
Universidade de São Paulo
Instituto de Matemática e Estatística
Bacharelado em Matemática Aplicada

Matemática por trás da arte computacional

Uma visão geral da matemática envolvida
na criação de ferramentas de design e

modelagem 3D

Rebeca Mariana Nascimento Yamaoka

Monografia Final

Trabalho de
Formatura Supervisionado

Supervisor: Eduardo Colli

São Paulo

2025

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

"A arte desafia a tecnologia, e a tecnologia inspira a arte".
- Andrew Stanton (Diretor de "Procurando Nemo")

"O processo de criação é, em si, a recompensa".
- Hayao Miyazaki (Co-fundador do Studio Ghibli)

i

Agradecimentos

"Então, o que você acha que vai fazer? Como vai gastar sua vida?"

— Jerry, Soul: Uma Aventura com Alma (2020, Disney/Pixar)

"Não sei ao certo... Mas sei que... Vou viver cada minuto dela".

— Joe, Soul: Uma Aventura com Alma (2020, Disney/Pixar)

Primeiramente, queria agradecer meus pais pelo apoio e amor incondicional. Seja na

minha paixão por arte, nos meus estudos da matemática ou qualquer outro interesse que

eu tivesse vocês sempre me apoiaram por completo. Eu amo vocês e muito obrigada por

absolutamente tudo que vocês sempre me proporcionaram. Não há palavras para descrever

o quanto vocês significam para mim.

Segundo, queria agradecer minha amiga Kakazita. Obrigada por sempre estar ao meu

lado e por ser essa pessoa incrível. Eu te adoro e quero sempre compartilhar mais aventuras

com você.

Por fim, quero agradecer meu orientador Prof. Colli. Agradeço por ter aceitado me

mentorar nesse trabalho e por ter me apoiado na pesquisa de um tópico que junta duas

áreas pelas quais eu tenho muito carinho.

Resumo

Rebeca Mariana Nascimento Yamaoka. Matemática por trás da arte computacional:
Uma visão geral da matemática envolvida na criação de ferramentas de design
e modelagem 3D. Monografia (Bacharelado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2025.

A computação gráfica é uma área da informática em constante evolução, impulsionada pela necessidade

de solucionar novos desafios em diversos campos, como entretenimento, medicina ou simulações científicas.

Para acompanhar essas demandas, a matemática que fundamenta suas técnicas também se desenvolveu,

tornando-se mais eficaz e sofisticada. Este trabalho busca estudar as ferramentas matemáticas essenciais

utilizadas na área de forma acessível. Assim, este texto serve como um guia introdutório para estudantes e

profissionais que desejam entender a base teórica por trás da computação gráfica moderna.

Palavras-chave: Computação gráfica. Curvas de Bézier. Superfícies de Bézier. B-spline. NURBS. Subdivisão

de superfícies. Modelagem geométrica.

Abstract

Rebeca Mariana Nascimento Yamaoka. The Mathematics Behind Computational Art:
An overview of the mathematics behind 3D modeling and design tools. Capstone

Project Report (Bachelor). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2025.

Computer graphics is a continuously evolving field of computing, driven by the need to address new

challenges in diverse areas such as entertainment, medicine, and scientific simulations. To keep up with

these demands, the mathematical foundations underlying its techniques have also advanced, becoming more

efficient and sophisticated. This work aims to study the essential mathematical tools used in the field in an

accessible manner. Thus, this text serves as an introductory guide for students and professionals seeking to

understand the theoretical foundations behind modern computer graphics.

Keywords: Computer graphics. Bézier curves. Bézier surfaces. NURBS. B-splines. Subdivision surfaces.

Geometric modeling.

vii

Lista de abreviaturas

IME Instituto de Matemática e Estatística

USP Universidade de São Paulo

NURBS B-splines racionais não uniformes

viii

Lista de figuras

1.1 Razão cruzada: a razão cruzada, de Farin, de 𝑎, 𝑏, 𝑐, 𝑑 e de 𝑎̂, 𝑏̂ , 𝑐̂, 𝑑̂ depen-

dem somente dos ângulos 𝛼, 𝛽 e 𝛾 . 9

2.1 Parábola: construção pela repetição de interpolações lineares. 14

2.2 Exemplo: subdivisão da curva de Bézier com 𝑛 = 3. 19

2.3 Composição das curvas de Bézier: exemplo 𝐶0, mas não 𝐶1. 20

2.4 Composição das curvas de Bézier: exemplo 𝐶1. 20

4.1 Cônicas: dependem do peso 𝑤1. 31

4.2 Cálculo do peso 𝑤1: 𝑆 é o shoulder point, 𝑀 é o ponto médio de 𝑑0 e 𝑑2. . 32

6.1 Interpolação bilinear: paraboloide hiperbólico é definido por quatro pontos

𝑏𝑖,𝑗 . 44

6.2 Derivação do algoritmo de Casteljau para superfícies: o ponto na superfície

é encontrado pela repetição da interpolação linear. 45

ix

Sumário

Introdução 1

1 Conceitos e Notações 3
1.1 Pontos e vetores . 3

1.2 Combinação convexa e fecho convexo . 4

1.3 Transformações afins . 4

1.4 Interpolação linear . 5

1.4.1 Interpolação linear por partes . 6

1.5 Polinômios de Bernstein . 6

1.6 Splines . 7

1.7 Forma polar do polinômio . 7

1.8 Transformações projetivas . 8

Curvas de forma livre 11

2 Curvas de Bézier 13
2.1 Parábolas . 13

2.2 Algoritmo de Casteljau . 14

2.3 Propriedades da curva de Bézier . 16

2.4 Limitações de curvas de Bézier . 18

2.5 Composição de curvas de Bézier . 19

3 Curvas B-Spline 21
3.1 Motivação pelos Splines . 21

3.2 Definição recursiva das funções B-spline 21

3.3 O algoritmo de de Boor . 22

3.3.1 Derivadas e suavidade . 25

3.4 Definição das curvas B-spline . 25

3.5 Forma de Bézier das curvas B-spline . 26

x

3.6 Propriedades da curva B-spline . 26

3.7 Limitações da curva B-spline . 27

4 Curvas NURBS 29
4.1 Motivação: Cônicas como quadráticas racionais 29

4.2 Motivação: Curvas de Bézier racionais . 32

4.3 Definição da curva NURBS . 34

4.4 Cônicas como caso especial de curvas NURBS 34

4.5 Propriedades da curva NURBS . 34

5 Curvas de Subdivisão 37
5.1 Algoritmo de Chaikin . 37

5.2 Algoritmo de Lane-Riesenfeld . 38

5.3 Esquema de quatro pontos . 39

Superfícies de forma livre 41

6 Superfícies de Bézier 43
6.1 Interpolação bilinear . 43

6.2 Algortimo de Casteljau . 45

6.3 Produto tensorial . 46

6.4 Derivadas das Superfícies de Bézier . 47

6.5 Propriedades das Superfícies de Bézier 48

6.6 Composição de superfícies de Bézier . 48

7 Superfícies B-spline 51

8 Superfícies NURBS 53

9 Malhas poligonais (ou Meshes) 55
9.1 Geometria e conectividade . 55

9.2 Malhas quadrilaterais (quads) . 56

9.3 Malhas triangulares . 56

9.4 Refinamento das malhas . 57

9.5 Redução das malhas . 57

9.6 Estética e relaxamento das malhas . 58

10 Superfícies de subdivisão 59
10.1 Motivação . 59

10.2 Superfície B-spline quadrática por subdivisão 59

xi

10.3 Esquema de subdivisão de Doo-Sabin e Catmull-Clark 60

Considerações finais 63

Referências 65

1

Introdução

A computação gráfica é a área da informática destinada à geração, à manipulação e
à exibição de imagens ou vídeos digitais. Capaz de representar dados e informações, ou
ser por si só uma forma de arte, essa parte da computação possui inúmeras aplicações em
diferentes áreas. Na própria informática, utilizada ao produzir interfaces gráficas para sites
da Internet, aplicativos e outros softwares. Além disso, ela pode ser aplicada na indústria de
entretenimento (animações e jogos), arquitetura, desgin, publicidade, engenharia, pesquisas
científicas (simulações e experimentos), medicina, entre outras.

O consenso entre pesquisadores é que a origem da computação gráfica foi dada em
1951, quando Jay Forrester e Robert Everett, ambos do MIT (Instituto de Tecnologia de
Massachusetts), desenvolveram o "Whirlwind I"(furacão), o primeiro computador com
recursos gráficos para processar dados numéricos e projetar imagens em televisões ou
monitores comuns. Alguns anos depois, o “descendente direto” do Whirlwind I, o sistema
SAGE (Semi-Automatic Ground Equipment) do MIT foi inventado. Esse sistema de monito-
ramento e controle de voos usava gráficos vetoriais simples para exibir imagens de radares
e se tornou parte essencial do sistema de defesa antimísseis dos Estados Unidos.

Em 1963, Dr. Ivan Sutherland, pioneiro da interação homem-computador (utilização
acessível dos computadores pelos humanos), desenvolveu em sua tese o programa Sketchpad
(ou Robot Draftsman). Ele foi o primeiro programa a utilizar interface gráfica do usuário
(acrônimo GUI, do inglês graphical user interface). As imagens podiam ser desenhadas
na tela do computador usando uma caneta óptica (dispositivo de entrada de computador
no formato de um bastão sensível à luz). Ele é considerado o pioneiro dos sistemas CAD
(Computer-Aided Design ou Desenho Assistido por Computador).

A partir dos anos 70, as curvas e superfícies de Bézier, B-spline, NURBS e subdivisão
foram uma a uma adotadas em softwares CAD, Maya, Adobe Photoshop, entre outros.
Essas ferramentas matemáticas serão o tema principal abordado nesse trabalho. O objetivo
é apresentar uma visão geral dos conceitos e métodos matemáticos envolvidos na criação
de ferramentas para computação gráfica 2D e 3D.

Para melhor compreensão da matemática desenvolvida, o trabalho está organizado em
12 capítulos. O primeiro deles é um resumo de conceitos e notações que serão utilizadas
ao longo das explicações. Do segundo capítulo até o sexto, o trabalho abordará as curvas
em geral e, em seguida, os casos mais utilizados: curvas de Bézier, B-splines, NURBS e
curvas de subdivisão. Analogamente às curvas, os capítulos sete até dez abordarão os casos
gerais de superfícies de Bézier, Bspline e NURBS. O capítulo onze explica alguns cuidados
e convenções usadas na superfícies de subdivisão, que são exploradas no capítulo doze.

3

Capítulo 1

Conceitos e Notações

Os conceitos e notações usadas são dos livros Curves and Surfaces for CAGD (Farin,
2001), Computational Geometry: Algorithms and Applications (Berg et al., 2008) e Bézier
and B-Spline Techniques (Prautzsch et al., 2002).

1.1 Pontos e vetores

Os pontos serão denotados como elementos do espaço euclidiano (espaço vetorial
real de dimensão finita munido de produto interno) tridimensional, 𝔼3, e letras minús-
culas, como

𝑎 = (𝑎1, 𝑎2, 𝑎3).

Os vetores serão denotados como elementos do espaço vetorial ℝ3 e letras minúsculas.
Para cada dois pontos 𝑎 e 𝑏 , há um único vetor 𝑣 tal que

𝑣 = 𝑏 − 𝑎; 𝑎, 𝑏 ∈ 𝔼3, 𝑣 ∈ ℝ3.

Por outro lado, dado um vetor 𝑣, há um número infinito de pares 𝑎, 𝑏 tais que 𝑣 = 𝑏−𝑎. Dado
um vetor qualquer 𝑤, a mudança do ponto 𝑎 para o ponto 𝑎 + 𝑤 é chamada translação.
Ou seja, vetores são invariantes por translação, enquanto pontos não são.

Elementos do espaço 𝔼3 podem ser subtraídos um dos outros, criando vetores, mas
não somados (essa operação não está definida para pontos, mas sim para vetores). A
operação mais próxima da soma é a combinação baricêntrica (ou combinação afim),
uma combinação linear com pesos somando um:

𝑏 =
𝑛

∑
𝑗=0

𝛼𝑗𝑏𝑗 ; 𝑏𝑗 ∈ 𝔼3, 𝛼1 + ⋯ + 𝛼𝑛 = 1.

4

1 | CONCEITOS E NOTAÇÕES

Reescrevendo como soma de ponto e vetor:

𝑏 = 𝑏0 +
𝑛

∑
𝑗=0

𝛼𝑗(𝑏𝑗 − 𝑏0).

Um caso importante dessas combinações é o da combinação convexa.

1.2 Combinação convexa e fecho convexo
O fecho convexo de um conjunto finito de pontos é o menor conjunto convexo que

contém todos os pontos. Equivalentemente, é a intersecção de todos os conjuntos convexos
que contêm todos os pontos, onde um conjunto convexo é tal que, para quaisquer dois
pontos dele, a reta que os conecta também está contida no conjunto.

No contexto do trabalho, que se restringe a dimensões 2 e 3, o fecho convexo de um
conjunto finito de pontos corresponde a:

• Um polígono convexo em ℝ2 (degenerado em um segmento de reta, se os pontos
forem colineares).

• Um poliedro convexo em ℝ3 (degenerado em um polígono plano, se os pontos
forem coplanares).

A combinação convexa é uma combinação baricêntrica, mas além dos pesos usados
somarem um, estes são não negativos. Toda combinação convexa de pontos está sempre
contida no fecho convexo destes pontos.

1.3 Transformações afins
Baseando-se na noção de combinação baricêntrica, uma transformação 𝜙, que mapeia

𝔼3 nele mesmo, é chamada de transformação afim (ou mapeamento afim) se é invariante
em relação à combinação baricêntrica. Ou seja, se

𝑥 = ∑𝛼𝑗𝑎𝑗 ; ∑𝛼𝑗 = 1, 𝑥, 𝑎𝑗 ∈ 𝔼3

e 𝜙 é uma transformação afim, 𝜙 ∶ 𝔼3 → 𝔼3, então

𝜙(𝑥) = ∑𝛼𝑗𝜙(𝑎𝑗); 𝜙(𝑥), 𝜙(𝑎𝑗) ∈ 𝔼3.

A interpretação é que a expressão 𝑥 = ∑𝛼𝑗𝑎𝑗 especifica como os pesos devem ser dis-
tribuídos nos pontos 𝑎𝑗 para que sua média seja 𝑥 e essa relação ainda é válida após a
aplicação da transformação afim.

Dado um sistema de coordenadas e um ponto 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝔼3, uma transformação
afim qualquer pode ser representada pela forma

𝜙(𝑥) = 𝐴𝑥 + 𝑣,

1.4 | INTERPOLAÇÃO LINEAR

5

onde 𝐴 é uma matriz é 3 × 3 e o 𝑣 é um vetor do ℝ3.

1.4 Interpolação linear

Sejam 𝑎, 𝑏 dois pontos distintos em 𝔼3. O conjunto de todos os ponto 𝑥 ∈ 𝔼3 da forma

𝑥 = 𝑥(𝑡) = (1 − 𝑡)𝑎 + 𝑡𝑏; 𝑡 ∈ ℝ

é chamada de reta que passa por 𝑎 e 𝑏 . Quaisquer três ou mais pontos numa mesma reta
são chamados de colineares. Para 𝑡 = 0, a reta passa pelo ponto 𝑎 e se 𝑡 = 1, ela passa pelo
ponto 𝑏 . Para 0 ≤ 𝑡 ≤ 1, o ponto 𝑥 passeia sobre reta conectando 𝑎 a 𝑏 .

A interpolação linear é invariante em relação às transformações afins: se 𝜙 é uma
trasformação afim de 𝔼3 nele mesmo e 𝑥 é dado como anteriormente, então

𝜙(𝑥) = 𝜙((1 − 𝑡)𝑎 + 𝑡𝑏) = (1 − 𝑡)𝜙(𝑎) + 𝑡𝜙(𝑏).

Além disso, a interpolação linear é em si uma transformação afim dos reais na reta
em 𝔼3: dado 𝑡 ∈ ℝ,

𝑡 = ∑𝛼𝑗𝑎𝑗 ; ∑𝛼𝑗 = 1, 𝑎𝑗 ∈ ℝ,

então {
𝑥(𝑡) = (1 − 𝑡)𝑎 + 𝑡𝑏 = (1 − ∑𝛼𝑗𝑎𝑗)𝑎 + ∑𝛼𝑗𝑎𝑗𝑏
𝑥(𝑎𝑗) = (1 − 𝑎𝑗)𝑎 + 𝑎𝑗𝑏

⇒

⇒ ∑𝛼𝑗𝑥(𝑎𝑗) = (∑𝛼𝑗 −∑𝛼𝑗𝑎𝑗)𝑎 + ∑𝛼𝑗𝑎𝑗𝑏 = 𝑥(𝑡).

A interpolação linear também está relacionada com coordenadas baricêntricas. Dados
𝑎, 𝑥 e 𝑏 três pontos colineares em 𝔼3 tais que

𝑥 = 𝛼𝑎 + 𝛽𝑏; 𝛼 + 𝛽 = 1,

então 𝛼 e 𝛽 são chamadas de coordenadas baricêntricas de 𝑥 em relação a 𝑎 e 𝑏 .

A conexão entre coordenadas baricêntricas e combinações baricêntricas é dada ao usar
𝛼 = 1 − 𝑡 e 𝛽 = 𝑡. Isso mostra que as coordenadas baricêntricas podem ser negativas,
bastando tomar 𝑡 ∉ [0, 1].

Para quaisquer três pontos colineares 𝑎, 𝑏, 𝑐, as coordenadas baricêntricas de 𝑏 em
relação a 𝑎 e 𝑐 são dadas por

𝛼 =
vol1(𝑏, 𝑐)
vol1(𝑎, 𝑐)

,

𝛽 =
vol1(𝑎, 𝑏)
vol1(𝑎, 𝑐)

,

onde vol1 denota o volume unidimensional, ou seja, a distância entre os dois pontos.

6

1 | CONCEITOS E NOTAÇÕES

A razão simples de três pontos colineares 𝑎, 𝑏 e 𝑐 é definida por

𝑟𝑎𝑡𝑖𝑜(𝑎, 𝑏, 𝑐) =
vol1(𝑎, 𝑏)
vol1(𝑎, 𝑐)

,

mas a razão que será usada é a razão simples de Farin do livro Curves and Surfaces for
CAGD (Farin, 2001),

𝑟𝑎𝑡𝑖𝑜𝑓 (𝑎, 𝑏, 𝑐) =
vol1(𝑎, 𝑏)
vol1(𝑏, 𝑐)

.

Se 𝛼 e 𝛽 forem as coordenadas baricêntricas de 𝑏 em relação a 𝑎 e 𝑐, então

𝑟𝑎𝑡𝑖𝑜𝑓 (𝑎, 𝑏, 𝑐) =
𝛽
𝛼
.

As coordenadas baricêntricas de um ponto não mudam em relação às transformações
afins e o quociente também não. Assim, dada 𝜙 uma transformação afim,

𝑟𝑎𝑡𝑖𝑜𝑓 (𝜙(𝑎), 𝜙(𝑏), 𝜙(𝑐)) =
𝛽
𝛼
.

Transformações afins também preservam razões simples.

1.4.1 Interpolação linear por partes

Dados 𝑏0, … , 𝑏𝑛 ∈ 𝔼3 formando um polígono 𝐵. Esse polígono consiste em uma sequên-
cia de segmentos de retas, cada uma interpolando os pares de pontos 𝑏𝑖, 𝑏𝑖+1 e é chamado de
interpolante linear por partes dos pontos 𝑏𝑖. A interpolação linear por partes é invariante
em relação a transformações afins.

1.5 Polinômios de Bernstein

Os polinômios de Bernstein são polinômios da forma

𝐵𝑛
𝑖 (𝑡) = (

𝑛
𝑖)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖,

onde os coeficientes binomiais são dados por

(
𝑛
𝑖)

=

{
𝑛!

𝑖!(𝑛−𝑖)! , se 0 ≤ 𝑖 ≤ 𝑛
0, caso contrário.

Uma importante propriedade desses polinômios é que eles satisfazem a recursão

𝐵𝑛
𝑖 (𝑡) = (1 − 𝑡)𝐵𝑛−1

𝑖 (𝑡) + 𝑡𝐵𝑛−1
𝑖−1 (𝑡)

1.6 | SPLINES

7

com
𝐵0
0(𝑡) ≡ 1

e
𝐵𝑛
𝑗 (𝑡) ≡ 0 para 𝑗 ∉ {0, ⋯ , 𝑛}.

Basta observar que

𝐵𝑛
𝑖 (𝑡) = (

𝑛
𝑖)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖

= (
𝑛 − 1
𝑖)𝑡

𝑖(1 − 𝑡)𝑛−𝑖 + (
𝑛 − 1
𝑖 − 1)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖

= (1 − 𝑡)𝐵𝑛−1
𝑖 (𝑡) + 𝑡𝐵𝑛−1

𝑖−1 (𝑡).

Outra propriedade da forma polinômios de Bernstein é a partição da unidade:

𝑛

∑
𝑗=0

𝐵𝑛
𝑗 (𝑡) ≡ 1.

Esse fato é provado com a ajuda do Binômio de Newton:

1 = [𝑡 + (1 − 𝑡)]𝑛 =
𝑛

∑
𝑗=0

(
𝑛
𝑗)

𝑡𝑗(1 − 𝑡)𝑛−𝑗 =
𝑛

∑
𝑗=0

𝐵𝑛
𝑗 (𝑡).

1.6 Splines
Uma função spline é uma função polinomial por partes, ou seja, o domínio da função

pode ser particionado em intervalos cuja união é o domínio inteiro e em cada um desses
intervalos a função é descrita por um polinômio. Os segmentos polinomiais podem ter graus
diferentes, mas são incomuns em aplicações práticas e não serão abordados nesse trabalho.

Definindo matematicamente, dada uma curva polinomial 𝑠, com 𝑠 ∶ [𝑎, 𝑏] → ℝ, e 𝑚
nós, 𝑎 = 𝑢0, 𝑢1, ⋯ , 𝑢𝑚−1, 𝑢𝑚 = 𝑏 , onde 𝑢𝑖 ≤ 𝑢𝑖+1 para todo 𝑖. Os nós são os valores de 𝑡
tais que 𝑠(𝑡) corresponde a junção dos segmentos polinomiais. A curva 𝑠 é chamada de
spline de grau n, se 𝑠(𝑡) é 𝑛 − 𝑟 vezes diferenciável em qualquer nó de multiplicidade 𝑟
(um nó 𝑢𝑖+1 tem multiplicidade 𝑟 se 𝑢𝑖 < 𝑢𝑖+1 = ⋯ = 𝑢𝑖+𝑟 < 𝑢𝑖+𝑟+1) e 𝑠(𝑡) é um polinômio
de grau ≤ 𝑛 em cada intervalo [𝑢𝑖, 𝑢𝑖+1], para 𝑖 = 0, ⋯ ,𝑚 − 1.

É comum se referir ao spline de grau 𝑛 como spline de ordem 𝑛 + 1.

1.7 Forma polar do polinômio

Dado um polinômio 𝑝(𝑡) de grau 𝑛,

𝑝(𝑡) =
𝑛

∑
𝑖=0

𝛼𝑖𝑡 𝑖,

8

1 | CONCEITOS E NOTAÇÕES

sua forma polar 𝑃(𝑎1, … , 𝑎𝑛) é a única função que:

• é multiafim: afim em cada variável 𝑎𝑗 ,

• é simétrica: a ordem das variáveis não importa (𝑃(𝑢, 𝑣) = 𝑃(𝑣, 𝑢)),

• recupera o polinômio na diagonal: 𝑃(𝑡, … , 𝑡) = 𝑝(𝑡),

• encontra as derivadas de p: a 𝑟-ésima derivada de 𝑝 é dada por

𝑝(𝑟)(𝑡) =
𝑛!

(𝑛 − 𝑟)!
[𝑃(𝑡, … , 𝑡⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑛−𝑟

, 1, … , 1⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟

) − 𝑃(𝑡, … , 𝑡⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑛−𝑟

, 0, … , 0⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟

)].

A fórmula nesse caso é dada por

𝑃(𝑎1, … , 𝑎𝑛) =
𝑛

∑
𝑖=0

𝛼𝑖
𝑆𝑖
(𝑛𝑖)

onde 𝑆𝑖, soma simétrica dos produtos 𝑎1 …𝑎𝑖, é dada por

𝑆𝑖 = ∑
1≤𝑘1<𝑘2<⋯<𝑘𝑖≤𝑛

𝑎𝑘1𝑎𝑘2 …𝑎𝑘𝑖 .

Outra propriedade importante da forma polar é que

𝑃 ′(𝑢2, … , 𝑢𝑛) =
𝑛

𝑏 − 𝑎
[𝑃(𝑏, 𝑢2, … , 𝑢𝑛⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛−1

) − 𝑃(𝑎, 𝑢2, … , 𝑢𝑛⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−1

)]

= 𝑛[𝑃(1, 𝑢2, … , 𝑢𝑛⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−1

) − 𝑃(0, 𝑢2, … , 𝑢𝑛⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−1

)],

onde 𝑃 ′ é a forma polar do polinômio 𝑝′(𝑡) e de forma geral,

𝑃 (𝑟)(𝑢𝑟+1, … , 𝑢𝑛) =
𝑛!

(𝑛 − 𝑟)!
[𝑃(1, … , 1⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟

, 𝑢𝑟+1, … , 𝑢𝑛⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−𝑟

) − 𝑃(0, … , 0⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟

, 𝑢𝑟+1, … , 𝑢𝑛⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−𝑟

)],

com 𝑃 (𝑟) forma polar do polinômio 𝑝(𝑟)(𝑡).

1.8 Transformações projetivas

Dado um plano 𝑃 (plano de imagem) e um ponto 𝑜 (centro ou origem da projeção) em
𝔼3. Um ponto 𝑝 pode ser projetado em 𝑃 através de 𝑜, ao achar a intersecção 𝑝̂ entre a
reta que conecta 𝑜 a 𝑝 e o plano 𝑃 . Para a projeção estar bem definida, é necessário que
𝑜 ∉ 𝑃 . Qualquer ponto de 𝔼3 pode ser projetado em 𝑃 dessa maneira.

Em particular, é possível projetar uma linha 𝐿 no plano 𝑃 . A projeção não é uma
transformação afim, a razão entre os pontos correspondentes de 𝐿 e sua projeção 𝐿′ não
são os mesmo. No entanto, a projeção preserva a razão cruzada (ou cross ratio), dados

1.8 | TRANSFORMAÇÕES PROJETIVAS

9

quatro pontos colineares 𝑎, 𝑏, 𝑐 e 𝑑, ela é dada por

(𝑎, 𝑏; 𝑐, 𝑑) =
𝑣𝑜𝑙1(𝑎, 𝑐)𝑣𝑜𝑙1(𝑏, 𝑑)
𝑣𝑜𝑙1(𝑎, 𝑑)𝑣𝑜𝑙1(𝑏, 𝑐)

.

Será utilizada uma definição particular equivalente,

cr(𝑎, 𝑏, 𝑐, 𝑑) =
ratio𝑓 (𝑎, 𝑏, 𝑑)
ratio𝑓 (𝑎, 𝑐, 𝑑)

.

Essa convenção tem a vantagem de ser simétrica: cr(𝑎, 𝑏, 𝑐, 𝑑) = cr(𝑑, 𝑐, 𝑏, 𝑎).

A razão cruzada é invariante em relação a projeções, teorema da razão cruzada: 𝑎̂, 𝑏̂ , 𝑐̂, 𝑑̂
dependem somente dos ângulos 𝛼, 𝛽 e 𝛾 (ver figura 1.1).

Figura 1.1: Razão cruzada: a razão cruzada, de Farin, de 𝑎, 𝑏, 𝑐, 𝑑 e de 𝑎̂, 𝑏̂ , 𝑐̂, 𝑑̂ dependem somente
dos ângulos 𝛼, 𝛽 e 𝛾 .

Denotando a área do triângulo de vértices 𝑝, 𝑞, 𝑟 por Δ(𝑝, 𝑞, 𝑟), é possível demonstrar
que

ratio𝑓 (𝑎, 𝑏, 𝑐) =
Δ(𝑎, 𝑏, 𝑜)
Δ(𝑏, 𝑐, 𝑜)

.

Então

cr(𝑎, 𝑏, 𝑐, 𝑑) =
Δ(𝑎, 𝑏, 𝑜)/Δ(𝑏, 𝑑, 𝑜)
Δ(𝑎, 𝑐, 𝑜)/Δ(𝑐, 𝑑, 𝑜)

=
𝑙1𝑙2sen(𝛼)/𝑙1𝑙4sen(𝛽 + 𝛾)
𝑙1𝑙3sen(𝛼 + 𝛽)/𝑙3𝑙4𝑠𝑒𝑛(𝛾)

=
sen(𝛼)/sen(𝛽 + 𝛾)
sen(𝛼 + 𝛽)/sen(𝛾)

.

10

1 | CONCEITOS E NOTAÇÕES

Logo, a razão só depende dos ângulos em 𝑜. Ou seja,

cr(𝑎, 𝑏, 𝑐, 𝑑) = cr(𝑎̂, 𝑏̂ , 𝑐̂, 𝑑̂).

Voltando para as retas 𝐿 e 𝐿′, estas podem ser interpretadas como cópias da reta real.
Então a projeção de 𝐿 em 𝐿′ pode ser vista como uma transformação que mapeia a reta
real nela mesma. Com essa definição, a projeção define uma transformação projetiva
da reta real nela mesma.

Uma importante observação sobre as tranformações projetivas da reta real nela mesma
é que elas são definidas por três pontos de pré-imagem e três pontos de imagem. Dados
três números 𝑎, 𝑏, 𝑐 de pré-imagem e três números 𝑎̂, 𝑏̂ , 𝑐̂ de imagem, a imagem 𝑡 do
ponto 𝑡 é dada por

cr(𝑎, 𝑏, 𝑡, 𝑐) = cr(𝑎̂, 𝑏̂ , 𝑡, 𝑐̂).

Sendo 𝜌 = (𝑏 − 𝑎)/(𝑐 − 𝑏) e 𝜌̂ = (𝑏̂ − 𝑎̂)/(𝑐̂ − 𝑏̂), isso é equivalente a

𝜌
(𝑡 − 𝑎)(𝑐 − 𝑡)

=
𝜌̂

(𝑡 − 𝑎̂)(𝑐̂ − 𝑡)
.

Resolvendo para 𝑡 ∶

𝑡 =
(𝑡 − 𝑎)𝜌̂𝑐̂ + (𝑐 − 𝑡)𝑎̂𝜌
𝜌(𝑐 − 𝑡) + 𝜌̂(𝑡 − 𝑎)

.

Com uma escolha conveniente para os pontos de imagem e pré-imagem, 𝑎 = 𝑎̂ =
0, 𝑐 = 𝑐̂ = 1. A equação se torna

𝑡 =
𝑡𝜌̂

𝜌(1 − 𝑡) + 𝜌̂𝑡
.

11

Curvas de forma livre

Diferentemente das construções geométricas usando segmentos de círculos, cônicas e
retas, curvas de forma livre (freeform curves) suaves, modeladas a partir de um pequeno
número de pontos de controle, são ferramentas mais recentes.

Curvas de Bézier estão entre as curvas de forma livre mais usadas. Este capítulo abordará
sua construção, baseada no algoritmo de Casteljau, e algumas de suas propriedades. Para
design de curvas mais complexas, há a necessidade de curvas que ofereçam controle da
forma local e as curvas B-spline fazem esse papel. As curvas NURBS (do inglês Non-
Uniform Rational B-Splines, ou B-splines racionais não uniformes) possuem mais uma
possibilidade de ajustes finos ao atribuir pesos a cada ponto de controle. Elas são usadas
para criar as curvas de forma livre planares ou espaciais mais complexas, assim como
todos os tipos de cônicas.

As curvas Bézier, B-spline e NURBS são definidas a partir de um pequeno número de
pontos de controle conectados em um polígono de controle. A partir desses pontos, a
curva suave é criada automaticamente por um algoritmo geométrico e ao mudar o polígono
de controle, a curva resultante também é modificada.

Há duas maneiras principais ao começar o design de curvas iterativas com pontos
de controle:

• Interpolação: definir uma sequência ordenada de pontos (e possivelmente também
suas direções) e criar uma curva suave que passe exatamente por eles.

• Aproximação: definir a curva preliminar (ou o rascunho da curva) com um polígono
de controle e refiná-la até criar uma curva suave que siga a mesma forma. Esse caso
será visto em curvas de subdivisão (Capítulo 5).

A abordagem utilizada para a compreensão das curvas é a dos livros Curves and Surfaces
for CAGD: A Practical Guide (Farin, 2001) (curvas de Bézier, NURBS), Bézier and B-Spline
Technique (Prautzsch et al., 2002) (curvas B-spline) e The NURBS Book (Piegl e Tiller,
1997) (curvas NURBS). As motivações e problemas abordados são oferecidos pelo livro
Architectural geometry (Pottmann et al., 2015).

13

Capítulo 2

Curvas de Bézier

A base das curvas de Bézier foi criada em 1957, quando Paul de Casteljau, enquanto
travalhava na Citroën, desenvolveu o algoritmo de Casteljau para o cálculo de uma família
de curvas que seriam nomeadas e popularizadas por Pierre Étienne Bézier. Em 1962, o
funcionário francês da Renault desenvolveu a notação do algortimo, usando nós com alças
para controle da forma das curvas, e publicou o primeiro trabalho sobre as curvas de Bézier.

Essas curvas, podendo ser intuitivamente manipuladas por usuários por meio de
softwares, foram adotadas como curvas padrão da linguagem PostScript e, mais tarde, por
programas vetoriais como Adobe Illustrator, CorelDRAW e Inkscape. Grande parte das
fontes de contorno são definidas com curvas de Bézier compostas (Seção 2.5).

A curva de Bézier é uma curva polinomial expressa como uma interpolação linear dos
pontos de controle. Essas curvas serão utilizadas para a construção de superfícies de Bézier
que serão abordadas no capítulo 6 (também desenvolvida por Pierre Bézier).

2.1 Parábolas

Começando pela construção da geração de uma parábola, sua generalização levará às
curvas de Bézier. Dados os pontos quaisquer 𝑏0, 𝑏1, 𝑏2 ∈ 𝔼3 e 𝑡 ∈ ℝ, constroem-se as retas

𝑏1
0 (𝑡) = (1 − 𝑡)𝑏0 + 𝑡𝑏1

𝑏1
1 (𝑡) = (1 − 𝑡)𝑏1 + 𝑡𝑏2

e, a partir destas,

𝑏2
0 (𝑡) = (1 − 𝑡)𝑏1

0 (𝑡) + 𝑡𝑏1
1 (𝑡).

Substituindo as duas primeiras equações na última, obtém-se

𝑏2
0 (𝑡) = (1 − 𝑡)2𝑏0 + 2𝑡(1 − 𝑡)𝑏1 + 𝑡2𝑏2.

14

2 | CURVAS DE BÉZIER

Essa é uma expresão quadrática em relação a 𝑡 e 𝑏2
0 (𝑡) = 𝑏2(𝑡) traça uma parábola quando

𝑡 varia em (−∞, +∞),

𝑏2
0 (𝑡) = 𝑏2(𝑡) = (𝑏0 − 2𝑏1 + 𝑏2)𝑡2 + (−2𝑏0 + 2𝑏1)𝑡 + 𝑏0.

A construção consiste na repetição do método de interpolação linear (2.1). Para 𝑡 entre
0 e 1, 𝑏2(𝑡) está dentro do triângulo formado pelos três pontos 𝑏0, 𝑏1, 𝑏2, em particular,
𝑏2(0) = 𝑏0 e 𝑏2(1) = 𝑏2.

Figura 2.1: Parábola: construção pela repetição de interpolações lineares.

Inspecionando as razões entre os comprimentos dos segmentos,

ratio𝑓 (𝑏0, 𝑏1
0 , 𝑏1) = ratio𝑓 (𝑏1, 𝑏1

1 , 𝑏2) = ratio𝑓 (𝑏1
0 , 𝑏

2
0 , 𝑏

1
1) =

𝑡
1 − 𝑡

.

Como consequência de ser uma interpolação linear por partes (seção 1.4), a construção
da parábola é invariante em relação a transformações afins.

2.2 Algoritmo de Casteljau
A construção vista anteriormente para a parábola pode ser generalizada para gerar

uma curva polinomial arbitrária de grau 𝑛.

Algoritmo de Casteljau: Dados 𝑏0, 𝑏1, ⋯ , 𝑏𝑛 ∈ 𝔼3 e 𝑡 ∈ ℝ,

𝑏 𝑟
𝑖 (𝑡) = (1 − 𝑡)𝑏 𝑟−1

𝑖 (𝑡) + 𝑡𝑏 𝑟−1
𝑖+1 (𝑡)

{
𝑟 = 1,⋯ , 𝑛
𝑖 = 0, ⋯ , 𝑛 − 𝑟

e 𝑏0
𝑖 (𝑡) = 𝑏𝑖. Assim, 𝑏𝑛

0 (𝑡) é o ponto com parâmetro 𝑡 na curva de Bézier 𝑏𝑛, ou seja
𝑏𝑛(𝑡) = 𝑏𝑛

0 (𝑡).

2.2 | ALGORITMO DE CASTELJAU

15

O polígono 𝑃 formado pelos pontos 𝑏0, 𝑏1, ⋯ , 𝑏𝑛 é chamado de polígono de controle
da curva 𝑏𝑛. Similarmente, os vértices do polígono 𝑏𝑖 são chamados pontos de controle. A
curva 𝑏𝑛(𝑡) é a aproximação de Bernstein-Bézier dos pontos de controle, uma terminologia
da teoria de aproximação (Seção 1.5).

Os coeficientes 𝑏 𝑟
𝑖 (𝑡) são escritos em forma de cascata (triângulo) no Esquema de

Casteljau.
𝑏0
𝑏1 𝑏1

0

𝑏2 𝑏1
1 𝑏2

0

𝑏3 𝑏1
2 𝑏2

1 𝑏3
0

⋮
𝑏𝑛−1 𝑏1

𝑛−2 𝑏2
𝑛−3 … 𝑏𝑛−1

0

𝑏𝑛 𝑏1
𝑛−1 𝑏2

𝑛−2 … 𝑏𝑛−1
1 𝑏𝑛

0

Obtendo a curva 𝑏𝑛 de Bézier completa, dependendo somente dos pontos 𝑏0, 𝑏1, ⋯ , 𝑏𝑛
e do parâmetro 𝑡: como para 𝑟 = 1, … , 𝑛 e 𝑖 = 0, … , 𝑛 − 𝑟

𝑏 𝑟
𝑖 (𝑡) = (1 − 𝑡)𝑏 𝑟−1

𝑖 (𝑡) + 𝑡𝑏 𝑟−1
𝑖+1 (𝑡)

= (1 − 𝑡)𝑟𝑏𝑖 + 𝑟(1 − 𝑡)𝑟−1𝑡𝑏𝑖+1 + ... + 𝑟(1 − 𝑡)𝑡𝑟−1𝑏𝑖+𝑟−1 + 𝑡𝑗𝑏𝑖+𝑟 =

=
𝑟

∑
𝑘=0

(
𝑟
𝑘)

𝑡𝑘(1 − 𝑡)𝑟−𝑘𝑏𝑖+𝑘.

Então,

𝑏𝑛(𝑡) = 𝑏𝑛
0 (𝑡) = (1 − 𝑡)𝑏𝑛−1

0 (𝑡) + 𝑡𝑏𝑛−1
1 (𝑡)

= (1 − 𝑡)[

𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡

𝑘(1 − 𝑡)𝑛−1−𝑘𝑏𝑘] + 𝑡[

𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡

𝑘(1 − 𝑡)𝑛−1−𝑘𝑏1+𝑘] =

=
𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡

𝑘(1 − 𝑡)𝑛−𝑘𝑏𝑘 +
𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡

𝑘+1(1 − 𝑡)𝑛−1−𝑘𝑏1+𝑘 =

=
𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡

𝑘(1 − 𝑡)𝑛−𝑘𝑏𝑘 +
𝑛

∑
𝑘=1

(
𝑛 − 1
𝑘 − 1)

𝑡𝑘(1 − 𝑡)𝑛−𝑘𝑏𝑘 =

= (1 − 𝑡)𝑛𝑏0 +
𝑛−1

∑
𝑘=1

[(
𝑛 − 1
𝑘) + (

𝑛 − 1
𝑘 − 1)]

𝑡𝑘(1 − 𝑡)𝑛−𝑘𝑏𝑘 + 𝑡𝑛𝑏𝑛 =

=
𝑛

∑
𝑖=0

(
𝑛
𝑖)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖𝑏𝑖

Usando a notação dos polinômios de Bernstein,

𝑏𝑛(𝑡) =
𝑛

∑
𝑖=0

𝑏𝑖𝐵𝑛
𝑖 (𝑡).

16

2 | CURVAS DE BÉZIER

2.3 Propriedades da curva de Bézier

O algoritmo de Casteljau possibilita a inferência de importantes propriedades das
curvas de Bézier.

Invariância afim: transformações fins (Seção 1.3) são importantes ferramentas para
sistemas CAD, usadas em reposicionamento ou redimensionamento de objetos, por exem-
plo. Curvas de Bézier são invariantes em relação a transformações afim, ou seja, ao
computar os pontos 𝑏𝑛

0 (𝑡) e aplicar uma transformação afim nesses pontos obtém-se
o mesmo resultado que aplicar a essa transformação no polígono de controle e utilizar o
algoritmo de Casteljau no polígono transformado. A invariância afim é uma consequência
direta do algoritmo de Casteljau, uma vez que este é composto por uma sequência de
interpolações lineares (sequência de transformações afins) e estas são invariantes em
relação a transformações afins.

• Exemplo prático da propriedade: uma curva cúbica 𝑏3 avaliada em 500 pontos,
rotacionada e plotada. Uma possibilidade seria computar todos os 500 pontos, depois
rotacionar cada um deles (500 aplicações de rotação) e plotar. Outra possibilidade
seria rotacionar somente os 4 pontos de controle, avaliar os 500 pontos e plotá-los
(somente 4 aplicações de rotação).

Invariância em relação a transformação afim de parâmetros: a definição das
curvas de Bézier no intervalo [0, 1] é uma questão de conveniência: o algoritmo não depende
do intervalo em si e sim das razões envolvidas. É possível pensar na curva definida num
intervalo [𝑎, 𝑏] ⊂ ℝ, 𝑡 = (𝑢−𝑎)/(𝑏 −𝑎) e o algoritmo segue da mesma forma. O algoritmo
generalizado de Casteljau é dado pela forma

𝑏 𝑟
𝑖 (𝑢) =

𝑏 − 𝑢
𝑏 − 𝑎

𝑏 𝑟−1
𝑖 (𝑢) +

𝑢 − 𝑎
𝑏 − 𝑎

𝑏 𝑟−1
𝑖+1 (𝑢).

No caso da forma de polinômios de Bernstein:

𝑛

∑
𝑖=0

𝑏𝑖𝐵𝑛
𝑖 (𝑡) =

𝑛

∑
𝑖=0

𝑏𝑖𝐵𝑛
𝑖 (

𝑢 − 𝑎
𝑏 − 𝑎)

.

A passagem do intervalo [0, 1] para [𝑎, 𝑏] é um mapeamento afim e, assim, as curvas de
Bézier são invariantes em relação à transformação afim de seu parâmetro.

Propriedade do fecho convexo: para 𝑡 ∈ [0, 1], a curva 𝑏𝑛(𝑡) está contida no fecho
convexo (Seção 1.2) dos pontos de controle (do polígono de controle). Isso ocorre pois
cada ponto intermediário 𝑏 𝑟

𝑖 é obtido por uma combinação convexa dos anteriores, 𝑏 𝑟−1
𝑖 e

𝑏 𝑟−1
𝑖+1 . Em nenhum passo do algoritmo de Casteljau são produzidos pontos fora do fecho

convexo de 𝑏𝑖.

Pontos extremos da interpolação: as curvas de Bézier passam pelos pontos 𝑏𝑛(0) =
𝑏0 e 𝑏𝑛(1) = 𝑏𝑛.

Simetria: as curvas de Bézier geradas a partir dos pontos 𝑏0, 𝑏1, ⋯ , 𝑏𝑛 e 𝑏𝑛, 𝑏𝑛−1, ⋯ , 𝑏1

2.3 | PROPRIEDADES DA CURVA DE BÉZIER

17

são iguais. Como

𝐵𝑛
𝑖 (𝑡) = (

𝑛
𝑖)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖 = (
𝑛

𝑛 − 𝑖)
𝑡 𝑖(1 − 𝑡)𝑛−𝑖 = 𝐵𝑛

𝑛−𝑖(1 − 𝑡)

Então,
𝑛

∑
𝑖=0

𝑏𝑖𝐵𝑛
𝑖 (𝑡) =

𝑛

∑
𝑖=0

𝑏𝑛−𝑖𝐵𝑛
𝑖 (1 − 𝑡).

Os polinômios de Bernstein são simétricos em relação a 𝑡 e 1 − 𝑡.

Derivada primeira da curva de Bézier: Dada uma curva de Bézier 𝑏𝑛 de grau 𝑛,

𝑏𝑛(𝑡) =
𝑛

∑
𝑖=0

(
𝑛
𝑖)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖𝑏𝑖 =

= (1 − 𝑡)𝑛𝑏0 +
𝑛−1

∑
𝑖=1

(
𝑛
𝑖)

𝑡 𝑖(1 − 𝑡)𝑛−𝑖𝑏𝑖 + 𝑡𝑛𝑏𝑛,

sua primeira derivada é dada por

𝑏̇(𝑡) = 𝑛(1 − 𝑡)𝑛−1𝑏0 +
𝑛−1

∑
𝑖=1

(
𝑛
𝑖)

[𝑖𝑡 𝑖−1(1 − 𝑡)𝑛−𝑖 − (𝑛 − 𝑖)𝑡 𝑖(1 − 𝑡)𝑛−𝑖−1]𝑏𝑖 + 𝑛𝑡𝑛−1𝑏𝑛.

Observando que

𝑖(
𝑛
𝑖)

=
𝑛!

(𝑖 − 1)!(𝑛 − 𝑖)!
= 𝑛

(𝑛 − 1)!
(𝑖 − 1)!(𝑛 − 𝑖)!

= 𝑛(
𝑛 − 1
𝑖 − 1)

e

(
𝑛
𝑖)

=
𝑛!

𝑖!(𝑛 − 𝑖)!
=

𝑛
(𝑛 − 𝑖)

(𝑛 − 1)!
𝑖!(𝑛 − 𝑖 − 1)!

=
𝑛

(𝑛 − 𝑖)(
𝑛 − 1
𝑖),

então

𝑏̇𝑛(𝑡) = 𝑛(1 − 𝑡)𝑛−1𝑏0 +
𝑛−1

∑
𝑖=1

(
𝑛
𝑖)

𝑖𝑡 𝑖−1(1 − 𝑡)𝑛−𝑖𝑏𝑖 −
𝑛−1

∑
𝑖=1

(
𝑛
𝑖)

(𝑛 − 𝑖)𝑡 𝑖(1 − 𝑡)𝑛−𝑖−1𝑏𝑖 + 𝑛𝑡𝑛−1𝑏𝑛 =

= 𝑛(1 − 𝑡)𝑛−1𝑏0 + 𝑛
𝑛−1

∑
𝑖=1

(
𝑛 − 1
𝑖 − 1)

𝑡 𝑖−1(1 − 𝑡)𝑛−𝑖𝑏𝑖 − 𝑛
𝑛−1

∑
𝑖=1

(
𝑛 − 1
𝑖)𝑡 𝑖(1 − 𝑡)𝑛−𝑖−1𝑏𝑖+

+ 𝑛𝑡𝑛−1𝑏𝑛 =

= 𝑛(1 − 𝑡)𝑛−1𝑏0 + 𝑛
𝑛−2

∑
𝑖=0

(
𝑛 − 1
𝑖)𝑡

𝑖(1 − 𝑡)𝑛−𝑖−1𝑏𝑖+1 − 𝑛
𝑛−1

∑
𝑖=0

(
𝑛 − 1
𝑖)𝑡 𝑖(1 − 𝑡)𝑛−𝑖−1𝑏𝑖 =

= 𝑛
𝑛−1

∑
𝑖=0

(
𝑛 − 1
𝑖)𝑡

𝑖(1 − 𝑡)𝑛−𝑖−1(𝑏𝑖+1 − 𝑏𝑖)

18

2 | CURVAS DE BÉZIER

ou, usando polinômios de Bernstein,

𝑏̇(𝑡) = 𝑛
𝑛−1

∑
𝑖=0

(𝑏𝑖+1 − 𝑏𝑖)𝐵𝑛−1
𝑖 (𝑡).

Usando-se Δ𝑏𝑖 = 𝑏𝑖+1 − 𝑏𝑖, essa expressão pode ser reescrita como

𝑏̇(𝑡) = 𝑛
𝑛−1

∑
𝑖=0

Δ𝑏𝑖𝐵𝑛−1
𝑖 (𝑡). (2.1)

Ou seja, a derivada da curva de Bézier também é uma curva de Bézier.

Por outro lado, o algoritmo de Casteljau também constrói os pontos 𝑏𝑛−1
0 (𝑡) e 𝑏𝑛−1

1 (𝑡).
Dado 𝑡 ∈ ℝ, é possível calcular o vetor 𝑏𝑛−1

1 (𝑡) − 𝑏𝑛−1
0 (𝑡),

𝑏𝑛−1
1 (𝑡) − 𝑏𝑛−1

0 (𝑡) =
𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡𝑘(1 − 𝑡)𝑛−1−𝑘𝑏𝑘+1 −

𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡

𝑘(1 − 𝑡)𝑛−1−𝑘𝑏𝑘 =

=
𝑛−1

∑
𝑘=0

(
𝑛 − 1
𝑘)𝑡𝑘(1 − 𝑡)𝑛−𝑘−1(𝑏𝑘+1 − 𝑏𝑘)

⇒ 𝑏̇𝑛(𝑡) = 𝑛(𝑏𝑛−1
1 (𝑡) − 𝑏𝑛−1

0 (𝑡)).

Por último, é possível observar pela construção dessas curvas que os pontos 𝑏1 e 𝑏𝑛−1
controlam as tangentes nos pontos 𝑏0 e 𝑏𝑛, respectivamente.

Subdivisão das curvas de Bézier: dada uma curva de Bézier 𝑏𝑛 com polígono de
controle 𝑏0, ⋯ , 𝑏𝑛, o algoritmo de Casteljau a subdivide em duas outras curvas de Bézier de
grau 𝑛 com subpolígonos de controle 𝑐0, ⋯ , 𝑐𝑛 e 𝑑0, ⋯ , 𝑑𝑛, respectivamente. Dado 𝑠 ∈ [0, 1],
os novos pontos de controle são dados por

𝑐𝑗 = 𝑏 𝑗
0(𝑠), 𝑗 ∈ 0, ⋯ , 𝑛,

𝑑𝑗 = 𝑏 𝑗
𝑛−𝑗(𝑠), 𝑗 ∈ 0, ⋯ , 𝑛,

𝑐𝑛 = 𝑑𝑛 = 𝑏𝑛(𝑠).

2.4 Limitações de curvas de Bézier

As curvas de Bézier possuem limitações que motivarão o estudo das próximas curvas
de forma livre.

Número de pontos de controle: para curvas mais complexas, existe a necessidade
do aumento do número de pontos de controle e, portanto, do grau da curva de Bézier.
No entando, isso pode acabar afastando a forma da curva de Bézier do seu polígono de
controle, efeito mais conhecido como o fenômeno de Runge. Esse fato torna essas curvas
impráticas para design, uma vez que há pouco controle da forma geral final.

2.5 | COMPOSIÇÃO DE CURVAS DE BÉZIER

19

Figura 2.2: Exemplo: subdivisão da curva de Bézier com 𝑛 = 3.

Controle global da curva: os pontos de controle das curvas de Bézier possuem
controle global da curva. Isso significa que ao adicionar um novo ponto de controle ou
ao modificar a posição de um deles, a curva toda se modifica. No design, em geral, há a
busca por controle local dos pontos de controle.

2.5 Composição de curvas de Bézier
Curvas de Bézier de grau baixo, 𝑛 = 2 ou 𝑛 = 3, podem ser compostas para gerar

formas que são muito complexas para uma única curva de Bézier. As curvas são chamadas
de curvas de Bézier compostas ou splines de Bézier. Essa técnica é utilizada na criação
de design de fontes, ou nas próprias ferramentas como a caneta do Adobe Photoshop e
a curva de Bézier do Maya.

Ao juntar as curvas é necessário controlar a suavidade da sua junção. Sejam 𝑏0, ⋯ , 𝑏3 e
𝑏3, ⋯ , 𝑏6 os pontos de dois segmentos de curvas cúbicas 𝑏3

− e 𝑏3
+, respectivamente. Como

ambas compartilham do ponto 𝑏3, elas duas formam uma curva contínua, 𝐶0. Porém, se
essa for a única exigência, sua junção pode formar uma quina (ou um ponto angular).

Usando a propriedade das derivadas dos pontos de fronteira (ou extremidades) das
curvas de Bézier, para que haja suavidade no ponto 𝑏3, os pontos 𝑏2, 𝑏3 e 𝑏4 devem ser
colineares. Isso garantirá que a reta tangente em 𝑏3 seja igual em ambas as curvas.

Uma condição mais forte é requerida para os dois segmentos de curva formarem um
curva de classe 𝐶1 (derivada contínua). Como a derivada da curva (mais precisamente, o
comprimento do vetor tangente) depende do domínio da curva, seja 𝑏3

− definida no intervalo
[𝑎, 𝑏] e 𝑏3

+ no inetrvalo [𝑏, 𝑐]. As derivadas em ambos os segmentos no parâmetro 𝑏 são
obtidas usando:

3
𝑏 − 𝑎

[𝑏3 − 𝑏2] =
3

𝑐 − 𝑏
[𝑏4 − 𝑏3].

20

2 | CURVAS DE BÉZIER

A interpretação geométrica é que a razão simples de Farin entre os três pontos 𝑏2, 𝑏3 e
𝑏4 é a mesma que a dos parâmetros 𝑎, 𝑏 e 𝑐.

Figura 2.3: Composição das curvas de Bézier: exemplo 𝐶0, mas não 𝐶1.

Figura 2.4: Composição das curvas de Bézier: exemplo 𝐶1.

No caso dos softwares como Adobe Photoshop e Maya, as curvas compostas de Bézier
usadas são cúbicas. Essas são intuitivamente criadas e editadas com pontos de ancora-
gem, correspondendo aos pontos de controle extremos, e alças desses, fazendo o papel
dos outros dois pontos de controle e, portanto, das tangentes dos pontos extremos. As
alças (ou controladores) podem ser integradas, para a junção das curvas ser suave como
anteriormente, ou separadas, para a criação de cantos ou quinas.

21

Capítulo 3

Curvas B-Spline

O conceito das curvas B-spline remonta ao século 19, quando Nikolai Lobachevsky
explorou uma ideia similar na Universidade Estatal de Cazã, mas o termo “B-spline” foi
criado por Isaac Jacob Schoenberg em 1978, refletindo a função de ser uma base para
splines (basis spline).

A curva B-spline é uma curva polinomial por partes, ou seja, é a curva resultante
da junção de uma sequência de segmentos de curvas polinomiais de mesmo grau. As
conexões entre os segmentos (nós) são feitas com o maior grau possível de suavidade
(mesma tangente, curvatura, etc). Por essas características, a curva B-spline é mais versátil
que as curvas de Bézier. Essas curvas serão utilizadas para a construção de superfícies
B-spline que serão abordadas no capítulo 7.

3.1 Motivação pelos Splines

Assim como as curvas de Bézier podem representar curvas polinomiais com combi-
nações lineares de polinômios de Bernstein, é desejável que os splines (Seção 1.6) 𝑠(𝑡)
possam ser escritos como combinações afins de pontos de controle, como

𝑠(𝑡) = ∑
𝑖
𝑐𝑖𝑁 𝑛

𝑖 (𝑡), (3.1)

onde 𝑁 𝑛
𝑖 (𝑢) é uma base funções spline com suporte (subconjunto do domínio da função

onde esta é não nula) mínimo e certas propriedades de continuidade. Essas funções são as
chamadas funções B-splines (do inglês basis spline) e quando o spline é escrito da forma
(3.1), ele é chamado de curva B-spline.

3.2 Definição recursiva das funções B-spline

Primeiro, é necessário definir as funções B-spline. Seja (𝑢𝑖), por simplicidade, uma
sequência bi-infinita e estritamente crescente de nós, 𝑢𝑖 < 𝑢𝑖+1 para todo 𝑖. As funções

22

3 | CURVAS B-SPLINE

B-spline 𝑁 𝑛
𝑖 são definidas com esses nós pela fórmula recursiva

𝑁 0
𝑖 (𝑡) =

{
1 se 𝑡 ∈ [𝑢𝑖, 𝑢𝑖+1)
0 caso contrário

e
𝑁 𝑛

𝑖 (𝑡) = 𝛼𝑛−1
𝑖 𝑁 𝑛−1

𝑖 (𝑡) + (1 − 𝛼𝑛−1
𝑖+1)𝑁

𝑛−1
𝑖+1 (𝑡),

onde

𝛼𝑛−1
𝑖 =

(𝑡 − 𝑢𝑖)
(𝑢𝑖+𝑛 − 𝑢𝑖)

é o parâmetro local com respeito ao suporte de 𝑁 𝑛−1
𝑖 . Substituindo-o na fórmula,

𝑁 𝑛
𝑖 (𝑡) =

(𝑡 − 𝑢𝑖)
(𝑢𝑖+𝑛 − 𝑢𝑖)

𝑁 𝑛−1
𝑖 (𝑡) +

(𝑢𝑖+𝑛+1 − 𝑡)
(𝑢𝑖+𝑛+1 − 𝑢𝑖+1)

𝑁 𝑛−1
𝑖+1 (𝑡).

Em caso de nós múltiplos, as funções B-splines 𝑁 𝑛
𝑖 (𝑡) são definidas pela mesma fórmula

recursiva e a convenção

𝑁 𝑟−1
𝑖 = 𝑁 𝑟−1

𝑖 /(𝑢𝑖+𝑟 − 𝑢𝑖) = 0 𝑠𝑒 𝑢𝑖 = 𝑢𝑖+𝑟

onde 𝑟 é a multiplicidade do nó.

Pela definição acima, as propriedades das funções B-spline são evidentes:

• 𝑁 𝑛
𝑖 (𝑡) é polinomial por partes de grau 𝑛,

• 𝑁 𝑛
𝑖 (𝑡) é positiva em (𝑢𝑖, 𝑢𝑖+𝑛+1),

• 𝑁 𝑛
𝑖 (𝑡) é zero fora do intervalo[𝑢𝑖, 𝑢𝑖+𝑛+1],

• 𝑁 𝑛
𝑖 (𝑡) é contínua à direita.

Uma observação interessante é o caso particular onde 𝑢1 = ⋯ = 𝑢𝑛 = 0 e 𝑢𝑛+1 = ⋯ =
𝑢2𝑛 = 1. Pela fórmula recursiva para 𝑁 𝑛

0 , ⋯ , 𝑁 𝑛
𝑛 e 𝑡 ∈ [0, 1) coincide com a fórmula para

polinômios de Bernstein, ou seja,

𝑁 𝑛
𝑖 (𝑡) = 𝐵𝑛

𝑖 (𝑡) para 𝑖 = 0, ⋯ , 𝑛 e 𝑡 ∈ [0, 1).

3.3 O algoritmo de de Boor
O algortimo de de Boor é um uma algoritmo numericamente estável para avaliação

de curvas spline na forma B-spline. Considere a combinação linear

𝑠(𝑡) = ∑
𝑖
𝑐0𝑖 𝑁

𝑛
𝑖 (𝑡)

de funções B-spline de grau 𝑛 em uma sequência de nós (𝑢𝑖). Como qualquer soma pode
ser convertida para uma soma bi-infinita com auxílio de termos nulos, é assumido, sem
perda de generalidade, que a sequência de nós e a soma acima é bi-infinita. Como 𝑁 𝑛

𝑖 (𝑡)
tem suporte local, essa soma é finita para qualquer 𝑡. Em particular, se 𝑡 ∈ [𝑢𝑛, 𝑢𝑛+1),

3.3 | O ALGORITMO DE DE BOOR

23

então 𝑠(𝑡) pode ser escrito como

𝑠(𝑡) =
𝑛

∑
𝑖=0

𝑐0𝑖 𝑁
𝑛
𝑖 (𝑡).

Usando a recursão das funções B-spline repetidamente e coletando seus termos, é obtido que

𝑠(𝑡) =
𝑛

∑
𝑖=0

𝑐0𝑖 𝑁
𝑛
𝑖 (𝑡)

=
𝑛

∑
𝑖=1

𝑐1𝑖 𝑁
𝑛−1
𝑖 (𝑡)

⋮

=
𝑛

∑
𝑖=𝑛

𝑐𝑛𝑖 𝑁
0
𝑖 (𝑡) = 𝑐𝑛𝑛 ,

onde 𝑐𝑗𝑖 é dado pela combinação afim

𝑐𝑗𝑖 = (1 − 𝛼)𝑐𝑗−1𝑖−1 + 𝛼𝑐𝑗−1𝑖 , 𝛼 = 𝛼𝑛−𝑗
𝑖 =

𝑡 − 𝑢𝑖

𝑢𝑖+𝑛+1−𝑗 − 𝑢𝑖
.

É possível notar que 𝛼 ∈ [0, 1] pois 𝑡 ∈ [𝑢𝑛, 𝑢𝑛+1), isto é, as combinações afins são convexas.

Uma importante consequência do algoritmo de Boor é que a curva B-spline 𝑠(𝑡) em cada
intervalo nodal (intervalo entre nós) é uma combinação afim convexa dos 𝑛+1 coeficientes
consecutivos 𝑐𝑖 = 𝑐0𝑖 . Portanto, se 𝑐𝑖 representa pontos de um espaço afim, então 𝑠(𝑡)
também é um ponto. Por essa razão, os 𝑐𝑖 são chamados de pontos de controle de 𝑠(𝑡).

Pela construção, também é possível concluir que

𝑛

∑
𝑖=0

𝑁 𝑛
𝑖 (𝑡) = 1, para 𝑡 ∈ [𝑢𝑛, 𝑢𝑛+1),

ou seja, as funções B-spline formam uma partição da unidade.

Observação: para um dado 𝑡 ∈ ℝ, o algortimo de Boor aplicado, como já descrito,
para 𝑐00 , … , 𝑐0𝑛 não computa 𝑠(𝑡) em geral, mas uma 𝑠𝑛(𝑡) polinomial que coincide com
𝑠(𝑡) no intervalo [𝑢𝑛, 𝑢𝑛+1).

Generalizando para 𝑡 ∈ [𝑢𝑗 , 𝑢𝑗+1), 𝑗 ≥ 𝑛, aplicando o mesmo raciocínio, as funções
B-splines 𝑁 𝑛

𝑖 (𝑡) são não nulas para 𝑢𝑖 ≤ 𝑡 ≤ 𝑢𝑖+𝑛+1. Assim,

𝑢𝑖 ≤ 𝑢𝑗 e 𝑢𝑗+1 ≤ 𝑢𝑖+𝑛+1 ⇒ 𝑗 − 𝑛 ≤ 𝑖 ≤ 𝑗

e portanto,

𝑠(𝑡) =
𝑗

∑
𝑖=𝑗−𝑛

𝑐0𝑖 𝑁
𝑛
𝑖 (𝑡).

24

3 | CURVAS B-SPLINE

Então todo polinômio de grau 𝑛 pode ser escrito, em [𝑢𝑗 , 𝑢𝑗+1), como combinação linear
das funções B-spline 𝑁 𝑛

𝑗−𝑛(𝑡), … , 𝑁 𝑛
𝑗 (𝑡). Além disso, como as funções são linearmente

independentes no intervalo e o número de coeficientes não nulos 𝑐𝑖 é 𝑛 + 1, igual à
dimensão do espaço de polinômios nesse intervalo, a combinação linear é única.

Seja 𝑆𝑖(𝑎1…𝑎𝑛) a forma polar (seção 1.7) de 𝑠𝑖 (polinômio de grau 𝑛 no intervalo
[𝑢𝑖, 𝑢𝑖+1)) que coincide com 𝑠(𝑡) no intervalo [𝑢𝑖, 𝑢𝑖+1). Então as formas gerais dos pontos
de controle de 𝑠 são dadas por

𝑐𝑖 = 𝑆𝑗(𝑢𝑖+1, … , 𝑢𝑖+𝑛), 𝑖 = 𝑗 − 𝑛,… , 𝑗.

Para a prova, seja

𝑝𝑟
𝑖 = 𝑆𝑗(𝑢𝑖+1, … , 𝑢𝑖+𝑛−𝑟 , 𝑡, … , 𝑡⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑟

)

e
𝑡 = (1 − 𝛼)𝑢𝑖 + 𝛼𝑢𝑖+𝑛−𝑟+1.

Como 𝑆𝑗 é multiafim e simétrica, segue

𝑝𝑟
𝑖 = (1 − 𝛼)𝑝𝑟−1

𝑖−1 + 𝛼𝑝𝑟−1
𝑖 , 𝛼 = 𝛼𝑛−𝑟

𝑖 =
𝑡 − 𝑢𝑖

𝑢𝑖+𝑛−𝑟+1 − 𝑢𝑖

e, em particular,

𝑝0
𝑖 = 𝑆𝑗(𝑢𝑖+1, … , 𝑢𝑖+𝑛) e 𝑝𝑛

𝑗 = 𝑠𝑗(𝑡).

Observação 2: no intervalo [𝑢𝑛, 𝑢𝑛+1], as funções B-spline 𝑁 𝑛
0 (𝑡), … , 𝑁 𝑛

𝑛 (𝑡) formam uma
base para o espaço de todos os polinômios de grau até 𝑛.

Observação 3: os segmentos da curva B-spline 𝑠𝑖 (polinômio de grau 𝑛 no intervalo
[𝑢𝑖, 𝑢𝑖+1)) determinam os pontos de controle 𝑐𝑖−𝑛, … , 𝑐𝑖. Por outro lado, cada ponto 𝑐𝑘 é
determinado por qualquer segmento 𝑠𝑘, … , 𝑠𝑘+𝑛, isto é,

𝑐𝑖 = 𝑆𝑖(𝑢𝑖+1, … , 𝑢𝑖+𝑛) = ⋯ = 𝑆𝑖+𝑛(𝑢𝑖+1, … , 𝑢𝑖+𝑛),

onde 𝑆𝑖(𝑢𝑖+1, … , 𝑢𝑖+𝑛) é a forma polar (ou blossom) da 𝑠𝑖(𝑡).

Observação 4: a prova acima mostra que o polinômio simétrico 𝑆𝑛(𝑎1, … , 𝑎𝑛) pode ser
computado pela generalização do algoritmo de Boor. Para isso, basta substituir 𝛼 = 𝛼(𝑎)
na fórmula recursiva

𝛼(𝑎𝑟) =
𝑎𝑟 − 𝑢𝑖

𝑢𝑖+𝑛−𝑟+1 − 𝑢𝑖
.

Se 𝑘 das 𝑛 variáveis 𝑎1, … , 𝑎𝑛 forem nós, então somente 𝑛 − 𝑘 passos de recursão serão
necessários para computar 𝑆𝑗(𝑎1, … , 𝑎𝑛).

3.4 | DEFINIÇÃO DAS CURVAS B-SPLINE

25

3.3.1 Derivadas e suavidade

A derivada dos segmentos polinomiais 𝑠𝑛 das curvas B-spline podem ser escritos como

𝑠′𝑛(𝑡) =
𝑛

∑
𝑖=0

𝑑𝑖𝑁 𝑛−1
𝑖 (𝑡), 𝑡 ∈ [𝑢𝑛, 𝑢𝑛+1),

onde os 𝑑𝑖 podem ser expressos em termos de 𝑐𝑖. Seja 𝑆′𝑛(𝑎2, … , 𝑎𝑛) a forma polar de 𝑠′𝑛(𝑡) e
seja a direção Δ = 𝑢𝑖+𝑛−𝑢𝑖 dada pelo suporte da função B-spline 𝑁 𝑛−1

𝑖 (𝑡). Então segue que

𝑑𝑖 = 𝑆′𝑛(𝑢𝑖+1, … , 𝑢𝑖+𝑛−1)

=
𝑛
Δ
𝑆′𝑛(Δ, 𝑢𝑖+1, … , 𝑢𝑖+𝑛−1)

=
𝑛

𝑢𝑖+𝑛 − 𝑢𝑖
(𝑐𝑖 − 𝑐𝑖−1).

Como 𝑑𝑖 não depende do intervalo nodal [𝑢𝑛, 𝑢𝑛+1), a derivada da curva B-spline 𝑠 pode
ser escrita para qualquer 𝑡 ∈ ℝ como

𝑠′(𝑡) = ∑
𝑖

𝑛
𝑢𝑖+𝑛 − 𝑢𝑖

∇𝑐𝑖𝑁 𝑛−1
𝑖 (𝑡),

onde ∇𝑐𝑖 = 𝑐𝑖 − 𝑐𝑖−1 denota a primeira diferença regressiva (calcula a variação em relação
ao ponto anterior).

Uma curva B-spline de grau 𝑛, 𝑠, é contínua em todo nó de multiplicidade 𝑛. Dado
𝑢0 < 𝑎1 = ⋯ = 𝑎𝑛 < 𝑎𝑛 + 1, então segue da observação 3 que

𝑠0(𝑢1) = 𝑆0(𝑢1, … , 𝑢𝑛) = 𝑐0
= 𝑆𝑛(𝑢1, … , 𝑢𝑛)
= 𝑠𝑛(𝑢𝑛).

Então, se 𝑢𝑖 é um nó de multiplicidade 𝑟 , a (𝑛 − 𝑟)-ésima derivada de 𝑠 é contínua em 𝑢𝑖.
Em outras palavras, a curva B-spline satisfaz o critério de suavidade dos splines.

3.4 Definição das curvas B-spline

Uma curva B-spline de ordem 𝑛 + 1 (ou grau 𝑛) é definida

• pelo grau 𝑛 de cada segmento (sempre o mesmo) da curva polinomial,

• pela sequência de 𝑚 + 1 nós (vetor nó) 𝑢0, 𝑢1, ⋯ , 𝑢𝑚 e 𝑢𝑖 ≤ 𝑢𝑖+1,

• pelo polígono de controle 𝑐0, … , 𝑐𝐿, com 𝐿 = 𝑚 − 𝑛 − 1, ou seja, 𝑚 − 𝑛 pontos de
controle (calculados usando a forma polar se estiver procurando a forma B-spline de
um spline).

26

3 | CURVAS B-SPLINE

A curva B-spline é então definida como

𝑠(𝑡) =
𝑚−𝑛−1

∑
𝑖=0

𝑐𝑖𝑁 𝑛
𝑖 (𝑡).

3.5 Forma de Bézier das curvas B-spline

Como essas curvas consistem de uma junção de segmentos polinomiais, cada um destes
pode ser escrito na forma de curva de Bézier. Dada uma curva B-spline 𝑠(𝑡), 𝑠𝑖(𝑡) é a
restrição da curva para o intervalo 𝐼 = [𝑢𝑖, 𝑢𝑖+1] e 𝑆𝑖 a sua forma polar. Então os pontos
de Bézier da curva 𝑠𝑖(𝑡) com 𝑡 ∈ [𝑢𝑖, 𝑢𝑖+1] são dados por

𝑏 𝐼
𝑘 = 𝑆𝑖(𝑢𝑖, … , 𝑢𝐼⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑛−𝑘

, 𝑢𝐼+1, … , 𝑢𝐼+1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑘

), 𝑘 = 0, … , 𝑛.

3.6 Propriedades da curva B-spline

Pela construção vista anteriormente, as propriedades básicas das funções B-spline e
das curvas B-splines podem ser inferidas.

• Funções B-spline de grau 𝑛 com sequência de nós que não se anulam em nenhum
intervalo nodal são linearmente independentes nesse intervalo.

• As funções B-spline 𝑁 𝑛
0 , … , 𝑁 𝑛

𝑘 com os nós 𝑢0, … , 𝑢𝑘+𝑛+1 formam uma base para todos
os splines de grau 𝑛 com suporte em [𝑢0, 𝑢𝑘+𝑛+1] e os mesmos nós.

• Similarmente, as funções B-spline 𝑁 𝑛
0 , … , 𝑁 𝑛

𝑘 nos nós 𝑢0, … , 𝑢𝑘+𝑛+1 restritos ao inter-
valo [𝑢𝑛, 𝑢𝑘+1) formam uma base para todos os splines de grau 𝑛 restritos ao mesmo
intervalo.

• As funções B-spline de grau 𝑛 formam uma partição da unidade, isto é,

𝑘

∑
𝑖=0

𝑁 𝑛
𝑖 (𝑡) = 1, para 𝑡 ∈ [𝑢𝑛, 𝑢𝑘+1).

• Uma curva B-spline 𝑠(𝑡), 𝑡 ∈ [𝑢𝑛, 𝑢𝑘+1] de grau 𝑛 com nós extremos de multiplicidade
𝑛,

(𝑢0 =)𝑢1 = ⋯ = 𝑢𝑛 e 𝑢𝑘+1 = ⋯ = 𝑢𝑘+𝑛(= 𝑢𝑘+𝑛+1)

tem os mesmos pontos extremos e tangentes extremas dos polígono de controle.

• Os nós extremos 𝑢0 e 𝑎𝑘+𝑛+1 não têm influência sobre 𝑁 𝑛
𝑜 nem 𝑁 𝑛

𝑘 no intervalo
[𝑢𝑛, 𝑢𝑘+1].

• As função B-spline são positivas no interior de seu suporte

𝑁 𝑛
𝑖 (𝑡) > 0 para 𝑡 ∈ (𝑢𝑖, 𝑢𝑖+1).

3.7 | LIMITAÇÕES DA CURVA B-SPLINE

27

• As funções B-spline satisfazem a fórmula recursiva de Boor, Masnfield e Cox

𝑁 𝑛
𝑖 (𝑡) = 𝛼𝑛−1

𝑖 𝑁 𝑛−1
𝑖 (𝑡) + (1 − 𝛼𝑛−1

𝑖+1)𝑁
𝑛−1
𝑖+1 (𝑡),

onde 𝛼𝑛−1
𝑖 = (𝑡 − 𝑢𝑖)/(𝑢𝑖+𝑛 − 𝑢𝑖) representa o parâmetro local no suporte de 𝑁 𝑛−1

𝑖 .

• A derivada de uma única função B-spline é dada por

𝑑
𝑑𝑡

𝑁 𝑛
𝑖 (𝑡) =

𝑛
𝑎𝑖+𝑛 − 𝑎𝑖

𝑁 𝑛−1
𝑖 (𝑡) −

𝑛
𝑎𝑖+𝑛+1 − 𝑎𝑖+1

𝑁 𝑛−1
𝑖+1 (𝑡).

• Curvas de Bézier são casos especiais de curvas B-spline.

As curvas B-spline também mantêm propriedades importantes já vistas nas curvas
de Bézier.

• Invariância afim: A representação de splines por B-splines (curvas B-spline) é
invariante em relação a transformações afins.

• Propriedade do fecho convexo: Qualquer segmento 𝑠𝑗 no intervalo [𝑢𝑗 , 𝑢𝑗+1) de
grau 𝑛 de uma curva B-spline está no fecho convexo dos 𝑛 + 1 pontos de controle
𝑐𝑗−𝑛, … , 𝑐𝑗 .

No entanto, a conclusão mais importante é aquela do controle local da curva, ou
seja, a mudança da posição ou adição de pontos de controle à curva só altera uma parte
limitada dela.

3.7 Limitações da curva B-spline

A motivação para a continuação dos estudo de outras curvas vem de uma limitação das
curvas B-spline. Mesmo com a capacidade de criação de curvas de forma livre complexas,
as curvas B-spline não são capazes de representar curvas mais simples como círculos,
elipses ou hipérboles com exatidão. Mais especificamente, das cônicas, somente a parábola
é um caso especial de curva B-spline (na verdade, é uma curva de Bézier). Essa limitação
vem do fato de as curvas B-spline serem polinomiais e as cônicas citadas serem equações
racionais (usam divisão),

𝑥2

𝑎2
+
𝑦2

𝑏2 = 1 (elipse, círculo),

𝑥2

𝑎2
−
𝑦2

𝑏2 = 1 (hipérbole).

Todas as curvas cônicas podem ser representadas usando funções racionais, que são
definidas como razões de polinômios. Na verdade, elas são representadas por funções
racionais da forma

𝑥(𝑡) =
𝑋(𝑡)
𝑊 (𝑡)

, 𝑦(𝑡) =
𝑌 (𝑡)
𝑊 (𝑡)

, (3.2)

28

3 | CURVAS B-SPLINE

onde 𝑋(𝑡), 𝑌 (𝑡) e 𝑊(𝑡) são polinômios e cada função das coordenadas tem o mesmo
denominador.

29

Capítulo 4

Curvas NURBS

No início, NURBS eram utilizadas somente em pacotes de CAD para empresas auto-
motivas e, posteriormente, tornaram-se parte de programas gráficos. A interpretação das
curvas e superfícies NURBS (Capítulo 8) só estiveram disponíveis em workstations em
1989. Em 1993, a primeira NURBS interativa para PCs foi desenvolvida por CAS Berlim,
uma pequena empresa iniciante, em cooperação com a Universidade Técnica de Berlim.
Hoje em dia, a tecnologia das NURBS está presente na maioria dos programas gráficos.

Como comentado anteriormente, o acrônimo NURBS é a abreviação de B-splines
racionais não uniformes. No entanto, o uso da expressão “não uniforme” é um pouco
enganadora, uma vez que essas curvas podem ter um vetor nó uniforme (distância entre
nós consecutivos é igual). O termo novo mais importante é o “racional”, ele surge da
característica dessas curvas adicionarem um parâmetro de peso racional 𝑤𝑖 aos pontos
de controle. Assim, as curvas NURBS são generalizações das curvas B-spline e das curvas
de Bézier. B-splines são curvas NURBS com pesos iguais ou pesos “1”, também chamadas
de curvas B-splines puras, simples ou não racionais.

As cônicas podem ser expressadas por curvas NURBS. Ao desenvolver sua matemática,
será visto que as curvas NURBS em um espaço de dimensão 𝑑 = 2 ou 3 não são nada
mais que projeções centrais (Seção 1.8) de curvas B-spline não racionais que estão num
espaço de dimensão 𝑑 + 1.

4.1 Motivação: Cônicas como quadráticas racionais

Usamos a seguinte definição de cônicas: uma cônica em 𝔼2 é a projeção de uma parábola
de 𝔼3 em um plano. Seja {𝑧 = 1} esse plano. Como o estudo na seção será sobre curvas
planares, é possível pensar nesse plano como uma cópia de 𝔼2. Assim, os pontos (𝑥, 𝑦, 1)
são identificados como (𝑥, 𝑦). A projeção é caracterizada como

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧

⎤
⎥
⎥
⎦
→

⎡
⎢
⎢
⎣

𝑥/𝑧
𝑦/𝑧
1

⎤
⎥
⎥
⎦
.

30

4 | CURVAS NURBS

É possível notar que o ponto (𝑥, 𝑦) é a projeção de uma família interia de pontos: todo
ponto na linha (𝑤𝑥, 𝑤𝑦,𝑤) é projetada em (𝑥, 𝑦). Usamos a notação (𝑤𝐱, 𝑤) com 𝐱 ∈ 𝔼2

para (𝑤𝑥, 𝑤𝑦,𝑤).

Seja 𝑐(𝑡) ∈ 𝔼2 um ponto de uma cônica. Então existem números reais 𝑤0, 𝑤1, 𝑤2 e
pontos 𝑏0, 𝑏1, 𝑏2 tais que

𝑐(𝑡) =
𝑤0𝑏0𝐵2

0(𝑡) + 𝑤1𝑏1𝐵2
1(𝑡) + 𝑤2𝑏2𝐵2

2(𝑡)
𝑤0𝐵2

0(𝑡) + 𝑤1𝐵2
1(𝑡) + 𝑤2𝐵2

2(𝑡)
. (4.1)

Para provar a afirmação, seja 𝑐(𝑡) ∈ 𝔼2 com (𝑐(𝑡), 1)) ∈ 𝔼3. Esse ponto é uma projeção do
ponto (𝑤(𝑡)𝑐(𝑡), 𝑤(𝑡)), que está na parábola 3D. A componente 𝑤(𝑡) desse ponto 3D deve
ser uma função quadrática em 𝑡 e ela pode ser expressa na forma de Bernstein:

𝑤(𝑡) = 𝑤0𝐵2
0(𝑡) + 𝑤1𝐵2

1(𝑡) + 𝑤2𝐵2
2(𝑡).

Determinado 𝑤(𝑡), é possível escrever

𝑤(𝑡) [
𝑐(𝑡)
1] = [

𝑐(𝑡)∑𝑤𝑖𝐵2
𝑖 (𝑡)

∑𝑤𝑖𝐵2
𝑖 (𝑡).]

O lado esquerdo da equação denota uma parábola e portanto pode ser reescrito como

2

∑
𝑖=0

[
𝑝𝑖
𝑤𝑖]

𝐵2
𝑖 (𝑡) = [

𝑐(𝑡)∑𝑤𝑖𝐵2
𝑖 (𝑡)

∑𝑤𝑖𝐵2
𝑖 (𝑡).]

com pontos 𝑝𝑖 ∈ 𝔼2. Logo

2

∑
𝑖=0

𝑝𝑖𝐵2
𝑖 (𝑡) = 𝑐(𝑡)

2

∑
𝑖=0

𝑤𝑖𝐵2
𝑖 (𝑡),

e

𝑐(𝑡) =
𝑝0𝐵2

0(𝑡) + 𝑝1𝐵2
1(𝑡) + 𝑝2𝐵2

2(𝑡)
𝑤0𝐵2

0(𝑡) + 𝑤1𝐵2
1(𝑡) + 𝑤2𝐵2

2(𝑡)
.

Com 𝑝𝑖 = 𝑤𝑖𝑏𝑖 a prova está dada.

Os pontos 𝑏𝑖 são o polígono de controle da cônica 𝑐, os valores 𝑤𝑖 são os pesos dos
correspondentes vértices do polígono. O polígono de controle da cônica é o polígono de
controle da parábola 3D projetada em 𝑐.

A forma (4.1) é chamada de forma quadrática racional de uma cônica. Se todas os pesos
forem iguais, a quadrática não-racional é recuperada, ou seja, a parábola.

No espaço projetivo, todas as cônicas são equivalentes: todas as tranformações proje-
tivas levam cônicas em cônicas. Na geometria afim, as cônicas são classificadas em três
classes: hipérboles, parábolas e elipses.

Dado uma cônica da forma padrão, o segmento complementar dela é obtido ao inverter
o sinal de 𝑤1. Se 𝑐(𝑡) é um ponto da cônica original e 𝑐̂(𝑡) é um ponto do segmento
complementar da cônica, é fácil verificar que 𝑏1, 𝑐(𝑡) e 𝑐̂(𝑡) são colineares. Assumindo que

4.1 | MOTIVAÇÃO: CÔNICAS COMO QUADRÁTICAS RACIONAIS

31

𝑤1 > 0, então o comportamento de 𝑐̂(𝑡) determina o tipo de cônica que ela é. Se 𝑐̂(𝑡) não
possui singularidades em [0, 1], então ela é uma elipse. Se ela possui uma singularidade,
ela é uma parábola. Por fim, se ela possui duas singularidades, ela é uma hipérbole.

As singularidades, correspondendo aos pontos no infinito de 𝑐̂(𝑡), são determinados
pela raízes reais do denominador 𝑤̂(𝑡) de 𝑐̂(𝑡). Elas são dadas por

𝑡1,2 =
1 + 𝑤1 ±

√
𝑤2

1 − 1
2 + 2𝑤1

.

Figura 4.1: Cônicas: dependem do peso 𝑤1.

Assim, uma cônica é uma elipse se 𝑤1 < 1, uma parábola se 𝑤1 = 1 e uma hipérbole se
𝑤1 > 1. Para o caso especial do círculo, deixe o quadrático racional (com 𝑤1 < 1) descrever
o arco de um círculo. Pelas propriedades de simetria do círculo, o polígono de controle
forma um triângulo isósceles. Sabendo o ângulo 𝜙 = ∠(𝑏0, 𝑏1, 𝑏2), o peso é dado por

𝑤1 = sen(𝜙/2).

A justificativa é encontrada ao observar o ponto médio da curva (ou o Shoulder point). Dada
uma curva Bézier racional de grau 2 de pontos de controle 𝑏0, 𝑏1, 𝑏2 e pesos correspondentes
𝑤0 = 1,𝑤1, 𝑤2 = 1, ela pode ser escrita como

𝑐(𝑡) =
𝑤0𝑏0𝐵2

0(𝑡) + 𝑤1𝑏1𝐵2
1(𝑡) + 𝑤2𝑏2𝐵2

2(𝑡)
𝑤0𝐵2

0(𝑡) + 𝑤1𝐵2
1(𝑡) + 𝑤2𝐵2

2(𝑡)
=

𝑏0𝐵2
0(𝑡) + 𝑤1𝑏1𝐵2

1(𝑡) + 𝑏2𝐵2
2(𝑡)

𝐵2
0(𝑡) + 𝑤1𝐵2

1(𝑡) + 𝐵2
2(𝑡)

. (4.2)

O ponto médio da curva (onde 𝑡 = 0.5) é chamado de shoulder point 𝑆. Ele é dado então por

𝑆 =
𝑏0 14 + 𝑤1𝑏1 12 + 𝑏2 14

1
4 + 𝑤1

1
2 +

1
4

=
𝑏0 + 𝑏2 + 2𝑤1𝑏1

2 + 2𝑤1
.

32

4 | CURVAS NURBS

Então, com 𝑆 posicionado corretamente na cônica, ele deve satisfazer

||𝑆 − 𝑑1||
||𝑆 − 𝑀||

=
1
𝑤1

,

onde 𝑀 = 𝑑0+𝑑2
2 , ponto médio de 𝑑0 e 𝑑2.

Figura 4.2: Cálculo do peso 𝑤1: 𝑆 é o shoulder point, 𝑀 é o ponto médio de 𝑑0 e 𝑑2.

Sendo 𝛽 = ∠(𝑏1, 𝑏0, 𝑀), pela simetria dos arcos 𝑏0𝑆 e 𝑆𝑏2, 𝑏0𝑆 é a bissetriz de 𝛽. Pelo
teorema da bissetriz

𝑤1 =
||𝑆 − 𝑀||
||𝑆 − 𝑑1||

=
||𝑀 − 𝑏0||
||𝑏1 − 𝑏0||

= cos(𝜃)

com 𝜃 = 𝜋−𝜙
2 ,

𝑤1 = cos(
𝜋 − 𝜙
2

) = sen(𝜙/2).

O círculo todo pode ser representado pela junção dos arcos. Por exemplo, pela junção
de três arcos iguais, os ângulos 𝛼 iguais a 60 graus e, portanto, os pesos dos pontos de
Bézier são 1/2.

4.2 Motivação: Curvas de Bézier racionais
Cônicas podem ser expressas como curvas (de Bézier) quadráticas racionais e sua

generalização para curvas racionais de grau maior é direta. Uma curva racional de Bézier
de grau 𝑛 em 𝔼3 é a projeção de uma curva de Bézier de grau 𝑛 de 𝔼4 em um hiperplano
𝑤 = 1. Pensando no hiperplano 4D como uma cópia de 𝔼3, um ponto de 𝔼4 é dado pelas
coordenadas (𝑥, 𝑦, 𝑧, 𝑤). Procedendo da mesma forma que foi feito para as cônicas, uma

4.2 | MOTIVAÇÃO: CURVAS DE BÉZIER RACIONAIS

33

curva de Bézier racional de grau 𝑛 é dada por

𝑐(𝑡) =
𝑤0𝑏0𝐵𝑛

0 (𝑡) + ⋯ + 𝑤𝑛𝑏𝑛𝐵𝑛
𝑛(𝑡)

𝑤0𝐵𝑛
0 (𝑡) + ⋯ + 𝑤𝑛𝐵𝑛

𝑛(𝑡)
, 𝑐(𝑡), 𝑏𝑗 ∈ 𝔼3.

Os 𝑤𝑖 são os pesos e 𝑏𝑖 o polígono de controle. É a projeção do polígono controle 4D
(𝑤𝑖𝑐𝑖, 𝑤𝑖) da pré-imagem não racional de 𝑐(𝑡).

Com todos os pesos iguais a um, é obtida uma curva de Bézier não racional, caso em
que o denominador é identicamente igual a um. Se 𝑤𝑖 for negativo há singularidades,
então só serão usados pesos não negativos. As curvas de Bézier racionais compartilham
todas as propriedades que as não racionais possuem, como, por exemplo, invariância afim.
Elas podem ser reescritas como

𝑐(𝑡) =
𝑛

∑
𝑖=0

𝑏𝑖
𝑤𝑖𝐵𝑛

𝑖 (𝑡)
∑𝑁

𝑖=0 𝑤𝑖𝐵𝑛
𝑖 (𝑡)

,

com a base de funções racionais

𝑤𝑖𝐵𝑛
𝑖 (𝑡)

∑𝑁
𝑖=0 𝑤𝑖𝐵𝑛

𝑖 (𝑡)

somando um.

Os pesos 𝑤𝑖 são normalmente usados como parâmetros de forma. Com o aumento do
valor de um certo 𝑤𝑖, a curva é puxada na direção do correspondente ponto de controle
𝑐𝑖, mas o efeito da mudança de peso não é o mesmo que a mudança de posição de um
ponto de controle.

Duas propriedades que são diferentes no caso racional em relação ao caso não racional.
Primeiro, a invariância projetiva, ou seja, qualquer transformada projetiva de curva de
Bézier racional pode ser obtida pela transformação projetiva de seu polígono de controle.
A segunda é a propriedade de precisão linear: se os pontos de controle são colineares e
os pesos forem ajustados corretamente então a curva será um segmento de reta perfeito.
Dados 𝑐𝑖 pontos de controle de Bézier distribuídos em uma reta

𝑏𝑖 = (1 − 𝛼𝑖)𝑏0 + 𝛼𝑖𝑏𝑛, 𝑖 = 0, … , 𝑛

com 𝛼𝑖 valores reais arbitrários, para que a curva trace o segmento 𝑏0𝑏𝑛 de reta de uma
forma linear, 𝑤0 = 1 e

𝑤𝑖 =
𝑖

𝑛 + 1 − 𝑖
1 − 𝛼𝑖−1

𝛼𝑖
, 𝑖 = 1, … , 𝑛.

Definindo os pontos de peso 𝑞𝑖 como

𝑞𝑖 =
𝑤𝑖𝑏𝑖 + 𝑤𝑖+1𝑏𝑖+1

𝑤𝑖 + 𝑤𝑖+1
.

Esses pontos são definidos pelos pesos e podem ser usados como parâmetros da forma

34

4 | CURVAS NURBS

para a curva.

4.3 Definição da curva NURBS
Uma curva NURBS (B-spline racional não uniforme) 3D é a projeção pela origem

de um curva B-spline não racional 4D no plano 𝑤 = 1. O polígono de controle é dado
pelos vértices 𝑑0, … , 𝑑𝐿 (já visto que 𝐿 = 𝑚 − 𝑛 − 1), com 𝑑𝑖 ∈ 𝔼3, 𝑤0, … , 𝑤𝐿 são os pesos
associados a cada um dos pontos, respectivamente, e 𝑁 𝑛

𝑖 (𝑡) são as funções B-splines vistas
anteriormente de nós 𝑢0, … , 𝑢𝑚. Um ponto 𝐶(𝑡) na curva NURBS de ordem 𝑛 é dado por

𝐶(𝑡) =
𝐿

∑
𝑖=0

𝑑𝑖
𝑤𝑖𝑁 𝑛

𝑖 (𝑡)
∑𝐿

𝑖=0 𝑤𝑖𝑁 𝑛
𝑖 (𝑡)

, 𝑢0 ≤ 𝑡 ≤ 𝑢𝑚.

Outra forma de escrever essa fórmula e mais usada é

𝐶(𝑡) =
𝐿

∑
𝑖=0

𝑑𝑖𝑅𝑛
𝑖 (𝑡),

onde

𝑅𝑛
𝑖 (𝑡) =

𝑤𝑖𝑁 𝑛
𝑖 (𝑡)

∑𝐿
𝑖=0𝑤𝑖𝑁 𝑛

𝑖 (𝑡)
são as funções de base racionais. Pela construção é fácil ver que essas funções, assim como
os polinômios de Bernstein e as funções B-spline, são uma partição da unidade,

𝐿

∑
𝑖=0

𝑅𝑛
𝑖 (𝑡) = 1.

4.4 Cônicas como caso especial de curvas NURBS
Para a representação de cônicas com curvas NURBS, são utilizados 3 pontos de controle,

𝑑0, 𝑑1 e 𝑑2, e seus respectivos pesos, 𝑤0, 𝑤1 e 𝑤2. Dependendo da mudança desses pesos,
parábolas, hipérboles, elipses e círculos são criados.

• Parábola: pesos 𝑤0 = 1,𝑤1 = 1 e 𝑤2 = 1

• Hipérbole: pesos 𝑤0 = 1,𝑤1 > 1 e 𝑤2 = 1

• Elipse: pesos 𝑤0 = 1,𝑤1 < 1 e 𝑤2 = 1

• Círculo: pesos 𝑤0 = 1,𝑤1 = sen(𝜙/2) e 𝑤2 = 1, onde 𝜙 = ∠(𝑑0, 𝑑1, 𝑑2).

4.5 Propriedades da curva NURBS
As curvas NURBS mantêm propriedades importantes já vistas nas curvas de Bézier,

em específico, aquelas vistas para as funções B-spline.

4.5 | PROPRIEDADES DA CURVA NURBS

35

• Invariância afim: A curvas NURBS são invariantes em relação a tranformações
afins.

• Propriedade do fecho convexo: Qualquer segmento 𝑠𝑗 no intervalo [𝑢𝑗 , 𝑢𝑗+1) de
grau 𝑛 de uma curva NURBS está no fecho convexo dos 𝑛 + 1 pontos de controle
𝑑𝑗−𝑛, … , 𝑑𝑗 .

• Propriedade de controle local: se o ponto de controle 𝑑𝑖 é movido ou há a
mudança do valor de seu peso 𝑤𝑖, isso afeta somente uma parte da curva no intervalo
[𝑢𝑖, 𝑢𝑖+𝑛+1). Ao aumentar o peso 𝑤𝑖 de um ponto de controle 𝑑𝑖 a curva se aproxima
mais do ponto de controle, enquanto diminuir o peso faz com que a curva se afaste
mais do ponto de controle. O comportamento é intuitivo e, pela derivação geométrica,
segue imediatamente que a mudança de peso de um certo ponto de controle só afeta
uma certa região de influência.

A curva NURBS adiciona a propriedade importante de invariância projetiva e capacidade
de representação das cônicas com exatidão.

37

Capítulo 5

Curvas de Subdivisão

Curvas de subdivisão são geradas ao refinar iterativamente um polígono de controle
preliminar até elas se tornarem curvas suaves no limite. A subdivisão já foi exemplificada no
algoritmo de Casteljau para a geração de curvas de Bézier (Seção da subdivisão das curvas
de Bézier). Pela propriedade de subdivisão é possível refinar iterativamente um polígono
de controle para encontrar uma sequência de polígonos que convergem rapidamente para
a curva de Bézier. Isso pode ser visto como o pocesso de "corner cutting", a cada iteração
cantos são cortados do polígono.

Essas curvas são polígonos definidos por seus pontos originais e o nível da subdivisão
(ou de refinamento) 𝑘.

Nessa seção, os algoritmos de subdivisão abordados são: o algoritmo de Chaikin para
geração de B-splines quadráticos, o algoritmo de Lane-Riesenfeld como a generalização do
algoritmo de Chaikin que produz, no limite, uma curva B-spline uniforme de grau 𝑛, e o
esquema de quatro pontos para produção de curvas de subdivisão interpoladas.

5.1 Algoritmo de Chaikin

Em 1974, George Chaikin, introduziu o primeiro algoritmo recursivo de subdivisão para
geração de curvas suaves em An algorithm for high-speed curve generation (Chaikin, 1974).

Considerando quatro pontos 𝑃0, 𝑃1, 𝑃2 e 𝑃3 em 𝔼2 ou 𝔼3 formando o polígono original
aberto. Sendo

𝑅0 = 1
4𝑃0 +

3
4𝑃1,

𝑄1 = 3
4𝑃1 +

1
4𝑃2 e 𝑅1 = 1

4𝑃1 +
3
4𝑃2

𝑄2 = 3
4𝑃2 +

1
4𝑃3,

os pontos 𝑃0, 𝑅0, 𝑄1, 𝑅1, 𝑄2, 𝑃3 formam o novo polígono (cortando fora os triângulos
𝑅0, 𝑃1, 𝑄1 e 𝑅1, 𝑃2, 𝑄2) de seis pontos. Para a próxima iteração, o procedimento é o mesmo,

38

5 | CURVAS DE SUBDIVISÃO

renomeando os pontos para 𝑃∗
0 = 𝑃0, 𝑃∗

1 = 𝑅0, 𝑃∗
2 = 𝑄1, 𝑃∗

3 = 𝑅1, 𝑃∗
4 = 𝑄2, 𝑃∗

5 = 𝑃3 e então

𝑅0 = 1
4𝑃

∗
0 + 3

4𝑃
∗
1 ,

𝑄𝑖 = 3
4𝑃

∗
𝑖 + 1

4𝑃
∗
𝑖+1 e 𝑅𝑖 = 1

4𝑃
∗
𝑖 + 3

4𝑃
∗
𝑖+1, 𝑖 ∈ 1, 2, 3, 4

𝑄4 = 3
4𝑃

∗
4 + 1

4𝑃
∗
5 .

A curva gerada começa no ponto 𝑃0, tangente ao segmento de reta 𝑃0𝑃1 nesse ponto,
intersecta o ponto médio de 𝑃1𝑃2 (tangente ao segmento de reta 𝑃1𝑃2 no ponto médio) e
termina no ponto 𝑃3, tangente ao segmento de reta 𝑃2𝑃3 nesse ponto.

O algoritmo de Chaikin para a geração de curvas B-splines quadráticos uniformes é
feito a partir da generalização na construção acima. Dado 𝑁 + 1 pontos 𝑃0, … , 𝑃𝑁 em 𝔼2

ou 𝔼3, cada iteração do algoritmo de Chaikin para a geração de curva B-spline quadrática
aberta uniforme no seu limite é dada por

𝑅0 = 1
4𝑃0 +

3
4𝑃1,

𝑄𝑖 = 3
4𝑃𝑖 +

1
4𝑃𝑖+1 e 𝑅𝑖 = 1

4𝑃𝑖 +
3
4𝑃𝑖+1, 𝑖 ∈ 1, … , 𝑁 − 1

𝑄𝑁−1 = 3
4𝑃𝑁−1 + 1

4𝑃𝑁 ,

com a renomeação dos pontos ao final.

Para a curva B-spline quadrática fechada uniforme o mesmo é válido, mas não é
necessário de preocupar com segmento inicial e final:

𝑄𝑖 =
3
4
𝑃𝑖 +

1
4
𝑃𝑖+1 e 𝑅𝑖 =

1
4
𝑃𝑖 +

3
4
𝑃𝑖+1, 𝑖 ∈ 0, … , 𝑁 .

Observe que, havia 𝑁 + 1 pontos no início da iteração ao final há 2𝑁 + 2 pontos e o
novo 𝑁 deve ser 2𝑁 + 1.

5.2 Algoritmo de Lane-Riesenfeld
Como uma generalização do algoritmo de Chaikin, por Judson Lane e Richard Riesenfeld

(1980) em A Theoretical Development for the Computer Generation and Display of Piecewise
Polynomial Surfaces (Lane e Riesenfeld, 1980), o algoritmo de Lane-Riesenfeld produz
no limite curvas B-spline uniformes de grau 𝑛. O algoritmo de Chaikin pode ser visto
como um procedimento de "divisão e média"(split and average): a cada iteração, o polígono
é dividido no (acrescentado um) ponto médio de cada um dos seus lados, obtendo um
novo polígono intermediário. Então achando os pontos médios de cada um dos lados desse
polígono intermediário e os conectando, é formado o polígono final da iteração (com o
cuidado dos segmentos inicial e final se for uma curva aberta).

Lane-Riesenfeld realizou a generalização do processo de "divisão e média", para "divisão
e (𝑛 − 1)-média"(dividir os lado do polígono somente uma vez e 𝑛 − 1 vezes o processo
de achar o ponto médio e conectar eles) produzindo no limite curvas B-spline uniformes
de grau 𝑛.

Dados o grau 𝑛 e 𝑃0, 𝑃1, … , 𝑃𝑁−1, 𝑁 pontos originais do polígono (𝑛 − 1 ≤ 𝑁), se o
polígono for fechado gerará uma curva B-spline de grau 𝑛 uniforme fechada. O processo

5.3 | ESQUEMA DE QUATRO PONTOS

39

de "divisão e (𝑛 − 1)-média"pode ser reescrito como

• Refinamento ("divisão"): cada ponto 𝑃𝑖 é duplicado,

Pontos originais: 𝑃0, 𝑃1, … , 𝑃𝑁−1 ⇒ Pontos refinados: 𝑃0, 𝑃0, 𝑃1, 𝑃1, … , 𝑃𝑁−1, 𝑃𝑁−1.

• Média: a média é aplicada 𝑛 vezes aos 2𝑁 pontos refinados,

Primeira iteração: 𝑃0, 𝑃0+𝑃12 , 𝑃1, , … , 𝑃𝑁−2+𝑃𝑁−1
2 , 𝑃𝑁−1, 𝑃𝑁−1+𝑃0

2 ,
Segunda iteração (até aqui Chaikin): 𝑃0+

𝑃0+𝑃1
2

2 ,
𝑃0+𝑃1

2 +𝑃1
2 , … , 𝑃𝑁−1+

𝑃𝑁−1+𝑃0
2

2 ,
𝑃𝑁−1+𝑃0

2 +𝑃0
2 ,

⋮
n-ésima iteração: 𝑄0, … , 𝑄2𝑁−1

𝑄𝑖, com 𝑖 ∈ 0, … , 2𝑁 − 1 formando o novo polígono. Observe que depois de duplicar para
2𝑁 o algoritmo não gera mais pontos, mas os reposiciona mais perto do B-spline esperado.

Já se o polígono for aberto gerará uma curva B-spline de grau 𝑛 uniforme aberta e
é necessário cuidados adicionais, assim como no algoritmo de Chaikin. Para os pontos
internos do polígono a regra continua a mesma, mas para os extremos são mantidos:

• Refinamento ("divisão"): cada ponto 𝑃𝑖, com 𝑖 = 1, … , 𝑁 − 2, é duplicado, já 𝑃0 e 𝑃𝑁−1
se mantém

Pontos originais: 𝑃0, 𝑃1, … , 𝑃𝑁−1 ⇒ Pontos refinados: 𝑃0, 𝑃1, 𝑃1, … , 𝑃𝑁−2, 𝑃𝑁−2, 𝑃𝑁−1.

• Média: a média é aplicada 𝑛 vezes aos pontos internos refinados, as extremidades
sempre mantidas,

Primeira iteração: 𝑃0, 𝑃0+𝑃12 , 𝑃1, … , 𝑃𝑁−2+𝑃𝑁−1
2 , 𝑃𝑁−1,

Segunda iteração: 𝑃0,
𝑃0+

𝑃0+𝑃1
2

2 ,
𝑃0+𝑃1

2 +𝑃1
2 , … ,

𝑃𝑁−2+𝑃𝑁−1
2 +𝑃𝑁−1

2 , 𝑃𝑁−1,
⋮

n-ésima iteração: 𝑃0, 𝑄1, … , 𝑄2𝑁−4+𝑛, 𝑃𝑁−1

𝑃0, 𝑄1, … , 𝑄2𝑁−4−𝑛, 𝑃𝑁−1 formando o novo polígono. Observar que, depois de duplicar para
2𝑁 , cada iteração gera um ponto a mais.

5.3 Esquema de quatro pontos

O esquema de quatro pontos foi desenvolvido pelos pesquisadores Nira Dyn, John
A. Gregory e David Levin no artigo A 4-point interpolatory subdivision scheme for curve
design (Dyn et al., 1987) em 1983.

Novamente, um conjunto de pontos gerará uma sequência de polígonos que no limite
produz uma curva suave, mas agora exigi-se que a curva interpole os pontos dados. Primeiro,

40

5 | CURVAS DE SUBDIVISÃO

cria-se um ponto novo 𝑃∗
𝑖 a partir dos quatro pontos originais 𝑃𝑖−1, 𝑃𝑖, 𝑃𝑖+1 e 𝑃𝑖+2:

𝑃∗
𝑖 = −

1
16

𝑃𝑖−1 +
9
16

𝑃𝑖 +
9
16

𝑃𝑖+1 −
1
16

𝑃𝑖+2

Note que os coeficientes somarem 1 é uma propriedade importante para o esquema ser
geométrico. Os coeficientes são derivados a partir da interpolação cúbica de quatro pontos.

𝑃∗
𝑖 = −𝑤𝑃𝑖−1 + (

1
2
+ 𝑤)𝑃𝑖 + (

1
2
+ 𝑤)𝑃𝑖+1 − 𝑤𝑃𝑖+2

Com 𝑤 = 1/16, o esquema é o visto acima, mas nem todos os valores de 𝑤 funcionam. O
algoritmo dos quatro pontos é dado pela forma geral acima com 0 < 𝑤 < 1/8.

Assim, esse esquema mantém os pontos originais e adiciona um, em cada iteração,
entre cada (𝑃𝑖, 𝑃𝑖+1). Dados 𝑃0, … , 𝑃𝑁−1,

• Pontos originais mantidos:
𝑄2𝑖 = 𝑃𝑖,

• Pontos adicionados a cada 𝑃𝑖𝑃𝑖+1:

𝑄2𝑖+1 = −
1
16

𝑃𝑖−1 +
9
16

𝑃𝑖 +
9
16

𝑃𝑖+1 −
1
16

𝑃𝑖+2.

Para o caso fechado a curva vai estar bem definida a cada iteração (usando 𝑃𝑁+𝑖 = 𝑃𝑖 e 𝑃−𝑖 =
𝑃𝑁−𝑖), mantendo os pontos iniciais e gerando 𝑁 novos. Se a o polígono original 𝑃0, … , 𝑃𝑁−1
for aberto, novamente é necessária uma adaptação. Um caso comum é a extrapolação linear
(assumir que os pontos que faltam estão alinhados com os pontos extremos conhecidos),

𝑃−1 = 2𝑃0 − 𝑃1, 𝑃𝑁 = 2𝑃𝑁−1 − 𝑃𝑁−2.

As demonstrações das construções de curvas suaves no limite dos algoritmos podem ser
vistas no livro Subdivision Methods for Geometric Design: A Constructive Approach (Warren
e Weimer, 2001).

41

Superfícies de forma livre

A flexibilidade necessária para design 3D é dificilmente alcançada com superfícies
como cilindros, cones, esferas, etc. Superfícies de forma livre (freeform surfaces) oferecem
bem mais flexibilidade.

As superfícies de Bézier e B-spline serão desenvolvidas como extensões das suas curvas
de forma livre correspondentes. Enquanto os métodos usados para a construção dessas duas
superfícies são severamente restritivos em tipos topológicos, as superfícies de subdivisão
superam essas limitações de uma forma simples e elegante. Seu uso foi o que iniciou a
indústria de animação digital.

A abordagem utilizada para a compreensão das curvas é a do livro Curves and Surfaces
for CAGD: A Practical Guide (Farin, 2001). As motivações e problemas abordados são
oferecidos pelo livro Architectural geometry (Pottmann et al., 2015).

43

Capítulo 6

Superfícies de Bézier

6.1 Interpolação bilinear

Na seção 1.4 e no capítulo 2, a interpolação linear em 𝔼3 foi estudada e propridades
derivadas dela foram usadas para o desenvolvimento de curvas de Bézier. Analogamente,
é possível basear a teoria de superfícies de Bézier por produto tensorial no conceito
de interpolação bilinear.

Sejam 𝑏0,0, 𝑏0,1, 𝑏1,0, 𝑏1,1 quatro pontos distintos de 𝔼3. O conjunto de todos os pontos
𝐱 ∈ 𝔼3 da forma

𝐱(𝑢, 𝑣) =
1

∑
𝑖=0

1

∑
𝑗=0

𝑏𝑖,𝑗𝐵1
𝑖 (𝑢)𝐵

1
𝑗 (𝑣), (6.1)

onde 𝐵1
𝑖 e 𝐵1

𝑗 são polinômios de Bernstein de grau um, é chamado de paraboloide hi-
perbólico pelos quatro pontos 𝑏𝑖,𝑗 .

Na forma matricial:

𝐱(𝑢, 𝑣) = [1 − 𝑢 𝑢] [
𝑏0,0 𝑏0,1
𝑏1,0 𝑏1,1] [

1 − 𝑣
𝑣] .

A forma acima abusa um pouco da notação ao colocar os pontos dentro da matriz, mas
é uma boa visualização do que está acontecendo na interpolação. Como (6.1) é linear
em ambos 𝑢 e 𝑣 e interpola os pontos originais, a superfície 𝐱 é chamada de superfície
de interpolação bilinear.

Uma superfície de interpolação bilinear pode ser vista como um mapeamento do
quadrado da unidade 0 ≤ 𝑢, 𝑣 ≤ 1 no plano 𝑢, 𝑣. O quadrado da unidade é chamado de
domínio do interpolante, enquanto a superfície 𝐱 é a sua imagem. Um segmento de reta
paralelo a uma das arestas do domínio corresponde a uma curva na sua imagem: ela é
chamada de curva isoparamétrica. Toda curva isoparamétrica no paraboloide hiperbólico
é uma reta e, portanto, paraboloides hiperbólicos são superfícies regradas (superfície
gerada pelo movimento de uma reta). Em particular, a reta isoparamética 𝑢 = 0 é mapeada

44

6 | SUPERFÍCIES DE BÉZIER

Figura 6.1: Interpolação bilinear: paraboloide hiperbólico é definido por quatro pontos 𝑏𝑖,𝑗 .

na reta que passa pelos ponto 𝑏0,0 e 𝑏0,1 (o argumento análogo vale para as outras curvas
de fronteira).

Ao invés de avaliar o interpolante bilinear diretamente, é possível aplicar um processo
de duas etapas, computando dois pontos intermediários

𝑏0,1
0,0 = (1 − 𝑣)𝑏0,0 + 𝑣𝑏0,1,

𝑏0,1
1,0 = (1 − 𝑣)𝑏1,0 + 𝑣𝑏1,1,

e o resultado final é obtido por

𝐱(𝑢, 𝑣) = 𝑏1,1
0,0 (𝑢, 𝑣) = (1 − 𝑢)𝑏0,1

0,0 + 𝑢𝑏0,1
0,1 .

Isso equivale a computar os coeficientes da reta isomética 𝑣 = constante primeiro e então
avaliar essa reta isoparamética em 𝑢. Computando a reta isoparamética 𝑢 = constante
primeiro e depois avaliando esta em 𝑣, gera o mesmo resultado.

Como interpolação linear é uma trasformação afim e como na sua construção é utilizada
interpolação linear nas direções 𝑢 e 𝑣, é normal ver o termo aplicação (transformação
ou mapeamento) biafim.

O termo paraboloide hiperbólico vem da geometria analítica. Considerando a superfície
(não parametrizada) 𝑧 = 𝑥𝑦, ele pode ser interpretado como o interpolante bilinear dos
quatro pontos

⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
1
1

⎤
⎥
⎥
⎦
.

Se a superfície for intersectada com um plano paralelo ao 𝑥𝑂𝑦, a curva resultante
é uma hipérbole. Já se ela for intersectada com um plano contendo o eixo 𝑧, a curva

6.2 | ALGORTIMO DE CASTELJAU

45

resultante é uma parábola.

6.2 Algortimo de Casteljau
Assim como curvas de Bézier podem ser encontradas pela repetida aplicação da inter-

polação linear, a superfície de Bézier será encontrada a partir da repetição da interpolação
bilinear.

Figura 6.2: Derivação do algoritmo de Casteljau para superfícies: o ponto na superfície é encontrado
pela repetição da interpolação linear.

Seja uma matriz retangular de pontos 𝑏𝑖,𝑗 onde 0 ≤ 𝑖, 𝑗 ≤ 𝑛 e os parâmetros (𝑢, 𝑣). O
algoritmo seguinte gera um ponto na superfície determinada pela matriz de 𝑏𝑖,𝑗 .

Dados {𝑏𝑖,𝑗 }𝑛𝑖,𝑗=0 e (𝑢, 𝑣) ∈ ℝ2, seja

𝑏 𝑟,𝑟
𝑖,𝑗 = [1 − 𝑢 𝑢] [

𝑏 𝑟−1,𝑟−1
𝑖,𝑗 𝑏 𝑟−1,𝑟−1

𝑖,𝑗+1
𝑏 𝑟−1,𝑟−1
𝑖+1,𝑗 𝑏 𝑟−1,𝑟−1

𝑖+1,𝑗+1] [
1 − 𝑣
𝑣] ,

𝑟 = 1, … , 𝑛
𝑖, 𝑗 = 0, … , 𝑛 − 𝑟

e 𝑏0,0
𝑖,𝑗 = 𝑏𝑖,𝑗 . Então 𝑏𝑛,𝑛

0,0 (𝑢, 𝑣) é o ponto com parâmetros (𝑢, 𝑣) na superfície de Bézier 𝑏𝑛,𝑛.
A rede de pontos 𝑏𝑖,𝑗 é chamada de rede de Bézier ou rede de controle da superfície
𝑏𝑛,𝑛. Os pontos 𝑏𝑖,𝑗 são chamados de pontos de controle ou pontos de Bézier, assim como
no caso das curvas.

Na próxima seção, será possível ver superfícies com graus diferentes para 𝑢 e 𝑣. Tais
superfícies possuem redes de controle {𝑏𝑖,𝑗 } com 𝑖 = 0, … ,𝑚 e 𝑗 = 0, … , 𝑛. O algoritmo
de Casteljau para estas superfícies existe, mas precisa de uma distinção de casos: pelo
algoritmo proposto até agora, este não pode ser executado até encontrar o ponto da
superfície. Depois de 𝑘 = 𝑚𝑖𝑛(𝑚, 𝑛), a 𝑏𝑘,𝑘

𝑖,𝑘 intermediária forma um polígono de controle

46

6 | SUPERFÍCIES DE BÉZIER

de curva. Para obter um ponto na superfície, é necessário seguir com o algoritmo de
Casteljau univariado.

6.3 Produto tensorial

Uma definição intuitiva de uma superfície é: “uma superfície é o trajeto percorrido por
uma curva que se desloca no espaço, modificando seu formato.”

Para formalizar o conceito intuitivo, assumimos que a curva em movimento é de Bézier
de grau constante 𝑚. A todo momento, a curva em movimento é determinada por um
conjunto de pontos de controle. Cada ponto de controle original move-se pelo espaço ao
longo de uma curva. Outra suposição feita é que esta curva é de Bézier e que todas as
curvas por onde os pontos de controle atravessam têm o mesmo grau.

Formalizando, seja a curva inicial de Bézier de grau 𝑚:

𝑏𝑚(𝑢) =
𝑚

∑
𝑖=0

𝑏𝑖𝐵𝑚
𝑖 (𝑢).

Cada 𝑏𝑖 move-se ao longo de uma curva de Bézier de grau 𝑛:

𝑏𝑖 = 𝑏𝑖(𝑣) =
𝑛

∑
𝑗=0

𝑏𝑖,𝑗𝐵𝑛
𝑗 (𝑣).

Combinando as duas equações, é possível obter o ponto 𝑏𝑚,𝑛(𝑢, 𝑣) na superfície 𝑏𝑚,𝑛 como

𝑏𝑚,𝑛(𝑢, 𝑣) =
𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

𝑏𝑖,𝑗𝐵𝑚
𝑖 (𝑢)𝐵

𝑛
𝑗 (𝑣). (6.2)

Com esta notação, a curva original 𝑏𝑚(𝑢) tem os pontos de Bézier 𝑏𝑖,0 com 𝑖 = 0, … ,𝑚. A
definição de superfície de Bézier dada por (6.2) é equivalente à dada pelo algoritmo de
Casteljau. Essa equação é obtida ao mover a curva isoparamétrica correspondente a 𝑣 = 0,
mas as outras curvas de fronteira também podiam ter sido usadas como a curva original.

Uma curva isoparamétrica arbitrária 𝑣 = constante de uma superfície de Bézier 𝑏𝑚,𝑛 é
uma curva de Bézier de grau 𝑚 em 𝑢 e seus 𝑚 + 1 pontos de Bézier são obtidos ao avaliar
todas as colunas da rede de controle em 𝑣 = constante. A fórmula é dada por

𝑏0,𝑛
𝑖,0 (𝑣) =

𝑛

∑
𝑗=0

𝑏𝑗 ,𝑗𝐵𝑛
𝑗 (𝑣), 𝑖 = 0… ,𝑚.

Os coeficientes da reta isoparamétrica podem ser obtidos ao aplicar 𝑚+1 vezes o algortimo
de Casteljau. Um ponto na superfície é então obtido ao aplicar-se mais uma vez o algoritmo
de Casteljau.

Curvas isoparaméticas 𝑢 = constante são tratadas de forma análoga. Note, no entanto,
que outras retas no domínio são mapeadas em curvas de grau mais alto na superfície:
elas são em geral de grau 𝑛 + 𝑚.

6.4 | DERIVADAS DAS SUPERFÍCIES DE BÉZIER

47

6.4 Derivadas das Superfícies de Bézier

No caso das curvas, as derivadas foram encontradas ao diferenciar os pontos de controle.
O mesmo será feito para as superfícies: as derivadas que serão consideradas serão as
derivadas parciais 𝜕/𝜕𝑢 e 𝜕/𝜕𝑣. A derivada parcial é o vetor tangente de uma curva
isoparamética e pode ser encontrada calculando-se:

𝜕
𝜕𝑢

𝑏𝑚,𝑛(𝑢, 𝑣) =
𝑛

∑
𝑗=0

[
𝜕
𝜕𝑢

𝑚

∑
𝑖=0

𝑏𝑖,𝑗𝐵𝑚
𝑖 (𝑢)]𝐵

𝑛
𝑗 (𝑣).

Os termos entre colchetes dependem somente de 𝑢 e é possível aplicar a fórmula para
a derivada da curva de Bézier já vista (2.1):

𝜕
𝜕𝑢

𝑏𝑚,𝑛(𝑢, 𝑣) = 𝑚
𝑛

∑
𝑗=0

𝑚−1

∑
𝑖=0

Δ1,0𝑏𝑖,𝑗𝐵𝑚−1
𝑖 (𝑢)𝐵𝑛

𝑗 (𝑣).

O operador de diferenças padrão é generalizado para dois pontos, o índice superior (1, 0)
significa que a diferenciação é só feita no primeiro índice inferior: Δ1,0𝑏𝑖,𝑗 = 𝑏𝑖+1,𝑗 − 𝑏𝑖,𝑗 .
Calculando a derivada parcial em relação a 𝑣, o operador de diferenças que atua somente
no segundo índice é: Δ0,1𝑏𝑖,𝑗 = 𝑏𝑖,𝑗+1 − 𝑏𝑖,𝑗 . Assim,

𝜕
𝜕𝑣

𝑏𝑚,𝑛(𝑢, 𝑣) = 𝑛
𝑚

∑
𝑖=0

𝑛−1

∑
𝑗=0

Δ0,1𝑏𝑖,𝑗𝐵𝑛−1
𝑗 (𝑣)𝐵𝑚

𝑖 (𝑢).

Novamente, um problema de superfície pode ser quebrado em vários problemas univa-
riados: para computar a derivada parcial em relação a 𝑢, é possível interpretar todas as
colunas da rede de controle como curvas de Bézier de grau 𝑚 e computar suas derivadas
(avaliá-las no valor desejado 𝑢). Então, interpretar essas derivadas como os coeficientes
de outra curva de Bézier de grau 𝑛 e comutar seu valor em 𝑣.

É possível escrever as fórmulas para derivadas parciais de maior ordem:

𝜕𝑟

𝜕𝑢𝑟 𝑏
𝑚,𝑛(𝑢, 𝑣) =

𝑚!
(𝑚 − 𝑟)!

𝑛

∑
𝑗=0

𝑚−𝑟

∑
𝑖=0

Δ𝑟,0𝑏𝑖,𝑗𝐵𝑚−𝑟
𝑖 (𝑢)𝐵𝑛

𝑗 (𝑣) (6.3)

e
𝜕𝑠

𝜕𝑣𝑠
𝑏𝑚,𝑛(𝑢, 𝑣) =

𝑛!
(𝑛 − 𝑠)!

𝑚

∑
𝑖=0

𝑛−𝑠

∑
𝑗=0

Δ0,𝑠𝑏𝑖,𝑗𝐵𝑛−𝑠
𝑗 (𝑣)𝐵𝑚

𝑖 (𝑢).

Nessas equações, os operadores de diferenças são definidos por

Δ𝑟,0𝑏𝑖,𝑗 = Δ𝑟−1,0𝑏𝑖+1,𝑗 − Δ𝑟−1,0𝑏𝑖,𝑗

e
Δ0,𝑠𝑏𝑖,𝑗 = Δ0,𝑠−1𝑏𝑖,𝑗+1 − Δ0,𝑠−1𝑏𝑖,𝑗 .

Com essas fórmulas é mais simples escrever o caso mais geral. As derivadas parciais mistas

48

6 | SUPERFÍCIES DE BÉZIER

para uma ordem arbitrária são:

𝜕𝑟+𝑠

𝜕𝑢𝑟𝜕𝑣𝑠
𝑏𝑚,𝑛(𝑢, 𝑣) =

𝑚!𝑛!
(𝑚 − 𝑟)!(𝑛 − 𝑠!)

𝑛−𝑠

∑
𝑗=0

𝑚−𝑟

∑
𝑖=0

Δ𝑟,𝑠𝑏𝑖,𝑗𝐵𝑚−𝑟
𝑖 (𝑢)𝐵𝑛−𝑠

𝑗 (𝑣),

com coeficientes Δ𝑟,𝑠𝑏𝑖,𝑗 ∈ 𝔼3 (vetores).

A derivada parcial de uma superfície com valores em pontos é, por sua vez, uma
superfície com valores vetoriais. É possível avaliá-la ao longo das retas isoparamétricas,
das quais as quatro curvas da fronteira são as mais interessantes. Tal derivada, como por
exemplo 𝜕/𝜕𝑢|𝑢=0, é chamada de derivada transversal à fronteira. Restringindo a equação
(6.3) a 𝑢 = 0, ficamos com

𝜕𝑟

𝜕𝑢𝑟 𝑏
𝑚,𝑛(0, 𝑣) =

𝑚!
(𝑚 − 𝑟)!

𝑛

∑
𝑗=0

Δ𝑟,0𝑏𝑖,𝑗𝐵𝑛
𝑗 (𝑣). (6.4)

Fórmulas similares são encontradas para os outros três lados. Portanto, as derivadas
transversais à fronteira de ordem 𝑟 , avaliadas ao longo da fronteira, dependem somente
das 𝑟 + 1 linhas (ou coluna) dos pontos de Bézier perto da fronteira.

6.5 Propriedades das Superfícies de Bézier
A maioria das propriedades das superfícies de Bézier seguem diretamente das curvas

de Bézier.

• Invariância afim: o algortimo de Casteljau consiste na repetição da interpolação
bilinear e, possivelmente, de uma subsequente linear. Todas essas operações são
invariantes em relação a transformações afins e, portanto, sua combinação também
é. Além disso,

𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

𝐵𝑚
𝑖 (𝑢)𝐵

𝑛
𝑗 (𝑣) ≡ 1. (6.5)

Obs: no entanto, assim como no caso das curvas, as superfícies de Bézier não são
invariantes em relação a transformações projetivas!

• Fecho convexo: para 0 ≤ 𝑢, 𝑣 ≤ 1, os termos 𝐵𝑚
𝑖 (𝑢)𝐵𝑛

𝑗 (𝑣) são não negativos. Assim,
levando em consideração (6.5), então (6.2) é uma combinação convexa.

• Curvas de fronteira: as curvas de fronteira da superfície 𝑏𝑚,𝑛 são curvas polinomiais.
Seus polígonos de Bézier são dados pelos polígonos de fronteira da rede de controle.
Em particular, todos os quatro cantos da rede de controle estão na malha.

6.6 Composição de superfícies de Bézier

Sejam 𝐱(𝑢, 𝑣) e 𝐲(𝑢, 𝑣) duas patches de superfícies (partes de superfícies maiores),
definidas em [𝑢𝐼−1, 𝑢𝐼] × [𝑣𝐽 , 𝑣𝐽+1] e [𝑢𝐼 , 𝑢𝐼+1] × [𝑣𝐽 , 𝑣𝐽+1], respectivamente. Elas são de classe
𝐶𝑟 na curva de fronteira comum 𝐱(𝑢𝐼 , 𝑣) = 𝐲(𝑢𝐼 , 𝑣) se todas as derivadas parciais de 𝑢

6.6 | COMPOSIÇÃO DE SUPERFÍCIES DE BÉZIER

49

até a ordem 𝑟 forem iguais, ou seja,

𝜕𝑟

𝜕𝑢𝑟 𝐱(𝑢, 𝑣)
|||||𝑢=𝑢𝐼

=
𝜕𝑟

𝜕𝑢𝑟 𝐲(𝑢, 𝑣)
|||||𝑢=𝑢𝐼

.

Agora, supomos que as duas patches sejam dadas na forma de Bézier, que a rede de controle
da patch "esquerda", 𝐱, seja {𝑏𝑖𝑗 } com 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛 e que a rede de controle da patch
"direita", 𝐲, seja {𝑏𝑖𝑗 } com 𝑚 ≤ 𝑖 ≤ 2𝑚, 0 ≤ 𝑗 ≤ 𝑛. Para fazer a transição de coordenadas
locais da equação (6.4) para globais (𝑢, 𝑣) é necessária a regra da cadeia:

(
1

Δ𝐼−1)

𝑟 𝑛

∑
𝑗=0

Δ𝑟,0𝑏𝑚−𝑟,𝑗𝐵𝑛
𝑗 (𝑣) = (

1
Δ𝐼)

𝑟 𝑛

∑
𝑗=0

Δ𝑟,0𝑏𝑚,𝑗𝐵𝑛
𝑗 (𝑣),

onde Δ𝐼 = 𝑢𝐼+1−𝑢𝐼 . Como os 𝐵𝑛
𝑗 (𝑣) são linearmente independentes, é possível só comparar

coeficientes:

(
1

Δ𝐼−1)

𝑟 𝑛

∑
𝑗=0

Δ𝑟,0𝑏𝑚−𝑟,𝑗 = (
1
Δ𝐼)

𝑟 𝑛

∑
𝑗=0

Δ𝑟,0𝑏𝑚,𝑗 , 𝑗 = 0, … , 𝑛.

Essa é a condição 𝐶𝑟 para curvas de Bézier, aplicada para todas as 𝑛 + 1 linhas da rede de
Bézier composta. A condição 𝐶𝑟 para superfícies de Bézier é: duas patches adjacentes são
𝐶𝑟 ao longo da sua fronteira comum se, e somente se, todas as linhas de vértices da rede
de controle podem ser interpretadas como polígonos de curvas por partes de Bézier 𝐶𝑟 . A
condição de suavidade é aplicada analogamente para a direção 𝑣.

A condição 𝐶1 diz que para todo 𝑗 , o polígono formado por 𝑏0,𝑗 , … , 𝑏2𝑚,𝑗 é o polígono
de controle de uma curva por partes de Bézier 𝐶1. Para esse ser o caso, os três pontos
𝑏𝑚−1,𝑗 , 𝑏𝑚,𝑗 , 𝑏𝑚+1,𝑗 devem ser colineares e manter a razão entre as distâncias para todos os 𝑗 .
A simples colinearidade não é suficiente, como já visto: superfícies compostas que possuem
𝑏𝑚−1,𝑗 , 𝑏𝑚,𝑗 , 𝑏𝑚+1,𝑗 colineares para todos os 𝑗 , mas não mantêm a razão entre as distâncias,
não são 𝐶1. Além disso, elas nem terão um plano tangente contínuo.

Suponha que um domínio retangular de uma patch de Bézier é subdividida em dois
subretângulos por uma reta 𝑢 = 𝑢̂. A reta é mapeada em uma curva isoparamétrica no
patch, que é então subdividido em duas subpatches. Essas duas patches sendo parte de uma
superfície global, se juntam com continuidade 𝐶𝑛. Portanto, todas as linhas de pontos de
controle são polígonos de controle de curvas de grau 𝑛, 𝐶𝑛 por partes. As curvas estão
relacionadas pela subdivisão univariável já vista (Seção 2.3).

No algoritmo de subdivisão encontrado é possível interpretar todas as linhas da rede de
controle como polígonos de controle de curvas de Bézier. Subdividir cada uma das curvas
em 𝑢 = 𝑢̂. Os pontos de controle resultantes formam duas redes de controle desejadas.

A subdivisão ao longo da reta isoparamétrica 𝑣 = 𝑣 é tratada analogamente. Para
subdividir um patch em quatro subpatches geradas por duas retas isoparamétricas 𝑢 = 𝑢̂ e
𝑣 = 𝑣, o procedimento de subdivisão é aplicado duas vezes. Não importa em qual direção
a subdivisão é feita primeiro.

51

Capítulo 7

Superfícies B-spline

As superfícies de Bézier herdam os problemas da curvas de Bézier: quando o grau
delas é muito alto, a representação final fica longe da esperada pela malha de controle e,
novamente, um ponto de controle tem efeito global. Para evitar esse problema, pode-se
usar supefícies B-spline e NURBS.

As superfícies B-spline não racionais e NURBS têm papéis importantes em métodos
de design de superfícies atualmente. Uma superfície B-spline paramétrica por produto
tensorial pode ser escrita como

𝐱(𝑢, 𝑣) = ∑
𝑖

∑
𝑗
𝑑𝑖𝑗𝑁𝑚

𝑖 (𝑢)𝑁
𝑛
𝑗 (𝑣), (7.1)

onde é assumido que há uma sequência de nós na direção 𝑢 e outra na direção 𝑣.

No caso das curvas B-spline, se os pontos extremos tivessem multiplicidade igual ao
grau da curva, esses pontos de controle extremos B-spline (ou NURBS) também seriam
pontos de controle Bézier. O mesmo é válido para o caso de superfícies: se os pontos de
controle B-spline 𝑑𝑖𝑗 , para 𝑖 ou 𝑗 iguais a 0 ou 1, tiverem multiplicidade igual a de seus
patches, então também são vértices de controle da rede da superfície por partes de Bézier.

Reescrevendo a equação (7.1) como

𝐱(𝑢, 𝑣) = ∑
𝑖
𝑁 𝑛

𝑗 (𝑣)[
∑
𝑗
𝑑𝑖𝑗𝑁𝑚

𝑖 (𝑢)]
,

é possível ver que para cada 𝑖, a soma entre colchetes descreve uma curva B-spline na
variável 𝑢. Essa curva pode ser convertida para uma curva de Bézier pelo método visto
na seção 3.5. Isso corresponde a interpretar as linhas da rede de controle de B-splines
como polígonos B-spline univariados e, então, convertê-los para uma forma de Bézier por
partes. Os pontos de Bézier encontrados podem ser interpretados como, coluna a coluna,
polígonos B-spline, que podem novamente ser transformados em forma de Bézier um por
um. A família final de polígonos de Bézier constitui a rede da superfície por partes de
Bézier. O processo poderia ter sido feito primeiramente com as colunas e depois com as

52

7 | SUPERFÍCIES B-SPLINE

linhas da rede de controle B-spline e o resultado seria o mesmo.

Assim como nas curvas, as superfícies B-spline podem ser fechadas ou abertas. No
entanto, as superfícies B-splines podem ser fechadas de duas maneiras: é possível formar
superfícies com a conectividade de um cilindro ou de um toro. Esse fenômeno é con-
sequência das superfícies B-spline possuírem duas famílias de curvas, na direção 𝑢 e na
direção 𝑣, que podem ser fechadas ou abertas. Os três jeitos diferentes que as superfícies
podem ser criadas são:

• Modo aberto para ambas: a superfície é quadrilateral,

• Modo fechado para uma e aberto para outra: a superfície parece um pedaço defor-
mado de um cano (cilindro),

• Modo fechado para ambas: a superfície parece um toro deformado.

As três possuem diferentes topologias com as redes de controle onde um ou mais polígonos
da fronteira se degeneram para um único ponto, mas pode-se modelar pedaços de superfí-
cies com menos de quatro lados curvados. Nenhuma superfície de produto tensorial pode
ter conectividade de um bitoro ou uma superfície mais complicada. Na verdade, nenhuma
superfície com topologia de uma esfera é representável por uma superfície de produto
tensorial, pelo menos não sem degenerações.

53

Capítulo 8

Superfícies NURBS

As superfícies de Bézier e B-splines podem ser generalizadas para suas contrapartes
racionais de forma análoga a usada para o caso das curvas. Em outras palavras, defini-se
uma superfície de Bézier racional ou NURBS como a projeção de um produto tensorial
4D de superfície Bézier ou B-spline. Assim, um patch de superfície de Bézier racional
é dado pela forma

𝐱(𝑢, 𝑣) =
∑𝑖∑𝑗 𝑤𝑖,𝑗𝑏𝑖,𝑗𝐵𝑚

𝑖 (𝑢)𝐵𝑛
𝑗 (𝑣)

∑𝑖∑𝑗 𝑤𝑖,𝑗𝐵𝑚
𝑖 (𝑢)𝐵𝑛

𝑗 (𝑣)
,

e uma superfície NURBS é escrita como

𝐬(𝑢, 𝑣) =
∑𝑖 ∑𝑗 𝑤𝑖,𝑗𝑑𝑖,𝑗𝑁𝑚

𝑖 (𝑢)𝑁 𝑛
𝑗 (𝑣)

∑𝑖∑𝑗 𝑤𝑖,𝑗𝑁𝑚
𝑖 (𝑢)𝑁 𝑛

𝑗 (𝑣)
. (8.1)

Superfícies racionais são obtidas como projeções de patches de produtos tensoriais,
mas não são em si patches de produtos tensoriais. Lembramos que superfícies por produto
tensorial são da forma 𝐱(𝑢, 𝑣) = ∑𝑖∑𝑗 𝑐𝑖,𝑗𝐹𝑖,𝑗(𝑢, 𝑣), onde a base de funções 𝐹𝑖,𝑗 pode ser
expressa como produtos 𝐹𝑖,𝑗(𝑢, 𝑣) = 𝐴𝑖(𝑢)𝐵𝑗(𝑣). A base de funções para (8.1) é da forma

𝐹𝑖,𝑗(𝑢, 𝑣) =
𝑤𝑖,𝑗𝑁𝑚

𝑖 (𝑢)𝑁 𝑛
𝑗 (𝑣)

∑𝑖∑𝑗 𝑤𝑖,𝑗𝑁𝑚
𝑖 (𝑢)𝑁 𝑛

𝑗 (𝑣)
.

Pela estrutura do denominador, isso não pode, em geral, ser fatorado na forma requerida
𝐹𝑖,𝑗(𝑢, 𝑣) = 𝐴𝑖(𝑢)𝐵𝑗(𝑣).

Mesmo sem possuir a estrutura de produto tensorial, as superfícies racionais podem
usar algoritmos de produtos tensoriais para sua manipulação. Por exemplo, o problema de
achar a forma de uma superfície de Bézier racional por partes a partir de uma superfície
B-spline bicúbica racional. Só é necessário converter cada linha da rede de controle B-
spline para uma curva de Bézier cúbica racional por partes e então repetir o processo
para cada coluna da rede resultante.

Outro exemplo, consideramos o problema de extrair as curvas isoparamétricas de

54

8 | SUPERFÍCIES NURBS

uma superfície de Bézier racional. Supondo que a curva corresponde a 𝑣 = 𝑣, é possível
interpretar todas as colunas da rede de controle como polígonos de controle e avaliar
cada um em 𝑣, usando o algortimo de Casteljau racional, por exemplo. Para computar os
pesos, todos os pontos obtidos e seus pesos podem ser interpretados como um polígono
de controle de Bézier da curva isoparamétrica desejada.

Topologias mais complexas, como superfícies fechadas, não podem ser modeladas
com uma única superfície NURBS. Juntar superfícies NURBS para obter uma superfície
mais complexa é difícil e imprático. Esse dilema topológico é resolvido com superfícies
de subdivisão.

55

Capítulo 9

Malhas poligonais (ou Meshes)

Até agora, foram discutidos alguns tipos de superfícies suaves. Em casos onde as
formas desejadas não são simples, como cones ou cilindros, há o frequente uso de malhas
poligonais (ou polygon meshes).

Uma malha poligonal é uma coleção de vértices (pontos), arestas e faces (formada
por um conjunto de vértices) que definem um objeto tridimensional. As faces são polí-
gonos fechados, normalmente triângulos, quadriláteros (quads) ou polígonos convexos.
Elas se conectam ao longo das arestas e descrevem aproximadamente a forma de uma
superfície suave.

Em animações 3D, jogos e modelagens 3D em geral o que se vê são, na maioria das
vezes, malhas poligonais renderizadas de forma suave. Elas são onipresentes em gráficos,
mas também são usadas em peso em simulações de engenharia.

9.1 Geometria e conectividade

Ao lidar com malhas poligonais, é necessário observar o conceito de conectividade ou
a topologia da malha poligonal. A ideia deste conceito é a nomeação dos vértices da malha
poligonal e a informação da forma como esses se conectam para criar as faces e as arestas.

Malhas poligonais com a mesma conectividade podem ter formatos diferentes. Só é
necessário mudar as coordenadaas dos vértices (com certa limitação) e manter toda a
informação da conectividade.

O maior número de faces gera maior liberdade no design. No entanto, isso pode ser
um fardo e estratégias são necessárias para a geração dessas malhas poligonais. A estética
tem um papel crucial na busca dessas estratégias.

A representação de uma mesma geometria por uma malha poligonal mais balanceada
(melhor distribuição e qualidade dos polígonos), pode necessitar a mudança de conecti-
vidade. Algoritmos em design de malhas poligonais são basicamente formas inteligentes
de design/mudança de conectividade e geometria.

56

9 | MALHAS POLIGONAIS (OU MESHES)

Especificando um pouco mais sobre geometria e conectividade, entre os formatos de
arquivos, o formato OBJ comumente usado em programas de modelagem 3D possui:

• uma lista de coordenadas (𝑥, 𝑦, 𝑧) de cada vértice do objeto. A sua ordenação define
a numeração/nomeação dos vértices,

• comandos de face. Estes especificam quais e em que ordem os vértices representam
as faces da malha.

Algumas limitações serão importantes na construção das malhas poligonais. Entre
elas, a exclusão das "junções em T", onde duas faces encontram a mesma aresta em outra
face. Outra é evitar a geração de triângulos degenerados (vértices colineares): eles não
geram faces e, portanto, são potenciais causas nas falhas dos programas que tenham esse
tipo de malha poligonal como entrada.

Malhas poligonais são representações discretas de superfícies. Elas generalizam o fato
de um polígono ser usado como uma representação discreta de uma curva suave (como
já visto em curvas de subdivisão).

9.2 Malhas quadrilaterais (quads)

Para obter malhas poligonais que representem superfícies, é primeiro necessário pensar
nas malhas representando um plano. A forma mais simples de tesselar um plano com
quadriláteros é usando quadrados (ou retângulos) arranjados de forma regular, cada quatro
deles se conectando em um vértice. Uma malha quadrilateral bem formada terá a mesma
conectividade que esta malha planar especial. Num vértice interior (um vértice que não
está na fronteira da malha), exatas quatro faces, quatro arestas se encontram e a valência
do vértice é quatro. Em geral, a valência de um vértice interior é o número de arestas que
se encontram nele (a mesma quantidade de faces que passam pelo vértice).

Em uma malha quadrilateral, um vértice interior de valência quatro se chama vértice
regular. Se a valência de um vértice interior for diferente de quatro, é chamado de vértice
irregular. No exemplo do cubo, todos os seus vértices são irregulares de valência três, mas
ele não satisfará a aproximação de uma superfície suave.

É importante ressaltar que os quadriláteros em uma malha quadrilateral em geral
não são planares.

9.3 Malhas triangulares

Malhas triangulares consistem exclusivamente de triângulos. Assim como no caso
quadrilateral, para tesselar um plano é possível juntar seis triângulos ao redor de cada
vértice. Outra maneira é usar a topologia dos quadriláteros e cortá-los em suas diagonais
(todas iguais), formando triângulos.

Os vértices interiores são regulares se sua valência for seis. Todas as faces são planares,
mas é claro que a quantidade de triângulos necessária é o dobro do caso quadrilateral. Esse

9.4 | REFINAMENTO DAS MALHAS

57

aumento de processamento é um motivo para que, em geral, modelos finais 3D tenham
malha quadrilateral.

9.4 Refinamento das malhas

Em design, assim como no caso da aproximação de curvas, é às vezes desejável começar
a modelagem com uma malha rascunhada e refiná-la por um procedimento adequado. As
superfícies de subdivisão trabalham dessa maneira. Antes de analisar essas superfícies,
é importante estudar um pouco os princípios de refinamento. Pensamos nele como um
procedimento de dois passos: mudança da conectividade (quantidade de vértices e como
eles se conectam) e mudança da geometria (a posição dos vértices).

Examinamos primeiramente o caso da malha triangular: ao inserir pontos médios em
cada aresta dos triângulos e conectá-los, é criada uma malha triangular mais refinada com
quatro vezes mais faces que a original. Cada face é cortada para criar quatro faces e a
geometria até aqui é a mesma. Com o objetivo de seguir o design mais atentamente, é
possível mudar os vértices de lugar. A forma como isso ocorre será visto nas superfícies de
subdivisão, mas é claro que a malha ganhou flexibilidade e aproximou mais a malha
desejada.

A inserção de pontos médios não é a única forma de refinamento dessas malhas,
mesmo tendo a vantagem de não introduzir vértices irregulares. Se o refinamento fosse
dado ao inserir o baricentro de cada triângulo e conectá-lo aos vértices, a regularidade
seria destruída em toda a malha.

No caso das malhas quadrilaterais, o refinamento também pode ser dado pela inserção
de ponto médios das arestas. Neste caso, os pontos médios dos lados opostos se conectam
formando uma cruz. Onde eles se conectam (o meio da cruz) é o baricentro da face. A face
foi cortada em quatro subfaces, todas no mesmo paraboloide hiperbólico. Essa construção
mantém a regularidade dos vértices.

Há outra forma de refinamento de malhas quadrilaterais usando os pontos médios das
arestas. Ao invés de conectar numa forma de "cruz", é possível conectar os quatro pontos
médios criando losangos. Ao redor dos vértices antigos restam triângulos e os juntando,
polígonos novos são formados. Se os vértices antigos no interior eram regulares então
o polígono é um quadrilátero, mas, em geral, não planar. Com exceção dos triângulos
gerados na fronteira, esse tipo de refinamento dobra aproximadamente o número de faces.
As faces foram escalonadas por um fator de 1/

√
2 e rotacionadas 45◦. A aplicação desse

refinamento repetidas vezes é um dos algoritmos de subdivisão mais simples e gera no
limite uma superfície suave.

9.5 Redução das malhas

O processo contrário ao de refinamento de malhas é chamado de redução de malhas,
ele remove vértices "apropriados", selecionados por um algoritmo, e conecta os restantes
de forma consistente.

58

9 | MALHAS POLIGONAIS (OU MESHES)

Em modelagem 3D, é comum o processo de retopologia, onde basicamente essa redução
da malha pode ser feita de forma manual. Artistas podem modelar sem restrições em
programas como o Z-brush (uma modelagem livre, parecida com esculpir ou modelar uma
massa) e depois importar essa base para um aplicativo como o Maya. Nele, há ferramentas
como o Quad Draw que permitem a criação de quadriláteros cobrindo a sua base e assim
mantendo a geometria em geral. O interessante dessa forma de redução de malha é que
ela permite que o artista tenha a liberdade total com seu modelo (e faça escolhas sobre o
detalhamento dele) e ainda o deixe mais leve (menor processamento com menos faces).

Obviamente, a capacidade de processamento não dita as escolhas artísticas e, portanto,
o detalhamento não é perdido no processo. O processo de retopologia facilita o manuseio
dos modelos 3D nos programas, mas quando estes são renderizados a subdivisão é aplicada
e os detalhes "voltam". Tomando por exemplo o programa do Maya, artistas podem ter
uma imagem prévia de seus modelos subdivididos com o smooth prévio.

9.6 Estética e relaxamento das malhas
Ainda que exista o aspecto subjetivo quando se discute estética, é possível falar sobre

o balanceamento da distribuição das malhas.

Uma ideia básica é a de ajustar os vértices para que a malha final consista praticamente
de polígonos regulares (precisamente regulares, normalmente não é possível). Uma ideia é
aplicar os princípios físicos de sistemas massa-mola. Na implementação, os vértices são os
pontos de massa e as arestas são as molas. Fixam-se alguns pontos (os pontos da fronteira)
e deixam-se os outros vértices moverem-se livremente até o sistema atingir o equilíbrio.
A técnica usada se chama relaxamento (Relax tool, no Maya).

59

Capítulo 10

Superfícies de subdivisão

Na área de computação gráfica 3D, as superfícies de subdivisão (SubD surface ou
Subsurf) são superfícies geradas a partir da aplicação de algum algoritmo de subdivisão
em uma malha inicial. O processo é análogo ao processo de curvas de subdivisão.

A primeira técnica vista nesse capítulo é a do algoritmo de Chaikin para superfícies. A
segunda é uma extensão do processo de corner-cutting de Chaikin para faces irregulares
desenvolvida por Daniel Doo e Malcolm Sabin, em 1978. O último esquema de subdivisão
também foi criado no mesmo ano por Jim Clark e Edwin Catmull, generalizando a inserção
de nós em superfícies B-spline bicúbicas.

A abordagem utilizada para a compreensão das curvas é a dos livros Subdivision Methods
for Geometric Design (Warren e Weimer, 2001), Recursively generated B-spline surfaces
on arbitrary topological meshes (Catmull e Clark, 1998), e as motivações e problemas
abordados são oferecidos pelo livro Architectural geometry (Pottmann et al., 2015).

10.1 Motivação
Algumas restrições topológicas foram descritas no estudo de superfícies B-spline e

malhas quadrilaterais contendo somente vértices regulares. Existe uma correlação entre os
dois problemas, pois as redes de controle de superfícies B-splines são malhas quadrilaterais.

As superfícies B-spline podem ser vistas como resultados de um processo de refina-
mento, que mantém a regularidade das malhas quadrilaterais, mas as refina até, no limite,
obter superfícies suaves. Isso não muda a topologia e, portanto, para modelar superfícies
com uma topologia mais geral é necessário o uso de redes de controle com vértices
irregulares e técnica de como refiná-las (superfícies de subdivisão farão essa papel).

10.2 Superfície B-spline quadrática por subdivisão
O processo utilizado para a geração de superfícies B-spline quadráticas seguirá o

esquema de supla aplicação do algoritmo de Chaikin de subdivisão para geração de curvas
B-splines quadráticas. Dada uma rede de controle inicial, o algoritmo de Chaikin é aplicado

60

10 | SUPERFÍCIES DE SUBDIVISÃO

para cada coluna (polígono) dela e todos os pontos são conectados. Uma nova rede é criada
e o algortimo de Chaikin é agora aplicado às linhas da rede nova. Sua conexão gerará a
rede do final deste passo do refinamento e a repetição levará, no limite, a uma superfície
B-spline quadrática. Lembramos que a aplicação do algoritmo de Chaikin pode ser feita
nas linhas primeiro e depois nas colunas, e o resultado será o mesmo.

Juntando o processo em um único passo, para cada quadrilátero da rede de controle de
vértices 𝑃𝑖,𝑗 , 𝑃𝑖+1,𝑗 , 𝑃𝑖,𝑗+1 e 𝑃𝑖+1,𝑗+1 é necessário aplicar o algoritmo de Chaikin duas vezes:

𝑃 ′
𝑖,𝑗 = 3

4𝑃𝑖,𝑗 +
1
4𝑃𝑖+1,𝑗 ,

𝑃 ′
𝑖+1,𝑗 = 1

4𝑃𝑖,𝑗 +
3
4𝑃𝑖+1,𝑗 ,

𝑃 ′
𝑖,𝑗+1 = 3

4𝑃𝑖,𝑗+1 +
1
4𝑃𝑖+1,𝑗+1,

𝑃 ′
𝑖+1,𝑗+1 = 1

4𝑃𝑖,𝑗+1 +
3
4𝑃𝑖+1,𝑗+1

e
𝑃novo
𝑖,𝑗 = 3

4𝑃
′
𝑖,𝑗 + 1

4𝑃
′
𝑖,𝑗+1,

𝑃novo
𝑖,𝑗+1 = 1

4𝑃
′
𝑖,𝑗 + 3

4𝑃
′
𝑖,𝑗+1,

𝑃novo
𝑖+1,𝑗 = 3

4𝑃
′
𝑖+1,𝑗 + 1

4𝑃
′
𝑖+1,𝑗+1,

𝑃novo
𝑖+1,𝑗+1 = 1

4𝑃
′
𝑖+1,𝑗 + 3

4𝑃
′
𝑖+1,𝑗+1.

Portanto, o passo pode se resumir a

𝑃novo
𝑖,𝑗 = 9

16𝑃𝑖,𝑗 +
3
16𝑃𝑖+1,𝑗 +

3
16𝑃𝑖,𝑗+1 +

1
4𝑃𝑖+1,𝑗+1,

𝑃novo
𝑖+1,𝑗 = 9

16𝑃𝑖+1,𝑗 +
3
16𝑃𝑖,𝑗 +

3
16𝑃𝑖+1,𝑗+1 +

1
4𝑃𝑖,𝑗+1,

𝑃novo
𝑖,𝑗+1 = 9

16𝑃𝑖,𝑗+1 +
3
16𝑃𝑖,𝑗 +

3
16𝑃𝑖+1,𝑗+1 +

1
4𝑃𝑖+1,𝑗 ,

𝑃novo
𝑖+1,𝑗+1 = 9

16𝑃𝑖+1,𝑗+1 +
3
16𝑃𝑖+1,𝑗 +

3
16𝑃𝑖,𝑗+1 +

1
4𝑃𝑖,𝑗 .

O algoritmo mostrado é para redes de controle fechadas, mas para as abertas os únicos
cuidados são os mesmos do caso das curvas (nas arestas da fronteira não há somente
uma divisão).

Essa construção só vale para topologias especiais, em que todas as faces são quadri-
laterais e todos os vértices internos têm valência 4.

O algoritmo de subdivisão de Doo-Sabin é uma extensão do algoritmo visto acima e
consegue lidar com vértices irregulares (valência diferente de 4).

10.3 Esquema de subdivisão de Doo-Sabin e
Catmull-Clark

O esquema de subdivisão de Doo-Sabin generaliza o algoritmo de subdivisão de geração
de superfícies B-spline quadráticas para malhas de controle arbitrárias (incluindo não
quadrilaterais). A regras de subdivisão envolvidas são:

• Geração de pontos de face: para cada face 𝑗 com 𝑛 vértices 𝑣1, … , 𝑣𝑛, um ponto
novo é criado como a média dos vértices da face,

𝑓𝑗 =
1
𝑛

𝑛

∑
𝑖=1

𝑣𝑖.

10.3 | ESQUEMA DE SUBDIVISÃO DE DOO-SABIN E CATMULL-CLARK

61

• Geração de pontos de aresta: para cada aresta, um novo ponto é criado como
a média do ponto médio da aresta com a média dos pontos de face adjacentes
(compartilhando a aresta),

𝑒𝑘 =
𝑣𝑖+𝑣𝑖+1

2 + 𝑓𝑗+𝑓𝑗+1
2

2
=

𝑣𝑖 + 𝑣𝑖+1 + 𝑓𝑗 + 𝑓𝑗+1
4

.

• Geração de novos vértices: cada vértice antigo 𝑣 é substituído por um vértice novo
𝑣′, calculado por

𝑣′ =
𝑛 + 3
4𝑛

𝑣 +
𝑛

∑
𝑖=1

3 + 2cos(2𝜋𝑖𝑛)
4𝑛2 𝑣𝑖,

onde os 𝑣𝑖 são os vértices vizinhos e 𝑛 é a valência do vértice. Os valores dos pesos escolhidos
por Doo e Sabin são consequência da análise de Fourier local (observando autovalores
da matriz de subdivisão), para garantir suavidade e continuidade.

Já o esquema de subdivisão de Catmull-Clark generaliza a subdivisão para geração
de superfícies B-spline bicúbicas para malhas de controle quadrilaterais. A regras de
subdivisão envolvidas são conservadas para a geração de pontos de face e de aresta,

• Geração de novos vértices: cada vértice antigo 𝑣 é substituído por um vértice novo
𝑣′, calculado por

𝑣′ =
𝑄
𝑛
+
2𝑅
𝑛

+
𝑆(𝑛 − 3)

𝑛
,

onde 𝑄 é a média de todos os pontos de faces adjacentes ao vértice 𝑣, 𝑅 é a média dos
pontos médios de todas as arestas antigas que incidiam no vértice 𝑣 e 𝑆 é o 𝑣.

As demonstrações das construções de superfícies suaves no limite dos algoritmos
podem ser vistas no livro Subdivision Methods for Geometric Design: A Constructive Ap-
proach (Warren e Weimer, 2001).

63

Considerações finais

O objetivo deste trabalho foi desenvolver os fundamentos matemáticos de ferramentas
gráficas essenciais: curvas e superfícies de Bézier, B-spline, NURBS e de subdivisão. O
resultado constitui um guia conciso para estudos futuros que busquem aprofundar-se
na construção de ferramentas de design gráfico, especialmente em sua fundamentação
matemática.

Embora o trabalho tenha abordado as principais estruturas de representação geométrica
e algumas de suas aplicações, há diversas áreas adajcentes que merecem exploração. Em
representações de malhas, destacam-se as malhas implícitas, utilizadas para simulações de
fluidos. No campo das representações não-uniformes, existem extensões das superfícies
NURBS para topologias mais flexívies (as "junções em T"comentadas). Além disso, é possível
explorar a implementação computacional dos algoritmos estudados.

Espera-se que este trabalho não sirva apenas como base teórica para futuros estu-
dos, mas também inspire novas reflexões na área da matemática da computação gráfica,
incentivando o desenvolvimento de abordagens inovadoras nesse campo multidisciplinar.

65

Referências

[Berg et al. 2008] Mark de Berg, Otfried Cheong, Marc van Kreveld e Mark Over-
mars. Computational Geometry: Algorithms and Applications. 3rd ed. Santa Clara,
CA, USA: Springer-Verlag TELOS, 2008. isbn: 3540779736 (citado na pg. 3).

[Catmull e Clark 1998] E. Catmull e J. Clark. “Recursively generated b-spline sur-
faces on arbitrary topological meshes”. In: Seminal Graphics: Pioneering Efforts
That Shaped the Field, Volume 1. New York, NY, USA: Association for Computing
Machinery, 1998, pp. 183–188. isbn: 158113052X. url: https://doi.org/10.1145/
280811.280992 (citado na pg. 59).

[Chaikin 1974] George Merrill Chaikin. “An algorithm for high-speed curve gene-
ration”. Comput. Graph. Image Process. 3 (1974), pp. 346–349. url: https://api.
semanticscholar.org/CorpusID:2650430 (citado na pg. 37).

[Dyn et al. 1987] Nira Dyn, David Levin e John A. Gregory. “A 4-point interpolatory
subdivision scheme for curve design”. Computer Aided Geometric Design 4.4 (1987),
pp. 257–268. issn: 0167-8396. doi: https://doi.org/10.1016/0167-8396(87)90001-X.
url: https://www.sciencedirect.com/science/article/pii/016783968790001X (citado
na pg. 39).

[Farin 2001] Gerald Farin. Curves and surfaces for CAGD: a practical guide. 5th. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. isbn: 1558607374
(citado nas pgs. 3, 6, 11, 41).

[Lane e Riesenfeld 1980] Jeffrey M. Lane e Richard F. Riesenfeld. “A theoretical
development for the computer generation and display of piecewise polynomial
surfaces”. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-2.1
(1980), pp. 35–46. doi: 10.1109/TPAMI.1980.4766968 (citado na pg. 38).

[Piegl e Tiller 1997] Les Piegl e Wayne Tiller. The NURBS book (2nd ed.) Berlin,
Heidelberg: Springer-Verlag, 1997. isbn: 3540615458 (citado na pg. 11).

[Pottmann et al. 2015] Helmut Pottmann, Michael Eigensatz, Amir Vaxman e Johan-
nes Wallner. “Architectural geometry”. Comput. Graph. 47.C (abr. de 2015),
pp. 145–164. issn: 0097-8493. doi: 10 . 1016 / j . cag . 2014 . 11 . 002. url: https :
//doi.org/10.1016/j.cag.2014.11.002 (citado nas pgs. 11, 41, 59).

https://doi.org/10.1145/280811.280992
https://doi.org/10.1145/280811.280992
https://api.semanticscholar.org/CorpusID:2650430
https://api.semanticscholar.org/CorpusID:2650430
https://doi.org/https://doi.org/10.1016/0167-8396(87)90001-X
https://www.sciencedirect.com/science/article/pii/016783968790001X
https://doi.org/10.1109/TPAMI.1980.4766968
https://doi.org/10.1016/j.cag.2014.11.002
https://doi.org/10.1016/j.cag.2014.11.002
https://doi.org/10.1016/j.cag.2014.11.002

66

REFERÊNCIAS

[Prautzsch et al. 2002] Hartmut Prautzsch, Wolfgang Boehm e Marco Paluszny.
Bezier and B-Spline Techniques. Berlin, Heidelberg: Springer-Verlag, 2002. isbn:
3540437614 (citado nas pgs. 3, 11).

[Warren e Weimer 2001] Joe Warren e Henrik Weimer. Subdivision Methods for Ge-
ometric Design: A Constructive Approach. 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001. isbn: 1558604464 (citado nas pgs. 40, 59, 61).

	Introdução
	Conceitos e Notações
	Pontos e vetores
	Combinação convexa e fecho convexo
	Transformações afins
	Interpolação linear
	Interpolação linear por partes

	Polinômios de Bernstein
	Splines
	Forma polar do polinômio
	Transformações projetivas

	Curvas de forma livre
	Curvas de Bézier
	Parábolas
	Algoritmo de Casteljau
	Propriedades da curva de Bézier
	Limitações de curvas de Bézier
	Composição de curvas de Bézier

	Curvas B-Spline
	Motivação pelos Splines
	Definição recursiva das funções B-spline
	O algoritmo de de Boor
	Derivadas e suavidade

	Definição das curvas B-spline
	Forma de Bézier das curvas B-spline
	Propriedades da curva B-spline
	Limitações da curva B-spline

	Curvas NURBS
	Motivação: Cônicas como quadráticas racionais
	Motivação: Curvas de Bézier racionais
	Definição da curva NURBS
	Cônicas como caso especial de curvas NURBS
	Propriedades da curva NURBS

	Curvas de Subdivisão
	Algoritmo de Chaikin
	Algoritmo de Lane-Riesenfeld
	Esquema de quatro pontos

	Superfícies de forma livre
	Superfícies de Bézier
	Interpolação bilinear
	Algortimo de Casteljau
	Produto tensorial
	Derivadas das Superfícies de Bézier
	Propriedades das Superfícies de Bézier
	Composição de superfícies de Bézier

	Superfícies B-spline
	Superfícies NURBS
	Malhas poligonais (ou Meshes)
	Geometria e conectividade
	Malhas quadrilaterais (quads)
	Malhas triangulares
	Refinamento das malhas
	Redução das malhas
	Estética e relaxamento das malhas

	Superfícies de subdivisão
	Motivação
	Superfície B-spline quadrática por subdivisão
	Esquema de subdivisão de Doo-Sabin e Catmull-Clark

	Considerações finais
	Referências

