UNIVERSIDADE DE SA0 PAuLo
INSTITUTO DE MATEMATICA E ESTATISTICA
BACHARELADO EM MATEMATICA APLICADA

Matematica por tras da arte computacional

Uma visdo geral da matematica envolvida
na criacao de ferramentas de design e
modelagem 3D

Rebeca Mariana Nascimento Yamaoka

MONOGRAFIA FINAL

TRABALHO DE
FORMATURA SUPERVISIONADO

Supervisor:  Eduardo Colli

S30 Paulo
2025



O conteudo deste trabalho é publicado sob a licengca CC BY 4.0

(Creative Commons Attribution 4.0 International License)


https://creativecommons.org/licenses/by/4.0/

"A arte desafia a tecnologia, e a tecnologia inspira a arte".
- Andrew Stanton (Diretor de "Procurando Nemo")

"O processo de criagdo é, em si, a recompensa’.

- Hayao Miyazaki (Co-fundador do Studio Ghibli)






Agradecimentos

"Entdo, o que vocé acha que vai fazer? Como vai gastar sua vida?"

— Jerry, Soul: Uma Aventura com Alma (2020, Disney/Pixar)

"Nao sei ao certo... Mas sei que... Vou viver cada minuto dela".

— Joe, Soul: Uma Aventura com Alma (2020, Disney/Pixar)

Primeiramente, queria agradecer meus pais pelo apoio e amor incondicional. Seja na
minha paixao por arte, nos meus estudos da matematica ou qualquer outro interesse que
eu tivesse vocés sempre me apoiaram por completo. Eu amo vocés e muito obrigada por
absolutamente tudo que vocés sempre me proporcionaram. Nao ha palavras para descrever

o quanto vocés significam para mim.

Segundo, queria agradecer minha amiga Kakazita. Obrigada por sempre estar ao meu
lado e por ser essa pessoa incrivel. Eu te adoro e quero sempre compartilhar mais aventuras

com voceé.

Por fim, quero agradecer meu orientador Prof. Colli. Agradeco por ter aceitado me
mentorar nesse trabalho e por ter me apoiado na pesquisa de um topico que junta duas

areas pelas quais eu tenho muito carinho.






Resumo

Rebeca Mariana Nascimento Yamaoka. Matematica por tras da arte computacional:
Uma visdo geral da matematica envolvida na criacio de ferramentas de design
e modelagem 3D. Monografia (Bacharelado). Instituto de Matematica e Estatistica,

Universidade de Sao Paulo, Sao Paulo, 2025.

A computacio grafica é uma area da informatica em constante evolucio, impulsionada pela necessidade
de solucionar novos desafios em diversos campos, como entretenimento, medicina ou simulacdes cientificas.
Para acompanhar essas demandas, a matematica que fundamenta suas técnicas também se desenvolveu,
tornando-se mais eficaz e sofisticada. Este trabalho busca estudar as ferramentas matemaéticas essenciais
utilizadas na area de forma acessivel. Assim, este texto serve como um guia introdutério para estudantes e

profissionais que desejam entender a base teérica por tras da computagio grafica moderna.

Palavras-chave: Computacio grafica. Curvas de Bézier. Superficies de Bézier. B-spline. NURBS. Subdivisdo

de superficies. Modelagem geométrica.






Abstract

Rebeca Mariana Nascimento Yamaoka. The Mathematics Behind Computational Art:
An overview of the mathematics behind 3D modeling and design tools. Capstone
Project Report (Bachelor). Institute of Mathematics and Statistics, University of Sdo
Paulo, Sao Paulo, 2025.

Computer graphics is a continuously evolving field of computing, driven by the need to address new
challenges in diverse areas such as entertainment, medicine, and scientific simulations. To keep up with
these demands, the mathematical foundations underlying its techniques have also advanced, becoming more
efficient and sophisticated. This work aims to study the essential mathematical tools used in the field in an
accessible manner. Thus, this text serves as an introductory guide for students and professionals seeking to

understand the theoretical foundations behind modern computer graphics.

Keywords: Computer graphics. Bézier curves. Bézier surfaces. NURBS. B-splines. Subdivision surfaces.

Geometric modeling.
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Introducao

A computacio grafica é a area da informatica destinada a geragdo, a manipulacgéo e
a exibicdo de imagens ou videos digitais. Capaz de representar dados e informacoes, ou
ser por si s6 uma forma de arte, essa parte da computagao possui inimeras aplicacdes em
diferentes areas. Na propria informatica, utilizada ao produzir interfaces graficas para sites
da Internet, aplicativos e outros softwares. Além disso, ela pode ser aplicada na industria de
entretenimento (animacdes e jogos), arquitetura, desgin, publicidade, engenharia, pesquisas
cientificas (simulagdes e experimentos), medicina, entre outras.

O consenso entre pesquisadores é que a origem da computacao grafica foi dada em
1951, quando Jay Forrester e Robert Everett, ambos do MIT (Instituto de Tecnologia de
Massachusetts), desenvolveram o "Whirlwind I"(furacao), o primeiro computador com
recursos graficos para processar dados numéricos e projetar imagens em televisdes ou
monitores comuns. Alguns anos depois, o “descendente direto” do Whirlwind I, o sistema
SAGE (Semi-Automatic Ground Equipment) do MIT foi inventado. Esse sistema de monito-
ramento e controle de voos usava graficos vetoriais simples para exibir imagens de radares
e se tornou parte essencial do sistema de defesa antimisseis dos Estados Unidos.

Em 1963, Dr. Ivan Sutherland, pioneiro da interacio homem-computador (utilizacdo
acessivel dos computadores pelos humanos), desenvolveu em sua tese o programa Sketchpad
(ou Robot Draftsman). Ele foi o primeiro programa a utilizar interface grafica do usuario
(acronimo GUI, do inglés graphical user interface). As imagens podiam ser desenhadas
na tela do computador usando uma caneta 6ptica (dispositivo de entrada de computador
no formato de um bastao sensivel a luz). Ele é considerado o pioneiro dos sistemas CAD
(Computer-Aided Design ou Desenho Assistido por Computador).

A partir dos anos 70, as curvas e superficies de Bézier, B-spline, NURBS e subdivisdo
foram uma a uma adotadas em softwares CAD, Maya, Adobe Photoshop, entre outros.
Essas ferramentas matematicas serdo o tema principal abordado nesse trabalho. O objetivo
€ apresentar uma visao geral dos conceitos e métodos matematicos envolvidos na criacdo
de ferramentas para computagao grafica 2D e 3D.

Para melhor compreensdo da matematica desenvolvida, o trabalho esta organizado em
12 capitulos. O primeiro deles ¢ um resumo de conceitos e notacdes que serdo utilizadas
ao longo das explicagdes. Do segundo capitulo até o sexto, o trabalho abordara as curvas
em geral e, em seguida, os casos mais utilizados: curvas de Bézier, B-splines, NURBS e
curvas de subdivisdo. Analogamente as curvas, os capitulos sete até dez abordarao os casos
gerais de superficies de Bézier, Bspline e NURBS. O capitulo onze explica alguns cuidados
e convencdes usadas na superficies de subdivisao, que sdo exploradas no capitulo doze.






Capitulo 1

Conceitos e Notacoes

Os conceitos e notacdes usadas sdo dos livros Curves and Surfaces for CAGD (FARIN,
2001), Computational Geometry: Algorithms and Applications (BERG et al., 2008) e Bézier
and B-Spline Techniques (PrRAUTZSCH et al., 2002).

1.1 Pontos e vetores

Os pontos serdo denotados como elementos do espacgo euclidiano (espaco vetorial
real de dimensao finita munido de produto interno) tridimensional, E*, e letras mints-
culas, como

a = (ay, as, as).

Os vetores serdo denotados como elementos do espago vetorial R* e letras minusculas.
Para cada dois pontos a e b, ha um unico vetor v tal que

v=b-—a; a,beFveR’

Por outro lado, dado um vetor v, ha um nimero infinito de pares a, b tais que v = b—a. Dado
um vetor qualquer w, a mudanga do ponto a para o ponto a + w é chamada translacao.
Ou seja, vetores sdo invariantes por translagdo, enquanto pontos nao sao.

Elementos do espago E* podem ser subtraidos um dos outros, criando vetores, mas
ndo somados (essa operacdo nio esta definida para pontos, mas sim para vetores). A
operagdo mais proxima da soma é a combinacao baricéntrica (ou combinacgéo afim),
uma combinacdo linear com pesos somando um:

n
b:ZanJ, bj€E3, (Z1+"'+an:1.

Jj=0
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Reescrevendo como soma de ponto e vetor:

n
b=bo+ Y. a(b;— by).
j=0
Um caso importante dessas combinacdes é o da combinacao convexa.

1.2 Combinacao convexa e fecho convexo

O fecho convexo de um conjunto finito de pontos é o menor conjunto convexo que
contém todos os pontos. Equivalentemente, é a interseccio de todos os conjuntos convexos
que contém todos os pontos, onde um conjunto convexo ¢ tal que, para quaisquer dois
pontos dele, a reta que os conecta também esta contida no conjunto.

No contexto do trabalho, que se restringe a dimensoes 2 e 3, o fecho convexo de um
conjunto finito de pontos corresponde a:

« Um poligono convexo em R* (degenerado em um segmento de reta, se os pontos
forem colineares).

« Um poliedro convexo em R* (degenerado em um poligono plano, se os pontos
forem coplanares).

A combinacao convexa é uma combinacdo baricéntrica, mas além dos pesos usados
somarem um, estes sdo nao negativos. Toda combinagio convexa de pontos esta sempre
contida no fecho convexo destes pontos.

1.3 Transformacoes afins

Baseando-se na nocdo de combinacéo baricéntrica, uma transformacdo ¢, que mapeia
[E* nele mesmo, é chamada de transformacéo afim (ou mapeamento afim) se ¢é invariante
em relacdo a combinacdo baricéntrica. Ou seja, se

— . _ 3
X = Zajaj, Zaj—l,x,ajEIEl

e ¢ é uma transformacédo afim, ¢ : E* — E?, entdo

$(x) =Y. a;d(a)): $(x). P(a)) € E*.

A interpretacdo é que a expressdo x = ), a;a; especifica como os pesos devem ser dis-
tribuidos nos pontos a; para que sua média seja x e essa relacdo ainda ¢é valida apds a
aplicacdo da transformacao afim.

Dado um sistema de coordenadas e um ponto x = (x;, X3, x3) € E°, uma transformagéo
afim qualquer pode ser representada pela forma

¢(x) = Ax + v,



1.4 | INTERPOLACAO LINEAR

onde A é uma matriz é 3 x 3 e o v é um vetor do R3.

1.4 Interpolacio linear

Sejam a, b dois pontos distintos em E*. O conjunto de todos os ponto x € E* da forma
x=x(t)=(1-ta+tbh; teR

¢ chamada de reta que passa por a e b. Quaisquer trés ou mais pontos numa mesma reta
sao chamados de colineares. Para t = 0, a reta passa pelo ponto a e se t = 1, ela passa pelo
ponto b. Para 0 < t < 1, o ponto x passeia sobre reta conectando a a b.

A interpolagdo linear é invariante em relacdo as transformacdes afins: se ¢ é uma
trasformacio afim de E® nele mesmo e x é dado como anteriormente, entio

$(x) = $((1 = Da + tb) = (1 - H)¢(a) + t$(b).

Além disso, a interpolacdo linear é em si uma transformacao afim dos reais na reta
em E* dado t € R,

t:Zajaj; Zajzl,aje]R,

entao
x(t) =1 —-ta+tb=0-) aja;)a+ ), aab
x(aj))=1—-a;)a+a;b

= Y, aix(a;) =Q a;— Y aja;)a+ Y aja;b = x(t).

A interpolacao linear também esta relacionada com coordenadas baricéntricas. Dados
a,x e b trés pontos colineares em E’ tais que

x=aa+pb; a+p=1,

entdo « e f sdo chamadas de coordenadas baricéntricas de x em relacdoa ae b.

A conexio entre coordenadas baricéntricas e combinacdes baricéntricas é dada ao usar
a =1—tef =t Isso mostra que as coordenadas baricéntricas podem ser negativas,
bastando tomar t ¢ [0,1].

Para quaisquer trés pontos colineares a, b, c, as coordenadas baricéntricas de b em
relacdo a a e ¢ sdo dadas por

_ voly(b, c)
~ voly(a,c)’
_ voly(a,b)
~ voly(a, ¢)’

onde vol; denota o volume unidimensional, ou seja, a distancia entre os dois pontos.
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A razdo simples de trés pontos colineares a, b e c é definida por

voly(a, b)

tio(a, b, c) = )
ratio(a, b, c) vol.(a.0)

mas a razdo que sera usada é a razdo simples de Farin do livro Curves and Surfaces for
CAGD (Farin, 2001),

voly(a, b)

ratiof(a, b, C) = m
1 b

Se a e ff forem as coordenadas baricéntricas de b em relacdo a a e c, entdo

ratios(a, b, c) = g.

As coordenadas baricéntricas de um ponto ndo mudam em relagio as transformacgdes
afins e o quociente também néo. Assim, dada ¢ uma transformacéo afim,

ratiof($(a), $(b). $(c)) = ©

0['

Transformagdes afins também preservam razdes simples.

1.4.1 Interpolacao linear por partes

Dados by, ..., b, € E* formando um poligono B. Esse poligono consiste em uma sequén-
cia de segmentos de retas, cada uma interpolando os pares de pontos b;, b;,; e é chamado de
interpolante linear por partes dos pontos b;. A interpolacéo linear por partes é invariante
em relacao a transformacoes afins.

1.5 Polinomios de Bernstein

Os polinémios de Bernstein sio polindmios da forma

B(t) = <7) t'(1—1)",

onde os coeficientes binomiais sdo dados por
n! .
n _ | mon se0<i<n
i 0, caso contrario.

Uma importante propriedade desses polindmios é que eles satisfazem a recursdo

BI(t) = (1 - DBI'(8) + 1B} (1)
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com
Bi(t)=1

Bj(t) = 0 para j ¢ {0, -, n}.

Basta observar que

BI(1) = (’Z) £ - o

= (n B 1)#’(1 )"+ (n a 1)t"(l — )
I 1—1

= (1 - D)B'(1) + tBI (1)

Outra propriedade da forma polindmios de Bernstein é a particdo da unidade:

Zn: Bi(t) = 1.

Esse fato é provado com a ajuda do Binomio de Newton:

n

1=[t+-D"=) (’;)m _ oy = ZH:B;’(t).

Jj=0

1.6 Splines

Uma fungao spline é uma funcéo polinomial por partes, ou seja, o dominio da funcéo
pode ser particionado em intervalos cuja unido é o dominio inteiro e em cada um desses
intervalos a funcéo é descrita por um polindmio. Os segmentos polinomiais podem ter graus
diferentes, mas sao incomuns em aplicagdes praticas e ndo serdo abordados nesse trabalho.

Definindo matematicamente, dada uma curva polinomial s, com s : [a,b] > R,em
nos, a = U, Uy, , Up—1, Uy = b , onde u; < u;y, para todo i. Os nos sao os valores de ¢
tais que s(t) corresponde a juncao dos segmentos polinomiais. A curva s é chamada de
spline de grau n, se s(t) é n — r vezes diferenciavel em qualquer né de multiplicidade r
(um noé u;,, tem multiplicidade r se u; < u;y; = - = Uiy, < Uiyry1) € S(¢) é um polindémio
de grau < n em cada intervalo [u;, u;y1], parai = 0,--,m — 1.

E comum se referir ao spline de grau n como spline de ordem n + 1.

1.7 Forma polar do polinomio

Dado um polinémio p(t) de grau n,

p(t) =) at!,
i=0



1 | CONCEITOS E NOTACOES

sua forma polar P(ay,..., a,) é a Gnica funcao que:
+ é multiafim: afim em cada variavel q;,
« é simétrica: a ordem das variaveis nao importa (P(u,v) = P(v, u)),
« recupera o polinémio na diagonal: P(t,...,t) = p(t),

+ encontra as derivadas de p: a r-ésima derivada de p é dada por

pO(t) = ———[P(t,.. 1) =P(t,...,t,0,...,0)].

(n— )

A formula nesse caso é dada por
n Si
P(ay,...,a,) = Z x5

onde S;, soma simétrica dos produtos q; ... a;, é dada por

Si = Z Ak, Ay - Ak;-

1<k <ky<--<ki<n

Outra propriedade importante da forma polar é que

P'(ug, ..., ty) = ——[P(b, ty, .., ) — P(a, thg, ..., )]

b —da | — —_—
n—1 n—1
= n[P(1, uy, ..., u,) — P(0, uy, ..., u,)],
[ [—
n—1 n—1

onde P’ é a forma polar do polinémio p’(t) e de forma geral,

n!
POt .., n)——[P(l oL U un) = PO, 0, Uy, o, )],

( — r)' —_—— —— —— —
r n—r r n—r

com P forma polar do polinémio p(t).

1.8 Transformacdes projetivas

Dado um plano P (plano de imagem) e um ponto o (centro ou origem da projecio) em
E3. Um ponto p pode ser projetado em P através de o, ao achar a interseccio p entre a
reta que conecta o a p e o plano P. Para a projecdo estar bem definida, é necessario que
o ¢ P. Qualquer ponto de E* pode ser projetado em P dessa maneira.

Em particular, é possivel projetar uma linha L no plano P. A projecido ndo é uma
transformacéo afim, a razdo entre os pontos correspondentes de L e sua proje¢do L’ ndo
sdo os mesmo. No entanto, a projecio preserva a razao cruzada (ou cross ratio), dados
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quatro pontos colineares a, b, ¢ e d, ela é dada por

voli(a, c)voly(b,d)

(@bse.d) = o, dwoli(b. )

Ser4 utilizada uma defini¢do particular equivalente,

ratios(a, b, d)

cr(a,b,c,d) = : .
( ) ratios(a, c, d)
Essa convencéo tem a vantagem de ser simétrica: cr(a, b, ¢, d) = cr(d, c, b, a).

A razdo cruzada é invariante em relagio a projecdes, teorema da razéo cruzada: 4, b, ¢, d
dependem somente dos angulos «, f e y (ver figura 1.1).

Figura 1.1: Razdo cruzada: a razdo cruzada, de Farin, de a, b, c,d e de a, b,¢d dependem somente
dos angulos a,f e y.

Denotando a area do tridngulo de vértices p, g, r por A(p, g, r), é possivel demonstrar
que

) Aa, b,o0
ratiog(a, b, c) = A(b—co;

Entao

A(a, b,0)/A(b,d,o0)

A(a, c,0)/A(c,d, 0)

_ hbsen(a)/L1sen(B + y)
 Lisen(a + B)/lslisen(y)
_ sen(a)/sen(f + y)

~ sen(a + B)/sen(y)’

cr(a,b,c,d) =
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Logo, a razdo s6 depende dos angulos em o. Ou seja,

cr(a, b, c,d) = cr(a, l;, c, c?)

Voltando para as retas L e L', estas podem ser interpretadas como copias da reta real.
Entéo a projecdo de L em L’ pode ser vista como uma transforma¢do que mapeia a reta
real nela mesma. Com essa definicdo, a projecdo define uma transformacao projetiva
da reta real nela mesma.

Uma importante observacdo sobre as tranformagoes projetivas da reta real nela mesma
¢ que elas sao definidas por trés pontos de pré-imagem e trés pontos de imagem. Dados
trés numeros a, b, ¢ de pré-imagem e trés nimeros a, I;,é de imagem, a imagem t do
ponto t é dada por

cr(a, b,t,c) = cr(a, l;, t, ).
Sendop=(b—a)/(c—b)ep = (l; —a)/(¢c— l;), isso é equivalente a

A

p _ p
(t—a)c—1t) (t—a)e—1)

Resolvendo para f :

(t—a)pc+ (c—t)ap

DT —a)

Com uma escolha conveniente para os pontos de imagem e pré-imagem, a = a =
0,c = ¢ = 1. A equagdo se torna

tp

] —
p(1—1t)+ pt



Curvas de forma livre

Diferentemente das construcdes geométricas usando segmentos de circulos, conicas e
retas, curvas de forma livre (freeform curves) suaves, modeladas a partir de um pequeno
numero de pontos de controle, sdo ferramentas mais recentes.

Curvas de Bézier estdo entre as curvas de forma livre mais usadas. Este capitulo abordara
sua construcdo, baseada no algoritmo de Casteljau, e algumas de suas propriedades. Para
design de curvas mais complexas, ha a necessidade de curvas que oferecam controle da
forma local e as curvas B-spline fazem esse papel. As curvas NURBS (do inglés Non-
Uniform Rational B-Splines, ou B-splines racionais nao uniformes) possuem mais uma
possibilidade de ajustes finos ao atribuir pesos a cada ponto de controle. Elas sao usadas
para criar as curvas de forma livre planares ou espaciais mais complexas, assim como
todos os tipos de conicas.

As curvas Bézier, B-spline e NURBS sao definidas a partir de um pequeno numero de
pontos de controle conectados em um poligono de controle. A partir desses pontos, a
curva suave € criada automaticamente por um algoritmo geométrico e ao mudar o poligono
de controle, a curva resultante também é modificada.

Héa duas maneiras principais ao comecar o design de curvas iterativas com pontos
de controle:

« Interpolagdo: definir uma sequéncia ordenada de pontos (e possivelmente também
suas direcdes) e criar uma curva suave que passe exatamente por eles.

+ Aproximacao: definir a curva preliminar (ou o rascunho da curva) com um poligono
de controle e refina-la até criar uma curva suave que siga a mesma forma. Esse caso
sera visto em curvas de subdivisdo (Capitulo 5).

A abordagem utilizada para a compreensao das curvas é a dos livros Curves and Surfaces
for CAGD: A Practical Guide (FARIN, 2001) (curvas de Bézier, NURBS), Bézier and B-Spline
Technique (PrAauUTZSCH et al., 2002) (curvas B-spline) e The NURBS Book (P1EGL e TILLER,
1997) (curvas NURBS). As motivacdes e problemas abordados sdo oferecidos pelo livro
Architectural geometry (POTTMANN et al., 2015).
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Capitulo 2

Curvas de Bézier

A base das curvas de Bézier foi criada em 1957, quando Paul de Casteljau, enquanto
travalhava na Citroén, desenvolveu o algoritmo de Casteljau para o calculo de uma familia
de curvas que seriam nomeadas e popularizadas por Pierre Etienne Bézier. Em 1962, o
funcionario francés da Renault desenvolveu a notagio do algortimo, usando nés com alcas
para controle da forma das curvas, e publicou o primeiro trabalho sobre as curvas de Bézier.

Essas curvas, podendo ser intuitivamente manipuladas por usuarios por meio de
softwares, foram adotadas como curvas padrao da linguagem PostScript e, mais tarde, por
programas vetoriais como Adobe Illustrator, CorelDRAW e Inkscape. Grande parte das
fontes de contorno sdo definidas com curvas de Bézier compostas (Segdo 2.5).

A curva de Bézier é uma curva polinomial expressa como uma interpolagio linear dos
pontos de controle. Essas curvas serdo utilizadas para a construcio de superficies de Bézier
que serdo abordadas no capitulo 6 (também desenvolvida por Pierre Bézier).

2.1 Parabolas

Comecando pela construcédo da geracdo de uma parabola, sua generalizacdo levara as
curvas de Bézier. Dados os pontos quaisquer by, b, b, € E* e t € R, constroem-se as retas

by(t) = (1 — )by + tb,
bi(t) = (1 —t)b, + th,

e, a partir destas,
bi(t) = (1 = )by (t) + tbi(1).
Substituindo as duas primeiras equagdes na ultima, obtém-se

bi(t) = (1 — t)*bo + 2t(1 — t)by + t2D,.

13
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Essa é uma expresdo quadratica em relacdo a t e bZ(t) = b?(t) traca uma parabola quando
t varia em (—oo, +00),

A construcao consiste na repeticdo do método de interpolacdo linear (2.1). Para t entre
0 e 1, b?(t) esta dentro do tridAngulo formado pelos trés pontos by, by, by, em particular,
bz(O) = bo € bz(l) = bz.

bo

Figura 2.1: Parabola: construgdo pela repeticdo de interpolagoes lineares.

Inspecionando as razdes entre os comprimentos dos segmentos,

t
ratios(by, by, by) = ratios(b,, by, b,) = ratios(b,, by, b)) = 7

Como consequéncia de ser uma interpolacao linear por partes (se¢do 1.4), a construgido
da parabola é invariante em relagio a transformacdes afins.

2.2 Algoritmo de Casteljau
A construcao vista anteriormente para a parabola pode ser generalizada para gerar
uma curva polinomial arbitraria de grau n.

Algoritmo de Casteljau: Dados by, by, -+, b, € E* e t € R,

b(t) = (1= 1)b/7 (&) + tbi (1) {r — Lo
i =

0,-,n—r

e b)(t) = b;. Assim, bj'(t) é o ponto com pardmetro ¢ na curva de Bézier b", ou seja

br(t) = bi(t).
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O poligono P formado pelos pontos by, by, -+, b, é chamado de poligono de controle
da curva b". Similarmente, os vértices do poligono b; sio chamados pontos de controle. A
curva b"(t) é a aproximagao de Bernstein-Bézier dos pontos de controle, uma terminologia
da teoria de aproximacio (Se¢do 1.5).

Os coeficientes b/(t) sdo escritos em forma de cascata (tridngulo) no Esquema de
Casteljau.

by
by b
b, bl b

by bl b2 b

bo b, bi, .. b

b, b,ll_1 b,?;_z bl"_1 b,
Obtendo a curva b" de Bézier completa, dependendo somente dos pontos by, by, -, b,
e do parametro t: como parar = 1,...,nei =0,...,n—r

b/ (t) = (1= 1)b/ (1) + tb/ (1)
=1 -t)b+r(1—0) by + .. +r(1 = O by + Vb, =

~ (r k r—k
= t°(1 =) “bipr.
> (x)

Entao,

b(1) = bi(t) = (1 — DBI(0) + b (1)
=(1-1) nz_: (n ; 1) tk(l - t)n_l_kbk nz_: (n ; l) tk(l - t)n_l_kak
k=0 k=0
= (n; 1) (1 — £)" by + ; (n ; 1) (1 = ) Kby =
= 0 (n; 1) tk(l . t)”*kbk + ; (Z : 1) tk(1 - t)"*kbk =

n—1 n—1 kiq ok ny
(k >+(k_1)}t(1 D" b+ t"b, =

1Ay n—i
=y <i>t(1—t) b;

i=0

+1

e
Il

n—1
=(1-1"bo+ Y,
k=1

Usando a notacao dos polindmios de Bernstein,

b"(t) = zn: b;B!'(1).

15
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2.3 Propriedades da curva de Bézier

O algoritmo de Casteljau possibilita a inferéncia de importantes propriedades das
curvas de Bézier.

Invariancia afim: transformacdes fins (Secdo 1.3) sdo importantes ferramentas para
sistemas CAD, usadas em reposicionamento ou redimensionamento de objetos, por exem-
plo. Curvas de Bézier sdo invariantes em relacdo a transformacgdes afim, ou seja, ao
computar os pontos bJ(t) e aplicar uma transformacgio afim nesses pontos obtém-se
o mesmo resultado que aplicar a essa transformacio no poligono de controle e utilizar o
algoritmo de Casteljau no poligono transformado. A invariancia afim é uma consequéncia
direta do algoritmo de Casteljau, uma vez que este é composto por uma sequéncia de
interpolacdes lineares (sequéncia de transformacdes afins) e estas sdo invariantes em
relacdo a transformacdes afins.

« Exemplo pratico da propriedade: uma curva ctbica b* avaliada em 500 pontos,
rotacionada e plotada. Uma possibilidade seria computar todos os 500 pontos, depois
rotacionar cada um deles (500 aplica¢des de rotacdo) e plotar. Outra possibilidade
seria rotacionar somente os 4 pontos de controle, avaliar os 500 pontos e plota-los
(somente 4 aplicacdes de rotacio).

Invariancia em relacao a transformacao afim de parametros: a definicao das
curvas de Bézier no intervalo [0, 1] é uma questdo de conveniéncia: o algoritmo nao depende
do intervalo em si e sim das razdes envolvidas. E possivel pensar na curva definida num
intervalo [a, b] CR, t = (u—a)/(b — a) e o algoritmo segue da mesma forma. O algoritmo
generalizado de Casteljau é dado pela forma

b—u, _ u—a,
bl-r(u) = mbir l(u) + mbi+ll(u).

No caso da forma de polindmios de Bernstein:

n i _ n i U—a
;biBi(t)— ;biBi (b_a).

A passagem do intervalo [0, 1] para [a, b] é um mapeamento afim e, assim, as curvas de
Bézier sdo invariantes em relagio a transformacéo afim de seu parametro.

Propriedade do fecho convexo: para t € [0, 1], a curva b"(¢) esta contida no fecho
convexo (Secdo 1.2) dos pontos de controle (do poligono de controle). Isso ocorre pois
cada ponto intermediario b/ é obtido por uma combinag¢io convexa dos anteriores, b/~ e
b/;!. Em nenhum passo do algoritmo de Casteljau sdo produzidos pontos fora do fecho
convexo de b;.

Pontos extremos da interpolagao: as curvas de Bézier passam pelos pontos b"(0) =
by e b"(1) = b,.

Simetria: as curvas de Bézier geradas a partir dos pontos by, by, -+, b, € by, by—1, -+, by
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sdo iguais. Como
BI(t) = ('.1)#'(1 — 0= < " .>t“(1 — =B (1)
i n—i

Entao,

zn: b.B'(t) = Z by iB'(1 - 1).
i=0 i=0

Os polinémios de Bernstein sdo simétricos em relacdoa te 1 — .

Derivada primeira da curva de Bézier: Dada uma curva de Bézier b" de grau n,

I n\ . .
b"(t) = H(1—1)""b; =
=3 (})a-o
n—1 n
=(1-1)"by + t'(1—t)""'b; + t"b,,
a-obs 5 (7)ea-o
sua primeira derivada é dada por

b(t)=n(1—1)""b + nz_: (IZ) [it7'(1 — )" = (n— ) — )b + nt" b,

Observando que

(n\ _ n! B (n—1) _ (n-—1
’(i) T G-Dn=-) "G-Din—0)r ”(i— 1)

n\  n  n (n—1)!  n n—1
(i)_i!(n—i)!_(n—i)i!(n—i—l)!_(n—i)< i >

n—1

entao

b0 = n(1— "y Y (’I?)ztf—l(l DY (’I?)(n —DE = )"y + " b, =

i=1

n—1 n—1
_ n—1 n—1\ ., n—i n—1Y\; n—i—1
=n(l1-1t) b0+nl§:1<i_1)t (1-1) bi_n;( ; )t(l—t) b+

+nt" b, =

n—2 -1 . . n—1 -1 - -
=n(1—1)""by+n), <n ; )t‘(l — )" b —n Yy, (n ; )t’(l — )i, =
i=0 i=0

n—1
n—1\ . i
:nz( i)m«%vlwm—m
i=0
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ou, usando polinémios de Bernstein,
. n—1
b(1) = n Y (biv — b)BI'(2).
i=0
Usando-se Ab; = b;.; — b;, essa expressdo pode ser reescrita como
. n—1
b(t)=n ) AbBI(D). (2.1)
i=0

Ou seja, a derivada da curva de Bézier também é uma curva de Bézier.

Por outro lado, o algoritmo de Casteljau também constrdi os pontos b '(t) e b '(¢).
Dado ¢ € R, é possivel calcular o vetor b"'(t) — by (1),

n—1 -1 n—1 -1
SRCETECED ) (g TED IS o (i e
k=0 k k=0 k
© [(n-1 k n—k—1
= 2 t"(1—1) (bis1 — bi)
k=0

= b"(£) = n(b~}(£) = by }(1)).

Por ultimo, é possivel observar pela construcdo dessas curvas que os pontos b; e b,_;
controlam as tangentes nos pontos b, e b,, respectivamente.

Subdivisao das curvas de Bézier: dada uma curva de Bézier b" com poligono de
controle by, -+, b,, o algoritmo de Casteljau a subdivide em duas outras curvas de Bézier de
grau n com subpoligonos de controle ¢y, -+, ¢, € dy, -+, d, respectivamente. Dado s € [0, 1],
os novos pontos de controle sdo dados por

¢ = bpj(s), j€O0, -, n,
d;=b; i(s), j€0,,n,
¢, =d, = b"(s).

2.4 Limitacoes de curvas de Bézier

As curvas de Bézier possuem limitacdes que motivarao o estudo das proximas curvas
de forma livre.

Numero de pontos de controle: para curvas mais complexas, existe a necessidade
do aumento do nimero de pontos de controle e, portanto, do grau da curva de Bézier.
No entando, isso pode acabar afastando a forma da curva de Bézier do seu poligono de
controle, efeito mais conhecido como o fenémeno de Runge. Esse fato torna essas curvas
impraticas para design, uma vez que ha pouco controle da forma geral final.
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b1

bz

C1 C3

Co

Figura 2.2: Exemplo: subdivisdo da curva de Bézier com n = 3.

Controle global da curva: os pontos de controle das curvas de Bézier possuem
controle global da curva. Isso significa que ao adicionar um novo ponto de controle ou
ao modificar a posicao de um deles, a curva toda se modifica. No design, em geral, ha a
busca por controle local dos pontos de controle.

2.5 Composicao de curvas de Bézier

Curvas de Bézier de grau baixo, n = 2 ou n = 3, podem ser compostas para gerar
formas que sdo muito complexas para uma Unica curva de Bézier. As curvas sao chamadas
de curvas de Bézier compostas ou splines de Bézier. Essa técnica é utilizada na criacdo
de design de fontes, ou nas proprias ferramentas como a caneta do Adobe Photoshop e
a curva de Bézier do Maya.

Ao juntar as curvas é necessario controlar a suavidade da sua juncao. Sejam by, ---, bs e
bs, -, bs 0s pontos de dois segmentos de curvas ctbicas b> e b2, respectivamente. Como
ambas compartilham do ponto bs, elas duas formam uma curva continua, C°. Porém, se
essa for a Unica exigéncia, sua juncéo pode formar uma quina (ou um ponto angular).

Usando a propriedade das derivadas dos pontos de fronteira (ou extremidades) das
curvas de Bézier, para que haja suavidade no ponto b;, os pontos b,, b; e b, devem ser
colineares. Isso garantira que a reta tangente em b; seja igual em ambas as curvas.

Uma condi¢do mais forte é requerida para os dois segmentos de curva formarem um
curva de classe C' (derivada continua). Como a derivada da curva (mais precisamente, o
comprimento do vetor tangente) depende do dominio da curva, seja b* definida no intervalo
[a,b] e b2 no inetrvalo [b, c]. As derivadas em ambos os segmentos no parametro b sdo
obtidas usando:

3 3
——[bs — by] = ——[by — bs].
—a c—b
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A interpretacido geométrica é que a razdo simples de Farin entre os trés pontos b, b; e
b, é a mesma que a dos parametros a, b e c.

—

t <1

-
)—.—
\r}g
oy
o
S

Al

¢
+<

t <t

Figura 2.4: Composicdo das curvas de Bézier: exemplo C?.

No caso dos softwares como Adobe Photoshop e Maya, as curvas compostas de Bézier
usadas sdo cubicas. Essas sdo intuitivamente criadas e editadas com pontos de ancora-
gem, correspondendo aos pontos de controle extremos, e al¢as desses, fazendo o papel
dos outros dois pontos de controle e, portanto, das tangentes dos pontos extremos. As
alcas (ou controladores) podem ser integradas, para a jungio das curvas ser suave como
anteriormente, ou separadas, para a criacdo de cantos ou quinas.



Capitulo 3

Curvas B-Spline

O conceito das curvas B-spline remonta ao século 19, quando Nikolai Lobachevsky
explorou uma ideia similar na Universidade Estatal de Caza, mas o termo “B-spline” foi
criado por Isaac Jacob Schoenberg em 1978, refletindo a funcdo de ser uma base para
splines (basis spline).

A curva B-spline é uma curva polinomial por partes, ou seja, é a curva resultante
da juncao de uma sequéncia de segmentos de curvas polinomiais de mesmo grau. As
conexdes entre os segmentos (nos) sdo feitas com o maior grau possivel de suavidade
(mesma tangente, curvatura, etc). Por essas caracteristicas, a curva B-spline é mais versatil
que as curvas de Bézier. Essas curvas serdo utilizadas para a construcio de superficies
B-spline que serdo abordadas no capitulo 7.

3.1 Motivacao pelos Splines

Assim como as curvas de Bézier podem representar curvas polinomiais com combi-
nacdes lineares de polindmios de Bernstein, é desejavel que os splines (Secio 1.6) s(t)
possam ser escritos como combinacdes afins de pontos de controle, como

s(t) = ) aN'(1), (3.1)

onde N/"(u) é uma base fun¢des spline com suporte (subconjunto do dominio da funcéo
onde esta é ndo nula) minimo e certas propriedades de continuidade. Essas fun¢des sdo as
chamadas funcdes B-splines (do inglés basis spline) e quando o spline é escrito da forma
(3.1), ele é chamado de curva B-spline.

3.2 Definicao recursiva das funcdes B-spline

Primeiro, é necessario definir as funcdes B-spline. Seja (u;), por simplicidade, uma
sequéncia bi-infinita e estritamente crescente de nds, u; < u;;; para todo i. As funcdes

21
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B-spline N sdo definidas com esses nos pela formula recursiva

1 set€[u;u)

N(8) = .
0 caso contrario
e
N'() = of NI (1) + (1 = o DNIE(B),
onde
n—1 — (t - ui)
l (Uiyn — w)
é o parametro local com respeito ao suporte de N/*"!. Substituindo-o na férmula,
(t ) ( Uitny1 — )
N'(t) = ——N"'(t) + ——————N"7'(¢).
l (u1+n u) (ul+n+1 uz+1) ok

Em caso de nés multiplos, as fun¢des B-splines N/'(t) sdo definidas pela mesma férmula
recursiva e a convencao

Nir_l = Nir_l/(uiw —u)=0 seu = uy,

onde r é a multiplicidade do né.
Pela definicdo acima, as propriedades das funcdes B-spline sao evidentes:
« N/(t) é polinomial por partes de grau n,
+ NP (t) é positiva em (t;, tisni1),
« N"'(t) é zero fora do intervalo[u;, tiyn1],
« N/(t) é continua a direita.

Uma observacao interessante é o caso particular onde u; = - =u, =0e€ U,y = =
Uy, = 1. Pela formula recursiva para NJ',---,N" e t € [0, 1) coincide com a férmula para
polindmios de Bernstein, ou seja,

N"'(t) = B(t) parai=0,--,nete€][0,1).

3.3 O algoritmo de de Boor

O algortimo de de Boor é um uma algoritmo numericamente estavel para avaliacdo
de curvas spline na forma B-spline. Considere a combinacao linear

s(t) = ) ¢INI(1)

de fung¢des B-spline de grau n em uma sequéncia de noés (u;). Como qualquer soma pode
ser convertida para uma soma bi-infinita com auxilio de termos nulos, é assumido, sem
perda de generalidade, que a sequéncia de nds e a soma acima ¢é bi-infinita. Como N/"(t)
tem suporte local, essa soma é finita para qualquer t. Em particular, se t € [u,, uy41),
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entdo s(t) pode ser escrito como
n
s(t) = > c!NM(1).
i=0
Usando a recursio das fungdes B-spline repetidamente e coletando seus termos, é obtido que
n
s(t) = ) Nt
i=0

=Y AN
i=1

n
=), aN(D) = ¢,
i=n

onde ¢/ é dado pela combinacéo afim

J _ Jj—1 Jj—1 _ n—j _ i
d=0Q-a)  +acd ", a=a"" =

Uitnt1—j — Ui
E possivel notar que a € [0, 1] pois t € [u,, u,11), isto é, as combinacdes afins sdo convexas.

Uma importante consequéncia do algoritmo de Boor é que a curva B-spline s(t) em cada
intervalo nodal (intervalo entre n6s) é uma combinacio afim convexa dos n+ 1 coeficientes
consecutivos ¢; = c?. Portanto, se ¢; representa pontos de um espaco afim, entdo s(t)
também é um ponto. Por essa razéo, os ¢; sio chamados de pontos de controle de s(¢).

Pela construcido, também é possivel concluir que
n
Z N'(t) =1, para t € [up, ups1),
i=0
ou seja, as fungdes B-spline formam uma particdo da unidade.

Observacao: para um dado ¢t € R, o algortimo de Boor aplicado, como ja descrito,
para c),..., ¢ ndo computa s(t) em geral, mas uma s,(t) polinomial que coincide com
s(t) no intervalo [u,, Upi1).

Generalizando para t € [u;, u;;), j > n, aplicando o mesmo raciocinio, as fungdes
B-splines N*(t) sdo nao nulas para u; < t < U p4. Assim,
U S Uj e Ujpy S Uiynyy = J—n<i<

e portanto,

s(t) = Ejl ¢ N/(2).

i=j—n
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Entdo todo polinémio de grau n pode ser escrito, em [u;, u;;;), como combinagéo linear
das fungdes B-spline N, (¢),..., N'(¢). Além disso, como as fungdes sdo linearmente
independentes no intervalo e o niimero de coeficientes ndo nulos ¢; é n + 1, igual a
dimensdo do espaco de polindmios nesse intervalo, a combinagao linear ¢ tnica.

Seja Si(a; ... a,) a forma polar (secdo 1.7) de s; (polindmio de grau n no intervalo
[u;, uir1)) que coincide com s(t) no intervalo [u;, u;11). Entdo as formas gerais dos pontos
de controle de s sdo dadas por

¢ = Sj(Uist, ooy Uipn), i =J— 1,00, ]
Para a prova, seja

r_
pi - Sj(uH-l’ ceos Uitn—r, ta [ERN} t)
[

L= (1 - a)ui + AUiin—ri1-
Como S; é multiafim e simétrica, segue

r—1 n—r t—u

r _ r—1 _ _
pi=QAQ-a)p +ap] , a=a" =
Uitn—r+1 — U;

e, em particular,

p? = Si(Uit1, ..., Uirn) € P; = s;(1).

Observagéo 2: no intervalo [u,, u,.,], as func¢des B-spline Nj'(¢), ..., N'(¢) formam uma
base para o espago de todos os polinémios de grau até n.

Observagao 3: os segmentos da curva B-spline s; (polindmio de grau n no intervalo
[u;, u;41)) determinam os pontos de controle ¢;_,, ..., ¢;. Por outro lado, cada ponto ¢, é
determinado por qualquer segmento sy, ..., Skin, iSto €,

¢i = Si(ip1soos Uin) = -+ = Sipn(Uis, oo, Uisn),
onde S;(Ui11, ..., Uiyn) é a forma polar (ou blossom) da s;(t).
Observacao 4: a prova acima mostra que o polindmio simétrico S,(a, ..., a,) pode ser

computado pela generalizagao do algoritmo de Boor. Para isso, basta substituir & = a(a)
na férmula recursiva

a, — u;
ala,) = .
Uipn—re1 — Ui
Se k das n variaveis ay, ..., a, forem noés, entdo somente n — k passos de recursido serao

necessarios para computar S;(ai, ..., a).
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3.3.1 Derivadas e suavidade

A derivada dos segmentos polinomiais s, das curvas B-spline podem ser escritos como
n
-1
sy (1) = Y diNITU(E), t€ [, tar),
i=0

onde os d; podem ser expressos em termos de ¢;. Seja S/ (ay, ..., a,) a forma polar de s/(¢) e
seja a dire¢do A = u;,,—u; dada pelo suporte da funcio B-spline N/"~*(¢). Entdo segue que

di = S;(Um, ey Uipn1)
n
= ZS;(Aa Uit1se-es ui+n—1)
n
=" (o).
Uirn — U;
Como d; ndo depende do intervalo nodal [u,, u,,;), a derivada da curva B-spline s pode
ser escrita para qualquer t € R como

(B = Y, ———VaN"\(0)

i i+n 1

onde V¢; = ¢; — ¢;_; denota a primeira diferenca regressiva (calcula a variacdo em relacéo
ao ponto anterior).

Uma curva B-spline de grau n, s, é continua em todo n6 de multiplicidade n. Dado

uy < a; = - = a, < a, + 1, entdo segue da observacgido 3 que
so(ur) = So(uy, ..., up) = ¢
= Sn(ula cees un)
= sn(un)-

Entdo, se u; é um n6 de multiplicidade r, a (n — r)-ésima derivada de s é continua em u;.

Em outras palavras, a curva B-spline satisfaz o critério de suavidade dos splines.

3.4 Definicao das curvas B-spline

Uma curva B-spline de ordem n + 1 (ou grau n) é definida

« pelo grau n de cada segmento (sempre o mesmo) da curva polinomial,

« pela sequéncia de m + 1 nos (vetor no) ug, uy, =+, Uy, € U; < Usyq,

« pelo poligono de controle cy, ..., c;, com L = m — n — 1, ou seja, m — n pontos de

controle (calculados usando a forma polar se estiver procurando a forma B-spline de
um spline).

25



26

3 | CURVAS B-SPLINE

A curva B-spline é entido definida como

m—n—1

s()= > aN"(®).

i=0

3.5 Forma de Bézier das curvas B-spline

Como essas curvas consistem de uma jun¢ao de segmentos polinomiais, cada um destes
pode ser escrito na forma de curva de Bézier. Dada uma curva B-spline s(t), s;(t) é a
restri¢do da curva para o intervalo I = [u;, u;11] € S; a sua forma polar. Entéo os pontos
de Bézier da curva s;(t) com t € [u;, u;,] sdo dados por

I _ _
by = Si(iy ..o, tp, Upiqy ooy upg), k=0,..., 0.
\ J o v

n—k k

3.6 Propriedades da curva B-spline

Pela construcio vista anteriormente, as propriedades basicas das fun¢des B-spline e
das curvas B-splines podem ser inferidas.

 Fungoes B-spline de grau n com sequéncia de noés que ndo se anulam em nenhum
intervalo nodal sdo linearmente independentes nesse intervalo.

« As funcoes B-spline N, ..., N{' com 0s nos u, ..., Uj+,+1 formam uma base para todos
os splines de grau n com suporte em [uy, U ,+1] € 0S mesmos nos.

+ Similarmente, as fun¢des B-spline N, ..., N/’ nos nos uy, ..., Ug+ns1 restritos ao inter-
valo [u,, ux;;) formam uma base para todos os splines de grau n restritos a0 mesmo
intervalo.

« As fungodes B-spline de grau n formam uma particdo da unidade, isto é,

k
Z N (t) =1, para t € [up, Ujs1).

i=0

+ Uma curva B-spline s(t), t € [uy,, ux,1] de grau n com nds extremos de multiplicidade
n,
(Uo :)ul = =Uy, € Upyp = = uk+n(: uk+n+1)

tem os mesmos pontos extremos e tangentes extremas dos poligono de controle.

+ Os nos extremos uy € aiin1 Nao tém influéncia sobre N nem N’ no intervalo
[un, uk+1]‘

« As funcédo B-spline sdo positivas no interior de seu suporte

N'(t) >0 para t€ (u;, i)
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« As funcgdes B-spline satisfazem a féormula recursiva de Boor, Masnfield e Cox
N'() = o N () + (1= & DN (D),
onde /' = (¢t — u;)/(4i4n — u;) representa o pardmetro local no suporte de N .
« A derivada de uma tnica fun¢do B-spline é dada por

d n n
N t) = ——N"1(p) -

i+n a; Aitn+1 — iyl

N"H(1).

i+1

+ Curvas de Bézier sao casos especiais de curvas B-spline.

As curvas B-spline também mantém propriedades importantes ja vistas nas curvas
de Bézier.

« Invariancia afim: A representagio de splines por B-splines (curvas B-spline) é
invariante em relacao a transformacoes afins.

« Propriedade do fecho convexo: Qualquer segmento s; no intervalo [u;, u;,;) de
grau n de uma curva B-spline esta no fecho convexo dos n + 1 pontos de controle

Cj,n, cees Cj.

No entanto, a conclusdo mais importante é aquela do controle local da curva, ou
seja, a mudanca da posicdo ou adi¢do de pontos de controle a curva s6 altera uma parte
limitada dela.

3.7 Limitacdes da curva B-spline

A motivacao para a continuacgao dos estudo de outras curvas vem de uma limitacdo das
curvas B-spline. Mesmo com a capacidade de criagdo de curvas de forma livre complexas,
as curvas B-spline nio sdo capazes de representar curvas mais simples como circulos,
elipses ou hipérboles com exatiddo. Mais especificamente, das conicas, somente a parabola
¢ um caso especial de curva B-spline (na verdade, é uma curva de Bézier). Essa limitacéo
vem do fato de as curvas B-spline serem polinomiais e as cdnicas citadas serem equacdes
racionais (usam divisdo),

2y
—+ = 1 (elipse, circulo),
a
2 2
x_z _ % = 1 (hipérbole).
a

Todas as curvas conicas podem ser representadas usando func¢des racionais, que sdo
definidas como razdes de polindmios. Na verdade, elas sdo representadas por funcoes
racionais da forma

X(t)

oY)
W) y(t) = —=

x(1) = = Wy

(3.2)
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onde X(t), Y(t) e W(t) sdo polindmios e cada funcido das coordenadas tem o mesmo
denominador.



Capitulo 4

Curvas NURBS

No inicio, NURBS eram utilizadas somente em pacotes de CAD para empresas auto-
motivas e, posteriormente, tornaram-se parte de programas graficos. A interpretacgao das
curvas e superficies NURBS (Capitulo 8) s estiveram disponiveis em workstations em
1989. Em 1993, a primeira NURBS interativa para PCs foi desenvolvida por CAS Berlim,
uma pequena empresa iniciante, em cooperagdo com a Universidade Técnica de Berlim.
Hoje em dia, a tecnologia das NURBS esta presente na maioria dos programas graficos.

Como comentado anteriormente, o acronimo NURBS ¢é a abreviacdo de B-splines
racionais ndo uniformes. No entanto, o uso da expressdo “ndao uniforme” é um pouco
enganadora, uma vez que essas curvas podem ter um vetor né uniforme (distancia entre
nds consecutivos é igual). O termo novo mais importante é o “racional”, ele surge da
caracteristica dessas curvas adicionarem um parametro de peso racional w; aos pontos
de controle. Assim, as curvas NURBS sao generalizagdes das curvas B-spline e das curvas
de Bézier. B-splines sdo curvas NURBS com pesos iguais ou pesos “17, também chamadas
de curvas B-splines puras, simples ou nio racionais.

As conicas podem ser expressadas por curvas NURBS. Ao desenvolver sua matematica,
sera visto que as curvas NURBS em um espag¢o de dimensdo d = 2 ou 3 ndo sdo nada
mais que proje¢des centrais (Secdo 1.8) de curvas B-spline ndo racionais que estao num
espaco de dimensao d + 1.

4.1 Motivaciao: Conicas como quadraticas racionais

Usamos a seguinte definicao de conicas: uma conica em E? é a projecao de uma parabola
de E* em um plano. Seja {z = 1} esse plano. Como o estudo na se¢io sera sobre curvas
planares, é possivel pensar nesse plano como uma copia de E?. Assim, os pontos (x, y, 1)
sdo identificados como (x, y). A proje¢do é caracterizada como

x x/z

v = |y/z|.
z 1
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E possivel notar que o ponto (x, y) é a projecio de uma familia interia de pontos: todo
ponto na linha (wx, wy, w) é projetada em (x, y). Usamos a notac¢do (wx, w) com x € E?
para (wx, wy, w).

Seja ¢(t) € E* um ponto de uma conica. Entdo existem nimeros reais wy, wy, w, €
pontos by, by, b, tais que

WoboB(z)(t) + w; blB%(t) + Wzszg(t)
woBj(£) + wiBi(t) + w, Bi(2)

c(t) = (4.1)

Para provar a afirmacio, seja c(t) € E* com (c(¢), 1)) € E*. Esse ponto é uma projec¢do do
ponto (w(t)c(t), w(t)), que esta na parabola 3D. A componente w(t) desse ponto 3D deve
ser uma funcdo quadratica em ¢ e ela pode ser expressa na forma de Bernstein:

w(t) = woB(1) + wi B (1) + wyB3(1).

Determinado w(t), é possivel escrever

()] _ [e(®) X wiBi (1)
1| | X wB:i1).

O lado esquerdo da equagido denota uma parabola e portanto pode ser reescrito como

Pi| nop _ () X wiBi(t)
w,-] Bi(t) = [ > w;B(t). ]

w(t) [

2

2,

i=0

com pontos p; € E% Logo
2 2
D piBA(1) = (1) Y, wiBk(t),
i=0 i=0

_ PoBY(t) + piBi(t) + p2By(1)
woB§(t) + w1 Bi(t) + w,B5(1)

Com p; = w;b; a prova esta dada.

c(t)

Os pontos b; sdo o poligono de controle da conica c, os valores w; sdo os pesos dos
correspondentes vértices do poligono. O poligono de controle da conica é o poligono de
controle da parabola 3D projetada em c.

A forma (4.1) é chamada de forma quadréatica racional de uma cénica. Se todas os pesos
forem iguais, a quadratica nio-racional é recuperada, ou seja, a parabola.

No espaco projetivo, todas as conicas sao equivalentes: todas as tranformagdes proje-
tivas levam conicas em conicas. Na geometria afim, as conicas sao classificadas em trés
classes: hipérboles, parabolas e elipses.

Dado uma conica da forma padrao, o segmento complementar dela é obtido ao inverter
o sinal de w;. Se ¢(#) é um ponto da conica original e ¢(t) é um ponto do segmento
complementar da conica, é facil verificar que by, c(t) e ¢(t) sdo colineares. Assumindo que
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w; > 0, entdo o comportamento de ¢(t) determina o tipo de conica que ela é. Se ¢(t) ndo
possui singularidades em [0, 1], entdo ela é uma elipse. Se ela possui uma singularidade,
ela é uma parabola. Por fim, se ela possui duas singularidades, ela é uma hipérbole.

As singularidades, correspondendo aos pontos no infinito de ¢(t), sio determinados
pela raizes reais do denominador w(t) de ¢(t). Elas sdo dadas por

14+ w+Jwi—1

2+2W1

tip =

Hipérbole

Paribola

Elipse

Figura 4.1: Conicas: dependem do peso wy.

Assim, uma conica é uma elipse se w; < 1, uma parabola se w; = 1 e uma hipérbole se
w; > 1. Para o caso especial do circulo, deixe o quadratico racional (com w; < 1) descrever
o arco de um circulo. Pelas propriedades de simetria do circulo, o poligono de controle
forma um tridngulo isdsceles. Sabendo o angulo ¢ = £(by, by, b;), o peso é dado por

wy = sen(¢/2).

A justificativa é encontrada ao observar o ponto médio da curva (ou o Shoulder point). Dada
uma curva Bézier racional de grau 2 de pontos de controle b, by, b, e pesos correspondentes
wp = 1, w;, w; = 1, ela pode ser escrita como

woBj(1) + wiBi(H) + woBY(t)  Bi(t) + wiBi() + By(1)

c(t) = (4.2)

O ponto médio da curva (onde t = 0.5) é chamado de shoulder point S. Ele é dado entao por

g = bg}l'i‘wlbl%'f‘bzi _ b0+b2+2W1b1
Tt Wit 2+ 2w,
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Entdo, com S posicionado corretamente na conica, ele deve satisfazer

[S—dill _ 1

IS =Ml wy’

onde M = @, ponto médio de d, e ds.

bl

wy = sen(¢/2)

we =1

bo

Figura 4.2: Calculo do peso w;: S é o shoulder point, M é o ponto médio de dy e d,.

Sendo f = 4£(by, by, M), pela simetria dos arcos byS e Sb,, byS é a bissetriz de f. Pelo
teorema da bissetriz
o ls= Ml IM—byl
| = = =
IS —dill  1Iby = bl

os(6)

com § = =¢

t\)|

=9

—5) = sen(¢/2)

w; = cos(

O circulo todo pode ser representado pela juncdo dos arcos. Por exemplo, pela junc¢ao
de trés arcos iguais, os angulos « iguais a 60 graus e, portanto, os pesos dos pontos de
Bézier sdo 1/2.

4.2 Motivacao: Curvas de Bézier racionais

Conicas podem ser expressas como curvas (de Bézier) quadraticas racionais e sua
generalizacdo para curvas racionais de grau maior é direta. Uma curva racional de Bézier
de grau n em E? ¢ a projecdo de uma curva de Bézier de grau n de E* em um hiperplano
w = 1. Pensando no hiperplano 4D como uma cépia de E*, um ponto de E* é dado pelas
coordenadas (x, y, z, w). Procedendo da mesma forma que foi feito para as coénicas, uma
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curva de Bézier racional de grau n é dada por

(D) = = BI) + % waBI(t)

s C(t), bj € ES.

Os w; sdo os pesos e b; o poligono de controle. E a projecio do poligono controle 4D
(wici, w;) da pré-imagem nao racional de c(t).

Com todos os pesos iguais a um, é obtida uma curva de Bézier nao racional, caso em
que o denominador ¢é identicamente igual a um. Se w; for negativo ha singularidades,
entdo so6 serdo usados pesos ndo negativos. As curvas de Bézier racionais compartilham

todas as propriedades que as ndo racionais possuem, como, por exemplo, invariancia afim.

Elas podem ser reescritas como

“0= Z o

com a base de funcdes racionais
w;BJ'(t)
Zgo w;BJ (1)
somando um.

Os pesos w; sdo normalmente usados como parametros de forma. Com o aumento do
valor de um certo w;, a curva é puxada na direcdo do correspondente ponto de controle
¢c;, mas o efeito da mudanca de peso ndo é o mesmo que a mudanca de posi¢do de um
ponto de controle.

Duas propriedades que sdo diferentes no caso racional em relacdo ao caso ndo racional.

Primeiro, a invariancia projetiva, ou seja, qualquer transformada projetiva de curva de

Bézier racional pode ser obtida pela transformacao projetiva de seu poligono de controle.

A segunda é a propriedade de precisdo linear: se os pontos de controle sdo colineares e

os pesos forem ajustados corretamente entdo a curva sera um segmento de reta perfeito.

Dados ¢; pontos de controle de Bézier distribuidos em uma reta

bi = (1 - ai)b() + aibn, i= 0, oy n
com ¢; valores reais arbitrarios, para que a curva trace o segmento byb, de reta de uma
forma linear, w, = 1 e

i l—aiq
w; = - ,l:1,...,n.
n+1—-i o

Definindo os pontos de peso g; como

wib; + Wit1biy

q =
Wi + Wi

Esses pontos sdo definidos pelos pesos e podem ser usados como parametros da forma
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para a curva.

4.3 Definicao da curva NURBS

Uma curva NURBS (B-spline racional nao uniforme) 3D é a projegao pela origem
de um curva B-spline ndo racional 4D no plano w = 1. O poligono de controle é dado
pelos vértices dy, ..., d; (ja visto que L = m — n — 1), com d; € E*, w, ..., w; sdo 0s pesos
associados a cada um dos pontos, respectivamente, e N*(t) sdo as fungdes B-splines vistas
anteriormente de nos u, ..., t,,. Um ponto C(t) na curva NURBS de ordem n é dado por

C(t) = Zd WlNJE]?(t) o < t < Up.

Outra forma de escrever essa formula e mais usada é
L
C(t) =Y, diR(2),
i=0

onde
WiNin(t)

L n
zi:O Wij\]i (t)
sdo as funcdes de base racionais. Pela construgio é facil ver que essas fungoes, assim como
os polinomios de Bernstein e as funcdes B-spline, sdo uma particdo da unidade,

L
YR =1.

Ri(t) =

4.4 Conicas como caso especial de curvas NURBS

Para a representacao de conicas com curvas NURBS, séo utilizados 3 pontos de controle,
dy, d; e d,, e seus respectivos pesos, wy, w; e w,. Dependendo da mudanca desses pesos,
parabolas, hipérboles, elipses e circulos sdo criados.

« Parabola: pesos woy =1, w; =1lew, =1
« Hipérbole: pesos wy = 1, w; > 1e w, =1
« Elipse: pesos wp =1, w; <lew, =1

« Circulo: pesos wy = 1, w; = sen(¢/2) e w, = 1, onde ¢ = £(dy, dy, d5).

4.5 Propriedades da curva NURBS

As curvas NURBS mantém propriedades importantes ja vistas nas curvas de Bézier,
em especifico, aquelas vistas para as fun¢des B-spline.
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« Invariancia afim: A curvas NURBS sdo invariantes em relacdo a tranformacdes
afins.

« Propriedade do fecho convexo: Qualquer segmento s; no intervalo [u;, u;.;) de
grau n de uma curva NURBS esta no fecho convexo dos n + 1 pontos de controle

iy, ... d,.

« Propriedade de controle local: se o ponto de controle d; é movido ou ha a
mudanga do valor de seu peso w;, isso afeta somente uma parte da curva no intervalo
[ Ui, Uirnt1). Ao aumentar o peso w; de um ponto de controle d; a curva se aproxima
mais do ponto de controle, enquanto diminuir o peso faz com que a curva se afaste
mais do ponto de controle. O comportamento ¢ intuitivo e, pela derivacdo geométrica,
segue imediatamente que a mudanga de peso de um certo ponto de controle so afeta
uma certa regido de influéncia.

A curva NURBS adiciona a propriedade importante de invariancia projetiva e capacidade
de representacdo das conicas com exatidao.






Capitulo 5

Curvas de Subdivisao

Curvas de subdivisdo sdo geradas ao refinar iterativamente um poligono de controle
preliminar até elas se tornarem curvas suaves no limite. A subdiviséo ja foi exemplificada no
algoritmo de Casteljau para a geracgdo de curvas de Bézier (Secdo da subdivisao das curvas
de Bézier). Pela propriedade de subdivisado é possivel refinar iterativamente um poligono
de controle para encontrar uma sequéncia de poligonos que convergem rapidamente para
a curva de Bézier. Isso pode ser visto como o pocesso de "corner cutting”, a cada iteracédo
cantos sdo cortados do poligono.

Essas curvas sdo poligonos definidos por seus pontos originais e o nivel da subdivisdo
(ou de refinamento) k.

Nessa secdo, os algoritmos de subdivisdo abordados sdo: o algoritmo de Chaikin para
geracdo de B-splines quadraticos, o algoritmo de Lane-Riesenfeld como a generalizacdo do
algoritmo de Chaikin que produz, no limite, uma curva B-spline uniforme de grau n, e o
esquema de quatro pontos para produc¢io de curvas de subdivisdo interpoladas.

5.1 Algoritmo de Chaikin

Em 1974, George Chaikin, introduziu o primeiro algoritmo recursivo de subdivisdo para
geracdo de curvas suaves em An algorithm for high-speed curve generation (CHAIKIN, 1974).

Considerando quatro pontos Py, P;, P, e P; em E? ou E? formando o poligono original
aberto. Sendo

ROZiPOJ’_%Pls
QIZZPI“‘lPZ € R1:iP1+%P2
Q2:§P2+;11P3,

os pontos Py, Ry, O1, Ry, Qs, P; formam o novo poligono (cortando fora os triangulos
Ry, P1, Q1 € Ry, P», Q,) de seis pontos. Para a proxima iteracdo, o procedimento é o mesmo,
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renomeando os pontos para Py = Py, P{ = Ry, P, = Qy,P; = R, P; = Q,, P = P; eentdo

Ry =1P;+3P;
— 4%0 471>
Q=3P+ 4P, e Ri=iP +3P;i€1,23,4

_ 3 p* 1 p*
Q4 =3Py + P5.

A curva gerada comega no ponto P, tangente ao segmento de reta P,P; nesse ponto,
intersecta o ponto médio de P, P, (tangente ao segmento de reta P, P, no ponto médio) e
termina no ponto P;, tangente ao segmento de reta P,P; nesse ponto.

O algoritmo de Chaikin para a geracdo de curvas B-splines quadraticos uniformes é
feito a partir da generalizacdo na constru¢io acima. Dado N + 1 pontos P,, ..., Py em E?
ou [E?, cada iteracdo do algoritmo de Chaikin para a geragdo de curva B-spline quadratica
aberta uniforme no seu limite é dada por

Ry = {Py + 3P,
Q=3P +iPy e R=1iP+3P,iel, .., N—-1
On-1= 3Pnvo1+ 3Py»

com a renomeacao dos pontos ao final.

Para a curva B-spline quadratica fechada uniforme o mesmo é valido, mas nao é
necessario de preocupar com segmento inicial e final:

3 1 1 3 .
Qi:ZPi‘i‘ZPH_l € Ri:ZPi‘}'ZPH_l,lEO,...,N.

Observe que, havia N + 1 pontos no inicio da itera¢do ao final ha 2N + 2 pontos e o
novo N deve ser 2N + 1.

5.2 Algoritmo de Lane-Riesenfeld

Como uma generalizacdo do algoritmo de Chaikin, por Judson Lane e Richard Riesenfeld
(1980) em A Theoretical Development for the Computer Generation and Display of Piecewise
Polynomial Surfaces (LANE e RIESENFELD, 1980), o algoritmo de Lane-Riesenfeld produz
no limite curvas B-spline uniformes de grau n. O algoritmo de Chaikin pode ser visto
como um procedimento de "divisdo e média"(split and average): a cada iteracio, o poligono
¢ dividido no (acrescentado um) ponto médio de cada um dos seus lados, obtendo um
novo poligono intermediario. Entao achando os pontos médios de cada um dos lados desse
poligono intermediario e os conectando, é formado o poligono final da iteragdo (com o
cuidado dos segmentos inicial e final se for uma curva aberta).

Lane-Riesenfeld realizou a generalizacdo do processo de "divisao e média", para "divisao
e (n — 1)-média"(dividir os lado do poligono somente uma vez e n — 1 vezes 0 processo
de achar o ponto médio e conectar eles) produzindo no limite curvas B-spline uniformes
de grau n.

Dados o grau n e Py, P, ..., Py_1, N pontos originais do poligono (n —1 < N), se o
poligono for fechado gerara uma curva B-spline de grau n uniforme fechada. O processo
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de "divisdo e (n — 1)-média"pode ser reescrito como

« Refinamento ("divisdo"): cada ponto P; é duplicado,
Pontos originais: Py, P, ..., Py_; = Pontos refinados: Py, Py, Py, Pi, ..., Px—1, Py—1.

« Média: a média é aplicada n vezes aos 2N pontos refinados,

. . . o Py+P.
Primeira iteracao: P, (s

Pn_3+Pn- Pn_1+P,

2 5P15’-"3 NZZNI’PNfls M=t

. o , . . Pyt Poth
Segunda iteracdo (até aqui Chaikin):

2 3
Po+P PN_1+Py  PN_1+P
3 0; L+Py Py g+ z1+ 2 N+W+P0
2 s 2 5 eees 2 5 2 >
n-ésima iteracao: Qy, ..., Qan_1

Q;,comi€0,...,2N — 1 formando o novo poligono. Observe que depois de duplicar para
2N o algoritmo nédo gera mais pontos, mas os reposiciona mais perto do B-spline esperado.

Ja se o poligono for aberto gerara uma curva B-spline de grau n uniforme aberta e

¢ necessario cuidados adicionais, assim como no algoritmo de Chaikin. Para os pontos
internos do poligono a regra continua a mesma, mas para os extremos sao mantidos:

« Refinamento ("divisdo"): cada ponto P;, comi = 1,..., N — 2, é duplicado, ja P, e Py_;
se mantém
Pontos originais: Py, P;, ..., Py—; = Pontos refinados: Py, Py, Py, ..., Py_2, Py—2, Pn_1.

« Média: a média é aplicada n vezes aos pontos internos refinados, as extremidades
sempre mantidas,

Primeira iteracao: P, likes

Py_s+Py-—
2 5P15'~':M5PN—1’
Py+P: Py+P- P +P
. - Py+201 Lot 4 p M_FPN_
Segunda iteracdo: Py, —*—, —5—,..., —*; L, Pn_1,
n-ésima iteracdo: Py, Q1, ..., Qan—4+n> Pn—1

Py, Q1 ..., Q2n—4-pn, Py—1 formando o novo poligono. Observar que, depois de duplicar para
2N, cada iteragdo gera um ponto a mais.

5.3 Esquema de quatro pontos

O esquema de quatro pontos foi desenvolvido pelos pesquisadores Nira Dyn, John
A. Gregory e David Levin no artigo A 4-point interpolatory subdivision scheme for curve
design (DYN et al., 1987) em 1983.

Novamente, um conjunto de pontos gerara uma sequéncia de poligonos que no limite
produz uma curva suave, mas agora exigi-se que a curva interpole os pontos dados. Primeiro,
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cria-se um ponto novo P! a partir dos quatro pontos originais P;_;, P;, P11 € Pyt

P = 1P +9P+9P 1P
i 16 i—1 16 i 16 i+1 16 i+2

Note que os coeficientes somarem 1 é uma propriedade importante para o esquema ser
geométrico. Os coeficientes sdo derivados a partir da interpolacéo ctbica de quatro pontos.

i} 1 1
P; :_WPi—1+(§+W)Pi+(§+W)Pi+1_WPi+2

1

Com w = 1/16, 0 esquema é o visto acima, mas nem todos os valores de w funcionam. O
algoritmo dos quatro pontos é dado pela forma geral acima com 0 < w < 1/8.

Assim, esse esquema mantém os pontos originais e adiciona um, em cada iteragéo,
entre cada (P, P,,). Dados Py, ..., Pn_1,

+ Pontos originais mantidos:

Qu = P,
« Pontos adicionados a cada P,P,_:
Qi1 = ! P+ 4 P+ 4 P, ! P,
2i+1 — 16 i—1 16 i 16 i+1 16 i+2-

Para o caso fechado a curva vai estar bem definida a cada iteracdo (usando Py,; = P,e P_; =
Py_;), mantendo os pontos iniciais e gerando N novos. Se a o poligono original Py, ..., Py_;
for aberto, novamente é necessaria uma adaptacdo. Um caso comum é a extrapolagao linear
(assumir que os pontos que faltam estdo alinhados com os pontos extremos conhecidos),

Py =2P,— P, Py =2Py 1 — Py».
As demonstracdes das construgdes de curvas suaves no limite dos algoritmos podem ser

vistas no livro Subdivision Methods for Geometric Design: A Constructive Approach (WARREN
e WEIMER, 2001).



Superficies de forma livre

A flexibilidade necessaria para design 3D ¢ dificilmente alcancada com superficies
como cilindros, cones, esferas, etc. Superficies de forma livre (freeform surfaces) oferecem
bem mais flexibilidade.

As superficies de Bézier e B-spline serdo desenvolvidas como extensdes das suas curvas
de forma livre correspondentes. Enquanto os métodos usados para a construgao dessas duas
superficies sdo severamente restritivos em tipos topoldgicos, as superficies de subdivisao
superam essas limitacdes de uma forma simples e elegante. Seu uso foi o que iniciou a
induastria de animagdo digital.

A abordagem utilizada para a compreensao das curvas é a do livro Curves and Surfaces
for CAGD: A Practical Guide (FArIn, 2001). As motivagdes e problemas abordados sido
oferecidos pelo livro Architectural geometry (POTTMANN et al., 2015).
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Capitulo 6

Superficies de Bézier

6.1 Interpolacao bilinear

Na secéo 1.4 e no capitulo 2, a interpolagdo linear em E? foi estudada e propridades
derivadas dela foram usadas para o desenvolvimento de curvas de Bézier. Analogamente,
é possivel basear a teoria de superficies de Bézier por produto tensorial no conceito
de interpolacao bilinear.

Sejam by, by 1, by, b11 quatro pontos distintos de E*. O conjunto de todos os pontos
x € E? da forma

x(u,v) = bi,jBil(u)le. (v), (6.1)

101
i=0 j=0

onde B; e B} sdo polindmios de Bernstein de grau um, é chamado de paraboloide hi-
perbélico pelos quatro pontos b; ;.

A forma acima abusa um pouco da notagio ao colocar os pontos dentro da matriz, mas
¢ uma boa visualizacdo do que esta acontecendo na interpolagdo. Como (6.1) é linear
em ambos u e v e interpola os pontos originais, a superficie x é chamada de superficie
de interpolacgéo bilinear.

Uma superficie de interpolacdo bilinear pode ser vista como um mapeamento do
quadrado da unidade 0 < u,v < 1 no plano u,v. O quadrado da unidade é chamado de
dominio do interpolante, enquanto a superficie x é a sua imagem. Um segmento de reta
paralelo a uma das arestas do dominio corresponde a uma curva na sua imagem: ela é
chamada de curva isoparamétrica. Toda curva isoparamétrica no paraboloide hiperbolico
¢ uma reta e, portanto, paraboloides hiperbolicos sdo superficies regradas (superficie
gerada pelo movimento de uma reta). Em particular, a reta isoparamética u = 0 é mapeada
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Figura 6.1: Interpolacdo bilinear: paraboloide hiperbdlico é definido por quatro pontos b; ;.

na reta que passa pelos ponto by, e by, (0 argumento analogo vale para as outras curvas
de fronteira).

Ao invés de avaliar o interpolante bilinear diretamente, é possivel aplicar um processo
de duas etapas, computando dois pontos intermediarios

b(()):é = (1 — U)b(),() + Ub(),l,
b?”(} = (1 — U)bl,() + Ubl,ls

e o resultado final é obtido por
x(u,v) = by (u,v) = (1 — w)byy + uby.

Isso equivale a computar os coeficientes da reta isomética v = constante primeiro e entao
avaliar essa reta isoparamética em u. Computando a reta isoparamética u = constante
primeiro e depois avaliando esta em v, gera o mesmo resultado.

Como interpolagao linear é uma trasformacao afim e como na sua construgao é utilizada
interpolacéo linear nas direcdes u e v, é normal ver o termo aplicagdo (transformacao
ou mapeamento) biafim.

O termo paraboloide hiperbolico vem da geometria analitica. Considerando a superficie
(ndo parametrizada) z = xy, ele pode ser interpretado como o interpolante bilinear dos
quatro pontos

0] |1
0f,10], (1},
0f [o

Se a superficie for intersectada com um plano paralelo ao xOy, a curva resultante
¢ uma hipérbole. J4 se ela for intersectada com um plano contendo o eixo z, a curva
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resultante é uma parabola.

6.2 Algortimo de Casteljau

Assim como curvas de Bézier podem ser encontradas pela repetida aplicagao da inter-
polacdo linear, a superficie de Bézier sera encontrada a partir da repeticio da interpolacdo
bilinear.

Figura 6.2: Derivagdo do algoritmo de Casteljau para superficies: o ponto na superficie é encontrado
pela repeticdo da interpolagdo linear.

Seja uma matriz retangular de pontos b;; onde 0 < i, j < n e os parametros (u,v). O
algoritmo seguinte gera um ponto na superficie determinada pela matriz de b; ;.

Dados {b;;}},_, e (u,v) € R? seja

r—1,r-1 r—1,r—1
prT = [1 —u u] bi,jl ) bi,j-%—ll l1-v
ij — r—1,r— r—1,r—1 ]
bij i v

r=1,...,n
,j=0,....,n—r

e b)Y = b;;. Entdo by (u,v) é o ponto com pardmetros (u,v) na superficie de Bézier b™".
A rede de pontos b;; é chamada de rede de Bézier ou rede de controle da superficie
b™". Os pontos b; ; sao chamados de pontos de controle ou pontos de Bézier, assim como
no caso das curvas.

Na proxima secao, sera possivel ver superficies com graus diferentes para u e v. Tais
superficies possuem redes de controle {b;;} comi = 0,...,me j = 0,..., n. O algoritmo
de Casteljau para estas superficies existe, mas precisa de uma distincdo de casos: pelo
algoritmo proposto até agora, este ndo pode ser executado até encontrar o ponto da
superficie. Depois de k = min(m, n), a bi’f,;k intermediaria forma um poligono de controle
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de curva. Para obter um ponto na superficie, é necessario seguir com o algoritmo de
Casteljau univariado.

6.3 Produto tensorial

Uma defini¢éo intuitiva de uma superficie é: “uma superficie é o trajeto percorrido por
uma curva que se desloca no espago, modificando seu formato.”

Para formalizar o conceito intuitivo, assumimos que a curva em movimento é de Bézier
de grau constante m. A todo momento, a curva em movimento é determinada por um
conjunto de pontos de controle. Cada ponto de controle original move-se pelo espago ao
longo de uma curva. Outra suposicao feita é que esta curva é de Bézier e que todas as
curvas por onde os pontos de controle atravessam tém o mesmo grau.

Formalizando, seja a curva inicial de Bézier de grau m:
m
m — m
b™(u) = ) biB!(w).
i=0
Cada b; move-se ao longo de uma curva de Bézier de grau n:

bi = bi(v) = i bi,jB;'l(v)-

Jj=0

Combinando as duas equacdes, é possivel obter o ponto b™"(u, v) na superficie b™" como

b™"(u,v) = i Zn: b; ;B"(w)B} (v). (6.2)

i=0 j=0

Com esta notacéo, a curva original b™(u) tem os pontos de Bézier b;y comi =0,...,m. A
defini¢do de superficie de Bézier dada por (6.2) é equivalente a dada pelo algoritmo de
Casteljau. Essa equacdo é obtida ao mover a curva isoparamétrica correspondente a v = 0,
mas as outras curvas de fronteira também podiam ter sido usadas como a curva original.

Uma curva isoparamétrica arbitraria 0 = constante de uma superficie de Bézier b™" é
uma curva de Bézier de grau m em u e seus m + 1 pontos de Bézier sdo obtidos ao avaliar
todas as colunas da rede de controle em v = constante. A formula é dada por

bi(,)én(ﬁ) = Z bj,jB;l(ﬁ), i=0..,m
j=0

Os coeficientes da reta isoparamétrica podem ser obtidos ao aplicar m+ 1 vezes o algortimo
de Casteljau. Um ponto na superficie é entdo obtido ao aplicar-se mais uma vez o algoritmo
de Casteljau.

Curvas isoparaméticas u = constante sao tratadas de forma analoga. Note, no entanto,
que outras retas no dominio sdo mapeadas em curvas de grau mais alto na superficie:
elas sdo em geral de grau n + m.
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6.4 Derivadas das Superficies de Bézier

No caso das curvas, as derivadas foram encontradas ao diferenciar os pontos de controle.
O mesmo sera feito para as superficies: as derivadas que serdo consideradas serdo as
derivadas parciais d/du e d/dv. A derivada parcial é o vetor tangente de uma curva
isoparamética e pode ser encontrada calculando-se:

a%bm’"(u,wzz[ Zb,]Bm(w] o)

Jj=0

Os termos entre colchetes dependem somente de u e é possivel aplicar a formula para
a derivada da curva de Bézier ja vista (2.1):

n m-—1

b’”"(u v)=m Z Z A" b; ;B (u)B}(v).

Jj=0 i=0

O operador de diferencas padrdo é generalizado para dois pontos, o indice superior (1, 0)
significa que a diferenciacdo € so6 feita no primeiro indice inferior: A™b;; = by ; — b; ;.
Calculando a derivada parcial em relacdo a v, o operador de diferencas que atua somente
no segundo indice é: A®'b;; = b; ;41 — b;;. Assim,

m n—1

i=0 j=0

Novamente, um problema de superficie pode ser quebrado em varios problemas univa-
riados: para computar a derivada parcial em relacdo a u, é possivel interpretar todas as
colunas da rede de controle como curvas de Bézier de grau m e computar suas derivadas
(avalia-las no valor desejado u). Entdo, interpretar essas derivadas como os coeficientes
de outra curva de Bézier de grau n e comutar seu valor em v.

E possivel escrever as formulas para derivadas parciais de maior ordem:

9" n m-r
= pm(u,p) = A" b; ;B (u)B] (v) 6.3
- T r), Z Z J (63)
(]
as m,n o 0,s n—s m
%b (u, U) _ 5)' ; - A bi,ij (U)Bl- (u)

Nessas equacdes, os operadores de diferencas sdo definidos por

r,0 _ AT—10 r—1,0

0,s _ AO,s—1 0,s—1
A bl,] _ A bl,]+1 - A bi’j.

Com essas formulas é mais simples escrever o caso mais geral. As derivadas parciais mistas
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para uma ordem arbitraria sio:

o'rs b m'n! n—s m—r ;
mA(y v) = AT i B™"(w)B"(v),
owar’ 0 Gl — ) ; ; B (B} (v)

com coeficientes A™*b;; € E? (vetores).

A derivada parcial de uma superficie com valores em pontos é, por sua vez, uma
superficie com valores vetoriais. E possivel avalid-la ao longo das retas isoparamétricas,
das quais as quatro curvas da fronteira sao as mais interessantes. Tal derivada, como por
exemplo 9/dul,, é chamada de derivada transversal a fronteira. Restringindo a equacéo
(6.3) a u = 0, ficamos com

0" m! “

—b™"(0,v) = ——— A™b; . B"(v). 6.4
aur ( ) (m _ ]")! ]Z(; L] ]( ) ( )
Férmulas similares sdo encontradas para os outros trés lados. Portanto, as derivadas
transversais a fronteira de ordem r, avaliadas ao longo da fronteira, dependem somente

das r + 1 linhas (ou coluna) dos pontos de Bézier perto da fronteira.

6.5 Propriedades das Superficies de Bézier

A maioria das propriedades das superficies de Bézier seguem diretamente das curvas
de Bézier.

+ Invariancia afim: o algortimo de Casteljau consiste na repeticido da interpolacdo
bilinear e, possivelmente, de uma subsequente linear. Todas essas operagdes siao
invariantes em relacdo a transformacoes afins e, portanto, sua combinacao também

é. Além disso,
m

> > BM(wBl(v) = 1. (6.5)

i=0 j=0

Obs: no entanto, assim como no caso das curvas, as superficies de Bézier nio sdo
invariantes em relacdo a transformacdes projetivas!

« Fecho convexo: para 0 < u,v < 1, os termos B;”(u)B;‘(v) sdo nao negativos. Assim,
levando em consideracéao (6.5), entdo (6.2) é uma combinagdo convexa.

+ Curvas de fronteira: as curvas de fronteira da superficie b™" sao curvas polinomiais.
Seus poligonos de Bézier sdo dados pelos poligonos de fronteira da rede de controle.
Em particular, todos os quatro cantos da rede de controle estao na malha.

6.6 Composicao de superficies de Bézier

Sejam x(u,v) e y(u,v) duas patches de superficies (partes de superficies maiores),
definidas em [u;_y, ur] x [v7,v741] € [ug, ur1] % [v7, v741], respectivamente. Elas sdo de classe
C" na curva de fronteira comum x(u;,v) = y(u,v) se todas as derivadas parciais de u
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até a ordem r forem iguais, ou seja,

9" 9"

aurx(“’ V)| = aurY(”’ v)

u=ujy u=uj

Agora, supomos que as duas patches sejam dadas na forma de Bézier, que a rede de controle
da patch "esquerda”, x, seja {;;} com 0 < i < m,0 < j < n e que arede de controle da patch
"direita", y, seja {b;;} comm < i < 2m,0 < j < n. Para fazer a transicdo de coordenadas
locais da equacéo (6.4) para globais (u,v) é necessaria a regra da cadeia:
r n 1 r n

Z Ar,O bm_r)jB;l(U) = A_I Z Ar,O bm,jB;l(U)a

1
A1

j=0 j=0

onde A; = u;,; — u;. Como os B}l(v) sdo linearmente independentes, é possivel s6 comparar
coeficientes:

r r

1 Z 1 Z

A™b, o= — A™b, . i=0,.., n.
AI—1 JZ(; m—r,j AI Z m,j J

j=0

Essa é a condicdo C" para curvas de Bézier, aplicada para todas as n + 1 linhas da rede de
Bézier composta. A condicido C" para superficies de Bézier é: duas patches adjacentes siao
C" ao longo da sua fronteira comum se, e somente se, todas as linhas de vértices da rede
de controle podem ser interpretadas como poligonos de curvas por partes de Bézier C". A
condicao de suavidade é aplicada analogamente para a dire¢éo v.

A condicido C' diz que para todo j, o poligono formado por by, ..., by ; é 0 poligono
de controle de uma curva por partes de Bézier C'. Para esse ser o caso, os trés pontos

by-1,j, bm j, bms1,; devem ser colineares e manter a razdo entre as distancias para todos os j.

A simples colinearidade néo é suficiente, como ja visto: superficies compostas que possuem
by-1,j, bm,j, bs1,; colineares para todos os j, mas ndo mantém a razdo entre as distancias,
néo sdo C'. Além disso, elas nem terdo um plano tangente continuo.

Suponha que um dominio retangular de uma patch de Bézier é subdividida em dois
subretangulos por uma reta u = . A reta é mapeada em uma curva isoparamétrica no
patch, que é entdo subdividido em duas subpatches. Essas duas patches sendo parte de uma
superficie global, se juntam com continuidade C". Portanto, todas as linhas de pontos de
controle sdo poligonos de controle de curvas de grau n, C" por partes. As curvas estdo
relacionadas pela subdivisao univariavel ja vista (Se¢édo 2.3).

No algoritmo de subdivisdo encontrado é possivel interpretar todas as linhas da rede de
controle como poligonos de controle de curvas de Bézier. Subdividir cada uma das curvas
em u = u. Os pontos de controle resultantes formam duas redes de controle desejadas.

A subdivisdo ao longo da reta isoparamétrica v = 0 é tratada analogamente. Para
subdividir um patch em quatro subpatches geradas por duas retas isoparamétricas u = i e
v = 0, o procedimento de subdivisao é aplicado duas vezes. Nao importa em qual direcédo
a subdivisdo ¢é feita primeiro.
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Capitulo 7

Superficies B-spline

As superficies de Bézier herdam os problemas da curvas de Bézier: quando o grau
delas é muito alto, a representacdo final fica longe da esperada pela malha de controle e,
novamente, um ponto de controle tem efeito global. Para evitar esse problema, pode-se
usar supeficies B-spline e NURBS.

As superficies B-spline nio racionais e NURBS tém papéis importantes em métodos
de design de superficies atualmente. Uma superficie B-spline paramétrica por produto
tensorial pode ser escrita como

x(wv) = ) 3 dyN" (N} (), (7.1)

onde é assumido que ha uma sequéncia de nds na direcdo u e outra na diregio v.

No caso das curvas B-spline, se os pontos extremos tivessem multiplicidade igual ao
grau da curva, esses pontos de controle extremos B-spline (ou NURBS) também seriam
pontos de controle Bézier. O mesmo ¢ valido para o caso de superficies: se os pontos de
controle B-spline d;;, para i ou j iguais a 0 ou 1, tiverem multiplicidade igual a de seus
patches, entdo também sdo vértices de controle da rede da superficie por partes de Bézier.

Reescrevendo a equacdo (7.1) como
x(u,v) = Z Njn(U) Z dij]\[im(u) )
i J

¢ possivel ver que para cada i, a soma entre colchetes descreve uma curva B-spline na
variavel u. Essa curva pode ser convertida para uma curva de Bézier pelo método visto
na secdo 3.5. Isso corresponde a interpretar as linhas da rede de controle de B-splines
como poligonos B-spline univariados e, entdo, converté-los para uma forma de Bézier por
partes. Os pontos de Bézier encontrados podem ser interpretados como, coluna a coluna,
poligonos B-spline, que podem novamente ser transformados em forma de Bézier um por
um. A familia final de poligonos de Bézier constitui a rede da superficie por partes de
Bézier. O processo poderia ter sido feito primeiramente com as colunas e depois com as

51



52

7 | SUPERFICIES B-SPLINE

linhas da rede de controle B-spline e o resultado seria o mesmo.

Assim como nas curvas, as superficies B-spline podem ser fechadas ou abertas. No
entanto, as superficies B-splines podem ser fechadas de duas maneiras: é possivel formar
superficies com a conectividade de um cilindro ou de um toro. Esse fendmeno é con-
sequéncia das superficies B-spline possuirem duas familias de curvas, na dire¢do u e na
direcdo v, que podem ser fechadas ou abertas. Os trés jeitos diferentes que as superficies
podem ser criadas sdo:

« Modo aberto para ambas: a superficie é quadrilateral,

« Modo fechado para uma e aberto para outra: a superficie parece um pedaco defor-
mado de um cano (cilindro),

« Modo fechado para ambas: a superficie parece um toro deformado.

As trés possuem diferentes topologias com as redes de controle onde um ou mais poligonos
da fronteira se degeneram para um unico ponto, mas pode-se modelar pedacos de superfi-
cies com menos de quatro lados curvados. Nenhuma superficie de produto tensorial pode
ter conectividade de um bitoro ou uma superficie mais complicada. Na verdade, nenhuma
superficie com topologia de uma esfera é representavel por uma superficie de produto
tensorial, pelo menos ndo sem degeneracdes.



Capitulo 8

Superficies NURBS

As superficies de Bézier e B-splines podem ser generalizadas para suas contrapartes
racionais de forma analoga a usada para o caso das curvas. Em outras palavras, defini-se
uma superficie de Bézier racional ou NURBS como a projecao de um produto tensorial
4D de superficie Bézier ou B-spline. Assim, um patch de superficie de Bézier racional
¢é dado pela forma

Z,- Z,- Wi j bi,jB;n(u)B;l(v)
Y2 wiBP(w)Bj(v)
e uma superficie NURBS é escrita como

i j Wij di,ij(“)Nj"(U)
Zi Zj Wi,jj\[im(u)Njn(U) .

x(u,v) =

(8.1)

s(u,v) =

Superficies racionais sdo obtidas como projecdes de patches de produtos tensoriais,
mas nao sao em si patches de produtos tensoriais. Lembramos que superficies por produto
tensorial sdo da forma x(u,v) = 3, ., ¢;;Fij(u,v), onde a base de funcdes F,; pode ser
expressa como produtos F, j(u,v) = A;(u)B;(v). A base de funcdes para (8.1) é da forma

wi, jl\lim(U)Nj"(U)
Zi Zj Wi,ij(u)Njn(U) '

Pela estrutura do denominador, isso ndo pode, em geral, ser fatorado na forma requerida
Fj(u,v) = A(uw)B;(v).

Fj(u,v) =

Mesmo sem possuir a estrutura de produto tensorial, as superficies racionais podem
usar algoritmos de produtos tensoriais para sua manipulagao. Por exemplo, o problema de
achar a forma de uma superficie de Bézier racional por partes a partir de uma superficie
B-spline bictbica racional. S6 é necessario converter cada linha da rede de controle B-
spline para uma curva de Bézier cubica racional por partes e entdo repetir o processo
para cada coluna da rede resultante.

Outro exemplo, consideramos o problema de extrair as curvas isoparamétricas de
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uma superficie de Bézier racional. Supondo que a curva corresponde a v = 0, é possivel
interpretar todas as colunas da rede de controle como poligonos de controle e avaliar
cada um em 0, usando o algortimo de Casteljau racional, por exemplo. Para computar os
pesos, todos os pontos obtidos e seus pesos podem ser interpretados como um poligono
de controle de Bézier da curva isoparamétrica desejada.

Topologias mais complexas, como superficies fechadas, ndo podem ser modeladas
com uma unica superficie NURBS. Juntar superficies NURBS para obter uma superficie
mais complexa é dificil e impratico. Esse dilema topoldgico é resolvido com superficies
de subdivisdo.



Capitulo 9

Malhas poligonais (ou Meshes)

Até agora, foram discutidos alguns tipos de superficies suaves. Em casos onde as
formas desejadas ndo sdo simples, como cones ou cilindros, ha o frequente uso de malhas
poligonais (ou polygon meshes).

Uma malha poligonal é uma colecdo de vértices (pontos), arestas e faces (formada
por um conjunto de vértices) que definem um objeto tridimensional. As faces sdo poli-
gonos fechados, normalmente tridngulos, quadrilateros (quads) ou poligonos convexos.
Elas se conectam ao longo das arestas e descrevem aproximadamente a forma de uma
superficie suave.

Em animacdes 3D, jogos e modelagens 3D em geral o que se vé sdo, na maioria das
vezes, malhas poligonais renderizadas de forma suave. Elas sdo onipresentes em graficos,
mas também sdo usadas em peso em simula¢des de engenharia.

9.1 Geometria e conectividade

Ao lidar com malhas poligonais, é necessario observar o conceito de conectividade ou
a topologia da malha poligonal. A ideia deste conceito é a nomeacédo dos vértices da malha
poligonal e a informacéo da forma como esses se conectam para criar as faces e as arestas.

Malhas poligonais com a mesma conectividade podem ter formatos diferentes. S6 é
necessario mudar as coordenadaas dos vértices (com certa limitacdo) e manter toda a
informacéo da conectividade.

O maior nimero de faces gera maior liberdade no design. No entanto, isso pode ser
um fardo e estratégias sdo necessarias para a geracdo dessas malhas poligonais. A estética
tem um papel crucial na busca dessas estratégias.

A representacido de uma mesma geometria por uma malha poligonal mais balanceada
(melhor distribui¢ao e qualidade dos poligonos), pode necessitar a mudanca de conecti-
vidade. Algoritmos em design de malhas poligonais sao basicamente formas inteligentes
de design/mudanca de conectividade e geometria.
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Especificando um pouco mais sobre geometria e conectividade, entre os formatos de
arquivos, o formato OBJ comumente usado em programas de modelagem 3D possui:

« uma lista de coordenadas (x, y, z) de cada vértice do objeto. A sua ordenagio define
a numeracio/nomeacio dos vértices,

« comandos de face. Estes especificam quais e em que ordem os vértices representam
as faces da malha.

Algumas limita¢des serdo importantes na construcdo das malhas poligonais. Entre
elas, a exclusido das "juncdes em T", onde duas faces encontram a mesma aresta em outra
face. Outra é evitar a geracao de triangulos degenerados (vértices colineares): eles ndo
geram faces e, portanto, sdo potenciais causas nas falhas dos programas que tenham esse
tipo de malha poligonal como entrada.

Malhas poligonais sdo representacdes discretas de superficies. Elas generalizam o fato
de um poligono ser usado como uma representacdo discreta de uma curva suave (como
ja visto em curvas de subdivisio).

9.2 Malhas quadrilaterais (quads)

Para obter malhas poligonais que representem superficies, é primeiro necessario pensar
nas malhas representando um plano. A forma mais simples de tesselar um plano com
quadrilateros é usando quadrados (ou retangulos) arranjados de forma regular, cada quatro
deles se conectando em um vértice. Uma malha quadrilateral bem formada tera a mesma
conectividade que esta malha planar especial. Num vértice interior (um vértice que néo
esta na fronteira da malha), exatas quatro faces, quatro arestas se encontram e a valéncia
do vértice é quatro. Em geral, a valéncia de um vértice interior é o numero de arestas que
se encontram nele (a mesma quantidade de faces que passam pelo vértice).

Em uma malha quadrilateral, um vértice interior de valéncia quatro se chama vértice
regular. Se a valéncia de um vértice interior for diferente de quatro, é chamado de vértice
irregular. No exemplo do cubo, todos os seus vértices sao irregulares de valéncia trés, mas
ele ndo satisfara a aproximacgdo de uma superficie suave.

E importante ressaltar que os quadrilateros em uma malha quadrilateral em geral
nio sao planares.

9.3 Malhas triangulares

Malhas triangulares consistem exclusivamente de tridngulos. Assim como no caso
quadrilateral, para tesselar um plano é possivel juntar seis tridngulos ao redor de cada
vértice. Outra maneira é usar a topologia dos quadrilateros e corta-los em suas diagonais
(todas iguais), formando tridngulos.

Os vértices interiores sao regulares se sua valéncia for seis. Todas as faces sdo planares,
mas ¢ claro que a quantidade de triangulos necessaria é o dobro do caso quadrilateral. Esse
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aumento de processamento é um motivo para que, em geral, modelos finais 3D tenham
malha quadrilateral.

9.4 Refinamento das malhas

Em design, assim como no caso da aproximacado de curvas, é as vezes desejavel comecar
a modelagem com uma malha rascunhada e refina-la por um procedimento adequado. As
superficies de subdivisdo trabalham dessa maneira. Antes de analisar essas superficies,
¢ importante estudar um pouco os principios de refinamento. Pensamos nele como um
procedimento de dois passos: mudanga da conectividade (quantidade de vértices e como
eles se conectam) e mudanga da geometria (a posi¢ao dos vértices).

Examinamos primeiramente o caso da malha triangular: ao inserir pontos médios em
cada aresta dos tridangulos e conecta-los, é criada uma malha triangular mais refinada com
quatro vezes mais faces que a original. Cada face é cortada para criar quatro faces e a
geometria até aqui é a mesma. Com o objetivo de seguir o design mais atentamente, é
possivel mudar os vértices de lugar. A forma como isso ocorre sera visto nas superficies de
subdivisdo, mas é claro que a malha ganhou flexibilidade e aproximou mais a malha
desejada.

A insercdo de pontos médios ndo é a unica forma de refinamento dessas malhas,
mesmo tendo a vantagem de nao introduzir vértices irregulares. Se o refinamento fosse
dado ao inserir o baricentro de cada tridngulo e conecta-lo aos vértices, a regularidade
seria destruida em toda a malha.

No caso das malhas quadrilaterais, o refinamento também pode ser dado pela insercdo
de ponto médios das arestas. Neste caso, os pontos médios dos lados opostos se conectam
formando uma cruz. Onde eles se conectam (o meio da cruz) é o baricentro da face. A face
foi cortada em quatro subfaces, todas no mesmo paraboloide hiperbdlico. Essa construcéo
mantém a regularidade dos vértices.

Ha outra forma de refinamento de malhas quadrilaterais usando os pontos médios das
arestas. Ao invés de conectar numa forma de "cruz", é possivel conectar os quatro pontos
médios criando losangos. Ao redor dos vértices antigos restam triangulos e os juntando,
poligonos novos sdo formados. Se os vértices antigos no interior eram regulares entio
o poligono é um quadrilatero, mas, em geral, ndo planar. Com excecao dos triangulos
gerados na fronteira, esse tipo de refinamento dobra aproximadamente o nimero de faces.
As faces foram escalonadas por um fator de 1/+/2 e rotacionadas 45°. A aplicacio desse
refinamento repetidas vezes é um dos algoritmos de subdivisdo mais simples e gera no
limite uma superficie suave.

9.5 Reduciao das malhas

O processo contrario ao de refinamento de malhas é chamado de reducio de malhas,
ele remove vértices "apropriados”, selecionados por um algoritmo, e conecta os restantes
de forma consistente.
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Em modelagem 3D, é comum o processo de retopologia, onde basicamente essa reducao
da malha pode ser feita de forma manual. Artistas podem modelar sem restri¢des em
programas como o Z-brush (uma modelagem livre, parecida com esculpir ou modelar uma
massa) e depois importar essa base para um aplicativo como o Maya. Nele, ha ferramentas
como o Quad Draw que permitem a criacdo de quadrilateros cobrindo a sua base e assim
mantendo a geometria em geral. O interessante dessa forma de reducio de malha é que
ela permite que o artista tenha a liberdade total com seu modelo (e faca escolhas sobre o
detalhamento dele) e ainda o deixe mais leve (menor processamento com menos faces).

Obviamente, a capacidade de processamento nao dita as escolhas artisticas e, portanto,
o detalhamento néo é perdido no processo. O processo de retopologia facilita o0 manuseio
dos modelos 3D nos programas, mas quando estes sdo renderizados a subdivisao é aplicada
e os detalhes "voltam". Tomando por exemplo o programa do Maya, artistas podem ter
uma imagem prévia de seus modelos subdivididos com o smooth prévio.

9.6 Estética e relaxamento das malhas

Ainda que exista o aspecto subjetivo quando se discute estética, é possivel falar sobre
o balanceamento da distribui¢do das malhas.

Uma ideia basica é a de ajustar os vértices para que a malha final consista praticamente
de poligonos regulares (precisamente regulares, normalmente néo é possivel). Uma ideia é
aplicar os principios fisicos de sistemas massa-mola. Na implementacéo, os vértices sdo os
pontos de massa e as arestas sdo as molas. Fixam-se alguns pontos (os pontos da fronteira)
e deixam-se os outros vértices moverem-se livremente até o sistema atingir o equilibrio.
A técnica usada se chama relaxamento (Relax tool, no Maya).



Capitulo 10

Superficies de subdivisao

Na area de computacdo grafica 3D, as superficies de subdivisdo (SubD surface ou
Subsurf) sdo superficies geradas a partir da aplicag¢do de algum algoritmo de subdivisido
em uma malha inicial. O processo é analogo ao processo de curvas de subdivisao.

A primeira técnica vista nesse capitulo é a do algoritmo de Chaikin para superficies. A
segunda é uma extensdo do processo de corner-cutting de Chaikin para faces irregulares
desenvolvida por Daniel Doo e Malcolm Sabin, em 1978. O ultimo esquema de subdivisdo
também foi criado no mesmo ano por Jim Clark e Edwin Catmull, generalizando a insercéo
de nés em superficies B-spline bicubicas.

A abordagem utilizada para a compreensao das curvas é a dos livros Subdivision Methods
for Geometric Design (WARREN e WEIMER, 2001), Recursively generated B-spline surfaces
on arbitrary topological meshes (CATMULL e CLARK, 1998), e as motivagdes e problemas
abordados sao oferecidos pelo livro Architectural geometry (POTTMANN et al., 2015).

10.1 Motivacao

Algumas restricdes topologicas foram descritas no estudo de superficies B-spline e
malhas quadrilaterais contendo somente vértices regulares. Existe uma correlacéo entre os
dois problemas, pois as redes de controle de superficies B-splines sdo malhas quadrilaterais.

As superficies B-spline podem ser vistas como resultados de um processo de refina-
mento, que mantém a regularidade das malhas quadrilaterais, mas as refina até, no limite,
obter superficies suaves. Isso ndo muda a topologia e, portanto, para modelar superficies
com uma topologia mais geral é necessario o uso de redes de controle com vértices
irregulares e técnica de como refina-las (superficies de subdivisdo farao essa papel).

10.2 Superficie B-spline quadratica por subdivisao

O processo utilizado para a geracdo de superficies B-spline quadraticas seguira o
esquema de supla aplicacdo do algoritmo de Chaikin de subdivisao para geracdo de curvas
B-splines quadraticas. Dada uma rede de controle inicial, o algoritmo de Chaikin é aplicado
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para cada coluna (poligono) dela e todos os pontos sdo conectados. Uma nova rede é criada
e o algortimo de Chaikin é agora aplicado as linhas da rede nova. Sua conexdo gerara a
rede do final deste passo do refinamento e a repetigio levara, no limite, a uma superficie
B-spline quadratica. Lembramos que a aplicacao do algoritmo de Chaikin pode ser feita
nas linhas primeiro e depois nas colunas, e o resultado sera o mesmo.

Juntando o processo em um Unico passo, para cada quadrilatero da rede de controle de
vértices P, j, Piy1 j, P; j+1 € Py j11 € necessario aplicar o algoritmo de Chaikin duas vezes:

/7 _ 3 1
Pi,j - ZPL‘,' + ZPi+1,j,

N 3p
i+1,j — 4Pi,j + 4Pl+1,1’
;3 1
P =3P+ P

M sp.
11 = 3P+ 3P

novo _ 3 p/ 1ps
Pi,j - 4Pi,j + 4Pi,j+1’

novo — 1p/ 3 p/
Py = 4P+ 5P
novo _ 3 p/ + 1ps
i+1,j T atitlj U 4t i1+
novo _ 1p/ 3 p/

i+1,j+1 — gt i+1,j + 414141
Portanto, o passo pode se resumir a

&:Z = l—zépi,' + %I:m,j + %Pi,j+l + il';i+1,j+1>
i1 = 1_96Pi+1,j + EPL' + gpi-#l,j-%—l + %Pi,j+1,
PR = 1_69Pi,j+1 + EP;,' + gPi+1§j+1 + ZPiie—l,js
g = el T 16 P + 16 Pij + 1P

O algoritmo mostrado é para redes de controle fechadas, mas para as abertas os tinicos
cuidados sdo os mesmos do caso das curvas (nas arestas da fronteira ndo ha somente
uma divisao).

Essa construcao so vale para topologias especiais, em que todas as faces sdo quadri-
laterais e todos os vértices internos tém valéncia 4.

O algoritmo de subdivisdo de Doo-Sabin é uma extensao do algoritmo visto acima e
consegue lidar com vértices irregulares (valéncia diferente de 4).

10.3 Esquema de subdivisiao de Doo-Sabin e
Catmull-Clark

O esquema de subdivisdo de Doo-Sabin generaliza o algoritmo de subdivisdo de geracéo
de superficies B-spline quadraticas para malhas de controle arbitrarias (incluindo néo
quadrilaterais). A regras de subdivisdo envolvidas sio:

+ Geracao de pontos de face: para cada face j com n vértices vy, ..., v,, um ponto
novo é criado como a média dos vértices da face,

1 n
fj—n;vi.
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« Geracao de pontos de aresta: para cada aresta, um novo ponto é criado como
a média do ponto médio da aresta com a média dos pontos de face adjacentes
(compartilhando a aresta),

i+0; Stk
%4_’7’“ _ Vi + i+ fj+ fin
2 4 |

+ Geracao de novos vértices: cada vértice antigo v ¢ substituido por um vértice novo
v’, calculado por

€ =

n+3 3 + 2cos(2®)
v = v+ Z — 1y,

"~ 4n — 4n?
i=1

onde os v; sdo os vértices vizinhos e n é a valéncia do vértice. Os valores dos pesos escolhidos

por Doo e Sabin sdo consequéncia da analise de Fourier local (observando autovalores
da matriz de subdivisdo), para garantir suavidade e continuidade.

Ja o esquema de subdivisao de Catmull-Clark generaliza a subdivisdo para geracdo
de superficies B-spline bicibicas para malhas de controle quadrilaterais. A regras de
subdivisdo envolvidas sdo conservadas para a geragdo de pontos de face e de aresta,

« Geracido de novos vértices: cada vértice antigo v é substituido por um vértice novo
v, calculado por
2R S(n-3
4 g 4+ 4 ¥,

v =
n n n

onde Q é a média de todos os pontos de faces adjacentes ao vértice v, R é a média dos
pontos médios de todas as arestas antigas que incidiam no vérticeve S é o v.

As demonstracdes das construcdes de superficies suaves no limite dos algoritmos
podem ser vistas no livro Subdivision Methods for Geometric Design: A Constructive Ap-
proach (WARREN e WEIMER, 2001).
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Consideracoes finais

O objetivo deste trabalho foi desenvolver os fundamentos matematicos de ferramentas
graficas essenciais: curvas e superficies de Bézier, B-spline, NURBS e de subdivisao. O
resultado constitui um guia conciso para estudos futuros que busquem aprofundar-se
na construcgao de ferramentas de design grafico, especialmente em sua fundamentagao
matematica.

Embora o trabalho tenha abordado as principais estruturas de representacio geométrica
e algumas de suas aplicacdes, ha diversas areas adajcentes que merecem exploracdo. Em
representacoes de malhas, destacam-se as malhas implicitas, utilizadas para simulacoes de
fluidos. No campo das representacdes nao-uniformes, existem extensoes das superficies
NURBS para topologias mais flexivies (as "jun¢des em T"comentadas). Além disso, é possivel
explorar a implementacdo computacional dos algoritmos estudados.

Espera-se que este trabalho ndo sirva apenas como base tedrica para futuros estu-
dos, mas também inspire novas reflexdes na area da matematica da computacdo grafica,
incentivando o desenvolvimento de abordagens inovadoras nesse campo multidisciplinar.
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