

Rodrygo 0.045

Luka Modric 0.042

Ferland Mendy 0.037

Kepa Arrizabalaga 0.037

Dani Ceballos 0.005

Joselu 0.002

Tabela 6: Estado estacionário, em or-
dem decrescente, da matriz de transição
do jogo 2 do Real Madrid
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Jogador Probabilidade

Luka Modric 0.13

Eduardo Camavinga 0.129

Antonio Rudiger 0.111

Nacho Fernandez 0.11

Jude Bellingham 0.108

Fran Garcia 0.106

Federico Valverde 0.081

Vinicius Junior 0.079

Dani Carvajal 0.065

Kepa Arrizabalaga 0.037

Rodrygo 0.031

Aurelien Tchouameni 0.008

Ferland Mendy 0.004

Tabela 7: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 3
do Real Madrid

Jogador Probabilidade

Toni Kroos 0.153

Federico Valverde 0.1

Ferland Mendy 0.098

Eduardo Camavinga 0.094

Brahim Diaz 0.087

Antonio Rudiger 0.085

Nacho Fernandez 0.082

Vinicius Junior 0.075

Rodrygo 0.072

Lucas Vazquez 0.065

Luka Modric 0.026

Dani Carvajal 0.02

Andriy Lunin 0.017

Nicolas Paz 0.013

Fran Garcia 0.008

Kepa Arrizabalaga 0.003

Joselu 0.001

Tabela 8: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 4
do Real Madrid
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Jogador Probabilidade

Toni Kroos 0.177

Jude Bellingham 0.136

Federico Valverde 0.133

Antonio Rudiger 0.089

Ferland Mendy 0.084

David Alaba 0.081

Rodrygo 0.067

Dani Ceballos 0.059

Dani Carvajal 0.057

Brahim Diaz 0.048

Nicolas Paz 0.029

Joselu 0.018

Andriy Lunin 0.015

Nacho Fernandez 0.004

Lucas Vazquez 0.002

Tabela 9: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 5
do Real Madrid

Jogador Probabilidade

Luka Modric 0.132

Jude Bellingham 0.11

Lucas Vazquez 0.11

Dani Ceballos 0.105

Fran Garcia 0.101

Nacho Fernandez 0.092

David Alaba 0.087

Rodrygo 0.072

Toni Kroos 0.056

Federico Valverde 0.052

Joselu 0.029

Kepa Arrizabalaga 0.028

Antonio Rudiger 0.012

Brahim Diaz 0.007

Nicolas Paz 0.006

Tabela 10: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 6
do Real Madrid
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Jogador Probabilidade

Eduardo Camavinga 0.14

Toni Kroos 0.138

Ferland Mendy 0.116

Federico Valverde 0.1

Vinicius Junior 0.095

Dani Carvajal 0.088

Brahim Diaz 0.081

Rodrygo 0.075

Aurelien Tchouameni 0.067

Nacho Fernandez 0.059

Andriy Lunin 0.026

Joselu 0.008

Lucas Vazquez 0.008

Tabela 11: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 7
do Real Madrid

Jogador Probabilidade

Toni Kroos 0.125

Aurelien Tchouameni 0.12

Dani Carvajal 0.104

Federico Valverde 0.1

Jude Bellingham 0.098

Nacho Fernandez 0.097

Vinicius Junior 0.087

Antonio Rudiger 0.079

Ferland Mendy 0.064

Eduardo Camavinga 0.05

Andriy Lunin 0.026

Luka Modric 0.026

Rodrygo 0.02

Joselu 0.002

Tabela 12: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 8
do Real Madrid
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Jogador Probabilidade

Aurelien Tchouameni 0.147

Toni Kroos 0.128

Antonio Rudiger 0.107

Eduardo Camavinga 0.106

Vinicius Junior 0.089

Jude Bellingham 0.076

Andriy Lunin 0.066

Rodrygo 0.064

Luka Modric 0.054

Dani Carvajal 0.052

Federico Valverde 0.048

Ferland Mendy 0.047

Brahim Diaz 0.015

Joselu 0.003

Tabela 13: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 9
do Real Madrid

Jogador Probabilidade

Antonio Rudiger 0.13

Ferland Mendy 0.097

Toni Kroos 0.097

Eduardo Camavinga 0.095

Federico Valverde 0.088

Nacho Fernandez 0.088

Andriy Lunin 0.086

Jude Bellingham 0.086

Dani Carvajal 0.08

Rodrygo 0.075

Vinicius Junior 0.063

Luka Modric 0.01

Brahim Diaz 0.006

Tabela 14: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 10
do Real Madrid
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Jogador Probabilidade

Toni Kroos 0.164

Jude Bellingham 0.109

Lucas Vazquez 0.107

Aurelien Tchouameni 0.095

Federico Valverde 0.095

Vinicius Junior 0.085

Antonio Rudiger 0.065

Ferland Mendy 0.065

Rodrygo 0.062

Nacho Fernandez 0.061

Eduardo Camavinga 0.024

Andriy Lunin 0.022

Brahim Diaz 0.019

Luka Modric 0.013

Joselu 0.012

Tabela 15: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 11
do Real Madrid

Jogador Probabilidade

Toni Kroos 0.154

Jude Bellingham 0.115

Nacho Fernandez 0.105

Antonio Rudiger 0.096

Ferland Mendy 0.08

Vinicius Junior 0.075

Dani Carvajal 0.067

Federico Valverde 0.067

Aurelien Tchouameni 0.065

Rodrygo 0.058

Luka Modric 0.039

Eduardo Camavinga 0.038

Andriy Lunin 0.027

Brahim Diaz 0.01

Joselu 0.003

Tabela 16: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 12
do Real Madrid
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Jogador Probabilidade

Toni Kroos 0.159

Antonio Rudiger 0.127

Eduardo Camavinga 0.114

Federico Valverde 0.102

Ferland Mendy 0.098

Nacho Fernandez 0.094

Dani Carvajal 0.087

Jude Bellingham 0.078

Vinicius Junior 0.071

Rodrygo 0.031

Thibaut Courtois 0.027

Luka Modric 0.009

Joselu 0.003

Tabela 17: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 13
do Real Madrid
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A.1.2 Jogos do Borussia Dortmund

Jogador Probabilidade

Nico Schlotterbeck 0.131

Felix Nmecha 0.103

Mats Hummels 0.095

Julian Ryerson 0.082

Julian Brandt 0.081

Emre Can 0.073

Niklas Sule 0.063

Marco Reus 0.062

Karim Adeyemi 0.06

Marius Wolf 0.056

Niclas Fullkrug 0.048

Gregor Kobel 0.038

Ramy Bensebaini 0.037

Jamie Bynoe-Gittens 0.036

Donyell Malen 0.035

Tabela 18: Estado estacionário, em or-
dem decrescente, da matriz de transição
do jogo 1 do Borussia Dortmund

Jogador Probabilidade

Ramy Bensebaini 0.134

Salih Ozcan 0.113

Nico Schlotterbeck 0.102

Emre Can 0.1

Julian Ryerson 0.094

Mats Hummels 0.089

Donyell Malen 0.085

Julian Brandt 0.071

Gregor Kobel 0.068

Niclas Fullkrug 0.034

Jamie Bynoe-Gittens 0.031

Karim Adeyemi 0.028

Marco Reus 0.028

Felix Nmecha 0.019

Youssoufa Moukoko 0.004

Tabela 19: Estado estacionário, em or-
dem decrescente, da matriz de transição
do jogo 2 do Borussia Dortmund
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Jogador Probabilidade

Nico Schlotterbeck 0.124

Donyell Malen 0.113

Felix Nmecha 0.095

Marco Reus 0.093

Marius Wolf 0.086

Marcel Sabitzer 0.076

Mats Hummels 0.074

Ramy Bensebaini 0.067

Salih Ozcan 0.061

Niclas Fullkrug 0.058

Emre Can 0.057

Gregor Kobel 0.042

Karim Adeyemi 0.027

Giovanni Reyna 0.016

Sebastien Haller 0.01

Tabela 20: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 3
do Borussia Dortmund

Jogador Probabilidade

Nico Schlotterbeck 0.14

Mats Hummels 0.132

Julian Brandt 0.116

Julian Ryerson 0.105

Marcel Sabitzer 0.086

Felix Nmecha 0.08

Niklas Sule 0.077

Karim Adeyemi 0.074

Salih Ozcan 0.073

Gregor Kobel 0.065

Niclas Fullkrug 0.035

Marco Reus 0.015

Tabela 21: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 4
do Borussia Dortmund
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Jogador Probabilidade

Julian Ryerson 0.123

Mats Hummels 0.111

Ramy Bensebaini 0.098

Nico Schlotterbeck 0.09

Emre Can 0.085

Marcel Sabitzer 0.081

Niclas Fullkrug 0.066

Marco Reus 0.064

Gregor Kobel 0.061

Donyell Malen 0.056

Karim Adeyemi 0.045

Jamie Bynoe-Gittens 0.04

Julian Brandt 0.034

Salih Ozcan 0.032

Marius Wolf 0.014

Tabela 22: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 5
do Borussia Dortmund

Jogador Probabilidade

Mats Hummels 0.133

Julian Brandt 0.132

Salih Ozcan 0.108

Gregor Kobel 0.093

Niklas Sule 0.091

Karim Adeyemi 0.089

Niclas Fullkrug 0.085

Marco Reus 0.069

Marius Wolf 0.052

Ramy Bensebaini 0.05

Jamie Bynoe-Gittens 0.048

Donyell Malen 0.019

Giovanni Reyna 0.012

Marcel Sabitzer 0.011

Nico Schlotterbeck 0.005

Sebastien Haller 0.003

Tabela 23: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 6
do Borussia Dortmund
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Jogador Probabilidade

Emre Can 0.127

Mats Hummels 0.111

Ian Maatsen 0.102

Nico Schlotterbeck 0.102

Alexander Meyer 0.093

Julian Ryerson 0.091

Donyell Malen 0.069

Marcel Sabitzer 0.066

Jadon Sancho 0.064

Julian Brandt 0.05

Marco Reus 0.042

Niclas Fullkrug 0.026

Salih Ozcan 0.026

Youssoufa Moukoko 0.016

Marius Wolf 0.015

Tabela 24: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 7
do Borussia Dortmund

Jogador Probabilidade

Mats Hummels 0.127

Emre Can 0.11

Marcel Sabitzer 0.098

Salih Ozcan 0.098

Ian Maatsen 0.096

Gregor Kobel 0.078

Jadon Sancho 0.075

Donyell Malen 0.072

Niclas Fullkrug 0.069

Julian Brandt 0.068

Niklas Sule 0.063

Felix Nmecha 0.038

Karim Adeyemi 0.005

Marco Reus 0.003

Tabela 25: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 8
do Borussia Dortmund
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Jogador Probabilidade

Nico Schlotterbeck 0.15

Mats Hummels 0.136

Ian Maatsen 0.128

Julian Ryerson 0.109

Emre Can 0.107

Jadon Sancho 0.09

Gregor Kobel 0.063

Marcel Sabitzer 0.054

Karim Adeyemi 0.045

Julian Brandt 0.042

Felix Nmecha 0.022

Niclas Fullkrug 0.016

Jamie Bynoe-Gittens 0.014

Sebastien Haller 0.011

Salih Ozcan 0.008

Marco Reus 0.005

Tabela 26: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 9
do Borussia Dortmund

Jogador Probabilidade

Nico Schlotterbeck 0.162

Mats Hummels 0.127

Ian Maatsen 0.126

Julian Brandt 0.117

Julian Ryerson 0.108

Emre Can 0.105

Jadon Sancho 0.087

Marcel Sabitzer 0.039

Gregor Kobel 0.038

Niclas Fullkrug 0.038

Karim Adeyemi 0.037

Jamie Bynoe-Gittens 0.009

Marco Reus 0.006

Salih Ozcan 0.002

Tabela 27: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 10
do Borussia Dortmund
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Jogador Probabilidade

Jadon Sancho 0.14

Mats Hummels 0.123

Ian Maatsen 0.113

Julian Ryerson 0.112

Julian Brandt 0.099

Gregor Kobel 0.077

Nico Schlotterbeck 0.076

Emre Can 0.073

Karim Adeyemi 0.067

Marcel Sabitzer 0.057

Niclas Fullkrug 0.04

Youssoufa Moukoko 0.009

Marius Wolf 0.008

Marco Reus 0.006

Tabela 28: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 11
do Borussia Dortmund

Jogador Probabilidade

Julian Brandt 0.148

Ian Maatsen 0.137

Emre Can 0.126

Nico Schlotterbeck 0.125

Niclas Fullkrug 0.103

Julian Ryerson 0.075

Jadon Sancho 0.065

Karim Adeyemi 0.061

Marcel Sabitzer 0.042

Gregor Kobel 0.041

Mats Hummels 0.041

Marco Reus 0.037

Tabela 29: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 12
do Borussia Dortmund
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Jogador Probabilidade

Nico Schlotterbeck 0.174

Emre Can 0.131

Mats Hummels 0.114

Julian Brandt 0.098

Julian Ryerson 0.094

Jadon Sancho 0.076

Marcel Sabitzer 0.072

Ian Maatsen 0.066

Gregor Kobel 0.063

Niclas Fullkrug 0.045

Karim Adeyemi 0.024

Donyell Malen 0.013

Jamie Bynoe-Gittens 0.01

Marco Reus 0.01

Sebastien Haller 0.01

Tabela 30: Estado estacionário, em ordem decrescente, da matriz de transição do jogo 13
do Borussia Dortmund
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APÊNDICE B

B.1 Gráficos das Distribuições Estacionárias

B.1.1 Jogos do Real Madrid

Figura 31: Gráfico da Distribuição Estacionária do Jogo 1 do Real Madrid
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Figura 32: Gráfico da Distribuição Estacionária do Jogo 2 do Real Madrid

Figura 33: Gráfico da Distribuição Estacionária do Jogo 3 do Real Madrid
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Figura 34: Gráfico da Distribuição Estacionária do Jogo 4 do Real Madrid

Figura 35: Gráfico da Distribuição Estacionária do Jogo 5 do Real Madrid
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Figura 36: Gráfico da Distribuição Estacionária do Jogo 6 do Real Madrid

Figura 37: Gráfico da Distribuição Estacionária do Jogo 7 do Real Madrid
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Figura 38: Gráfico da Distribuição Estacionária do Jogo 8 do Real Madrid

Figura 39: Gráfico da Distribuição Estacionária do Jogo 9 do Real Madrid
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Figura 40: Gráfico da Distribuição Estacionária do Jogo 10 do Real Madrid

Figura 41: Gráfico da Distribuição Estacionária do Jogo 11 do Real Madrid
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Figura 42: Gráfico da Distribuição Estacionária do Jogo 12 do Real Madrid

Figura 43: Gráfico da Distribuição Estacionária do Jogo 13 do Real Madrid
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B.1.2 Jogos do Borussia Dortmund

Figura 44: Gráfico da Distribuição Estacionária do Jogo 1 do Borussia Dortmund
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Figura 45: Gráfico da Distribuição Estacionária do Jogo 2 do Borussia Dortmund

Figura 46: Gráfico da Distribuição Estacionária do Jogo 3 do Borussia Dortmund
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Figura 47: Gráfico da Distribuição Estacionária do Jogo 4 do Borussia Dortmund

Figura 48: Gráfico da Distribuição Estacionária do Jogo 5 do Borussia Dortmund
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Figura 49: Gráfico da Distribuição Estacionária do Jogo 6 do Borussia Dortmund

Figura 50: Gráfico da Distribuição Estacionária do Jogo 7 do Borussia Dortmund
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Figura 51: Gráfico da Distribuição Estacionária do Jogo 8 do Borussia Dortmund

Figura 52: Gráfico da Distribuição Estacionária do Jogo 9 do Borussia Dortmund
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Figura 53: Gráfico da Distribuição Estacionária do Jogo 10 do Borussia Dortmund

Figura 54: Gráfico da Distribuição Estacionária do Jogo 11 do Borussia Dortmund
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Figura 55: Gráfico da Distribuição Estacionária do Jogo 12 do Borussia Dortmund

Figura 56: Gráfico da Distribuição Estacionária do Jogo 13 do Borussia Dortmund
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APÊNDICE C

C.1 Comparação das Abordagens

A tabela abaixo compara diferentes abordagens para modelagem de passes no futebol:

Método Memória? Captura padrões complexos? Exemplo de uso no futebol

Cadeia de Markov Não Simples Modelar passes entre jogadores

HMMs (Modelos Ocultos de Markov) Sim (indiretamente) Sim (estados ocultos) Identificar momentos de posse,
contra-ataque, bola parada

RNNs Sim Simples a médio Prever o próximo passe com base
no histórico

LSTMs (Long Short-Term Memory) Sim (melhor que RNNs) Melhor que RNNs Modelar jogadas inteiras, prever
comportamentos táticos

Transformers Sim (melhor de todos) Mais avançado Análise preditiva completa do
jogo

Tabela 31: Comparação entre diferentes abordagens para modelagem de passes no futebol.
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