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Resumo 

Neste trabalho desenvolveu-se um simulador para operações de Posicionamento Dinâmico 

(DP), em que a alocação de empuxo considera a interação entre propulsores e entre propulsor-

casco. O modelo de Alocação de Empuxo desenvolvido está baseado em coordenadas polares, 

no qual a representação dos fenômenos de interferência é realizada através de funções de 

eficiência dos propulsores. Diversos aspectos de otimização como desenvolvimento de 

técnicas simplificadoras e tratamento de não convexidade são explorados. Diferentes técnicas 

de otimização foram desenvolvidas e comparadas. A partir do algoritmo de otimização que 

apresentou os melhores resultados em termos de potência consumida pela embarcação e 

tempo de processamento, desenvolveu-se o simulador, em linguagem apropriada para 

aplicações práticas. Por fim são realizadas simulações de operações de posicionamento 

dinâmico considerando-se os fenômenos de interação hidrodinâmicos e as limitações físicas 

dos propulsores. A análise das simulações ilustra a melhoria da capacidade de manter posição 

com o algoritmo proposto e a robustez do mesmo. 

 

Palavras chave: Alocação de Empuxo. Interação. Otimização. Algoritmo. Sistema DP. 

Simulador. 
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Abstract 
This work presents the development of a simulator for Dynamic Positioning (DP) operations. 

The thrust allocation considers the interaction between thrusters and thruster-hull. The 

developed thrust allocation model is based on polar coordinates in which the interaction 

phenomena are represented through efficiency functions of the thrusters. Several optimization 

aspects such as simplification techniques and treatment of non-convexity are explored. 

Different optimization techniques were developed and compared. From the optimization 

algorithm that presented the best results regarding power consumption and processing time 

the simulator was developed for practical applications. Finally, dynamic positioning 

operations are simulated considering the hydrodynamic interaction phenomena and the 

physical limitations of the thrusters. The evaluation of those simulations demonstrates the 

improvement of stationkeeping capability of the developed allocation algorithm and its 

robustness. 

 

Keywords: Thrust Allocation. Interaction. Optimization. Algorithm. DP System. Simulator. 

 



9 
 

 

Lista de Figuras 
Figura 1. 1 – Sistema DP. ..................................................................................................... 17 
Figura 1. 2 – Alocação de Empuxo em um navio dotado de 4 propulsores azimutais ............. 19 
Figura 1. 3 – Mudança de coordenadas: Coordenadas globais (a); Coordenadas do navio (b) 21 
Figura 1. 4 – Arrasto do jato d’água com o casco. ................................................................. 22 
Figura 1. 5 – Interferência entre propulsor e casco, choque de jato d’água com pontoon. ...... 23 
Figura 1. 6 – Interação entre propulsores. ............................................................................. 23 
Figura 1. 7 – Propulsor principal. .......................................................................................... 25 
Figura 1. 8 – Representação do propulsor principal. (a) Sem interferência. (b) Com 
interferência. ........................................................................................................................ 26 
Figura 1. 9 – Propulsor em túnel (extraída de Schottel, 2002). .............................................. 26 
Figura 1. 10 – Representação do propulsor principal. (a) Sem interferência. (b) Com 
interferência. ........................................................................................................................ 27 
Figura 1. 11 – Propulsor azimutal. ........................................................................................ 27 
Figura 1. 12 – Impossibilidade de três propulsores principais contrabalançarem as forças 
ambientais. ........................................................................................................................... 29 
Figura 1. 13 – Impossibilidade de três propulsores em túnel compensarem as forças 
ambientais. ........................................................................................................................... 30 
Figura 1. 14 – Condição em que um propulsor azimutal e um principal não compensam as 
cargas ambientais. ................................................................................................................ 30 
Figura 1. 15 – Sistema redundante. ....................................................................................... 31 
Figura 1. 16 – Restrições de caixa de um propulsor azimutal. ............................................... 34 
Figura 1. 17 – Problema de otimização solucionado dentro do domínio viável com restrições 
ativas (a) e sem restrições ativas (b). ..................................................................................... 36 
Figura 1. 18 – Comparação entre pontos de mínimo local e mínimo global. .......................... 37 
Figura 1. 19 – Exemplo de espaços viáveis convexos e não convexos. .................................. 38 
Figura 1. 20 – Métodos de solução de problemas de otimização. ........................................... 39 
Figura 1. 21 – Line Search x Trust Region. ........................................................................... 41 
Figura 1. 22 – Possíveis direções para o método Line Search ................................................ 42 
 
Figura 2. 1 – Método de Newton. .......................................................................................... 46 
Figura 2. 2 – Zona proibida. .................................................................................................. 47 
Figura 2. 3 – Fatores de eficiência do propulsor em coordenadas polares. ............................. 50 
Figura 2. 4 – Modelo de interferência entre dois propulsores. ............................................... 50 
Figura 2. 5 – Estrutura do algoritmo. .................................................................................... 51 
Figura 2. 6 – Arranjo experimental para obtenção da curva de eficiência dos propulsores. .... 56 
Figura 2. 7 – Cálculo da Força efetiva considerando o fenômeno de interferência. ................ 57 
Figura 2. 8 – Desenho esquemático do Navio 1. .................................................................... 60 
Figura 2. 9 – Curvas de eficiência do Navio 1. ...................................................................... 60 
Figura 2. 10 – Modelo da Embarcação 2. .............................................................................. 61 
Figura 2. 11 – Curvas de eficiência dos propulsores da Embarcação 2. ................................. 61 
Figura 2. 12 – Ensaio experimental da Embarcação 2. .......................................................... 62 
 
Figura 3. 1 – Dinâmica da implementação inicial do Algoritmo de Alocação de Empuxo. .... 64 



10 
 

 

Figura 3. 2 – Dinâmica de otimização do algoritmo de otimização detalhada. ....................... 65 
Figura 3. 3 – Diagrama de blocos do FMINCON (otimizador do MATLAB). ....................... 68 
Figura 3. 4 – Evolução do propulsor 4 no processo de otimização dentro do espaço viável. .. 69 
Figura 3. 5 – Posições angulares dos algoritmos de Alocação de Empuxo para o propulsor 1 
em diferentes alocações de empuxo, e sua curva de eficiência............................................... 71 
Figura 3. 6 – Evolução do propulsor 4 no processo de otimização contemplando a direção da 
força e o aumento de sua eficiência. ...................................................................................... 72 
Figura 3. 7 – Esquerda alocação do algoritmo de otimização do MATLAB considerando 
interferências. ....................................................................................................................... 73 
Figura 3. 8 – Alocação de uma força de controle de -7N em Surge e 7N em Sway com 
momento nulo, para 3 algoritmos de alocação. ...................................................................... 74 
 
Figura 4. 1 – Razão da Falha no Método da Direção e do Rendimento. ................................. 80 
Figura 4. 2 – Direção favorável ou desfavorável do ângulo de máxima eficiência. ................ 80 
Figura 4. 3 – Evolução do intervalo de busca do método intuitivo. ........................................ 81 
Figura 4. 4 – Rotação desfavorável dos propulsores no método intuitivo............................... 81 
Figura 4. 5 – Solução para o problema de rotação desfavorável dos propulsores no método 
intuitivo. ............................................................................................................................... 82 
Figura 4. 6 – Dinâmica de funcionamento do Trust Region SQP. .......................................... 85 
Figura 4. 7 – Plataforma de Simulação de Algoritmos de Alocação de Empuxo (AAE). ....... 87 
Figura 4. 8 – Excedente Percentual de Potência dos algoritmos desenvolvidos em relação ao 
algoritmo de otimização do MATLAB (FMINCON). ........................................................... 88 
Figura 4. 9 – Comparação do Erro Percentual médio dos algoritmos. .................................... 89 
Figura 4. 10 – Comparação do Tempo médio de Processamento dos algoritmos. .................. 90 
Figura 4. 11 – Alocação dos diferentes algoritmos simulados para (FSurge = -7N, FSway = 
7N e Myaw = 0N). ................................................................................................................ 92 
Figura 4. 12 – Método dos gradientes reduzidos: Situação inicial. ......................................... 97 
Figura 4. 13 – Método dos gradientes reduzidos: Primeiro passo. ......................................... 98 
Figura 4. 14 – Método dos gradientes reduzidos: Segundo passo. ......................................... 99 
Figura 4. 15 – Método dos gradientes reduzidos: Terceiro passo. ........................................ 100 
Figura 4. 16 – Método dos gradientes reduzidos: Quarto passo. .......................................... 101 
Figura 4. 17 – Logica do método do dos gradientes reduzidos. ............................................ 102 
Figura 4. 18 – Solução considerando-se as desigualdades. .................................................. 103 
Figura 4. 19 – Funcionamento do algoritmo Simplex. ......................................................... 105 
Figura 4. 20 – Processo do Protocolo de Saturação. ............................................................ 107 
Figura 4. 21 – Alocação em condições normais. ................................................................. 108 
Figura 4. 22 – Alocação em que ocorre saturação dos propulsores. ..................................... 109 
Figura 4. 23 – Atuação do Protocolo de Saturação. ............................................................. 110 
 
Figura 5. 1 – Modelo da embarcação. 114 
Figura 5. 2 – Planta original da embarcação. ....................................................................... 115 
Figura 5. 3 – Curvas de eficiência dos propulsores. ............................................................. 115 
Figura 5. 4 – Representação das limitações físicas completas dos propulsores. ................... 118 
Figura 5. 5 – Força requerida e gerada para o caso base. ..................................................... 120 
Figura 5. 6 – Erro percentual na direção de surge. ............................................................... 121 
Figura 5. 7 – Erro percentual na direção de sway. ............................................................... 121 
Figura 5. 8 – Erro percentual na direção de yaw. ................................................................. 122 



11 
 

 

Figura 5. 9 – Alocação dos propulsores (empuxo e angulo de azimute) para o caso base. .... 123 
Figura 5. 10 – Variação de empuxo e ângulo de azimute dos propulsores para o caso base. 123 
Figura 5. 11 – Força requerida e gerada para o caso Desliga/Liga. ...................................... 125 
Figura 5. 12 – Alocação para o caso Desliga/Liga. .............................................................. 126 
Figura 5. 13 – Variação de empuxo e ângulo de azimute dos propulsores para o caso 
Desliga/Liga. ...................................................................................................................... 127 
Figura 5. 14 – Forças requeridas girando. ........................................................................... 128 
Figura 5. 15 – Força requerida e gerada para o caso Forças requeridas girando. .................. 129 
Figura 5. 16 – Alocação para o caso Forças requeridas girando. .......................................... 131 



12 
 

 

Lista de Tabelas 
 
Tabela 2. 1 – Fatores de eficiência para o propulsor azimutal. ............................................... 49 
 
Tabela 4. 1 – Comparação de Potência requisitada pelos algoritmos. .................................... 88 
Tabela 4. 2 – Comparação erro dos algoritmos...................................................................... 89 
Tabela 4. 3 – Comparação do Tempo médio de Processamento dos algoritmos. .................... 90 
Tabela 4. 4 – Definição consistente de quais desigualdades estão ativas. ............................... 95 
Tabela 4. 5 – Representação de igualdades e desigualdades. ............................................... 104 
Tabela 4. 6 – Comparação do Trust Region SQP com e sem o desenvolvimento do Simplex e 
do Active-set. ..................................................................................................................... 112 
 
Tabela B. 1: Simulação completa dos Algoritmos de Alocação de Empuxo ............................1 
 



13 
 

 

 

Sumário 
Introdução e Objetivos ....................................................................................................... 15 
1 – Fundamentos teóricos – Apresentação do Problema................................................... 17 

1.1 – Sistema de posicionamento dinâmico (DP) ............................................................ 17 
1.2 – Alocação de Empuxo .............................................................................................. 19 
1.3 – Padronização de Notação ....................................................................................... 21 
1.4 – Estudo dos fenômenos de interferência ................................................................. 22 

1.4.1 – Interferência entre propulsor e casco .............................................................................. 22 
1.4.2 – Interferência entre propulsores ....................................................................................... 23 

1.5 – Estudo qualitativo de propulsores ......................................................................... 25 
1.5.1 – Propulsores principais .................................................................................................... 25 
1.5.2 – Propulsores em túnel ...................................................................................................... 26 
1.5.3 – Propulsores Azimutais ................................................................................................... 27 

1.6 – Otimização .............................................................................................................. 29 
1.6.1 – Variáveis de Projeto ....................................................................................................... 31 
1.6.2 – Função Objetivo ............................................................................................................ 32 
1.6.3 – Restrições ...................................................................................................................... 33 
1.6.4 – Domínio Viável ............................................................................................................. 35 
1.6.5 – Mínimo Local e Global .................................................................................................. 36 
1.6.6 – Convexidade .................................................................................................................. 37 
1.6.7 – Condições de Optimalidade de 1ª ordem ........................................................................ 38 
1.6.8 – Métodos de solução de problemas de otimização ............................................................ 38 
1.6.9 – Linhas gerais de algoritmos de otimização numéricos .................................................... 40 
1.6.10 – Trust Region x Line Search .......................................................................................... 40 

2 – Descrição e Análise da Implementação Inicial do Algoritmo de Alocação de Empuxo 
Levando em conta Interferências ....................................................................................... 43 

2.1 – Estado da Arte ........................................................................................................ 43 
2.1.1 – Função Objetivo Quadrática, sem Fenômenos de Interação ............................................ 43 
2.1.2 – Potencia Exata, sem Fenômenos de Interação ................................................................. 44 
2.1.3 – Potencia Exata, sem Fenômenos de Interação considerando saturação dos propulsores ... 46 
2.1.4 – Potencia Exata, fenômenos de interação evitados e considerando saturação dos 
propulsores ............................................................................................................................... 47 

2.2 – Algoritmo de Alocação de Empuxo levando em conta interações hidrodinâmicas
 ......................................................................................................................................... 49 

2.2.1 – Tratamento Matemático para Curva de Eficiência do Propulsor ...................................... 49 
2.2.2 – Estrutura Inicial do Algoritmo ....................................................................................... 51 
2.2.3 – Resultados da Implementação inicial do Algoritmo ........................................................ 58 
2.2.4 – Análise da Implementação Inicial do Algoritmo proposto .............................................. 63 

3 – Estudo da Dinâmica Interna do Algoritmo de Otimização ......................................... 64 
3.1 – Análise do Chute Inicial do Problema de Alocação de Empuxo ........................... 67 
3.2 – Análise da Dinâmica Interna do Algoritmo de Otimização do MATLAB ........... 68 
3.3 – Análise do comportamento do FMINCON ............................................................ 73 

3.3.1 – Análise do comportamento em relação interferência entre propulsores ........................... 73 



14 
 

 

3.3.2 – Análise do comportamento para regiões com baixa eficiência ........................................ 74 
3.4 – Relação do Comportamento do Algoritmo com suas vantagens .......................... 75 

4 –Algoritmo de Alocação de Empuxo ............................................................................... 76 
4.1 – Problema Original de Otimização da Alocação de Empuxo ................................. 77 
4.2 – Novos Algoritmos de Alocação de Empuxo ........................................................... 78 

4.2.1 – Método da Direção e do Rendimento ............................................................................. 78 
4.2.2 – Método Intuitivo ............................................................................................................ 80 
4.2.3 – SQP - Potência Quadrática ............................................................................................. 82 
4.2.4 – SQP Potência Quadrática + Passo 2 ............................................................................... 83 
4.2.5 – Trust Region SQP .......................................................................................................... 84 
4.2.6 – Solução Problema de Programação Quadrática............................................................... 85 

4.3 – Metodologia de Simulação ..................................................................................... 86 
4.3.1 – Plataforma de Simulação dos Algoritmos de Alocação de Empuxo ................................ 86 
4.3.2 – Critérios Avaliados na Simulação .................................................................................. 87 

4.4 – Resultados da Simulação dos Algoritmos .............................................................. 88 
4.4.1 – Análise de Potência........................................................................................................ 88 
4.4.2 – Análise de Precisão ........................................................................................................ 89 
4.4.3 – Análise do Tempo de Processamento ............................................................................. 90 

4.5 – Análise Comparativa dos Algoritmos .................................................................... 92 
4.6 – Seleção do novo Algoritmo de Alocação de Empuxo ............................................ 93 
4.6 – Programação Quadrática ....................................................................................... 94 
4.7 – Analise Final ......................................................................................................... 112 

5 – Resultados ................................................................................................................... 114 
5.1 – Descrição da Embarcação .................................................................................... 114 
5.2 – Time Domain Simulation e Limitações Fisicas ..................................................... 117 
5.3 – Simulações ............................................................................................................ 119 

5.3.1 – Caso Base – Condições ambientais reais ...................................................................... 120 
5.3.2 – Caso Desliga/Liga........................................................................................................ 125 
5.3.3 – Caso de Forças Requeridas Girando – T3 e T5 Cruzam “Zonas Proibidas” ................... 128 

6 – Conclusão .................................................................................................................... 132 
Referências Bibliográficas ................................................................................................ 134 
Anexo A – Solução Analítica da Alocação sem Interferência e função objetivo 
quadrática ......................................................................................................................... 136 
Anexo B – Tabela de comparação dos algoritmos de Alocação de Empuxo ......................1 
 



15 
 

 

Introdução	e	Objetivos 

 O sistema de Posicionamento Dinâmico (DP) tem como objetivo manter estática a 

posição da embarcação para operações em alto-mar, considerando-se as forças ambientais de 

vento, correnteza e onda. Tendo em vista a expansão de operações offshore devido à 

descoberta do pré-sal, essa tecnologia esta em constante evolução. 

 O sistema DP utiliza os propulsores da embarcação para gerar as forças necessárias 

para equilibrar a resultante ambiental, funcionalidade chamada Alocação de Empuxo. Os 

sistemas DP disponíveis no mercado não consideram os fenômenos de interferência entre 

propulsores e casco-propulsor. 

 Motivada pela situação atual e pela relevância dos fenômenos de interferência iniciou-

se o Projeto THRUST JIP, liderado pela empresa MARIN, que conta com a participação de 

17 empresas de petróleo, construção naval e pesquisa, entre elas Petrobrás, Daewoo, Rolls 

Royce, entre outras. 

 No núcleo do THRUST JIP encaixa-se o objetivo deste trabalho: desenvolver um 

pacote computacional para a simulação e análise de operação DP considerando os fenômenos 

de interferência, cujo âmago é a Alocação de Empuxo. A simulação e a análise da mesma 

fornecem ferramentas para avaliar a melhoria da capacidade de manter a posição da 

embarcação. 

 Projetos acadêmicos de desenvolvimento do Algoritmo de Alocação de Empuxo foram 

desenvolvidos recentemente (ARDITTI; TANNURI, 2011 e 2012), e fornecem as ferramentas 

para aumentar o conhecimento técnico em um projeto de engenharia. 

 A fim de alcançar o objetivo proposto para esta monografia, define-se a seguinte 

metodologia: 

 Capítulo 1: Fundamentos teóricos – Apresentação do Problema. Apresenta-se o 

Sistema DP, a Alocação de Empuxo, os Fenômenos de Interferência, e os conceitos de 

otimização. 

 Capítulo 2: Descrição e Análise da implementação inicial do algoritmo de alocação de 

empuxo levando em conta interferências. Apresentam-se o estado da arte do problema de 

alocação de empuxo, que levou ao desenvolvimento de um algoritmo de alocação de empuxo 

que considera os fenômenos de interação hidrodinâmicos. Por fim apresenta-se uma analise 

do mesmo e suas vantagens em relação às soluções anteriores. 
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 Capítulo 3: Estudo da Dinâmica Interna do Algoritmo de Otimização. Estudo do 

comportamento intrínseco do algoritmo de otimização, utilizado no desenvolvimento 

acadêmico da Alocação de Empuxo para desenvolver novas implementações em linguagem 

apropriada ao pacote computacional proposto. 

 Capítulo 4: Seleção do Algoritmo de Alocação de Empuxo. Implementação de 

propostas para o novo Algoritmo de Alocação de Empuxo, comparação no âmbito de 

eficiência, precisão e tempo de processamento, para seleção do algoritmo central do programa 

de simulação DP. 

 Capitulo 5: Simulação DP. Desenvolvimento do programa de simulação de operações 

de Posicionamento Dinâmico. Apresentação dos conceitos de time domain simulations e 

limitações físicas da embarcação. Discussão dos resultados. 

 Capitulo 6: Conclusão e recomendações. 
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1	–	Fundamentos	teóricos	–	Apresentação	do	Problema 

1.1 – Sistema de posicionamento dinâmico (DP) 

 O Sistema de Posicionamento Dinâmico (Dynamic Positioning - DP) é uma tecnologia 

que começou a ser desenvolvida por volta dos anos 60. A expansão das operações petrolíferas 

para áreas de água profunda (offshore) demandava novas tecnologias.  

 O principal objetivo do sistema DP é manter a posição e orientação do navio, para que 

o mesmo possa realizar suas operações em alto mar. Note que nestas condições não é possível 

ou não é economicamente viável utilizar o sistema de ancoragem ou de amarração. 

A assistência do Sistema DP à logística do ramo petrolífero é ampla: auxílio para 

perfuração precisa de poços (inclusive em condições ambientais adversas) e lançamento de 

dutos; segurança e confiabilidade para operações de alívio, construção e reparos de 

plataformas de petróleo. 

Ilustrado na Figura1.1 o Sistema DP é constituído de um loop que funciona 

continuamente para garantir o equilíbrio do navio. Quando a embarcação afasta-se da posição 

desejada (Set Point), o sistema de controle define a resultante de forças que deve ser 

desenvolvida pelo navio, afim de que o mesmo retorne à sua posição desejada. 

 

Figura 1. 1 – Sistema DP. 

 

Fonte: Imagem do navio retirada de http://farinha0.tripod.com/id126.html). 
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 A posição da embarcação é definida com auxílio de Sistemas de Referenciamento de 

Posição, tal como o DGPS, e é de extrema importancia para garantir a precisão da operação a 

ser desenvolvida. Além disso, novas tecnologias de sensoriamento permitem estimar as forças 

ambientais que agem sobre o navio, como ilustrado na Figura 1.1. Com esses dados e a 

utilização de modelos de força, é possível estimar a resultante ambiental que atua sobre o 

navio, e adiantar essa informação ao sistema de controle (feedforward) afim de aumentar a 

precisão do Sistema DP. 

 Não obstante, o Sistema DP também pode atuar em conjunto com sistemas de 

amarração offshore, no denominado APMS – Assisted Position Mooring System (Sorensen 

2011). Uma variação do Sistema DP é o Dynamic Tracking (DT), que permite à embarcação 

seguir uma trajetória pré-determinada, considerando a atuação das forças ambientais (Dang, 

Laheij, 2009). 

 As aplicações mais recentes de Sistema DP sugerem incorporar o mesmo ao Sistema 

de Navegação, formando um sistema unificado para todas as aplicações da embarcação. Mais 

detalhes acerca do funcionamento do Sistema DP podem ser encontrados em Sorensen (2011) 

e Tannuri (2002). 
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1.2 – Alocação de Empuxo 

 Assim que calculadas as forças requiridas pelo sistema de controle, as mesmas devem 

ser geradas pela embarcação. O algoritmo de alocação de empuxo comanda os atuadores da 

embarcação, ou seja, seus propulsores a fim de gera-las. 

 A Alocação de Empuxo consiste em coordenar os propulsores de maneira otimizada, 

ou seja, definir o empuxo e posição (ângulo de azimute), que cada atuador deve operar. Como 

ilustrado na Figura 1.2, há várias soluções para a Alocação de Empuxo, porém deve-se 

otimizar essa escolha a fim de minimizar a potência requerida pelo conjunto de atuadores. 

 

Figura 1. 2 – Alocação de Empuxo em um navio dotado de 4 propulsores azimutais 

 

Fonte: Arditti e Tannuri (2011). 

 

 Diferentes Algoritmos e Estratégias de Alocação de Empuxo foram desenvolvidos: 

Van Daalen et. al. (2011), De Wit (2009), Sorensen (2011), Jenssen e Realfsen (2006), 

Sordalen (1997), Moberg e Hellstrom (1983). O presente trabalho sugere um Algoritmo de 

Alocação de Empuxo e compara seu funcionamento e eficiência àqueles já existentes. 

 Embora o sistema DP apresente feedback (realimentação), o mesmo não considera 

condições de funcionamento do navio. Portanto, como se espera que a informação calculada 

no Algoritmo de Alocação de Empuxo seja confiável? A solução é incorporar ao Algoritmo 

de Alocação de Empuxo dados de funcionamento do navio, ou seja, fazer com que o 

algoritmo considere a interação entre propulsores e propulsor-casco. Dessa maneira pode-se 
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tornar o sistema DP mais confiável e econômico, já que permite a busca por uma alocação 

otimizada, que considere tais interferências. 
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1.3 – Padronização de Notação 

Antes de estudar a interferência entre propulsores e propulsor-casco, é necessário 

apresentar o conjunto de coordenadas normalmente utilizado quando se trabalha com projetos 

navais, a fim de facilitar a compreensão das interfêrencias. A Figura 1.3 exemplifica a 

mudança de coordenadas realizada nestes projetos. 

 

Figura 1. 3 – Mudança de coordenadas: Coordenadas globais (a); Coordenadas do navio (b) 

 

Fonte: Arditti e Tannuri (2011). 

  

 Note que o cálculo de resultantes que o navio deve desenvolver fica bastante 

simplificado se forem utilizadas as coordenadas do navio, uma vez que o ângulo de azimute 

dos propulsores é referenciado pelo eixo longitudinal do mesmo (Surge). 

A seguir serão apresentados os fenômenos de interferência que agem sobre os 

propulsores. A partir do conhecimento das interações entre os propulsores e entre propulsor-

casco será possível modelar um novo algoritmo de alocação de empuxo. 
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1.4 – Estudo dos fenômenos de interferência 

 Os principais efeitos de interferência que agem sobre os propulsores são: interação 

entre propulsor e casco; e interação entre propulsores (EKSTROM; BROWN, 2002). 

 

1.4.1 – Interferência entre propulsor e casco 

 A interação entre o propulsor e o casco depende, principalmente da forma do casco do 

navio e da localização do propulsor. O principal efeito que causa a queda de rendimento do 

propulsor é o arrasto entre o jato d’água e o casco do navio, ilustrado na Figura 1.4. 

 

Figura 1. 4 – Arrasto do jato d’água com o casco. 

 

 

 Outro efeiro é causado pela proximidade de cota entre o propulsor e o casco, quanto 

mais próximo o atuador está do casco do navio, maior será a queda no empuxo líquido, pois 

haverá menos volume de água disponível ao propulsor. 

 Também considera-se interferência entre propulsor e casco, o encontro do jato d’água 

de um propulsor com o pontão (pontoon) de uma plataforma. Como ilustrado na Figura 1.5, 

esse fenômeno deve-se menos ao cisalhamento do jato d’água com casco, do que ao “choque” 

entre os mesmos, ou seja, a área frontal é muito mais significativa que a área lateral. 
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Figura 1. 5 – Interferência entre propulsor e casco, choque de jato d’água com pontoon. 

 

Imagem cedida pela empresa MARIN, de um estudo de CFD (Computational Fluid Dynamics). 

 

 Outro fenômeno que também deve ser considerado como interferência entre casco e 

propulsor é o arrasto do jato d’água nas paredes internas do túnel do propulsor em túnel, que 

será detalhado na seção 1.4.2. 

 O efeito Coanda esta relacionado com o jato d’água proveniente do propulsor. 

Basicamente este efeito pode ser explicado como a união do jato d’água ao casco do navio, ou 

seja, ao invés do jato d’água seguir sua trajetória retilínea ele amolda-se à forma do casco. 

Quanto maior a velocidade do jato d’água menor é esse efeito (EKSTROM; BROWN, 2002). 

 Estudos recentes sugerem incorporar o leme ao sistema DP (DE WIT, 2009), ou seja, 

utilizá-lo como um atuador adicional, que permite aos propulsores principais gerarem empuxo 

no eixo de Sway. Embora essa abordagem não seja desenvolvida no presente trabalho, poder-

se-ia considerar o leme e o propulsor principal como atuadores, e ponderar a interferência 

entre ambos para gerar uma resultante não paralela ao eixo de Surge. 

 

1.4.2 – Interferência entre propulsores 

 A interferência entre dois propulsores (Figura 1. 6) ocorre quando os mesmos, 

normalmente propulsores azimutais, estão próximos. Quando isso ocorre há arrasto do jato 

d’água de um propulsor sobre outro. 
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Figura 1. 6 – Interação entre propulsores. 

 

Imagem cedida pela empresa MARIN, de um estudo de CFD. 

 

 Considera-se que, para que não haja interferencia entre dois propulsores azimutais, os 

mesmos devem estar a uma distância de 20 diâmetros (Moberg and Hellstrom, 1983). Além 

disso, quando um propulsor opera sob o jato d’água de outro, a queda de eficiência pode 

chegar a 40% (LEHN, 1980). 

 Agora que os principais fenômenos de interferência foram apresentados, deve-se 

ilustrar qualitativamente, como esse efeito pode ser representado. 
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1.5 – Estudo qualitativo de propulsores 

 Existem três tipos de propulsores: Propulsores principais; Propulsores em túnel e 

Propulsores Azimutais. Os mesmos são apresentados a seguir. 

 

1.5.1 – Propulsores principais 

 A Figura 1.7 ilustra um propulsor principal com um leme. Lembre-se que não se 

considerara a utilização de lemes neste trabalho. Além disso as embarcações simuladas neste 

projeto não eram dotadas desse equipamento 

 

Figura 1. 7 – Propulsor principal. 

 

Fonte: http://www.osv-modelling.nl/page2.html. 

 

 Os propulsores principais geram empuxo somente no eixo de Surge. Normalmente 

representa-se que tais propulsores apresentam igual eficiência independentemente do sentido. 

Entretanto essa representação é incorreta, pois quando o empuxo é para trás, o jato d’água vai 

para frente, e arrasta-se ao longo todo o comprimento do casco do navio, o que gera uma força 

para frente. Dessa maneira o empuxo líquido diminui (Figura 1.4). Essa representação esta 

ilustrada na Figura 1.8. 
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Figura 1. 8 – Representação do propulsor principal. (a) Sem interferência. (b) Com interferência. 

 

 

1.5.2 – Propulsores em túnel 

 O propulsor em túnel, como o próprio nome explica, localiza-se no interior de um 

túnel dentro do casco do navio, Figura 1.9. Quando acionado, aspira água de um lado do túnel 

e expira do outro lado, gerando empuxo. 

  

Figura 1. 9 – Propulsor em túnel (extraída de Schottel, 2002). 

 

 

 A representação para o propulsor em túnel (Figura 1.10) é semelhante àquela do 

propulsor principal. As diferenças são: o empuxo é no eixo Sway, e há perdas de eficiência 

iguais nos dois sentidos, pois o propulsor em túnel é simétrico e o arrasto d’água nas paredes 

internas do túnel é igual nos dois sentidos. 
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Figura 1. 10 – Representação do propulsor principal. (a) Sem interferência. (b) Com interferência. 

 

 

1.5.3 – Propulsores Azimutais 

 A Figura 1.11 ilustra um propulsor azimutal. Diferentemente dos propulsores 

principais e em túnel, o propulsor azimutal tem dois graus de liberdade. É possível comandar 

o empuxo que o mesmo deve desenvolver e seu ângulo de azimute, uma vez que esse 

propulsor pode girar 360º. 

 

Figura 1. 11 – Propulsor azimutal. 

 

Fonte: extraída de Marine Propulsion International, 1998. 

 

 O propulsor azimutal é o mais representativo quando se avalia fenômenos de 

interferência. A Figura 1.12 (a) mostra a representação sem interferência (caso ideal) de um 
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propulsor azimutal. A Figura 1.12 (b) ilustra a interação entre o propulsor e outras partes do 

navio. 

 

Figura 1. 12 - (a) Representação do propulsor azimutal sem considerar o fenômeno de interferência; (b) 

Eficiência do propulsor azimutal com fenômeno de interferência. 

 

Fonte: De Wit, (2009). Arditti e Tannuri (2011). 

 

 De acordo com a Figura 1.12, a eficiência do propulsor é intrinsecamente dependente 

de sua posição de funcionamento (ângulo de azimute), portanto deve ser desenvolvido um 

novo modelo de alocação em coordenadas polares. 

 Note que em termos de modelagem os propulsores principais e em túnel podem ser 

modelados como propulsores azimutais posicionados (sempre) em 0º e 90º, respectivamente. 

 



29 
 

 

1.6 – Otimização 

 Tendo estudado qualitativamente os métodos de representação da eficiência dos 

atuadores, e como abordar o problema de alocação de empuxo (em coordenadas polares), é 

necessário conhecer as ferramentas e métodos para otimizar o mesmo. 

 Antes de apresentar os fundamentos de otimização é necessário compreender a razão 

do problema de Alocação de Empuxo estar sujeito à mesma. 

 Note que para manter o navio estacionário é preciso contrabalançar as forças 

ambientais que atuam sobre a embarcação. Pode-se encará-las como vento, onda e correnteza 

ou como sugerido na Figura1. 3b: Força de Surge, Força de Sway e Momento de Yaw. 

Portanto há três graus de liberdade envolvidos no problema. 

 A premissa básica para a resolução deste problema é: são necessários atuadores com 

três graus de liberdade linearmente independentes para solucionar o sistema de alocação de 

empuxo. Isso não significa, necessariamente, que são necessários apenas de três atuadores 

com um grau de liberdade (propulsores principais ou em túnel) ou de um atuador com um 

grau de liberdade e outro com dois (propulsor azimutal). 

 Abaixo se justifica tal premissa. Considere o sistema equivalente que representa o 

navio como uma placa plana; os propulsores de um grau de liberdade como treliças e; os 

propulsores azimutais como apoios fixos: 

 

 Com três propulsores principais é possível controlar as forças no eixo de Surge e o 

Momento (se os mesmos não estiverem alinhados ao eixo de Surge). Mas é impossível 

equilibrar a resultante ambiental no eixo de Sway, Figura 1.13. 

 

Figura 1. 12 – Impossibilidade de três propulsores principais contrabalançarem as forças ambientais. 
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 Com três propulsores em túnel também não é possível equilibrar o sistema. Não há 

como compensar F Surge, Figura 1.14. 

 

Figura 1. 13 – Impossibilidade de três propulsores em túnel compensarem as forças ambientais. 

 

 

 Quando se utiliza um propulsor azimutal e um propulsor principal, há condições nas 

quais não é possível compensar as cargas ambientais, pois as reações na direção de 

Sway e no momento de Yaw são linearmente dependentes. Figura 1.15. 

 

Figura 1. 14 – Condição em que um propulsor azimutal e um principal não compensam as cargas ambientais. 

 

 

 Sem dúvida ao utilizar-se propulsores em túnel junto com principais podemos obter 

três graus de liberdade linearmente independentes com três atuadores. Também podemos 

obter três graus de liberdade linearmente independentes deslocando-se para cima ou para 

baixo o apoio fixo da Figura 1.15. 

 Embora seja possível resolver o problema de Alocação de Empuxo com as 

configurações expressas acima, isso não é recomendável pelas seguintes razões: 
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 Se for utilizado o número mínimo de atuadores, é provável que os mesmos não 

suportem cargas ambientais relativamente baixas, devido à sua saturação, pois os 

propulsores têm limites de geração de empuxo. 

 Caso haja falha em qualquer um dos propulsores, não será possível compensar as 

cargas ambientais nem manobrar a embarcação. 

 

 Portanto adicionar propulsores às configurações básicas (número mínimo de 

atuadores, que somam três graus de liberdade LI), sistema torna-se redundante, como mostra a 

Figura 1.16. Porém a redundância permite que a embarcação opere em condições mais 

adversas, ou continue funcional mesmo com falha de algum dos propulsores. 

 

Figura 1. 15 – Sistema redundante. 

 

 

 De acordo com a Figura 1.16, um sistema redundante permite um conjunto infinito de 

soluções. Portanto a melhor maneira de escolher essa solução é otimizar algum quesito. Para 

tanto é necessário definir um problema de otimização e a ferramenta que será utilizada para 

resolvê-lo. 

 

1.6.1 – Variáveis de Projeto 

 O conceito de variáveis de projeto é simples de entender, porém aplicá-lo 

corretamente é vital para o sucesso da otimização (Silva, 2011). As variáveis de projeto 
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permitem as manipulações do sistema de otimização. Note que tais manipulações devem estar 

presentes no escopo do problema. 

 No Algoritmo de Alocação de Empuxo é possível manipular o empuxo produzido 

pelos propulsores, bem como ângulo de azimute dos propulsores azimutais para minimizar a 

potência requerida pelo navio. É importante notar que as variáveis do problema são contínuas, 

ou seja, podem assumir qualquer valor dentro de um intervalo limitado. Isso auxilia bastante a 

otimização, que fica bastante simplificada se comparada com outras de variáveis discretas. 

 Poder-se-ia afirmar que mudar a posição da embarcação pode diminuir as cargas 

ambientais sobre a mesma, e consequentemente diminuir a potência necessária para manter o 

navio estático, portanto o ângulo de Yaw (Figura 1.3) deveria ser uma variável de projeto. 

Porém a Alocação de Empuxo diz respeito apenas à geração de forças comandadas pelo 

controle. Embora variar a posição da embarcação possa, de fato possa minimizar a potência 

desenvolvida pela mesma, essa tarefa é responsabilidade do sistema de controle ou do 

comandante da embarcação. 

 

1.6.2 – Função Objetivo 

 A Função Objetivo é o centro do problema de otimização, pois é a função que define a 

eficiência do projeto (SILVA, 2011). No caso, desse trabalho o objetivo é minimizar a 

potência requerida pela embarcação para mantê-la estática. 

A diminuição da potência garante economia de combustível, o que significa economia 

de dinheiro e menor emissão de poluentes. Além disso, se a potência for utilizada de maneira 

otimizada, a embarcação poderá operar em condições mais adversas. 

A principal característica da Função Objetivo é ser função das variáveis de projeto, de 

maneira direta ou indireta. O trabalho com vários propulsores requer a minimização da 

potência do conjunto de atuadores. A matriz de pesos deve refletir a maneira como cada 

propulsor consome potência. Isso ficará mais claro adiante, quando Função Objetivo do 

algoritmo de alocação de empuxo for definida. 
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1.6.3 – Restrições 

 As restrições definem a liberdade do programa de otimização. Ou seja, ao manipular 

as variáveis de projeto, visando a minimização da função objetivo devem-se respeitar as 

restrições laterais (de caixa), de desigualdade e de igualdade. 

 

1.6.3.1 – Restrições laterais 

 As restrições laterais, também conhecidas como restrições de caixa, definem os limites 

superiores e inferiores das variáveis de projeto. Ou seja, tais restrições estabelecem o intervalo 

de manipulação das variáveis. Normalmente ilustram-se as restrições de caixa com símbolos: 

  e  . 

 A incorporação dessas restrições neste projeto é simples. Para propulsores de um grau 

de liberdade, dos quais se controla apenas o empuxo, basta limitar sua variação ao intervalo 

de empuxo mínimo e empuxo máximo. Esses dados são obtidos diretamente do manual dos 

propulsores. 

 Para propulsores azimutais, deve-se limitar seu funcionamento em torno de seus dois 

graus de liberdade (empuxo e ângulo de azimute). Isso significa que o propulsor pode operar 

entre 0º e 360º e; entre seu empuxo mínimo (0 N) e seu empuxo máximo maxT . As Equações 

1.1 e 1.2 ilustram as restrições do tipo caixa aplicadas a um propulsor azimutal, e a Figura 

1.17 elucida graficamente essas equações. 

 

º360º0             (1.1) 

maxTT0             (1.2) 
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Figura 1. 16 – Restrições de caixa de um propulsor azimutal. 

 

 

 Note que a restrição de caixa referente à alocação entre 0° e 360° deve ser abandonada 

para evitar problemas de singularidade. 

 

1.6.3.2 – Restrições de igualdade 

 As restrições de igualdade definem os requisitos, que o algoritmo de otimização deve 

respeitar, durante a minimização da Função Objetivo. Ou seja, trata-se de um sistema que 

contém combinações das variáveis de projeto igualadas a um vetor de valores constates. 

 A forma dessas equações é ilustrada no sistema de Equações 1.3, onde )x(h i  

representa combinações das variáveis de projeto e iV  são valores constantes: 

 











...
V)x(h
V)x(h

22

11

           (1.3) 

 

As restrições de igualdade são utilizadas para equiparar as forças designadas pelo 

controle ao conjunto de forças geradas pelos atuadores, considerando a perda de eficiência 

dos mesmos, devido aos fenômenos de interferência. 

 

1.6.3.3 – Restrições de desigualdade 



35 
 

 

 As restrições de desigualdade são bastante semelhantes às restrições de igualdade, o 

que as diferencia é a utilização do sinal   ao invés de ==. A forma dessas equações é 

ilustrada no sistema de Equações 1.4, onde )x(g i  representa combinações das variáveis de 

projeto e iW  são valores constantes. 

 











...
W)x(g
W)x(g

22

11

           (1.4) 

 

As restrições de desigualdade são as que trazem maior dificuldade à otimização, pois podem 

estar ativas ou inativas (SILVA 2011). 

 

1.6.3.4 – Restrições ativas e inativas 

 Ao final da rotina de otimização deve-se obter o valor mínimo da Função Objetivo 

com todas as Restrições respeitadas. Porém haverá restrições de desigualdade (incluindo as 

laterais) que estarão inativas, ou seja, as variáveis estarão no meio do intervalo de 

manipulação, o que significa dizer que seu valor não será igual ao seu limite superior ou 

inferior (para restrições laterais). 

 Esse conceito é importante, pois revela qual das restrições tem papel limitante na 

otimização, o que permite melhorar o desempenho do sistema se for possível relaxar tais 

restrições. Note que as restrições de igualdade, como o próprio nome revela, deverão estar 

sempre ativas. 

 

1.6.4 – Domínio Viável 

 Uma vez definido o problema de otimização: Variáveis de Projeto, Função Objetivo 

e Restrições. O Próximo passo é definir a região onde é possível buscar sua solução (SILVA, 

2011). A parte do domínio em que as restrições são respeitadas é denominada domínio viável, 

e o restante denomina-se domínio inviável. 

 A Figura 1.18 ilustra problemas de otimização bastante didáticos que contêm todos os 

assuntos de otimização discutidos até o momento. 
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Figura 1. 17 – Problema de otimização solucionado dentro do domínio viável com restrições ativas (a) e sem 

restrições ativas (b). 

 

Fonte: Silva (2011). 

 

 A Figura 1.18a ilustra um problema de otimização bidimensional, cujas variáveis de 

projeto são 1X  e 2X . Representam-se as curvas de nível da Função Objetivo. O espaço viável 

definido pelas restrições é o interior da polítope e a solução ótima do problema é encontrada 

com restrições ativas. 

 A Figura 1.18b, bastante semelhante ao problema de otimização da Figura 1.18a tem 

as mesmas variáveis de projeto, apresenta outra Função Objetivo, e o mesmo espaço viável. 

Porém a solução, que está no interior do espaço viável não ativa nenhuma das restrições.  

 

1.6.5 – Mínimo Local e Global 

 A Figura 1.18 apresenta o conceito de mínimo global e local para uma função de uma 

variável. Os pontos de mínimo local têm o menor valor da função para os pontos ao seu redor. 

O ponto de mínimo global apresenta o menor valor da função. É importante apresentar estes 

conceitos, pois os algoritmos numéricos normalmente buscam somente os pontos de mínimo 

local (Nocedal and Wright 2006). 
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Figura 1. 18 – Comparação entre pontos de mínimo local e mínimo global. 

 

 

1.6.6 – Convexidade 

 A Convexidade é uma propriedade importante dos problemas de otimização, a mesma 

garante que o ponto de mínimo local do problema convexo é único. Dessa forma o ponto de 

mínimo local também é o ponto de mínimo global (Nocedal and Wright 2006). Entretanto 

para que o problema seja convexo a função objetivo e o domínio devem ser convexos. 

 Para que a função Objetivo seja convexa sua Matriz Hessiana (Eq. 1.5) deve ser 

positiva semi-definida, ou positiva definida. Em termos práticos isso significa que os 

autovalores da Matriz Hessiana devem ser todos maiores ou iguais a 0. 
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 Para que o domínio seja convexo as restrições de desigualdade (Eq. 1.4) devem ser 

côncavas. E as restrições de igualdade devem ser lineares. Fisicamente isso significa que em 

um domínio convexo, se unirmos dois pontos em seu interior por um segmento de reta ( r
 ), 

todos os pontos de ( r
 ) estão no interior do domínio viável. 
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Figura 1. 19 – Exemplo de espaços viáveis convexos e não convexos. 

 

Fonte: adaptado de Silva (2011). 

 

1.6.7 – Condições de Optimalidade de 1ª ordem 

As condições de necessárias para um ponto ser candidato a mínimo local em problemas com 

restrições são as condições de Karuch-Kuhn-Tucker (KKT), Eq. 1.6. No caso de um problema 

convexo, caso essas condições sejam respeitadas, encontrar-se-á o ponto de mínimo global. 

Note que as condições oferecem as equações necessárias para resolver o problema de 

otimização, e dessa forma podem ser utilizadas para obter-se a solução analítica do mesmo. 

 

0*
0*)x(g
0*)x(h

0*)*,x(Lx







           (1.6) 

 

1.6.8 – Métodos de solução de problemas de otimização 

 Existem vários métodos de solucionar problemas de otimização, que são apresentados 

na Figura 1.21. A seguir uma breve discussão acerca dos mesmos é realizada. Para maiores 

informações consulte Silva (2011) e Nocedal e Wright (2006). 
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Figura 1. 20 – Métodos de solução de problemas de otimização. 
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 O método gráfico consiste em representar o espaço viável (as restrições) e curvas de 

nível da Função Objetivo e buscar os pontos ótimos (Figura 1.18). Embora seja uma 

metodologia eficiente é muito simplória e não permite solucionar problemas com mais de dois 

graus de liberdade. 

 Os métodos analíticos são os mais consistentes, ou seja, seus resultados são confiáveis, 

pois estão embasados em soluções puramente matemáticas. Entretanto se o problema de 

otimização for moderadamente complexo não é possível utilizar tais métodos. Destaca-se 

nessa classe: o método dos multiplicadores de Lagrange e o Cálculo Variacional, bastante 

utilizado em problemas estruturais. 

 Os métodos numéricos apresentam uma gama de técnicas de otimização. O método de 

programação linear é bastante difundido, porém só é aplicável para problemas de otimização 

lineares (com Função Objetivo e Restrições lineares). 

 Os problemas sem restrição fornecem grande liberdade de solução. A diferença entre 

os métodos de ordem zero, primeira ordem e segunda ordem é a quantidade de informações 

da Função Objetivo. Nos métodos de ordem zero só há valores da Função Objetivo, enquanto 

no método de primeira ordem dispõe-se também do gradiente da mesma. 
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 Os problemas de otimização não lineares com restrições são bastante complexos. Há 

duas abordagens para resolvê-los: caminhar dentro do espaço viável com informações sobre o 

gradiente da Função Objetivo e verificar se a cada passo houve melhora na solução (métodos 

diretos) ou; transformar um problema com restrições em um problema sem restrições 

(métodos indiretos), e aplicar a metodologia de problemas sem restrição para resolvê-lo. 

 Os métodos sequenciais aproximam as não linearidades das equações por funções 

lineares. Dessa forma resolvem-se problemas simplificados em intervalos confiáveis (onde a 

aproximação de Taylor é válida). Soluciona-se sucessivamente o problema até que haja 

convergência. 

 Os métodos probabilísticos tentam solucionar os problemas de otimização através de 

soluções randômicas. Também há uma vertente desses métodos que aposta em basear-se em 

fenômenos da natureza, como a genética, para solucionar o problema de otimização. 

 Embora seja um pouco cedo para justificar a escolha do algoritmo de otimização por 

um método numérico, adianta-se que esse é a melhor metodologia para lidar com o problema 

da alocação de empuxo considerando a complexidade dos fenômenos de interação. A 

justificativa para a escolha deste método esta na seção 2.2.9. 

 

1.6.9 – Linhas gerais de algoritmos de otimização numéricos 

 Em linhas gerais os algoritmos de otimização numéricos funcionam da seguinte 

maneira. Inicia-se com um ponto (“chute”) inicial e procede-se com uma sequência de 

melhores estimativas para o problema (iterações). Geralmente as novas iterações dependem 

da função objetivo, da última iteração e em alguns casos de iterações anteriores. O algoritmo 

continua as iterações até que não haja como fazer progresso ou até que se chegue a uma 

solução com suficiente precisão (Nocedal and Wright 2006). 

 Basicamente existem duas estratégias para realizar as iterações: Trust Region e Line 

Search. Note que existem vários algoritmos de otimização numérico, mas eles são variações 

desses modelos. 

 

1.6.10 – Trust Region x Line Search 

 A estratégia Trust Region (Fig. 1.22) consiste em definir uma região (normalmente 

circular) em torno da última solução. Note que o raio da região é o tamanho máximo do passo 
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para a próxima iteração. A estratégia de definir uma região confiável permite que a função 

objetivo e as restrições sejam aproximadas por funções mais simples. Portanto basta resolver 

o problema ilustrado na Eq. 1.7, em que km  é uma aproximação da função objetivo (Nocedal 

and Wright 2006). 

 

)px(mmin kk              (1.7) 

 

 Na estratégia Line Search (Fig. 1.22) escolhe-se uma direção que minimize a função 

objetivo d


 e define-se o passo que se dá nessa direção a fim de resolver o problema descrito 

na Eq. 1.8. 

 

)dpx(fmin k


            (1.7) 

 

Figura 1. 21 – Line Search x Trust Region. 

 

 

Note que as direções que minimizam a função objetivo estão contidas na direção 

contrária ao gradiente da função podendo-se variar 90º em relação à mesma, conforme 

ilustrado pela Fig. 1.23 (Nocedal and Wright 2006). 
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Figura 1. 22 – Possíveis direções para o método Line Search 
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2	–	Descrição	e	Análise	da	Implementação	Inicial	do	

Algoritmo	de	Alocação	de	Empuxo	Levando	em	conta	

Interferências 

 

 Inicialmente apresenta-se o estado da arte da alocação de empuxo e seu 

desenvolvimento. Esse desenvolvimento levou a alocação de empuxo a um novo patamar, no 

qual os fenômenos de interação hidrodinâmicos que agem sobre os propulsores são 

considerados. O algoritmo de alocação de empuxo que considera tais interações é descrito e 

analisado a fim de verificar seu funcionamento e vantagens, o que permitira aplica-lo num 

software para simulação de operações de posicionamento dinâmico. 

 

2.1 – Estado da Arte 

A alocação de empuxo é um assunto maduro, portanto o problema e suas soluções 

evoluíram de maneira consistente com o crescimento do mercado de posicionamento 

dinâmico. Diferentes representações e abordagens são apresentadas nessa seção. A evolução 

do problema e de suas soluções é apresentada de maneira a ilustrar a evolução de sua 

complexidade. 

 

2.1.1 – Função Objetivo Quadrática, sem Fenômenos de Interação 

Esse problema foi o primeiro passo no desenvolvimento de algoritmos de alocação de 

empuxo. A função objetivo que representa a potencia consumida pelos propulsores, ilustrada 

na Eq. 2.1 é simplificada para uma função quadrática. A mesma é uma aproximação da 

relação real entre empuxo e consumo energético. ܿ௜ representa a constante de potencia e ௜ܶ o 

empuxo desenvolvido por cada propulsor. 

 

ܲ = ෍ܿ௜ ∙ ௜ܶ
ଶ

ே

௜ୀଵ

																																																																																																																																					(2.1) 
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 As restrições impostas a este problema são a geração das forças requeridas (ܨ௫ ௬ܨ,  (௭ܯ,

pelo sistema de controle, sem considerar os fenômenos de interação. ܨ௫೔ e ܨ௬೔  são as forças 

desenvolvidas por cada propulsor, ݔ௜ e ݕ௜ são a posição longitudinal e lateral do propulsores, 

respectivamente. 

 

ܴ:	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ෍ܨ௫೔

ே

௜ୀଵ

− ௫ܨ = 0

෍ܨ௬೔

ே

௜ୀଵ

− ௬ܨ = 0

෍ܨ௬೔

ே

௜ୀଵ

∙ ௫೔ܨ෍−(௜ݔ) ∙ (௜ݕ)
ே

௜ୀଵ

௭ܯ− = 0

																																																																																											(2.2) 

 

 A solução deste problema é bastante simples e conhecida. Utiliza-se o método dos 

multiplicadores de lagrange, a fim de obter um sistema linear que é facilmente resolvido. 

Quando os propulsores são iguais é possível utilizar diretamente a matriz pseudo-inversa para 

resolver esse sistema. 

 Superficialmente, o método dos multiplicadores de lagrange une a função objetivo às 

restrições, multiplicando as mesmas por novas variáveis (λ), essa nova função é denominada 

lagrangeano (ܮ), Eq 2.3. Isso relaxa o problema uma vez que não há mais equações de 

igualdade. O passo seguinte é definir a condição de otimização, representada na Eq. 2.4, na 

qual o gradiente do lagrangeano deve ser 0 (ܺ são as variáveis de projeto). 

 

ܮ = ܱܾ݆ − ௜ߣ ∙ ℎ௜           (2.3) 

0








L

X
L             (2.4) 

 

2.1.2 – Potencia Exata, sem Fenômenos de Interação 

O segundo passo na evolução de problemas de alocação de empuxo foi utilizar a 

relação exata entre o empuxo desenvolvido e a potencia necessária para gera-lo, Eq. 2.5. Note 
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que essa relação é valida para as condições em que a embarcação esta numa condição 

estacionário e não há correnteza (bollard pull). 

 

ܲ = ෍ܿ௜ ∙ ௜ܶ
ଷ
ଶ

ே

௜ୀଵ

																																																																																																																																		(2.5) 

 

 As restrições são as mesmas que as representadas na Eq. 2.2. Ou seja, os fenômenos 

de interação hidrodinâmicos não são considerados. 

 Esse problema também é bastante conhecido e apresenta soluções eficientes: 

Aproximar a potencia por uma equação quadrática (Eq. 2.6), e resolver esse problema como 

descrito na seção 2.1.1. 

 

ܲ = ܽ଴ + ܽଵ ∙ ܶ + ܽଶ ∙ ܶଶ																																																																																																																	(2.6) 

 

Utilizar o método de Newton. O método de Newton representado na Figura 2.1, é 

aplicado no sobre o gradiente do lagrangeano (Eq. 2.4), pois para obter-se um ponto de 

mínimo o mesmo deve ser nulo. Superficialmente, o método de Newton consiste em: a cada 

da iteração dar um passo na direção contraria ao gradiente da função (Hessiana do 

Lagrangeano), até que o gradiente seja nulo ou até que um critério de parada seja atingido. 
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Figura 2. 1 – Método de Newton. 

 

 

 

2.1.3 – Potencia Exata, sem Fenômenos de Interação considerando saturação dos 

propulsores 

A potencia é considerada conforme a Eq. 2.5 (relação exata). 

As restrições são as mesmas que as representadas na Eq. 2.2. 

A saturação dos propulsores é representada conforme a Eq. 2.7, que ilustra o empuxo 

máximo que cada propulsor pode gerar. 

 

൛	:ܫ ௜ܶ ≤ ௠ܶ௔௫೔ 																																																																																																																																								(2.7) 

 

 A solução convencional a este problema de saturação é o pós-processamento. 

Inicialmente o problema é resolvido sem que sejam consideradas as desigualdades (conforme 

um dos métodos apresentados em 2.1.2). Avalia-se caso um ou mais propulsores devem gerar 

um empuxo superior à sua saturação. Caso isso ocorra, define-se que esse propulsor 

desenvolvera seu empuxo máximo, e uma nova alocação de empuxo é realizada, 

considerando-se como um dado o empuxo desenvolvido pelo propulsor saturado. 
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2.1.4 – Potencia Exata, fenômenos de interação evitados e considerando saturação dos 

propulsores 

A potencia é considerada conforme a Eq. 2.5 (relação exata). 

As restrições são as mesmas que as representadas na Eq. 2.2, pois as regiões com 

interação hidrodinâmica são evitadas. 

A saturação dos propulsores é representada conforme a Eq. 2.7. 

E os propulsores não podem ser posicionados em regiões onde ocorre significativa 

interação hidrodinâmica, chamada zona proibida. A Eq. 2.8 a representação matemática de 

uma zona proibida de 20° em torno do ângulo ߙ௙௢௥௕௜ௗௗ௘௡ . 

 

	:ܫ ቄ൫ߙ௜ − ௙௢௥௕௜ௗௗ௘௡൯ߙ
ଶ
≥ 10ଶ 																																																																																																										(2.8) 

 

 A Figura 2.2 ilustra a eficiência de um propulsor, destacando as zonas proibidas, onde 

a eficiência é significativamente inferior devido à interação do mesmo com outros 

propulsores. 

 

Figura 2. 2 – Zona proibida. 
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 A solução deste problema é bastante semelhante ao método de pós-processamento 

apresentado na seção 2.1.3. Inicialmente resolve-se o problema de alocação 

independentemente da desigualdade 2.5. Caso algum dos propulsores seja posicionado no 

interior de sua respectiva zona proibida, o mesmo é direcionado para a fronteira mais próxima 

da mesma, e essa informação é considerada constante na alocação seguinte. 

Nota-se, portanto que os fenômenos de interação são considerados na alocação de empuxo, ao 

evita-los. Embora essa solução evite interações hidrodinâmicas significativas, a mesma não 

considera de fato a eficiência do propulsor em diferentes ângulos de azimute nem os 

fenômenos hidrodinâmicos em si, o que poderia melhorar significativamente a precisão do 

sistema DP. A seção 2.2 apresenta o algoritmo de alocação de empuxo desenvolvido por 

Arditti e Tannuri (2011 e 2012), que de fato representa e considera as interações 

hidrodinâmicas entre propulsores e entre propulsor e casco. 
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2.2 – Algoritmo de Alocação de Empuxo levando em conta interações 

hidrodinâmicas 

 

2.2.1 – Tratamento Matemático para Curva de Eficiência do Propulsor 

A fim de implementar os dados de interferência no algoritmo de alocação de empuxo, 

utilizam-se fatores de eficiência referentes a cada ângulo de azimute do propulsor azimutal. 

Como ilustrado no estudo qualitativo de interferência isso é necessário, pois a eficiência é 

função da posição angular do propulsor. 

 

)( f            (2.9) 

 

 A Tabela 2.1 e Figura 2.3 ilustram a aplicação desse método. 

 

Tabela 2. 1 – Fatores de eficiência para o propulsor azimutal. 

Ângulo  Eficiência  Ângulo  Eficiência  Ângulo  Eficiência  Ângulo  Eficiência  

0º 0,80 90º 0,50 180º 1,00 270º 1,00 

10º 0,82 100º 0,75 190º 1,00 280º 0,98 

20º 0,84 110º 1,00 200º 1,00 290º 0,96 

30º 0,87 120º 1,00 210º 1,00 300º 0,93 

40º 0,89 130º 1,00 220º 1,00 310º 0,91 

50º 0,91 140º 1,00 230º 1,00 320º 0,89 

60º 0,93 150º 1,00 240º 1,00 330º 0,87 

70º 0,96 160º 1,00 250º 1,00 340º 0,84 

80º 0,75 170º 1,00 260º 1,00 350º 0,82 
Fonte: Arditti e Tannuri (2011). 
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Figura 2. 3 – Fatores de eficiência do propulsor em coordenadas polares. 

 

Fonte: Arditti e Tannuri (2011). 

 

 A curva de eficiência da Fig. 2.3 foi construída a partir de dados bibliográficos, porém 

poder-se-ia utilizar um modelo para construí-la, como é descrito na seção 2.2.2.7. Para 

interações entre propulsores foi utilizado o modelo sugerido por Moberg e Hellstrom (1983); 

ilustrado na Figura 2.4. 

  

Figura 2. 4 – Modelo de interferência entre dois propulsores. 

 

Fonte: Moberg e Hellstrom (1983). 

 

 Para iterações entre propulsor e casco o modelo de interferência adotado é descrito em 

Ekstrom e Brown (2002) e Moberg e Hellstrom (1983). A perda de eficiência quando o jato 

d’água percorre todo o casco é considerada como de 20%, e quando o jato d’água é 
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transversal ao casco não há queda na eficiência do propulsor. Note que os efeitos de 

interferência foram somados (Figura 2.3), pois não são mutuamente excludentes. 

 Após a definição do modelo de tratamento da eficiência dos propulsores, curva de 

eficiência, apresenta-se a estrutura do Algoritmo de Alocação Empuxo sugerido. 

 

2.2.2 – Estrutura Inicial do Algoritmo 

 A estrutura do Algoritmo de Alocação de Empuxo (Arditti and Tannuri 2011) 

implementado inicialmente é apresentada na Figura 2.5. Cada bloco será explicado a seguir: 

 

Figura 2. 5 – Estrutura do algoritmo. 

 

Fonte: Arditti e Tannuri (2011). 

 

2.2.2.1 – Vetores F, Tcart  e Tpolar 

 O vetor F contém as forças requeridas pelo sistema de controle. As forças geradas pelo 

conjunto de atuadores da embarcação, levando-se em conta os fenômenos de interferência, 

deve igualar esse vetor. 

 


















Myaw
Fsway
Fsurge

F                         (2.10) 
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 cartT  contém a solução inicial da alocação em coordenadas cartesianas para cada 

propulsor. 

 











Fsway
Fsurge

cartT                        (2.11) 

 

 polarT  contém a solução inicial em coordenadas polares de cada propulsor. É o “chute 

inicial” do algoritmo de alocação. 

 
















trabalhodeangulo

empuxoT

    
polarT                       (2.12) 

 

2.2.2.2 – Matriz A 

 A Matriz A relaciona o empuxo de cada propulsor (Tcart) com sua contribuição ao 

empuxo resultante em cada direção, e depende unicamente da localização relativa ao centro 

de gravidade da embarcação (DE WIT, 2009). É de grande importância ao algoritmo de 

alocação de empuxo, pois contribui para a construção do sistema de forças geradas pelos 

atuadores da embarcação. 

 A primeira linha da matriz representa a direção Surge; a segunda linha a direção Sway 

e; a terceira linha o momento de Yaw. Ilustra-se na Eq. 2.13 a construção da matriz A para um 

propulsor azimutal, onde X e Y representam a localização do propulsor nas coordenadas da 

embarcação. A matriz tem duas colunas, pois o propulsor gera empuxo nas direções de Surge 

e Sway, e é mais simples representá-lo como a soma de um propulsor principal e um 

propulsor em túnel. 

  




















XY
10
01

AA                     (2.13) 
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2.2.2.3 – Linear Solution 

 Essa função resolve o problema de alocação sem levar em conta o problema de 

interferência. É o “chute inicial” necessário ao problema de otimização. pinv gera a matriz 

pseudo-inversa. 

 

F ATcart  )(pinv                   (2.14) 

 

 A solução Tcart gera a alocação com menor consumo de potência para a Equação 2.15 

(como ilustrado no anexo B), que é bastante similar com consumo de potência real 

apresentado na seção da Função Objetivo, ou seja, é um bom "chute" inicial. n representa o 

número de propulsores. 

 





n

i
i )T()power(P

1

2                       (2.15) 

  

 Algoritmos numéricos de otimização requerem uma “solução inicial”, pois trabalham 

em espaços N dimensionais (onde N é o número de variáveis relevantes ao problema), e 

através de iterações a melhor solução é encontrada. 

 

Azimutais) (propNº2  túnel) em (prop Nº  )principais prop(ºNN               (2.16) 

  

2.2.2.4 – X0 function 

 Essa função transforma a solução as coordenadas cartesianas em coordenadas polares 

(Equação 2.17). No caso de um propulsor azimutal, a função recebe FSurge e FSway e 

devolve o empuxo total T (Equação 2.18), e o ângulo de trabalho do propulsor   (Equação 

2.19). Para propulsores principais e propulsores em túnel, essa mudança de coordenadas não é 

necessária, pois a eficiência dos mesmos depende apenas do sentido do empuxo, portanto seu 

sinal (‘+’ significa empuxo para frente; ‘-’ significa empuxo à ré). 
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)(X cartpolar TT 0                     (2.17) 

22 FswayFsurgeT                     (2.18) 











Fsurge
Fswayarctg                     (2.19) 

 

2.2.2.5 – max/min function ou restrições laterais do problema de alocação 

 Essa função define os limites de alocação, portanto o ângulo máximo e mínimo de 

trabalho dos propulsores azimutais, e os limites de empuxo máximo e mínimo. Como 

discutido nos fundamentos teóricos, definem-se as restrições de caixa conforme o intervalo de 

trabalho dos atuadores. 

 O código básico dessa função é apresentado nas Equações 2.20 e 2.21. Note que os 

valores máximos de empuxo representam 80% de seu valor máximo real, isso deve ser feito 

por medidas de segurança (MOBERG; HELLSTROM, 1983). 

 

Maximin T8,0TT                      (2.20) 

 20 i                      (2.21) 

 

2.2.2.6 – Objective Function 

 A Função Objetivo é aquela que deve ser minimizada pelo algoritmo, portanto deve-se 

tornar mínima a potência consumida pelo navio durante sua operação DP. Segundo Tannuri 

(2002), a relação entre potência e empuxo esta expressa na Equação 2.22, onde ic  é um valor 

constante. 

 

2
3

2
3

)()()()( iii TcpowerPTpowerP                             (2.22) 

 

 A Equação 2.22 expressa a potência de um único propulsor. O objetivo da otimização 

é minimizar a potência geral consumida pelo conjunto de atuadores. Caso os propulsores 
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sejam diferentes, é necessário construir uma matriz de peso, que atribua as constantes de 

potencia aos seus respectivos propulsores. 
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 (ߙ)ߟ – 2.2.2.7

 é a função de interferência ilustrada na Figura 2.2. Embora fosse mais correto definir ߟ 

),( n  onde n é a rotação do propulsor, pois muitos dos efeitos de interferência poderiam 

depender da velocidade do jato d’água (como explicado no item 1.3), utiliza-se apenas a 

dependência com ângulo de propulsão  . Isso se deve ao fato da eficiência ter variado muito 

pouco com diferentes rotações nos testes práticos (ARDITTI; TANNURI, 2011). 

 Outra razão é que os fatores de eficiência (ߟ) servem para comparar os diferentes 

ângulos de propulsão, necessários à Alocação de Empuxo, portanto obter-se-á uma alocação 

otimizada mesmo que a rotação do propulsor caia (todos os fatores de eficiência diminuirão 

de maneira proporcional a Rn , em que R estabelece uma relação entre a rotação do motor e a 

velocidade do jato d’água). O equilíbrio do navio será garantido pela robustez do sistema DP, 

que conta com realimentação em seu controle de alocação. Dessa maneira, a comparação 

relativa entre a eficiência dos diferentes ângulos de alocação de cada propulsor é mais 

importante que seus valores globais. 

 Além disso, caso fosse definida a função ),( n , o algoritmo se tornaria muito 

complexo (tendo em vista que o empuxo também depende da rotação n) e não haveria como 

solucionar o problema de alocação. 

 Os dados de interferência podem ser encontrados na bibliografia, ou devem-se realizar 

testes com o modelo de embarcações, como ilustrado no arranjo experimental da Fig. 2.6. 
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Figura 2. 6 – Arranjo experimental para obtenção da curva de eficiência dos propulsores. 

 

 

 As Equações 2.24 e 2.26 ilustram como obter a eficiência em ensaios experimentais 

(ARDITTI; TANNURI, 2012): 

 

                              (2.24) 

  

 T é o empuxo;  é a densidade da água; D é o diâmetro de propulsor; 

 0tK  pode ser determinado a partir de testes com o propulsor desacoplado ao navio. 

 

                     (2.25) 

 

 tK  é determinado através de testes do propulsor acoplado ao navio. 

 Finalmente: 
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2.2.2.8 – noncoln function 

 Essa função garante que o navio suportará as cargas ambientais. A função não linear 

de restrições (noncoln, Manual do MATLAB 2008), contém um sistema com as três equações 

da força requerida pela embarcação (direções Surge e Sway; e momento de Yaw), 

considerando o problema de interferência. 

 Neste caso trata-se da força efetiva exercida pelos propulsores, ou seja, considera-se a 

perda de eficiência relacionada aos fenômenos de interferência. A Figura 2.7 ilustra como é a 

distribuição de empuxo efetiva para um caso geral (note que a função effic é a eficiência do 

propulsor em função de sua posição angular): 

 

Figura 2. 7 – Cálculo da Força efetiva considerando o fenômeno de interferência. 

 

 

 Determinadas as forças efetivas pode-se montar o sistema de Equações 2.27 que 

representa a geração de forças da embarcação. Portanto a solução desse sistema com o menor 

valor da função objetivo, respeitando-se as limitações dos propulsores, garantirá o equilíbrio 

da embarcação com o menor consumo de energia. 
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2.2.2.9 – FMINCON function (Manual do MATLAB 2008) 

 De acordo com a divisão de métodos de solução de problemas de otimização, listados 

na fundamentação teórica, deve-se optar por um método de solução não analítico devido à 

complexidade do problema, ilustrado pela curva de eficiência do propulsor (Tabela 2.1) 

combinado a não linearidade da função objetivo. 

 Note que o método gráfico embora eficiente seja ineficaz neste projeto, devido ao 

elevado número de variáveis de projeto (mínimo 4 como discutida na seção 1.5). 

 Métodos randômicos também não são cabíveis a este projeto, pois o número elevado 

de varáveis contínuas dificulta o acerto de uma solução ótima, e o tempo de processamento 

seria muito elevado. 

 Dessa forma opta-se por trabalhar-se com o método numérico de problemas com 

restrições, que consegue lidar bem com a complexidade das restrições de igualdade (noncoln) 

e da função objetivo. 

 O algoritmo de alocação é executado pela função FMINCON do programa MATLAB. 

Essa função resolve o sistema não linear de restrições (noncoln), através da estimativa inicial (

polarT ), das limitações dos propulsores (max/min function), buscando o menor valor da função 

objetivo ( )T(Obj ). 

 

2.2.3 – Resultados da Implementação inicial do Algoritmo 
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2.2.3.1 – Algoritmos de Alocação de Empuxo simulados 

 A implementação inicial do Algoritmo de Alocação de Empuxo foi testado e 

comparado com dois algoritmos de Alocação de Empuxo padrão (ARDITTI; TANNURI, 

2011, 2012): 

 

1. Simple Lagrangian Allocation (S.L.A.): Simples Alocação de Empuxo, utilizando o 

método da matriz pseudo-inversa (normalmente utilizado em simulações da 

embarcação). 

2. Algoritmo de Zona Proibida: Algoritmo de Alocação de Empuxo que não permite 

posicionar os propulsores em zonas onde o jato d’água de um propulsor acerte outro 

propulsor. Ou seja, define-se uma zona de º20  em torno da direção que liga dois 

propulsores relativamente próximos. Além disso, há um algoritmo recursivo interno 

que garante que a Alocação de Empuxo respeite as forças de controle. Esse algoritmo 

recursivo interno emula um sistema de controle, que considera os fenômenos de 

interferência (baseado nas curvas de eficiência da embarcação), isso é necessário pois 

a concepção deste algoritmo considera apenas uma simplificação do problema de 

interferência entre propulsores, deixando de lado, todas as outras fontes de perda de 

eficiência. 

 

2.2.3.2 – Embarcações Testadas 

 Utilizaram-se duas embarcações para compara os algoritmos de Alocação de Empuxo: 

 O Navio 1 (Fig. 2.5) é uma é uma FPSO - Unidade flutuante de armazenamento e 

transferência (em inglês Floating Production Storage and Offloading). Esse navio não tem 

modelo, portanto suas curvas de eficiência (Fig. 2.6) foram construídas a partir de dados 

bibliográficos (ARDITTI; TANNURI, 2011). 
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Figura 2. 8 – Desenho esquemático do Navio 1. 

 

 

Fonte: Arditti e Tannuri (2011). 

 
Figura 2. 9 – Curvas de eficiência do Navio 1. 

 

Fonte: Arditti e Tannuri (2011). 

 

 A Embarcação 2 é utilizada como navio guindaste. Uma foto do modelo dessa 

embarcação esta ilustrada na Fig. 2.7. As curvas de eficiência de seus propulsores foram 

determinadas a partir de simulações com o modelo no Tanque de Provas da escola Politécnica 

da USP (Arditti and Tannuri 2012) e são apresentadas na Fig. 2.8. 
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Figura 2. 10 – Modelo da Embarcação 2. 

 

Figura 2. 11 – Curvas de eficiência dos propulsores da Embarcação 2. 

 

Fonte: Arditti e Tannuri (2012). 
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2.2.3.3 – Resultados das Simulações 

 Constatou-se que a implementação inicial do Algoritmo de Alocação de Empuxo 

considerando interferência realiza uma alocação objetiva e consegue lidar com qualquer 

forma de interação. 

 As simulações computacionais ilustram significativa economia no consumo de 

combustível do Navio 1, podendo-se atingir 129000 litros de economia de diesel por ano para 

uma frota de 10 embarcações, ao comparar-se o S.L.A. e o Algoritmo de Zonas Proibidas. 

Além disso, a janela de operação, que representa a condição extrema em que a embarcação 

pode operar, aumentou em 5% (ARDITTI; TANNURI, 2011). 

 O ensaios experimentais da Embarcação 2 ilustraram a necessidade de considerar os 

fenômenos de interferência na alocação. Observe que na Figura 2.9, os dois algoritmos que 

levam em conta as interações chegaram muito mais próximos de atingir a força de controle, 

ou seja, ao incluir os dados de interferência na alocação o sistema torna-se significativamente 

mais preciso e seguro. 

 

Figura 2. 12 – Ensaio experimental da Embarcação 2. 

 

Fonte: Arditti e Tannuri (2012). 

 

 Embora os dois algoritmos (proposto e de zonas proibidas) sejam igualmente precisos 

nota-se claramente que o algoritmo desenvolvido é mais eficiente. Na simulação da Fig. 2.9 

observou-se economia de 10,3 %. Na média dos ensaios a economia ficou em 5%. 
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2.2.4 – Análise da Implementação Inicial do Algoritmo proposto 

 O algoritmo comportou-se da maneira esperada, sendo sempre superior aos 

Algoritmos de Alocação de Empuxo utilizados atualmente. Nota-se que o sistema fica mais 

preciso ao considerar o sistema com interferência, e consequentemente mais seguro, pois a 

força comandada é alocada mais rapidamente, prevenindo comportamentos inesperados da 

embarcação. 

 Além disso, o ganho econômico fica evidente quando se compara o consumo de 

combustível entre os algoritmos. Não obstante, esse ganho econômico é mais pronunciado se 

for considerado o custo de oportunidade referente ao aumento da janela de operação da 

embarcação, o que implica na possibilidade de operar por mais tempo. 

 Embora os resultados tenham sido excelentes uma análise objetiva do ponto de vista 

de otimização revela que o algoritmo proposto não é convexo, ou seja, não há como garantir 

que os resultados atingidos sejam os melhores possíveis. Isso se explica no fato de que num 

problema não convexo não há como garantir que um ponto de mínimo local seja o ponto de 

mínimo global. 

 A seguir prova-se que a modelagem atual do problema torna-o não convexo. As 

condições de convexidade são: 

 

1. Matriz Hessiana positiva definida ou positiva semi-definida. Essa condição é 

respeitada, pois a Matriz Hessiana é positiva semi-definida apresentando o aspecto 

ilustrado na Eq. 2.28 (repetindo-se o padrão para a diagonal principal e o resto da 

Matriz é preenchido com 0, para mais de um propulsor): 
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                (2.28) 

 

2. Espaço viável convexo. Essa condição não é respeitada. Embora as equações de 

desigualdade (max/min function) sejam todas lineares (portanto côncavas), as 

restrições de desigualdade (noncoln) não são lineares. 
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3	–	Estudo	da	Dinâmica	Interna	do	Algoritmo	de	Otimização 

 O estudo da dinâmica Interna da implementação inicial do Algoritmo de Alocação de 

Empuxo tem por objetivo: Retratar seu funcionamento para que seja possível melhorá-lo e 

torna-lo aplicável em um pacote computacional, ou seja, em um produto que não pode 

depender do software MATLAB, que é pago. 

 A implementação inicial do Algoritmo de Alocação de Empuxo tem sua estrutura 

retratada na Fig. 2.5. Inicialmente será apresentada a dinâmica do Algoritmo de Alocação de 

Empuxo (Fig. 3.1) de maneira mais simplificada e cada uma das funções do algoritmo será 

detalhada quanto ao seu funcionamento intrínseco. 

 

Figura 3. 1 – Dinâmica da implementação inicial do Algoritmo de Alocação de Empuxo. 

 

 

 Visto que o Algoritmo de Alocação de Empuxo desenvolvido pode ser dividido em 3 

blocos principais descreve-se a função de cada um destes blocos. 
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1. Alocação Linear sem Interferência: Simples Alocação de Empuxo para gerar as forças 

de controle, considerando-se o sistema sem Interferência e com Função Objetivo 

Quadrática. 

2. Cord. Cartesianas para Cord. Polares: Simples passagem da solução linear para 

coordenadas polares, para gerar o chute inicial de alocação, uma vez que a mesma é 

realizada em coordenadas polares. 

3. Alocação com Interferência e Função Objetivo real: Sistema de otimização que recebe 

o chute inicial de alocação em coordenadas polares, e gera as forças de controle 

considerando os fenômenos de Interferência e a Função Objetivo real. 

 

A Fig. 3.2 apresenta os 3 blocos do Algoritmo de Alocação de Empuxo fornecendo 

maiores detalhes quanto à maneira como cada um é processado. Note que o bloco inicial é 

resolvido utilizando-se pseudo-inversa de A. O segundo bloco tem uma solução bastante 

simples. Por fim o terceiro bloco representa o sistema mais complexo, que é resolvido (no 

estágio inicial de desenvolvimento) pelo programa MATLAB e a função FMINCON. 

 

Figura 3. 2 – Dinâmica de otimização do algoritmo de otimização detalhada. 

 

Fonte: Arditti e Tannuri (2012). 
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 A seguir analisa-se a escolha do chute inicial do Algoritmo de Alocação de Empuxo e 

da dinâmica interna do algoritmo de otimização do MATLAB. A passagem de coordenadas 

cartesianas para polares é simples e foi descrita no capitulo anterior. 
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3.1 – Análise do Chute Inicial do Problema de Alocação de Empuxo 

 O chute inicial do Algoritmo de Alocação de Empuxo é realizado pela solução do 

sistema sem interferência considerando-se uma função objetivo quadrática. O anexo A ilustra 

que essa solução é obtida através da Matriz pseudo-inversa da Matriz A. 

 O chute inicial não considera os fenômenos de interferência pois se trata simplesmente 

da primeira iteração do algoritmo, que visa apenas encontrar um ponto próximo à solução 

final do problema. A consideração dos fenômenos de interferência tornaria essa etapa lenta 

sem qualquer necessidade. 

 Opta-se por resolver o problema considerando-se a potência quadrática ( 2T ), ao invés 

da potência real ( 2
3

T ) por duas razões: 

 

1. As soluções do sistema sem interferência para a potência quadrática e para potência 

real são muito próximas. 

2. Resolver o problema considerando-se a potência real é mais complexa e requer maior 

tempo de processamento. 

 

 Destaca-se que não é escolhido um chute inicial aleatório, pois os algoritmos de 

otimização dependem bastante da primeira iteração para resolver o problema, e uma escolha 

aleatório poderia posicionar o sistema muito distante da solução ótima, o que poderia incorrer 

em elevado tempo de processamento até chegar-se a solução ótima, ou mesmo, levar a última 

iteração para um mínimo local distante do mínimo global. 

 Além disso, alguns dos algoritmos desenvolvidos no próximo capítulo requerem uma 

solução inicial válida, ou seja, que resolva o sistema de forças da embarcação (Fsurge, Fsway 

e Myaw). Para obtê-la basta dividir o empuxo alocado sem interferência pela eficiência 

correspondente ao ângulo de azimute do mesmo, conforme a Eq. 3.1. 

 

)(effic
T

T
0

0
feasible 

            (3.1) 
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3.2 – Análise da Dinâmica Interna do Algoritmo de Otimização do 

MATLAB 

O algoritmo de otimização utilizado pelo MATLAB é o FMINCON. O mesmo é capaz 

de resolver problemas de otimização complexos (função objetivo e restrições não lineares), 

através de um método numérico de 1ª ordem. 

 A otimização ocorre em várias iterações conforme ilustrado na Figura 3.2. O algoritmo 

do MATLAB a cada iteração tenta diminuir o valor da função objetivo, respeitando as forças 

de controle (equilíbrio das forças ambientais), considerando as curvas de eficiência de cada 

propulsor. 

 A fim de minimizar a função objetivo o algoritmo de otimização do MATLAB (Fig. 

3.3) utiliza um método Trust Region (seção 1.6.10) no qual busca a direção ideal para a 

presente iteração a partir do método de direções viáveis e favoráveis. Calcula-se também o 

tamanho ideal do passo para a presente iteração. E ao final de cada iteração avalia-se a 

convergência do problema conforma as condições KKT (1.6.7). 

 

Figura 3. 3 – Diagrama de blocos do FMINCON (otimizador do MATLAB). 
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 O método das direções viáveis e favoráveis consiste em combinar linearmente as 

mesmas para obter um direção ótima. Abaixo se define o conceito de direção viável e direção 

favorável. 

 

1. Direções viáveis são mudanças nas variáveis de projeto que permitam que o algoritmo 

continue respeitando as restrições (Noncoln e desigualdades), ou seja, como as 

variáveis podem ser manipuladas no espaço viável. 

2. Direções favoráveis são as manipulações que podemos realizar nas variáveis de 

projeto, de maneira que o valor da função Objetivo decaia. 

 

 A Figura 3.4 ilustra a evolução de um propulsor em uma Alocação de Empuxo 

utilizando-se o algoritmo FMINCON. O algoritmo escolhe apenas direções e posições 

viáveis, tanto que o mesmo mantém as variáveis dentro de seu respectivo espaço viável. 

 

Figura 3. 4 – Evolução do propulsor 4 no processo de otimização dentro do espaço viável. 
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 Ao obter a direção ótima o algoritmo dá um passo (variação das variáveis de projeto), 

e verifica se a função objetivo diminuiu e se as restrições seguem respeitadas. Caso o valor da 

função objetivo tenha diminuído e ainda não tenham sido respeitadas as condições KKT, o 

algoritmo repete o processo até que não haja mais direções viáveis e favoráveis ou até que o 

decrescimento da função objetivo se torne desprezível. 

Note que ao encontrar um ponto onde não há direções favoráveis e viáveis o algoritmo 

encontra um ponto estacionário. Se este ponto for um mínimo local não há como provar que 

se trata do mínimo global, pois o problema não é convexo (restrições de igualdade 

considerando-se a curva de eficiência não são lineares). 

Uma análise qualitativa revela que a direção favorável se refere ao decrescimento da 

função objetivo, e está intrinsecamente relacionada ao crescimento da função de eficiência 

dos propulsores. Por outro lado, a direção favorável refere-se a não distanciar-se muito dos 

ângulos viáveis à geração de empuxo na direção da força comandada pelo sistema de controle 

(ARDITTI; TANNURI, 2011). 

 Essa argumentação pode ser exemplificada ao analisar-se a Fig. 3.5, que ilustra o 

posicionamento do propulsor 1 da Embarcação 2, realizado por diferentes algoritmos de 

Alocação de Empuxo, sobre a curva de eficiência do atuador. 
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Figura 3. 5 – Posições angulares dos algoritmos de Alocação de Empuxo para o propulsor 1 em diferentes 

alocações de empuxo, e sua curva de eficiência. 

 

Fonte: Simulação realizada em Arditti e Tannuri (2012). 

 

 Fica claro que ao algoritmo sugerido sempre posiciona seu atuador em ângulos 

favoráveis, onde o rendimento é superior aos outros algoritmos. Além disso, também é 

possível observar que os ângulos escolhidos pelo algoritmo são viáveis, pois estão próximos 

dos ângulos necessários para gerar as forças de controle. 

 Se o algoritmo optasse apenas por ângulos favoráveis, o mesmo iria sempre para o 

ponto de máximo da sua curva de eficiência, o que não seria viável, uma vez que esses 

ângulos podem ser muito distantes da direção da força que se deseja gerar. 

 Isso ocorre, pois se trabalha com um sistema em coordenadas polares em que a força 

efetiva é definida pelo rendimento do propulsor e pela direção do mesmo. Portanto deve-se 

contemplar na otimização tanto a curva de eficiência dos propulsores, como as funções 

senoidais que determinam a direção do empuxo. Isso está ilustrado na Fig. 3.6 em que se 

verifica que o FMINCON posiciona o propulsor em um ângulo de azimute que contempla a 

direção da força a ser desenvolvida (próxima à posição do ângulo inicial), e busca uma 

direção favorável (crescimento do rendimento). 
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Figura 3. 6 – Evolução do propulsor 4 no processo de otimização contemplando a direção da força e o aumento 

de sua eficiência. 

 

 

 Ao compreender a dinâmica do FMINCON é possível compreender como se comporta 

(“pensa”) o algoritmo e desenvolver técnicas de otimização simplificadoras, que permitam o 

desenvolvimento de um algoritmo de otimização próprio.  
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3.3 – Análise do comportamento do FMINCON 

 Essa seção tem por objetivo retratar como é a tomada de decisão do FMINCON do 

ponto de vista comportamental. Pretende-se revelar como a dinâmica interna do algoritmo 

atua sobre o comportamento qualitativo da Alocação de Empuxo, com esse objetivo dois 

estudos de caso são apresentados. 

 

3.3.1 – Análise do comportamento em relação interferência entre propulsores 

 A Fig. 3.7 ilustra a Alocação de Empuxo de 500 kN na direção de Sway para o Navio 

1. O algoritmo que considera os fenômenos de interferência sai da zona de interação entre os 

propulsores (1 e 2; 3 e 4) sem que seja definida uma zona proibida. Por outro lado o algoritmo 

que não considera os fenômenos de interferência lança jatos de água de um propulsor sobre 

outro, o que diminui muito sua eficiência, e leva a um gasto energético 43% maior. 

 

Figura 3. 7 – Esquerda alocação do algoritmo de otimização do MATLAB considerando interferências. 

Direita alocação S.L.A. 

 

Fonte: Arditti e Tannuri (2011). 

 

 O algoritmo de alocação de empuxo saiu da zona de interação entre propulsores por 

tratar-se de uma zona com valores baixos na curva de eficiência. Uma análise do ponto de 

vista qualitativo revela que a zona de interferência entre propulsores é viável, mas não 

favorável. Dessa forma, contata-se que o algoritmo consegue lidar bem com a zona proibida 

sem a necessidade de se restringir a sua liberdade de posicionamento dos propulsores (como é 

feito no algoritmo de alocação com zonas proibidas). 
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3.3.2 – Análise do comportamento para regiões com baixa eficiência 

 A Fig. 3.8 ilustra a alocação de empuxo do algoritmo FMINCON (considerando 

interferências), Zona Proibida e S.L.A. para uma força de controle de (Fsurge = -7N, Fsway = 

7N, M = 0). A Alocação de Empuxo do FMINCON economiza 10,3% em relação ao 

Algoritmo de Zona Proibida, enquanto que o S.L.A. não gera a força de controle (mesma 

alocação da Fig. 2.9). 

 

Figura 3. 8 – Alocação de uma força de controle de -7N em Surge e 7N em Sway com momento nulo, para 3 

algoritmos de alocação. 

 

Fonte: Arditti e Tannuri (2012). 

 

 A implementação inicial do Algoritmo de Alocação de Empuxo requisitou menos 

força dos propulsores 2, 5 e 6, pois os mesmos apresentavam baixa eficiência. Do ponto de 

vista qualitativo pode-se inferir que não havia como mudar a posição desses propulsores o que 

implicaria em desviá-los significativamente da linha de ação da força de controle, ou seja, 

esse era o espaço viável. Como não havia como melhorar o rendimento desses propulsores a 

solução intuitiva e correta é exigir menos empuxo dos mesmos e o algoritmo proposto toma 

essa atitude enquanto o algoritmo de zona proibida não o faz. 
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3.4 – Relação do Comportamento do Algoritmo com suas vantagens 

 O princípio do comportamento do algoritmo FMINCON é: 

 

1. Evitar zonas de interação entre propulsores (não favorável). 

2. Requisitar menor empuxo de propulsores com baixa eficiência. 

 

 Esse princípio garante os resultados ilustrados na seção 2.4, ou seja, maior economia 

de combustível e maior precisão durante a operação DP. 
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4	–Algoritmo	de	Alocação	de	Empuxo 

 Neste capítulo apresentam-se novas implementações para o algoritmo de otimização 

do MATLAB, que permitem o desenvolvimento do pacote computacional para simulação de 

operação DP. Inicialmente analisa-se do ponto de vista de otimização o problema da Alocação 

de Empuxo, discutem-se técnicas simplificadoras, apresentam-se os novos algoritmos 

desenvolvidos, os critérios para a seleção dos mesmos, por fim as simulações que sustentam a 

seleção do novo algoritmo de alocação de empuxo. 

 Resumidamente o objetivo deste capítulo é desenvolver um novo algoritmo de 

alocação de empuxo, tendo como base os resultados, dinâmica interna e comportamento do 

FMINCON. 
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4.1 – Problema Original de Otimização da Alocação de Empuxo 

 O problema original de Alocação de Empuxo é modelado conforme a Eq. 4.1. 

 

ܲ = ෍ܿ௜ ∙ ௜ܶ
ଷ
ଶ

ே

௜ୀଵ

 

																		ܴ:	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ෍ ௜ܶ ∙ cos(ߙ௜) ∙ ௜ߟ

ே

௜ୀଵ

− ௦௨௥௚௘ܨ = 0

෍ ௜ܶ ∙ sin(ߙ௜) ∙ ௜ߟ

ே

௜ୀଵ

− ௦௪௔௬ܨ = 0

෍ ௜ܶ ∙ sin(ߙ௜)
ே

௜ୀଵ

∙ ௜ߟ ∙ (௜ݔ) −෍ ௜ܶ ∙ cos(ߙ௜) ∙ ௜ߟ ∙ (௜ݕ)
ே

௜ୀଵ

௬௔௪ܯ− = 0

															(4.1) 

 

൛	:ܫ ௜ܶ ≤ ௠ܶ௔௫೔ 

 

 Ao observar-se o problema destacam-se dois complicadores para o algoritmo de 

otimização que será desenvolvido. 

1. A Função objetivo com 2
3

T . 

2. As restrições de igualdade com T multiplicando )cos()(red  , que pode ser uma 

função qualquer, pois o rendimento é definido a partir de uma spline que interpola os 

pontos em que foi aferida a eficiência do propulsor. 

 

Note que é muito mais difícil lidar com a segunda complicação. 
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4.2 – Novos Algoritmos de Alocação de Empuxo 

 Tendo em vista a complexidade do problema diferentes técnicas de otimização foram 

utilizadas para abordá-lo. Cinco algoritmos foram desenvolvidos e são apresentados a seguir. 

 

4.2.1 – Método da Direção e do Rendimento 

 A ideia deste algoritmo é otimizar cada um dos propulsores separadamente para 

definir seu ângulo de azimute, e depois resolver o problema original de otimização com os 

ângulos definidos. Esse algoritmo é puramente intuitivo e não tem nenhuma fundamentação 

matemática que garanta sua eficiência, o mesmo foi constituído baseado somente na análise 

comportamento do FMINCON para a Alocação de Empuxo. 

 Baseado na análise de posicionamento viável e favorável dos propulsores da 

embarcação trabalha-se com as seguintes hipóteses: 

 

1. Um ângulo viável deve estar próximo à linha de ação de força, e é possível determiná-

lo com o chute inicial da implementação inicial do Algoritmo de Alocação de Empuxo 

(solução com o método da Matriz Pseudo-inversa). 

2. Um ângulo favorável é aquele em que a eficiência do propulsor é alta. 

 

 Unindo as duas hipóteses decidiu-se que a otimização de cada propulsor para definir 

seu ângulo de atuação deve ser realizada maximizando a Eq. 4.2 de cada propulsor. Note que 

0  é o ângulo da solução da Matriz pseudo-inversa. 

 






20

)cos()(efficmax

i

ii0ii
i          (4.2) 

 

 A solução deste problema embora analiticamente não seja tão simples, do ponto de 

vista numérico é resolvida variando   com elevada precisão e encontrando o máximo valor 

da função por comparações. 
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 Definida a parte inicial do problema que é encontrar os ângulos de alocação, o 

problema de otimização passa a ser descrito pela Eq. 4.3. Lembre-se que o ângulo de azimute 

não é mais uma variável no problema. 
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

     (4.3) 

 

 A solução deste problema pode ser feita utilizando-se as condições KKT, e basta 

resolver um sistema que tem apenas uma não linearidade ( T ). Esse sistema é resolvido 

numericamente (utilizando-se o método de Newton-Raphson) e obtém-se o empuxo 

requisitado por cada propulsor. 

 Note que o problema de otimização do empuxo de cada propulsor é convexo, pois tem 

a Matriz Hessiana definida Positiva e somente restrições lineares. 

 Esse algoritmo foi simulado e os resultados obtidos, do ponto de vista de economia de 

potência não foram bons. Observou-se que os ângulos de azimute praticamente não mudavam, 

e não permitiam uma melhora na alocação. 

 Esse comportamento é explicado quando se observa a Eq. 4.2. Note que a função 

)cos( ii0   diminui significativamente conforme i  se afasta de i0 , portanto o 
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rendimento deve crescer consideravelmente para que o ângulo de azimute mude, e essa não é 

uma característica da curva de eficiência. A Fig. 4.1 ilustra a situação. 

 

Figura 4. 1 – Razão da Falha no Método da Direção e do Rendimento. 

 

 

 Portanto esse método já é descartado. 

 

4.2.2 – Método Intuitivo 

 O método intuitivo é uma tentativa de melhorar o Método da Direção e do 

Rendimento. Como a função limitante do primeiro método é )cos( ii0  , opta-se por 

realizar a otimização do propulsor (definição do seu ângulo de azimute) baseado somente no 

seu rendimento. O segundo passo após a definição do ângulo dos propulsores mantém-se o 

mesmo. 

 Entretanto o ângulo de azimute de máxima eficiência dos propulsores pode ser 

favorável ou desfavorável em relação à direção da força de controle, como ilustrado na Fig. 

4.2. 

 

Figura 4. 2 – Direção favorável ou desfavorável do ângulo de máxima eficiência. 

 

 

 A solução deste problema é limitar o intervalo de busca da máxima eficiência para 

regiões próximas à direção inicial do propulsor (chute inicial da implementação inicial do 

Algoritmo de Alocação de Empuxo). Conforme o ângulo de máximo rendimento é encontrado 
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realiza-se a alocação (definição de forças) e verifica-se se a função objetivo melhorou em 

relação à última tentativa e toma-se a seguinte decisão (Fig.4.3): 

 

1. Caso a função objetivo esteja com um valor inferior o intervalo de busca é expandido. 

2. Caso a função objetivo tenha crescido o algoritmo termina e fica com a penúltima 

solução (antes do crescimento da função). 

 

Figura 4. 3 – Evolução do intervalo de busca do método intuitivo. 

 

 

 Entretanto é possível adiantar outro problema que pode ocorrer no método intuitivo, 

que é a rotação desfavorável dos propulsores (ilustrado na Fig. 4.4). Esse problema seria 

causado se todos ou a maioria dos propulsores girasse apenas em um sentido, o que 

dificultaria a geração de forças na direção de Surge ou Sway. 

 

Figura 4. 4 – Rotação desfavorável dos propulsores no método intuitivo. 

 

 

 A solução para o problema de rotação desfavorável é definir que para cada propulsor 

que gira num sentido outro girará no sentido contrário, conforme ilustrado na Fig. 4.5.  
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Figura 4. 5 – Solução para o problema de rotação desfavorável dos propulsores no método intuitivo. 

 

 

 Porém a programação deste método é muito confusa e não há qualquer garantia 

matemática de que há alguma otimização ocorrendo. Embora intuitivamente esse método seja 

coerente, ele não é confiável e apresenta um problema intrínseco igual ao método da Direção 

e do Rendimento: 

 A otimização dos propulsores separadamente é ineficaz, pois não considera a 

otimização do sistema global que apresentar pequenas pioras em alguns propulsores e 

melhoras significativas em outros. Além disso, a separação dos propulsores não permite que o 

algoritmo de otimização posicione em conjunto todos os propulsores para gerar as forças de 

controle, que obviamente é um requisito para uma boa otimização.  

 Tendo em vista a ineficácia dos métodos intuitivos os novos algoritmos de otimização 

desenvolvidos têm forte fundamentação matemática. 

 

4.2.3 – SQP - Potência Quadrática 

 Esse algoritmo de otimização simplifica o problema de duas maneiras: 

1. A função objetivo considerada é  2T , que é semelhante à função objetivo real e de 

solução mais simples. 

2. As restrições de igualdade são linearizadas utilizando-se o método de Taylor (Eq. 4.4). 

 

]xx[)x()x(gg 000linear          (4.4) 

 

Que quando aplicado à restrição gera a Eq. 4.5: 
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 A segunda derivada da Eq. 4.5 é realizada numericamente, conforma a Eq. 4.6. 

 








2

)().cos()().cos())().(cos( kiikikiikikiiki 



                               (4.6) 

 

 Existe a necessidade de aplicar limites móveis (inequações para limitar a mudança de 

valor nas variáveis), ou seja, limites para as variáveis em torno da iteração anterior, pois a 

matriz Hessiana é positiva semi-Definida (NOCEDAL; WRIGHT; 2006). Do ponto de vista 

intuitivo é necessário aplicar os limites móveis para a variação dos ângulos  , que fazem 

parte das restrições de igualdade, mas não da função objetivo, não mudarem o valor para uma 

região em que a linearização não é válida. 

 Com as simplificações o problema torna-se de solução significativamente mais 

simples, função objetivo quadrática e somente restrições (de igualdade e desigualdade 

lineares), ou seja, um problema de programação quadrática sequencial convexo. 

 Note que esse problema classifica-se na classe de métodos Trust Region em que é 

necessário resolver iterativamente até que os limites móveis atinjam valores 

significativamente pequenos. 

 

4.2.4 – SQP Potência Quadrática + Passo 2 

 Esse método utiliza a solução do método SQP - Potência Quadrática para definir os 

ângulos de alocação. E o passo 2 é a solução do sistema de Equações 4.3, que considera os 

ângulos de azimute constantes e a função objetivo real. 

 Note que as duas etapas são problemas convexos e que esse algoritmo também é da 

classe Trust Region, cuja solução implica em resolver o problema quadrático até que os 

limites móveis convirjam. 
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4.2.5 – Trust Region SQP 

 O Trust Region SQP também lineariza as equações de igualdade conforme o método 

de Taylor (Eq. 4.5). Além disso, a função objetivo real também é aproximada pelo método de 

Taylor com o objetivo de gerar uma função e quadrática, conforme a Eq. 4.7: 

 

2
0

2
0 T)T(

2
1T)T(Potência         (4.7) 

 

 Note que ao comparar-se a Eq. 4.7 com a aproximação de Taylor estão faltando 

termos. Porém esses termos que estão faltando são constantes, e termos constantes na função 

objetivo não afetam a otimização (SILVA 2011). Além disso, a nova função objetivo 

apresenta termos lineares, mas isso não faz com que ele deixe de ser quadrática. 

 Novamente temos um problema de programação quadrática sequencial (PQS), 

convexo e da classe Trust Region, cuja solução implica em resolver o problema quadrático até 

que os limites móveis convirjam. A Fig. 4.6 ilustra a dinâmica do funcionamento do 

algoritmos Trust Region SQP. 
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Figura 4. 6 – Dinâmica de funcionamento do Trust Region SQP. 

 

  

 

4.2.6 – Solução Problema de Programação Quadrática 

 Como o problema de programação quadrática esta presente nos três algoritmos que 

serão simulados e comparados ao FMINCON, é necessário resolvê-lo. Porem antes de 

resolvê-lo é necessário analisar quais dos algoritmos desenvolvidos será selecionado. Portanto 

nessa fase de desenvolvimento, para a solução dos problemas de programação quadrática 

utilizou-se uma rotina do Matlab. 
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4.3 – Metodologia de Simulação 

4.3.1 – Plataforma de Simulação dos Algoritmos de Alocação de Empuxo 

A plataforma de simulação é um instrumento que permite comparar o funcionamento dos 

diferentes Algoritmos de otimização de Alocação de Empuxo. A plataforma esta ilustrada na 

Fig. 4.8, e suas funcionalidades são listadas, como segue: 

1. Seleção do Algoritmo de Alocação de Empuxo (AAE) na lista de opções (onde está 

selecionado o Trust Region SQP). 

2. Definição das Forças de Controle. 

a) Força Longitudinal – F Surge 

b) Força Transversal – F Sway 

c) Momento – M Yaw 

3. Comandar que a Alocação de Empuxo seja realizada (botão “Allocate”). 

4. Informação do empuxo (“Thrust”) e ângulo (“Angle”) desenvolvido por cada um dos 

seis propulsores. 

5. Força Efetiva desenvolvida pelos propulsores (“Effective Forces”) na direção 

Longitudinal, Transversal e Momento. 

6. Potência requerida para gerar as forças requisitadas (“Power”). 

7. Tempo de Processamento do Algoritmo para resolver o problema de Otimização da 

Alocação de Empuxo (“Time”). 

Plotagem dos vetores de empuxo gerados por cada propulsor (“Thrust”, “Angle”) a partir de 

sua posição relativa à Embarcação. 
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Figura 4. 7 – Plataforma de Simulação de Algoritmos de Alocação de Empuxo (AAE). 

 

 

4.3.2 – Critérios Avaliados na Simulação 

 Os critérios avaliados na simulação dos algoritmos são: 

 

1. Potência – Comparar a eficiências dos algoritmos 

2. Precisão – Verificar que os algoritmos respeitam as forças de controle 

3. Tempo de Processamento – Verificar se o tempo de processamento não torna inviável 

a aplicação do algoritmo. 

  

 Os critérios 2 e 3 são requisitos obrigatórios, ou seja, todos os algoritmos devem ser 

precisos e apresentar Tempo de processamento aceitável. O critério 1 é de seleção, ou seja, 

dos algoritmos precisos e de processamento rápido escolher-se-á o mais eficiente. 
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4.4 – Resultados da Simulação dos Algoritmos 

4.4.1 – Análise de Potência 

 A Tabela 4.1 e a Fig. 4.9 apresentam o consumo médio de potência de cada um dos 

algoritmos para as diferentes forças de controle comandadas (conforme a Tabela B1). 

 

Tabela 4. 1 – Comparação de Potência requisitada pelos algoritmos. 

Analise de Potência 

Algoritmo Potência Média Potencia em relação FMINCON 

FMINCON 18,6816 0,00 % 

SQP - Potência Quadrática 18,7985 0,63 % 

SQP Potência Quadrática + Passo 2 18,8155 0,72 % 

Trust Region SQP 18,6534 -0,15 % 

 

Figura 4. 8 – Excedente Percentual de Potência dos algoritmos desenvolvidos em relação ao algoritmo de 

otimização do MATLAB (FMINCON). 

 

 

 O Algoritmo Trust Region SQP é mais eficiente que o algoritmo do MATLAB, 

economizando cerca de 0,15%. Não obstante, o SQP - Potência Quadrática e o SQP Potência 
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Quadrática + Passo 2 são um pouco menos eficientes, consumindo 0,63% e 0,72% mais 

energia, respectivamente. 

 

4.4.2 – Análise de Precisão 

 A Tabela 4.2 e a Fig. 4.10 apresentam o Erro percentual médio de geração da força de 

controle dos algoritmos (conforme a Tabela B.1). 

 

Tabela 4. 2 – Comparação erro dos algoritmos. 

Analise de Erro 

Algoritmo Erro percentual médio em relação à Fcontrole 

FMINCON 0,00 % 

SQP – Potência Quadrática 0,83 % 

SQP Potência Quadrática + Passo 2 0,00 % 

Trust Region SQP 0,48 % 

 

Figura 4. 9 – Comparação do Erro Percentual médio dos algoritmos. 

 

 

 Os algoritmos SQP - Potência Quadrática e Trust Region SQP geram as forças de 

controle com erros percentuais médios de 0,83% e 0,48%, respectivamente. Enquanto o 

FIMINCON e o SQP Potência Quadrática + Passo 2 geram as forças de controle sem erro. 

Porém em termos práticos, os erros encontrados são insignificantes em relação aos fenômenos 
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associados à embarcação, como a precisão de posicionamento dos propulsores e a geração de 

empuxo. 

 

4.4.3 – Análise do Tempo de Processamento 

 A Tabela 4.3 e a Fig. 4.11 apresentam o Tempo médio de Processamento dos 

algoritmos (conforme a Tabela B.1). 

 

Tabela 4. 3 – Comparação do Tempo médio de Processamento dos algoritmos. 

Analise de Tempo 

Algoritmo Tempo Médio Tempo em relação FMINCON 

FMINCON 3,224 s Referência 

SQP - Potência Quadrática 0,975 s 30,23 % 

SQP Potência Quadrática + Passo 2 1,088 s 33,75 % 

Trust Region SQP 1,394 s 43,25 % 

 

Figura 4. 10 – Comparação do Tempo médio de Processamento dos algoritmos. 

 

 

 Nota-se que o FMINCON é significativamente mais lento que os Algoritmos de 

Alocação de Empuxo desenvolvidos. Entretanto, mesmo o tempo de processamento do 

FMINCON é bastante inferior aos fenômenos associados à embarcação, como 
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posicionamento angular t
i




 e variação no empuxo t
Ti




 dos propulsores. Ou seja, o Tempo 

de Processamento dos algoritmos é insignificante em relação ao intervalo entre os loops de 

alocação. 
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4.5 – Análise Comparativa dos Algoritmos 

 Uma vez que foram comparados os algoritmos desenvolvidos em relação aos 

requisitos técnicos do projeto, vale a pena avaliar comportamento dos mesmos a fim de 

justificar os resultados encontrados. 

 A Fig. 4.12 apresenta a alocação dos diferentes algoritmos simulados para (FSurge = -

7N, FSway = 7N e Myaw = 0N), bem como uma análise das vantagens e desvantagens 

comparativas para cada algoritmo. 

 

Figura 4. 11 – Alocação dos diferentes algoritmos simulados para (FSurge = -7N, FSway = 7N e Myaw = 0N). 

 

 

 As vantagens que alguns algoritmos aproveitaram foram: a alta eficiência dos 

propulsores 1 e 3 nessas posições; movimentar o propulsor 5 para tira-lo de uma zona de 

baixa eficiência devida à interferência com o casco e; requisitar pouca força dos propulsores 2 

e 6 que apresentavam baixa eficiência. 

 Os ângulos dos propulsores dos algoritmos SQP - Potência Quadrática e SQP Potência 

Quadrática + Passo 2 são os mesmos como era de se esperar, pois o segundo algoritmo utiliza 

o ângulo de alocação do primeiro. 
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 Além disso, o Tempo de Processamento do SQP Potência Quadrática + Passo 2 é 

superior ao do SQP - Potência Quadrática como esperado, pois ele o contém dentro de sua 

solução. 

 O SQP Potência Quadrática + Passo 2 explora melhor a alocação de força que o SQP - 

Potência Quadrática, pois considera a função objetivo correta. 

 Todos os algoritmos desenvolvidos são mais agressivos no posicionamento dos 

propulsores do que o FMINCON. Isso se explica no processo de otimização dos mesmos, pois 

ao realizar a linearização das restrições de igualdade o ângulo   multiplica o empuxo 0T , ou 

seja, do ponto de vista qualitativo é como se o ângulo pudesse gerar força ao mesmo tempo 

em que não aumenta o valor da função objetivo. Portanto intuitivamente o algoritmo “pensa” 

em variar significativamente o ângulo para alcançar a força de controle sem afetar a função 

objetivo. Por isso justifica-se matematicamente e intuitivamente a necessidade dos limites 

móveis, pois caso contrário os ângulos de azimute variariam de maneira exagerada. 

 O Trust Region SQP apresenta resultados melhores quando comparado ao SQP 

Potência Quadrática + Passo 2 em termos de eficiência (valor final da função objetivo). Isso 

se explica no fato do primeiro realizar a alocação em passo único já considerando a função 

objetivo real, enquanto o segundo mesmo que considere, no Passo 2, a funções objetivo real, 

apresenta perdas intrínsecas à separação do problema em posicionamento dos propulsores e 

geração de força. 

  

4.6 – Seleção do novo Algoritmo de Alocação de Empuxo 

 Tendo em vista que todos os algoritmos satisfazem os requisitos de Tempo de 

processamento e Erro na geração das Forças de Controle. E que nenhum aspecto negativo 

desse algoritmo foi levantado na análise comparativa dos algoritmos. Opta-se pelo Algoritmo 

com menor consumo de Potência, o Trust Region SQP. 

 Uma vez selecionado o algoritmo de alocação de empuxo, é necessário resolver o 

problema apresentado na seção 4.2.6. 
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4.6 – Programação Quadrática 

 

 A solução de problemas de otimização com função objetivo quadrática e restrições 

lineares é bastante conhecida. Existem softwares eficientes para a solução deste tipo de 

problema no mercado. Há também softwares livres que são dedicados a este especifico 

problema de otimização. Entretanto, para o desenvolvimento de uma ferramenta que possa ser 

utilizada de maneira pratica e eficiente por empresas e laboratórios de avaliação de operações 

DP, essas opções apresentam características desfavoráveis. 

 A utilização de um software pago, de maneira geral encarece de maneira significativa 

um produto. Além disso, a implementação de um software pago, dentro de outro software 

possivelmente comercial atrela dificuldades de negociação e carga de responsabilidade. 

 A utilização de um software livre dedicado à solução de problemas de otimização 

quadráticos, requer a adição de diversas bibliotecas e modelagem do problema para os moldes 

do produto selecionado. A adição das bibliotecas pode gerar problemas de compatibilidade, 

dependendo do sistema operacional instalado. Adiante, qualquer problema de adaptação ao 

software livre, ou de mau funcionamento do mesmo podem prejudicar o desempenho do 

simulador desenvolvido. 

 Portanto, levando em conta os aspectos descritos e a quantidade de trabalho necessária 

para ajustar o problema de otimização quadrático a um programa externo e suas bibliotecas, 

decide-se por desenvolver um programa que resolva este problema de otimização. 

 

4.6.1 – Solução Convencional 

 O Método convencional para a solução de problemas de programação quadráticos é 

simples. Basta definir o Lagrangeano, que consiste em unir a função objetivo às igualdades e 

desigualdades da seguinte maneira: 

 

ܮ = ቄܱܾ݆ − ൫ߣ௜௚௨௔௟ௗ௔ௗ௘൯௜ ∙ ℎ௜ቅᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
௣௔௥௧௘	ଵ

− ቄ൫ߣௗ௘௦௜௚௨௔௟ௗ௔ௗ௘൯௜ ∙ ݃௜ቅᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
௣௔௥௧௘	ଶ

																																																								(4.8) 

 



95 
 

 

 O passo seguinte é resolver uma série de problemas de otimização quadráticos em que 

a parte 1, que consiste da função objetivo e as restrições de igualdade, sempre estão presentes; 

e a parte 2, desigualdades estão em parte presentes. Após a solução de cada subproblema 

verifica-se se as condições KKT foram respeitadas, e se as restrições de desigualdade que não 

foram consideradas foram respeitadas; caso isso ocorra, encontra-se o mínimo global. 

 Um método consistente de realizar esse processo é ativar e desativar as desigualdades, 

definindo os valores de ߣௗ௘௦௜௚௨௔௟ௗ௔ௗ௘ . Quando a desigualdade não esta ativa, 

൫ߣௗ௘௦௜௚௨௔௟ௗ௔ௗ௘൯௜ = 0, quando a mesma esta ativa, ela faz parte do problema e 

൫ߣௗ௘௦௜௚௨௔௟ௗ௔ௗ௘൯௜ é automaticamente calculada, pelas seguintes equações que resolvem 

analiticamente o problema de otimização: 

 

0








L

T
L            (4.9) 

 

 Normalmente utiliza-se uma tabela, conforme ilustrado abaixo para controlar quais 

restrições de desigualdade estão ativas. Note que na primeira linha todas as restrições estão 

inativas, na segunda linha apenas a primeira desigualdade esta ativa e assim por diante. Em 

resumo, cada linha representa um subproblema da otimização, no qual, as restrições inativas 

não são consideradas, e as desigualdades ativas são consideradas igualdades. Para maiores 

informações sobre o método convencional de solução de problemas de otimização 

quadráticos, ver Silva (2011). 

 

Tabela 4. 4 – Definição consistente de quais desigualdades estão ativas. 
 ૜ࢋࢊࢇࢊ࢒ࢇ࢛ࢍ࢏࢙ࢋࢊࣅ ૛ࢋࢊࢇࢊ࢒ࢇ࢛ࢍ࢏࢙ࢋࢊࣅ ૚ࢋࢊࢇࢊ࢒ࢇ࢛ࢍ࢏࢙ࢋࢊࣅ 

Subproblema 1 0 0 0 

Subproblema 2 ≠ 0 0 0 

⋮ ⋮ ⋮ ⋮ 

Subproblema n ≠ 0 ≠ 0 ≠ 0 

 

Embora o método seja consistente, relativamente simples, e garante que caso exista 

um mínimo global, o mesmo será encontrado, há um fator que complica sua implementação. 
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O numero de subproblemas cresce exponencialmente com a quantidade de desigualdades. 

Demonstra-se: cada desigualdade pode estar em apenas 2 estados, ativa ou inativa. O numero 

de subproblemas refere-se às possíveis combinações de das desigualdades (ativas e inativas). 

Portanto, caso existam n desigualdades, e constatando-se que cada um pode estar em apenas 2 

estados, conclui-se que existem 2௡ subproblemas de otimização possíveis. 

Dessa forma, ao considerar uma embarcação com 6 propulsores azimutais, ou seja, 12 

variáveis de projeto {ܶ,ߙ}, e que cada variável apresenta 2 limites móveis (superior e 

inferior), encontram-se 24 desigualdades. Portanto para resolver esse problema de otimização, 

seriam necessários resolver 2ଶସ = 16.777.216 subproblemas de otimização. Essa constatação 

torna inviável a aplicação do método convencional. Portanto um método diferente deve ser 

utilizado para resolver o problema de otimização quadrático dentro da rotina de alocação de 

empuxo. 

 

4.6.2 – Método dos gradientes reduzidos (Active-set) 

O método dos gradientes reduzidos (Active-set) é o mais indicado, pois o 

funcionamento do mesmo segue a seguinte premissa: Verificar de maneira iterativa quais 

restrições de desigualdade são de fato restritivas, ou seja, não permitem que seja encontrada 

uma solução melhor, e que portanto devem estar ativas. As iterações não requerem percorrer 

todo o conjunto de possíveis desigualdades. 

Esse método é explicado com a ajuda de um exemplo para facilitar sua compreensão. 

Figura 4.12 ilustra a situação inicial de um problema de otimização com função objetivo 

quadrática (curvas de nível em azul), quatro restrições de desigualdade (em vermelho) que 

definem o espaço viável (área hachurada) e uma solução inicial (ܺ଴) sobre ܴଶ. Verifica-se 

neste caso que ܴଶ esta ativa. 
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Figura 4. 12 – Método dos gradientes reduzidos: Situação inicial. 

 

  

O primeiro passo é verificar quais restrições estão ativas, neste caso apenas ܴଶ. Tendo 

em vista que apenas a segunda restrição esta ativa, o vetor W (conjunto das restrições ativas, 

ou Conjunto Ativo), recebe o valor 1 apenas em sua segunda linha. Isso indica que nesta 

iteração, o problema é resolvido considerando-se apenas a função objetivo e a segunda 

restrição, ou seja, a desigualdade referente à segunda restrição, é considerada uma igualdade. 

A solução deste problema é simples, e requer apenas a aplicação da seguinte condição 

de otimização (Eq. 4.9). Essa condição resulta em um sistema linear, que fornece um valor 

para as variáveis de projeto e para as variáveis de Lagrange (λ). 

 Ao resolver esse problema, ilustrado na Figura 4.13 determina-se uma nova solução 

ଵܺ e os valores para as variáveis de Lagrange (λ), que são 0 para todas as restrições não 

ativas, e neste caso verifica-se (ߣଶ < 0), que não corresponde às condições KKT, portanto não 

configura ଵܺ como um ponto de mínimo local. 
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Figura 4. 13 – Método dos gradientes reduzidos: Primeiro passo. 

 

 

Tendo em vista que ܴଶ não é uma restrição que limita a busca pelo ponto de mínimo 

ଶߣ < 0, retira-se a mesma do conjunto ativo, e uma nova otimizaçao é realizada. Neste 

segundo passo ilustrado em Figura 4.14 soluciona-se o problema de alocação levando-se em 

conta apenas a função objetivo. A solução encontrada ܺଶ não respeita ܴସ. 
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Figura 4. 14 – Método dos gradientes reduzidos: Segundo passo. 

 

 

Note que a ultima iteração desrespeitou uma restrição do problema. Como ilustrado na 

Figura 4.15, essa iteração garante que ܴସ seja respeitada. Isso é realizado diminuindo o 

tamanho do passo dado na ultima iteração de maneira que o mesmo seja o maior possível 

respeitando as restrições do problema. Ou seja, ܺଶ − ଵܺሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  define a direção do passo nessa 

iteração (note que o ponto inicial desse passo é ଵܺ), e o tamanho do passo é o maior possível 

levando-se em conta as restrições do problema. Isso resulta na solução ܺଷ que respeita ܴସ. 
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Figura 4. 15 – Método dos gradientes reduzidos: Terceiro passo. 

 

 

Note que a solução ܺଷ torna ܴସ ativa, portanto a mesma deve ser adicionada ao 

conjunto ativo W. Isso implica na solução do problema considerando-se a função objetivo e 

ܴସ como uma igualdade. A solução desse problema é simples e derivada de um sistema linear, 

baseado na condição de otimização. Note que a solução ܺସ tem ߣ ≥ 0, o que respeita as 

condições KKT, e garante que esse ponto é o mínimo global. 
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Figura 4. 16 – Método dos gradientes reduzidos: Quarto passo. 

 

 

O loop que representa a logica do método dos gradientes reduzidos esta representado 

em Figura 4.17.  

1) DEFINE W: O primeiro passo é definir o conjunto ativo, ou seja, o vetor W, que 

assinala quais restrições de desigualdade devem ser consideradas nessa iteração. 

2) RESOLVE PROBLEMA: A seguir resolve-se o problema considerando o conjunto de 

restrições de desigualdade ativas, a função objetivo e as restrições de igualdade. 

3) VERIFICA TAMANHO PASSO: Ao obter-se a nova solução verifica-se se a mesma 

respeita todas as restrições de desigualdade.  

a. Caso respeite verifica-se ߣ. CALCULA ߣ 

i. Caso ߣ ≥ 0, o que configura a aceitação das condições KKT e 

configura a mesma como ponto de mínimo.  

ii. Caso contrario, a restrição que apresenta o menor valor de ߣ é 

descartada do conjunto ativo para a próxima iteração. 

b. Caso o passo não respeite as desigualdades (limites móveis da alocação de 

empuxo), obtém-se uma nova solução, na direção que liga a solução anterior à 

solução recém obtida. A essa se designa o nome: NOVA Solução COM 

TAMANHO DO PASSO. 
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Figura 4. 17 – Logica do método do dos gradientes reduzidos. 

 

 

As principais funções referentes do loop do Active-set são: 

4.6.2.1 – Define W 

Verifica sobre quais restrições de desigualdade a solução atual encontra-se. E desconsidera 

alguma desigualdade que apresente ߣ < 0, da iteração anterior. 

 

4.6.2.2 – Resolve Problema 

O método para a solução do problema, que contem a função objetivo, as restrições de 

igualdade e desigualdade e o vetor W (que contem as desigualdades que devem ser 

consideradas igualdades) é o seguinte: 

Monta-se o sistema linear geral de equações, derivado da condição de otimização, da seguinte 

maneira: 

a. Para 0


T
L  utilizam-se todas as desigualdades independente de W. 

b. Para 0




igualdade

L


 utilizam-se todas as desigualdades independente de W. 
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c. 0
)(





idedesigualda

L


 

i. Se ௜ܹ = 0, a equação utilizada é (ߣௗ௘௦௜௚௨௔௟ௗ௔ௗ௘)௜ = 0 

ii. Se ௜ܹ = 1, ou seja, essa restrição deve estar ativa, utiliza-se a equação 

de desigualdade como uma igualdade. 

O sistema linear resolvido fornece novos valores para a alocação (ܶ,ߙ), ߣ௜௚௨௔௟ௗ௔ௗ௘  e 

ௗ௘௦௜௚௨௔௟ௗ௔ௗ௘ߣ . 

 

4.6.2.3 – Verifica tamanho passo 

Verifica se todas as desigualdades são respeitadas. 

 

4.6.2.3 – Nova solução com tamanho do passo 

O funcionamento desta função esta ilustrado na Figura 4.18. Inicialmente calcula-se o 

vetor ݀⃗, que liga a solução anterior à nova. A partir de ܺ௡, verifica-se qual a maior distancia 

que pode ser percorrida (K) até atingir a primeira desigualdade. Percorre-se K, na direção ݀⃗, e 

obtém-se a nova solução ܺ௡ାଵை௄ , que respeita todas as desigualdades. 

 

Figura 4. 18 – Solução considerando-se as desigualdades. 

 

 

Para maiores informações sobre o método dos gradientes reduzidos ver: Nocedal e 

Wright (2006). 

Entretanto esse algoritmo apresenta uma falha intrínseca. Caso não seja possível 

resolver as igualdades, ou seja, as equações referentes às forças requeridas pelo sistema de 
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controle, considerando-se as desigualdades (limites móveis), ao montar o sistema linear geral 

montado na função Resolve Problema nota-se que o mesmo é um Sistema Impossível (SI). 

Essa situação é comum em casos em que as condições ambientais são significativamente 

adversas, e as forças requisitadas excedem a saturação ( ௠ܶ௔௫) dos propulsores da embarcação. 

Portanto, numa situação adversa, permitir que o controlador tente resolver um sistema 

impossível é perigoso, pois o mesmo pode gerar respostas aleatórias, ou simplesmente não 

funcionar. Isso poderia causar em acidentes. Dessa forma, é necessário estabelecer um 

protocolo para a situação em que não é possível gerar as forças requisitadas considerando-se a 

saturação dos propulsores (Protocolo de Saturação). Além disso, é necessário verificar os 

casos em que esse protocolo deve ser seguido, ou seja, necessita-se desenvolver um algoritmo 

que verifique se as igualdades podem ser resolvidas considerando-se as desigualdades. 

 

4.6.3 – Verificação de congruência de Igualdades e Desigualdades 

A verificação que deve ser realizada é se existe uma solução para as igualdades dentro 

do espaço viável definido pelas desigualdades. A Tabela 4.5 representa claramente as 

equações que devem ser consideradas e seu sentido físico e matemático. 

 

Tabela 4. 5 – Representação de igualdades e desigualdades. 

Fisicamente Equações Notação 
Matemática 

Forças 
Requeridas 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ෍ܨ௫೔ ∙ ௜ߟ

ே

௜ୀଵ

− ௦௨௥௚௘ܨ = 0

෍ܨ௬೔ ∙ ௜ߟ

ே

௜ୀଵ

− ௦௪௔௬ܨ = 0

෍ܨ௬೔

ே

௜ୀଵ

∙ ௜ߟ ∙ ௫೔ܨ෍−(௜ݔ) ∙ ௜ߟ ∙ (௜ݕ)
ே

௜ୀଵ

௬௔௪ܯ− = 0

 

Igualdades 

Saturação e 
Limites Móveis ቐ

൛݋çܽܽݎݑݐܽܵ ௜ܶ ≤ ௠ܶ௔௫೔

ݏ݅݁ݒ݋ܯ	ݏ݁ݐ݅݉݅ܮ ൜
∆ ௜ܶ ≤ ∆ ௠ܶ௔௫೔
௜ߙ∆ ≤ ௠௔௫೔ߙ∆

 

Desigualdades 
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 O Simplex é um algoritmo de otimização para problemas lineares bastante conhecido e 

utilizado. Note, que a verificação é realizada em equações lineares, pois as forças requeridas 

foram linearizadas conforme a aplicação da programação quadrática sequencial e os limites 

móveis e saturação são restrições de caixa, por definição lineares. 

 A interpretação matemática do funcionamento do Simplex é ilustrado na Figura 4.19. 

Note que as igualdades (forças requeridas) podem ser representadas por planos, pois são 

lineares. Ademais, os limites móveis e saturação podem ser representados como uma caixa, 

pois os mesmos sempre definem os limites inferior e superior de cada variável. Se existe uma 

intersecção entre o plano e a caixa, significa que existe um subespaço que contem a solução 

do problema. 

 

Figura 4. 19 – Funcionamento do algoritmo Simplex. 

 

 

 Portanto baseado no conceito do Simplex a verificação da possibilidade de resolver o 

sistema de igualdades e desigualdades pode ser resolvida da seguinte maneira. 

1) Consistentemente, escolhem-se 2݊ − 3 desigualdades (sendo 2݊ o numero de 

variáveis) que devem ser respeitadas. 
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2) Atribui-se tais valores a essas variáveis. 

3) Resolve-se o sistema de 3 igualdades, que apresenta 3 incógnitas (as 3 variáveis as 

quais não foram atribuídas os valores respectivos de suas desigualdades). 

a. Caso essas 3 variáveis respeitem suas equações de desigualdade conclui-se que 

é possível resolver as igualdades considerando-se as desigualdades. 

b. Caso contrario, escolhe-se consistentemente uma nova combinação de 

desigualdades. 

4) Se todas as combinações possíveis de desigualdades foram testadas e não foi possível 

resolver as igualdades trata-se de um sistema impossível, e aplica-se o protocolo de 

saturação. 

 

4.6.4 – Protocolo de Saturação 

 O Protocolo de Saturação é utilizado quando não é possível gerar as forças requeridas 

considerando-se a saturação dos propulsores, que limitam os limites móveis. Uma solução 

segura em condições adversas, é que a direção das forças geradas seja a mesma que as forças 

comandadas, o que evita o comportamento errático e inesperado da embarcação. 

 O processo que garante que a direção das forças geradas seja o mesmo que o das 

forças requeridas esta representado na Figura 4.20. 

1) Inicialmente constata-se que não é possível gerar as forças requeridas.  

2) Define-se o Versor das forças comandadas, que nada mais é que dividir o vetor das 

forças requeridas por um valor constante. Tendo em vista que o Versor das forças 

comandadas apresenta valores de ordem de grandeza inferior aos da força comandada, 

os mesmos podem ser gerados com relativa facilidade pelos propulsores da 

embarcação. 

3) Finalmente, multiplica-se o empuxo de cada propulsor por um mesmo valor constante. 

Esse valor constante satura os propulsores que estão mais próximos de seus valores 

máximos de empuxo. Garantindo assim, que a força comandada terá a mesma direção 

da força requerida. 
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Figura 4. 20 – Processo do Protocolo de Saturação. 
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 As Figuras a seguir ilustram o funcionamento do Protocolo de Saturação. 

A Figura 4.21 ilustra uma situação normal em que não é necessário acionar o 

Protocolo de Saturação. 

 

Figura 4. 21 – Alocação em condições normais. 
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A Figura 4.22 ilustra uma situação em que os propulsores estão saturados, mas que 

não foi necessário acionar o Protocolo de Saturação. 

 

Figura 4. 22 – Alocação em que ocorre saturação dos propulsores. 
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A Figura 4.23 ilustra uma situação em que os propulsores estão saturados, pois foi 

necessário acionar Protocolo de Saturação. Note que as forças efetivas são inferiores as forças 

requeridas. 

 

Figura 4. 23 – Atuação do Protocolo de Saturação. 

 

 

 Finalmente é possível constatar que nos 3 últimos exemplos a direção das forças era a 

mesma e que o Protocolo de Saturação garante que as forças geradas pela embarcação, caso 

não seja iguais às forças requeridas, tem a mesma direção da mesma. Existem outras soluções 

e propostas para as condições em que não é possível alocar as forças requeridas, entretanto a 

solução escolhida preza pela segurança e pelo comportamento previsível da embarcação. 

 Outro Protocolo de Saturação bastante utilizado é priorizar a geração do momento em 

detrimento das outras direções (Surge e Sway). Essa escolha preza por manter a embarcação 

com a mesma direção, mesmo que ocorram deslocamentos laterais e longitudinais, que a 

principio não elevam as forças aplicadas sobre a mesma, considerando que a priori a 
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embarcação opera na condição weathervane, na qual as forças aplicadas sobre a mesma são as 

menores possíveis. Normalmente utilizam-se pesos para definir a prioridade relativa de cada 

direção ( ௌܲ௨௥௚௘ , ௌܲ௪௔௬, ௒ܲ௔௪). Uma solução interessante que trabalha com essa ideia pode ser 

encontrada em Skjetne e Kjerstad (2013), onde o autor trabalha com dois conceitos básicos, o 

null-space e a aplicação da matriz pseudo-inversa. 
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4.7 – Analise Final 

A fim de verificar se os algoritmos Simplex e o método dos gradientes reduzidos, 

implementados na alocação de empuxo, apresentam os resultados satisfatórios previamente 

vistos no Trust Region SQP, novas simulações foram realizadas. Os resultados da Tab. 4.6 

apresentam uma rápida comparação entre a alocação realizada com o Trust Region SQP, com 

a otimização quadrática resolvida pela rotina do Matlab em relação à implementação do 

Active-set e simplex. Note que em média a Potencia requisitada diminui marginalmente, 

enquanto o erro caiu 50% em relação à implementação anterior. O tempo médio de 

processamento também é inferior, mas vale ressaltar que as simulações foram realizadas em 

computadores diferentes. De qualquer forma o tempo de processamento esta de acordo com a 

implementação em softwares de alocação de empuxo em tempo real. 

 

Tabela 4. 6 – Comparação do Trust Region SQP com e sem o desenvolvimento do Simplex e do Active-set. 
Força Requerida Trust Region SQP Simplex e Active-set implementados 

௫ܨൣ  ௭൧ Tempo Potência erro Tempo Potência erroܯ,௬ܨ,

[7; 7; 0] 1,002 15,8125 0,09% 0,834 15,8425 0,09% 

[-7; 7; 0] 1,286 19,6036 0,31% 0,641 19,6296 0,07% 

[-7; -7; 0] 1,362 19,0812 0,51% 0,765 19,0578 0,21% 

[7; -7; 0] 1,234 19,3467 0,66% 0,665 18,8336 0,39% 

[-10; 0; 0] 2,176 19,8260 0,55% 0,463 19,8461 0,38% 

[10; 0; 0] 1,491 16,9549 0,25% 0,749 16,9791 0,15% 

[0; -10; 0] 1,210 19,9492 1,01% 0,772 20,0326 0,52% 

Médias 1,394 18,6534 0,48% 0,698 18,6030 0,26% 

  Comparação -50% -0% -46% 

 

 Portanto a implementação do Active-set, Simplex e Protocolo de Saturação finalizam 

o algoritmo de alocação de empuxo. Os resultados obtidos pelas simulações revelam que o 

mesmo é capaz de lidar com a saturação dos propulsores e os fenômenos de interação. Note 

que o desenvolvimento deste ultimo conjunto de rotinas mantém a eficiência do algoritmo de 

alocação previamente demonstrada, e elimina a dependência de qualquer rotina exclusiva do 

software MATLAB. 
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O capitulo seguinte apresenta a aplicação do algoritmo de alocação de empuxo 

desenvolvido em software MATLAB para a simulação de operação DP no domínio do tempo 

(Time Domain Simulation). 
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5	–	Resultados 

5.1 – Descrição da Embarcação 

A Fig. 5.1 apresenta o modelo da embarcação utilizado nas simulações de operação DP. Trata-

se de um navio de perfuração com 6 propulsores azimutais agrupados em 2 clusters triangulares: na 

proa e na popa. 

 

Figura 5. 1 – Modelo da embarcação. 

 

 

 A Fig. 5.2 apresenta a planta da embarcação com suas medidas originais. Note que é 

possível determinar a posição dos propulsores em relação ao centro gravitacional da mesma. 
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Figura 5. 2 – Planta original da embarcação. 

 

 

As curvas de eficiência de cada propulsor são apresentadas na  

 

Figura 5. 3. Note que o posicionamento das curvas de eficiência é similar ao 

posicionamento dos propulsores no casco da embarcação, portanto é possível relacionar os 

fenômenos de interferência com a posição dos propulsores. Note que o cluster de propulsores 

na popa esta distante do cluster de propulsores na proa. 

 

Figura 5. 3 – Curvas de eficiência dos propulsores. 
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5.2 – Time Domain Simulation e Limitações Físicas 

Com o objetivo de simular uma operação DP, introduz-se o conceito de time domain 

simulation e limitações físicas. 

A simulação das operações DP é realizada da seguinte maneira: 

 

a) Dados de entrada: Um conjunto de forças requeridas por um sistema de controle, 

considerando-se intervalos temporais discretos. 

b) Em cada passo uma alocação de empuxo é calculada levando-se em conta como 

condição inicial a solução do passo anterior. 

Dessa maneira a simulação ocorre no domínio do tempo (Time Domain Simulation). 

Adiante, a fim de aproximar o modelo de simulação da realidade, as limitações físicas 

dos propulsores devem ser consideradas. As mesmas referem-se à variação máxima do ângulo 

de azimute do propulsor num determinado espaço de tempo, ou seja, a velocidade angular 

máxima do mesmo; E a máxima variação de RPM dos propulsores, o que limita a variação do 

empuxo desenvolvido. 

O cálculo da limitação física dos propulsores em cada passo depende do estado 

anterior dos mesmos. As Eq. 5.1 a 5.3 ilustram o como é determinada a limitação de variação 

de ângulo de azimute dos propulsores. Note que ݐ௦௧௘௣  é o intervalo temporal de cada passo, Lb 

é o limite inferior e Ub é o limite superior. 

 

௠௔௫ߙ∆ = ௠௔௫ߙ̇ ∙ ௦௧௘௣ݐ 																																																																				(5.1) 

ܾܮ = ௣௥௘௩ߙ − ௠௔௫ߙ∆ 																																																																				(5.2) 

ܷܾ = ௣௥௘௩ߙ + ௠௔௫ߙ∆ 																																																																							(5.3) 

 

 Para o calculo da máxima variação do empuxo inicialmente determina-se sua rotação 

atual, conforme a Eq. 5.4. Note que ்ܥ଴ representa o coeficiente de empuxo do propulsor. 
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݊௖௨௥௥௘௡௧ = ඨ
ܶ

଴்ܥ ∙ ߩ ∙ ସܦ 																																																							(5.4) 

 

Em seguida aplica-se a limitação física relativa à máxima variação de RPM (݊̇௠௔௫), e 

determinam-se os limites superiores (Ub) e inferiores (Ub) da variação de empuxo. 

 

ܾܮ = ଴்ܥ ∙ ߩ ∙ ସܦ ∙ (݊௖௨௥௥௘௡௧ − ݊̇௠௔௫)ଶ																																												(5.5) 

ܷܾ = ଴்ܥ ∙ ߩ ∙ ସܦ ∙ (݊௖௨௥௥௘௡௧ + ݊̇௠௔௫)ଶ																																												(5.6) 

 

A Figura 5. 4 ilustra graficamente a atuação das limitações físicas dos propulsores. 

 

Figura 5. 4 – Representação das limitações físicas completas dos propulsores. 

 

 

 Finalmente, a implementação das limitações físicas no algoritmo é realizada de 

maneira simples. Manipula-se os limites moveis de alocação de maneira que os mesmos 

respeitem a saturação dos propulsores, sua limitada variação de RPM e ângulo de azimute. 
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5.3 – Simulações 

Essa seção contém 3 simulações de operações DP para a embarcação apresentada. Note que 

todas as simulações consideram os fenômenos de interação hidrodinâmicos (representados pelas 

curvas de eficiência), as limitações físicas dos propulsores e são realizados no domínio do tempo 

(Time domain simulation). Cada caso será apresentado, em seguida os resultados são expostos, e 

imediatamente discutidos. 

Inicialmente um caso base é apresentado, a fim de ilustrar o comportamento da embarcação em 

condições ambientais reais. Em seguida, casos específicos de situações complexas são descritos e 

discutidos a fim de ilustrar a robustez do algoritmo de alocação de empuxo desenvolvido para 

operações de posicionamento dinâmico. 
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5.3.1 – Caso Base – Condições ambientais reais 

5.3.1.1 – Condições 

 As forças requeridas pelo sistema de controle são baseadas em uma simulação de 

operação de perfuração realizada com o modelo da embarcação, considerando-se condições 

ambientais típicas. 

 

5.3.1.2 – Discussão dos Resultados 

 A Figura 5. 5 apresenta as forças requeridas e geradas pela embarcação para condições 

ambientais reais. Fica claro que o algoritmo de alocação de empuxo conseguiu gerar as forças 

requeridas pelo sistema de controle (a linha azul esta sobre a linha vermelha). 

Além disso, note que a curva de potencia tem formato bastante semelhante à curva de 

momento, portanto conclui-se que o momento é a direção que requer maior atenção do 

sistema de geração de forças. Adiante, note que a embarcação ainda possui alguma reserva de 

potencia que poderia ser utilizada caso fosse necessário. 

 

Figura 5. 5 – Força requerida e gerada para o caso base. 
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 As figuras a seguir ilustram o erro percentual na geração de forças nas direções 

longitudinal, lateral e momento. Como esperado (Figura 5. 5), os erros são insignificantes. 

 

Figura 5. 6 – Erro percentual na direção de surge. 

 

 

Figura 5. 7 – Erro percentual na direção de sway. 
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Figura 5. 8 – Erro percentual na direção de yaw. 

 

 

 A Figura 5. 9 apresenta a alocação dos propulsores durante a simulação do caso base. 

Note que os propulsores T4, T5 e T6 estão saturados durante todo o intervalo de simulação. 

Isso ocorre, pois os mesmos são os principais responsáveis pela geração de momento. Além 

disso, conclui-se que este cenário é quase critico, mas mesmo assim o algoritmo de alocação 

de empuxo conseguiu gerar as forças requeridas pelo sistema de controle. 

 Note que os ângulos de azimute apresentam movimentos (em baixa frequência) 

bastante similares à curva de momento. Esse resultado é esperado, pois os propulsores devem 

seguir a força critica aplicada sobre a embarcação. 

O propulsor T1 é uma exceção, pois o mesmo encontra-se em uma zona de baixa 

eficiência (Figura 5. 3) e seu comportamento ilustra que este tenta ficar em ângulos de 

azimute que proporcionem maior eficiência. Além disso, por volta de 60 s, T1 vai o mais 

rápido possível (considerando-se as limitações físicas) para um ângulo de aproximadamente 

190°. Essa alocação não contribui para a geração da força lateral requerida, mas contribui com 

a geração de momento, o que ilustra novamente a importância dessa direção para esta 

situação. 
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Finalmente, note que as curvas vermelhas ilustram as limitações físicas dos 

propulsores, que são calculadas com base na saturação dos mesmos, máxima variação de 

RPM e máxima variação de ângulo de azimute. 

 

Figura 5. 9 – Alocação dos propulsores (empuxo e angulo de azimute) para o caso base. 

 

 

A Figura 5. 10 apresenta a variação de empuxo e ângulo de azimute verificadas na 

alocação de empuxo para o caso base. Note que as linhas vermelhas representam a limitação 

física dos propulsores e estão de acordo com a Figura 5. 9. Além disso, verifica-se que não é 

possível aumentar o empuxo dos propulsores T4, T5 e T6 durante todo o intervalo de 

simulação, pois os mesmos já estão saturados. 
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Figura 5. 10 – Variação de empuxo e ângulo de azimute dos propulsores para o caso base. 

 

 

5.3.1.3 – Conclusão 

 A partir do desenvolvimento do algoritmo de alocação de empuxo foi possível similar 

uma operação DP baseada em dados ambientais reais, considerando as limitações físicas dos 

propulsores e os fenômenos de interação entre propulsores e entre propulsor e casco. Embora 

as condições fossem criticas para a embarcação (T4, T5 e T6 estão saturados durante todo o 

intervalo de simulação), as forças requeridas pelo sistema de controle foram geradas com 

elevada precisão. 

 Ainda, nota-se que os propulsores evitam as zonas de menor eficiência, que 

correspondem aos ângulos de azimute em que há interação entre propulsores, portanto 

conclui-se que não é necessário definir zonas proibidas para os propulsores, pois as mesmas 

são evitadas automaticamente porque apresentam baixa eficiência. 
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5.3.2 – Caso Desliga/Liga 

5.3.2.1 – Condições 

 Neste caso estuda-se o comportamento do algoritmo de alocação de empuxo para a 

situação em que os propulsores da embarcação são desligados, e em seguida ligados. Ou seja, 

as forças requeridas pelo sistema de controle decaem até valores nulos e em seguida 

aumentam. 

5.3.2.2 – Discussão dos Resultados 

 A Figura 5. 11 apresenta as forças requeridas e geradas para o caso em que as mesmas 

são inicializadas em um valor elevado, diminuem até Zero, e em seguida, aumentam até o 

valor inicial. Note que durante todo o intervalo de simulação o algoritmo de alocação de 

empuxo conseguiu gerar as forças requeridas. 

 

Figura 5. 11 – Força requerida e gerada para o caso Desliga/Liga. 
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 A Figura 5. 12 apresenta a alocação de empuxo para o caso Desliga/Liga. Note que o 

empuxo gerado por cada propulsor tem a mesma forma das forças requeridas, o que é um 

comportamento esperado. 

 

Figura 5. 12 – Alocação para o caso Desliga/Liga. 
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 Neste caso é interessante estudar a variação das variáveis, ilustrado na Figura 5. 13. 

Note que conforme o empuxo diminui a sua variação máxima também diminui. Isso pode ser 

explicado conforme as Eq.s 5.5 e 5.6, pois o empuxo depende da rotação do propulsor elevada 

ao quadrado; portanto se a rotação diminui, a mesma variação em RPM, leva a um intervalo 

menor de geração de empuxo. Desta forma, explica-se a forma da curva de limitação física do 

empuxo dos propulsores. 

 

Figura 5. 13 – Variação de empuxo e ângulo de azimute dos propulsores para o caso Desliga/Liga. 

 

 

5.3.2.3 – Conclusão 

 Essa simulação ilustrou aspectos interessantes relativos às limitações físicas dos 

propulsores. Além disso, o algoritmo de alocação de empuxo lidou de maneira correta com o 

fenômeno Desliga/Liga simulado, e gerou com precisão as forças requeridas pelo sistema de 

controle. 
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5.3.3 – Caso de Forças Requeridas Girando – T3 e T5 Cruzam “Zonas Proibidas” 

5.3.3.1 – Condições 

 As forças requeridas neste caso não se baseiam em simulações com o modelo. As 

mesmas estão girando conforme ilustrado na Figura 5. 14. Essa situação pode ocorrer durante 

manobras da embarcação. 

 

Figura 5. 14 – Forças requeridas girando. 

 

 

 O objetivo desta simulação é verificar se os propulsores cruzarão as zonas de baixa 

eficiência (onde há interação entre propulsores), e que normalmente são definidas como 

“zonas proibidas”. Além disso, verifica-se de que maneira ocorre essa passagem. 
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5.3.3.2 – Discussão dos Resultados 

 A Figura 5. 15 apresenta as forças geras para o caso em que as forças requeridas estão 

girando. Verifica-se que as forças geradas atendem as forças requeridas durante todo o 

intervalo de simulação, porém vale a penar olhar com mais detalhes como isso ocorre. 

 

Figura 5. 15 – Força requerida e gerada para o caso Forças requeridas girando. 
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 A Figura 5. 16 apresenta as alocações para esse caso. Há 4 eventos que merecem 

destaque e que ilustram como os propulsores T3 e T5 cruzam as zonas de baixa eficiência. 

1) Por volta de 55 s, T3 e T5 começam a diminuir seus respectivos empuxos. Em 

contrapartida, os outros propulsores aumentam seus empuxos para compensar o 

comportamento de T3 e T5.  

2) A diminuição de empuxo de T3 e T5 ocorre, pois T3 e T5 estão parados na entrada da 

chamada “zona proibida” e estão se distanciando da direção da força requerida. Os outros 

propulsores seguem a força requerida. 

3) Por volta de 75 s, T3 e T5 cruzam a zona onde apresentam baixa eficiência, com 

pequenos valores de empuxo e o mais rápido possível (considerando-se suas limitações 

físicas), o que resulta em economia de potencia, pois os mesmos encontram-se em zona de 

baixa eficiência. Além disso, ao cruzarem essa zona de baixa eficiência que representa a 

interação entre propulsores com pequenos valores de empuxo e de maneira rápida, o jato 

d’agua jogado contra os outros propulsores não é muito significativo. 

4) Após cruzarem as zonas de baixa eficiência T3 e T5, “correm” atrás da direção da 

força requerida, aumentando seus respectivos empuxos, pois os mesmos apresentam boa 

eficiência e direção cada vez mais próxima à da força requerida. Em contrapartida, os outros 

propulsores diminuem seus respectivos empuxos a fim de minimizar o consumo de energia da 

embarcação. 
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Figura 5. 16 – Alocação para o caso Forças requeridas girando. 

 

 

5.3.3.3 – Conclusão 

 Essa simulação ilustra o processo do cruzamento de zonas de baixa eficiência, que em 

outros algoritmos são tratadas como zonas proibidas. Verifica-se como este processo é 

realizado de maneira automática pelo algoritmo de alocação de empuxo e de maneira 

otimizada. 

 

1) Parada na entrada da zona de baixa eficiência. 

2) Diminuição do empuxo. 

3) Cruzamento o mais rápido possível. 

4) Corrida atrás das forças requeridas 

Esse processo é bastante eficiente, pois ao diminuir o empuxo gerado antes de entrar 

na zona de baixa eficiência, a alocação requer menor consumo de energia, e o jato d’agua 

jogado sobre os outros propulsores não é muito significativo. 
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6	–	Conclusão 

 Os resultados da implementação inicial do Algoritmo de Alocação de Empuxo 

permitem concluir que os fenômenos de interferência são importantes e devem ser 

considerados no Sistema DP. 

 O estudo da dinâmica do algoritmo inicial permitiu conhecer e prever seu 

funcionamento, bem como desenvolver técnicas de otimização simplificadoras. Essas 

diferentes técnicas de otimização foram utilizadas para desenvolver novos algoritmos de 

Alocação de Empuxo. 

 Os novos algoritmos foram testados, comparados e analisados, quanto à sua 

Eficiência, Precisão, Tempo de processamento e Dinâmica intrínseca. Por fim selecionou-se o 

algoritmo Trust Region SQP, que em nível superior é da classe Trust Region e em nível 

inferior (método dos gradientes reduzidos para programação quadrática) é da classe Line 

Search. 

 O Trust Region SQP respeita os requisitos essenciais de Precisão e Tempo de 

Processamento, e é mais eficiente do que todos os algoritmos simulados, incluindo o 

FMINCON do MATLAB. 

 Além disso, todas as comparações com os algoritmos de alocação de Empuxo 

disponíveis no mercado continuam válidas: 

 

Alocação Objetiva 

– Consegue resolver o problema para qualquer fenômeno de Interferência 

Sistema Confiável e seguro 

– Inclusão da Interferência torna o sistema mais próximo da realidade 

– Poupa propulsores avariados 

Ganhos Econômicos 

– Economia Combustível 

– Aumento Janela de Operação 
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 Por fim, toda a arquitetura do algoritmo de alocação de empuxo foi configurada para o 

desenvolvimento de um simulador de operações DP. Note que as simulações realizadas 

incluem as limitações físicas dos propulsores e ocorrem no domínio do tempo (time domain 

simulations), além de considerar os fenômenos de interação. 

 A simulação em condições ambientais reais ilustra que o algoritmo de alocação de 

empuxo é confiável para operações DP. Os erros na geração de força foram insignificantes e a 

embarcação conseguiu manter sua posição, levando em conta suas limitações físicas, 

saturação dos propulsores, e os fenômenos de interação. 

 O caso em que 2 propulsores cruzaram suas respectivas zonas de baixa eficiência 

(normalmente tratadas como “zonas proibidas”), mostra que o algoritmo de alocação de 

empuxo automaticamente evita tais zonas, até que valha a pena cruza-las. Além disso, o 

cruzamento dessas zonas de baixa eficiência é realizado com baixo empuxo e com a maior 

velocidade possível, o que economiza energia e preveni que um propulsor jogue um jato 

d’agua significativo sobre um segundo propulsor. 

 Portanto os resultados das simulações de operações DP, mostram que o algoritmo de 

alocação de empuxo desenvolvido pode lidar com fenômenos de interação hidrodinâmicos, 

considerando as limitações físicas dos propulsores. Espera-se que essas melhoras na estratégia 

de alocação de empuxo levem ao aumento da precisão de operações DP e stationkeeping de 

embarcações. 

 Não obstante, note que o algoritmo de alocação de empuxo foi utilizado em 2 

embarcações e em diversas situações complexas. Portanto o mesmo mostra-se uma alternativa 

robusta. 

 Algumas melhorias e ideias que podem ser desenvolvidas em trabalhos futuros nessa 

área são: 

1) Melhorar o tratamento de saturação dos propulsores. Há diversas estratégias 

disponíveis na bibliografia que podem ser implementadas e comparadas. Destacam-se 

os seguintes métodos: dicotomia, loops de realocação e definição de um novo 

problema de otimização que lida apenas com minimizar os erros na geração de forças. 

2) Incluir fenômenos de interação hidrodinâmicos mais complexos como, a interação 

entre propulsor e correnteza. 

3) Realizar simulações DP em tanques de prova. 
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Anexo	A	–	Solução	Analítica	da	Alocação	sem	Interferência	e	
função	objetivo	quadrática 
 Esse anexo tem por objetivo ilustrar a solução analítica ao problema de otimização da 

Alocação com Função Objetivo Quadrática. Essa solução é o chute inicial do problema de 

otimização completo (com Função Objetivo ajustada e curvas de interferência). 

 Como ilustrado na seção 3.3.1, os propulsores azimutais podem ser considerados como 

a união de um propulsor principal a um propulsor em túnel. Dessa forma trabalha-se 

considerando forças com índices ímpares como propulsores principais ou parte de propulsores 

azimutais e; forças com índices pares como propulsores em túnel ou complementos de 

propulsores azimutais. 

 Considera-se A função objetivo é de forma quadrática (Equação A.1).  
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 As restrições ao problema de alocação são a equivalência entre as forças geradas pelos 

propulsores às cargas ambientais (FSurge; FSway; MYaw). 
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 Note que a Equação A.2 é equivalente à equação A.3: 
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          (A.3) 

 

 Aplica-se o método de Lagrange, descrito em Silva (2011). Onde se define a função 

Lagrangeana (L), que contém a Função Objetivo mais as restrições multiplicadas pelas 
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variáveis i . Essas variáveis são conhecidas como variáveis de relaxação e facilitam a 

solução, pois o problema torna-se uma otimização sem restrição: 

 

332211 hhhObjL          (A.4) 

 

 Para obter-se o valor da Função Objetivo (A.1) é necessário obter: 
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          (A.5) 

 

 Note que i

L



 recupera as restrições do problema. 

 Aplicando a metodologia descrita na Equação A.5 obtêm-se: 
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 Para tornar a solução mais clara, daqui a diante considera-se apenas dois propulsores 

azimutais )F,F,F,F( 4321 , que é o número mínimo que permite otimização, pois desta maneira, 

o sistema de Equações A.3 tem infinitas soluções. Note que o processo de solução será 

análogo para demais propulsores. Dessa forma obtém-se: 
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     (A.7) 

 

 Considere inicialmente as equações 
0

F
L

i





, na parte superior do sistema de Equações 

A.7. Veja como é fácil eliminar 1 e 2 , basta subtrair uma equação de índice ímpar de outra, 

e realizar o mesmo processo entre as equações de índices pares.  
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 Também é possível eliminar 3  combinando as duas primeiras equações: 
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 Escrevendo A.9 na forma matricial: 
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 Para resolver o sistema basta inverter a primeira matriz: 

 

               
(A.11) 

 

 Desta forma demonstra-se a melhor alocação para Função Objetivo quadrada é 

multiplicar a matriz pseudo-inversa de A pelas forças do meio ambiente. Note que a última 

coluna não tem relevância. 

 Note que a matriz pseudo-inversa de A também é obtida segundo a Equação (A.12) 

 

1TT )AA(AA)A(pinv                   (A.12) 



Anexo	B	–	Tabela	de	comparação	dos	algoritmos	de	Alocação	de	Empuxo 
  Apresentam-se as simulações de diferentes Forças de Controle (Fx, Fy, Mz), as Forças Efetivas (Fx, Fy, Mz) geradas por cada um dos 
algoritmos, seu Tempo de processamento, o valor da Função Objetivo (Potência) na solução e o Erro Percentual ao atender as Forças de Controle. 

Tabela B. 1: Simulação completa dos Algoritmos de Alocação de Empuxo 
F controle FMINCON SQP - Potência Quadrática 

Fx Fy Mz Fx Fy Mz Tempo Potência Erro de Força Fx Fy Mz Tempo Potência Erro de Força 
7 7 0 7,000 7,000 0,000 2,819 15,8124 0 % 7,003 6,997 0,013 1,137 15,8721 0,14 % 
-7 7 0 -7,000 7,000 0,000 3,132 19,945 0 % -6,983 7,011 0,001 0,911 19,8239 0,21 % 
-7 -7 0 -7,000 -7,000 0,000 3,367 19,0804 0 % -6,909 -7,057 -0,031 1,078 19,0529 1,28 % 
7 -7 0 7,000 -7,000 0,000 2,730 18,8584 0 % 7,006 -6,865 -0,124 0,762 19,8251 1,89 % 

-10 0 0 -10,000 0,000 0,000 3,139 19,8517 0 % -9,992 0,006 -0,012 1,012 19,9786 0,26 % 
0 10 0 0,000 10,000 0,000 3,994 16,9581 0 % 0,013 9,999 0,001 0,952 17,0148 0,15 % 
0 -10 0 0,000 -10,000 0,000 3,389 20,2653 0 % 0,090 -9,953 0,051 0,971 20,0224 1,88 % 

 
SQP Potência Quadrática + Passo 2 Trust Region SQP 

Fx Fy Mz Tempo Potência Erro de Força Fx Fy Mz Tempo Potência Erro de Força 
7,000 7,000 0,000 1,334 15,8294 0 % 7,000 7,000 -0,013 1,002 15,8125 0,09 % 
-7,000 7,000 0,000 1,042 19,6596 0 % -7,000 6,982 -0,026 1,286 19,6036 0,31 % 
-7,000 -7,000 0,000 1,184 19,1459 0 % -6,977 -7,002 -0,046 1,362 19,0812 0,51 % 
7,000 -7,000 0,000 0,841 20,0313 0 % 6,931 -6,997 -0,020 1,234 19,3467 0,66 % 

-10,000 0,000 0,000 1,108 19,8816 0 % -9,991 0,016 0,030 2,176 19,826 0,55 % 
0,000 10,000 0,000 1,048 16,9603 0 % 0,019 10,000 0,006 1,491 16,9549 0,25 % 
0,000 -10,000 0,000 1,060 20,2002 0 % -0,023 -9,957 0,035 1,210 19,9492 1,01 % 

 


