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RESUMO

A analise de jogos visa observar, coletar e avaliar os eventos que ocorrem durante
uma partida, podendo focar tanto em um jogador individual quanto no comportamento
coletivo dos jogadores em torno da bola. No entanto, a anélise de jogos de futebol nao
se limita apenas a correcao de erros e a exploracao de pontos fracos dos adversarios.
No futebol, a dinamica de jogo é marcada por um constante equilibrio e desequilibrio
entre as equipes, resultando em um ritmo que oscila frequentemente e em periodos de
estabilidade que surgem de forma imprevisivel. Essa natureza variavel e imprevisivel levou
os pesquisadores a considerar o futebol como um dos tipos de sistema dinadmico nao linear.
Diante disso, o uso de modelos de Markov no futebol apresenta-se como uma ferramenta
eficaz para a analise das dindmicas de jogo. Formalmente, um processo de Markov é um
processo estocastico em que o préximo estado depende apenas do estado atual. Quando
as variaveis aleatorias { X ()} estdo definidas em um espago de estados discreto e quando
as transicoes ocorrem em instantes 0, 1,2, ..., k, temos uma Cadeia de Markov em Tempo
Discreto. Neste caso, P(Xpi1 = xpi1 | Xp = 2, X1 = X1, ..., X1 = 21, Xo = x9) =
P(Xyi1 = xp1 | Xx = x). A propriedade de Markov é essencial porque simplifica a
analise de sistemas complexos ao eliminar a necessidade de considerar o historico completo
do sistema. Assim sendo, este estudo aplicou um modelo de cadeia de Markov para
analisar a dinamica de passes no futebol, identificando os jogadores-chave e otimizando a
estratégia de jogo para melhorar o desempenho da equipe. O objetivo foi utilizar a teoria
das cadeias de Markov para entender a estrutura probabilistica das sequéncias de passes
entre jogadores durante uma partida de futebol. Ao modelar as trocas de passes como um
processo estocéstico, o estudo forneceu perspectivas tteis para a elaboracao de estratégias
mais eficazes. A matriz de passes do jogador ¢ para o jogador j, foi obtida por meio da
pagina FootStats, onde as matrizes de adjacéncia foram fornecidas. Posteriormente, com
base nas matrizes, foi desenvolvido um modelo de cadeia de Markov, em tempo discreto e
com numero finito de estados, para representar o comportamento de passes entre jogadores
de uma equipe de futebol.

Palavras-chave: Cadeias de Markov, Anélise de Passes, Futebol.



ABSTRACT

Game analysis aims to observe, collect, and evaluate events occurring during a match,
focusing either on an individual player or the collective behavior of players around the
ball. However, the analysis of football games is not limited only to the correction of errors
and the exploration of opponents’ weaknesses. In football, game dynamics are charac-
terized by a constant balance and imbalance between teams, resulting in a rhythm that
frequently oscillates and periods of stability that emerge unpredictably. This variable and
unpredictable nature led researchers to consider football as a type of nonlinear dynamic
system. Considering this, the use of Markov models in football emerges as an effective tool
for analyzing game dynamics. Formally, a Markov process is a stochastic process in which
the next state depends only on the current state. When the random variables {X(t)}
are defined in a discrete state space and transitions occur at time instants 0,1,2,...,k,
we have a Discrete-Time Markov Chain. In this case, P(Xy1 = z11 | Xp = 2p, X1 =
T 1,..., X1 =21, X9 = 20) = P(Xgs1 = 211 | X = x). The Markov property is essen-
tial as it simplifies the analysis of complex systems by eliminating the need to consider
the complete history of the system. Therefore, this study applied a Markov chain model
to analyze passing dynamics in football, identifying key players and optimizing game stra-
tegy to improve team performance. The objective was to use Markov Chains Theory to
understand the probabilistic structure of pass sequences between players during a football
match. By modeling passing game as a stochastic process, the study provided valuable
insights for the development of more effective strategies. The passing matrix from player
i to player j, was obtained through the FootStats platform, where adjacency matrices are
provided. Subsequently, based on these matrices, a Discrete-Time Markov Chain model
with a finite number of states was developed to represent the passing behavior between
players on a football team.

Keywords: Markov Chains, Passing Analysis, Football.
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1 INTRODUCAO

Ao longo da histoéria, os seres humanos tém documentado seus comportamentos de
varias maneiras. Exemplos disso incluem os hierdglifos dos antigos egipcios, que repre-
sentavam gestos e movimentos da época, e o estudo dos movimentos de danca por Laban,
conhecido como Laban Notation. Mais recentemente, a analise de movimentos e seus
impactos no esporte tornou-se uma area importante de estudo (CARLING et al., 2007).
A analise de jogos visa observar, coletar e avaliar os eventos que ocorrem durante uma
partida, podendo focar tanto em um jogador individual quanto no comportamento cole-
tivo dos jogadores em torno da bola. Isso permite a geracao de dados, que podem variar
em complexidade, para determinar se o plano de jogo esta sendo executado conforme
planejado (CARLING et al., 2007; GARGANTA, 2001). Entretanto, com os avangos
tecnologicos presentes, a precisao na anélise de jogos melhorou significativamente, gracas
ao aperfeicoamento continuo dos métodos de analise e & utilizacao de softwares automa-
tizados que facilitam a avaliagdo de grandes volumes de dados coletados (MEMMERT;
RAABE, 2018). Essas analises permitem uma melhor preparagao para partidas futuras,
ajudando tanto na correcao de erros quanto na exploracao das fraquezas dos adversarios,
além de proporcionar beneficios na aprendizagem dos jogadores sobre a eficicia de suas
performances esportivas (GARGANTA, 2001).

A analise de jogos de futebol, no entanto, nao se limita apenas a correcao de erros e
a exploracao de pontos fracos dos adversarios. No futebol, a dindmica de jogo é marcada
por um constante equilibrio e desequilibrio entre as equipes, resultando em um ritmo
que oscila frequentemente e periodos de estabilidade que surgem de forma imprevisivel.
Essa natureza varidvel e imprevisivel levou os pesquisadores a considerar o futebol como
um dos tipos de sistema dindmico nao linear, ressaltando sua complexidade. Estudos
sob a perspectiva dos sistemas complexos mostram que atletas e equipes sao entidades
adaptativas que interagem de forma dindmica e nao linear com o ambiente em constante
evolugao do jogo (CARLING et al., 2008). Essas interagoes sao influenciadas por diversas
restri¢oes e oportunidades, que impactam a tomada de decisao dos jogadores. Portanto, é

crucial entender que uma equipe é mais do que a soma de seus membros; é uma entidade
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coletiva complexa. A analise do jogo pode ser realizada em véarios niveis, incluindo a
partida, a equipe, subgrupos e até interagoes diadicas (GARGANTA, 2009). A aquisigao
precisa de informagoes posicionais ¢ fundamental para compreender como o jogo, como um

sistema dinamico, e os atletas, como componentes, contribuem para a estratégia coletiva.

Ademais, os sistemas dinamicos, como o futebol, oferecem uma area interessante para
a aplicagao de anélises complexas, especialmente quando se considera a adaptacao con-
tinua das equipes a variaveis instaveis e imprevisiveis. A natureza do futebol, com suas
rapidas mudangas de estado entre equilibrio e desequilibrio, reflete as propriedades in-
trinsecas de tais sistemas, onde pequenas variagoes nas condigoes iniciais podem levar a
resultados drasticamente diferentes (ARAUJO et al., 2006). Isso ressalta a importancia

de interacao dinamica e adaptativa entre os atletas.

Diante disso, o uso de modelos de Markov no futebol apresenta-se como uma ferra-
menta eficaz para a anélise das dinamicas de jogo. Com a crescente disponibilidade de
dados e o avanco das técnicas analiticas, a modelagem de processos de Markov oferece
uma abordagem robusta para capturar a complexidade das trocas de passes, transi¢oes
de posse e a probabilidade de gols. Um modelo de Markov é um modelo matemaético que
descreve um sistema que transita entre estados de acordo com probabilidades de transicao
especificas, as quais dependem exclusivamente do estado atual, nao dos estados anteriores

(propriedade de Markov).

Formalmente, um processo de Markov é um processo estocastico em que o proximo
estado depende apenas do estado atual. Quando as variaveis aleatorias {X (¢)} estao de-
finidas em um espaco de estados discreto e quando as transi¢oes ocorrem em instantes
0,1,2,...,k, temos uma Cadeia de Markov em Tempo Discreto. Neste caso, P(Xj 1 =
Tp1 | X = T, Xim1 = @pmr, .., Xn = 21, X0 = 20) = P(Xp1 = 21 | Xk = ).
A propriedade de Markov é essencial porque simplifica a anéalise de sistemas complexos
ao eliminar a necessidade de considerar o histérico completo do sistema. Em muitas
aplicagoes praticas, essa simplificacao permite a construcao de modelos que sao compu-
tacionalmente viaveis e teoricamente solidos (ROSS, 2014). Na pratica, a construcgao de
um modelo de Markov requer a definicao precisa dos estados e a matriz de transicao P,
M x M, onde M é o nimero de estados, e cada entrada F;;, representa a probabilidade
de transi¢ao do estado ¢ para o estado j em um tnico passo. A soma de todas as pro-
babilidades de transi¢do de um estado deve ser 1: ;P =1 A simulacao de cenarios
envolve iterar o processo de Markov ao longo do tempo, utilizando a matriz de transigao
para determinar a probabilidade de se mover de um estado a outro. Isso permite prever

distribui¢oes de estados futuros com base nas condigoes iniciais, utilizando a matriz de
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transi¢ao (GRIMMETT; STIRZAKER, 2020).

Na aplicacao ao futebol, os modelos de Markov permitem capturar diferentes niveis
das equipes, considerando aspectos como a tendéncia de marcar ou sofrer gols, bem como
a variacao na posse de bola, que pode depender da posigao do jogo no campo. Estudos
recentes utilizam discretizagoes diversas do campo, desde uma divisao simples em zonas
até divisoes mais detalhadas, para refletir melhor as forcas das equipes e suas estratégias
em diferentes areas do campo. Essa granularidade é crucial para aprimorar a precisao
das previsoes e analises, permitindo uma avaliagdo mais refinada das estratégias taticas
e dos desempenhos das equipes. Além disso, modelos log-lineares s@ao empregados para
estimar as forgcas das equipes com base em varidveis como vantagem de jogar em casa,
forca ofensiva e defensiva, ajustando-se aos dados de partidas reais para validar a precisao

e a aplicabilidade dos modelos.

No contexto do futebol, por exemplo, um estado pode representar a posse de bola
por uma determinada posi¢ao (como atacantes, meio-campistas, defensores, ou goleiro),
enquanto as transigoes refletem os passes entre essas posigoes (KIM; CHA, 2022). Esta
modelagem envolve a construcao de uma matriz estocastica que define a probabilidade
de cada transicao com base em dados empiricos coletados, como os padroes de passe de
um time durante uma temporada. A analise desses padroes nos permite estimar a distri-
buicao estével da posse de bola apés um niimero suficiente de transicoes, fornecendo uma
aproximacao satisfatoria da realidade, mesmo que a dinamica do jogo seja intrinsecamente

complexa.

1.1 Objetivo Geral

Desenvolver um modelo de cadeia de Markov para analisar a dindmica de passes no
futebol, com o objetivo de identificar os jogadores-chave em cada partida. Esse modelo
visa avaliar a importancia de cada jogador durante o jogo, permitindo compreender seu

impacto nas transicoes de posse de bola.
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1.2 Objetivos Especificos

e Modelar a Dinamica dos Passes: Desenvolver um modelo de cadeia de Markov,
em tempo discreto e com nimero finito de estados, para representar o comporta-

mento de passes entre jogadores de uma equipe de futebol.

e Analisar as Probabilidades de Transicao: Calcular as probabilidades de tran-
si¢ao entre jogadores para entender a probabilidade de ocorrerem passes entre pares

especificos de jogadores.

e Identificar Jogadores-chave: Usar o modelo para destacar os jogadores que mais
influenciam as transi¢oes de posse de bola, identificando os jogadores-chave e otimi-

zando a estratégia de jogo para melhorar o desempenho da equipe.

1.3 Justificativa

Este trabalho propoe a utilizagao da teoria das cadeias de Markov para modelar
a dinamica de passes no futebol, representando as transicoes entre jogadores de forma
probabilistica. Essa abordagem permite: identificar jogadores-chave de uma determinada
partida, entender a organizacao tatica das equipes e sugerir melhorias nos desempenhos

individuais e coletivos.

A justificativa estd na necessidade de ferramentas objetivas para andlise de desem-
penho, auxiliando treinadores e analistas na elaboragao de estratégias. Além disso, a
aplicacao de métodos matemaéticos ao esporte promove a interdisciplinaridade e demons-

tra o potencial cientifico no entendimento do futebol.
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2 FUNDAMENTOS MATEMATICOS DAS
CADEIAS DE MARKOV

2.1 Introducao aos Processos Estocasticos

Os processos estocasticos sao definidos como uma colecao de variaveis aleatorias in-

dexadas por um parametro t € R, frequentemente representando tempo.

X = {X(to), X(t1),..., X (t)}-

A variavel aleatoria X (t) é definida em um espago de estados. A natureza do indice
(discreto ou continuo), do espago amostral e da distribui¢ao determina a classificagao do

processo em diferentes categorias (MEDHI, 1994), como por exemplo:

e Processos de Poisson: Modelam eventos que ocorrem aleatoriamente ao longo do

tempo, como a chegada de clientes em filas, com base em distribui¢oes exponenciais.

e Processos gaussianos: Fundamentais em estatistica e aprendizado de méaquina,

sendo utilizados em previsoes baseadas em distribui¢oes normais.

e Cadeias de Markov: Caracterizadas pela propriedade de “falta de memoria”, sao

particularmente titeis para modelar sistemas dindmicos com transi¢oes entre estados.

Um processo de Markov é um processo estocastico em que o préoximo estado depende
apenas do estado atual. Essa “falha de memoria” é garantida pela propriedade de Markov,

expressa comao:

P(X(tk+1> = Tky1 ‘ X(tk) = 'TlmX(tkfl) = T—1,-- - ,X(h) = SL’l,X<t0) = l’o) =
P(X (tkt1) = Tppa | X () = z1),

(2.1)

Vip <t1 <o - <t < tpqa.
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Quando as variaveis aleatorias {X (¢)} estdo definidas em um espago de estados dis-

creto e quando as transicoes ocorrem em instantes 0,1,2,...,k, temos uma Cadeia de

Markov em Tempo Discreto. Neste caso:

P<Xk+1 = Tk+1 ’ Xy = Tp, Xjpm1 = Tpe1, ..., X1 = 21, Xo = 950) =

(2.2)
P(Xpt1 = Tpp1 | X = ap).
2.2 Cadeia de Markov: Definicao
Considere uma sequéncia de variaveis aleatorias Xo, X1, Xo,..., X, com k£ € N, e
suponha que o conjunto de valores possiveis dessas varidveis seja {0,1,...,M}. E util

interpretar X; como o estado de algum sistema no tempo k e, de acordo com essa in-
terpretagao, dizer que o sistema estéd no estado j no tempo k se X = j. Diz-se que a
sequéncia de variaveis aleatorias forma uma cadeia de Markov se, cada vez que o sistema
estiver no estado i, existir alguma probabilidade fixa, a qual chamaremos de P;;, de que

o sistema esteja a seguir no estado j (ROSS, 2014). Isto é, para i, ..., ik_1,1, 7,

P(Xpr1 =7 | X =0, X1 = th—1, ..., X1 =11, Xog = 1p) =
P(Xk—i-l =7 | Xi = Z) = Pij.

(2.3)

Cada valor P;; representa a probabilidade de transi¢cao do estado ¢ para o estado j
da cadeia de Markov, obedecendo a condi¢ao de que a soma das probabilidades em cada

linha da matriz seja igual a 1 (ANTON; RORRES, 2012).

P;>0, Y Py=1, i=01,. M (2.4)

Essa definicao nos diz que as probabilidades de transicao podem ser arranjadas por
uma matriz estocastica P, em que cada entrada P;; representa a probabilidade de tran-

sicao do estado ¢ para o estado j:
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Foo Fon Fom
p_ P P.n Py (2.5)
| Pro Pan Phr |

Em geral, definimos a probabilidade de transicao de n passos, representada por Pi(f),

COINO:
P =P(Xppu =3 | Xe=14) , Yn>0 ij>0 (2.6)

v

Proposicao 2.1. (Equagao de Chapman-Kolmogorov)

1] -
k=0

M
PUH™ = SOPPPM L Ynm >0 ij > 0. (2.7)

Demonstracao.
Pz‘(jner) =P(Xppm =7 | Xo=1)
= P(Xnpm = J, Xn =k | Xo = 1)
k

= S P (X = | X = iy Xo = )P(X, = b | Xo = i) (28)

k
(m) p(n)
= Z ij Py,
k
]

Se P(™ denota a matriz de probabilidades de transicdo de n passos, entdo a equagao

(2.7) nos diz que:

potm — pt) . pm) (2.9)
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Isso significa que a matriz P™ comuta com a matriz P(™), e em particular,

P® =pit) = p.p=p2
e por inducgao

pn — p-1+1) _ pr-1. p _ pn. (2.10)

Logo, a matriz de probabilidades de transicao de n passos é obtida multiplicando a

matriz P por ela mesma n vezes.

2.3 Classificacao dos Estados em Cadeias de Markov

Os estados podem ser classificados como acessiveis, recorrentes, transientes e absor-
ventes, ou ainda, avaliados quanto a irredutibilidade e periodicidade da cadeia (MEYN;
TWEEDIE, 2012).

e Estado Acessivel: Um estado j é considerado acessivel a partir de um estado @
se existe pelo menos um namero finito de passos n > 0 tal que a probabilidade de

transicao de ¢ para j em n passos seja positiva, isto €,

(n)
P> 0. (2.11)
A acessibilidade é uma relacao unidirecional, isto €, 7 pode acessar j, mas j pode
nao acessar i.

e Comunicabilidade: Dois estados i e 7 sao ditos comunicdveis se sao acessiveis
entre si. Isso significa que é possivel transitar de ¢ para 7 em um nimero finito de

passos, e vice-versa.

PM>0 . PM>0 , ¥nm>0. (2.12)

O conjunto de todos os estados comunicaveis com %, forma uma classe de comuni-

cagao que particiona o espaco de estados.
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e Estado Recorrente e Estado Transiente: Um estado ¢ é dito recorrente se,
dado que o processo entra no estado ¢, a probabilidade de retornar a 7 ¢ igual a 1.
Caso contrario, o estado ¢é classificado como transiente, indicando que existe uma

probabilidade positiva de que o processo nunca retorne a .

Y PV = (2.13)

n=1
Para estados transientes, esta soma ¢ finita. Essa distin¢ao pode ser justificada pelo

Lema de Borel-Cantelli, mas a demonstragao nao sera abordada aqui.

e Estado Absorvente: Um estado i é classificado como absorvente se, uma vez

alcancado, o processo nao pode sair desse estado.

=1

)

0, J#ti

Py
(2.14)
Py

e Irredutibilidade: Uma cadeia de Markov é classificada como irredutivel se for
possivel transitar de qualquer estado ¢ para qualquer outro estado j em um nimero

finito de passos. Isto é, existe um n > 0 tal que:

PM>0 , Y0<ij<M. (2.15)

A irredutibilidade garante que todos os estados da cadeia sao acessiveis entre si,
o que é uma condi¢ao necessaria para a ergodicidade da cadeia, assunto que sera

discutido na proxima secao.

e Periodicidade: Um estado ¢ é considerado periddico se as visitas a ¢ ocorrerem
apenas em tempos miltiplos de um periodo d > 1. O periodo d de um estado 7 é

definido como o maximo divisor comum de todos os n > 0 para os quais Pl(ln) > 0.

d = mdec {n >0: P> 0} . (2.16)

Se d = 1, o estado é classificado como aperiddico, indicando que ele pode ser revisi-

tado em intervalos irregulares de tempo. A periodicidade é um fator relevante para
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determinar a convergéncia da cadeia para a distribuicao estacionaria, pois cadeias

aperiddicas facilitam esse comportamento.

2.4 Ergodicidade e Distribuicao Estacionaria

Para um grande nimero de cadeias de Markov, Pi(j")

00, para um valor m; que depende somente de j. Isto ¢, para grandes valores de n, a

converge, a medida que n —

probabilidade de se estar em um estado j apds n passos ¢ aproximadamente igual a 7;
nao importando qual tenha sido o estado inicial. As cadeias de Markov que satisfazem
as equagoes (2.15) e (2.16) quando d = 1 sao chamadas de ergddicas. A ergodicidade de
uma cadeia de Markov é uma propriedade importante que implica na existéncia de uma

distribuicao estacionaria.

Teorema 2.1. Para uma cadeia de Markov ergodica, existe uma distribuicao estaciondria

;> 0,0<j <M tal que

m; = lim P (2.17)

n—oo W

sao as unicas solugoes nao negativas de

M M
Ty = E Wkpkj > E 7Tj:1.
k=0 7=0

Demonstra¢ao. Como a Proposigao (2.1) resulta em

M
(n+1) _ (n)
Pz'j - Z Pik ij
k=0

note que existe um limite em (2.17), e para cadeias ergodicas

M
T = E 7T]€ij.
k=0
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Além disso, como 1 = 22/[:0 Pi(k”), também obtemos, a partir de (2.17), que

Para provar que essa distribuicao estacionaria 7; ¢ inica, vamos supor, por contradi-

~ . . . .~ . L. ’ . .
¢ao, que existam duas distribuigoes estacionérias m; e 7;, diferentes. Ambas satisfazem

M M
/ ’
T = E TPy e ;= E 3 Prj.
k=0 k=0

A diferenga entre essas duas distribuigoes é definida por:

5j = 7Tj — M.
Agora temos:
M M M
Zékpkj = Zﬂ-kpkj — Zﬂ-kpkj = 7Tj — 7Tj = 5]'.
k=0 k=0 k=0
Ou seja, a diferenca entre as duas distribui¢oes também é uma solucao da equagao

M
> 6kl =45,
k=0

’ ~ . ~ L L, . 1 e
Como m; e m; sdo diferentes, 9; nao é o vetor nulo. Porém pela irredutibilidade e

aperiodicidade da cadeia, d; deve ser o vetor nulo, pois a unica solu¢ao nao-trivial para

Z,iwzo 0xPr; = 0; ¢ 0; = 0, o que significa que m; = 7r;.. Logo, nao pode haver duas

distribuic¢oes estacionarias diferentes.
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3 APLICACOES DAS CADEIAS DE MARKOV

3.1 Aplicacoes em Algumas Areas

3.1.1 Engenharia: Sistemas de Filas de Espera

Em engenharia, especialmente em sistemas de filas de espera, as cadeias de Markov
sao empregadas para modelar a chegada de clientes a um sistema, o tempo de espera e o
servigo prestado. Por exemplo, em uma fila de atendimento, pode-se modelar o ntimero
de clientes no sistema como um processo de Markov. As transi¢coes entre os diferentes
estados da fila, como o numero de clientes atendidos e o tempo de espera, sao regidas por
probabilidades que dependem apenas do niimero atual de clientes na fila, e nao do histoérico
anterior. O modelo mais comum utilizado nesses sistemas ¢ o processo de Poisson! em
conjunto com uma cadeia de Markov, para modelar a chegada de clientes e o tempo de
servico. O uso de cadeias de Markov permite calcular métricas de desempenho, como o

tempo médio de espera, a probabilidade de uma fila estar cheia, e a utilizacao do sistema,

sendo essencial para o dimensionamento de recursos e a otimizagao de processos (ROSS,
2014).

3.1.2 Biologia: Processos de Evolucao Genética

No ramo da biologia, as cadeias de Markov tém sido amplamente aplicadas para
modelar processos de evolucao genética. Um exemplo classico é uma sequéncia de DNA,
que pode ser representada por uma cadeia de Markov em tempo discreto, onde os estados
sao definidos pelos quatro tipos de nucleotideos: Adenina (A), Timina (T), Citosina (C)

e Guanina (G). As transi¢oes entre esses estados refletem a probabilidade de mutagao

Iprocesso estocéstico que descreve eventos que ocorrem de forma aleatéria ao longo do tempo, com
a caracteristica de que os eventos sdo independentes e ocorrem a uma taxa constante média. A principal
caracteristica desse processo é a ocorréncia de um numero de eventos em um intervalo de tempo fixo,
com uma distribuicao de probabilidades que segue a distribuigao de Poisson.
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genética ao longo do tempo (GAGNIUC, 2017). Esse modelo é essencial para prever

padroes evolutivos e compreender mecanismos genéticos que influenciam a biodiversidade.

3.1.3 Mercado Financeiro: Processos de Precos de Acoes

No contexto do mercado financeiro, a dindmica dos precos de ativos, como agoes,
também pode ser modelada utilizando cadeias de Markov. Nesse modelo, os estados
representam diferentes faixas de preco, e as probabilidades de transicao descrevem as
chances do prego de uma agao mudar de uma faixa para outra ao longo de um determinado
periodo. Ao identificar padroes recorrentes nessas transicoes, é possivel fazer uma anéalise
das flutuagoes dos precos, o que pode ser fundamental para a formulacao de estratégias

de investimento e até prever as condigoes do futuro do mercado (FILHO, 2022).

3.1.4 Esportes: Interacoes entre atletas de uma equipe

As interacoes entre atletas em esportes coletivos representam um desafio analitico,
sendo um campo promissor para a aplicacao de modelos matematicos que capturam a
dindmica tatica e comportamental, como as cadeias de Markov. Esses modelos fornecem
uma base solida para compreender dindmicas taticas e comportamentais, permitindo ana-
lises detalhadas dos padroes de jogo e dos processos de tomada de decisao. A utilizagao
de cadeias de Markov transcende o futebol, podendo ser aplicada a uma ampla varie-
dade desses esportes, como basquete, volei e handebol, adaptando-se as caracteristicas

especificas de cada modalidade.

No basquete, a analise de sequéncias de posses de bola pode ser representada como
uma cadeia de estados que incorpora passes, dribles e tentativas de arremesso. Nesse con-
texto, a abordagem de estados absorventes, pode ser usada para estimar a probabilidade
de uma jogada resultar em um ponto no basquete (WOODFIELD; FELLINGHAM, 2018).
No volei, a aplicacao desses modelos, pode auxiliar na analise das sequéncias de toques
na bola, identificando padroes entre recepcao, levantamento e ataque. Assim, uma boa
base quantitativa é obtida para otimizar decisdes taticas e formagoes em quadra (ROY
et al., 2023). Ja no handebol, os modelos permitem mapear transigoes entre passes e
finalizagdes, avaliando como as decisoes individuais afetam o desempenho coletivo (ROY
et al., 2021). Esses modelos mostram que é possivel identificar regioes criticas da quadra
e padroes de movimentacao que maximizam as chances de gol, além de avaliar o impacto

de ajustes taticos sobre a eficacia ofensiva e defensiva.
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3.2 Aplicacoes no Futebol

O futebol, reconhecido por sua popularidade e dindmica complexa, envolve interacoes
entre jogadores que podem ser eficientemente representadas por modelos de cadeias de
Markov, destacando padroes e transicoes taticas. Com a crescente disponibilidade de
dados e o avango das técnicas analiticas, esses modelos oferecem uma abordagem mate-
matica robusta para analisar as transicoes de estados que representam eventos no jogo,

como passes, dribles, cruzamentos, interceptagoes e finalizac¢oes.

Considerando a troca de passes entre os jogadores de um time como um dos principais
elementos que determina a dindmica de uma partida de futebol, pode-se observar que, ao
estar com a posse da bola, o jogador se movimenta para encontrar a melhor alternativa
de passe ou para buscar uma finalizacao ao gol adversario. Essa dinamica é influenciada
por fatores como o posicionamento no campo, a distdncia entre os atletas, a presenca de
marcadores e a habilidade técnica dos jogadores, conferindo ao jogo um comportamento
estocéstico, onde cada opgao de passe apresenta diferentes probabilidades de sucesso.
Entretanto, para efeitos de simplificacao, é possivel ignorar aspectos como o posiciona-
mento exato dos jogadores em campo, o tempo de posse da bola e até mesmo um ou mais

jogadores que nao participam ativamente da dindmica de troca de passes na partida.

Diante desse cenario, varios estudos estao sendo feitos das mais diversas formas. Uma
aplicagao das cadeias de Markov analisando a troca de passes e sua influéncia no desempe-
nho tatico foi feita por (CECCONELLO; OLIVEIRA, 2020). Utilizando dados de alguns
jogos da selecao brasileira, a final da copa do mundo de 2002 e os cinco jogos da campanha
no mundial de 2018, os autores modelaram as transi¢oes, onde cada um dos onze jogadores
representam um estado, e analisaram o estado estacionario dessas cadeias, identificando
os jogadores mais relevantes em termos de sua participagao na troca de passes ao longo
da partida. Essa analise do estado estacionario da cadeia, vai além e ainda nos permite

identificar estratégias e taticas da dinamica de um determinado time.



30

Para analisar o impacto da posse de bola das equipes de futebol, (KIM; CHA, 2022)
de uma maneira um pouco diferente, construiram uma matriz estocastica utilizando dados
de passes do time do Barcelona na temporada 2020/21. A partir do calculo da matriz de
probabilidades de transicao da posse de bola entre as diferentes posicoes dos jogadores no
campo como atacantes, meio-campistas, defensores e goleiro, os autores calcularam auto-
valores e vetores do estado estacionério. Nesse processo, o Teorema de Perron-Frobenius
é aplicavel, pois ele garante que, para matrizes estocasticas irredutiveis e positivas, existe
um tunico autovalor dominante e positivo, e o vetor associado a esse autovalor repre-
senta a distribuicao estacionaria da posse de bola, descrevendo a rapidez da convergéncia
exponencial do sistema para o estado estacionario. Cabe destacar que a demonstracao
do Teorema de Perron-Frobenius nao sera abordada neste trabalho. Juntamente com a
analise de componentes principais (PCA)!, os autores identificaram padroes téticos e a
correlacao entre a posse de bola no meio-campo e o sucesso da equipe. A anélise dos
padroes de passe permite estimar a distribuicao estavel da posse de bola, aproximando-se

da realidade do jogo, apesar de sua complexidade.

Contudo, a aplicagao de cadeias de Markov no futebol nao se limita a andlise de
passes. (ROY et al., 2023) propuseram um framework? baseado em Processos de Decisao
de Markov (MDPs)? que modela a dinAmica ofensiva de equipes de futebol, permitindo
simular diferentes cenarios, como a eficacia de estratégias de ataque em zonas especificas
do campo. No contexto da dindmica ofensiva, os MDPs sao particularmente tteis porque
permitem modelar o futebol como uma sequéncia de decisoes, onde o estado do jogo (por
exemplo, zonas do campo onde a bola esta) evolui em resposta as agoes dos jogadores (por
exemplo, passes, dribles ou chutes). O objetivo é encontrar uma regra que indica qual
acao tomar em cada estado, para que maximize a recompensa total esperada ao longo do
tempo (por exemplo, marcar um gol ou perder a posse de bola). (LIU et al., 2022) propds
identificar os padroes gerais e ameacadores de ataque de diferentes estilos de jogo em
partidas de futebol de alto nivel, no caso os dados de sequéncia de ataque das 21 partidas
das trés melhores equipes na copa do mundo de 2018 foram coletados com essa finalidade.
As trés equipes foram classificadas em dois estilos de jogo: a Franca foi considerada uma

equipe de jogo direto, enquanto Croacia e Bélgica foram consideradas equipes de posse

Ltécnica de analise usada para processar conjunto de dados multidimensionais, informando qual va-
riavel é mais benéfica em termos de distingdo do conjunto de dados, aumentando assim a sua interpreta-
bilidade e preservando o maximo de informacoes.

2estrutura conceitual que organiza métodos, ferramentas e processos para resolver problemas especi-
ficos de forma sistematica e eficiente.

3modelo matematico usado para representar e resolver problemas de tomada de decisao em ambientes
estocasticos, definido por cinco elementos principais: estados, agoes, funcao de transicao, funcao de
recompensa e fator de desconto.
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de bola. O campo de futebol foi dividido em 12 zonas, e modelos de zona baseados em
matrizes de transicao de Markov foram aplicados para avaliar o padrao de ataque nas
21 partidas. Foram realizadas analises descritivas e simulagoes usando esse modelo. A
combinacgao de posse de bola e contra-ataque foi uma nova tendéncia que surgiu na copa

do mundo de 2018.

A integracao de técnicas complementares também fortalece o uso das cadeias de Mar-
kov no futebol, especialmente ao lidar com a complexidade e a variabilidade do jogo. A
combinacao com os métodos como os citados: PCA, MDPs e modelos de zona, permite
explorar diferentes aspectos do desempenho das equipes. Por exemplo, o PCA é 1til para
reduzir a dimensionalidade dos dados, facilitando a identificacao de padroes relevantes
em conjuntos de dados extensos e complexos. Os MDPs, por sua vez, adicionam uma
camada de decisao e otimizacao ao modelo, possibilitando a simulagao de cenarios taticos
que envolvem escolhas estratégicas em tempo real. Ja os modelos de zona organizam o
campo em regioes especificas, permitindo que as transi¢oes entre estados representem o
movimento da bola e as agoes das equipes de maneira mais detalhada. Essa abordagem
integrada ¢é particularmente vantajosa em situagoes com dados limitados, onde a escassez
de informagoes pode ser compensada pela capacidade desses métodos de extrair infor-
magoes criticas e ajustar modelos para diferentes estilos de jogo. Assim, as cadeias de
Markov, em conjunto com essas técnicas, tornam-se um ferramental robusto para modelar
a dindmica do futebol, oferecendo uma analise tatica aprofundada, desde a modelagem

de passes até a simulacao de cenarios ofensivos e defensivos.
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4 METODOLOGIA

4.1 Coleta dos Dados

Os dados dos passes entre os jogadores de uma mesma equipe de todos os 125 jogos da
temporada 2023 /24 da UEFA Champions League foram coletados da plataforma Footstats
(FOOTSTATS, 2002), um site 100% gratuito para consumir dados estatisticos de futebol
dos campeonatos, equipes e jogadores de mais de 150 ligas pelo mundo. Cada arquivo
JSON ! disponibilizado, contém os dados dos passes das duas equipes em determinada
partida. Para cada equipe, o niimero de passes do jogador ¢ para o jogador j foi registrado
através de uma matriz de adjacéncia A, quadrada, a qual representa as interacoes entre

os jogadores.

4.2 Estruturacao e Tratamento dos Dados

Para a construcao do modelo da cadeia de Markov, transformamos a matriz de adja-
céncia A em uma matriz adequada. Para construir a matriz de transicao P, normalizamos
a respectiva matriz de adjacéncia A. Cada elemento P;; foi obtido dividindo-se o ntimero
de passes do jogador ¢ para o jogador j pelo total de passes realizados pelo jogador 1,
assegurando que a soma das probabilidades em cada linha fosse igual a 1, conforme a

equagao (2.4).

Pj=S2- . Py>0. (4.1)

Larquivo de texto que armazena e troca informacoes entre sistemas computacionais, baseado na sintaxe
do objeto JavaScript.
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Para garantir um grau de confian¢a no modelo, arredondamos cada um dos elementos
P;; para trés digitos significativos. Linhas com somatoérios nulos, representando jogadores
que nao realizaram passes, e colunas com somatoérios nulos, representando jogadores que
nao receberam passes, foram tratadas atribuindo valores zero as transi¢coes, mantendo a
matriz como estocéstica. Veremos adiante que para uma melhor analise e um modelo mais
eficiente, optamos por remover essas linhas e colunas nulas, isto é, com todas as entradas
Pi; = 0.

4.3 Construcao do Modelo de Cadeia de Markov

O modelo foi desenvolvido para representar a dindmica dos passes no futebol, utili-
zando uma cadeia de Markov em tempo discreto. Definidas as matrizes de transicao P
e considerando validas as propriedades de que a soma de cada linha deve ser igual a 1 e
que nao existem elementos negativos, definimos cada jogador como um estado da cadeia
de Markov, com as transi¢oes representando os passes entre eles. Nos certificamos de que
todos os estados relevantes (jogadores) estavam corretamente representados na matriz
quadrada M x M.

De acordo com a equagao (2.15), uma cadeia de Markov é irredutivel se for possivel
atingir qualquer estado j partindo de qualquer estado i (direta ou indiretamente) em um
ntmero finito de passos. Quando a matriz de transi¢ao nao for irredutivel, significa que
existem jogadores que nunca recebem ou nunca passam a bola, podendo haver estados

isolados devido & maneira como os passes sao distribuidos.

Como um dos nossos objetivos foi verificar os jogadores mais influentes na equipe,
desconsideramos esses estados com pouca ou nenhuma relevancia. Assim, garantimos a
irredutibilidade das matrizes e, uma vez que também fossem aperiddicas, isto é, quando
o fluxo de passes se torna mais imprevisivel ou contém probabilidades diferentes de tran-
sicao, as cadeias eram ergddicas. Isso nos possibilitou encontrar a tnica distribuigao
estacionaria, conforme definido na equagao (2.17). Analisando cada valor dessa distribui-
cao estacionéria 7}, identificamos os jogadores mais influentes, a probabilidade de estarem
envolvidos na rede de passes da equipe no decorrer da partida e verificamos se o jogo era

mais coletivo, ou se o time era mais dependente de alguns jogadores.
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4.4 Validacao do Modelo de Cadeia de Markov

A consisténcia do modelo foi avaliada por meio de algumas validagoes, incluindo:
analise de convergéncia para garantir que o modelo converge para uma tnica distribuicao
estacionaria, o que é esperado de cadeias de Markov ergddicas, mapas de calor para uma
analise das probabilidades de transicao visando entender a probabilidade de ocorrerem
passes entre pares especificos de jogadores e graficos de rede para representar as conexoes

entre os jogadores e verificar se os fluxos previstos pelo modelo fazem sentido.

Para verificar se a matriz de transi¢ao P convergia para uma distribuigao estacionaria
apds multiplas iteragoes, multiplicamos P sucessivamente, conforme mostrado na equagao
(2.10). Em seguida, verificamos se as linhas de P" convergiam para o mesmo vetor
(distribuigao estacionéria). Por fim, estabelecemos um critério de parada |[P"™! — P"|| <
10~° baseado no valor de tolerancia e = 107°. Esse critério € define o limite de variacao

entre as iteragoes, assegurando que o sistema chegou a uma solucao estavel.

Mapas de calor foram utilizados para visualizar as probabilidades de transi¢ao entre
jogadores. Cada célula do mapa de calor indica a probabilidade de ocorréncia de um
passe entre dois jogadores especificos, com cores mais intensas destacando transi¢oes mais
frequentes. Essa visualizagao facilita a identificacao de padroes e comportamentos tati-
cos, como jogadores que frequentemente recebem ou iniciam passes, além de evidenciar

possiveis concentragoes de jogo em determinados setores ou atletas.

Também foram feitas simulagoes de sequéncias de passes para avaliar a estabilidade
do modelo. O ponto de partida escolhido foi o jogador mais influente, identificado pela
distribuicao estacionaria. Essa abordagem permitiu observar como o fluxo de passes evo-
lui a partir de um jogador central e identificar se a dindmica de passes se concentra ou
se distribui uniformemente entre os demais jogadores. Ao todo foram feitas 100 simula-
¢oes para cada um dos times em cada partida. O nimero de passes de cada sequéncia

prosseguiu até que o critério de parada € = 1072 fosse atendido.

Para a analise dessas sequéncias simuladas, foram gerados graficos de rede para visua-
lizar as conexoes entre os jogadores. Cada n6 do grafico representa um jogador, enquanto
as arestas indicam a direcao dos passes entre eles. No nosso modelo o tamanho do né
permitiu identificar jogadores centrais e subgrupos taticos dentro da equipe, isto é, quanto
maior o nd, mais influente é o jogador para o time naquela sequéncia simulada. As ares-
tas foram numeradas conforme a sequéncia foi gerada e seu tamanho foi determinado

conforme a matriz de transicao P.
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4.5 Ferramentas Utilizadas

A linguagem de programacao R ! foi utilizada conjuntamente com o RStudio ? para
todas as etapas do processo, desde a manipulacao até a analise dos dados, simulagao
e construcao de graficos e mapas de calor. Cada uma das matrizes de adjacéncia e de
transicao foi convertida e armazenada em uma planilha em formato CSV 3. Arquivos
do tipo TXT # também foram gerados a fim de mostrar quais foram os jogadores mais
influentes nas partidas e quantos passos foram necessarios até a convergéncia para o vetor
estacionario. Arquivos do tipo PNG ° foram utlilizados para salvar os mapas de calor,
graficos da distribuicao estacionaria e os graficos de rede. Todos esses arquivos foram

armazenados em um repositorio no GitHub ¢ (NETO, 2024).

Hinguagem e ambiente para computacao estatistica e graficos.

Zinterface gréfica integrada para o R.

3arquivo de texto, do tipo valores separados por virgulas, usado para armazenar dados que podem
ser importados e exportados em programas como Microsoft Excel, Google Sheets ou LibreOffice Calc.

4arquivo de texto simples que pode ser criado, aberto e editado utilizando programas de processamento
de texto.

Sarquivo de imagem rasterizado. O formato é amplamente utilizado em sites para exibir imagens
digitais de alta qualidade.

6plataforma de hospedagem baseada em repositorios e comandos Git, onde é possivel armazenar os
codigos, arquivos e o histoérico de revisao de cada arquivo.



5 ESTUDO DE CASO E RESULTADOS

5.1 Selecao dos Jogos
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Foram escolhidos os 13 jogos das equipes do Real Madrid e Borussia Dortmund do

campeonato da UEFA Champions League da temporada 2023 /24 como amostra para apli-

cacao do modelo, por serem as equipes finalistas da competicao. Nesses jogos selecionados

podemos ver situacoes distintas das dinamicas de passes e estilos de jogos diferentes que

levaram essas duas equipes & grande final.

Jogo Placar Fase Local
1 Real Madrid 1 x 0 Union Berlin Grupos Rodada 1 Casa
2 Napoli 2 x 3 Real Madrid Grupos Rodada 2 Visitante
3 Braga 1 x 2 Real Madrid Grupos Rodada 3 Visitante
4 Real Madrid 3 x 0 Braga Grupos Rodada 4 Casa
5) Real Madrid 4 x 2 Napoli Grupos Rodada 5 Casa
6 Union Berlin 2 x 3 Real Madrid Grupos Rodada 6 Visitante
7 RB Leipzig 0 x 1 Real Madrid Oitavas de Final Ida | Visitante
8 Real Madrid 1 x 1 RB Leipzig Oitavas de Final Volta Casa
9 Real Madrid 3 x 3 Manchester City Quartas de Final Ida Casa
10 Manchester City 1 x 1 Real Madrid | Quartas de Final Volta | Visitante
11 Bayern 2 x 2 Real Madrid Semifinal Ida Visitante
12 Real Madrid 2 x 1 Bayern Semifinal Volta Casa
13 | Borussia Dortmund 0 x 2 Real Madrid Final Neutro

Tabela 1: Jogos do Real Madrid na UEFA Champions League 2023/24
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Jogo Placar Fase Local
1 PSG 2 x 0 Borussia Dortmund Grupos Rodada 1 Visitante
2 Borussia Dortmund 0 x 0 Milan Grupos Rodada 2 Casa
3 Newcastle 0 x 1 Borussia Dortmund Grupos Rodada 3 Visitante
4 Borussia Dortmund 2 x 0 Newcastle Grupos Rodada 4 Casa
5 Milan 1 x 3 Borussia Dortmund Grupos Rodada 5 Visitante
6 Borussia Dortmund 1 x 1 PSG Grupos Rodada 6 Casa
7 PSV 1 x 1 Borussia Dortmund Oitavas de Final Ida | Visitante
8 Borussia Dortmund 2 x 0 PSV Oitavas de Final Volta Casa
9 Atlético de Madrid 2 x 1 Borussia Dortmund | Quartas de Final Ida | Visitante
10 | Borussia Dortmund 4 x 2 Atlético de Madrid | Quartas de Final Volta Casa
11 Borussia Dortmund 1 x 0 PSG Semifinal Ida Casa
12 PSG 0 x 1 Borussia Dortmund Semifinal Volta Visitante
13 Borussia Dortmund 0 x 2 Real Madrid Final Neutro

Tabela 2: Jogos do Borussia Dortmund na UEFA Champions League 2023/24

5.2 Jogadores Mais Influentes na Rede de Passes

A distribuicao estacionaria foi calculada para identificar os jogadores mais influentes

na dindmica de passes de cada uma das duas equipes, conforme ilustrado nas tabelas

(A.1) e (B.1) dos apéndices. Os valores indicam a probabilidade de envolvimento de cada

jogador na rede de passes em estado estacionario.
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Jogo Jogador Probabilidade
1 Lucas Vazquez 0.104
2 Aurelien Tchouameni 0.137
3 Luka Modric 0.13
4 Toni Kroos 0.153
5 Toni Kroos 0.177
6 Luka Modric 0.132
7 Eduardo Camavinga 0.14
8 Toni Kroos 0.125
9 Aurelien Tchouameni 0.147
10 Antonio Rudiger 0.13
11 Toni Kroos 0.164
12 Toni Kroos 0.154
13 Toni Kroos 0.159

Tabela 3: Jogadores mais influentes em cada jogo do Real Madrid na UEFA Champions
League 2023/24

Jogo Jogador Probabilidade
1 Nico Schlotterbeck 0.131
2 Ramy Bensebaini 0.134
3 Nico Schlotterbeck 0.124
4 Nico Schlotterbeck 0.14
5 Julian Ryerson 0.123
6 Mats Hummels 0.133
7 Emre Can 0.127
8 Mats Hummels 0.127
9 Nico Schlotterbeck 0.15
10 | Nico Schlotterbeck 0.162
11 Jadon Sancho 0.14
12 Julian Brandt 0.148
13 | Nico Schlotterbeck 0.174

Tabela 4: Jogadores mais influentes em cada jogo do Borussia Dortmund na UEFA Cham-
pions League 2023,/24
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5.3 Mapas de Calor das Matrizes de Transicao

Os mapas de calor foram gerados para uma analise das probabilidades de transicao e

uma melhor visualizacao dos passes entre pares especificos de jogadores.

Tabela de Calor - Probabilidade de Passes
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Figura 1: Mapa de calor representando as transicoes de passes no Jogo 1 do Real Madrid

Tabela de Calor - Probabilidade de Passes
2_Primeira Fase_211304_1030_Real Madrid_normalizado.csv
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Figura 2: Mapa de calor representando as transicoes de passes no Jogo 2 do Real Madrid
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Figura 3: Mapa de calor representando as transicoes de passes no Jogo 3 do Real Madrid
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Figura 4: Mapa de calor representando as transicoes de passes no Jogo 4 do Real Madrid
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Tabela de Calor - Probabilidade de Passes
5_Primeira Fase_211365_1030_Real Madrid_normalizado.csv
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Figura 5: Mapa de calor representando as transi¢oes de passes no Jogo 5 do Real Madrid

Tabela de Calor - Probabilidade de Passes
6_Primeira Fase_211374_1030_Real Madrid_normalizado.csv
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Figura 6: Mapa de calor representando as transicoes de passes no Jogo 6 do Real Madrid
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Tabela de Calor - Probabilidade de Passes
7_Oitavas de Final_211390_1030_Real Madrid_normalizado.csv
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Figura 7: Mapa de calor representando as transi¢oes de passes no Jogo 7 do Real Madrid

Tabela de Calor - Probabilidade de Passes
7_Oitavas de Final_211398_1030_Real Madrid_normalizado.csv
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Figura 8: Mapa de calor representando as transi¢oes de passes no Jogo 8 do Real Madrid
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Tabela de Calor - Probabilidade de Passes
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Figura 9: Mapa de calor representando as transi¢oes de passes no Jogo 9 do Real Madrid
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Figura 10: Mapa de calor representando as transigoes de passes no Jogo 10 do Real Madrid
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Tabela de Calor - Probabilidade de Passes
9_Semifinal_211413_1030_Real Madrid_normalizado.csv
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Figura 11: Mapa de calor representando as transigoes de passes no Jogo 11 do Real Madrid

Tabela de Calor - Probabilidade de Passes
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Figura 12: Mapa de calor representando as transigoes de passes no Jogo 12 do Real Madrid
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Tabela de Calor - Probabilidade de Passes
10_Final_211417_1030_Real Madrid_normalizado.csv
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Figura 13: Mapa de calor representando as transigoes de passes no Jogo 13 do Real Madrid

Tabela de Calor - Probabilidade de Passes
1_Primeira Fase_211320_1200_Borussia Dortmund_normalizado.csv
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Figura 14: Mapa de calor representando as transi¢oes de passes no Jogo 1 do Borussia
Dortmund
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Figura 15: Mapa de calor representando as transi¢coes de passes no Jogo 2 do
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Figura 16: Mapa de calor representando as transicoes de passes
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Tabela de Calor - Probabilidade de Passes
4_Primeira Fase_211337_1200_Borussia Dortmund_normalizado.csv
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Figura 17: Mapa de calor representando as transi¢oes de passes no Jogo 4 do Borussia
Dortmund

Tabela de Calor - Probabilidade de Passes
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Figura 18: Mapa de calor representando as transicoes de passes no Jogo 5 do Borussia
Dortmund
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Tabela de Calor - Probabilidade de Passes
6_Primeira Fase_211381_1200_Borussia Dortmund_normalizado.csv
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Figura 19: Mapa de calor representando as transi¢oes de passes no Jogo 6 do Borussia
Dortmund

Tabela de Calor - Probabilidade de Passes
7_Oitavas de Final_211393_1200_Borussia Dortmund_normalizado.csv
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Figura 20: Mapa de calor representando as transicoes de passes no Jogo 7 do Borussia
Dortmund
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Tabela de Calor - Probabilidade de Passes
7_Oitavas de Final_211401_1200_Borussia Dortmund_normalizado.csv
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Figura 21: Mapa de calor representando as transi¢oes de passes no Jogo 8 do Borussia
Dortmund
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Figura 22: Mapa de calor representando as transicoes de passes no Jogo 9 do Borussia
Dortmund
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Figura 23: Mapa de calor representando as transigoes de passes no Jogo 10 do Borussia

Dortmund
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Figura 24: Mapa de calor representando as transicoes de passes no Jogo 11 do Borussia

Dortmund
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Tabela de Calor - Probabilidade de Passes
9_Semifinal_211416_1200_Borussia Dortmund_normalizado.csv
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Figura 25: Mapa de calor representando as transigoes de passes no Jogo 12 do Borussia
Dortmund
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5.4 Simulacao de Sequéncias de Passes e Graficos de
Rede

Para cada umas das 13 partidas das duas equipes, foram feitas 100 simulagoes de
sequéncias de passes atendendo ao critério de parada estabelecido. Para uma melhor
visualizacao, foram gerados os graficos de rede. Ao final das simulagoes, foi calculado o
ntimero médio de passes dos jogadores, totalizando passes dados e recebidos, e disponibi-

lizados num grafico de barras.

simulagdo de Passes iniciada por Toni Kroos simulagéo de Passes iniciada por Toni Kroos
10_Final_211417_1030_Real Madrid_normalizado.csv - Simulagéo 6 - Passos: 13 10_Final_211417_1030_Real Madrid_normalizado.csv - Simulagéo 30 - Passos: 13
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(a) Grafico de rede da simulagao 6 do jogo (b) Grafico de rede da simulacao 30 do jogo
final do Real Madrid final do Real Madrid

Simulagéo de Passes iniciada por Toni Kroos Simulagio de Passes iniciada por Toni Kroos
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Figura 27: Exemplo de algumas simulagdes de passes do Real Madrid na final
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Simulago de Passes iniciada por Nico Schlotterbeck
10_Final_211417_1200_Borussia Dortmund_normalizado.csv - Simulagéo 19 - Passos: 12
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Figura 29: Exemplo de algumas simulagoes
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(b) Grafico de rede da simulacao 70 do jogo

final do Borussia Dortmund

simulagéo de Passes iniciada por Nico Schiotterbeck
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Meédia do Total de Passes das simulagdes
10_Final_211417_1200_Borussia Dortmund_neormalizade.csv

535584 8P 0|PAJY OIBLUNN

19)|EH UsysEqe S

pBIERO|YIS DN

Briyin 4 sejaip

Halwny spepw

Enay nale

19ZYqE S (9218

IWBABPY WLEY|

uosiahy uegnp

puElg uBINL

susyG-aouAg aluen

oysues uoper

usEEEW UB|

|aqoy 10Ba1g

uey A

ua|ep [eiuo

Jogadores

dio de passes do Borussia Dortmund na final

umero meé

.

Figura 30: Grafico de barras do n



56

6 DISCUSSAQO

Os resultados indicaram que os jogadores Toni Kroos, pelo Real Madrid, e Nico Schlot-
terbeck, pelo Borussia Dortmund, destacaram-se como os atletas mais influentes das suas
equipes em 6 dos 13 jogos, conforme mostrado nas tabelas (3) e (4), respectivamente.
A alta probabilidade de envolvimento desses atletas na dinamica de passes, conforme
apontado pela distribuicao estacionéaria, reflete nao apenas a funcao tatica que desempe-
nham em suas equipes, mas também a dependéncia coletiva de suas habilidades para a

manutenc¢ao do controle de jogo.

A consisténcia desses jogadores em diferentes partidas reforca a ideia de que atletas
centrais na rede de passes possuem um impacto significativo na eficiéncia tatica. No caso
de Toni Kroos, por exemplo, seu papel como organizador é evidente pela frequéncia com
que ele participa de sequéncias criticas de passes, enquanto Nico Schlotterbeck demonstra

uma func¢ao semelhante na defesa e transicao do Borussia Dortmund.

Os mapas de calor das matrizes de transicao revelaram padroes distintos de distribui-
¢ao de passes entre os jogadores. No Real Madrid, houve maior concentracao de passes
entre o meio-campo e o ataque, o que reflete a busca constante por oportunidades de
finalizacao. Por outro lado, o Borussia Dortmund apresentou uma maior uniformidade na
distribuicao de passes, evidenciando um estilo de jogo mais coletivo e menos dependente
de alguns jogadores. Essa distribuicao uniforme foi particularmente evidente na anélise
das quartas de final contra o Atlético de Madrid, onde os mapas de calor mostraram me-
nor dependéncia de um unico jogador, como ilustrado em (22) e (23), favorecendo uma
dindmica tatica diversificada. Os resultados destacam a influéncia do estilo de jogo na
estrutura das matrizes de transicao. Enquanto o Real Madrid tende a explorar a habi-
lidade de jogadores-chave para criar jogadas decisivas, o Borussia Dortmund adota uma

abordagem mais equilibrada, com transi¢oes distribuidas por varias regioes do campo.
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As simulagoes realizadas permitiram avaliar a estabilidade do modelo de cadeia de
Markov e a evolugao do fluxo de passes ao longo das partidas. Os graficos de rede gerados
para ambas as equipes mostraram a formagao de subgrupos taticos e a relevancia de certos
jogadores como nos centrais. Essa representacao visual facilitou a identificacao de padroes

taticos e de dependéncias dentro das equipes.

No caso do Real Madrid, jogadores como Toni Kroos e Luka Modric emergiram como
pivos principais. Esses nos centrais evidenciaram a dependéncia do time em relagao a sua
capacidade de distribuir a bola e controlar o ritmo do jogo. Por outro lado, no Borussia
Dortmund, a aplicagao do modelo revelou um padrao de passes mais descentralizado.
Jogadores como Nico Schlotterbeck e Mats Hummels apresentaram transi¢oes consistentes
com outros membros da equipe, indicando uma abordagem coletiva mais equilibrada em

comparagao ao Real Madrid.
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7 CONCLUSAO

A propriedade de Markov foi fundamental para modelar as sequéncias de passes no
futebol, permitindo a identificacao de padroes de transi¢ao sem a necessidade de considerar
todo o histérico de passes. Este trabalho realizou uma analise detalhada da dinamica de
passes no futebol utilizando cadeias de Markov. A abordagem adotada mostrou-se eficaz
na analise tatica, possibilitando a identificacao de padroes de passes, jogadores-chave
e estratégias coletivas nas partidas entre Real Madrid e Borussia Dortmund na UEFA

Champions League 2023/24.

Comparado a outros modelos mencionados ao longo deste estudo, como os baseados
em Processos de Decisdao de Markov (MDPs) e a anélise por zonas do campo, o modelo
proposto, centrado na interacao entre jogadores, oferece simplicidade e clareza na inter-
pretagao das probabilidades de transicao. No entanto, reconhece-se que a inclusao de
estados definidos por setores do campo, como aplicado em alguns estudos prévios, pode-
ria refinar a andlise ao capturar nuances espaciais do jogo. Essa modificagao permitiria
identificar com maior precisao as areas de maior concentracao de passes e os padroes
de movimentacao associados a diferentes zonas, oferecendo analises ainda mais robustas

sobre a organizacao tatica das equipes.

Além disso, os modelos baseados em MDPs apresentam uma vantagem na capaci-
dade de simular cenérios de decisao em tempo real, incorporando variaveis como riscos
e recompensas. No entanto, essa abordagem exige maior complexidade computacional e
dados mais detalhados, o que pode limitar sua aplicabilidade em situacoes praticas. Ja a
utilizacao de divisdes do campo em zonas mostrou-se ttil na anélise de estratégias ofensi-
vas e defensivas, mas pode nao capturar a interacao direta entre jogadores com a mesma

granularidade do modelo aqui proposto.
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Conclui-se que o modelo baseado em cadeias de Markov com estados definidos pelos
jogadores representa uma solucao eficiente e acessivel para a anélise tatica no futebol.
Entretanto, aprimoramentos futuros poderiam incluir uma combinagao das abordagens
analisadas, como a introdugao de estados relacionados as posi¢oes no campo e a integracao

de variaveis contextuais, como condigoes climaticas e adversidades durante a partida.

O presente trabalho contribui, assim, para a ampliagao do uso de métodos matemé-
ticos na analise esportiva, evidenciando o potencial das cadeias de Markov para capturar
a complexidade do futebol e gerar informacoes relevantes para analistas, treinadores e
equipes. A exploracao de modelos mais sofisticados, baseados em dados contextuais e

espaciais, constitui uma dire¢ao promissora para investigacoes futuras.



APENDICE A

A.1 Tabelas das Distribuicoes Estacionarias

A.1.1 Jogos do Real Madrid

60

Jogador Probabilidade Jogador Probabilidade
Lucas Vazquez 0.104 Aurelien Tchouameni 0.137
Eduardo Camavinga 0.103 Jude Bellingham 0.125
Luka Modric 0.099 Toni Kroos 0.097
David Alaba 0.095 Federico Valverde 0.088
Jude Bellingham 0.095 Vinicius Junior 0.085
Aurelien Tchouameni 0.094 Dani Carvajal 0.084
Nacho Fernandez 0.088 Nacho Fernandez 0.073
Antonio Rudiger 0.082 Antonio Rudiger 0.072
Rodrygo 0.071 Eduardo Camavinga 0.071
Toni Kroos 0.046 Rodrygo 0.045
Federico Valverde 0.037 Luka Modric 0.042
Joselu 0.031 Ferland Mendy 0.037
Kepa Arrizabalaga 0.027 Kepa Arrizabalaga 0.037
Brahim Diaz 0.015 Dani Ceballos 0.005
Fran Garcia 0.014 Joselu 0.002

Tabela 5: Estado estacionério, em or-

dem decrescente, da matriz de transicao
do jogo 1 do Real Madrid

Tabela 6: Estado estacionério, em or-
dem decrescente, da matriz de transi¢ao
do jogo 2 do Real Madrid
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Jogador Probabilidade
Luka Modric 0.13
Eduardo Camavinga 0.129
Antonio Rudiger 0.111
Nacho Fernandez 0.11
Jude Bellingham 0.108
Fran Garcia 0.106
Federico Valverde 0.081
Vinicius Junior 0.079
Dani Carvajal 0.065
Kepa Arrizabalaga 0.037
Rodrygo 0.031
Aurelien Tchouameni 0.008
Ferland Mendy 0.004

Tabela 7: Estado estacionario, em ordem decrescente, da matriz de transi¢ao do jogo 3
do Real Madrid

Jogador Probabilidade

Toni Kroos 0.153
Federico Valverde 0.1

Ferland Mendy 0.098
Eduardo Camavinga 0.094
Brahim Diaz 0.087
Antonio Rudiger 0.085
Nacho Fernandez 0.082
Vinicius Junior 0.075
Rodrygo 0.072
Lucas Vazquez 0.065
Luka Modric 0.026
Dani Carvajal 0.02
Andriy Lunin 0.017
Nicolas Paz 0.013
Fran Garcia 0.008
Kepa Arrizabalaga 0.003
Joselu 0.001

Tabela 8: Estado estacionério, em ordem decrescente, da matriz de transi¢ao do jogo 4
do Real Madrid
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Jogador Probabilidade
Toni Kroos 0.177
Jude Bellingham 0.136
Federico Valverde 0.133
Antonio Rudiger 0.089
Ferland Mendy 0.084
David Alaba 0.081
Rodrygo 0.067
Dani Ceballos 0.059
Dani Carvajal 0.057
Brahim Diaz 0.048
Nicolas Paz 0.029
Joselu 0.018
Andriy Lunin 0.015
Nacho Fernandez 0.004
Lucas Vazquez 0.002

Tabela 9: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 5
do Real Madrid

Jogador Probabilidade
Luka Modric 0.132
Jude Bellingham 0.11
Lucas Vazquez 0.11
Dani Ceballos 0.105
Fran Garcia 0.101
Nacho Fernandez 0.092
David Alaba 0.087
Rodrygo 0.072
Toni Kroos 0.056
Federico Valverde 0.052
Joselu 0.029
Kepa Arrizabalaga 0.028
Antonio Rudiger 0.012
Brahim Diaz 0.007
Nicolas Paz 0.006

Tabela 10: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 6

do Real Madrid



Jogador Probabilidade
Eduardo Camavinga 0.14
Toni Kroos 0.138
Ferland Mendy 0.116

Federico Valverde 0.1

Vinicius Junior 0.095
Dani Carvajal 0.088
Brahim Diaz 0.081
Rodrygo 0.075
Aurelien Tchouameni 0.067
Nacho Fernandez 0.059
Andriy Lunin 0.026
Joselu 0.008
Lucas Vazquez 0.008

Apéndice A-63

Tabela 11: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 7

do Real Madrid

Jogador Probabilidade
Toni Kroos 0.125
Aurelien Tchouameni 0.12
Dani Carvajal 0.104

Federico Valverde 0.1

Jude Bellingham 0.098
Nacho Fernandez 0.097
Vinicius Junior 0.087
Antonio Rudiger 0.079
Ferland Mendy 0.064
Eduardo Camavinga 0.05
Andriy Lunin 0.026
Luka Modric 0.026
Rodrygo 0.02
Joselu 0.002

Tabela 12: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 8

do Real Madrid
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Jogador Probabilidade
Aurelien Tchouameni 0.147
Toni Kroos 0.128
Antonio Rudiger 0.107
Eduardo Camavinga 0.106
Vinicius Junior 0.089
Jude Bellingham 0.076
Andriy Lunin 0.066
Rodrygo 0.064
Luka Modric 0.054
Dani Carvajal 0.052
Federico Valverde 0.048
Ferland Mendy 0.047
Brahim Diaz 0.015
Joselu 0.003

Tabela 13: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 9
do Real Madrid

Jogador Probabilidade
Antonio Rudiger 0.13
Ferland Mendy 0.097
Toni Kroos 0.097
Eduardo Camavinga 0.095
Federico Valverde 0.088
Nacho Fernandez 0.088
Andriy Lunin 0.086
Jude Bellingham 0.086
Dani Carvajal 0.08
Rodrygo 0.075
Vinicius Junior 0.063
Luka Modric 0.01
Brahim Diaz 0.006

Tabela 14: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 10
do Real Madrid



Jogador Probabilidade
Toni Kroos 0.164
Jude Bellingham 0.109
Lucas Vazquez 0.107
Aurelien Tchouameni 0.095
Federico Valverde 0.095
Vinicius Junior 0.085
Antonio Rudiger 0.065
Ferland Mendy 0.065
Rodrygo 0.062
Nacho Fernandez 0.061
Eduardo Camavinga 0.024
Andriy Lunin 0.022
Brahim Diaz 0.019
Luka Modric 0.013
Joselu 0.012
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Tabela 15: Estado estacionério, em ordem decrescente, da matriz de transi¢ao do jogo 11

do Real Madrid

Jogador Probabilidade
Toni Kroos 0.154
Jude Bellingham 0.115
Nacho Fernandez 0.105
Antonio Rudiger 0.096
Ferland Mendy 0.08
Vinicius Junior 0.075
Dani Carvajal 0.067
Federico Valverde 0.067
Aurelien Tchouameni 0.065
Rodrygo 0.058
Luka Modric 0.039
Eduardo Camavinga 0.038
Andriy Lunin 0.027
Brahim Diaz 0.01
Joselu 0.003

Tabela 16: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 12

do Real Madrid
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Jogador Probabilidade
Toni Kroos 0.159
Antonio Rudiger 0.127
Eduardo Camavinga 0.114
Federico Valverde 0.102
Ferland Mendy 0.098
Nacho Fernandez 0.094
Dani Carvajal 0.087
Jude Bellingham 0.078
Vinicius Junior 0.071
Rodrygo 0.031
Thibaut Courtois 0.027
Luka Modric 0.009
Joselu 0.003

Tabela 17: Estado estacionério, em ordem decrescente, da matriz de transicao do jogo 13
do Real Madrid



A.1.2 Jogos do Borussia Dortmund
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Jogador Probabilidade Jogador Probabilidade
Nico Schlotterbeck 0.131 Ramy Bensebaini 0.134
Felix Nmecha 0.103 Salih Ozcan 0.113
Mats Hummels 0.095 Nico Schlotterbeck 0.102
Julian Ryerson 0.082 Emre Can 0.1
Julian Brandt 0.081 Julian Ryerson 0.094
Emre Can 0.073 Mats Hummels 0.089
Niklas Sule 0.063 Donyell Malen 0.085
Marco Reus 0.062 Julian Brandt 0.071
Karim Adeyemi 0.06 Gregor Kobel 0.068
Marius Wolf 0.056 Niclas Fullkrug 0.034
Niclas Fullkrug 0.048 Jamie Bynoe-Gittens 0.031
Gregor Kobel 0.038 Karim Adeyemi 0.028
Ramy Bensebaini 0.037 Marco Reus 0.028
Jamie Bynoe-Gittens 0.036 Felix Nmecha 0.019
Donyell Malen 0.035 Youssoufa Moukoko 0.004

Tabela 18: Estado estacionério, em or-
dem decrescente, da matriz de transicao
do jogo 1 do Borussia Dortmund

Tabela 19: Estado estacionério, em or-
dem decrescente, da matriz de transicao
do jogo 2 do Borussia Dortmund
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Jogador Probabilidade
Nico Schlotterbeck 0.124
Donyell Malen 0.113
Felix Nmecha 0.095
Marco Reus 0.093
Marius Wolf 0.086
Marcel Sabitzer 0.076
Mats Hummels 0.074
Ramy Bensebaini 0.067
Salih Ozcan 0.061
Niclas Fullkrug 0.058
Emre Can 0.057
Gregor Kobel 0.042
Karim Adeyemi 0.027
Giovanni Reyna 0.016
Sebastien Haller 0.01

Tabela 20: Estado estacionario, em ordem decrescente, da matriz de transi¢ao do jogo 3
do Borussia Dortmund

Jogador Probabilidade
Nico Schlotterbeck 0.14
Mats Hummels 0.132
Julian Brandt 0.116
Julian Ryerson 0.105
Marcel Sabitzer 0.086
Felix Nmecha 0.08
Niklas Sule 0.077
Karim Adeyemi 0.074
Salih Ozcan 0.073
Gregor Kobel 0.065
Niclas Fullkrug 0.035
Marco Reus 0.015

Tabela 21: Estado estacionério, em ordem decrescente, da matriz de transicao do jogo 4
do Borussia Dortmund



Jogador Probabilidade
Julian Ryerson 0.123
Mats Hummels 0.111

Ramy Bensebaini 0.098
Nico Schlotterbeck 0.09

Emre Can 0.085
Marcel Sabitzer 0.081
Niclas Fullkrug 0.066

Marco Reus 0.064
Gregor Kobel 0.061
Donyell Malen 0.056

Karim Adeyemi 0.045
Jamie Bynoe-Gittens 0.04
Julian Brandt 0.034
Salih Ozcan 0.032
Marius Wolf 0.014
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Tabela 22: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 5

do Borussia Dortmund

Jogador Probabilidade
Mats Hummels 0.133
Julian Brandt 0.132

Salih Ozcan 0.108
Gregor Kobel 0.093
Niklas Sule 0.091
Karim Adeyemi 0.089
Niclas Fullkrug 0.085
Marco Reus 0.069
Marius Wolf 0.052
Ramy Bensebaini 0.05
Jamie Bynoe-Gittens 0.048
Donyell Malen 0.019
Giovanni Reyna 0.012
Marcel Sabitzer 0.011
Nico Schlotterbeck 0.005
Sebastien Haller 0.003

Tabela 23: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 6

do Borussia Dortmund
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Jogador Probabilidade
Emre Can 0.127
Mats Hummels 0.111
[an Maatsen 0.102
Nico Schlotterbeck 0.102
Alexander Meyer 0.093
Julian Ryerson 0.091
Donyell Malen 0.069
Marcel Sabitzer 0.066
Jadon Sancho 0.064
Julian Brandt 0.05
Marco Reus 0.042
Niclas Fullkrug 0.026
Salih Ozcan 0.026
Youssoufa Moukoko 0.016
Marius Wolf 0.015

Tabela 24: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 7
do Borussia Dortmund

Jogador Probabilidade

Mats Hummels 0.127
Emre Can 0.11
Marcel Sabitzer 0.098
Salih Ozcan 0.098
[an Maatsen 0.096
Gregor Kobel 0.078
Jadon Sancho 0.075
Donyell Malen 0.072
Niclas Fullkrug 0.069
Julian Brandt 0.068
Niklas Sule 0.063
Felix Nmecha 0.038
Karim Adeyemi 0.005
Marco Reus 0.003

Tabela 25: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 8
do Borussia Dortmund
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Jogador Probabilidade
Nico Schlotterbeck 0.15
Mats Hummels 0.136
[an Maatsen 0.128
Julian Ryerson 0.109
Emre Can 0.107
Jadon Sancho 0.09
Gregor Kobel 0.063
Marcel Sabitzer 0.054
Karim Adeyemi 0.045
Julian Brandt 0.042
Felix Nmecha 0.022
Niclas Fullkrug 0.016
Jamie Bynoe-Gittens 0.014
Sebastien Haller 0.011
Salih Ozcan 0.008
Marco Reus 0.005

Tabela 26: Estado estacionario, em ordem decrescente, da matriz de transicao do jogo 9
do Borussia Dortmund

Jogador Probabilidade
Nico Schlotterbeck 0.162
Mats Hummels 0.127
Tan Maatsen 0.126
Julian Brandt 0.117
Julian Ryerson 0.108
Emre Can 0.105
Jadon Sancho 0.087
Marcel Sabitzer 0.039
Gregor Kobel 0.038
Niclas Fullkrug 0.038
Karim Adeyemi 0.037
Jamie Bynoe-Gittens 0.009
Marco Reus 0.006
Salih Ozcan 0.002

Tabela 27: Estado estacionario, em ordem decrescente, da matriz de transi¢ao do jogo 10
do Borussia Dortmund



Jogador Probabilidade
Jadon Sancho 0.14
Mats Hummels 0.123

[an Maatsen 0.113
Julian Ryerson 0.112
Julian Brandt 0.099
Gregor Kobel 0.077

Nico Schlotterbeck 0.076

Emre Can 0.073
Karim Adeyemi 0.067
Marcel Sabitzer 0.057
Niclas Fullkrug 0.04

Youssoufa Moukoko 0.009

Marius Wolf 0.008

Marco Reus 0.006
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Tabela 28: Estado estacionario, em ordem decrescente, da matriz de transi¢ao do jogo 11

do Borussia Dortmund

Jogador Probabilidade
Julian Brandt 0.148
[an Maatsen 0.137
Emre Can 0.126
Nico Schlotterbeck 0.125
Niclas Fullkrug 0.103
Julian Ryerson 0.075
Jadon Sancho 0.065
Karim Adeyemi 0.061
Marcel Sabitzer 0.042
Gregor Kobel 0.041
Mats Hummels 0.041
Marco Reus 0.037

Tabela 29: Estado estacionério, em ordem decrescente, da matriz de transicao do jogo 12

do Borussia Dortmund
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Jogador Probabilidade
Nico Schlotterbeck 0.174
Emre Can 0.131
Mats Hummels 0.114
Julian Brandt 0.098
Julian Ryerson 0.094
Jadon Sancho 0.076
Marcel Sabitzer 0.072
[an Maatsen 0.066
Gregor Kobel 0.063
Niclas Fullkrug 0.045
Karim Adeyemi 0.024
Donyell Malen 0.013
Jamie Bynoe-Gittens 0.01
Marco Reus 0.01
Sebastien Haller 0.01

Tabela 30: Estado estacionério, em ordem decrescente, da matriz de transicao do jogo 13
do Borussia Dortmund



APENDICE B

B.1 Graficos das Distribuicoes Estacionarias

B.1.1 Jogos do Real Madrid
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Figura 31: Gréfico da Distribuicao Estacionéria do Jogo 1 do Real Madrid

74



Apéndice B-75

Distribuigdo Estacionaria - Influéncia dos Jogadores

do Real Madrid

o

Q.085

o R

073

D

T

0.002

—lL |

0.058

|

|

0.005

[ | S | |

H

012 4

I l I I
= m W =
-2 2 2
o o o o

apepliigeqold

0.02 —

g.00 —

10IUN [ SIS,
BO0IY U0

ofifpoy

ZAPUELIE { OYaB N
aUpOW EYN]
efigeqeany eday
weybuyag spnr
n@sop

Apuspy puepay
Bplan e oolepa 4
efunew ey opienpg
Bojleqad Iue]
jelemen lueg
IUBLLENOUD ] U8l &My

1afipny oluouy

Jogadores

Figura 32: Grafico da Distribuicao Estacionéria do Jogo 2 do Real Madrid
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Figura 33: Grafico da Distribui¢ao Estacionéria do Jogo 3 do Real Madrid
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Figura 35: Grafico da Distribui¢ao Estacionéria do Jogo 5 do Real Madrid
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Figura 37: Grafico da Distribui¢ao Estacionéria do Jogo 7 do Real Madrid
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Figura 38: Grafico da Distribuicao Estacionéria do Jogo 8 do Real Madrid
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Figura 39: Grafico da Distribui¢ao Estacionéria do Jogo 9 do Real Madrid
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Figura 40: Grafico da Distribuicao Estacionaria do Jogo 10 do Real Madrid
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Figura 42: Grafico da Distribuicao Estacionaria do Jogo 12 do Real Madrid
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Figura 43: Gréafico da Distribui¢ao Estacionéria do Jogo 13 do Real Madrid



B.1.2 Jogos do Borussia Dortmund
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Figura 45: Grafico da Distribui¢ao Estacionéria do Jogo 2 do Borussia Dortmund
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Figura 46: Grafico da Distribuicao Estacionéria do Jogo 3 do Borussia Dortmund
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Figura 47: Grafico da Distribui¢ao Estacionéria do Jogo 4 do Borussia Dortmund
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Figura 48: Grafico da Distribui¢ao Estacionéria do Jogo 5 do Borussia Dortmund
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Figura 49: Grafico da Distribui¢ao Estacionéria do Jogo 6 do Borussia Dortmund
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Figura 50: Grafico da Distribui¢ao Estacionéria do Jogo 7 do Borussia Dortmund
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Figura 51: Grafico da Distribuicao Estacionéria do Jogo 8 do Borussia Dortmund
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Figura 53: Gréafico da Distribuicao Estacionéria do Jogo 10 do Borussia Dortmund
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Figura 54: Grafico da Distribui¢ao Estacionéria do Jogo 11 do Borussia Dortmund
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Figura 55: Grafico da Distribuigao Estacionaria do Jogo 12 do Borussia Dortmund
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A tabela abaixo compara diferentes abordagens para modelagem de passes no futebol:

Método

Memoria?

Captura padroes complexos?

Exemplo de uso no futebol

Cadeia de Markov

Nao

Simples

Modelar passes entre jogadores

HMMs (Modelos Ocultos de Markov)

Sim (indiretamente)

Sim (estados ocultos)

Identificar momentos de posse,
contra-ataque, bola parada

RNNs

Sim

Simples a médio

Prever o proximo passe com base
no historico

LSTMs (Long Short-Term Memory)

Sim (melhor que RNNs)

Melhor que RNNs

Modelar jogadas inteiras, prever
comportamentos taticos

Transformers

Sim (melhor de todos)

Mais avangado

Anélise preditiva completa do
jogo

Tabela 31: Comparagao entre diferentes abordagens para modelagem de passes no futebol.
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