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Resumo
Neste trabalho desenvolveu-se um simulador para operacGes de Posicionamento Dindmico
(DP), em que a alocacdo de empuxo considera a interagdo entre propulsores e entre propulsor-
casco. O modelo de Alocacdo de Empuxo desenvolvido esta baseado em coordenadas polares,
no qual a representacdo dos fendmenos de interferéncia é realizada através de fungdes de
eficiéncia dos propulsores. Diversos aspectos de otimizagdo como desenvolvimento de
técnicas simplificadoras e tratamento de ndo convexidade sdo explorados. Diferentes técnicas
de otimizacdo foram desenvolvidas e comparadas. A partir do algoritmo de otimizagdo que
apresentou os melhores resultados em termos de poténcia consumida pela embarcacdo e
tempo de processamento, desenvolveu-se o simulador, em linguagem apropriada para
aplicacdes praticas. Por fim sdo realizadas simulacdes de operacdes de posicionamento
dindmico considerando-se os fenémenos de interacdo hidrodinamicos e as limitacGes fisicas
dos propulsores. A andlise das simulagdes ilustra a melhoria da capacidade de manter posicao

com o algoritmo proposto e a robustez do mesmo.

Palavras chave: Alocacdo de Empuxo. Interagdo. Otimizacdo. Algoritmo. Sistema DP.

Simulador.



Abstract
This work presents the development of a simulator for Dynamic Positioning (DP) operations.
The thrust allocation considers the interaction between thrusters and thruster-hull. The
developed thrust allocation model is based on polar coordinates in which the interaction
phenomena are represented through efficiency functions of the thrusters. Several optimization
aspects such as simplification techniques and treatment of non-convexity are explored.
Different optimization techniques were developed and compared. From the optimization
algorithm that presented the best results regarding power consumption and processing time
the simulator was developed for practical applications. Finally, dynamic positioning
operations are simulated considering the hydrodynamic interaction phenomena and the
physical limitations of the thrusters. The evaluation of those simulations demonstrates the
improvement of stationkeeping capability of the developed allocation algorithm and its

robustness.

Keywords: Thrust Allocation. Interaction. Optimization. Algorithm. DP System. Simulator.
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Introducao e Objetivos

O sistema de Posicionamento Dinamico (DP) tem como objetivo manter estatica a
posicdo da embarcacdo para operagdes em alto-mar, considerando-se as forcas ambientais de
vento, correnteza e onda. Tendo em vista a expansdo de operacdes offshore devido a
descoberta do pré-sal, essa tecnologia esta em constante evolucao.

O sistema DP utiliza os propulsores da embarcagdo para gerar as forcas necessarias
para equilibrar a resultante ambiental, funcionalidade chamada Alocagdo de Empuxo. Os
sistemas DP disponiveis no mercado ndo consideram os fendmenos de interferéncia entre

propulsores e casco-propulsor.

Motivada pela situacdo atual e pela relevancia dos fendmenos de interferéncia iniciou-
se 0 Projeto THRUST JIP, liderado pela empresa MARIN, que conta com a participacdo de
17 empresas de petréleo, construcdo naval e pesquisa, entre elas Petrobras, Daewoo, Rolls
Royce, entre outras.

No nlcleo do THRUST JIP encaixa-se 0 objetivo deste trabalho: desenvolver um
pacote computacional para a simulacdo e analise de operacdo DP considerando os fendmenos
de interferéncia, cujo amago é a Alocacdo de Empuxo. A simulacdo e a analise da mesma
fornecem ferramentas para avaliar a melhoria da capacidade de manter a posicdo da
embarcacao.

Projetos académicos de desenvolvimento do Algoritmo de Alocagéo de Empuxo foram
desenvolvidos recentemente (ARDITTI; TANNURI, 2011 e 2012), e fornecem as ferramentas

para aumentar o conhecimento técnico em um projeto de engenharia.

A fim de alcancar o objetivo proposto para esta monografia, define-se a seguinte
metodologia:

Capitulo 1: Fundamentos tedricos — Apresentacdo do Problema. Apresenta-se o

Sistema DP, a Alocagdo de Empuxo, os Fendomenos de Interferéncia, e 0s conceitos de

otimizagéo.

Capitulo 2: Descricdo e Analise da implementacao inicial do algoritmo de alocacdo de

empuxo levando em conta interferéncias. Apresentam-se o estado da arte do problema de

alocacdo de empuxo, que levou ao desenvolvimento de um algoritmo de alocacdo de empuxo
que considera os fendmenos de interacdo hidrodinamicos. Por fim apresenta-se uma analise

do mesmo e suas vantagens em relacdo as solucGes anteriores.



16

Capitulo 3: Estudo da Dindmica Interna do Algoritmo de Otimizacdo. Estudo do

comportamento intrinseco do algoritmo de otimizacdo, utilizado no desenvolvimento
académico da Alocacdo de Empuxo para desenvolver novas implementacGes em linguagem

apropriada ao pacote computacional proposto.

Capitulo 4: Selecdo do Algoritmo de Alocacdo de Empuxo. Implementacdo de
propostas para 0 novo Algoritmo de Alocacdo de Empuxo, comparacdo no ambito de
eficiéncia, precisdo e tempo de processamento, para selecdo do algoritmo central do programa
de simulagdo DP.

Capitulo 5: Simulagdo DP. Desenvolvimento do programa de simulagio de operagdes
de Posicionamento Dindmico. Apresentacdo dos conceitos de time domain simulations e

limitacOes fisicas da embarcacdo. Discussdo dos resultados.

Capitulo 6: Concluséo e recomendagoes.
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1 - Fundamentos tedricos — Apresentacao do Problema

1.1 - Sistema de posicionamento dinamico (DP)

O Sistema de Posicionamento Dinamico (Dynamic Positioning - DP) é uma tecnologia
que comegou a ser desenvolvida por volta dos anos 60. A expansdo das operacdes petroliferas

para areas de agua profunda (offshore) demandava novas tecnologias.

O principal objetivo do sistema DP é manter a posi¢do e orientacdo do navio, para que
0 mesmo possa realizar suas operacfes em alto mar. Note que nestas condicdes ndo é possivel

ou ndo é economicamente vidvel utilizar o sistema de ancoragem ou de amarragao.

A assisténcia do Sistema DP a logistica do ramo petrolifero é ampla: auxilio para
perfuracdo precisa de pocos (inclusive em condi¢cdes ambientais adversas) e lancamento de
dutos; seguranca e confiabilidade para operacdes de alivio, construcdo e reparos de

plataformas de petréleo.

llustrado na Figural.l o Sistema DP é constituido de um loop que funciona
continuamente para garantir o equilibrio do navio. Quando a embarcacdo afasta-se da posicdo
desejada (Set Point), o sistema de controle define a resultante de forcas que deve ser

desenvolvida pelo navio, afim de que 0 mesmo retorne a sua posicao desejada.

Figura 1. 1 — Sistema DP.

Modelos de Forgas Sensores para Medigao Atuagao de Forgas Ambi
Ambientais das condigbes ambientais Vento - Onda - Correnteza
F
POSICA0 st A——
desejada Algoritmo de
———— Sistema de Controle Alocagéo de PR Prop
Forgas de Empuxo FSIThINCAO: Atuagao
p de Forgas Propulsores
entre os _
propulsores Geragao
de Forgas
AEEEEEE——
Medida de deslocamento
e

Sistema GPS

Fonte: Imagem do navio retirada de http://farinha0.tripod.com/id126.html).
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A posicdo da embarcacdo é definida com auxilio de Sistemas de Referenciamento de
Posicdo, tal como o DGPS, e é de extrema importancia para garantir a precisdo da operacao a
ser desenvolvida. Além disso, novas tecnologias de sensoriamento permitem estimar as forcas
ambientais que agem sobre o navio, como ilustrado na Figura 1.1. Com esses dados e a
utilizacdo de modelos de forca, é possivel estimar a resultante ambiental que atua sobre o
navio, e adiantar essa informacgéo ao sistema de controle (feedforward) afim de aumentar a

precisdo do Sistema DP.

N&do obstante, o Sistema DP também pode atuar em conjunto com sistemas de
amarragdo offshore, no denominado APMS — Assisted Position Mooring System (Sorensen
2011). Uma variacdo do Sistema DP é o Dynamic Tracking (DT), que permite a embarcacéo
seguir uma trajetoria pré-determinada, considerando a atuacdo das forcas ambientais (Dang,
Laheij, 2009).

As aplicacdes mais recentes de Sistema DP sugerem incorporar 0 mesmo ao Sistema
de Navegacéo, formando um sistema unificado para todas as aplicaces da embarcagdo. Mais
detalhes acerca do funcionamento do Sistema DP podem ser encontrados em Sorensen (2011)
e Tannuri (2002).
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1.2 — Alocagdo de Empuxo

Assim que calculadas as forcas requiridas pelo sistema de controle, as mesmas devem
ser geradas pela embarcagdo. O algoritmo de alocacdo de empuxo comanda os atuadores da
embarcacao, ou seja, seus propulsores a fim de gera-las.

A Alocacdo de Empuxo consiste em coordenar os propulsores de maneira otimizada,
ou seja, definir o empuxo e posi¢do (angulo de azimute), que cada atuador deve operar. Como
ilustrado na Figura 1.2, h4 varias solucBes para a Alocacdo de Empuxo, porém deve-se

otimizar essa escolha a fim de minimizar a poténcia requerida pelo conjunto de atuadores.

Figura 1. 2 — Alocagdo de Empuxo em um navio dotado de 4 propulsores azimutais

Diferentes Aloca¢ées de Empuxo

11' 867 kN, %0°
1164 39 kN, 90

Forgas Requeridas pelo Controle

Fy =500 N ol
2
M = 0 km T -
o Fy = 3@ P = 1954 KW
°: (;caxn)'ng . NJ o

o 106.51 kN, 70¢
@ Azimuth tuuster \ @

P=1371KW

Fonte: Arditti e Tannuri (2011).

Diferentes Algoritmos e Estratégias de Alocacdo de Empuxo foram desenvolvidos:
Van Daalen et. al. (2011), De Wit (2009), Sorensen (2011), Jenssen e Realfsen (2006),
Sordalen (1997), Moberg e Hellstrom (1983). O presente trabalho sugere um Algoritmo de

Alocacdo de Empuxo e compara seu funcionamento e eficiéncia aqueles ja existentes.

Embora o sistema DP apresente feedback (realimentacdo), o mesmo ndo considera
condicdes de funcionamento do navio. Portanto, como se espera que a informacgéo calculada
no Algoritmo de Alocacdo de Empuxo seja confiavel? A solucdo é incorporar ao Algoritmo
de Alocacdo de Empuxo dados de funcionamento do navio, ou seja, fazer com que o

algoritmo considere a interacdo entre propulsores e propulsor-casco. Dessa maneira pode-se
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tornar o sistema DP mais confiavel e econdmico, ja que permite a busca por uma alocagédo

otimizada, que considere tais interferéncias.
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1.3 — Padronizacéo de Notagéo

Antes de estudar a interferéncia entre propulsores e propulsor-casco, € necessario
apresentar o conjunto de coordenadas normalmente utilizado quando se trabalha com projetos
navais, a fim de facilitar a compreensdo das interférencias. A Figura 1.3 exemplifica a

mudanca de coordenadas realizada nestes projetos.

Figura 1. 3 — Mudanga de coordenadas: Coordenadas globais (a); Coordenadas do navio (b)

y Cwirent F sway 7

N\ F surge

| — M yaw
wind and wave

W yaw

a b

Fonte: Arditti e Tannuri (2011).

Note que o célculo de resultantes que o navio deve desenvolver fica bastante
simplificado se forem utilizadas as coordenadas do navio, uma vez que o angulo de azimute

dos propulsores é referenciado pelo eixo longitudinal do mesmo (Surge).

A seguir serdo apresentados os fendmenos de interferéncia que agem sobre 0s
propulsores. A partir do conhecimento das interagdes entre 0s propulsores e entre propulsor-

casco seré possivel modelar um novo algoritmo de alocacéo de empuxo.
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1.4 — Estudo dos fenbmenos de interferéncia

Os principais efeitos de interferéncia que agem sobre os propulsores séo: interagdo
entre propulsor e casco; e interacdo entre propulsores (EKSTROM; BROWN, 2002).

1.4.1 - Interferéncia entre propulsor e casco

A interacdo entre o propulsor e o casco depende, principalmente da forma do casco do
navio e da localizacdo do propulsor. O principal efeito que causa a queda de rendimento do
propulsor € o arrasto entre o jato d’agua e o casco do navio, ilustrado na Figura 1.4.

Figura 1. 4 — Arrasto do jato d’agua com o casco.

F F

— hig

b4
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Outro efeiro é causado pela proximidade de cota entre o propulsor e o casco, quanto
mais proximo o atuador esta do casco do navio, maior serd a queda no empuxo liquido, pois

havera menos volume de &gua disponivel ao propulsor.

Também considera-se interferéncia entre propulsor e casco, o encontro do jato d’agua
de um propulsor com o pontdo (pontoon) de uma plataforma. Como ilustrado na Figura 1.5,
esse fendmeno deve-se menos ao cisalhamento do jato d’agua com casco, do que ao “choque”

entre 0s mesmos, ou seja, a area frontal € muito mais significativa que a area lateral.
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Figura 1. 5 — Interferéncia entre propulsor e casco, choque de jato d’agua com pontoon.

Imagem cedida pela empresa MARIN, de um estudo de CFD (Computational Fluid Dynamics).

Outro fenbmeno que também deve ser considerado como interferéncia entre casco e
propulsor é o arrasto do jato d’agua nas paredes internas do tanel do propulsor em tanel, que
serd detalhado na se¢do 1.4.2.

O efeito Coanda esta relacionado com o jato d’agua proveniente do propulsor.
Basicamente este efeito pode ser explicado como a unido do jato d’agua ao casco do navio, ou
seja, ao invés do jato d’agua seguir sua trajetéria retilinea ele amolda-se a forma do casco.
Quanto maior a velocidade do jato d’agua menor é esse efeito (EKSTROM; BROWN, 2002).

Estudos recentes sugerem incorporar o leme ao sistema DP (DE WIT, 2009), ou seja,
utiliza-lo como um atuador adicional, que permite aos propulsores principais gerarem empuxo
no eixo de Sway. Embora essa abordagem ndo seja desenvolvida no presente trabalho, poder-
se-ia considerar o leme e o propulsor principal como atuadores, e ponderar a interferéncia

entre ambos para gerar uma resultante ndo paralela ao eixo de Surge.

1.4.2 — Interferéncia entre propulsores

A interferéncia entre dois propulsores (Figura 1. 6) ocorre quando 0S Mesmos,
normalmente propulsores azimutais, estdo proximos. Quando isso ocorre ha arrasto do jato

d’agua de um propulsor sobre outro.
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Figura 1. 6 — Interacdo entre propulsores.

Imagem cedida pela empresa MARIN, de um estudo de CFD.

Considera-se que, para que ndo haja interferencia entre dois propulsores azimutais, 0s
mesmos devem estar a uma distancia de 20 didmetros (Moberg and Hellstrom, 1983). Alem
disso, quando um propulsor opera sob o jato d’agua de outro, a queda de eficiéncia pode
chegar a 40% (LEHN, 1980).

Agora que os principais fendmenos de interferéncia foram apresentados, deve-se

ilustrar qualitativamente, como esse efeito pode ser representado.
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1.5 — Estudo qualitativo de propulsores

Existem trés tipos de propulsores: Propulsores principais; Propulsores em tunel e
Propulsores Azimutais. Os mesmos sao apresentados a segulir.

1.5.1 - Propulsores principais

A Figura 1.7 ilustra um propulsor principal com um leme. Lembre-se que ndo se
considerara a utilizacdo de lemes neste trabalho. Além disso as embarcac¢des simuladas neste
projeto ndo eram dotadas desse equipamento

Figura 1. 7 — Propulsor principal.

Fonte: http://www.osv-modelling.nl/page2.html.

Os propulsores principais geram empuxo somente no eixo de Surge. Normalmente
representa-se que tais propulsores apresentam igual eficiéncia independentemente do sentido.
Entretanto essa representacao é incorreta, pois quando o empuxo é para tras, 0 jato d’agua vai
para frente, e arrasta-se ao longo todo o comprimento do casco do navio, 0 que gera uma forga
para frente. Dessa maneira o empuxo liquido diminui (Figura 1.4). Essa representacao esta

ilustrada na Figura 1.8.
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Figura 1. 8 — Representacdo do propulsor principal. (a) Sem interferéncia. (b) Com interferéncia.

Sway Sway

Surge

1.5.2 — Propulsores em tunel

O propulsor em tanel, como o préprio nome explica, localiza-se no interior de um
tlnel dentro do casco do navio, Figura 1.9. Quando acionado, aspira &gua de um lado do tanel

e expira do outro lado, gerando empuxo.

Figura 1. 9 — Propulsor em tlnel (extraida de Schottel, 2002).

A representacdo para o propulsor em tanel (Figura 1.10) é semelhante aquela do
propulsor principal. As diferencas sdo: o empuxo é no eixo Sway, e ha perdas de eficiéncia
iguais nos dois sentidos, pois o propulsor em tanel é simétrico e o arrasto d’agua nas paredes

internas do tanel é igual nos dois sentidos.
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Figura 1. 10 — Representagéo do propulsor principal. (a) Sem interferéncia. (b) Com interferéncia.

" Sway Sway

Surge
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1.5.3 — Propulsores Azimutais

A Figura 1.11 ilustra um propulsor azimutal. Diferentemente dos propulsores
principais e em tdnel, o propulsor azimutal tem dois graus de liberdade. E possivel comandar
0 empuxo que o mesmo deve desenvolver e seu angulo de azimute, uma vez que esse

propulsor pode girar 360°.

Figura 1. 11 — Propulsor azimutal.

Fonte: extraida de Marine Propulsion International, 1998.

O propulsor azimutal é o mais representativo quando se avalia fendmenos de

interferéncia. A Figura 1.12 (a) mostra a representacdo sem interferéncia (caso ideal) de um



navio.

Figura 1. 12 - (a) Representacédo do propulsor azimutal sem considerar o fenémeno de interferéncia; (b)

Eficiéncia do propulsor azimutal com fenémeno de interferéncia.

a

Fonte: De Wit, (2009). Arditti e Tannuri (2011).

De acordo com a Figura 1.12, a eficiéncia do propulsor € intrinsecamente dependente

de sua posicdo de funcionamento (angulo de azimute), portanto deve ser desenvolvido um
novo modelo de alocacdo em coordenadas polares.

Note que em termos de modelagem os propulsores principais e em tinel podem ser
modelados como propulsores azimutais posicionados (sempre) em 0° e 90°, respectivamente.

28

propulsor azimutal. A Figura 1.12 (b) ilustra a interacdo entre o propulsor e outras partes do
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1.6 — Otimizacéao

Tendo estudado qualitativamente os métodos de representacdo da eficiéncia dos
atuadores, e como abordar o problema de alocacdo de empuxo (em coordenadas polares), é

necessario conhecer as ferramentas e métodos para otimizar o mesmo.

Antes de apresentar os fundamentos de otimizacdo é necessario compreender a razao

do problema de Alocacdo de Empuxo estar sujeito a mesma.

Note que para manter o0 navio estacionario é preciso contrabalancar as forcas
ambientais que atuam sobre a embarcagdo. Pode-se encara-las como vento, onda e correnteza
ou como sugerido na Figural. 3b: Forca de Surge, Forca de Sway e Momento de Yaw.
Portanto h4 trés graus de liberdade envolvidos no problema.

A premissa basica para a resolucdo deste problema €é: sdo necessarios atuadores com
trés graus de liberdade linearmente independentes para solucionar o sistema de alocacdo de
empuxo. Isso ndo significa, necessariamente, que sdo necessarios apenas de trés atuadores
com um grau de liberdade (propulsores principais ou em tdunel) ou de um atuador com um

grau de liberdade e outro com dois (propulsor azimutal).

Abaixo se justifica tal premissa. Considere o sistema equivalente que representa o
navio como uma placa plana; os propulsores de um grau de liberdade como treligas e; 0s

propulsores azimutais como apoios fixos:

e Com trés propulsores principais é possivel controlar as forcas no eixo de Surge e o
Momento (se 0s mesmos ndo estiverem alinhados ao eixo de Surge). Mas é impossivel

equilibrar a resultante ambiental no eixo de Sway, Figura 1.13.

Figura 1. 12 — Impossibilidade de trés propulsores principais contrabalangarem as forgas ambientais.

-
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e Com trés propulsores em tunel também ndo é possivel equilibrar o sistema. Ndo ha

como compensar F Surge, Figura 1.14,

Figura 1. 13 — Impossibilidade de trés propulsores em tinel compensarem as forcas ambientais.

F sway rAs reagdes sobre a placa
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4_@ M yaw trelicas (propulsores) com
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| contrabalangar F surge
1,2,3 Propulsores em tinel
1 2 3

e Quando se utiliza um propulsor azimutal e um propulsor principal, ha condigdes nas
quais ndo é possivel compensar as cargas ambientais, pois as reaces na direcdo de

Sway e no momento de Yaw s&o linearmente dependentes. Figura 1.15.

Figura 1. 14 — Condigdo em que um propulsor azimutal e um principal ndo compensam as cargas ambientais.
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Sem davida ao utilizar-se propulsores em tunel junto com principais podemos obter
trés graus de liberdade linearmente independentes com trés atuadores. Também podemos
obter trés graus de liberdade linearmente independentes deslocando-se para cima ou para
baixo o apoio fixo da Figura 1.15.

Embora seja possivel resolver o problema de Alocacdo de Empuxo com as

configuracBes expressas acima, isso ndo é recomendavel pelas seguintes razdes:
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e Se for utilizado o nimero minimo de atuadores, ¢ provavel que 0s mesmos nao
suportem cargas ambientais relativamente baixas, devido a sua saturacdo, pois 0S

propulsores tém limites de geracdo de empuxo.

e Caso haja falha em qualquer um dos propulsores, ndo serd possivel compensar as

cargas ambientais nem manobrar a embarcagé&o.

Portanto adicionar propulsores as configuragbes basicas (nimero minimo de
atuadores, que somam trés graus de liberdade L1), sistema torna-se redundante, como mostra a
Figura 1.16. Porém a redundancia permite que a embarcacdo opere em condi¢des mais

adversas, ou continue funcional mesmo com falha de algum dos propulsores.

Figura 1. 15 — Sistema redundante.
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De acordo com a Figura 1.16, um sistema redundante permite um conjunto infinito de
solucBes. Portanto a melhor maneira de escolher essa solucdo é otimizar algum quesito. Para
tanto é necessario definir um problema de otimizacdo e a ferramenta que sera utilizada para

resolvé-lo.

1.6.1 — Variaveis de Projeto

O conceito de variaveis de projeto € simples de entender, porém aplica-lo
corretamente € vital para o sucesso da otimizagdo (Silva, 2011). As varidveis de projeto
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permitem as manipulagdes do sistema de otimizacao. Note que tais manipulacdes devem estar

presentes no escopo do problema.

No Algoritmo de Alocacdo de Empuxo é possivel manipular o empuxo produzido
pelos propulsores, bem como angulo de azimute dos propulsores azimutais para minimizar a
poténcia requerida pelo navio. E importante notar que as variaveis do problema sdo continuas,
ou seja, podem assumir qualquer valor dentro de um intervalo limitado. Isso auxilia bastante a

otimizagdo, que fica bastante simplificada se comparada com outras de variaveis discretas.

Poder-se-ia afirmar que mudar a posicdo da embarcacdo pode diminuir as cargas
ambientais sobre a mesma, e consequentemente diminuir a poténcia necessaria para manter o
navio estatico, portanto o angulo de Yaw (Figura 1.3) deveria ser uma variavel de projeto.
Porém a Alocacdo de Empuxo diz respeito apenas a geracdo de forcas comandadas pelo
controle. Embora variar a posicdo da embarcacdo possa, de fato possa minimizar a poténcia
desenvolvida pela mesma, essa tarefa é responsabilidade do sistema de controle ou do

comandante da embarcagéo.

1.6.2 — Funcgéo Objetivo

A Funcdo Objetivo € o centro do problema de otimizacao, pois é a funcdo que define a
eficiéncia do projeto (SILVA, 2011). No caso, desse trabalho o objetivo € minimizar a
poténcia requerida pela embarcacdo para manté-la estatica.

A diminuicdo da poténcia garante economia de combustivel, o que significa economia
de dinheiro e menor emisséo de poluentes. Além disso, se a poténcia for utilizada de maneira

otimizada, a embarcacdo podera operar em condicdes mais adversas.

A principal caracteristica da Fungdo Objetivo é ser funcdo das variaveis de projeto, de
maneira direta ou indireta. O trabalho com vérios propulsores requer a minimizacdo da
poténcia do conjunto de atuadores. A matriz de pesos deve refletir a maneira como cada
propulsor consome poténcia. Isso ficara mais claro adiante, quando Funcdo Objetivo do

algoritmo de alocacdo de empuxo for definida.
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1.6.3 — RestricOes

As restrigdes definem a liberdade do programa de otimizagdo. Ou seja, ao manipular
as variaveis de projeto, visando a minimizacdo da funcdo objetivo devem-se respeitar as

restricOes laterais (de caixa), de desigualdade e de igualdade.

1.6.3.1 — RestricOes laterais

As restricOes laterais, também conhecidas como restri¢fes de caixa, definem os limites
superiores e inferiores das variaveis de projeto. Ou seja, tais restricdes estabelecem o intervalo
de manipulacdo das variaveis. Normalmente ilustram-se as restricdes de caixa com simbolos:
>e <.

A incorporacdo dessas restricfes neste projeto € simples. Para propulsores de um grau
de liberdade, dos quais se controla apenas 0 empuxo, basta limitar sua variacdo ao intervalo
de empuxo minimo e empuxo maximo. Esses dados sdo obtidos diretamente do manual dos

propulsores.

Para propulsores azimutais, deve-se limitar seu funcionamento em torno de seus dois

graus de liberdade (empuxo e angulo de azimute). Isso significa que o propulsor pode operar

entre 0° e 360° e; entre seu empuxo minimo (0 N) e seu empuxo maximo T,,,,. As Equagdes

1.1 e 1.2 ilustram as restri¢cGes do tipo caixa aplicadas a um propulsor azimutal, e a Figura
1.17 elucida graficamente essas equacdes.

0°< o < 360° (1.1)

0<T<T,., (1.2)
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Figura 1. 16 — Restri¢Oes de caixa de um propulsor azimutal.
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Note que a restricao de caixa referente a alocacdo entre 0° e 360° deve ser abandonada

para evitar problemas de singularidade.

1.6.3.2 — RestricOes de igualdade

As restricdes de igualdade definem os requisitos, que o algoritmo de otimizagédo deve
respeitar, durante a minimizagdo da Funcdo Objetivo. Ou seja, trata-se de um sistema que
contém combinac@es das variaveis de projeto igualadas a um vetor de valores constates.

A forma dessas equagbes é ilustrada no sistema de Equagdes 1.3, onde h;(x)

representa combinacdes das variaveis de projeto e V; sdo valores constantes:

h.(X) =V,
hy(X) =V, (1.3)

As restricbes de igualdade sdo utilizadas para equiparar as forcas designadas pelo
controle ao conjunto de forcas geradas pelos atuadores, considerando a perda de eficiéncia

dos mesmos, devido aos fendmenos de interferéncia.

1.6.3.3 — RestricOes de desigualdade
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As restricdes de desigualdade sdo bastante semelhantes as restricdes de igualdade, o
que as diferencia é a utilizacdo do sinal > ao invés de ==. A forma dessas equacdes é

ilustrada no sistema de EquagBes 1.4, onde g;(X) representa combinagdes das variaveis de

projeto e W, séo valores constantes.

9;(X) =W,
g,(X) = W, (1.4)

As restricGes de desigualdade séo as que trazem maior dificuldade & otimizacéo, pois podem
estar ativas ou inativas (SILVA 2011).

1.6.3.4 — Restrig0es ativas e inativas

Ao final da rotina de otimizacdo deve-se obter o valor minimo da Funcdo Objetivo
com todas as Restricdes respeitadas. Porém havera restricdes de desigualdade (incluindo as
laterais) que estardo inativas, ou seja, as variaveis estardo no meio do intervalo de
manipulacdo, o que significa dizer que seu valor ndo serd igual ao seu limite superior ou

inferior (para restricOes laterais).

Esse conceito é importante, pois revela qual das restrigdes tem papel limitante na
otimizagdo, o que permite melhorar o desempenho do sistema se for possivel relaxar tais
restricdes. Note que as restricGes de igualdade, como o proprio nome revela, deverdo estar

sempre ativas.

1.6.4 — Dominio Viavel

Uma vez definido o problema de otimizacdo: Variaveis de Projeto, Funcdo Objetivo
e Restrigdes. O Proximo passo € definir a regido onde é possivel buscar sua solucao (SILVA,
2011). A parte do dominio em que as restricdes sdo respeitadas € denominada dominio viavel,

e 0 restante denomina-se dominio inviavel.

A Figura 1.18 ilustra problemas de otimizacdo bastante didaticos que contém todos 0s

assuntos de otimizacdo discutidos até o momento.
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Figura 1. 17 — Problema de otimizacao solucionado dentro do dominio viavel com restricdes ativas (a) e sem

restrices ativas (b).

X5

Fonte: Silva (2011).

A Figura 1.18a ilustra um problema de otimizagdo bidimensional, cujas variaveis de
projeto sdo X, e X, . Representam-se as curvas de nivel da Funcéo Objetivo. O espaco viavel

definido pelas restricdes é o interior da politope e a solucdo 6tima do problema € encontrada

com restri¢des ativas.

A Figura 1.18b, bastante semelhante ao problema de otimizacdo da Figura 1.18a tem
as mesmas varidveis de projeto, apresenta outra Funcdo Objetivo, e 0 mesmo espaco viavel.

Porém a solugdo, que esté no interior do espaco viavel ndo ativa nenhuma das restricoes.

1.6.5 — Minimo Local e Global

A Figura 1.18 apresenta o conceito de minimo global e local para uma funcdo de uma
variavel. Os pontos de minimo local tém o menor valor da fungdo para os pontos ao seu redor.
O ponto de minimo global apresenta o menor valor da fungdo. E importante apresentar estes
conceitos, pois os algoritmos numéricos normalmente buscam somente os pontos de minimo
local (Nocedal and Wright 2006).
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Figura 1. 18 — Comparagéo entre pontos de minimo local e minimo global.

Mimmos Locais
Xl" Xz
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t(x,5)<t(x)

Mimmeo Global
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f(Xl)
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1.6.6 — Convexidade

A Convexidade € uma propriedade importante dos problemas de otimizacdo, a mesma
garante que o ponto de minimo local do problema convexo € Unico. Dessa forma o ponto de
minimo local também € o ponto de minimo global (Nocedal and Wright 2006). Entretanto

para que o problema seja convexo a fun¢do objetivo e o dominio devem ser convexos.

Para que a funcdo Objetivo seja convexa sua Matriz Hessiana (Eq. 1.5) deve ser
positiva semi-definida, ou positiva definida. Em termos praticos isso significa que o0s

autovalores da Matriz Hessiana devem ser todos maiores ou iguais a 0.

| 0%F 9%F 8% |
ox,>  OX10X, X 0Xg
2 2 2
Hess = o°F 0 F2 o°F (1.5)
OX10X,  0X, OX 70X 5
0°F 0°F 0°F
| OX10Xg  OX,0Xg Xy

Para que o dominio seja convexo as restricdes de desigualdade (Eq. 1.4) devem ser
concavas. E as restrigdes de igualdade devem ser lineares. Fisicamente isso significa que em
um dominio convexo, se unirmos dois pontos em seu interior por um segmento de reta (7),

todos os pontos de (7 ) estdo no interior do dominio viavel.
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Figura 1. 19 — Exemplo de espagos vidveis convexos e ndo convexos.

@00
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Fonte: adaptado de Silva (2011).

1.6.7 — Condicdes de Optimalidade de 12 ordem

As condicBes de necessarias para um ponto ser candidato a minimo local em problemas com
restricdes sdo as condicbes de Karuch-Kuhn-Tucker (KKT), Eq. 1.6. No caso de um problema
convexo, caso essas condicdes sejam respeitadas, encontrar-se-4 0 ponto de minimo global.
Note que as condi¢cdes oferecem as equacdes necessarias para resolver o problema de

otimizacdo, e dessa forma podem ser utilizadas para obter-se a solu¢do analitica do mesmo.

V L(X*A*) =0

h(x*)=0
g(x*) >0 9
A*>0

1.6.8 — Métodos de solucao de problemas de otimizacéo

Existem varios métodos de solucionar problemas de otimizacdo, que séo apresentados
na Figura 1.21. A seguir uma breve discussdo acerca dos mesmos é realizada. Para maiores
informacGes consulte Silva (2011) e Nocedal e Wright (2006).
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Figura 1. 20 — Métodos de solucdo de problemas de otimizacao.

Método Grafico

Multiplicadores de Lagrange

Métodos Analiticos { | o
Caélculo Variacional

Programagcdo Linear
Programagdo Quadratica

Métodos de ordem zero
Problemas sem restricdo < Métodos de primeira ordem

Métodos de segunda ordem

Métodos Numéricos ) .
Métodosdiretos

Problemas com restricdo< | o
Métodos indiretos

Programacdo Linear Sequencial

Métodos sequenciais ~ . )
Programacdo Quadratica Sequencial

Métodos Probabilisticos

O método gréafico consiste em representar o espago viavel (as restricdes) e curvas de
nivel da Funcdo Objetivo e buscar os pontos 6timos (Figura 1.18). Embora seja uma
metodologia eficiente é muito simploria e ndo permite solucionar problemas com mais de dois

graus de liberdade.

Os métodos analiticos sdo 0s mais consistentes, ou seja, seus resultados sdo confiaveis,
pois estdo embasados em solucdes puramente matematicas. Entretanto se o problema de
otimizacdo for moderadamente complexo ndo é possivel utilizar tais métodos. Destaca-se
nessa classe: o método dos multiplicadores de Lagrange e o Calculo Variacional, bastante

utilizado em problemas estruturais.

Os métodos numéricos apresentam uma gama de técnicas de otimizacdo. O método de
programacao linear é bastante difundido, porém sé é aplicavel para problemas de otimizacéao
lineares (com Funcdo Objetivo e RestricGes lineares).

Os problemas sem restricdo fornecem grande liberdade de solucdo. A diferenca entre
0s métodos de ordem zero, primeira ordem e segunda ordem é a quantidade de informacfes
da Funcdo Objetivo. Nos métodos de ordem zero s6 ha valores da Fungdo Objetivo, enquanto

no método de primeira ordem dispde-se também do gradiente da mesma.
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Os problemas de otimizacdo ndo lineares com restrices sdo bastante complexos. Ha
duas abordagens para resolvé-los: caminhar dentro do espaco viavel com informacdes sobre o
gradiente da Fungdo Objetivo e verificar se a cada passo houve melhora na solucdo (métodos
diretos) ou; transformar um problema com restricbes em um problema sem restricoes

(métodos indiretos), e aplicar a metodologia de problemas sem restricdo para resolvé-lo.

Os métodos sequenciais aproximam as ndo linearidades das equacbes por funcdes
lineares. Dessa forma resolvem-se problemas simplificados em intervalos confidveis (onde a
aproximacdo de Taylor é valida). Soluciona-se sucessivamente o problema até que haja

convergéncia.

Os métodos probabilisticos tentam solucionar os problemas de otimizacéo através de
solucBes randdmicas. Também ha uma vertente desses métodos que aposta em basear-se em

fenbmenos da natureza, como a genética, para solucionar o problema de otimizagéo.

Embora seja um pouco cedo para justificar a escolha do algoritmo de otimizagdo por
um método numeérico, adianta-se que esse é a melhor metodologia para lidar com o problema
da alocacdo de empuxo considerando a complexidade dos fendmenos de interacdo. A
justificativa para a escolha deste método esta na secao 2.2.9.

1.6.9 — Linhas gerais de algoritmos de otimizacdo numéricos

Em linhas gerais os algoritmos de otimizacdo numeéricos funcionam da seguinte
maneira. Inicia-se com um ponto (“chute”) inicial e procede-se com uma sequéncia de
melhores estimativas para o problema (iteracdes). Geralmente as novas iteracdes dependem
da fungdo objetivo, da Ultima iteracdo e em alguns casos de iteracdes anteriores. O algoritmo
continua as iteracOes até que ndao haja como fazer progresso ou até que se chegue a uma
solug@o com suficiente precisao (Nocedal and Wright 2006).

Basicamente existem duas estratégias para realizar as iteragdes: Trust Region e Line
Search. Note que existem varios algoritmos de otimizacdo numérico, mas eles sdao variacdes

desses modelos.

1.6.10 — Trust Region x Line Search

A estratégia Trust Region (Fig. 1.22) consiste em definir uma regido (normalmente

circular) em torno da ultima solugdo. Note que o raio da regido é o tamanho maximo do passo
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para a proxima iteracdo. A estratégia de definir uma regido confiavel permite que a funcéao
objetivo e as restricbes sejam aproximadas por fun¢ées mais simples. Portanto basta resolver

0 problema ilustrado na Eq. 1.7, em que m, é uma aproximagao da funcéo objetivo (Nocedal

and Wright 2006).

minm, (X, +p) 1.7)

Na estratégia Line Search (Fig. 1.22) escolhe-se uma dire¢do que minimize a funcéao

objetivo d e define-se 0 passo que se da nessa direcdo a fim de resolver o problema descrito
na Eq. 1.8.

min f (X, +p-d) 1.7)

Figura 1. 21 — Line Search x Trust Region.

Line Search Trust Region
X3 ” X, -
7 d APENEN
P /- mx)
4 / \
/7 [ /1
z ‘\ Xy /l
\ /
Xi So _’
X X;

Note que as dire¢bes que minimizam a fungdo objetivo estdo contidas na diregéo
contréria ao gradiente da fungdo podendo-se variar 90° em relacdo a mesma, conforme
ilustrado pela Fig. 1.23 (Nocedal and Wright 2006).



Figura 1. 22 — Possiveis direcdes para 0 método Line Search
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a? Direg¢éo do gradiente da fun¢édo Objetivo
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2 — Descricao e Analise da Implementacao Inicial do
Algoritmo de Alocacao de Empuxo Levando em conta

Interferéncias

Inicialmente apresenta-se o0 estado da arte da alocacdo de empuxo e seu
desenvolvimento. Esse desenvolvimento levou a alocagdo de empuxo a um novo patamar, no
qual os fendmenos de interagdo hidrodinamicos que agem sobre os propulsores séo
considerados. O algoritmo de alocacdo de empuxo que considera tais interacfes é descrito e
analisado a fim de verificar seu funcionamento e vantagens, o que permitira aplica-lo num

software para simulacdo de operagdes de posicionamento dindmico.

2.1 — Estado da Arte

A alocacdo de empuxo € um assunto maduro, portanto o problema e suas solugdes
evoluiram de maneira consistente com o crescimento do mercado de posicionamento
dindmico. Diferentes representacdes e abordagens sdo apresentadas nessa se¢do. A evolugéo
do problema e de suas solucdes é apresentada de maneira a ilustrar a evolucdo de sua
complexidade.

2.1.1 - Funcao Objetivo Quadratica, sem Fenémenos de Interacao
Esse problema foi o primeiro passo no desenvolvimento de algoritmos de alocacgdo de
empuxo. A funcdo objetivo que representa a potencia consumida pelos propulsores, ilustrada
na Eq. 2.1 € simplificada para uma funcdo quadratica. A mesma é uma aproximacao da
relacdo real entre empuxo e consumo energético. c; representa a constante de potencia e T; 0
empuxo desenvolvido por cada propulsor.
N
P = Z Ci- Tiz (21)
=1

2
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As restricbes impostas a este problema séo a geracdo das forcas requeridas (Fy, F,,, M)
pelo sistema de controle, sem considerar os fenomenos de interacao. F,, e F,, sdo as forgas

desenvolvidas por cada propulsor, x; e y; sdo a posicdo longitudinal e lateral do propulsores,

respectivamente.

2

[y

F,—F,=0 (2.2)

1

2

N N
D B )= ) F )~ M, =0
\i=1 i=1

N

A solucdo deste problema é bastante simples e conhecida. Utiliza-se 0 método dos
multiplicadores de lagrange, a fim de obter um sistema linear que é facilmente resolvido.
Quando os propulsores sdo iguais é possivel utilizar diretamente a matriz pseudo-inversa para

resolver esse sistema.

Superficialmente, 0 método dos multiplicadores de lagrange une a fungdo objetivo as
restricdes, multiplicando as mesmas por novas variaveis (L), essa nova fun¢do é denominada
lagrangeano (L), Eq 2.3. Isso relaxa o problema uma vez que ndo ha mais equacbes de
igualdade. O passo seguinte é definir a condi¢do de otimizacdo, representada na Eq. 2.4, na

qual o gradiente do lagrangeano deve ser 0 (X sdo as variaveis de projeto).

L=0bj—A;h; (2.3)
o _ak_ (2.4
oX oA '

2.1.2 — Potencia Exata, sem Fendémenos de Interacéo

O segundo passo na evolucdo de problemas de alocacdo de empuxo foi utilizar a
relacdo exata entre 0 empuxo desenvolvido e a potencia necessaria para gera-lo, Eq. 2.5. Note
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que essa relacdo é valida para as condicdes em que a embarcacdo esta numa condicdo
estacionario e ndo ha correnteza (bollard pull).

N W

(2.5)

N
P:ZCi'Ti
i=1

As restricdes sdo as mesmas que as representadas na Eq. 2.2. Ou seja, 0s fendmenos

de interacdo hidrodinamicos ndo sdo considerados.
Esse problema também é bastante conhecido e apresenta solugdes eficientes:

Aproximar a potencia por uma equa¢do quadratica (Eg. 2.6), e resolver esse problema como
descrito na segéo 2.1.1.

P:a0+a1'T+a2'T2 (26)

Utilizar o método de Newton. O método de Newton representado na Figura 2.1, é
aplicado no sobre o gradiente do lagrangeano (Eq. 2.4), pois para obter-se um ponto de
minimo o mesmo deve ser nulo. Superficialmente, o método de Newton consiste em: a cada
da iteracdo dar um passo na direcdo contraria ao gradiente da funcdo (Hessiana do
Lagrangeano), até que o gradiente seja nulo ou até que um critério de parada seja atingido.
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Figura 2. 1 — Método de Newton.

// Tangent at x,

Tangent at x;

2.1.3 — Potencia Exata, sem Fendmenos de Interacdo considerando saturagdo dos

propulsores
A potencia é considerada conforme a Eq. 2.5 (relagdo exata).
As restricOes sdo as mesmas que as representadas na Eq. 2.2.

A saturagdo dos propulsores é representada conforme a Eq. 2.7, que ilustra 0 empuxo

maximo que cada propulsor pode gerar.

I {T; < Thax, (2.7)

A solucdo convencional a este problema de saturacdo € o pds-processamento.
Inicialmente o problema é resolvido sem que sejam consideradas as desigualdades (conforme
um dos métodos apresentados em 2.1.2). Avalia-se caso um ou mais propulsores devem gerar
um empuxo superior a sua saturacdo. Caso isso ocorra, define-se que esse propulsor
desenvolvera seu empuxo maximo, e uma nova alocacdo de empuxo € realizada,

considerando-se como um dado o empuxo desenvolvido pelo propulsor saturado.
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2.1.4 — Potencia Exata, fendmenos de interacéo evitados e considerando saturacdo dos
propulsores

A potencia € considerada conforme a Eq. 2.5 (relagdo exata).

As restricdes sdo as mesmas que as representadas na Eq. 2.2, pois as regifes com
interacdo hidrodindmica sdo evitadas.

A saturacdo dos propulsores é representada conforme a Eq. 2.7.

E os propulsores ndo podem ser posicionados em regides onde ocorre significativa
interacdo hidrodindmica, chamada zona proibida. A Eq. 2.8 a representacdo matematica de

uma zona proibida de 20° em torno do angulo asorpigaen -

I: {(ai - aforbidden)z = 10? (28)

A Figura 2.2 ilustra a eficiéncia de um propulsor, destacando as zonas proibidas, onde
a eficiéncia é significativamente inferior devido a interagdo do mesmo com outros

propulsores.

Figura 2. 2 — Zona proibida.

/' -\ [ZZ] Forbidden zone
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A solucdo deste problema é bastante semelhante ao método de pdés-processamento
apresentado na se¢do 2.1.3. Inicialmente resolve-se o problema de alocacéo
independentemente da desigualdade 2.5. Caso algum dos propulsores seja posicionado no
interior de sua respectiva zona proibida, 0 mesmo é direcionado para a fronteira mais préxima

da mesma, e essa informacdao € considerada constante na alocacgéo seguinte.

Nota-se, portanto que os fendmenos de interagdo sdo considerados na alocacdo de empuxo, ao
evita-los. Embora essa solugéo evite interacdes hidrodindmicas significativas, a mesma néo
considera de fato a eficiéncia do propulsor em diferentes angulos de azimute nem os
fendmenos hidrodindmicos em si, 0 que poderia melhorar significativamente a precisao do
sistema DP. A secdo 2.2 apresenta o algoritmo de alocagdo de empuxo desenvolvido por
Arditti e Tannuri (2011 e 2012), que de fato representa e considera as interacdes

hidrodinamicas entre propulsores e entre propulsor e casco.
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2.2 — Algoritmo de Alocacdo de Empuxo levando em conta interagdes

hidrodinamicas

2.2.1 — Tratamento Matematico para Curva de Eficiéncia do Propulsor

A fim de implementar os dados de interferéncia no algoritmo de alocacdo de empuxo,
utilizam-se fatores de eficiéncia referentes a cada angulo de azimute do propulsor azimutal.
Como ilustrado no estudo qualitativo de interferéncia isso é necessario, pois a eficiéncia é

funcéo da posicdo angular do propulsor.

n=f(a) (2.9)

A Tabela 2.1 e Figura 2.3 ilustram a aplicacdo desse método.

Tabela 2. 1 — Fatores de eficiéncia para o propulsor azimutal.

Angulo  Eficiéncia Angulo Eficiéncia Angulo  Eficiéncia Angulo  Eficiéncia

Qe 0,80 90° 0,50 180° 1,00 270° 1,00
10° 0,82 100° 0,75 190° 1,00 280° 0,98
20° 0,84 110° 1,00 200° 1,00 290° 0,96
30° 0,87 120° 1,00 210° 1,00 300° 0,93
40° 0,89 130° 1,00 220° 1,00 310° 0,91
50° 0,91 140° 1,00 230° 1,00 320° 0,89
60° 0,93 150° 1,00 240° 1,00 330° 0,87
70° 0,96 160° 1,00 250° 1,00 340° 0,84
80° 0,75 170° 1,00 260° 1,00 350° 0,82

Fonte: Arditti e Tannuri (2011).
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Figura 2. 3 — Fatores de eficiéncia do propulsor em coordenadas polares.

180

270

Fonte: Arditti e Tannuri (2011).

A curva de eficiéncia da Fig. 2.3 foi construida a partir de dados bibliograficos, porém
poder-se-ia utilizar um modelo para construi-la, como é descrito na secdo 2.2.2.7. Para

interacdes entre propulsores foi utilizado o modelo sugerido por Moberg e Hellstrom (1983);
ilustrado na Figura 2.4.

Figura 2. 4 — Modelo de interferéncia entre dois propulsores.

Deg
30

20

0 5 10 15 20 25 S/D 30

Fonte: Moberg e Hellstrom (1983).

Para iteracOes entre propulsor e casco o modelo de interferéncia adotado é descrito em
Ekstrom e Brown (2002) e Moberg e Hellstrom (1983). A perda de eficiéncia quando o jato
d’agua percorre todo o casco é considerada como de 20%, e quando o jato d’agua é
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transversal ao casco ndo hd queda na eficiéncia do propulsor. Note que os efeitos de

interferéncia foram somados (Figura 2.3), pois ndo sdo mutuamente excludentes.

Apobs a definicdo do modelo de tratamento da eficiéncia dos propulsores, curva de

eficiéncia, apresenta-se a estrutura do Algoritmo de Alocacdo Empuxo sugerido.

2.2.2 — Estrutura Inicial do Algoritmo

A estrutura do Algoritmo de Alocagdo de Empuxo (Arditti and Tannuri 2011)
implementado inicialmente é apresentada na Figura 2.5. Cada bloco sera explicado a seguir:

Figura 2. 5 — Estrutura do algoritmo.

A . T T

r *  Linear cart X0 oy
F | —g— SOlution *|function . MATLAB
T FMINCON
polar|  max/min Ti,oi

function ¥ Optimization algorithm:
interior-point

Objective function

2

max number of
iterations: S000

¥

A i noncoln
function

effciency data

v ¥

Fonte: Arditti e Tannuri (2011).

2221 - VetoreS F, Tcart e Tpolar
O vetor F contém as forcas requeridas pelo sistema de controle. As forcas geradas pelo
conjunto de atuadores da embarcacdo, levando-se em conta os fendmenos de interferéncia,

deve igualar esse vetor.

Fsurge
F =| Fsway (2.10)
Myaw
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T.art CONtém a solugdo inicial da alocacdo em coordenadas cartesianas para cada
propulsor,
Fsurge
Teart = 0 (2.11)
Fsway
Toolar CONtEM a solugdo inicial em coordenadas polares de cada propulsor. E o “chute

inicial” do algoritmo de alocacdo.

T
TWMr=[emw° } (2.12)

angulo de trabalho

2.2.2.2 — Matriz A

A Matriz A relaciona o empuxo de cada propulsor (Tcart) COm sua contribuicdo ao
empuxo resultante em cada direcao, e depende unicamente da localizacéo relativa ao centro
de gravidade da embarcacdo (DE WIT, 2009). E de grande importancia ao algoritmo de
alocacdo de empuxo, pois contribui para a construcdo do sistema de forcas geradas pelos
atuadores da embarcacéo.

A primeira linha da matriz representa a direcdo Surge; a segunda linha a direcdo Sway
e; a terceira linha o momento de Yaw. Ilustra-se na Eq. 2.13 a construcdo da matriz A para um
propulsor azimutal, onde X e Y representam a localizagcdo do propulsor nas coordenadas da
embarcacdo. A matriz tem duas colunas, pois o propulsor gera empuxo nas dire¢oes de Surge
e Sway, e € mais simples representd-lo como a soma de um propulsor principal e um

propulsor em tanel.

A,=l0 1 (2.13)
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2.2.2.3 — Linear Solution
Essa funcdo resolve o problema de alocacdo sem levar em conta o problema de
interferéncia. E o “chute inicial” necesséario ao problema de otimizagdo. pinv gera a matriz

pseudo-inversa.
Tcart = pinv(A)xF (2.14)

A solugédo T4t gera a alocagdo com menor consumo de poténcia para a Equacdo 2.15
(como ilustrado no anexo B), que é bastante similar com consumo de poténcia real
apresentado na se¢do da Funcdo Objetivo, ou seja, € um bom "chute" inicial. n representa o

namero de propulsores.
P(power)=>"(T;)? (2.15)
i=1

Algoritmos numéricos de otimizacdo requerem uma “solucdo inicial”, pois trabalham
em espacos N dimensionais (onde N é o nimero de variaveis relevantes ao problema), e

através de iteracGes a melhor solucédo é encontrada.
N = N°( prop principais )+ N° (prop em tunel) + 2 - N° (prop Azimutais) (2.16)

2.2.2.4 — X0 function

Essa fungéo transforma a solucdo as coordenadas cartesianas em coordenadas polares
(Equacdo 2.17). No caso de um propulsor azimutal, a fun¢do recebe FSurge e FSway e
devolve o empuxo total T (Equacéo 2.18), e o angulo de trabalho do propulsor o (Equacao
2.19). Para propulsores principais e propulsores em tdnel, essa mudanca de coordenadas ndo é
necessaria, pois a eficiéncia dos mesmos depende apenas do sentido do empuxo, portanto seu

sinal (‘+” significa empuxo para frente; ‘-’ significa empuxo a ré).
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Tootar = X 0(Teart ) (2.17)

T= \/ Fsurge® + Fsway? (2.18)

o= arctg[ Fsway j (2.19)
Fsurge

2.2.2.5 — max/min function ou restri¢des laterais do problema de alocacéo

Essa funcdo define os limites de alocacdo, portanto o angulo maximo e minimo de
trabalho dos propulsores azimutais, e os limites de empuxo maximo e minimo. Como
discutido nos fundamentos tedricos, definem-se as restricdes de caixa conforme o intervalo de

trabalho dos atuadores.

O codigo basico dessa funcdo é apresentado nas Equacbes 2.20 e 2.21. Note que 0s
valores méximos de empuxo representam 80% de seu valor maximo real, isso deve ser feito
por medidas de seguranca (MOBERG; HELLSTROM, 1983).

min —

0<a; <2n (2.21)

2.2.2.6 — Objective Function
A Funcéo Objetivo é aquela que deve ser minimizada pelo algoritmo, portanto deve-se

tornar minima a poténcia consumida pelo navio durante sua opera¢do DP. Segundo Tannuri

(2002), a relagdo entre poténcia e empuxo esta expressa na Equagdo 2.22, onde ¢, é um valor

constante.

3

P(power) o (T;)2 = P(power) =c, - (T,)

N w

(2.22)

A Equacdo 2.22 expressa a poténcia de um unico propulsor. O objetivo da otimizacao

é minimizar a poténcia geral consumida pelo conjunto de atuadores. Caso 0s propulsores
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sejam diferentes, é necessario construir uma matriz de peso, que atribua as constantes de

potencia aos seus respectivos propulsores.

c, 0 0 0 (Tl)zs

n 1o 0 0|(T,)2
Obj(CwTi):Z{ci'(Ti)z}: 0 %2 c 0 ( )3 (2.23)

0 0 ¢, (Ts)z

(T2

2.2.2.7-n(a)

n é a funcdo de interferéncia ilustrada na Figura 2.2. Embora fosse mais correto definir
n(a,n) onde n é a rotacdo do propulsor, pois muitos dos efeitos de interferéncia poderiam
depender da velocidade do jato d’agua (como explicado no item 1.3), utiliza-se apenas a
dependéncia com angulo de propulsdo o . Isso se deve ao fato da eficiéncia ter variado muito
pouco com diferentes rotagcdes nos testes praticos (ARDITTI; TANNURI, 2011).

Outra razdo é que os fatores de eficiéncia (n) servem para comparar os diferentes
angulos de propulséo, necessarios a Alocacdo de Empuxo, portanto obter-se-4 uma alocacéo
otimizada mesmo que a rotacdo do propulsor caia (todos os fatores de eficiéncia diminuirdo

de maneira proporcional a n®, em que R estabelece uma relag&o entre a rotagdo do motor e a
velocidade do jato d’agua). O equilibrio do navio sera garantido pela robustez do sistema DP,
que conta com realimentacdo em seu controle de alocacdo. Dessa maneira, a comparacao
relativa entre a eficiéncia dos diferentes angulos de alocacdo de cada propulsor é mais
importante que seus valores globais.

Além disso, caso fosse definida a funcdo n(a,n), o algoritmo se tornaria muito
complexo (tendo em vista que o empuxo também depende da rotacdo n) e ndo haveria como

solucionar o problema de alocagéo.

Os dados de interferéncia podem ser encontrados na bibliografia, ou devem-se realizar
testes com o0 modelo de embarcagdes, como ilustrado no arranjo experimental da Fig. 2.6.
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Figura 2. 6 — Arranjo experimental para obten¢éo da curva de eficiéncia dos propulsores.
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As EquacOes 2.24 e 2.26 ilustram como obter a eficiéncia em ensaios experimentais
(ARDITTI; TANNURI, 2012):

_To
pn’D*

T é 0 empuxo; p é a densidade da agua; D é o didmetro de propulsor;

(2.24)

Ko pode ser determinado a partir de testes com o propulsor desacoplado ao navio.

T

K. é determinado através de testes do propulsor acoplado ao navio.

Finalmente:

(2.25)



S7

=L (2.26)

2.2.2.8 — noncoln function

Essa funcdo garante que o navio suportara as cargas ambientais. A funcdo ndo linear
de restri¢bes (noncoln, Manual do MATLAB 2008), contém um sistema com as trés equacdes
da forca requerida pela embarcacdo (direcbes Surge e Sway; e momento de Yaw),
considerando o problema de interferéncia.

Neste caso trata-se da forca efetiva exercida pelos propulsores, ou seja, considera-se a
perda de eficiéncia relacionada aos fenémenos de interferéncia. A Figura 2.7 ilustra como é a
distribuicdo de empuxo efetiva para um caso geral (note que a funcéo effic € a eficiéncia do
propulsor em funcédo de sua posicdo angular):

Figura 2. 7 — Célculo da Forga efetiva considerando o fendmeno de interferéncia.

(T,o)
T -effic(ct) - sen( o)

(T -effic(c), o)

s o o

T -effic(ot) - cos(a)

Empuxo e angulo de
azimute comandados

Quedano empuxo liquido Distribuicio da forca efetiva

. . -~ A . | . A\ b } 4
devido a mterferéncia em Surge e Sway

Determinadas as forcas efetivas pode-se montar o sistema de Equagbes 2.27 que
representa a geracdo de forcas da embarcacdo. Portanto a solugdo desse sistema com o menor
valor da funcdo objetivo, respeitando-se as limitacdes dos propulsores, garantira o equilibrio

da embarcagdo com o menor consumo de energia.
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N
Zin'rli_Fx:O
=1

lN
R: ¢ Z F, m—F=0 (2.27)
i=1

N N
ZFyi'Tli'(xi)_zin'rli'(yi)_Mz =0
\i=1 i=1

2.2.2.9 — FMINCON function (Manual do MATLAB 2008)

De acordo com a divisdao de métodos de solucdo de problemas de otimizacdo, listados
na fundamentacdo teorica, deve-se optar por um método de solucdo ndo analitico devido a
complexidade do problema, ilustrado pela curva de eficiéncia do propulsor (Tabela 2.1)

combinado a ndo linearidade da funcdo objetivo.

Note que o método grafico embora eficiente seja ineficaz neste projeto, devido ao

elevado nimero de variaveis de projeto (minimo 4 como discutida na secéo 1.5).

Métodos randémicos também ndo sdo cabiveis a este projeto, pois 0 nimero elevado
de varaveis continuas dificulta o acerto de uma solucdo 6tima, e o tempo de processamento

seria muito elevado.

Dessa forma opta-se por trabalhar-se com o método numérico de problemas com
restricdes, que consegue lidar bem com a complexidade das restri¢ces de igualdade (noncoln)
e da funcdo objetivo.

O algoritmo de alocacdo é executado pela funcdo FMINCON do programa MATLAB.
Essa funcao resolve o sistema ndo linear de restricdes (noncoln), através da estimativa inicial (

T polar ), das limitacGes dos propulsores (max/min function), buscando o menor valor da fungéo

objetivo (Obj(T)).

2.2.3 — Resultados da Implementacéo inicial do Algoritmo
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2.2.3.1 — Algoritmos de Alocacao de Empuxo simulados

A implementacdo inicial do Algoritmo de Alocacdo de Empuxo foi testado e

comparado com dois algoritmos de Alocacdo de Empuxo padrdo (ARDITTI; TANNURI,
2011, 2012):

1.

2.

Simple Lagrangian Allocation (S.L.A.): Simples Alocacdo de Empuxo, utilizando o
método da matriz pseudo-inversa (normalmente utilizado em simulagbes da

embarcacao).

Algoritmo de Zona Proibida: Algoritmo de Alocacdo de Empuxo que ndo permite
posicionar os propulsores em zonas onde o jato d’agua de um propulsor acerte outro
propulsor. Ou seja, define-se uma zona de +20° em torno da direcdo que liga dois
propulsores relativamente proximos. Além disso, ha um algoritmo recursivo interno
que garante que a Alocacdo de Empuxo respeite as forcas de controle. Esse algoritmo
recursivo interno emula um sistema de controle, que considera os fendmenos de
interferéncia (baseado nas curvas de eficiéncia da embarcacgdo), isso é necessario pois
a concepcao deste algoritmo considera apenas uma simplificacdo do problema de
interferéncia entre propulsores, deixando de lado, todas as outras fontes de perda de

eficiéncia.

2.2.3.2 — Embarcac0es Testadas

Utilizaram-se duas embarcacdes para compara os algoritmos de Alocacdo de Empuxo:

O Navio 1 (Fig. 2.5) € uma é uma FPSO - Unidade flutuante de armazenamento e

transferéncia (em inglés Floating Production Storage and Offloading). Esse navio ndo tem

modelo, portanto suas curvas de eficiéncia (Fig. 2.6) foram construidas a partir de dados
bibliograficos (ARDITTI; TANNURI, 2011).
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Figura 2. 8 — Desenho esquematico do Navio 1.
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Fonte: Arditti e Tannuri (2011).

Figura 2. 9 — Curvas de eficiéncia do Navio 1.

thruster 1 thruster 2 thruster 3 thruster 4

Fonte: Arditti e Tannuri (2011).

A Embarcacdo 2 é utilizada como navio guindaste. Uma foto do modelo dessa
embarcacdo esta ilustrada na Fig. 2.7. As curvas de eficiéncia de seus propulsores foram
determinadas a partir de simulagcGes com o modelo no Tanque de Provas da escola Politécnica
da USP (Arditti and Tannuri 2012) e sdo apresentadas na Fig. 2.8.



Figura 2. 10 — Modelo da Embarcacéo 2.

Figura 2. 11 — Curvas de eficiéncia dos propulsores da Embarcagéo 2.
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Fonte: Arditti e Tannuri (2012).
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2.2.3.3 — Resultados das Simulac6es
Constatou-se que a implementagéo inicial do Algoritmo de Alocacdo de Empuxo
considerando interferéncia realiza uma alocacdo objetiva e consegue lidar com qualquer

forma de interacao.

As simulagbes computacionais ilustram significativa economia no consumo de
combustivel do Navio 1, podendo-se atingir 129000 litros de economia de diesel por ano para
uma frota de 10 embarcagdes, a0 comparar-se 0 S.L.A. e 0 Algoritmo de Zonas Proibidas.
Além disso, a janela de operacdo, que representa a condicdo extrema em que a embarcacao
pode operar, aumentou em 5% (ARDITTI; TANNURI, 2011).

O ensaios experimentais da Embarcacdo 2 ilustraram a necessidade de considerar 0s
fendmenos de interferéncia na alocacdo. Observe que na Figura 2.9, os dois algoritmos que
levam em conta as interacbes chegaram muito mais préximos de atingir a forca de controle,
ou seja, ao incluir os dados de interferéncia na alocacdo o sistema torna-se significativamente

mais preciso e seguro.

Figura 2. 12 — Ensaio experimental da Embarcagao 2.
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Fonte: Arditti e Tannuri (2012).

Embora os dois algoritmos (proposto e de zonas proibidas) sejam igualmente precisos
nota-se claramente que o algoritmo desenvolvido é mais eficiente. Na simulagdo da Fig. 2.9

observou-se economia de 10,3 %. Na média dos ensaios a economia ficou em 5%.
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2.2.4 — Analise da Implementacdo Inicial do Algoritmo proposto

O algoritmo comportou-se da maneira esperada, sendo sempre superior aos
Algoritmos de Alocagdo de Empuxo utilizados atualmente. Nota-se que o sistema fica mais
preciso ao considerar o sistema com interferéncia, e consequentemente mais seguro, pois a
forca comandada € alocada mais rapidamente, prevenindo comportamentos inesperados da

embarcacao.

Além disso, o ganho econdmico fica evidente quando se compara 0 consumo de
combustivel entre os algoritmos. N&o obstante, esse ganho econdmico é mais pronunciado se
for considerado o custo de oportunidade referente ao aumento da janela de operacdo da

embarcacao, o que implica na possibilidade de operar por mais tempo.

Embora os resultados tenham sido excelentes uma analise objetiva do ponto de vista
de otimizacgdo revela que o algoritmo proposto ndao é convexo, ou seja, ndo ha como garantir
que os resultados atingidos sejam os melhores possiveis. 1sso se explica no fato de que num
problema ndo convexo ndao ha como garantir que um ponto de minimo local seja o ponto de

minimo global.

A seguir prova-se que a modelagem atual do problema torna-o ndo convexo. As
condicdes de convexidade séo:

1. Matriz Hessiana positiva definida ou positiva semi-definida. Essa condicdo é
respeitada, pois a Matriz Hessiana é positiva semi-definida apresentando o aspecto
ilustrado na Eq. 2.28 (repetindo-se o padrdo para a diagonal principal e o resto da

Matriz é preenchido com 0, para mais de um propulsor):

0°F  0°F 3
aF 3
Hess=| 7T a;f:‘ -l 2.7 (2.28)
°F 0 0
0Toa. 0o’

2. Espaco viavel convexo. Essa condicdo ndo é respeitada. Embora as equacdes de
desigualdade (max/min function) sejam todas lineares (portanto codncavas), as

restricdes de desigualdade (noncoln) ndo sdo lineares.
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3 — Estudo da Dinamica Interna do Algoritmo de Otimizacao

O estudo da dinamica Interna da implementacéo inicial do Algoritmo de Alocagéo de
Empuxo tem por objetivo: Retratar seu funcionamento para que seja possivel melhoréa-lo e
torna-lo aplicavel em um pacote computacional, ou seja, em um produto que ndo pode

depender do software MATLAB, que € pago.

A implementacdo inicial do Algoritmo de Alocacdo de Empuxo tem sua estrutura
retratada na Fig. 2.5. Inicialmente sera apresentada a dindmica do Algoritmo de Alocacdo de
Empuxo (Fig. 3.1) de maneira mais simplificada e cada uma das func¢bes do algoritmo sera

detalhada quanto ao seu funcionamento intrinseco.

Figura 3. 1 — Dindmica da implementagdo inicial do Algoritmo de Alocagéo de Empuxo.

Fco ntrole
F = CFSurge : FSv:zy : ‘\II_\-av:)

Alocacéo Linear
Sem Interferéncia

Solugao Linear
Tt = (T iy Toxa o)

Cord Cartesianas para
Cord. Polares

Chute Inicial
Tp = (Tl, al,T:= (l:,,.)

Alocagdo com
Interferéncia e Fungéo
Objetivo real
Empuxo Alocado
T‘ = (Tl.:o'l.: TZ.: U-:':A..)

Visto que o Algoritmo de Alocacdo de Empuxo desenvolvido pode ser dividido em 3

blocos principais descreve-se a fungéo de cada um destes blocos.
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1. Alocacdo Linear sem Interferéncia: Simples Alocagdo de Empuxo para gerar as forgas

de controle, considerando-se o sistema sem Interferéncia e com Funcdo Objetivo
Quadratica.

2. Cord. Cartesianas para Cord. Polares: Simples passagem da solucdo linear para

coordenadas polares, para gerar o chute inicial de alocacdo, uma vez que a mesma é

realizada em coordenadas polares.

3. Alocacdo com Interferéncia e Fungéo Objetivo real: Sistema de otimizagdo que recebe
0 chute inicial de alocacdo em coordenadas polares, e gera as forgas de controle
considerando os fendmenos de Interferéncia e a Fungdo Objetivo real.

A Fig. 3.2 apresenta os 3 blocos do Algoritmo de Alocacdo de Empuxo fornecendo
maiores detalhes quanto a maneira como cada um é processado. Note que o bloco inicial é
resolvido utilizando-se pseudo-inversa de A. O segundo bloco tem uma solucdo bastante
simples. Por fim o terceiro bloco representa o sistema mais complexo, que é resolvido (no
estagio inicial de desenvolvimento) pelo programa MATLAB e a fungdo FMINCON.

Figura 3. 2 — Dindmica de otimizacdo do algoritmo de otimizacdo detalhada.

f

F (Fx,Fy,Mz) r— Te = (Tx,Ty,.)
grangean

- Tp=(Taq,.)
X \ (inital guess) /
) Efficiency Matlab |
Data Algorithm Tfinal
(T, .. %)
Objective
Function Noncoln

Fonte: Arditti e Tannuri (2012).
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A seguir analisa-se a escolha do chute inicial do Algoritmo de Alocagdo de Empuxo e
da dindmica interna do algoritmo de otimizacdo do MATLAB. A passagem de coordenadas
cartesianas para polares é simples e foi descrita no capitulo anterior.
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3.1 — Anélise do Chute Inicial do Problema de Alocacéo de Empuxo

O chute inicial do Algoritmo de Alocacdo de Empuxo é realizado pela solucdo do
sistema sem interferéncia considerando-se uma funcéo objetivo quadratica. O anexo A ilustra

que essa solucdo é obtida através da Matriz pseudo-inversa da Matriz A.

O chute inicial ndo considera os fendmenos de interferéncia pois se trata simplesmente
da primeira iteracdo do algoritmo, que visa apenas encontrar um ponto préximo a solucao
final do problema. A consideragdo dos fendmenos de interferéncia tornaria essa etapa lenta
sem qualquer necessidade.

Opta-se por resolver o problema considerando-se a poténcia quadratica (T?), ao invés

3
da poténcia real (T 2 ) por duas razdes:

1. As solucgdes do sistema sem interferéncia para a poténcia quadréatica e para poténcia

real sdo muito proximas.

2. Resolver o problema considerando-se a poténcia real é mais complexa e requer maior

tempo de processamento.

Destaca-se que ndo é escolhido um chute inicial aleatdrio, pois os algoritmos de
otimizacdo dependem bastante da primeira iteracdo para resolver o problema, e uma escolha
aleatorio poderia posicionar o sistema muito distante da solugdo 6tima, o que poderia incorrer
em elevado tempo de processamento até chegar-se a solucdo 6tima, ou mesmo, levar a Gltima

iteracdo para um minimo local distante do minimo global.

Além disso, alguns dos algoritmos desenvolvidos no préximo capitulo requerem uma
solucdo inicial valida, ou seja, que resolva o sistema de forcas da embarcacao (Fsurge, Fsway
e Myaw). Para obté-la basta dividir o empuxo alocado sem interferéncia pela eficiéncia

correspondente ao angulo de azimute do mesmo, conforme a Eq. 3.1.

T

Treasible = W (3.2)
0
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3.2 — Analise da Dinamica Interna do Algoritmo de Otimizacdo do
MATLAB

O algoritmo de otimizacéo utilizado pelo MATLAB € o FMINCON. O mesmo é capaz
de resolver problemas de otimizagcdo complexos (funcdo objetivo e restricdes ndo lineares),

através de um método numérico de 12 ordem.

A otimizacdo ocorre em varias iteracdes conforme ilustrado na Figura 3.2. O algoritmo
do MATLAB a cada iteracdo tenta diminuir o valor da funcéo objetivo, respeitando as forcgas
de controle (equilibrio das forcas ambientais), considerando as curvas de eficiéncia de cada

propulsor.

A fim de minimizar a funcdo objetivo o algoritmo de otimizagdo do MATLAB (Fig.
3.3) utiliza um método Trust Region (se¢do 1.6.10) no qual busca a direcdo ideal para a
presente iteracdo a partir do método de direcOes viaveis e favoraveis. Calcula-se também o
tamanho ideal do passo para a presente iteracdo. E ao final de cada iteracdo avalia-se a
convergéncia do problema conforma as condigdes KKT (1.6.7).

Figura 3. 3 — Diagrama de blocos do FMINCON (otimizador do MATLAB).
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O método das diregdes viaveis e favordveis consiste em combinar linearmente as
mesmas para obter um direcdo 6tima. Abaixo se define o conceito de direcdo viavel e direcdo

favoréavel.

1. Direcbes viaveis sdo mudangas nas variaveis de projeto que permitam que o algoritmo
continue respeitando as restricdes (Noncoln e desigualdades), ou seja, como as

variaveis podem ser manipuladas no espaco viavel.

2. Direcbes favoraveis sdo as manipulacdes que podemos realizar nas variaveis de

projeto, de maneira que o valor da fung@o Objetivo decaia.

A Figura 3.4 ilustra a evolucdo de um propulsor em uma Alocacdo de Empuxo
utilizando-se o algoritmo FMINCON. O algoritmo escolhe apenas direcdes e posicoes

viaveis, tanto que o mesmo mantém as variaveis dentro de seu respectivo espaco viavel.

Figura 3. 4 — Evolugéo do propulsor 4 no processo de otimizagdo dentro do espago viavel.

Evolugdo do Propulsor 4 na otimizagao utilizando MATLAB (coordenadas lineares)
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Ao obter a direcdo 6tima o algoritmo da um passo (variacdo das variaveis de projeto),
e verifica se a funcdo objetivo diminuiu e se as restricdes seguem respeitadas. Caso o valor da
funcdo objetivo tenha diminuido e ainda ndo tenham sido respeitadas as condi¢cbes KKT, o
algoritmo repete o processo até que ndo haja mais direcdes viaveis e favoraveis ou até que o

decrescimento da fungdo objetivo se torne desprezivel.

Note que ao encontrar um ponto onde ndo ha direcdes favoraveis e vidveis o algoritmo
encontra um ponto estacionario. Se este ponto for um minimo local ndo ha como provar que
se trata do minimo global, pois o problema ndo é convexo (restricbes de igualdade

considerando-se a curva de eficiéncia ndo sdo lineares).

Uma analise qualitativa revela que a direcdo favoravel se refere ao decrescimento da
funcdo objetivo, e esta intrinsecamente relacionada ao crescimento da funcéo de eficiéncia
dos propulsores. Por outro lado, a dire¢do favoravel refere-se a ndo distanciar-se muito dos
angulos viaveis a geracdo de empuxo na direcdo da forca comandada pelo sistema de controle
(ARDITTI; TANNURI, 2011).

Essa argumentacdo pode ser exemplificada ao analisar-se a Fig. 3.5, que ilustra o
posicionamento do propulsor 1 da Embarcacdo 2, realizado por diferentes algoritmos de
Alocacgéo de Empuxo, sobre a curva de eficiéncia do atuador.
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Figura 3. 5 — PosicBes angulares dos algoritmos de Alocacdo de Empuxo para o propulsor 1 em diferentes
alocac6es de empuxo, e sua curva de eficiéncia.
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Fonte: Simulacéo realizada em Arditti e Tannuri (2012).

Fica claro que ao algoritmo sugerido sempre posiciona seu atuador em angulos
favoraveis, onde o rendimento é superior aos outros algoritmos. Além disso, também é
possivel observar que os angulos escolhidos pelo algoritmo sdo viaveis, pois estdo proximos

dos angulos necessarios para gerar as forcas de controle.

Se o algoritmo optasse apenas por angulos favoraveis, 0 mesmo iria sempre para o
ponto de maximo da sua curva de eficiéncia, o que ndo seria viavel, uma vez que esses

angulos podem ser muito distantes da dire¢do da forca que se deseja gerar.

Isso ocorre, pois se trabalha com um sistema em coordenadas polares em que a forca
efetiva é definida pelo rendimento do propulsor e pela direcdo do mesmo. Portanto deve-se
contemplar na otimizagdo tanto a curva de eficiéncia dos propulsores, como as funcoes
senoidais que determinam a direcdo do empuxo. Isso esta ilustrado na Fig. 3.6 em que se
verifica que o FMINCON posiciona o propulsor em um angulo de azimute que contempla a
direcdo da forca a ser desenvolvida (proxima a posicdo do angulo inicial), e busca uma

direcdo favoravel (crescimento do rendimento).
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Figura 3. 6 — Evolugdo do propulsor 4 no processo de otimizacdo contemplando a diregdo da forca e 0 aumento

de sua eficiéncia.

Evolugdo da eficiéncia do Propulsor 4 na otimizagao utilizando MATLAB

Ponto inicial
y *  Ponto final
osl Fungéo de rendimento
Y == Caminho
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g N
Zup "'l
2
® 079
0.785F
078 i 1 1 1 1 1 1 1 o
2.05 2.1 2.15 2.2 2.25 2.3 2.35

alfa [rad]

Ao compreender a dindmica do FMINCON é possivel compreender como se comporta
(“pensa™) o algoritmo e desenvolver técnicas de otimizacdo simplificadoras, que permitam o

desenvolvimento de um algoritmo de otimizag&o préprio.
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3.3 — Analise do comportamento do FMINCON

Essa secdo tem por objetivo retratar como é a tomada de decisdo do FMINCON do
ponto de vista comportamental. Pretende-se revelar como a dinamica interna do algoritmo
atua sobre o comportamento qualitativo da Alocacdo de Empuxo, com esse objetivo dois
estudos de caso sdo apresentados.

3.3.1 — Analise do comportamento em relacéo interferéncia entre propulsores

A Fig. 3.7 ilustra a Alocacdo de Empuxo de 500 kN na direcdo de Sway para o Navio
1. O algoritmo que considera os fendmenos de interferéncia sai da zona de interagéo entre os
propulsores (1 e 2; 3 e 4) sem que seja definida uma zona proibida. Por outro lado o algoritmo
que ndo considera os fendmenos de interferéncia lanca jatos de dgua de um propulsor sobre

outro, o que diminui muito sua eficiéncia, e leva a um gasto energético 43% maior.

Figura 3. 7 — Esquerda alocacédo do algoritmo de otimizagcdo do MATLAB considerando interferéncias.

Direita alocagéo S.L.A.

I
500 kN o
500 kN
— 4168.67 KN, 90°
3 5 NS
28 J =
. 106.51 kN, 70° 106,961, 70° 164.39 kN, 90°
y
. 154.35 kN, 104° ¢ 3
Center ' o 16439KN, 90°
2 4 " Center
0
153.91 kN, 104 68671 0
P = 1371 KW .
P = 1954 KW

Fonte: Arditti e Tannuri (2011).

O algoritmo de alocacdo de empuxo saiu da zona de interacdo entre propulsores por
tratar-se de uma zona com valores baixos na curva de eficiéncia. Uma analise do ponto de
vista qualitativo revela que a zona de interferéncia entre propulsores é vidvel, mas ndo
favoravel. Dessa forma, contata-se que o algoritmo consegue lidar bem com a zona proibida
sem a necessidade de se restringir a sua liberdade de posicionamento dos propulsores (como é
feito no algoritmo de alocagdo com zonas proibidas).



3.3.2 — Anélise do comportamento para regifes com baixa eficiéncia

A Fig. 3.8 ilustra a alocacdo de empuxo do algoritmo FMINCON (considerando
interferéncias), Zona Proibida e S.L.A. para uma forga de controle de (Fsurge = -7N, Fsway =
7N, M = 0). A Alocagdo de Empuxo do FMINCON economiza 10,3% em relagcdo ao
Algoritmo de Zona Proibida, enquanto que o S.L.A. ndo gera a forca de controle (mesma

alocagéo da Fig. 2.9).

Figura 3. 8 — Alocagdo de uma forca de controle de -7N em Surge e 7N em Sway com momento nulo, para 3
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Thruster #2 is not efficient.

Proposed algorithm knows it |
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algoritmos de alocacéo.

Forbidden+
Correction
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o
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Fonte: Arditti e Tannuri (2012).

A implementacdo inicial do Algoritmo de Alocacdo de Empuxo requisitou menos
forca dos propulsores 2, 5 e 6, pois 0s mesmos apresentavam baixa eficiéncia. Do ponto de
vista qualitativo pode-se inferir que ndo havia como mudar a posigéo desses propulsores o que
implicaria em desvia-los significativamente da linha de acdo da forca de controle, ou seja,
esse era 0 espaco viavel. Como ndo havia como melhorar o rendimento desses propulsores a

solucdo intuitiva e correta é exigir menos empuxo dos mesmos e 0 algoritmo proposto toma

essa atitude enquanto o algoritmo de zona proibida néo o faz.

i
-im

SLA
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3.4 — Relag¢do do Comportamento do Algoritmo com suas vantagens

O principio do comportamento do algoritmo FMINCON é:

1. Evitar zonas de interacao entre propulsores (ndo favoravel).

2. Requisitar menor empuxo de propulsores com baixa eficiéncia.

Esse principio garante os resultados ilustrados na sec¢do 2.4, ou seja, maior economia
de combustivel e maior precisdo durante a operacéo DP.
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4 —Algoritmo de Aloca¢do de Empuxo

Neste capitulo apresentam-se novas implementagdes para o algoritmo de otimizacao
do MATLAB, que permitem o desenvolvimento do pacote computacional para simulagédo de
operacgdo DP. Inicialmente analisa-se do ponto de vista de otimizagdo o problema da Alocacao
de Empuxo, discutem-se técnicas simplificadoras, apresentam-se 0s novos algoritmos
desenvolvidos, os critérios para a sele¢cdo dos mesmos, por fim as simula¢des que sustentam a

selecdo do novo algoritmo de alocagédo de empuxo.

Resumidamente o objetivo deste capitulo é desenvolver um novo algoritmo de
alocacdo de empuxo, tendo como base os resultados, dindmica interna e comportamento do
FMINCON.
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4.1 — Problema Original de Otimizacdo da Alocacdo de Empuxo

O problema original de Alocacdo de Empuxo é modelado conforme a Eq. 4.1.

N W

N
P:ZCi'Ti
i=1

N
Z T; - cos(a;) - m; — Fourge = 0
i=1

N
R: < Z Ti ) Sin(ai) N — Esway =0 (4-1)
i=1

N N
Z T; - sin(a;) *n; - (x;) — Z T; - cos(a;) m; - (¥;) — Myqy, =0
\i=1 i=1

I {T; < Tonax,

Ao observar-se 0 problema destacam-se dois complicadores para o algoritmo de

otimizacdo que sera desenvolvido.

3
1. A Funcéo objetivo com T?2.

2. As restricdes de igualdade com T multiplicando red(a)-cos(a), que pode ser uma

funcéo qualquer, pois o rendimento é definido a partir de uma spline que interpola os
pontos em que foi aferida a eficiéncia do propulsor.

Note que é muito mais dificil lidar com a segunda complicacéo.
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4.2 — Novos Algoritmos de Alocacdo de Empuxo

Tendo em vista a complexidade do problema diferentes técnicas de otimizacdo foram
utilizadas para aborda-lo. Cinco algoritmos foram desenvolvidos e s&o apresentados a seguir.

4.2.1 — Método da Direcédo e do Rendimento

A ideia deste algoritmo € otimizar cada um dos propulsores separadamente para
definir seu angulo de azimute, e depois resolver o problema original de otimizacdo com o0s
angulos definidos. Esse algoritmo é puramente intuitivo e ndo tem nenhuma fundamentagéo
matematica que garanta sua eficiéncia, o0 mesmo foi constituido baseado somente na anélise

comportamento do FMINCON para a Alocagéo de Empuxo.

Baseado na analise de posicionamento viavel e favoravel dos propulsores da

embarcacdo trabalha-se com as seguintes hipoteses:

1. Um angulo viavel deve estar préximo a linha de acéo de forca, e é possivel determinéa-
lo com o chute inicial da implementacao inicial do Algoritmo de Alocagdo de Empuxo
(solucdo com o método da Matriz Pseudo-inversa).

2. Umangulo favoravel é aquele em que a eficiéncia do propulsor € alta.

Unindo as duas hipoteses decidiu-se que a otimizacdo de cada propulsor para definir
seu angulo de atuacéo deve ser realizada maximizando a Eq. 4.2 de cada propulsor. Note que

a, € 0 &ngulo da solucdo da Matriz pseudo-inversa.

(42)
0<a;<2n

A solucdo deste problema embora analiticamente ndo seja tdo simples, do ponto de
vista numérico é resolvida variando o com elevada precisdo e encontrando o maximo valor

da funcédo por comparagdes.
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Definida a parte inicial do problema que é encontrar os angulos de alocacdo, o

problema de otimizacgao passa a ser descrito pela Eq. 4.3. Lembre-se que o angulo de azimute

nao € mais uma variavel no problema.

n

3
Min ) T2
T ; i2

considerando

n
2T
i=1

n
2T
i=1

n
2T
i=1

ou

-cos(a;) - effic; (o,;) — Fsurge =0

-sin(a.;) - effic; (a;) — Fsway =0

-effic; (o;) -[X; -sin(a;) = Y; - cos(a; )] — Myaw =0

. -cte;; —Fsurge =0

. -cte,; —Fsway =0

i -cteg; —Myaw =0

(4.3)

A solugdo deste problema pode ser feita utilizando-se as condi¢des KKT, e basta

resolver um sistema que tem apenas uma ndo linearidade (ﬁ ). Esse sistema é resolvido

numericamente (utilizando-se o método de Newton-Raphson) e obtém-se o empuxo

requisitado por cada propulsor.

a Matriz Hessiana definida Positiva e somente restri¢cdes lineares.

Note que o problema de otimizacdo do empuxo de cada propulsor é convexo, pois tem

Esse algoritmo foi simulado e os resultados obtidos, do ponto de vista de economia de

poténcia ndo foram bons. Observou-se que os angulos de azimute praticamente ndo mudavam,

e ndo permitiam uma melhora na alocagéo.

Esse comportamento é explicado quando se observa a Eq. 4.2. Note que a funcéo

cos(]ocOi—oci|) diminui significativamente conforme a; se afasta de o, portanto o
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rendimento deve crescer consideravelmente para que o angulo de azimute mude, e essa ndo é

uma caracteristica da curva de eficiéncia. A Fig. 4.1 ilustra a situagéo.

Figura 4. 1 — Razéo da Falha no Método da Diregdo e do Rendimento.

cos(a- a0) sempre l

Max (red(a)*cos(a- a0)

Necessita-se red(a) I

Portanto esse método ja é descartado.

4.2.2 — Método Intuitivo
O método intuitivo é uma tentativa de melhorar o Método da Direcdo e do
Rendimento. Como a fun¢do limitante do primeiro método é cos(]ocOi—oci|), opta-se por

realizar a otimizacdo do propulsor (definicdo do seu angulo de azimute) baseado somente no
seu rendimento. O segundo passo apds a definicdo do angulo dos propulsores mantém-se o

mesmo.

Entretanto o angulo de azimute de maxima eficiéncia dos propulsores pode ser
favoravel ou desfavoravel em relagcdo a direcdo da forca de controle, como ilustrado na Fig.
4.2.

Figura 4. 2 — Direcdo favoravel ou desfavoravel do angulo de maxima eficiéncia.

Direcédo nédo favoravel

~

Direcéo favoravel
Fcontrole

|
|
I
|

A solugdo deste problema é limitar o intervalo de busca da méxima eficiéncia para
regides proximas a direcdo inicial do propulsor (chute inicial da implementacdo inicial do
Algoritmo de Alocagdo de Empuxo). Conforme o &ngulo de méaximo rendimento é encontrado
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realiza-se a alocacdo (definicdo de forcas) e verifica-se se a funcdo objetivo melhorou em

relagdo a Ultima tentativa e toma-se a seguinte decisdo (Fig.4.3):

1. Caso a fungdo objetivo esteja com um valor inferior o intervalo de busca é expandido.

2. Caso a funcdo objetivo tenha crescido o algoritmo termina e fica com a penaltima

solucéo (antes do crescimento da fungéo).

Figura 4. 3 — Evolucdo do intervalo de busca do método intuitivo.

rOD] aecal
Intervalo de busca ! Alocagdo — Expansao
de MAX (red) . I do limite
I [Fobj ngo decai |
e : l ! > 5 -
- : Angulos definidos : -7

- Fim do algoritmo

Entretanto é possivel adiantar outro problema que pode ocorrer no método intuitivo,
que é a rotacdo desfavoravel dos propulsores (ilustrado na Fig. 4.4). Esse problema seria
causado se todos ou a maioria dos propulsores girasse apenas em um sentido, o que

dificultaria a geracao de forcas na direcdo de Surge ou Sway.

Figura 4. 4 — Rotacdo desfavoravel dos propulsores no método intuitivo.

Situacgao inicial Posicao MAX(red)

|

) )| e
— | _’E Fsurge E
- — : / / \ Gerar Fsurgei

[ =

|

A solucdo para o problema de rotacdo desfavoravel é definir que para cada propulsor

que gira num sentido outro girard no sentido contrario, conforme ilustrado na Fig. 4.5.
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Figura 4. 5 — Solucéo para o problema de rotacéo desfavoravel dos propulsores no método intuitivo.
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Porém a programacdo deste método é muito confusa e ndo ha qualquer garantia
matematica de que h& alguma otimizagdo ocorrendo. Embora intuitivamente esse método seja
coerente, ele ndo é confidvel e apresenta um problema intrinseco igual ao método da Direcdo

e do Rendimento:

A otimizacdo dos propulsores separadamente é ineficaz, pois ndo considera a
otimizacdo do sistema global que apresentar pequenas pioras em alguns propulsores e
melhoras significativas em outros. Além disso, a separacdo dos propulsores ndo permite que o
algoritmo de otimizacdo posicione em conjunto todos os propulsores para gerar as forgas de

controle, que obviamente é um requisito para uma boa otimizacéo.

Tendo em vista a ineficacia dos métodos intuitivos os novos algoritmos de otimizagdo

desenvolvidos tém forte fundamentagdo matematica.

4.2.3 — SQP - Poténcia Quadratica
Esse algoritmo de otimizacao simplifica o problema de duas maneiras:

1. A funcdo objetivo considerada € Z T2, que é semelhante & funcio objetivo real e de
solucdo mais simples.

2. As restricdes de igualdade séo linearizadas utilizando-se o método de Taylor (Eq. 4.4).

glinear :g(X0)+V(XO)X[X_XO] (4-4)

Que quando aplicado a restricdo gera a Eq. 4.5:
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n

Z[(Tu —T)-cos(a) -mlog) + Ty - (o — )

i=1

. o(cos(a, )1 (@)
oa

:|+g(Tk1ak):0 (4.5)

A segunda derivada da Eq. 4.5 € realizada numericamente, conforma a Eq. 4.6.

o(cos(aq ) m; (@) _ cos(ay; +A)np; (e +A) —cos(a; —A)p; (e —A)
oo - 2A

(4.6)

Existe a necessidade de aplicar limites moveis (inequacGes para limitar a mudanca de
valor nas variaveis), ou seja, limites para as varidveis em torno da iteracdo anterior, pois a
matriz Hessiana é positiva semi-Definida (NOCEDAL; WRIGHT; 2006). Do ponto de vista
intuitivo é necessario aplicar os limites mdveis para a variagdo dos angulos o, que fazem
parte das restricdes de igualdade, mas ndo da fungéo objetivo, ndo mudarem o valor para uma

regido em que a linearizagdo ndo é valida.

Com as simplificagbes o problema torna-se de solucdo significativamente mais
simples, funcdo objetivo quadratica e somente restricdes (de igualdade e desigualdade

lineares), ou seja, um problema de programacéo quadratica sequencial convexo.

Note que esse problema classifica-se na classe de métodos Trust Region em que €
necessario resolver iterativamente até que os limites moveis atinjam valores

significativamente pequenos.

4.2.4 — SQP Poténcia Quadratica + Passo 2

Esse método utiliza a solucdo do método SQP - Poténcia Quadréatica para definir os
angulos de alocacdo. E o passo 2 é a solucdo do sistema de EquacBes 4.3, que considera 0s

angulos de azimute constantes e a funcéo objetivo real.

Note que as duas etapas sdo problemas convexos e que esse algoritmo também é da
classe Trust Region, cuja solucdo implica em resolver o problema quadratico até que 0s

limites moveis convirjam.
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4.2.5 - Trust Region SQP

O Trust Region SQP também lineariza as equacgdes de igualdade conforme o método
de Taylor (Eq. 4.5). Além disso, a funcdo objetivo real também é aproximada pelo método de
Taylor com o objetivo de gerar uma funcdo e quadratica, conforme a Eq. 4.7:

Poténcia :V(TO)xT+%V2(TO)xT2 (4.7)

Note que ao comparar-se a Eg. 4.7 com a aproximacdo de Taylor estdo faltando
termos. Porém esses termos que estdo faltando sdo constantes, e termos constantes na fungéo
objetivo ndo afetam a otimizacdo (SILVA 2011). Além disso, a nova funcdo objetivo

apresenta termos lineares, mas isso ndo faz com que ele deixe de ser quadratica.

Novamente temos um problema de programacdo quadratica sequencial (PQS),
convexo e da classe Trust Region, cuja solucdo implica em resolver o problema quadratico até
que os limites mdveis convirjam. A Fig. 4.6 ilustra a dindmica do funcionamento do

algoritmos Trust Region SQP.



Figura 4. 6 — Dindmica de funcionamento do Trust Region SQP.
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4.2.6 — Solucao Problema de Programacao Quadrética

85

Como o problema de programacdo quadratica esta presente nos trés algoritmos que

7

serdo simulados e comparados ao FMINCON, é necesséario resolvé-lo. Porem antes de

resolvé-lo é necessario analisar quais dos algoritmos desenvolvidos sera selecionado. Portanto

nessa fase de desenvolvimento, para a solucdo dos problemas de programacdo quadratica

utilizou-se uma rotina do Matlab.
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4.3 — Metodologia de Simulagao

4.3.1 — Plataforma de Simulacao dos Algoritmos de Alocacdo de Empuxo

A plataforma de simulacdo é um instrumento que permite comparar o funcionamento dos

diferentes Algoritmos de otimizacdo de Alocacdo de Empuxo. A plataforma esta ilustrada na

Fig. 4.8, e suas funcionalidades s&o listadas, como segue:

1.

Selecdo do Algoritmo de Alocacdo de Empuxo (AAE) na lista de op¢des (onde esta
selecionado o Trust Region SQP).

Definicéo das Forgas de Controle.
a) Forca Longitudinal — F Surge
b) Forca Transversal — F Sway
c) Momento - M Yaw
Comandar que a Alocacdo de Empuxo seja realizada (bot&o “Allocate”).

Informacgéo do empuxo (“Thrust”) e angulo (“Angle”) desenvolvido por cada um dos
seis propulsores.

Forca Efetiva desenvolvida pelos propulsores (“Effective Forces”) na direcéo
Longitudinal, Transversal e Momento.

Poténcia requerida para gerar as forcas requisitadas (“Power”).

Tempo de Processamento do Algoritmo para resolver o problema de Otimizacdo da
Alocacgéo de Empuxo (“Time”).

Plotagem dos vetores de empuxo gerados por cada propulsor (“Thrust”, “Angle”) a partir de

sua posicao relativa a Embarcacao.
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Figura 4. 7 — Plataforma de Simulacao de Algoritmos de Alocagdo de Empuxo (AAE).
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4.3.2 — Critérios Avaliados na Simulacéo

Os critérios avaliados na simulagdo dos algoritmos séo:

1. Poténcia — Comparar a eficiéncias dos algoritmos
2. Precisdo — Verificar que os algoritmos respeitam as forcgas de controle

3. Tempo de Processamento — Verificar se o tempo de processamento ndo torna inviavel

a aplicacédo do algoritmo.

Os critérios 2 e 3 sdo requisitos obrigatorios, ou seja, todos os algoritmos devem ser
precisos e apresentar Tempo de processamento aceitavel. O critério 1 € de selecdo, ou seja,

dos algoritmos precisos e de processamento rapido escolher-se-a o mais eficiente.
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4.4 — Resultados da Simulagéo dos Algoritmos

4.4.1 — Andlise de Poténcia

A Tabela 4.1 e a Fig. 4.9 apresentam o consumo médio de poténcia de cada um dos

algoritmos para as diferentes forcas de controle comandadas (conforme a Tabela B1).

Tabela 4. 1 — Comparacédo de Poténcia requisitada pelos algoritmos.

Analise de Poténcia
Algoritmo Poténcia Média  Potencia em relagdo FMINCON
FMINCON 18,6816 0,00 %
SQP - Poténcia Quadratica 18,7985 0,63 %
SQP Poténcia Quadratica + Passo 2 18,8155 0,72 %
Trust Region SQP 18,6534 -0,15%

Figura 4. 8 — Excedente Percentual de Poténcia dos algoritmos desenvolvidos em relagdo ao algoritmo de
otimizacdo do MATLAB (FMINCON).
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- 0,63 %
5] 0,60
o
]
2 0,50
©
S 0,40
=)
$ X 030
o el
o) 0,20
o
Q 0,10
c
3 0,00 ‘ ‘
8 SQP - Poténcia Quadratica SQP Poténcia Quadratica + TI’\IlSt Region $QP
%X -0,10
N Passo 2
-0,20 -0,15%
Algoritmo

O Algoritmo Trust Region SQP ¢é mais eficiente que o algoritmo do MATLAB,
economizando cerca de 0,15%. Nao obstante, 0 SQP - Poténcia Quadratica e 0 SQP Poténcia
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Quadratica + Passo 2 sdo um pouco menos eficientes, consumindo 0,63% e 0,72% mais

energia, respectivamente.

4.4.2 — Andlise de Precisdo

A Tabela 4.2 e a Fig. 4.10 apresentam o Erro percentual médio de geracdo da forca de

controle dos algoritmos (conforme a Tabela B.1).

Tabela 4. 2 — Comparacéo erro dos algoritmos.

Analise de Erro

Algoritmo Erro percentual médio em relacdo a Fcontrole
FMINCON 0,00 %
SQP - Poténcia Quadratica 0,83 %
SQP Poténcia Quadratica + Passo 2 0,00 %
Trust Region SQP 0,48 %

Figura 4. 9 — Comparacéo do Erro Percentual médio dos algoritmos.
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Os algoritmos SQP - Poténcia Quadratica e Trust Region SQP geram as forcas de

controle com erros percentuais médios de 0,83% e

0,48%, respectivamente. Enquanto o

FIMINCON e o SQP Poténcia Quadréatica + Passo 2 geram as forcas de controle sem erro.

Porém em termos praticos, os erros encontrados sdo insignificantes em relacdo aos fendmenos
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associados a embarcacao, como a precisdo de posicionamento dos propulsores e a geracdo de

empuxo.

4.4.3 — Analise do Tempo de Processamento

A Tabela 4.3 e a Fig. 4.11 apresentam o Tempo médio de Processamento dos
algoritmos (conforme a Tabela B.1).

Tabela 4. 3 — Comparacdo do Tempo médio de Processamento dos algoritmos.

Analise de Tempo
Algoritmo Tempo Médio Tempo em relacdo FMINCON
FMINCON 3,224 s Referéncia
SQP - Poténcia Quadratica 0,975s 30,23 %
SQP Poténcia Quadratica + Passo 2 1,088 s 33,75 %
Trust Region SQP 1,394 s 43,25 %

Figura 4. 10 — Comparacdo do Tempo médio de Processamento dos algoritmos.

Comparacao de Tempo de Processamento
3,500 3,224
3,000
= 2,500
ed
o 2,000
% 1,500 1,394
c 0,975 LgEE
F 1,000
0,500
0,000 ;
FMINCON SQP - Poténcia SQP Poténcia Trust Region SQP
Quadratica Quadratica +
Passo 2
Algoritmo

Nota-se que o FMINCON ¢é significativamente mais lento que os Algoritmos de
Alocacdo de Empuxo desenvolvidos. Entretanto, mesmo o tempo de processamento do

FMINCON ¢ bastante inferior aos fendmenos associados & embarcagdo, como
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oo, oT,
posicionamento angular ot e variagdo no empuxo St dos propulsores. Ou seja, 0 Tempo
de Processamento dos algoritmos € insignificante em relacdo ao intervalo entre os loops de

alocagéo.
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4.5 — Analise Comparativa dos Algoritmos

Uma vez que foram comparados os algoritmos desenvolvidos em relacdo aos
requisitos técnicos do projeto, vale a pena avaliar comportamento dos mesmos a fim de

justificar os resultados encontrados.

A Fig. 4.12 apresenta a alocacdo dos diferentes algoritmos simulados para (FSurge = -
7N, FSway = 7N e Myaw = ON), bem como uma analise das vantagens e desvantagens

comparativas para cada algoritmo.

Figura 4. 11 — Alocacdo dos diferentes algoritmos simulados para (FSurge = -7N, FSway = 7N e Myaw = ON).

FMINCON Trust Region SQP Potencia SQP Potencia
SQP Quadratica Quadratica + Passo2
+\ . + *

\ ‘ + +
R + T 5
P=19,9450 P=19 6036 P=19,8239 P=19,6596
Analise
4 Aproveita os propulsores 1 e 3 que tem alta eficiéncia
4 Tirao propulsor 5 da zona de forte interferéncia com o casco
Poupa os propulsores 2 e 6 que tem baixa eficiéncia

As vantagens que alguns algoritmos aproveitaram foram: a alta eficiéncia dos
propulsores 1 e 3 nessas posi¢des; movimentar o propulsor 5 para tira-lo de uma zona de
baixa eficiéncia devida a interferéncia com o casco e; requisitar pouca forca dos propulsores 2

e 6 que apresentavam baixa eficiéncia.

Os angulos dos propulsores dos algoritmos SQP - Poténcia Quadratica e SQP Poténcia
Quadratica + Passo 2 sdo 0s mesmos como era de se esperar, pois 0 segundo algoritmo utiliza
0 angulo de alocagéo do primeiro.
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Além disso, o Tempo de Processamento do SQP Poténcia Quadratica + Passo 2 é
superior ao do SQP - Poténcia Quadratica como esperado, pois ele o contém dentro de sua

solucéo.

O SQP Poténcia Quadratica + Passo 2 explora melhor a alocagdo de forca que o SQP -
Poténcia Quadratica, pois considera a funcdo objetivo correta.

Todos os algoritmos desenvolvidos s&o mais agressivos no posicionamento dos

propulsores do que o FMINCON. Isso se explica no processo de otimizacdo dos mesmos, pois

ao realizar a linearizacdo das restricdes de igualdade o &ngulo o multiplica o empuxo T,, ou

seja, do ponto de vista qualitativo é como se o angulo pudesse gerar forca ao mesmo tempo
em que ndo aumenta o valor da funcdo objetivo. Portanto intuitivamente o algoritmo “pensa”
em variar significativamente o angulo para alcancar a forga de controle sem afetar a fungéo
objetivo. Por isso justifica-se matematicamente e intuitivamente a necessidade dos limites

mdveis, pois caso contrario os angulos de azimute variariam de maneira exagerada.

O Trust Region SQP apresenta resultados melhores quando comparado ao SQP
Poténcia Quadratica + Passo 2 em termos de eficiéncia (valor final da funcdo objetivo). Isso
se explica no fato do primeiro realizar a alocagdo em passo Unico ja considerando a funcéo
objetivo real, enquanto o segundo mesmo que considere, no Passo 2, a fungdes objetivo real,
apresenta perdas intrinsecas a separacdo do problema em posicionamento dos propulsores e

geracéo de forca.

4.6 — Selecdo do novo Algoritmo de Alocagéo de Empuxo

Tendo em vista que todos os algoritmos satisfazem os requisitos de Tempo de
processamento e Erro na geragdo das Forcas de Controle. E que nenhum aspecto negativo
desse algoritmo foi levantado na andlise comparativa dos algoritmos. Opta-se pelo Algoritmo
com menor consumo de Poténcia, o Trust Region SQP.

Uma vez selecionado o algoritmo de alocacdo de empuxo, é necessario resolver o

problema apresentado na secéo 4.2.6.
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4.6 — Programacao Quadratica

A solucdo de problemas de otimizacdo com funcdo objetivo quadréatica e restricGes
lineares é bastante conhecida. Existem softwares eficientes para a solucdo deste tipo de
problema no mercado. H& também softwares livres que sdo dedicados a este especifico
problema de otimizacdo. Entretanto, para o desenvolvimento de uma ferramenta que possa ser
utilizada de maneira pratica e eficiente por empresas e laboratorios de avaliacdo de operacbes
DP, essas opcOes apresentam caracteristicas desfavoraveis.

A utilizacdo de um software pago, de maneira geral encarece de maneira significativa
um produto. Além disso, a implementacdo de um software pago, dentro de outro software
possivelmente comercial atrela dificuldades de negociagéo e carga de responsabilidade.

A utilizacdo de um software livre dedicado a solucdo de problemas de otimizagéao
quadréticos, requer a adi¢cdo de diversas bibliotecas e modelagem do problema para os moldes
do produto selecionado. A adicéo das bibliotecas pode gerar problemas de compatibilidade,
dependendo do sistema operacional instalado. Adiante, qualquer problema de adaptacdo ao
software livre, ou de mau funcionamento do mesmo podem prejudicar 0 desempenho do

simulador desenvolvido.

Portanto, levando em conta os aspectos descritos e a quantidade de trabalho necessaria
para ajustar o problema de otimizacdo quadratico a um programa externo e suas bibliotecas,

decide-se por desenvolver um programa que resolva este problema de otimizacao.

4.6.1 - Solugao Convencional

O Método convencional para a solucdo de problemas de programacdo quadraticos é
simples. Basta definir o Lagrangeano, que consiste em unir a funcdo objetivo as igualdades e

desigualdades da seguinte maneira:

L= {Ob] - (Aigualdade)i ) hi} - {(Adesigualdade)i ' gi} (4.8)

parte 1 parte 2
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O passo seguinte é resolver uma série de problemas de otimizacdo quadraticos em que
a parte 1, que consiste da fungéo objetivo e as restricbes de igualdade, sempre estdo presentes;
e a parte 2, desigualdades estdo em parte presentes. Ap6s a solucdo de cada subproblema
verifica-se se as condi¢cbes KKT foram respeitadas, e se as restri¢cdes de desigualdade que ndo
foram consideradas foram respeitadas; caso isso ocorra, encontra-se 0 minimo global.

Um método consistente de realizar esse processo é ativar e desativar as desigualdades,

definindo os valores de Agesiguataade- Quando a desigualdade ndo esta ativa,

(ldesiguazaaae)i:(l quando a mesma esta ativa, ela faz parte do problema e
(Adesigualdade)i é automaticamente calculada, pelas seguintes equacBes que resolvem

analiticamente o problema de otimizagéo:

o _ad _, (4.9)
oT 04

Normalmente utiliza-se uma tabela, conforme ilustrado abaixo para controlar quais
restricdes de desigualdade estdo ativas. Note que na primeira linha todas as restrices estdo
inativas, na segunda linha apenas a primeira desigualdade esta ativa e assim por diante. Em
resumo, cada linha representa um subproblema da otimizacéo, no qual, as restricdes inativas
ndo sdo consideradas, e as desigualdades ativas sdo consideradas igualdades. Para maiores
informacBes sobre o método convencional de solucdo de problemas de otimizacdo

quadréticos, ver Silva (2011).

Tabela 4. 4 — Definicdo consistente de quais desigualdades estdo ativas.

Embora 0 método seja consistente, relativamente simples, e garante que caso exista
um minimo global, o0 mesmo sera encontrado, ha um fator que complica sua implementacao.
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O numero de subproblemas cresce exponencialmente com a quantidade de desigualdades.
Demonstra-se: cada desigualdade pode estar em apenas 2 estados, ativa ou inativa. O numero
de subproblemas refere-se as possiveis combinagdes de das desigualdades (ativas e inativas).
Portanto, caso existam n desigualdades, e constatando-se que cada um pode estar em apenas 2

estados, conclui-se que existem 2™ subproblemas de otimizacéo possiveis.

Dessa forma, ao considerar uma embarcagdo com 6 propulsores azimutais, ou seja, 12
variaveis de projeto {T,a}, e que cada varidvel apresenta 2 limites moveis (superior e
inferior), encontram-se 24 desigualdades. Portanto para resolver esse problema de otimizacao,
seriam necessarios resolver 224 = 16.777.216 subproblemas de otimizagdo. Essa constatacdo
torna inviavel a aplicacdo do método convencional. Portanto um método diferente deve ser
utilizado para resolver o problema de otimizacdo quadratico dentro da rotina de alocacdo de

empuxo.

4.6.2 — Método dos gradientes reduzidos (Active-set)

O método dos gradientes reduzidos (Active-set) é o mais indicado, pois o
funcionamento do mesmo segue a seguinte premissa: Verificar de maneira iterativa quais
restricdes de desigualdade sdo de fato restritivas, ou seja, ndo permitem que seja encontrada
uma solucdo melhor, e que portanto devem estar ativas. As iteragdes ndo requerem percorrer

todo o conjunto de possiveis desigualdades.

Esse método é explicado com a ajuda de um exemplo para facilitar sua compreenséo.
Figura 4.12 ilustra a situacdo inicial de um problema de otimizagdo com funcdo objetivo
quadrética (curvas de nivel em azul), quatro restricbes de desigualdade (em vermelho) que
definem o espaco viavel (area hachurada) e uma solucdo inicial (X,) sobre R,. Verifica-se

neste caso que R, esta ativa.
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Figura 4. 12 — Método dos gradientes reduzidos: Situacao inicial.
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O primeiro passo é verificar quais restricGes estdo ativas, neste caso apenas R,. Tendo
em vista que apenas a segunda restricao esta ativa, o vetor W (conjunto das restrigcdes ativas,
ou Conjunto Ativo), recebe o valor 1 apenas em sua segunda linha. Isso indica que nesta
iteracdo, o problema é resolvido considerando-se apenas a funcdo objetivo e a segunda

restricdo, ou seja, a desigualdade referente a segunda restricdo, é considerada uma igualdade.

A solucdo deste problema é simples, e requer apenas a aplicacdo da seguinte condicao
de otimizacdo (Eg. 4.9). Essa condicéo resulta em um sistema linear, que fornece um valor

para as variaveis de projeto e para as variaveis de Lagrange (1).

Ao resolver esse problema, ilustrado na Figura 4.13 determina-se uma nova solucéo
X, e os valores para as variaveis de Lagrange (A), que sdo 0 para todas as restricbes nao
ativas, e neste caso verifica-se (1, < 0), que ndo corresponde as condi¢cbes KKT, portanto ndo

configura X, como um ponto de minimo local.
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Figura 4. 13 — Método dos gradientes reduzidos: Primeiro passo.

Passo 1l \

Tendo em vista que R, ndo é uma restricdo que limita a busca pelo ponto de minimo
A, <0, retira-se a mesma do conjunto ativo, e uma nova otimizacao € realizada. Neste
segundo passo ilustrado em Figura 4.14 soluciona-se o problema de alocagédo levando-se em

conta apenas a funcdo objetivo. A solugdo encontrada X, ndo respeita R,.
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Figura 4. 14 — Método dos gradientes reduzidos: Segundo passo.

/ Passo 2 x

RaDesrespeitada

A 4

/

Note que a ultima iteracdo desrespeitou uma restricdo do problema. Como ilustrado na

Figura 4.15, essa iteracdo garante que R, seja respeitada. Isso € realizado diminuindo o
tamanho do passo dado na ultima iteracdo de maneira que 0 mesmo seja 0 maior possivel
respeitando as restricdes do problema. Ou seja, ﬁ define a direcdo do passo nessa
iteracdo (note que o ponto inicial desse passo € X;), e 0 tamanho do passo é o maior possivel

levando-se em conta as restrigdes do problema. Isso resulta na solugdo X5 que respeita R,.
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Figura 4. 15 — Método dos gradientes reduzidos: Terceiro passo.

Passo 3 \
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Note que a solugdo X5 torna R, ativa, portanto a mesma deve ser adicionada ao
conjunto ativo W. Isso implica na solugdo do problema considerando-se a funcdo objetivo e
R, como uma igualdade. A solucdo desse problema é simples e derivada de um sistema linear,
baseado na condicdo de otimizagdo. Note que a solucdo X, tem A > 0, 0 que respeita as

condi¢des KKT, e garante que esse ponto € o minimo global.
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Figura 4. 16 — Método dos gradientes reduzidos: Quarto passo.

/ Passo4 \

S ———

O loop que representa a logica do método dos gradientes reduzidos esta representado
em Figura 4.17.

1) DEFINE W: O primeiro passo é definir o conjunto ativo, ou seja, o vetor W, que
assinala quais restrigdes de desigualdade devem ser consideradas nessa iteracéo.

2) RESOLVE PROBLEMA: A seguir resolve-se o problema considerando o conjunto de
restricdes de desigualdade ativas, a fun¢do objetivo e as restricdes de igualdade.

3) VERIFICA TAMANHO PASSO: Ao obter-se a nova solugdo verifica-se se a mesma
respeita todas as restrigdes de desigualdade.

a. Caso respeite verifica-se 2. CALCULA A

i. Caso 4>0, o que configura a aceitacdo das condicdes KKT e
configura a mesma como ponto de minimo.

ii. Caso contrario, a restricdo que apresenta 0 menor valor de A é
descartada do conjunto ativo para a proxima iteracao.

b. Caso 0 passo nao respeite as desigualdades (limites mdveis da alocacdo de
empuxo), obtém-se uma nova solucgdo, na direcdo que liga a solugdo anterior a
solucdo recém obtida. A essa se designa o nome: NOVA Solucdo COM
TAMANHO DO PASSO.
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Figura 4. 17 — Logica do método do dos gradientes reduzidos.
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As principais fungdes referentes do loop do Active-set séo:

4.6.2.1 — Define W

Verifica sobre quais restricdes de desigualdade a solucdo atual encontra-se. E desconsidera
alguma desigualdade que apresente A < 0, da iteracdo anterior.

4.6.2.2 — Resolve Problema

O método para a solucdo do problema, que contem a fungdo objetivo, as restricdes de
igualdade e desigualdade e o vetor W (que contem as desigualdades que devem ser
consideradas igualdades) é o seguinte:

Monta-se o sistema linear geral de equacdes, derivado da condigdo de otimizagédo, da seguinte
maneira:

a. Para % =0 utilizam-se todas as desigualdades independente de W.

oL . . :
b. Para ——— =0 utilizam-se todas as desigualdades independente de W.
igualdade
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oL
c. — =0
a(j“desigualdaﬂe)i

i. SeW; =0, aequagdo utilizada é (Agesiguaiaade)i = O
ii. Se W; =1, ou seja, essa restricdo deve estar ativa, utiliza-se a equacgéo

de desigualdade como uma igualdade.

O sistema linear resolvido fornece novos valores para a alocagéo (T, @), 4;gyaidade €

Adesigualdade :

4.6.2.3 — Verifica tamanho passo

Verifica se todas as desigualdades séo respeitadas.

4.6.2.3 — Nova solucéo com tamanho do passo

O funcionamento desta funcédo esta ilustrado na Figura 4.18. Inicialmente calcula-se o
vetor d, que liga a solugdo anterior a nova. A partir de X,,, verifica-se qual a maior distancia
que pode ser percorrida (K) até atingir a primeira desigualdade. Percorre-se K, na direcédo d, e

obtém-se a nova solucdo X,,.1°%, que respeita todas as desigualdades.

Figura 4. 18 — Solucdo considerando-se as desigualdades.

Xn+1

Para maiores informagdes sobre o método dos gradientes reduzidos ver: Nocedal e
Wright (2006).

Entretanto esse algoritmo apresenta uma falha intrinseca. Caso ndo seja possivel
resolver as igualdades, ou seja, as equacdes referentes as forcas requeridas pelo sistema de
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controle, considerando-se as desigualdades (limites moveis), ao montar o sistema linear geral
montado na funcdo Resolve Problema nota-se que o mesmo é um Sistema Impossivel (SI).
Essa situacdo é comum em casos em que as condigdes ambientais sdo significativamente

adversas, e as forgas requisitadas excedem a saturacao (T, ) dos propulsores da embarcacao.

Portanto, numa situacdo adversa, permitir que o controlador tente resolver um sistema
impossivel é perigoso, pois 0 mesmo pode gerar respostas aleatérias, ou simplesmente ndo
funcionar. 1sso poderia causar em acidentes. Dessa forma, € necessario estabelecer um
protocolo para a situacdo em que nao € possivel gerar as forcgas requisitadas considerando-se a
saturacdo dos propulsores (Protocolo de Saturacdo). Além disso, € necessario verificar o0s
casos em que esse protocolo deve ser seguido, ou seja, necessita-se desenvolver um algoritmo

que verifique se as igualdades podem ser resolvidas considerando-se as desigualdades.

4.6.3 — Verificacdo de congruéncia de Igualdades e Desigualdades

A verificacdo que deve ser realizada é se existe uma solucdo para as igualdades dentro
do espaco viavel definido pelas desigualdades. A Tabela 4.5 representa claramente as

equacdes que devem ser consideradas e seu sentido fisico e matematico.

Tabela 4. 5 — Representacdo de igualdades e desigualdades.

Forgas ( aJ Igualdades
Requeridas Z Fe, "M — Fsurge =0
i=1
N
{ ZFyi'Ui_Esway:O
i=1
N N
ZFyi 1 () —Zin'Ui “(v1) = Myay =0
\i=1 i=1
Saturacéo e Saturagao{Ti = e, DEIENEEs
Limites Moveis AT; < A7L‘
o i i = max;
Limites Moveis {Aai < Aty
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O Simplex € um algoritmo de otimizacdo para problemas lineares bastante conhecido e
utilizado. Note, que a verificacdo é realizada em equacdes lineares, pois as forcas requeridas
foram linearizadas conforme a aplicacdo da programacdo quadratica sequencial e os limites

mAveis e saturacdo sdo restricdes de caixa, por definicdo lineares.

A interpretacdo matematica do funcionamento do Simplex é ilustrado na Figura 4.19.
Note que as igualdades (forcas requeridas) podem ser representadas por planos, pois séo
lineares. Ademais, os limites moveis e saturacdo podem ser representados como uma caixa,
pois 0s mesmos sempre definem os limites inferior e superior de cada variavel. Se existe uma
intersec¢do entre o plano e a caixa, significa que existe um subespago que contem a solucéo

do problema.

Figura 4. 19 — Funcionamento do algoritmo Simplex.

Viable space (defined by
inequalities)

= Constraint

. — Intersection of the

' constraint and

Inequalities (Solution

@ Solution, for Obj = x+y+z

Portanto baseado no conceito do Simplex a verificagcdo da possibilidade de resolver o

sistema de igualdades e desigualdades pode ser resolvida da seguinte maneira.

1) Consistentemente, escolhem-se 2n — 3 desigualdades (sendo 2n o numero de

variaveis) que devem ser respeitadas.



2)
3)

4)

4.6.4 -
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Atribui-se tais valores a essas variaveis.
Resolve-se o sistema de 3 igualdades, que apresenta 3 incognitas (as 3 variaveis as
quais ndo foram atribuidas os valores respectivos de suas desigualdades).
a. Caso essas 3 variaveis respeitem suas equacoes de desigualdade conclui-se que
é possivel resolver as igualdades considerando-se as desigualdades.
b. Caso contrario, escolhe-se consistentemente uma nova combinagdo de
desigualdades.
Se todas as combinac¢des possiveis de desigualdades foram testadas e ndo foi possivel
resolver as igualdades trata-se de um sistema impossivel, e aplica-se o protocolo de

saturagéo.

Protocolo de Saturacéo

O Protocolo de Saturagdo é utilizado quando ndo é possivel gerar as forcas requeridas

considerando-se a saturacdo dos propulsores, que limitam os limites méveis. Uma solucédo

segura em condicdes adversas, é que a direcdo das forcas geradas seja a mesma que as forcas

comandadas, 0 que evita 0 comportamento erratico e inesperado da embarcacao.

O processo que garante que a direcdo das forcas geradas seja 0 mesmo que o das

forcas requeridas esta representado na Figura 4.20.

1)
2)

3)

Inicialmente constata-se que ndo é possivel gerar as forcas requeridas.

Define-se 0 Versor das forcas comandadas, que nada mais é que dividir o vetor das
forgas requeridas por um valor constante. Tendo em vista que o Versor das forgas
comandadas apresenta valores de ordem de grandeza inferior aos da for¢ca comandada,
0s mesmos podem ser gerados com relativa facilidade pelos propulsores da
embarcacao.

Finalmente, multiplica-se 0 empuxo de cada propulsor por um mesmo valor constante.
Esse valor constante satura os propulsores que estdo mais proximos de seus valores
maximos de empuxo. Garantindo assim, que a forca comandada terda a mesma direcdo

da forca requerida.
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Figura 4. 20 — Processo do Protocolo de Saturacéo.
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As Figuras a seguir ilustram o funcionamento do Protocolo de Saturagéo.

A Figura 4.21 ilustra uma situacdo normal em que ndo é necessario acionar o
Protocolo de Saturacao.

Figura 4. 21 — Alocacdo em condigBes normais.
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A Figura 4.22 ilustra uma situagcdo em que 0s propulsores estdo saturados, mas que

nao foi necessario acionar o Protocolo de Saturacéo.

Figura 4. 22 — Alocacdo em que ocorre saturacao dos propulsores.
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A Figura 4.23 ilustra uma situacdo em que os propulsores estdo saturados, pois foi

necessario acionar Protocolo de Saturacdo. Note que as forcas efetivas sdo inferiores as forcas

requeridas.

Figura 4. 23 — Atuacéo do Protocolo de Saturacgéo.
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Finalmente é possivel constatar que nos 3 ultimos exemplos a diregcdo das forgas era a

mesma e que o Protocolo de Saturacdo garante que as forgas geradas pela embarcagéo, caso

nao seja iguais as forcas requeridas, tem a mesma direcdo da mesma. Existem outras solucbes

e propostas para as condi¢cbes em que nao é possivel alocar as forgas requeridas, entretanto a

solucdo escolhida preza pela seguranca e pelo comportamento previsivel da embarcacao.

Outro Protocolo de Saturacéo bastante utilizado € priorizar a geracdo do momento em

detrimento das outras dire¢Bes (Surge e Sway). Essa escolha preza por manter a embarcacgéo

com a mesma direcdo, mesmo que ocorram deslocamentos laterais e longitudinais, que a

principio ndo elevam as forcas aplicadas sobre a mesma, considerando que a priori a
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embarcacao opera na condicdo weathervane, na qual as forcas aplicadas sobre a mesma sdo as
menores possiveis. Normalmente utilizam-se pesos para definir a prioridade relativa de cada
direcdo (Psyrge: Psway: Praw)- Uma solucdo interessante que trabalha com essa ideia pode ser
encontrada em Skjetne e Kjerstad (2013), onde o autor trabalha com dois conceitos basicos, 0
null-space e a aplicacdo da matriz pseudo-inversa.
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4.7 — Analise Final

A fim de verificar se os algoritmos Simplex e o método dos gradientes reduzidos,
implementados na alocacdo de empuxo, apresentam os resultados satisfatorios previamente
vistos no Trust Region SQP, novas simulagdes foram realizadas. Os resultados da Tab. 4.6
apresentam uma rapida comparacéo entre a alocacdo realizada com o Trust Region SQP, com
a otimizacdo quadratica resolvida pela rotina do Matlab em relacdo a implementacdo do
Active-set e simplex. Note que em média a Potencia requisitada diminui marginalmente,
enquanto o erro caiu 50% em relacdo a implementacdo anterior. O tempo médio de
processamento também é inferior, mas vale ressaltar que as simulacdes foram realizadas em
computadores diferentes. De qualquer forma o tempo de processamento esta de acordo com a

implementacdo em softwares de alocacdo de empuxo em tempo real.

Tabela 4. 6 — Comparacdo do Trust Region SQP com e sem o desenvolvimento do Simplex e do Active-set.

Forca Requerida Trust Region SQP Simplex e Active-set implementados
[E. E, M, ] Tempo Poténcia  erro  Tempo Poténcia erro
[7;7;0] 1,002 158125 0,09% 0,834 15,8425 0,09%
[-7; 7; 0] 1,286 19,6036 0,31% 0,641 19,6296 0,07%
[-7;-7; 0] 1,362 19,0812 0,551% 0,765 19,0578 0,21%
[7;-7; 0] 1,234 19,3467 0,66% 0,665 18,8336 0,39%
[-10; 0; 0] 2,176 19,8260 0,55% 0,463 19,8461 0,38%
[10; 0; 0] 1,491 16,9549 0,25% 0,749 16,9791 0,15%
[0; -10; 0] 1,210 19,9492 1,01% 0,772 20,0326 0,52%
Médias 1,394 18,6534 0,48% 0,698 18,6030 0,26%

Portanto a implementacdo do Active-set, Simplex e Protocolo de Saturagéo finalizam
0 algoritmo de alocacdo de empuxo. Os resultados obtidos pelas simulagdes revelam que o
mesmo é capaz de lidar com a saturacdo dos propulsores e os fendmenos de interacdo. Note
que o desenvolvimento deste ultimo conjunto de rotinas mantém a eficiéncia do algoritmo de
alocacdo previamente demonstrada, e elimina a dependéncia de qualquer rotina exclusiva do
software MATLAB.
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O capitulo seguinte apresenta a aplicacdo do algoritmo de alocacdo de empuxo
desenvolvido em software MATLAB para a simulagdo de operacdo DP no dominio do tempo

(Time Domain Simulation).
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5 —Resultados

5.1 — Descrigdo da Embarcacéao

A Fig. 5.1 apresenta 0 modelo da embarcacéo utilizado nas simulagdes de operacdo DP. Trata-
se de um navio de perfuracdo com 6 propulsores azimutais agrupados em 2 clusters triangulares: na

proa e na popa.

Figura 5. 1 — Modelo da embarcagéo.

i G\\

o

A Fig. 5.2 apresenta a planta da embarcacdo com suas medidas originais. Note que é

possivel determinar a posicao dos propulsores em relagdo ao centro gravitacional da mesma.



Figura 5. 2 — Planta original da embarcacéo.
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As curvas de eficiéncia de cada propulsor sdo apresentadas na

Figura 5. 3. Note que o posicionamento das curvas de eficiéncia é similar ao

posicionamento dos propulsores no casco da embarcacdo, portanto é possivel relacionar os

fendmenos de interferéncia com a posigdo dos propulsores. Note que o cluster de propulsores

na popa esta distante do cluster de propulsores na proa.

Figura 5. 3 — Curvas de eficiéncia dos propulsores.
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5.2 — Time Domain Simulation e Limitac0es Fisicas

Com o objetivo de simular uma operagdo DP, introduz-se o conceito de time domain

simulation e limitacgdes fisicas.

A simulacdo das operacfes DP é realizada da seguinte maneira:

a) Dados de entrada: Um conjunto de forcas requeridas por um sistema de controle,
considerando-se intervalos temporais discretos.
b) Em cada passo uma alocacdo de empuxo € calculada levando-se em conta como

condicdo inicial a solucéo do passo anterior.
Dessa maneira a simulagéo ocorre no dominio do tempo (Time Domain Simulation).

Adiante, a fim de aproximar o modelo de simulacdo da realidade, as limitac@es fisicas
dos propulsores devem ser consideradas. As mesmas referem-se & variagdo méaxima do angulo
de azimute do propulsor num determinado espaco de tempo, ou seja, a velocidade angular
maxima do mesmo; E a maxima variacdo de RPM dos propulsores, o que limita a variacdo do

empuxo desenvolvido.

O calculo da limitacdo fisica dos propulsores em cada passo depende do estado
anterior dos mesmos. As Eg. 5.1 a 5.3 ilustram 0 como é determinada a limitacdo de variacao

de angulo de azimute dos propulsores. Note que t, € 0 intervalo temporal de cada passo, Lb

é o limite inferior e Ub é o limite superior.

Adpmax = Amax tstep (5-1)
Lb = Aprev — Attmax (5-2)
Ub = Aprev T Admax (5-3)

Para o calculo da maxima variacdo do empuxo inicialmente determina-se sua rotacao

atual, conforme a Eq. 5.4. Note que Cy, representa o coeficiente de empuxo do propulsor.
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(5.4)

Neurrent =

Em seguida aplica-se a limitacdo fisica relativa @ maxima variacao de RPM (7,,4x), €

determinam-se os limites superiores (Ub) e inferiores (Ub) da variagdo de empuxo.

Lb = Cro-p- D*- (ncurrent - flmax)z (5-5)

Ub = Cro-p- D*- (ncurrent + flmax)z (56)

A Figura 5. 4 ilustra graficamente a atuacéo das limitacGes fisicas dos propulsores.

Figura 5. 4 — Representacéo das limitaces fisicas completas dos propulsores.

Finalmente, a implementacdo das limitagGes fisicas no algoritmo é realizada de
maneira simples. Manipula-se os limites moveis de alocagdo de maneira que 0S mesmos

respeitem a saturacdo dos propulsores, sua limitada variagédo de RPM e angulo de azimute.
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5.3 — Simulacdes

Essa secdo contém 3 simulacBes de operacdes DP para a embarcacdo apresentada. Note que
todas as simulagdes consideram os fendmenos de interacdo hidrodindmicos (representados pelas
curvas de eficiéncia), as limitacdes fisicas dos propulsores e sdo realizados no dominio do tempo
(Time domain simulation). Cada caso sera apresentado, em seguida os resultados sdo expostos, e

imediatamente discutidos.

Inicialmente um caso base é apresentado, a fim de ilustrar o0 comportamento da embarcacdo em
condi¢cdes ambientais reais. Em seguida, casos especificos de situacBes complexas sdo descritos e
discutidos a fim de ilustrar a robustez do algoritmo de alocagdo de empuxo desenvolvido para

operacdes de posicionamento dindmico.
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5.3.1 — Caso Base — Condic¢des ambientais reais

5.3.1.1 — Condic6es

As forcas requeridas pelo sistema de controle sdo baseadas em uma simulagdo de
operacédo de perfuracdo realizada com o modelo da embarcagdo, considerando-se condi¢coes

ambientais tipicas.

5.3.1.2 — Discussao dos Resultados

A Figura 5. 5 apresenta as forcgas requeridas e geradas pela embarcacéo para condicdes
ambientais reais. Fica claro que o algoritmo de alocacdo de empuxo conseguiu gerar as forgas
requeridas pelo sistema de controle (a linha azul esta sobre a linha vermelha).

Além disso, note que a curva de potencia tem formato bastante semelhante a curva de
momento, portanto conclui-se que o momento é a direcdo que requer maior atencdo do
sistema de geracdo de forcas. Adiante, note que a embarcac¢do ainda possui alguma reserva de

potencia que poderia ser utilizada caso fosse necessario.

Figura 5. 5 — Forca requerida e gerada para o caso base.
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As figuras a seguir ilustram o erro percentual na geracdo de forcas nas direcdes
longitudinal, lateral e momento. Como esperado (Figura 5. 5), 0s erros séo insignificantes.

Figura 5. 6 — Erro percentual na direcdo de surge.
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Figura 5. 7 — Erro percentual na direcdo de sway.
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Figura 5. 8 — Erro percentual na diregéo de yaw.
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A Figura 5. 9 apresenta a alocacdo dos propulsores durante a simulacdo do caso base.
Note que os propulsores T4, T5 e T6 estdo saturados durante todo o intervalo de simulacao.
Isso ocorre, pois 0s mesmos sdo 0s principais responsaveis pela geracdo de momento. Além
disso, conclui-se que este cenario € quase critico, mas mesmo assim o algoritmo de alocacao

de empuxo conseguiu gerar as for¢as requeridas pelo sistema de controle.

Note que os angulos de azimute apresentam movimentos (em baixa frequéncia)
bastante similares a curva de momento. Esse resultado é esperado, pois 0s propulsores devem

sequir a forca critica aplicada sobre a embarcacao.

O propulsor T1 é uma excecdo, pois 0 mesmo encontra-se em uma zona de baixa
eficiéncia (Figura 5. 3) e seu comportamento ilustra que este tenta ficar em angulos de
azimute que proporcionem maior eficiéncia. Além disso, por volta de 60 s, T1 vai 0 mais
rapido possivel (considerando-se as limitacdes fisicas) para um angulo de aproximadamente
190°. Essa alocagdo ndo contribui para a geracdo da forca lateral requerida, mas contribui com
a geracdo de momento, o que ilustra novamente a importancia dessa direcdo para esta
situacao.
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Finalmente, note que as curvas vermelhas ilustram as limitacbes fisicas dos
propulsores, que sdo calculadas com base na saturacdo dos mesmos, maxima variacdo de
RPM e méaxima variacao de angulo de azimute.

Figura 5. 9 — Alocagdo dos propulsores (empuxo e angulo de azimute) para o caso base.
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A Figura 5. 10 apresenta a variagdo de empuxo e angulo de azimute verificadas na
alocacdo de empuxo para o0 caso base. Note que as linhas vermelhas representam a limitagédo
fisica dos propulsores e estdo de acordo com a Figura 5. 9. Além disso, verifica-se que nao é
possivel aumentar o empuxo dos propulsores T4, T5 e T6 durante todo o intervalo de
simulagdo, pois 0s mesmos ja estdo saturados.



Figura 5. 10 — Variacao de empuxo e angulo de azimute dos propulsores para o caso base.
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5.3.1.3 — Conclusao

A partir do desenvolvimento do algoritmo de alocacdo de empuxo foi possivel similar
uma operacdo DP baseada em dados ambientais reais, considerando as limitagdes fisicas dos
propulsores e os fendmenos de interacdo entre propulsores e entre propulsor e casco. Embora
as condicOes fossem criticas para a embarcacdo (T4, T5 e T6 estdo saturados durante todo o
intervalo de simulacdo), as forcas requeridas pelo sistema de controle foram geradas com
elevada precisdo.

Ainda, nota-se que o0s propulsores evitam as zonas de menor eficiéncia, que
correspondem aos angulos de azimute em que ha interacdo entre propulsores, portanto
conclui-se que ndo é necessario definir zonas proibidas para os propulsores, pois as mesmas

séo evitadas automaticamente porque apresentam baixa eficiéncia.
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5.3.2 — Caso Desliga/Liga

5.3.2.1 — Condic6es

Neste caso estuda-se 0 comportamento do algoritmo de alocacdo de empuxo para a
situacdo em que os propulsores da embarcacao séo desligados, e em seguida ligados. Ou seja,
as forcas requeridas pelo sistema de controle decaem até valores nulos e em seguida

aumentam.

5.3.2.2 — Discussao dos Resultados

A Figura 5. 11 apresenta as forcas requeridas e geradas para 0 caso em que as mesmas
sdo inicializadas em um valor elevado, diminuem até Zero, e em seguida, aumentam até o
valor inicial. Note que durante todo o intervalo de simulagdo o algoritmo de alocagédo de

empuxo conseguiu gerar as forcas requeridas.

Figura 5. 11 — Forca requerida e gerada para o caso Desliga/Liga.
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A Figura 5. 12 apresenta a alocacdo de empuxo para o caso Desliga/Liga. Note que o
empuxo gerado por cada propulsor tem a mesma forma das forcas requeridas, o que é um

comportamento esperado.

Figura 5. 12 — Alocacdo para o caso Desliga/Liga.
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Neste caso é interessante estudar a variacdo das variaveis, ilustrado na Figura 5. 13.
Note que conforme o empuxo diminui a sua variagdo maxima também diminui. Isso pode ser
explicado conforme as Eq.s 5.5 e 5.6, pois 0 empuxo depende da rota¢do do propulsor elevada
ao quadrado; portanto se a rotagdo diminui, a mesma variagdo em RPM, leva a um intervalo
menor de geracdo de empuxo. Desta forma, explica-se a forma da curva de limitacdo fisica do

empuxo dos propulsores.

Figura 5. 13 — Variacao de empuxo e angulo de azimute dos propulsores para o caso Desliga/Liga.
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5.3.2.3 — Conclusao

Essa simulacdo ilustrou aspectos interessantes relativos as limitacdes fisicas dos
propulsores. Além disso, o algoritmo de alocacdo de empuxo lidou de maneira correta com o
fendmeno Desliga/Liga simulado, e gerou com precisdo as forgas requeridas pelo sistema de

controle.
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5.3.3 — Caso de Forcas Requeridas Girando — T3 e T5 Cruzam “Zonas Proibidas”

5.3.3.1 — Condic6es

As forcas requeridas neste caso ndo se baseiam em simulacbes com o modelo. As

mesmas estdo girando conforme ilustrado na Figura 5. 14. Essa situacdo pode ocorrer durante

manobras da embarcacéo.

Figura 5. 14 — Forcas requeridas girando.
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O objetivo desta simulacdo é verificar se 0s propulsores cruzardo as zonas de baixa

eficiéncia (onde ha interacdo entre propulsores), e que normalmente sdo definidas como

“zonas proibidas”. Além disso, verifica-se de que maneira ocorre essa passagem.



5.3.3.2 — Discussao dos Resultados
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A Figura 5. 15 apresenta as forcas geras para 0 caso em que as forcas requeridas estéo

girando. Verifica-se que as forcas geradas atendem as forgcas requeridas durante todo o

intervalo de simulagdo, porém vale a penar olhar com mais detalhes como isso ocorre.

Figura 5. 15 — Forca requerida e gerada para o caso Forcas requeridas girando.
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A Figura 5. 16 apresenta as alocagles para esse caso. Ha 4 eventos que merecem

destaque e que ilustram como os propulsores T3 e T5 cruzam as zonas de baixa eficiéncia.

1) Por volta de 55 s, T3 e T5 comegcam a diminuir seus respectivos empuxos. Em
contrapartida, 0s outros propulsores aumentam Seus empuxos para compensar O

comportamento de T3 e T5.

2) A diminuicdo de empuxo de T3 e T5 ocorre, pois T3 e T5 estdo parados na entrada da
chamada *“zona proibida” e estdo se distanciando da direcdo da forca requerida. Os outros
propulsores seguem a forca requerida.

3) Por volta de 75 s, T3 e T5 cruzam a zona onde apresentam baixa eficiéncia, com
pequenos valores de empuxo e o mais rapido possivel (considerando-se suas limitacdes
fisicas), o que resulta em economia de potencia, pois 0S mesmos encontram-se em zona de
baixa eficiéncia. Além disso, ao cruzarem essa zona de baixa eficiéncia que representa a
interacdo entre propulsores com pequenos valores de empuxo e de maneira rapida, o jato

d’agua jogado contra 0s outros propulsores ndo € muito significativo.

4) Apoés cruzarem as zonas de baixa eficiéncia T3 e T5, “correm” atrés da dire¢do da
forca requerida, aumentando seus respectivos empuxos, pois 0S mesmos apresentam boa
eficiéncia e direcdo cada vez mais proxima a da forca requerida. Em contrapartida, 0s outros
propulsores diminuem seus respectivos empuxos a fim de minimizar o consumo de energia da

embarcacao.
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Figura 5. 16 — Alocacdo para o caso Forgas requeridas girando.
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5.3.3.3 = Conclusao

Essa simulacéo ilustra o processo do cruzamento de zonas de baixa eficiéncia, que em
outros algoritmos sdo tratadas como zonas proibidas. Verifica-se como este processo é
realizado de maneira automatica pelo algoritmo de alocacdo de empuxo e de maneira
otimizada.

1) Parada na entrada da zona de baixa eficiéncia.
2) Diminuicdo do empuxo.

3) Cruzamento o mais rapido possivel.

4) Corrida atras das forcas requeridas

Esse processo € bastante eficiente, pois ao diminuir o empuxo gerado antes de entrar
na zona de baixa eficiéncia, a alocacdo requer menor consumo de energia, e 0 jato d’agua
jogado sobre os outros propulsores ndo é muito significativo.
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6 — Conclusao

Os resultados da implementacdo inicial do Algoritmo de Alocacdo de Empuxo
permitem concluir que os fendmenos de interferéncia sdo importantes e devem ser

considerados no Sistema DP.

O estudo da dinamica do algoritmo inicial permitiu conhecer e prever seu
funcionamento, bem como desenvolver técnicas de otimizacdo simplificadoras. Essas
diferentes técnicas de otimizacdo foram utilizadas para desenvolver novos algoritmos de

Alocagéo de Empuxo.

Os novos algoritmos foram testados, comparados e analisados, quanto a sua
Eficiéncia, Precisdo, Tempo de processamento e Dindmica intrinseca. Por fim selecionou-se o
algoritmo Trust Region SQP, que em nivel superior é da classe Trust Region e em nivel
inferior (método dos gradientes reduzidos para programacao quadratica) é da classe Line
Search.

O Trust Region SQP respeita 0s requisitos essenciais de Precisdo e Tempo de
Processamento, e é mais eficiente do que todos os algoritmos simulados, incluindo o
FMINCON do MATLAB.

Além disso, todas as comparagdes com os algoritmos de alocacdo de Empuxo

disponiveis no mercado continuam validas:

Alocacgéo Objetiva

— Consegue resolver o problema para qualquer fenémeno de Interferéncia
Sistema Confiavel e seguro

— Incluséo da Interferéncia torna o sistema mais proximo da realidade

— Poupa propulsores avariados
Ganhos Econémicos

— Economia Combustivel

— Aumento Janela de Operacéo
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Por fim, toda a arquitetura do algoritmo de alocac@o de empuxo foi configurada para o
desenvolvimento de um simulador de operacGes DP. Note que as simulacfes realizadas
incluem as limitacGes fisicas dos propulsores e ocorrem no dominio do tempo (time domain

simulations), além de considerar os fendmenos de interacéo.

A simulacdo em condi¢des ambientais reais ilustra que o algoritmo de alocagdo de
empuxo é confidvel para operacGes DP. Os erros na geragdo de forca foram insignificantes e a
embarcacdo conseguiu manter sua posi¢do, levando em conta suas limitacBes fisicas,

saturacédo dos propulsores, e os fendmenos de interacao.

O caso em que 2 propulsores cruzaram suas respectivas zonas de baixa eficiéncia
(normalmente tratadas como “zonas proibidas”), mostra que o algoritmo de alocagdo de
empuxo automaticamente evita tais zonas, até que valha a pena cruza-las. Além disso, 0
cruzamento dessas zonas de baixa eficiéncia é realizado com baixo empuxo e com a maior
velocidade possivel, 0 que economiza energia e preveni que um propulsor jogue um jato

d’agua significativo sobre um segundo propulsor.

Portanto os resultados das simulac6es de operacdes DP, mostram que o algoritmo de
alocagdo de empuxo desenvolvido pode lidar com fenémenos de interagdo hidrodinamicos,
considerando as limitagdes fisicas dos propulsores. Espera-se que essas melhoras na estratégia
de alocacdo de empuxo levem ao aumento da precisdo de operagdes DP e stationkeeping de
embarcacoes.

N&o obstante, note que o algoritmo de alocacdo de empuxo foi utilizado em 2
embarcacOes e em diversas situagdes complexas. Portanto 0 mesmo mostra-se uma alternativa

robusta.

Algumas melhorias e ideias que podem ser desenvolvidas em trabalhos futuros nessa

area sao:

1) Melhorar o tratamento de saturacdo dos propulsores. Ha diversas estratégias
disponiveis na bibliografia que podem ser implementadas e comparadas. Destacam-se
0s seguintes métodos: dicotomia, loops de realocacdo e definicdo de um novo
problema de otimizag&o que lida apenas com minimizar os erros na geracéo de forcas.

2) Incluir fendbmenos de interagdo hidrodindmicos mais complexos como, a interagdo
entre propulsor e correnteza.

3) Realizar simulagdes DP em tanques de prova.
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Anexo A - Solu¢do Analitica da Alocacao sem Interferéncia e
func¢do objetivo quadratica

Esse anexo tem por objetivo ilustrar a solucdo analitica ao problema de otimizagdo da
Alocacdo com Funcdo Objetivo Quadratica. Essa solucdo é o chute inicial do problema de
otimizacdo completo (com Funcao Objetivo ajustada e curvas de interferéncia).

Como ilustrado na se¢éo 3.3.1, os propulsores azimutais podem ser considerados como
a unido de um propulsor principal a um propulsor em tdnel. Dessa forma trabalha-se
considerando forgcas com indices impares como propulsores principais ou parte de propulsores
azimutais e; forcas com indices pares como propulsores em tinel ou complementos de

propulsores azimutais.

Considera-se A funcéo objetivo é de forma quadratica (Equagdo A.1).

As restricGes ao problema de alocagédo sdo a equivaléncia entre as forgas geradas pelos
propulsores as cargas ambientais (FSurge; FSway; MYaw).

h,:R+F+FK +..+F,_; —Fsurge=0
h,:F,+F, +F +...+ F, —Fsway =0
hs iR (Y1) +F X +Fs - (-y3) +Fy - Xy +Fy - (=Yn) +Fy - X, —Myaw =0

(A.2)
Note que a Equacao A.2 é equivalente a equacao A.3:
Fsurge
[A]lx[F]= | Fsway
Myaw (A.3)

Aplica-se 0 método de Lagrange, descrito em Silva (2011). Onde se define a funcéo

Lagrangeana (L), que contém a Funcdo Objetivo mais as restricbes multiplicadas pelas
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varidveis i. Essas variaveis sdo conhecidas como varidveis de relaxagdo e facilitam a

solucéo, pois 0 problema torna-se uma otimizagdo sem restricéo:

Para obter-se o valor da Funcdo Objetivo (A.1) é necessario obter:

{a_L o0t
oF, O\ (A5)
L
Note que Ok recupera as restricdes do problema.

Aplicando a metodologia descrita na Equacdo A.5 obtém-se:

Parte superior

2-F+A -y, A3=0
2-F,+Ay +X, A3 =0
2-Fg+A—Y53-A3=0
2-Fy+hy+X,-A3=0

2-F g +h—Yn1-A3=0
2-F,+Ay, +X,-A3=0

Parte inferior
Fsurge

[A]x[F]=| Fsway
Myaw

(A.6)



138

Para tornar a solugdo mais clara, daqui a diante considera-se apenas dois propulsores

F.FF)

azimutais (R, , que é 0 nimero minimo que permite otimizacgdo, pois desta maneira,

o0 sistema de Equacbes A.3 tem infinitas solucbes. Note que o processo de solucdo sera

analogo para demais propulsores. Dessa forma obtém-se:

Superior

2-F+A—-Y;-A3=0

2-F, +h, +X,-A3=0

2-F3+A—Y3-Ay3=0

2-Fp+Ay+X,-Ay3=0

Inferior

F, +F; —Fsurge =0

F, +F, —Fsway =0

Fo(=y)+F X, +F - (=y3) +F, - X4 —Myaw =0

(A7)

oL

“==0
oF,

Considere inicialmente as equagdes , Na parte superior do sistema de Equacgdes

A.7. Veja como é facil eliminar Me 7‘2, basta subtrair uma equacdo de indice impar de outra,

e realizar o0 mesmo processo entre as equacdes de indices pares.

2R -2F+A5-Y3—A3-y; =0

2F, —2F, + A5 -X, —A53-X, =0

F +F;—Fsurge=0

F, +F, —Fsway =0

Fo(=y1) +F X, +F5-(=Y3) +Fy - X, —Myaw =0

(A.8)

Também é possivel eliminar hs combinando as duas primeiras equagoes:



2F; (Y3 = Y1) +2F, - (Y, —Y3) +2F; - 2R, =0

F +F; —Fsurge =0

F, +F, —Fsway =0

Fo(=y)+F X, +F5 - (=y3) + F4 - X4 —Myaw =0

Escrevendo A.9 na forma matricial:

1 0 1 0 F Fsurge
0 1 0 1 F,| | Fsway
—Y1 X3 —Y3 Xy Fs Myaw

Para resolver o sistema basta inverter a primeira matriz:

K don't care || Fsurge
F, ) don't care || Fsway
= pinv(A)
E don't care || Myaw
F, don't care 0
(A.11)

139

(A.9)

(A.10)

Desta forma demonstra-se a melhor alocacdo para Funcdo Objetivo quadrada é

multiplicar a matriz pseudo-inversa de A pelas for¢as do meio ambiente. Note que a Gltima

coluna ndo tem relevancia.

Note que a matriz pseudo-inversa de A também ¢ obtida segundo a Equacéo (A.12)

pinv(A) = A* = AT(AAT)

(A.12)



Anexo B — Tabela de comparacao dos algoritmos de Alocacao de Empuxo

Apresentam-se as simulacdes de diferentes Forcas de Controle (Ex, Fy, Mz), as Forgas Efetivas (Fx, Fy, Mz) geradas por cada um dos
algoritmos, seu Tempo de processamento, o valor da Fungdo Objetivo (Poténcia) na solucdo e o Erro Percentual ao atender as Forgas de Controle.

Tabela B. 1: Simulacdo completa dos Algoritmos de Alocacdo de Empuxo

F controle FMINCON SQP - Poténcia Quadratica
Fx Fy Mz Fx Fy Mz Tempo Poténcia Erro de Forca Fx Fy Mz  Tempo Poténcia Erro de Forga
7 7 0 7,000 7,000 0,000 2,819 15,8124 0% 7,003 6,997 0,013 1,137 15,8721 0,14 %
77 0 -7,000 7,000 0,000 3,132 19,945 0% -6,983 7,011 0,001 0,911 19,8239 0,21 %
-7 -7 0 -7,000 -7,000 0,000 3,367 19,0804 0% -6,909 -7,057 -0,031 1,078 19,0529 1,28 %
7 -7 O 7,000 -7,000 0,000 2,730 18,8584 0% 7,006 -6,865 -0,124 0,762 19,8251 1,89 %
-10 O 0 -10,000 0,000 0,000 3,139 19,8517 0% -9,992 0,006 -0,012 1,012 19,9786 0,26 %
0O 10 O 0,000 10,000 0,000 3,994 16,9581 0% 0,013 9,999 0,001 0,952 17,0148 0,15 %
0 -10 O 0,000 -10,000 0,000 3,389 20,2653 0% 0,090 -9,953 0,051 0,971 20,0224 1,88 %
SQP Poténcia Quadratica + Passo 2 Trust Region SQP
Fx Fy Mz Tempo Poténcia ErrodeForga  Fx Fy Mz  Tempo Poténcia Erro de Forca
7,000 7,000 0,000 1,334 15,8294 0% 7,000 7,000 -0,013 1,002 15,8125 0,09 %
-7,000 7,000 0,000 1,042 19,6596 0% -7,000 6,982 -0,026 1,286 19,6036 0,31 %
-7,000 -7,000 0,000 1,184 19,1459 0% -6,977 -7,002 -0,046 1,362 19,0812 0,51 %
7,000 -7,000 0,000 0,841 20,0313 0% 6,931 -6,997 -0,020 1,234 19,3467 0,66 %
-10,000 0,000 0,000 1,108 19,8816 0% -9,991 0,016 0,030 2,176 19,826 0,55 %
0,000 10,000 0,000 1,048 16,9603 0% 0,019 10,000 0,006 1,491 16,9549 0,25 %
0,000 -10,000 0,000 1,060 20,2002 0% -0,023 -9,957 0,035 1,210 19,9492 1,01 %




