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RESUMO

O projeto consiste em desenvolver um ambiente computacional para analise mecanica de
risers utilizados na produgdo de petrdleo em aguas ultraprofundas, utilizando o método dos
elementos finitos. Dentro deste contexto, visam-se mais especificamente, o algoritmo para
calculo de configuragdo estatica, a implementacdo dos elementos finitos treliga, cabo e
portico, além das restricdes do tipo engaste, articulacio e solo. Objetiva-se,
fundamentalmente, a obtencdo de um cddigo de facil expansibilidade e portabilidade, o que
sera conseguido utilizando-se de caracteristicas como polimorfismo e classes abstratas e
também adotando o padrao ANSI para programagao, tornando o software multiplataforma. Na
primeira etapa foram formulados os elementos de treliga e cabo e as restrigdes do tipo engaste
e articulacdo, sendo, na etapa final, implementados os elementos tipo podrtico e a restri¢ao
solo. O projeto ainda conta com o desenvolvimento de pré e pods-processadores a serem

utilizados para facilitar a entrada de dados e visualizagao de resultados.



ABSTRACT

This project consists in develop a computational workbench to analyze risers’ mechanics
employed in ultra deepwater oil production. In this context, the objective is to create an
algorithm to calculate the static configuration, implement truss, cable and beam finite
elements and also fixed, joint and touchdown constraints. One achieved goal was to obtain an
easily-expansible and portable code by using polymorphism and abstract classes and also
using ANSI specification for programming, leading to platform-independent software. A
second stage of the project included a pre and post-processor development. These modules are

useful for data input and output, providing perspective visualization and graphic results
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CAPITULO I — CONSIDERACOES INICIAIS

1.1 Introduciao

Risers sdo elementos tubulares que se destinam ao transporte do petréleo produzido em um
pogo submerso até a unidade de producdo flutuante ou, no sentido contrario, do 6leo ou do
gas ja separados da unidade até tubulacdes submarinas. Até profundidades da ordem de 2000
m, os risers sdo instalados sob a forma de uma catenaria simples (“free-hanging”). Para
maiores profundidades sdo procuradas configuragdes alternativas, visando minimizar o nivel

de tracdo e a fadiga causada pelo movimento induzido pela unidade flutuante ao riser.

Assim, aparecem as configuragcdes com flutuagdo intermediaria, como a “lazy-wave”, ou
configuragdes mistas como, por exemplo, o RHAS (riser hibrido auto-sustentavel), em que
um riser vertical ¢ preso a uma boia submersa que o traciona e existe um “jumper” flexivel
que liga o riser vertical a unidade flutuante. Com a demanda crescente de petroleo e com a
descoberta de novos campos petroliferos em aguas cada vez mais profundas, surge a
necessidade de estudar o comportamento mecanico dessas novas configuragdes. A Figura 1

mostra algumas possiveis configuragdes de riser.
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Figura 1 — Algumas Configuracdes de Riser [1]

Na Escola Politécnica existe uma linha de pesquisa que se dedica ha varios anos a analise do
comportamento mecanico de risers e outros tipos de cabos submersos com linhas de
ancoragem e cabos umbilicais e que ja gerou uma série de resultados e trabalhos publicados.
O enfoque principal dessa linha de pesquisa tem sido a compreensdo clara dos fenomenos
fisicos envolvidos na mecanica dos cabos submersos e, a partir dessa compreensido, o
desenvolvimento de modelos matematicos simplificados, usando técnicas assintoticas,

aproximacoes lineares e solugdes no dominio da freqiiéncia.

Dentro dessa linha de pesquisa existe uma vertente, coordenada pelo orientador, que se dedica
a implementacdo dos modelos desenvolvidos em ferramentas computacionais que visam a
analise do comportamento estatico e dindmico dos cabos submersos, tendo gerado diversos
produtos: Ristat, Risdin, Poliflex, SteelCat, Utilflex, Poliflex3D e, mais recentemente,

Optflex, cada um com uma finalidade especifica, mas sempre visando o projeto de risers.



Esse projeto iniciou uma nova etapa, através da criagao do programa Ultraflex, em que nao se
busca mais o desenvolvimento de um programa dedicado a uma finalidade especifica, como o
projeto de risers para uma gama de configuragdes particulares, mas o desenvolvimento de um
ambiente computacional completo para andlise de risers, que seja capaz de tratar as
configuragdes atuais e, a0 mesmo tempo, esteja preparado para incluir e testar novas

propostas de arranjo fisico desses elementos, além de novos materiais.

O ambiente de analise como um todo possui diferentes requisitos para os diferentes médulos,
sendo cada requisito descrito com mais detalhes nos capitulos referentes a cada méddulo. O
modulo central resultante foi construido de tal forma que fosse independente da plataforma
computacional, deixando em aberto a possibilidade de paralelizacao do c6digo, sendo possivel
ser executado nos ambientes Windows”™ e Linux”. O pré-processador e o pos-processador nio
seguiram esse requisito dado que a comunicagdo entre os modulos ¢ feita através de arquivos
XML. Nesses modulos desejou-se um ambiente que fosse amigdvel para o usudrio,
permitindo a entrada de dados da forma mais intuitiva possivel. Assim, esses modulos foram
construidos na plataforma Windows® aproveitando varios de seus recursos graficos
disponiveis, bem como foi feita a implantagio de um controle OpenGL® no pré-processador,

para que o usuario pudesse visualizar a malha inicial gerada para ser resolvida.



1.2 Motivacao

A crescente busca por petroleo em regides ocednicas de grande profundidade exige,
freqlientemente, da engenharia, o desenvolvimento de novas tecnologias que possibilitem a
exploragdo nesses locais e que suportem as condigdes ambientais severas que podem surgir.
Quando se deseja viabilizar a prospec¢ao de petréleo com laminas d’agua de mais de 3000
metros, ¢ necessaria a busca por configuragdes de riser alternativas, que possam se adequar a
situacdes como essas. Para poder prever comportamentos mecanicos ¢ desenvolver essas

tecnologias, uma ferramenta genérica de analise estrutural de risers ¢ essencial.



CAPITULO II — ANALISE ESTATICA (CORE)

II.1 Especificacdes Técnicas

Separaram-se as especificagdes técnicas do projeto nas duas vertentes apresentadas no estudo

de viabilidade: programagdo de computador e modelagem fisica ¢ matematica do problema.

Programagao de Computador

e O software gerado deve ser multiplataforma;

e A linguagem escolhida deve possibilitar estruturagdo com orientacdo a objeto,

inclusive recursos de polimorfismo (objetos puramente virtuais);

e Apesar de a velocidade do processamento dos problemas ndo ser prioridade no
projeto, ¢ requerida uma linguagem que dentro de um compromisso com a

generalidade do cddigo ndo desperdice tempo computacional.

e O projeto limita-se, na fase atual, a resolu¢do de problemas estaticos. Porém sua
arquitetura de software deve estar aberta para abrigar no futuro outros tipos de analise,

como dinamica.

Modelagem Fisica e Matemdtica do Problema

e O modelo fisico deve levar em conta ndo somente esfor¢os de campo gravitacional

(peso proprio da estrutura), mas também esforcos de interacdo fluido-estrutura



(correntes maritimas), e deve ser de facil modificacdo para a inclusdo de outros tipos

de componentes como, por exemplo, boias;

e Devem ser modelados problemas de configuragdo de riser do tipo catenaria (free —
hanging), lazy-wave). Além dessas, deve-se estar aberto a resolucdo de novas

configuracdes futuras, com pouca ou nenhuma mudanca de co6digo;

¢ O modelo matematico deve ser o bastante genérico para permitir a inclusdo de novos

modelos fisicos na expansao futura do projeto.

11.1.1 Linguagem de Programag¢do

Existem diversas opg¢odes de linguagem de programacao. Algumas, de mais baixo nivel, como
o Assembler, e outras de mais alto nivel, como linguagens interpretadas de softwares
comerciais com rotinas prontas para uso, como o MATLAB e SCILAB. Existem ainda
algumas linguagens de médio nivel, como o C e o C++, que ndo sdo interpretadas como o
SCILAB ¢ MATLAB, porém para seu uso ndo ¢ necessario chegar a tdo baixo nivel, como
realizar operacdes matematicas bit a bit, que ¢ o caso do Assembler. Existem ainda outras

opgoes, como Java e Object Pascal.

Visando as especificacdes técnicas mostradas em II.1, escolheu-se a linguagem C++. Em
primeiro lugar, dentro do contexto de conhecimento do assunto por parte dos integrantes do
projeto, essa escolha demandaria pouco tempo para aprendizado da ferramenta, visto que
ambos ja conheciam tal linguagem previamente. Além disso, poder-se-ia pensar em utilizar
Java, mas essa linguagem, apesar de ser portavel e rodar virtualmente em qualquer sistema

operacional, apresenta grandes limitagdes por se tratar de uma linguagem interpretada e nao



compilada, o que significa que ndo ¢ otimizada para a plataforma em questdo, nem sempre
apresentando o desempenho esperado. Nela se gera apenas um arquivo intermedidrio, muito
dependente do equipamento disponivel ¢ da maquina virtual Java para funcionar
adequadamente. No caso especifico, interessa, também, a generalidade e, em segundo plano, a
velocidade de processamento. O Java ndo proporcionaria mais generalidade do que o C++ em
termos de estruturagdo e encapsulamento, no entanto acarretaria um consideravel o6nus ao
tempo computacional. Pensando-se em outras linguagens, poder-se-ia utilizar Object Pascal,
mas esta tem uma forma completamente distinta de C ¢ C++, o que demandaria muito mais

tempo, visto que teria que ser aprendida.

Assim C++ foi a escolha natural, destacando ainda que para executar o c6digo em uma nova
plataforma, bastaria compilar o0 mesmo nesse novo ambiente, através da ferramenta de

compilacdo adequada.

As vantagens apresentadas pelo C++ nado so s6 relativas ao desempenho. Por se tratar de uma
linguagem orientada a objetos, t€ém-se recursos que permitem uma melhor estruturagdo e
compreensdo do codigo, além de seu reuso. Conceitos como Heranca e Encapsulamento sao
basicos para a estrutura delineada para o programa. Lembrando que a idéia central deste
ambiente ¢ manter flexibilidade com facilidade de expansdo e com generalidade suficiente
para que a inclusdo de novos codigos fique quase que restrita a geragdo dos proprios, com
poucas ou, se possivel, nenhuma alteracdo no restante do programa. Isso pode ser conseguido

utilizando o conceito de classes virtuais e heranga, ambos presentes na linguagem escolhida.



11.1.2 Modelagem Fisica e Matematica

A modelagem fisica deve levar em conta os efeitos apresentados em II.1.Para o problema
estatico de risers, em geral, nota-se a existéncia de alta ndo-linearidade geométrica inerente a
forma da estrutura e, em certos casos, a ndo-linearidade de contato com solo (problemas com

TDP — “Touch Down Point”).

Quanto aos modelos matematicos, existem disponiveis na literatura abordagens que se
baseiam na integracdo da equacdo diferencial do problema para a solucio estatica. Porém,
quando se leva em conta esfor¢os de corrente maritima, por exemplo, ndo existe mais solugao

analitica para essa integragao.

A fim de priorizar a futura expansibilidade do software, com o minimo de alteracdes
possiveis, acreditou-se ser necessaria a escolha de um modelo matematico mais genérico do
que modelos analiticos para determinar a linha elastica do riser, que sdo particulares para cada
tipo de configuragdio. Um método disponivel e que atende perfeitamente aos quesitos

apresentados ¢ o Método dos Elementos Finitos (MEF).

Esse método consiste em dividir o problema global a ser estudado em problemas menores de
solugdo local conhecida e fazer com que as condigdes de contorno de cada um desses sejam
adequadas com a fisica global. Matematicamente, trata-se da unido de varios conjuntos, que
sd0 dominios de fungdes locais e que formardo juntos um dominio global, com a unido de
todas as fungdes, pelas suas condi¢des de contorno. Trata-se de um método robusto, que
utiliza uma formulagdo fraca, ou seja, garante que as condicdes matematicas sejam atendidas
na média. Isso se traduz na condi¢do de que os valores da fungdo em pontos especificos — 0s
nés — sejam “exatos” (dentro da formulagdo matematica). Uma decorréncia desta formulagao

¢ que se substitui a solucdo de equacdes diferenciais parciais por solucdes de equagdes



integrais ¢ que levam a solugcdo de sistemas de matrizes, que possuem ainda algumas

caracteristicas peculiares que, computacionalmente, facilitam muito sua solugao.

Apesar de a escolha dos métodos ndo envolver diretamente a utilizagao de solugdes analiticas,
acredita-se que seu estudo ¢ de fundamental importancia para que se adquira familiaridade
com o problema e com alguns resultados esperados. Podem-se utilizar, ainda, tais solugdes
para comparagdo com o método implementado para alguns casos particulares, visando a
validagdo do modelo. Um outro aspecto importante da solug¢ao analitica € possibilidade dessa

ser utilizada como estimativa inicial da configuracao.

II.2 Fundamentacido Teoérica

O comportamento de um riser, do ponto de vista estatico, € muito semelhante ao de um cabo
perfeitamente flexivel e o efeito da rigidez flexional ndo ¢ importante, a menos de regides em
torno dos pontos em que ha descontinuidade de curvatura no modelo de cabo, como a regido
do ponto de contato entre o riser e o fundo do mar (“touchdown point” — TDP), a conexdo do
riser a unidade flutuante de produgdo e os pontos em que hd mudanca do peso submerso,
como na transi¢do entre trechos sem e com flutuacdo. Este fato, se por um lado permite a
adocdo de solugdo analiticas do tipo boundary-layer, por outro lado dificulta a solugdo do
problema via métodos numéricos, pois o sistema de equagdes diferenciais resultantes ¢ muito
“rigido”.

Para determinar a linha elastica de um riser, € necessario utilizar um modelo nio-linear do
ponto de vista geométrico, ja que os deslocamentos sdo muito grandes. Além disso, deve-se

prever a possibilidade de materiais com comportamento nao-linear como o poliuretano, por
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exemplo, que ¢ utilizado nos enrijecedores (“bending stiffener”) utilizados para a transi¢ao de
curvatura no topo do riser. Na regido do TDP existe um problema de contato unilateral. O

proprio solo em que se apdia o riser tem comportamento nao-linear.

Para simular a estatica de um riser, face as caracteristicas apresentadas, ndo ¢é possivel utilizar
um codigo de elementos finitos convencional, tornando necessario o uso de ferramentas
especificas. Existem softwares comerciais, desenvolvidos para essa necessidade, mas, como

ndo sdo abertos, ndo € possivel alterar o seu contetido, incluindo novas caracteristicas.

Para estudar o comportamento de um riser, sob uma configuragdo genérica, deve se pensar em
um modelo de elementos finitos, que leve em conta nao-linearidades constitutivas e
geométricas, que considere problemas de contato unilateral e que possa ser resolvido no

dominio da freqiliéncia e do tempo (no caso de analises dindmicas).

Para a resolucdo de analises estaticas, foram desenvolvidos algoritmos iterativos nao-lineares,
e que levem em conta grandes deslocamentos, mas que considerem o comportamento

constitutivo como sendo elastico linear (seguem a Lei de Hooke).

A seguir serdo abordados diversos topicos que construirdo o raciocinio do leitor em relagdo ao
que foi efetivamente implementado no software desenvolvido. Inicia-se com uma formulagao
continua e analitica de cabos, que ¢ o embasamento para a abordagem discreta do MEF. A
seguir, desenvolve-se o MEF linear, seguido do MEF ndo linear, com seus respectivos
algoritmos. A formulagdo dos elementos modelados também ¢ apresentadas, bem como os
carregamentos mais comuns no problema fisico do riser. Ainda sdo apresentadas as condigdes
de contorno implementadas. Por ltimo, uma base de toda a estrutura do c6digo, com grande

énfase na area de programacgao de computador.
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11.2.1 Abordagem Analitica [2]

Nessa se¢do sera apresentado o modelo de cabo mais simples (Figura 2), que resulta em
equacgdes diferenciais de equilibrio para cabos inextensiveis e perfeitamente flexiveis. O unico
carregamento que sera levado em conta é o peso proprio da estrutura, que ¢ equilibrado pela

tracdo que surge no cabo.

Definindo v como o peso proprio do cabo por unidade de comprimento, e a forga de tragdo na
coordenada S do cabo como 7, ilustra-se, na Figura 2 o diagrama de corpo livre de um

elemento de cabo diferencial.

T+dT
g+ db

ds

e
; x

T

[
=

Figura 2 — Elemento de cabo diferencial

Podem ser escritas as seguintes equacdes que decorrem de relacdes geométricas:

ﬂ =cosd ﬂ = sent
ds ds

(IL1)

Ainda podem ser escritas as equagdes de equilibrio estatico para o elemento:
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e Direcgdo horizontal — coordenada x:

Tcos@=(T+dT)cos(0+dO)=Tcos@+dT cos@ —Tsenbdb (11.2)

Conclui-se que:

dT cos@ —Tsenbdd =0 < d(T cosd) =0 (I1.3)

Portanto, o valor da for¢a do cabo na direcdo horizontal possui um valor constante, que sera

indicado por H. Assim, tem-se que:

Tcos@ =H =cte (I1.4)

e Diregdo vertical — coordenada y:

Tsen8 +vdS = (T +dT)sen(0 +d0) =TsenO + dTsen6 + T cos 6d 6 (IL.5)

A partir da qual se conclui que:

V= a4 (Tsen®)
ds (11.6)

Portanto, conclui-se que a componente vertical da for¢a de tracdo no cabo possui primeira
derivada constante em relacdo a abscissa curvilinea S. Assim, a variacdo da componente

vertical € regida por uma fungao de primeiro grau.
V(S)=vS+C (IL7)

Onde C ¢ uma constante, que deve ser determinada a partir de condigdes de contorno do cabo.

Equilibrio de momentos:
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Sendo o momento devido ao peso proprio um efeito de segunda ordem, pode-se afirmar que
as unicas forcas que causam momento significativo no cabo sdo as componentes da tracao.

Sendo assim:

T cos @y = TsenGdx (I1.8)

A partir dessas equacdes de equilibrio, com uma série de manipulagdes algébricas pode-se

chegar a equagdo diferencial de equilibrio — equagao (I1.9).

2 2
Zzy—% 1+(f1_y) =0 (IL.9)
X X

Pode-se mostrar que a fungao y(x) a seguir € solug¢ao para a equacao (I1.9).
Y(x) = iﬁcosh(lx T Aj +B (I1.10)
\ H

Os sinais positivo e negativo da expressdo acima bem como as constantes 4 e B, sdo

determinaveis a partir das condig¢des de contorno do cabo.

Ainda ¢ possivel determinar o valor da tragdo em funcdo da coordenada x, através da

expressao dada pela equacao (II.11).

T= H (IL11)

(t(h(HAm




14

11.2.2  Abordagem Numérica

Devido as grandes particularidades envolvidas nas solug¢des analiticas, ¢ interessante realizar
uma abordagem mais genérica e que possa facilmente levar em conta efeitos de rigidez axial,
flexional e torcional, esfor¢os de um pefil de correntes maritimas, contato unilateral com solo,

dentre outros efeitos.

11.2.2.1 Meétodo dos Elementos Finitos Linear

Resumidamente, pode-se afirmar que o MEF linear, quando utilizado para realizar uma

analise estrutural estatica linear, consiste em realizar os seguintes passos:

I. Baseando-se na geometria de um problema, gerar uma malha formada por elementos
com caracteristicas previamente escolhidas, alocados entre nds e algumas vezes com
nds em seu interior, € que sejam representativos em relagdo ao problema real, ou seja,
que consigam descrever com fidelidade a geometria e as condigdes de contorno do

problema fisico (Figura 3)

(b)

Figura 3 - (a) Um exemplo de configuracio de riser (b) Um exemplo de discretizag¢do do riser do item (a)

através do Método dos Elementos Finitos
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Calcular a matriz de rigidez de cada um dos elementos individualmente (esse
procedimento esta detalhado em I1.3) e rotaciona-lo para o sistema de coordenadas

global (Apéndice A)

Através de uma numeragdo global de graus de liberdade do sistema, montar uma
matriz de rigidez global que contenha informacdes sobre a rigidez de todos os
elementos existentes na malha, superpondo informagdes locais. Essa relacdo entre

numeracdes global e local envolve uma matriz denominada matriz de conexao;

Resolver um sistema linear que envolve a matriz de rigidez e os esfor¢os nodais, para

determinar os deslocamentos em cada grau de liberdade livres;

Calcular outras grandezas fisicas desejadas para concluir a analise, com base nos
valores determinados de deslocamentos nodais. Por exemplo, pode-se desejar saber as

tensdes de Von Misses em cada no.

Uma analise envolvendo o MEF envolve prioritariamente a escolha dos tipos de elementos

que serdo utilizados. Essa ¢, sem divida, alguma uma das partes mais criticas na resolugao do

problema, visto que € necessario o conhecimento profundo do fendémeno fisico que ocorre na

estrutura para realizar a escolha adequada do tipo de elemento. O modelo deve levar em conta

os aspectos relevantes a analise que sera realizada, como os tipos de esforgos, tipos de

condi¢do de contorno, graus de liberdade existentes, dentre outros aspectos.

Matriz de Conexao

Uma vez que a abordagem para a resolucdo utilizando o MEF linear envolve a superposicao

de efeitos de rigidez local de cada elemento em uma matriz global, que contenha informagdes
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de todos os elementos, € necessaria uma organiza¢ao para montar a matriz global do sistema a
partir das matrizes locais dos elementos. Admitindo que o sistema de coordenadas no qual
esta escrita a matriz local de cada elemento seja o sistema global (as matrizes locais foram
rotacionadas de seu sistema local para o global), ¢ possivel organizar uma estrutura que
relacione uma numeragao global de graus de liberdade com uma numeragao local. A Figura 4
mostra um exemplo de estrutura de trelicas bidimensionais, e em seguida ¢ exibida sua matriz

de conexdo (Tabela 1).

(a) Mumeragao Global

Figura 4 — Exemplo de numeracéo global (a) e numeracio local (b)

Tabela 1 — Conexio entre os graus de liberdade locais e globais

Elemento (1) ®) () (4)

1 1 3 5 7

g 2 2 4 6 8
S
-

a 3 3 5 7 9
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Lé-se, por exemplo, para o elemento (3), que seu grau de liberdade 1 local estd relacionado
com o 5 global, e o grau de liberdade 2 local estd relacionado com o 6 global, e assim

sucessivamente.

Assim sendo, é possivel montar a matriz de rigidez global superpondo as matrizes locais,
relacionando cada posicao local com as posigdes globais contidas na matriz de conexao.
Portanto, a matriz de conexdao estabelece uma relacdo entre a numeracdo dos graus de

liberdade locais e globais.

e Condensacdo Estatica [3]

Uma caracteristica intrinseca a problemas estruturais ¢ a presenga de condi¢des de contorno.
Essas determinam quais os graus de liberdade dos elementos dispostos na malha que estardo

livres e quais estardo fixos pelas restri¢des.

Na pratica para a resolucao de problemas de MEF ¢ comum atribuir uma numeracao global a
todos os graus de liberdade existentes nos elementos, ainda que estejam restritos pelas
condi¢des de contorno e, portanto, ndo possuam movimento livre. Isso ¢ feito para facilitar o
calculo de reacdes nos vinculos, visto que esses “graus de liberdade” fixados sdo inclusos na
matriz de rigidez global e, dependendo da maneira que ¢ feita sua numeracdo, ¢ possivel
dispor a matriz da seguinte maneira:

K,, K
K, { A AB} (I1.12)
I(BA KBB

Onde: K¢ ¢ a matriz de rigidez global do sistema;
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Kaa € a parte da matriz K¢ composta pelos coeficientes de influéncia de rigidez provenientes

apenas da interacdo graus de liberdade livres;

Kpgp ¢ a parte da matriz Kg composta pelos coeficientes de influéncia de rigidez provenientes

apenas da intera¢ao de graus de liberdade fixados pelas condigdes de contorno;

Kap ¢ Kga sdo matrizes compostas por coeficientes de influéncia de rigidez provenientes da
interagdo entre graus de liberdade livres e graus de liberdade fixados pelas condi¢des de

contorno.

Escrevendo a equagao de equilibrio de esfor¢os para um problema estatico na forma matricial,

tem-se:
K,u=f (I1.13)
Onde: K¢ ¢ a matriz de rigidez global do sistema;
f ¢ o vetor de esforcos nos graus de liberdade do sistema;
u ¢ o vetor de deslocamentos dos graus de liberdade do sistema.

Portanto, € possivel descrever um problema estatico linear com a seguinte equacao:

K K u f

|: AA AB:||: A:|:|: A:| (1114)

Ky Kpp |l up fy
Note que ¢ realizada uma separacao do vetor u em duas partes us € up, que representam
respectivamente os deslocamentos dos graus de liberdade livres e os deslocamentos dos graus
de liberdade fixados pelas condi¢des de contorno. Um procedimento andlogo ¢ feito com o

vetor de esforcos. Assim, podem ser escritas duas equagdes que efetivamente resolverdao o

problema — equacao (II.15).
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{KAAuA + K pug = fA (IL15)

Kpu, +Kyzu, =1,
Nessas equacgdes existem dois vetores que sdo incognitas: ua e fg. O vetor ug permite incluir
na andlise a imposi¢ao de deslocamentos para certos graus de liberdade, e o vetor fo contém o
carregamento imposto na estrutura. Para determinar o vetor de deslocamentos livres da

primeira equacdo, é necessaria a resolucio do sistema linear em u, da equacao (I1.16).
K, = (fA _KABuB) (IL.16)

Uma vez determinado u,, € possivel determinar o vetor fg através da segunda equagao. Dessa

forma ¢ concluida a andlise linear da acdo do carregamento na estrutura.

A técnica utilizada para dividir o problema e as equacdes matriciais em equacdes que
envolvem sub-matrizes conforme mostrado anteriormente, ¢ denominada Condensagao

Estatica.
e Método Para a Resolucédo de Sistemas Lineares

A equacdo (II.16) ilustra a necessidade de um método de resolug@o de sistemas lineares para
determinagdo do vetor ua. Em MEF geralmente ¢ possivel arranjar a matriz de rigidez global
na forma de banda, devido a forma como ocorre a interconexdo entre os elementos. Essa
estrutura permite o armazenamento com menos alocagdo de memoria, e certa otimizagdo na

resolugdo do sistema linear.

Dois métodos de fatoragdo matricial foram aplicados no software desenvolvido para a

resolugdo de sistemas lineares. Serdo, a seguir, descritos ambos os métodos.
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0 Fatoragdao Cholesky [4]

O algoritmo de Cholesky implementado pressupde que ird ser resolvido um sistema linear do

tipo Ax =b, com algumas hipdteses:

As dimensdes sdo compativeis — caracteristica basica para qualquer sistema de equagdes

lineares.

A matriz A ¢ positiva definida, o que significa afirmar que, dada a matriz e um vetor v

viAV>0

qualquer, .
{VTAV =0<=v=0

Como se verificam sempre as condi¢des de entrada do problema e como a matriz tem que ser
simétrica e definida positiva, condi¢cdes que sao satisfeitas pela matriz de rigidez do problema,

entdo o método pode ser utilizado.
O método consiste em obter uma matriz triangular inferior L tal que:

LL"=A (11.17)
Sendo L" a matriz transposta de L.

O método para a determinacao dos elementos de L ¢ feito através do Algoritmo de Crout, que
resolve um conjunto de 7 + n° equagdes de uma maneira simplificada, apenas arranjando as

matrizes numa ordem especifica, onde n ¢ a dimensdo da matriz A.

A decomposicdo consiste nos seguintes calculos:

i 1/2
l; = [an‘ _Zl;{] (I1.18)
=1
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1 i—1
l, = l—(ay. —~ Zliklij (I1.19)
i k=1

Ondei=1, 2. ,nej=i+l it2,.., n

O tnico detalhe a ser acrescentado nessa formulagdo, quanto a sua adaptacdo para a forma de
banda da matriz, ¢ o fato de ser verificada a diferenca entre os indices i, j e k em cada
operacdo, uma vez que esses podem estar situados fora da banda da matriz. Nesse caso, a

posicao da matriz ¢ nula.

Quanto a alocacdo de memoria, durante a fatoracdo a matriz L ¢ alocada em tempo real no
mesmo espago de memoria do qual sdo lidos os termos da matriz A. Isso prové economia de

memoria durante o processamento.

Ap0s a decomposi¢ao da matriz A através do método de Cholesky, parte-se para a resolugdo
do sistema, que se torna trivial, j& que ¢ solucionado por retro substituicdo. Resolve-se o

sistema da seguinte forma:

Ax=b (I1.20)
Mas A =LL". Logo:

LL'x=b (I1.21)
Fazendo y = L'x, temos:

Ly=b (11.22)

Como tanto L. ¢ b sdo conhecidos e L. ¢ uma matriz triangular inferior, resolvem-se as

equagdes sequencialmente de cima para baixo. Repete-se o procedimento, fazendo:

L'x=y (11.23)
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J& que agora tanto L e y sdo conhecidos. Assim, por substituicdo reversa, encontram-se os

valores de x desejados.

0 Fatoracgdo LDL" [5]

Dado um sistema linear da forma Ax=b, pode-se decompor a matriz A da seguinte forma:
A =LDL' (11.24)

Onde L ¢ uma matriz quadrada triangular inferior e D ¢ uma matriz diagonal. Denotando por

lie dj; os coeficientes da matriz L e D respectivamente, pode-se calculd-los da seguinte forma:

j-1
d;=a;-3 d(l,) (I1.25)
k=1
1 =
I, = —| @~ D odd (11.26)
J k=1

Comi=j+1,..,nej=1, .. n,ondenéaordem da matriz A. Os valores dos somatorios sao

nulos quando o limite inferior supera o limite superior.

Voltando ao sistema original e substituindo a matriz A fatorada, tem-se:
LDL'x=b (11.27)
Substituindo o sistema acima por trés sistemas de resolucao simplificada, tém-se:
L'x=y (11.28)
Dy=1z (I1.29)

Lz=b (11.30)
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Resolvendo os trés sistemas acima por retro substitui¢ao, na ordem em que aparecem suas

equagdes, determina-se o valor do vetor x.

Quanto ao gerenciamento de memoria, o método goza das mesmas vantagens da Fatoragdo

Cholesky.

11.2.2.2 Meétodo dos Elementos Finitos Ndo-linear

Dentro do contexto da andlise estrutural, o MEF ndo linear é necessario para a resolucao de
problemas nos quais ocorrem grandes deslocamentos, grandes deformacgdes ou restrigdes nao
lineares. Para o problema especifico de uma configuragdo estatica de riser, como nao se sabe
previamente a posi¢ao de equilibrio no inicio, podem ocorrer grandes deslocamentos na malha
inicial até que a mesma atinja o equilibrio, uma vez que essa niao necessariamente estd
proxima da solugdo. Essa grande mudanca de geometria causa a variagao da matriz de rigidez
do sistema, outrora tratada como constante para problemas lineares. Dai vem a nao

linearidade geométrica.

Se a formulagdo do elemento levar em conta algum efeito constitutivo de deformagao plastica,
também ocorrera uma variagao na matriz de rigidez do sistema, mesmo que nao haja grandes

deslocamentos, mas haja grandes deformacdes.

Ainda no caso em que se aplica uma condi¢ao de contorno, como por exemplo, a imposi¢ao
de um solo horizontal, podem ocorrer grandes deslocamentos nodais, acarretando também em

nao linearidade geométrica.

Um método nao linear consagrado para uso em andlise estrutural ¢ o Método de Newton-

Raphson. Muito utilizado por apresentar rapida taxa de convergéncia (quadratica), o Método
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de Newton possui um simples interpretagdo geométrica para um caso de funcdo de uma
variavel. A Figura 5 ilustra como ocorre a convergéncia, a partir de uma estimativa inicial de
raiz x;, ¢ refinando-se o valor dessa estimativa, sempre pela aproximagao da fun¢do por sua
tangente em cada ponto. O método, portanto, necessita do calculo da derivada da fungdo em

todos os pontos (x;, x2, x3,...) que forem aproximagdes da raiz, durante a convergéncia.

Y

£ (x1>
f(xe)
F(x3)
x3 x2 x1 ><
Convergence

The reguired zerco af fix0

Figura 5 — Interpretacio Geométrica para o Método de Newton-Raphson

Como pode ser observado na Figura 5 o Método de Newton-Rapshon utiliza-se a cada

iteracdo de uma aproximacao linear (tangente) para a fun¢ao.

E possivel generalizar o Método para um problema n — dimensional. Nesse caso, continua

valendo o raciocinio de aproximar uma fun¢ao nao linear em fungdes lineares a cada iteragdo.
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Por isso foi abordado o item II.2.2.1, pois a cada iteragdo da resolugao do problema nado
linear, sera feita uma analise linear completa, sendo a linearizacao feita em torno da geometria
da malha nessa iteragdo. A seguir esta desenvolvida a generalizacdo do Método de Newton-

Raphson.

e Método de Newton-Raphson para um espacgo n-dimensional [6]

Dada uma fun¢do do vetor g(u) de n varidveis, situada em um espaco de ordem n
(g:R" > R"), pode-se escrever a expansao de g(u) utilizando-se a série de Taylor, em torno

de um ponto genericamente chamado de u;.

3

w-n oot

1 d’g
(“—“i) 3—/?

+Ed—2 (ll—lli)3 +O4 (1131)
I du

u;

o(u) = g(ui)+g—g
u

u;
i u;

Pode-se denotar por g(u*) um vetor identicamente nulo. Assim, u* representa o vetor que

leva a funcdo a seu valor nulo, e, portanto, representa a raiz da fungao.

O Método de Newton para um espago n-dimensional se propde a apresentar uma metodologia
para calcular, iterativamente, o valor do vetor u*. Para conseguir uma formula de recorréncia,
simplifica-se a expansdo de Taylor para primeira ordem, e impde-se que o valor de g(uj+)
seja identicamente nulo.

d!
gu)+ 22 (u, —u)=0 (I.32)

u;

Na expressdo acima o vetor u;+ representa uma aproximacao de primeira ordem para o zero

da fungdo g(u). E possivel determina-lo, desde que se conhegam os valores das componentes
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. . . d.
do vetor u; em torno do qual se estd expandindo a série, bem como o valor da derivada ki 4 ,

dul,

que € uma matriz n X n.

Se for tomada uma nova expansdo de Taylor em torno do ponto uj+; recém determinado,

. d. . ,
recalculando-se o novo valor da derivada d—g, desta vez em torno do ponto w1, € possivel

u

calcular uma aproximacao mais precisa para o vetor u*.

Generalizando, pode-se escrever a formula de recorréncia para o célculo da aproximacao de

u*, como mostrado na equagao (I1.33).

-1

U, =u; - i g(u;) (I1.33)
dul,,
Chamando o valor da derivada % de Kr, e definindo um vetor:
ul,
Au=u,, —u, (11.34)

Pode-se escrever a formula de recorréncia de outra forma, mais pratica do ponto de vista
computacional:

Ky Au=g(u;)

11.35
u,, =u, +Au ( )

Utilizando-se essa formulagdo, primeiro deve ser calculado o valor de Au através da resolucao
de um sistema linear, por exemplo, ¢ depois se deve calcular o valor da nova aproximacao da

raiz da funcdo (uj+1), incrementando-se o valor da aproximagao anterior (u;) com o vetor Au.
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e Aplicacdo do Método de Newton-Raphson para o MEF

Como foi visto no item anterior, o0 método de Newton-Raphson pode ser generalizado para
um espaco n-dimensional. No entanto, sua aplicacdo envolve uma fung¢do, cuja raiz se deseja

determinar.

Para aplicar o Método de Newton-Raphson para um problema estrutural discretizado com

elementos finitos, define-se a seguinte funcao:

gu)=r-f (I1.36)
Onde: u ¢ o vetor de deslocamentos dos graus de liberdade livres do sistema

f ¢ o vetor de esforgos externos (carregamentos) aplicados em cada grau de

liberdade livre do sistema

r ¢ o vetor dos esfor¢os restauradores (internos) aplicados aos graus de

liberdade livres do sistema

g(u) ¢ chamada de funcdo de esfor¢os desbalanceados

Abaixo ¢ feita uma interpretagdo dos termos que aparecem na férmula de recorréncia do

Meétodo de Newton-Raphson, na aplicagdo para o MEF nao linear:

K, — %8l ¢ a derivada da fungdo de esforcos desbalanceados em relacdo ao vetor de

i

u;

deslocamentos u. O resultado sera a matriz de rigidez do sistema, a qual deve ser recalculada

a cada iteracdo. Trata-se, portanto, da rigidez tangente;
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Au ¢ o vetor de deslocamentos que ocorre a cada iteragdo. E o resultado direto da resolugdo de

um sistema linear, a cada iteragao;

u; ¢ o vetor que descreve o total de deslocamentos em cada grau de liberdade ocorrido até a
iteracdo i. Descreve a posi¢ao geométrica de todo o sistema, a partir das coordenada da malha
inicial;

u;j+1 € o resultado da soma u; +Au, e fisicamente representa o novo deslocamento total em
cada grau de liberdade, ap6s a resolucdo de cada iteracdo do sistema. Serd o u; da proxima

iteragao.

e Matriz de rigidez de um elemento — Interpretacdes fisicas [6]

Calcular a matriz de rigidez de um elemento se resume a calcular a derivada da fungdo de
esforcos desbalanceados em relacdo aos deslocamentos, em cada grau de liberdade do

elemento.

Para formalizar este calculo, serdo definidos dois novos entes matematicos, em funcdo dos
quais € possivel escrever o vetor de esforgos restauradores no sistema global de coordenadas.

E possivel escrever:
r=Cn (11.37)

Onde: n - representa o vetor de esforcos restauradores da estrutura, escritos no

sistema local do elemento;

C - representa a matriz de rotagdo, que leva os esfor¢os do sistema local de

cada elemento, para o sistema global de coordenadas.
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Assim, a fun¢do g(u) pode ser escrita por:
g(u)=Cn-f (I1.38)
Derivando a expressao da funcao em relacao a u, tem-se a equagao (6).

K, -8 _cdn, rdC_dt (11.39)
du du du du

A interpretacao fisica de cada termo € a seguinte:

an , . . o .
Cd_ ¢ a rigidez constitutiva do elemento, dada sua geometria constante;
u

dC , .. e N
n' — ¢ arigidez geométrica da estrutura, dado um estado de tensdes constantes;
u

af , .. , . X
T ¢ a rigidez dos esforcos externos, e estd associada a mudanga do valor do carregamento,
u

em func¢do dos deslocamentos sofridos pelo elemento.

Dessa forma, para cada elemento ¢ possivel dividir os efeitos de rigidez interna em duas

componentes: rigidez constitutiva e rigidez geométrica.
e Calculo dos esforc¢os restauradores de cada elemento

Como mostrado no procedimento de aplicagdo do MEF nao linear, ¢ necessario o calculo dos
esforcos restauradores de cada elemento, frente aos deslocamentos que ocorrem nos seus
graus de liberdade. Esses esforcos sao utilizados, juntamente com o carregamento externo,

para a construcao da funcdo dos esfor¢os desbalanceados.

Foram desenvolvidas duas maneiras para calculo desses esfor¢os restauradores:
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A. Utilizando a rigidez tangente

B. Utilizando as fung¢oes de forma de cada elemento

0 Meétodo A

O método A ¢é de facil expansibilidade e adaptagdo para novos elementos a serem criados no
futuro, envolvendo um calculo matricial aproximado dos esfor¢os acumulados devido a
aplicacdo de deslocamentos nos graus de liberdade do sistema. Conhecendo a matriz de
rigidez dos elementos, ¢ os deslocamentos em cada grau de liberdade, é possivel realizar esse
calculo. A Figura 6a ilustra o comportamento de um grau de liberdade (1) que apresenta uma
curva de rigidez ndo linear. Deseja-se aplicar, por exemplo, um esfor¢o F nesse grau de
liberdade. O valor K; representa a rigidez tangente com deslocamento nulo. Pode-se calcular,
com base em K;, um valor de deslocamento u;, portanto, através de uma andlise linear. E
necessario calcular o valor de F, (esforgo restaurador da estrutura), para calcular o esfor¢o
desbalanceado, ilustrado na figura por (F-F,). Através da Figura 6b, ¢ possivel visualizar que
o calculo exato de F, deve ser feito através do deslocamento u; determinado anteriormente €

de uma rigidez K, chamada de rigidez secante, a qual ndo ¢ conhecida.
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= | P

(a) (b)

Figura 6 — (a) Rigidez tangente de um grau de liberdade (b) Detalhe da curva

O resultado seria:
F,=Ku, (11.40)
Se for tomada a aproximagdo de que a nova rigidez da estrutura (K,) apos sofrer o

deslocamento u; ¢ muito proxima de K, & possivel calcular os esfor¢os F, de maneira

aproximada:
F, =~ K,u, (IL.41)

Essa maneira aproximada de calcular F/,, leva a um calculo de funcao esforco desbalanceado,

para esse grau de liberdade ilustrado em (11.42).

gu)=F-F, (11.42)
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O método apresentado apresenta bons resultados para pequenos valores de carregamento F.
Quando se deseja aplicar grandes valores de F, € possivel dividir o carregamento em pequenos
incrementos, tdo pequenos quanto se queiram. Portanto, o método pode ser usado de maneira

incremental para calculos com alta ndo linearidade.

0 Método B

Esse método consiste em um calculo especifico, diferente para cada elemento, envolvendo

particularidades de tipos de esfor¢os envolvidos em suas formulagdes individuais.

Pode-se apresentar nesse item a metodologia geral que ¢ feita, porém detalhes s6 podem ser

observados em cada tipo de elemento. O método consiste nas seguintes etapas:

- Utilizando as fungdes de forma e os deslocamentos (escritos no sistema de coordenadas
local) de cada grau de liberdade do elemento, obtém-se uma curva parametrizada que

representa a linha eléastica do elemento.

- A linha elastica obtida representa a configuracdo deformada do elemento, e através dela,
pode-se utilizar expressoes geométricas e cinematicas para calcular os esforgos que surgem

em cada grau de liberdade para manter a linha elastica obtida.

- Os valores de esfor¢cos calculados sao os esforgcos restauradores do elemento, ¢ sdo

matematicamente exatos dentro da formulagao utilizada.

Cada tipo de elemento possui uma secao que indicara quais as equagdes utilizadas para o

calculo de esforgos restauradores através desse método.
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I1.3 Elementos

11.3.1 Elemento tipo Trelica — “Truss”

O elemento do tipo trelica, como esquematizado na Figura 7 possui seis graus de liberdade,
sendo todos eles de translacdo. Graus de liberdade de rotacdo n3o sdo contemplados, e,
portanto ndo necessariamente existe continuidade de angulo de inclinacdo entre esses
elementos. A continuidade angulo de inclinagdo ¢ garantida somente no interior de cada

elemento, por sua fun¢do de forma.

Figura 7 — Elemento do Tipo Trelica com 6 graus de liberdade

Os deslocamentos para cada ponto dessa estrutura estdo parametrizados em fungdo do

parametro ¢, ¢ sao dados pelas equacdes (11.43), (I1.44) e (11.45), onde o; e ¢; indicam o
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deslocamento e a funcdo de forma para o grau de liberdade 7, respectivamente. Assim escreve-

se as coordenadas x, y e z do elemento em fun¢ado de ¢.

x(t= @), +o,()0, +t (11.43)
V()= @, ()8, + @5 (2)0s (IL44)
w(t)= @5 (1)3; + g (1)J (11.45)

Assim, pode-se escrever a curva parametrizada - equacdo (I1.46) - desse elemento também em
fun¢do do parametro ¢, que pode variar entre 0 e L (sendo L o comprimento inicial do

elemento).

(1) = (x(1), (1), 2(2)) (IL.46)

e Determinacéo das Funcdes de Forma

As fungdes de forma tém o aspecto mostrado na equacao (I1.47), onde a e b sdo varidveis a

serem determinadas a partir das condi¢gdes de contorno para cada grau de liberdade.
p(t)=at+b (I1.47)

A determinacdo das constantes a e b ¢ feita impondo-se um deslocamento unitario na dire¢ao
do grau de liberdade em questdo e posteriormente, através das condigdes de contorno
impostas por este deslocamento, determinam-se as constantes e conseqiientemente a fungao
de forma para o respectivo grau de liberdade. A Tabela 2 mostra as condi¢gdes de contorno e

fungdes de forma obtidas para cada grau de liberdade do elemento.



Tabela 2 — Funcdes de Forma para o elemento de Trelica
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Grau de liberdade 1 Grau de liberdade 2 Grau de liberdade 3
¢ 0)=1 ¢ (L)=0 »,(0)=1 ¢@,(L)=0 »;(0)=1 ¢@(L)=0
t t t
¢1(t):1_z ¢2(t):1_z (os(t):l_z
Grau de liberdade 4 Grau de liberdade 5 Grau de liberdade 6
?2,(0)=0 ¢, (L)=1 ps(0)=0 o, (L)=1 ?:(0)=0 ¢ (L)=1
t t t
@, (1) =7 @5 (1) =7 @,(?) =7

Substituindo nas equagdes (11.43), (I1.44) e (I1.45) as funcdes de forma ja calculadas, pode-se

escrever as equagoes (11.48), (11.49) e (I1.50).

t t

Xt (1 - Zj 5+ (Zj 5, +1 (I1.48)
t t
t t

(0 [1 _ ZJ 5+ (ZJ 5, (11.50)

e Calculo do comprimento da barra na configuracao deformada

O novo comprimento na configuracdo deformada pode ser calculado através da equagdo:
- t]ar
L'= J.o

—|dt 11.51
7 (IL51)

Desenvolvendo o integrando, obtém-se:
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_ J("'—] (@) [a’_j ) J(é -5 HJZ o0 o)
dt dt dt L L L (11.52)

:%J(@ 5V + 12 +2L(5, —5)+(6. -5,V +(5,—5,)

dr
di

Portanto, a integral fica bastante simplificada, ¢ o valor de L’ pode ser calculado como

mostrado na equacao (I1.53).

L'=y(8, -8, + L’ +2L(5, - 6, + (5, - 5,)* +(5, -5, ) (IL.53)

e Calculo da constante elastica para a direcao da barra de trelica

Admitindo uma for¢a de magnitude 7 na direcdo axial, um deslocamento J e uma constante

elastica de proporcionalidade k entre 7 e 6 tem-se:
T
T=ko<=0= % (I1.54)

O valor do trabalho W realizado pela forca 7 ¢ numericamente igual ao trabalho

complementar, admitindo-se que o material € linear elastico. Assim:

f T T?
W =W*= [l =[—dT =—— (I1.55)
) ) k 2k

A energia de deformacdo por unidade de volume da trelica (1) também possui mesmo valor
que a energia complementar, dado que o material ¢ elastico linear. Dessa forma, pode-se

escrever que:

do=2— (IL.56)
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Calculando agora a energia de deformacao (U), tem-se:

2 T2 L TZ TZL
U:U*:IV;—EdV:jjszAZ dAdxz_[mdxz s (IL.57)

0
Igualando U com W, tem-se:

2 2
Ul TL o H (IL58)
2k  2EA L

A equacdo (I1.58) mostra o valor da constante (k) de rigidez de uma barra de treliga, fungao de

sua geometria ¢ de seu material.

e Calculo dos esforgos restauradores

O tnico tipo de esfor¢o envolvido neste elemento € o de tragdo ou compressdo. Desta forma,
para calcular os esforgos restauradores, a informagcdo do comprimento da barra na

configuracdo inicial (L) e deformada (L) s@o suficientes.

Pode-se calcular a tragdo acumulada (7”) a partir dos resultados das equagdes (I1.53) e (I1.58),

da seguinte forma:
T'=k(L'-L) (I1.59)
No caso de haver pré-tragdo, ¢ necessario contabilizar seu efeito antes de o carregamento ser

aplicado. Modificando a equagdo (I1.59) e denotando por 7, a pré-tracdo, o esforco

restaurador pode ser calculado de maneira mais geral pela equagao (I11.60):

T'=T, +k(L'-L) (1L.60)
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e Matriz de Rigidez da Trelica

Os coeficientes da matriz de rigidez derivam de um equacionamento de energia de

deformacao da treliga.

A equagdo de energia de deformacdo (U) para uma estrutura ¢ dada pela expressdao (IL.61),
obtida através da integracdo da expressdo volumétrica da energia por unidade de volume para
um comportamento elastico linear. De posse dessa equagdo ¢ possivel extrair cada termo da
matriz de rigidez efetuando as substituicdes das deformagdes, calculadas em funcdo dos

deslocamentos e também admitindo que a trelica possua apenas rigidez axial.

v=E gl -dv (I11.61)

2 JVolume =

Com base em [7], o valor & na trelica ¢ dado pela equagao (11.62)

2 2 2 2
g 2 OV Aoy Ow 10w (1162)
e ar” 2\lar) o 2\ax
Substituindo(I1.61) em (I1.62), obtém-se a equacao (I11.63):
2 2 2
u=EAP ) gy B4 La—”[@ do AP0V (IL.63)
2 0\ ox 2 % ox\ox 2 %0 ox\ ox

Considerando a barra inicialmente alinhada com o eixo x do sistema de coordenadas, e os

valores de deformacdes pequenos, pode-se escrever:

o —Es. =L_p® - (I1.64)
’ A ox ox

O resultado da equagdo (I1.64) permite que se escreva a expressao da energia de deformagdo

da forma mostrada na equacao (II.65).
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2 2 2
y_EAG-8) T(6-6) T(8-5) (IL.65)
> L 2 I 2 1

Utilizando o Primeiro Teorema de Castigliano [8], que pode ser descrito pela equagao (I1.66),

¢ possivel obter a matriz de rigidez do elemento de treliga.

2
s -2V
" 0q,0q,

(I1.66)

Organizam-se entdo os coeficientes de tal forma que os termos que possuem a tragdo 7
constituem a chamada matriz de rigidez geométrica (K¢), € os termos restantes fazem parte da
matriz de rigidez constitutiva eldstica, dentro das hipoteses adotadas (Kg). Sendo assim, a
matriz de rigidez do elemento - equagdo (I1.67) - ¢ dada pela soma das matrizes (I1.68) e

(IL69).

K=K¢+K (I1.67)

E importante notar que as matrizes aqui apresentadas estdo escritas com base no sistema de
coordenadas local do elemento e, portanto, é necessario realizar uma rotagao antes de inseri-

las na matriz de rigidez global. (Apéndice A)

£ _EA

K, = (I1.68)
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0 0 0 0 0 0
0 1 0 0 -1 0
7/0 0 1 0 0 -1

K, =— (I1.69)
L0 0 0 0 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1

11.3.2  Elemento tipo Cabo — “Cable”

O elemento do tipo cabo, como esquematizado na Figura 8, possui seis graus de liberdade,
sendo todos eles de translacdo. Graus de liberdade de rotacdo ndo sdo contemplados, e,
portanto ndo necessariamente existe continuidade de &ngulo de inclinagdo entre esses
elementos. A continuidade angulo de inclinagdo € garantida somente no interior de cada

elemento, por sua fun¢do de forma.

Figura 8 — Elemento do Tipo Cabo com 10 graus de liberdade
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Os deslocamentos para cada ponto dessa estrutura estdo parametrizados em fungdo do
parametro ¢, ¢ sdo dados pelas equagdes (I1.70), (I.71) e (I.72) , onde J; e ¢; indicam o
deslocamento e a fun¢do de forma para o grau de liberdade 7, respectivamente. Assim escreve-

se as coordenadas x, y e z do elemento em fun¢do de ¢.

x(0= ()0, + @, ()5, +1 (IL.70)
V(O 0, ()5, + 5 (1)05 (IL71)
w(t)= 5 ()05 + g (1), (I1.72)

Assim, pode-se escrever a curva parametrizada - equagao (I1.73) - desse elemento em fungao

do parametro ¢, que pode variar entre 0 e L (onde L é comprimento inicial do elemento).

() = (u(t),v(t),w(1)) (IL73)

e Determinacéo das Funcdes de Forma

As fungdes de forma t€m o aspecto mostrado na equagao (II.74), onde a, b e ¢ sdo variaveis a

serem determinadas a partir das condi¢gdes de contorno para cada grau de liberdade.
p(t)=at> +bt+c (11.74)

A determinag¢do das constantes a, b e ¢ ¢ feita impondo-se um deslocamento unitdrio na
dire¢do do grau de liberdade em questdo e posteriormente, através das condi¢des de contorno
impostas por este deslocamento, determinam-se as constantes e consequentemente a func¢ao

de forma para o respectivo grau de liberdade, como pode ser visto na Tabela 3.
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Tabela 3 — Funcdes de Forma para o elemento de Cabo

Grau de liberdade 1 Grau de liberdade 2 Grau de liberdade 3
p0)=1 o(L)=0 ¢,0)=1 ¢;(0)=0 ¢, (L)=0 ¢;0)=1 ¢;(0)=0 ¢;(L)=0
col(t)zl—% %(z):l—tL—z2 ¢3(z)=1—2—22

Grau de liberdade 4 Grau de liberdade 5 Grau de liberdade 6

»,(0)=0 ¢,(L)=1

t
@, (1) —Z

ps(0)=0 o (L)=1 ¢(L)=0 ¢ (0)=0 ¢, (L)=1 @ (L)=0

2t ¢ 2t t?

H="—-— H="——
¢5() L Lz ¢6() L Lz

Substituindo nas equagdes (I1.70), (IL.71) e (I1.72) as funcdes de forma ja calculadas, pode-se

escrever as equagoes (I11.75), (11.76) e (I1.77).

t t

u(t)= [I_Zjﬁl Oy (IL.75)
t? 2t
t? 2t

e Calculo do comprimento do cabo na configuracéo deformada

O novo comprimento na configuracdo deformada pode ser calculado através da equagao:

[

dt (11.78)

dt
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Desenvolvendo o integrando, obtém-se:
dx )’ dy P (dzY
dt dt dt
s,-5 Y [ 2 AN 2 2\ T
= T-I—l + —?524- z—? 55 + —?534' z—? 56

A integral ¢ muito mais complicada do que no caso do elemento de trelica, e, portanto

dr’
dx

(IL.79)

recorreu-se a um método numérico para seu calculo. O método utilizado foi o de Romberg.

(Apéndices B e C).

e Calculo da constante elastica para a dire¢ao do cabo

O calculo da constante eléstica k para a direcao do elemento de cabo ¢ semelhante ao de

trelica, e seu valor ¢ o mesmo desenvolvido na equagdo (I1.58).

e Calculo dos esforgos restauradores

Analogamente ao elemento de treliga, o Unico tipo de esforco envolvido nesse elemento sdao
esforcos axiais. Assim, o calculo dos esforcos restauradores ¢ feito de maneira

semelhante.Como ¢ feito na equacao (11.60).

A aplicagdo dos esforcos restauradores, nesse caso, ndo ocorreria exatamente na direcdo que
une os nés do elemento, mas sim na dire¢do tangente a curva parametrizada do cabo. No

entanto, admite-se que essa diferenca de direcdo ¢ desprezivel para um bom refinamento de
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malha, e por isso, a aplicacdo dos esforcos foi feita na propria direcdo que une os nos do

elemento.

e Matriz de Rigidez do Cabo

A matriz de rigidez do cabo, como a da trelica, pode ser dividida em duas partes: uma

constitutiva e outra geométrica.

Utilizando as equagdes (I.61) e (I.62), em um procedimento analogo ao aplicado no
elemento de trelica, pode-se obter a expressdo (II.80), para a energia de deformagdo no

elemento de cabo, em fun¢do dos deslocamentos em cada grau de liberdade:

2
y EAl6-8) | T igg_i@@+igg+i5§—i@@+i5§} (I1.80)
AR DA A AR A T A EY)

Utilizando o Primeiro Teorema de Castigliano, descrito pela equacdo (I1.66), obtém-se a
matriz de rigidez constitutiva eléstica - equacdo (I1.81) - e geométrica - equagao (I1.82) - para
o elemento de cabo. A matriz de rigidez total para o elemento de cabo serd a soma da parte
geométrica com a parte constitutiva elastica. Essas matrizes estdo escritas no sistema de
coordenadas local do elemento. A aplicagdo de uma rotagdo serad necessaria para montar a

matriz de rigidez global (Apéndice A).
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K, = (IL81)

O 0 0 0 0 0
o X 0 o -2 o
3 3
00 40 o 2
K,== 3 3 (I1.82)
L'o 0 0o o o0 o0
o -2 o o 2 o
3 3
o o -2 o0 o 2
i 3 3 ]

11.3.3 Elemento tipo Portico — “Beam”

O elemento do tipo pértico, como esquematizado na Figura 9 possui doze graus de liberdade,
sendo seis deles de rotacdo e seis de translacdo. Devido a existéncia dos graus de liberdade de
rotagdo, ¢ garantida a continuidade angular entre esses elementos, isto €, o angulo entre dois
elementos consecutivos da malha inicial ¢ mantido, mesmo que haja grandes deslocamentos
da estrutura como um todo. As fungdes de forma garantem, também, a continuidade angular

no interior de cada elemento.
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1

Figura 9 — Elemento do Tipo Pértico com 12 graus de liberdade

O elemento desenvolvido possui algumas hipoteses simplificadoras em sua formulagao,

descritas abaixo:
0 Nao foi considerado o acoplamento entre flexao e torgao.

0 A flexdo ¢ independente e para cada plano de flexdo, e ndo foi considerado

acoplamento entre eles.
0 Em caso de tor¢do, ndo ocorre empenamento da se¢do transversal.
0 Na flexdo, as se¢des planas permanecem planas.

0 As rotagdes no espago sdao de pequeno valor, de modo que sdo consideradas

comutativas, o que ndo ocorreria para o caso de grandes rotacdes no espago.

As posicdes para cada ponto dessa estrutura estdo parametrizados em fungdo de ¢, que deve
variar de 0 a L, a fim de obter toda a linha eléstica, e sdo dados pelas equagdes (I1.83), (I1.84)

e (II.85), onde J; e ¢; indicam o deslocamento e a funcdo de forma para o grau de liberdade i,
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respectivamente. As fungdes x(2), y(t) e z(t) indicam as coordenadas em fun¢do do parametro

L.

x(0)= ¢, ()6, + ¢, ()0, +1 (I1.83)
V()= @, ()0, + 9 (1) + ¢y ()5 + @1, ()5, (I1.84)
2(tF @5 ()05 + @5 (D)05 + @y (D)0 + ¢y, ()0, (I1.85)

Assim, pode-se escrever a curva parametrizada - equagao (I1.86) - desse elemento em fungao

do paradmetro x, que pode variar entre 0 e L (comprimento inicial do elemento).

() = [x(2), y(2), 2(1)] (11.86)

e Determinacéo das Funcdes de Forma

As fun¢des de forma possuem diferentes graus polinomiais, dependendo do grau de liberdade
que retratam.Para os graus de liberdade de deslocamento axial e torcional, sdo utilizadas
funcdes de primeiro grau — equacgdo (II.87), enquanto que para os graus de liberdade de
translacdo da direcdo transversal ao portico, e rotagdo causando momento fletor, sdo utilizadas

funcdes de terceiro grau — equagao (I1.88)
p(t)=at+b (I1.87)
p(t)=ct’ +dt’ +et+ f (11.88)

A determinagdo das constantes a, b, ¢, d, e e f'¢ feita impondo-se um deslocamento unitario na
dire¢do do grau de liberdade em questdo e posteriormente, através das condi¢des de contorno

impostas por este deslocamento, determinam-se as constantes e consequentemente a func¢ao
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de forma para o respectivo grau de liberdade. A Tabela 4 mostra as condigdes de contorno e

funcdes de forma obtidas para cada grau de liberdade do elemento.

Tabela 4 — Func¢des de Forma para o elemento de Pértico

Grau de liberdade 1 Grau de liberdade 2 Grau de liberdade 3
»,0)=1 ¢(L)=0 »,0)=1 ¢,(L)=0 0,(0)=1 (/73(L)=0
%(t):l—i 4o, _ a0 =0 ol _o 40y =0
L dt |, dt |, dt |, dt |,
tY () tY (t)
=2 —| =3 —| +1 =2 —| -3 —| +1
0, (1) (Lj (Lj 0,(1) [Lj (Lj
Grau de liberdade 4 Grau de liberdade 5 Grau de liberdade 6
9, (0)=1 ¢, (L)=0 ps(0)=0  o(L)=0 ?:,(0)=0 ¢, (L)=0
t d d
0, () =1-— Ps —_1 do; -0 Ps| _ do; -0
L dt |, dt |, dt |, dt |,

3 2

t t
¢5(t):_L_2+2f_t

3 2

t t
(06(l):7—22+t

Grau de liberdade 7

Grau de liberdade 8

Grau de liberdade 9

(07(0):0 ¢7(L):1

t
@, () :Z

9(0)=0 o (L)=1
dt |, dt |,

e (tY
n0=7) {7

P (0)=0  ¢,(L)=1

ap| _o 49| _,
dt |, dt |,

tY (tY
no=47) {7

Grau de liberdade 10

Grau de liberdade 11

Grau de liberdade 12

?(0)=0 ¢,(L)=1

t
@,0(t) = Z

?,(0)=0 ¢,(L)=0

dpn| _o dou| _,

dr |, dr |,
£t

(Pn(t)=_7+f

P, (0)=0 ¢,(L)=0

dpn| _o 90| __,

dr |, dr |,
£t

¢12(t)=?_f

Substituindo nas equagdes (I11.83), (I1.84) e (I1.89) as funcdes de forma ja calculadas, pode-se

escrever as equacdes (11.90), (IL.91) e (11.92).
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t t
xX(t)= (1 - ZJ@ 0+l (11.90)

ANNEAY N AUNEA)
tY (tY P e (Y o
Z(t): {2(2j —3(zj +1:|53 +|:2I—F—t:|55 +{3(zj —2(2J ]59 +{z—?j|5”(1192)

t3 t2
S, + [?—2}512(11.91)

e Calculo do comprimento do pértico na configuragdo deformada

O novo comprimento na configuracdo deformada pode ser calculado através da equagdo:

)

ar
dt

dt (I1.93)

Desenvolvendo o integrando, obtém-se:

dr| _ (arx(t)J2 +(dy(t)J2 +(dz(t)j2 (11.94)
| d | dt dt dt '

Para calcular a fun¢do que sera o integrando (equacdo (I1.93)), é necessario calcular as

derivadas de cada um dos componentes x, y € z, em relagdo ao parametro z.

dx(t) _(6,-6,)

1195
dt L e
dy(t) _ d, (1) 5+ dog (1) 5.+ doy(?) 5.+ doy, (1) 5, (11.96)
dt dt dt dt dt

dz(1) _ doy (1) 5. L dps @) 5. L0 5, L d9u () 5 (11.97)

dt dt dt
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Calculando a derivada de cada uma das fun¢des de forma, € possivel obter as seguintes

expressoes:

do,() _dp,() _ £t

dt dt L I
dcog(t):d%(t):_ i+6i
dt dt r I’

d(DS(t) :_d(oé(t) :_3i+4i_1
dt dt I’ L

dp, (1) __de, (1) _ _3i+2i
dt dt L L

(11.98)

(11.99)

(I1.100)

(IL101)

Substituindo as equagoes (I1.98) a (I1.101) nas equacdes (I1.95) a (I1.97), e essas na equagao

(I1.94), pode-se obter uma expressao para o integrando da equagao (I1.93), para o calculo do

comprimento na configuragao deformada do portico.

e Calculo dos esforgos restauradores

Nesse elemento podem estar presentes quatro tipos de esforcos: tragdo (ou compressao), forca

cortante, momento fletor € momento torgor. Cada um dos trés esfor¢os pode ser calculado a

partir da equagdo da linha elastica do portico. Para o esfor¢o normal, o célculo ¢ feito de

maneira semelhante ao elemento de treliga.

Pode-se calcular a tragdo acumulada (7”) a partir dos resultados da equagdo (I1.93) da seguinte

forma:

T'=k(L'-L)

(I1.102)
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Na equacao (I1.102) & representa um valor de rigidez axial equivalente para o portico, que sera

desenvolvido na préxima se¢ao.

No caso de haver pré-tracdo, ¢ necessario contabilizar seu efeito antes de o carregamento ser
aplicado. Modificando a equacdo (II.102) e denotando por 7, a pré-tragdo, o esforgo

restaurador normal pode ser calculado de maneira mais geral pela equagao (I1.103):
I'=T, +k(L'-L) (I1.103)

Para o célculo dos momentos fletores acumulados no poértico, e que portanto deverdo ser
aplicados como esforgos restauradores da estrutura, ¢ necessario utilizar a relagdo entre

momento fletor e curvatura, encontrada em Gere [8].
M = Elx (I1.104)
Onde: M ¢ o momento fletor em uma segdo transversal do portico;
ET ¢ arigidez flexional do pdrtico em uma se¢ao transversal,
xk € a curvatura do portico em uma se¢ao transversal.

Uma vez obtidos os componentes y(?) e z(t) da equacdo da linha eléstica parametrizada, ¢
possivel calcular individualmente a curvatura que ocorre em cada um desses planos
individualmente e, ap0s isso, através de uma soma de vetores, realizar o calculo da curvatura
total no espaco tridimensional. A equagdo (I[.105) mostra como calcular a curvatura
geometricamente exata em um plano a partir da funcdo da linha elastica e, portanto, pode ser
aplicada individualmente para y(?) e z(¢). A demonstracdo da equag¢do (II.105) se encontra no (

Apéndice D).
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(I1.105)

Onde: R ¢ o raio de curvatura do pértico na coordenada x;
f(?) é a funcdo da linha eléstica do portico;

Assim, € possivel realizar o célculo dos momentos fletores restauradores, utilizando-se as
equagdes (I1.104) e (I1.105), para y(?) e z(¢) individualmente e, portanto, calculando momentos
fletores que atuam individualmente em dois planos distintos. O célculo da segunda derivada
da func¢do da linha eléstica pode ser feito de maneira analoga ao célculo da primeira derivada
(equagdes (I1.90), (I1.91) e (II.106)), porém desta vez apenas para as fungdes y(t) e z(2).

Assim:

2 2 2 2 2

dtz dtz 2 dtz 6 dtz 8 dt2 12 (11107)

2 2 2 2 2
d Z(t):d (03(05 +d ¢5(t)5 +d (09(05 +d (011(t)5

dt’ ar g g T g o (11.108)

Para o calculo dos esfor¢os cortantes de maneira exata, ¢ possivel derivar a equagdo (I1.105),

pois € possivel mostrar que:

dM (1)
dt

=V (1) (I1.109)
Onde: M(?) é o momento fletor em uma se¢ao de coordenada x;

V(1) ¢ a forga cortante nessa mesma coordenada x.

Assim, deduz-se que:
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V(1) = EI L {d3f3(f){1+(mj }3{‘12&(1)] df(t)} (IL.110)
T} dt dt dt dt

. (df(t)
dt
O calculo da segunda e terceira derivada da fungdo da linha eléstica pode ser feito de maneira
analoga ao calculo da primeira derivada (equagdes (I1.90), (IL.91) e (II.111)), porém desta vez
apenas para as funcdes y(?) e z(t), necessarias para o calculo de M(?) e V(t). Assim:

dv() _d’e,(1) o dle(1) o d’e () o d’p,(0)
dzg): i T Ot T Ot g o (1

d’wit) d’e,(0) o dPet) . de,() . d’e,(t)
dt? = dt32 53 + dtSZ 55 + dt92 59 + dtl; 511 (IL113)

As derivadas segundas em relagdo a x das fungdes de forma estdo descritas a seguir.

Co,() _ o) _ o) _ dle) 12 6 (IL.114)

dt* dt* dt? dt® r I’

d2¢5(t):_d2(06(t):_£ 4

A IL115
dr* dr* r L ( :
2 2

d colé(t) _ d ¢1§(t) :_QZHE (IL116)
dt dt L

Para a derivada terceira:

3 3 3 3 3
d y(t)zd ¢2(t)5 +d ¢6(t)5 +d ¢8(t)5 +d §012(t)5

ar’ a7’ drr ° a’ b dr 12 (I1.117)
Iz _dp(0) . dp(0) . o) . A1)
dr’ = dt33 53 + dt53 55 + dt93 59 + d;; 511 (11118)
As derivadas terceiras em relacao a x das fungdes de forma estdo descritas a seguir.
3 3 3 3
o, (1) _dp;(0) _ dp(t) _ dpy(1) _12 w119)

dt’ dt’ dr’ dt’ I
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d3¢5(t) :_dS(Ds(t) _ d3¢11(t) _ _d3¢12(t) _ _i

11.120
dr’ dr’ dr’ dr’ L ( )

Para o calculo dos momentos torgores restauradores, utiliza-se a seguinte relagao:
MT(t)=%6’(t) (I1.121)

Onde: Mr(t) ¢ 0 momento tor¢or em uma coordenada x do poértico;
GJ/L ¢ arigidez torcional equivalente do portico;
0(t) € o angulo de tor¢ao.

Assim, o momento torcor restaurador, ou seja, acumulado no pdrtico, pode ser calculado se o
angulo de tor¢do for conhecido, que ¢ o que ocorre, pois os esfor¢cos restauradores sao
calculados apds cada iteracdo e, portanto, os deslocamentos em cada grau de liberdade sao

conhecidos. Isso também permite o calculo das fungdes y(?) e z(¢) para os calculos de M(z) e
V).

Inserc¢do dos esforcos restauradores

Para inserir os esforgos restauradores (esforgos internos acumulados no elemento) no vetor de
esforcos global do sistema sdo feitas algumas simplificagdes com relagdo a direcdo da
inser¢ao desses esfor¢os. Apesar de os elementos sofrerem rotacdes, a dire¢do tida como
normal ¢ considerada a dire¢cdo da reta que une os dois nos. A dire¢do cortante, por sua vez, ¢

considerada como sendo ortogonal a essa aproximagao de dire¢do normal.

A Figura 10 mostra em azul as diregdes exatas e, em vermelho, as dire¢des aproximadas para

as direcdes normal e cortante em um plano da linha elastica. As mesmas dire¢des
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aproximadas definem as dire¢cdes de atuacdo dos momentos fletores e torgor restauradores

para cada n6 do elemento.

Figura 10 — Aproximacao nas direcdes dos esfor¢os restauradores

Note que com o refinamento da malha esse erro torna-se cada vez menor para cada elemento

e, portanto, nao se torna um problema na modelagem dos problemas fisicos.

e Matriz de Rigidez do Portico

Os coeficientes da matriz de rigidez derivam de um equacionamento de energia de
deformagdo do portico. A expressdo (II.109) descreve a energia de deformacdo a partir dos

valores de deformagdo longitudinal, e distor¢cdes no plano de cada se¢do transversal de um

portico.

U= Ejgjxdmg [l +eyar (I1.122)
24 29
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E necessario escrever uma expressdo para calcular as deformagoes &xx, €xy € &, a partir dos

deslocamentos.

E possivel demonstrar, a partir de parametros geométricos, a equagdo (I1.123) que representa
o valor da deforma¢ao em um ponto da estrutura, devido a superposi¢cdo dos seguintes efeitos:
flexdo que ocorre no plano cuja normal é y e no plano cuja normal é z (sistemas de
coordenadas locais) e devido ao deslocamento axial das se¢des transversais quando sujeitas a
esfor¢os de tracdo ou compressao.

2 2 2 2
. =a_“_y5_j+l(@) 0 Zul(@_WJ (IL.123)
Oox Oox 2\ ox Oox 2\ Ox

Onde: u ¢ o deslocamento de um ponto da estrutura na direcao x;
v € o deslocamento de um ponto da estrutura na dire¢ao y;
w ¢ o deslocamento de um ponto da estrutura na direcao z.

As expressdes para o calculo de u, v e w estdo descritas a seguir.

u(t)= @, ()6, + @, (1)9, (IL.124)
V()= @, ()8, + s (1) + ()05 + 91, (1)0), (I1.125)
w(t)= ()0, + @5 (1)05 + @y (1), + @, ()0, (IL.126)

E possivel escrever, também, relagdes puramente geométricas que relacionem a distor¢ao com

a rotacao — equacgoes (I11.124) e (I1.125).

2
gl = zz(%j (11.127)
’ ox

2
& = yz(%j (1L.128)



57

Onde: 0 ¢ o angulo de rotacao da se¢do transversal.
A expressao para o calculo de 6(t) esta descrita a seguir.
O@t)= p,(1)0, + ¢, (1)0), (I1.129)

A equacdo (II.122) pode ser escrita da forma:
U—EH eszdx+£” (£2 + &% )dAdx (11.130)
- 2 g xx 2 4Ty xz .

Onde: E ¢ o modulo de elasticidade do material do poértico;
G ¢ 0 mddulo de cisalhamento do material do portico.

Substituindo as equagdes (I11.123), (I1.127) e (I1.128) na equacao (II1.130), desprezando-se os

termos de quarta ordem e considerando as integrais L ydA, Lza’A e L vzdA nulas, pela

simetria dos tipicos problemas que irdo ser tratados, nos quais os momentos de primeira

ordem e produtos de inércia sdo nulos, € possivel obter:

2 9 & 2 %0 ox\ ox 2 90 ox E
2.\2 2 \2 2
+2 ' 6_122 abc+E "9 vzv dx+g L(%] dx
2 90 ox 2 Y0\ ox 2 Y0\ ox

As derivadas da equagdo acima podem ser calculadas a partir das equag¢des polinomiais

2 2 2
U=E L(@uj dx+ﬁ La—u(@J dx+% Lé‘_u(@wj dx

(IL131)

(I.124), (I1.125), (I1.132) e (I1.129). Substituindo-as na equagdo (II.133) obtém-se uma
expressdo para a energia interna (U) de deformacdo do portico. Aplicando-se o Primeiro
Teorema de Castigliano, para obtengdo dos esfor¢os devido a deslocamentos unitarios em
diversos graus de liberdade, ¢ possivel obter os coeficientes de influéncia de rigidez entre
cada par de graus de liberdade. Podem-se escrever esses coeficientes na forma matricial

(matriz de rigidez) e, dividindo essa matriz em duas partes, sendo uma delas formada por
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termos que contenham explicitamente a tragao 7" acumulada no elemento e, outra, contendo os
outros termos, sdo identificadas respectivamente a matriz de rigidez geométrica e a matriz de
rigidez constitutiva. Essas estdo escritas a seguir, sendo Kg a matriz de rigidez geométrica, e

K¢ a matriz de rigidez constitutiva.

Kl KZ
K. = (I1.134)
K, K,
Onde:
E—A 0 0 0 0 0
L
0 12L£3?I 0 0 0 6L£ZI
0 0 12[32'] 0 3 65;'1 0
_ L L
K, = GJ (I1.135)
0 0 0 _— 0 0
L
0 0 3 61*';’] 4FE] 0
L L
0 6[21 0 0 0 4E]
L L L |
— E—A 0 0 0 0 0
L
0 3 12?'] 0 0 0 65;'1
L
0 0 B 12571 3 613[ 0
_ L L
K, = GJ (I1.136)
0 0 0 - 0 0
L
0 0 6€I 2FE1 0
L L
0 B 612[ 0 0 0 2EI
L L L




Com:

-== 0
L
0 12;1
0 0
0 0
0 0
0 65]
EA
= 0
L
12E1
0 >
0 0
0 0
0 0
0 651
I<1 KZ
K, K,

0 0
0 B 65[
0 6El 0
G 0
L
2EI 0
0 2E1
L
0 0 0
EI
0 0 - 6L2
0 - 65[ 0
L
4EL
L
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(IL.137)

(IL138)

(I1.139)



6T
5L

6T

5L

10

6T
5L

0 0
o T
10
T
10
0 0
21L
15
0 2TL
15 |
0 0
o T
10
T
10
0 0
R
30
0o _IL
30
0 0
o _T
10
KA
10
0 0
o
30
0o _IL
30
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(11.140)

(IL.141)

(I1.142)
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o 0 0 0 0 0
o L v o o -L
5L 10
o o L o L
K, = SL 10 (11.143)
o 0 0 0 0 0
o o L o 2L
10 15

o -L o o o 2

i 10 15 |

I1.4 Carregamentos — “Loads”

Para a analise estatica de risers, devem ser contemplados o peso proprio da estrutura e efeitos
de interagao fluido-estrutura, provenientes do arrasto hidrodinamico. Dessa forma, utilizando-
se os dados usuais tidos como dados de entrada para um software de andlise de risers,

incluem-se na anélise esses dois tipos de carregamentos.

Além disso, ¢ possivel inserir qualquer tipo de esfor¢co nodal na malha gerada, dessa forma
generalizando a estrutura do software para qualquer tipo de carregamento que venha a ser

importante para analises especificas.

11.4.1 Peso Proprio e Empuxo

O peso proprio e o empuxo sdo considerados de forma conjunta, uma vez que deve ser
fornecida como dado de entrada, para cada trecho de riser, a massa especifica por unidade de

comprimento do material que o compde, bem como a densidade da 4dgua. Assim o célculo
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feito dentro do software fica extremamente simplificado e estd explicitado na expressao
(I1.144). Calcula-se o empuxo como na equacao e com a diferenca obtém-se o peso efetivo do

cabo submerso.

P=p-L-g (I1.144)
P=p, 7-D-L (I1.145)
Onde: p ¢ a massa especifica por unidade de comprimento;
Pagua € @ massa especifica da dgua por unidade de comprimento;
L ¢ o comprimento do trecho;
g ¢ a aceleracdo da gravidade;

D é o diametro do cabo;

11.4.2 Corrente Maritima

A corrente maritima ¢ fornecida através de perfis de corrente, tidos como entrada do
programa. Usualmente se dispde de uma tabela que relacione a cada profundidade com um

valor de velocidade de corrente.

Para transformar esse perfil discreto em continuo, ¢ feita internamente ao programa uma
interpolagdo linear a cada dois pontos fornecidos. Dessa forma, se obtém um perfil ilustrado

na Figura 11.
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Figura 11 — Perfil de corrente obtido com interpolacio linear entre as cotas

Formula de Morison

Para aplicar esse modelo, para cada elemento, ¢ necessdrio realizar uma decomposicao da
velocidade, em duas direcdes: normal e tangencial a direcdo do elemento. Com posse dos
coeficientes de arrasto nessas duas diregdes, tidos como dados de entrada, da massa especifica

da 4gua do mar, e do didmetro externo do riser, podem-se aplicar as equagdes (I1.146) e

(IL147).
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F - _% p,De, [V [V, (IL.147)
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Onde: F, ¢ a forca de arrasto na dire¢do normal;

n
E ¢ a forga de arrasto na direcdo tangencial;

pr€ amassa especifica do fluido (d4gua do mar);

D ¢ o diametro externo;

can € 0 coeficiente de arrasto na dire¢ao normal;

ca: € o coeficiente de arrasto na direcdo tangencial,

V »é 0 médulo da componente normal da velocidade;

V& omodulo da componente tangencial da velocidade.

IL.S Restri¢oes (“Constraints™) [9]

As restricdes sao formas de manter determinados graus de liberdade fixos. Como existem
alguns tipos de restricoes muito comum nas analises, foram criados tipos especificos de
restri¢des. Engastes e articulagdes sao exemplos. Porém, para haver maior flexibilidade, foi
incorporada a possibilidade de o usuario definir exatamente a restricao que deseja. Para tal, ¢

permitida a escolha de quais graus de liberdade terdo seu movimento impedido.
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11.5.1 Engaste

O engaste nada mais que o tipo de restrigdo que deixa todos os graus de liberdade nodais de
rotagdo e translagdo fixos. Com essa restricao o né ¢ impedido de se movimentar tanto linear
quanto angularmente e sofre a acdo de algumas forg¢as conhecidas como reagdes vinculares.

Tais reagdes, para o engaste, compreendem forcas e momentos.

11.5.2 Articulagcdo

A articulacdo ¢ o tipo de restricao que deixa todos os graus de liberdade nodais de translacao
fixos. Com essa restri¢do o n6 ¢ impedido de movimentar-se, porém ¢ mantida a liberdade
angular em todas as dire¢des. As reagdes vinculares sdo somente forcas, mas ndo momentos,

como no caso do engaste.
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11.5.3 Restric¢do definida pelo usudrio

Nesse tipo de restricao, o usudrio define quais graus de liberdade do n6 estardo fixos e quais
estardo livres. Como entrada para essa restricdo, tem-se: o ndé de atuacdo e os graus de
liberdade fixos. Na entrada de dados, os graus de liberdade sdo representados por X, Y, Z, para
translacdes nesses eixos e, RX, RY, e RZ para rotacdes em torno dos eixos X, ¥ e Z

respectivamente.

Ainda existe a possibilidade de aplicar uma condi¢do de contorno obliqua em relagdo ao
sistema de coordenadas global. Pode haver interesse por esse tipo de restricdo por parte do

usuario, em alguns problemas mais especificos.

11.5.4 Restri¢do do tipo Solo

Como exemplificado por Patel, 1995 [1], existem diversas formas de configurar um cabo
submerso, cada qual apresentando suas peculiaridades. Para alguns tipos de configuragdo
como, por exemplo, a “Simple-Catenary”, a “Lazy Wave” e a “Lazy-S”, existe um trecho do
riser que fica acomodado sobre o fundo do mar e, em certo ponto 0 mesmo sai dessa posicao e
atinge cotas mais elevadas. Esse ponto ¢ chamado de TDP. A Figura 12 mostra um exemplo

de configuracdo de riser que contenha TDP.
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Unidade
Flutuante

Figura 12 — Exemplo de Configuracao do tipo “Simple Catenary” apresentando Touch Down Point (TDP)

A existéncia do contato entre o riser ¢ o solo ¢ um grande fator de gera¢do de ndo linearidade
no problema. A questao ¢ que nao se sabe, inicialmente, a posicdo do TDP e, portanto, ndo se
sabe qual o comprimento de riser que estara apoiado no solo. Esse fato torna o problema
muito mais complicado do que seria caso o ponto do TDP fosse conhecido. Necessariamente
um processo iterativo € necessario para saber onde estara o TDP, dados os pontos extremos, a
posi¢ao do solo e o comprimento do riser. Nao se sabe, inicialmente, nem ao menos se ird ou

nao ocorrer contato com o solo, para cada condigao particular.

Apesar da grande dificuldade esperada na resolucdo desse tipo de problema, ¢ importante
enfatizar sua importancia, uma vez que a presenga do solo pode mudar radicalmente a

distribuicdo da trag@o no riser, em relacdo ao que seria se o mesmo fosse desconsiderado.
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Para modelar a condicao de contorno do solo ¢ possivel utilizar diversas abordagens. A
primeira aproximag¢ao que pode, a principio, ser pensada ¢ a de considerar o solo como sendo

infinitamente rigido e, portanto, nenhuma penetragao do riser seria admissivel.

Ainda ¢ possivel lidar com o problema pensando em outro tipo de abordagem: admitindo uma
rigidez equivalente do solo, por unidade de area de contato, por exemplo. Dessa forma, estar-
se-ia quantificando, a partir de um parametro fisico, o grau de penetragdo admissivel na cota

onde se encontraria o solo antes do inicio do contato.

Também ¢ possivel tratar o problema admitindo penetragdes no solo, segundo uma precisao
estipulada e, aplicando penalidades as posi¢des do riser que descessem abaixo da cota do solo.
Definindo uma fungdo objetivo visando minimizar essas penalidades seria possivel
transformar a questdo proposta em um problema de otimizacao, que poderia ser resolvido por

diversos métodos, tanto deterministicos quanto probabilisticos.

Nesse trabalho foi implementado o modelo do solo infinitamente rigido e a maneira de
abordar a questdo envolveu a imposi¢do de deslocamentos em determinados graus de
liberdade da malha, a fim de ndo violar a condi¢do de contorno do solo. O algoritmo esta

explicado a seguir.

e Algoritmo

Para atender a condicdo do contorno, sdo seguidos os seguintes passos na resolugcdo do

problema, a cada iteragdo:

E feita uma verificagdo em todos os nds presentes na malha, para verificar se 0os mesmos se

encontram acima ou abaixo da cota do solo, que foi definida pelo usudrio.
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Para os nos que se encontram abaixo do solo, o grau de liberdade referente a translacao na
dire¢do vertical ¢ modificado para se tornar fixo, pois serd imposto um deslocamento nessa

dire¢do em seguida.

Para cada n6 que esta abaixo do solo, ¢ calculada a distancia a ser imposta para cima, visando
que o no atinja exatamente a cota do solo. Essa distancia ¢ imposta no momento de resolver o

sistema linear de cada iteragdo, através da técnica de condensacao estatica.

Apds a imposi¢do de deslocamentos, criou-se um desequilibrio de esfor¢os em todo o sistema.
Dessa forma, para a proxima iteracdo os graus de liberdade que tinham sido marcados como
fixos nessa iteragdo, por estarem abaixo do solo, serdo marcados como livres, a fim permitir

que o sistema “busque” sua posi¢ao de equilibrio de for¢as nodais.

O processo ¢ repetido a cada iteragdo, até que haja a convergéncia, tanto em equilibrio de
esfor¢os como na ndo violagdo da condi¢do de contorno do solo. Note que pode haver
oscilagdes de posi¢ao de nos, entrando e saindo do solo, a cada iteracdo. Isso é esperado, visto
que ocorrem, a cada iteracdo, mudancas nos tipos de graus de liberdade (fixos ou livres) dos

noés que estdo mais proximos do solo e que sdo afetados pelo algoritmo.

E importante enfatizar um detalhe quanto ao equilibrio de esforcos da estrutura: na
implantacdo é admitido que o solo, quando em contato com a estrutura, responde com um
esfor¢o vertical na mesma, com a intensidade necessaria para que haja equilibrio nessa

direcdo. Desconsidera-se, portanto, agdes tangenciais ao solo da forca de contato (atritos).

A Figura 13 ilustra a seqiiéncia de funcionamento do algoritmo.
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Figura 13 — Passos do algoritmo de imposicido da condicio de contorno do solo infinitamente rigido

Ainda que a idéia esteja correta e funcione para muitos problemas particulares, notou-se a
existéncia de alguns problemas, nos quais ocorrem valores muito grandes de imposi¢do de
deslocamentos. Percebeu-se que ao tentar aplicar esse algoritmo nesses problemas, muitas
vezes provocava-se um mal condicionamento matricial, de tal forma que ocorresse

divergéncia numérica.

Para solucionar a questdo, de maneira andloga ao método de aplicacdo de esforcos de maneira
incremental, criou-se a op¢ao de impor cotas intermediarias do solo, a partir da posi¢do do nd

mais baixo, até a cota imposta pelo usudrio para o solo.

Dessa forma, seria possivel aplicar o algoritmo explicado nesse item diversas vezes, a cada
nova posi¢do intermediaria imposta do solo. Note que a convergéncia tanto em termos de
equilibrio de esfor¢os como em ndo violagdo da condicdo de contorno do solo deve ser

requerida a cada incremento de cota do mesmo, a fim de evitar problemas de mal
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condicionamento de matrizes causados por desequilibrios nodais muito grandes ou,
configuracdes que facilmente se tornem instdveis, o que muito provavelmente causaria a

divergéncia do método.

e Condicao de contorno obliqua em relacéo ao sistema de coordenadas global

A estratégia aplicada consiste em uma redefini¢do do sistema de coordenadas globais somente

nos nos afetados pelas condi¢des de contorno obliquas, como pode ser visto em Cook [10].

Em termos praticos de aplicagdo do método, o que ocorre € que os graus de liberdade afetados
por essas restrigdes devem ser rotacionados para novas diregdes, tais que haja alinhamento
entre esse novo sistema de coordenadas global rotacionado e as direcdes de acdo das reagdes

dos vinculos obliquos.

Os termos da matriz de rigidez global que estdo associados aos graus de liberdade dessa
restricdo sdo recolhidos em uma matriz temporaria. A seguir ¢ aplicada uma rota¢do nessa
matriz. Essa operacdo ¢ definida pela inclinacdo da restricdo em relagdo ao sistema global de

coordenadas. A seguir, os termos rotacionados sdo re-alocados na matriz global.

E aplicada a mesma rotacdo nos esforcos externos aplicados naquele no, através de um vetor

temporario, analogamente ao que se fez com a matriz de rigidez.

Agora ¢ possivel resolver o sistema global, e a restricdo ird se comportar fisicamente na

direcdo esperada.

A seguir se encontra uma forma para a matriz de rigidez global do sistema:
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ki, ky, ... .. ook
ky  ky . ek
KG — k(p—l)l k(p—l)Z k(p—l)(p—l) k(p—l)(p) k(p—l)(p+l) k(p—l)N (H.148)
k(p)l k(p)Z k(p)(p—l) k(p)(p) k(p)(p+1) T k(p)N
k(p+l)l k(p+l)2 k(p+l)(p—l) k(p+l)(p) k(p+1)(p+l) t k(p+l)N
ke kg e A

Supondo que as numeragdes (p-1), (p) e (p+1) representem os graus de liberdade associados a
uma restri¢ao inclinada, ¢ definida uma matriz temporaria (K7) que armazene os coeficientes

da matriz global dessas numeracdes.

koo Ko Ko
K=l koo Foim Kiom (I1.149)
Koo K Kipenpen

A matriz de rota¢do que sera aplicada em K7 esta ilustrada a seguir:

cos(xx) cos(yx) cos(zx)
T =|cos(xy) cos(yy) cos(zy) (I1.150)
cos(xz) cos(yz) cos(zz)

Note que a matriz de rotagdo ¢ composta pelos cossenos diretores entre os eixos coordenados

final e inicial da rotacgdo a ser feita.

Define-se uma matriz K7’ que representa a matriz Ky rotacionada — equacao (II.151).
K,'=TK,T" (IL.151)

A seguir os termos de K¢’ sdo re-alocados nas mesmas posi¢oes da matriz global Kg, de onde

foram retirados os termos da matriz Kt

Um procedimento anéalogo ¢ feito com os vetores de esforgos e apos a resolugdo do sistema,

com o vetor de deslocamentos livres da estrutura, obtidos na resolugao do sistema linear.
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I1.6 Estrutura de Programacio

O programa foi estruturado, a partir das necessidades dos dados anteriormente citados, de
maneira a exigir a menor alteracdo de codigo possivel para a inser¢do de um novo tipo de
elemento ou restricdo. Sendo assim, foram utilizados conceitos de abstragdo, heranca ¢
polimorfismo presentes no C++ [11] para a criacdo deste codigo portavel e flexivel. Para
garantir facil organizagdo dos dados, foi utilizada uma padronizagao para o codigo, bem como
foi escolhido um padrio de intercdmbio entre as demais partes do software (pré e pos-
processador) que fosse de facil organizacdo e que pudesse ser visualizado igualmente em
qualquer plataforma. Assim, escolheu-se o XML e foi feito o uso de uma biblioteca

“freeware” que sera discutida ainda nesse topico com mais detalhes.

11.6.1 Linguagem e Padroniza¢do do Codigo

Como dito anteriormente, a linguagem utilizada foi o C++ por apresentar recursos como
heranca, polimorfismo, classes abstratas e puramente virtuais. Tais conceitos sao 0s requisitos

basicos para a estrutura delineada do programa.

Como a idéia central deste projeto ¢ criar um ambiente flexivel, com facilidade de expansao e
com generalidade suficiente para que a inclusdo de novas funcionalidades ficasse quase que
restrita @ geracdo de cddigo referente aquela classe, com poucas ou se possivel nenhuma
alteracdo no restante do c6digo, o conceito de classes virtuais e heranga ¢ muito utilizado. Por

exemplo, cria-se entdo uma classe virtual de elemento e derivam-se classes dessa, especificas
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para cada tipo de elemento (Ex: Treliga, Cabo). Utilizando-se de uma estrutura de lista
duplamente ligada, cria-se uma “lista de elementos” independentemente de quais estes sejam.
Assim a inclusdo de um novo elemento na leitura e a inclusdo da classe do mesmo permitira

que este seja facilmente incorporado ao projeto.

A estrutura de lista ligada descrita anteriormente ¢ basicamente composta de um elemento
denominado m_first do tipo da lista em questdo, de um m_/ast que determina o elemento final
da lista e o nimero de nés m_nnos. Cada elemento da lista possui uma variavel m_next que
aponta para o elemento seguinte da lista e uma variavel m_previous que aponta para o
elemento anterior, o que da origem ao nome, lista duplamente ligada, uma vez que pode ser
percorrida por ambas as extremidades. Assim inserem-se elementos na lista apenas efetuando
as ligagdes entre os elementos que a compdem. Trabalhou-se também na formulagdo de uma
padronizagdo do codigo, visando tanto a melhor compreensdo do mesmo quanto uma futura

expansdo. A padronizacdo segue a seguinte estrutura:
e Nomes de Arquivos: todas as letras em mintsculas.

Exemplos: element.h, element.cpp

e Nomes de Classes: comecam com uma letra maiuscula C e o nome da Classe (Letras

maiusculas para inicio dos nomes)

Exemplo: CElement

e Nomes de Variaveis membros de classe: comecam com uma letra mintiscula m ¢ um

caractere “underline” (todas as letras em minusculas).

Exemplo: m_next
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e Para varidveis globais, convencionou-se trocar o m por um g, facilitando assim a

identificacao.

Exemplo: g _free DOF

e Para varidveis de leitura do XML, j4 que derivam de uma biblioteca “freeware”

adotou-se iniciar com um x.

Exemplo: x_element

e Diretorios: Arquivos de diferentes tipos vao para diretérios diversos.

Exemplo: Todos os elementos ocupam o diretério elements (todas as letras em

minusculas), assim, devemos incluir “.\elements\element.h.”

11.6.2 Descricdo das Classes

Por se trabalhar com os conceitos anteriormente citados, criou-se uma estrutura de classes tal
que permita toda a generalidade e flexibilidade buscada. Na Tabela 5 descrever-se-a as

classes, classificadas alfabeticamente.
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Tabela 5 — Classes que compde o programa

Classe

Descricao

CBandMatrix

CCable

CCase

CConstraints

Responsavel pelo armazenamento das matrizes na estrutura de banda.
Possui fungdes para armazenar os valores na matriz, 1é-los, determinar as
coordenadas na estrutura de banda e na estrutura quadrada (conversao entre

essas) e funcdes de acesso as dimensdes da matriz.

Implementa o elemento finito do tipo cabo. Derivada da CElement,
implementa as fun¢des da mesma para o tipo de especifico de elemento, ou
seja, determina as matrizes de rigidez e rotacao especificas, dadas de acordo
com as propriedades do mesmo e dos nos a que o mesmo esta associado (no

caso, dois).

Classe puramente virtual que possui todas as rotinas para rodar-se um caso
no programa. A sua estrutura virtual ¢ explicada para abrigar novos casos
sem grandes alteragdes estruturais no cdodigo. S6 foi desenvolvido o caso
estatico, descrito adiante, por ser o escopo do projeto, mas esse foi
projetado de tal forma a permitir inclusdes futuras, como, por exemplo, o

caso dinamico.

Classe virtual que da as diretivas de como serdo as restrigdes. Possui a
descricdo das fungdes de montagem de conexdo, leitura e gravagdo em
XML e parametros relativos a estas restrigdes, como por exemplo, 0 nimero

de nods e quais os nos associados ao vinculo em questao.

continua
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Classe

Descricao

CConstraintList

CCurrent

CCurrentList

CDOF

CEnvironment

CElementsList

Classe que implementa uma lista ligada de vinculos. A lista ligada possui

sempre a mesma estrutura em todo o programa, como ja foi descrito.

Classe que define um perfil de corrente. Possui a profundidade na qual esse
perfil estd atuando e a velocidade da corrente nesse perfil. A direcdo de
atuacdo da corrente (angulo azimutal) ¢ dada aqui e € igual para uma mesma

corrente.

Classe que implementa a corrente. Nessa classe ainda € possivel obter-se o
valor da corrente em pontos intermediarios gragas a interpolacdo linear por

ela feita. Essa classe ndo possui variaveis.

Classe que armazena os tipos e numeracdo dos graus de liberdade. Uma
instancia dessa classe estd sempre associada a um no, sendo assim utilizada
para determinar em quais posi¢does as contribuicoes de cada grau de

liberdade na matriz global de rigidez serdo somadas.

Classe que armazena os dados do ambiente no qual o objeto de estudo esta
inserido. As propriedades sdo, aceleragdo da gravidade, densidade da 4gua e

comprimento da lamina d’agua.

Classe que implementa uma lista ligada de elementos.

continuacao
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Classe

Descricao

CElement

CFixed

CGlobalLists

CJoint

Classe virtual de elementos. Nessa classe estdo definidas as propriedades
caracteristicas de cada elemento, como por exemplo, a matriz de rigidez
local, nimero de nds associados ao elemento, tipo do elemento, as bandas
das matrizes Kas ¢ Kgp (ver condensacao estatica) de cada elemento, a
matriz de rotacdo, bem como fung¢des para determinar as bandas da mesma,

para montar as matrizes local, global, de conex@o e de rotacdo, entre outras.

Classe que implementa um tipo de restricdo — o engaste. Derivada de
CConstraint, implementa as fun¢des da mesma para o tipo de especifico de
restri¢do, ou seja, restringindo todos os graus de liberdades livre no no ao

qual esta restricao estd associada.

Classe na qual estdo as listas globais do programa, com excecdo da lista de
nds que, por ser acessada por todas as partes do programa, estd como
global. Possui como variaveis principais a lista de esfor¢os, a de elementos

¢ a de restrigdes.

Classe que implementa um tipo de restrigdo — a articulagdo. Derivada de
CConstraint, implementa as funcdes da mesma para o tipo de especifico de
restri¢do, ou seja, restringindo todos os graus de liberdades de translagdo

livre no n6 ao qual esta restri¢do esta associada.

continuacio
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Classe

Descricao

CGlobalVariables

CProperty

CPropertiesList

CMatrix

CNodalLoad

Classe que armazena todas as variaveis globais do programa, com excegdo
das listas, que estdo na classe global de listas. Tal organizagdo torna o
programa mais seguro, dado que o acesso, mesmo sendo global, ¢ mais
restrito por ser utilizado um conjunto de gets e sets. Possui como variaveis
principais as matrizes globais e os valores de bandas globais, além do

ambiente em questao.

Classe que armazena todas as informacgdes relativas a uma propriedade
especifica, como sua rigidez axial (EA) e rigidez torcional (GJ), além de
dados como os coeficientes de arrasto (tanto normal quanto tangencial) e

diametro hidraulico.

Classe que implementa uma lista ligada de propriedades.

Classe que armazena a estrutura de uma matriz de dimensdes m e n dados
pelo usudrio, de nimeros reais, com os respectivos operadores. Pertence a

um pacote de fungdes criado para auxiliar o desenvolvimento.

Classe que implementa os carregamentos nodais, composta basicamente de
um vetor e de fungdes de leitura e gravagdo tanto para uso do programa
quanto no XML, como as demais classes que armazenam dados do

programa.

continuacio
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Classe Descricao
CNodalLoadList Classe que implementa uma lista ligada de carregamentos nodais.

Classe que armazena as coordenadas dos nos, bem como as funcdes de
CNode

leitura, gravagdo em XML e também no programa.
CNodelList Classe que implementa uma lista ligada de nos.

Classe que armazena os parametros a serem utilizados na simulagdo, como
CParameters

numero de iteragdes, precisdo e método a ser utilizado.

Classe responsavel por toda operagdo de /O com os arquivos XML. Essa

classe chama todas as leituras e gravagdes das outras classes, permitindo
CReadWrite

CRestaurationIncremental

assim uma maior garantia quanto aos dados de entrada e saida, uma vez que

o controle dessas operagdes fica facilitado.

Classe que implementa o método dos esforgos restauradores — Método de
Newton-Raphson — de maneira incremental, ou seja, ele atinge o equilibrio
em varias posi¢des intermedidrias, com carregamentos menores, até¢ chegar

na configuragdo final.

continuacio
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Classe

Descricao

CRestaurationMethod

CRun

CSolver

CStaticCase

Classe que implementa o método dos esforgos restauradores — Método de
Newton-Raphson — de maneira direta, utilizando-se do conceito de esfor¢o

desbalanceado, que ¢ explicado nesse documento.

Classe puramente virtual do método que sera utilizado na andlise. Cada
método deve ser escolhido de acordo com o problema a ser resolvido.
Alguns exemplos de classes derivadas de CRun sdo a classe

CRestaurationMethod e CTangentStiffness.

Classe composta por diversas fun¢des destinadas a resolugdo matematica,
como por exemplo, fungdes para determinar solugdes de sistemas lineares
(Cholesky, LDLT, Gauss, entre outras formas), fun¢des para calculo de
multiplicagdes entre vetores e matrizes especificas. Algo a se considerar ¢
que a maioria das fungdes esta implementada considerando a estrutura de

banda utilizada, otimizando assim a performance dos métodos.

Classe derivada de CCase que ¢ responsavel pela instanciagdo do caso
estatico, por chamar todas as fun¢des necessarias para criar o caso e roda-lo
e ainda por resolver o sistema final, retornando assim a configuragdo

deformada desejada.

continuacio
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Classe

Descricao

CTangentStiffness

CTruss

CUserDefined

CVector

Classe que implementa o método de resolucdo do problema ndo-linear

através de aproximacdes sucessivas da rigidez nos pontos em questao.

Classe que implementa um tipo de elemento — a trelica. Derivada da
CElement, implementa as fun¢des da mesma para o tipo de especifico de
elemento, ou seja, determina as matrizes de rigidez e rotagdo especificas,
dada de acordo com as propriedades do mesmo e dos nds que o mesmo esta

associado (no caso, dois).

Classe que implementa um tipo de restricdio — a definida pelo usuario.
Derivada de CConstraint, implementa as fun¢des da mesma para o tipo
especifico de restri¢do, ou seja, restringindo todos os graus de liberdades
livres determinados pelo usuério na hora da entrada de dados (feita pelo

XML), no nd ao qual esta restricdo esta associada.

Classe que armazena a estrutura de um vetor de dimensdo » dado pelo
usuario, de nimeros reais, com os respectivos operadores. Pertence a um

pacote de funcdes criado para auxiliar o desenvolvimento

conclusao
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11.6.3 Leitura e Escrita em XML

Tanto a leitura e gravagdo sdo feitas através de arquivos no formato XML por apresentar
vantagens em relacdo a um arquivo de texto comum. Percebe-se imediatamente no XML um
tipo de estruturacdo nos dados dada pelas tags, uma vez que este se assemelha muito a um
codigo em HTML, com a ressalva de que as tags também s3o definidas pelo programador,
muito semelhante a estrutura de listas ligadas no programa. A Figura 14 mostra um trecho

extraido de um XML de entrada do programa para melhor exibir esta concepgao.

<Hodes>
<Wode =x=" 0" v = "0" number="1":>0rigin</Node>
<Wode =x="10" v = "0" number="Z2Z":></Nodex>
<Wode =x="z20" v = "0" number="3":></Node>
</Nodes>

Figura 14 — Exemplo de entrada do XML (parcial)

Assim, criando uma estruturacdo também na leitura, poder-se-a ler os nos do XML em
qualquer ordem. Um outro aspecto importante ¢ que, como pode ser visto no exemplo
anterior, nao ha coordenada z, mas, devido a uma inicializacdo adequada das variaveis, essa
nao faz falta, caracterizando um problema plano. Assim percebe-se que, mesmo que o XML
ndo possua todos os parametros esse ndo gerara erros de leitura. O unico fato que deve-se
atentar ¢ que se alguns dados imprescindiveis a simulagao estiverem faltando, apesar de nao
gerar erros na leitura, ndo sera possivel efetuar-se a simulagdo. Os ndés do arquivo XML

necessarios e suportados pelo programa sao descritos na Tabela 6.
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Tabela 6 - Descricao dos nés do XML

No Descricao
Ultra N principal — raiz todos os outros devem estar contidos internamente a este
Properties No no qual devem estar contidos todos as propriedades

N6 que contém um material. Contém os atributos: EA, EI, GJ , HidraulicD,
Propertie

TangentialDrag NormalDrag e Number-.

N6 que contém o ambiente. Contém os atributos: Gravity, Water ro,
Environment

Water depth e Seabed.t

NoO que contém os parametros de simulagdo. Contém os atributos: Precision,
Parameters

Maxlterations, Method, Analyses, Steps, DWeight, DSoil, DCurrent € System.
Nodes No no qual devem estar contidos todos os nos

N6 que contém um n6 da malha. Contém os atributos: X, Y, Z, RX, RY, RZ ¢
Node

Number
Element N6 no qual devem estar contidos todos os elementos

Truss, Cable, Beam

Tipo de elemento. Pode ou ndo estar presente. No caso de um elemento truss,
cable ou beam, deve estar contido no n6 Element. Contém os seguintes

atributos: Number, Nodel, Node2, Property, PreTension e Tension

continua
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Descricao

Current

CurrentList

Constraints

Fixed

Joint

UserDefined

N6 no qual ¢ definida a cota e a velocidade da corrente nesta. Possui os

seguintes atributos: Number, Depth, Direction e Velocity.

N6 no qual devem estar contidos todos os perfis de corrente. Possui os

seguintes atributos que sdo caracteristicos do perfil:

N6 no qual devem estar contidos todas as restrigdes

Tipo de restri¢do. Pode ou ndo estar presente. No caso de uma restri¢do fixed,
deve estar contida no n6 constraint. Contém os seguintes atributos: Number e

Node

Tipo de restri¢ao. Pode ou ndo estar presente. No caso de uma restri¢do joint,
deve estar contida no n6 constraint. Contém os seguintes atributos: Number e

Node

Tipo de restricdo. Pode ou ndo estar presente. No caso de uma restri¢do user
defined, deve estar contida no n6 constraint. Contém os seguintes atributos:
Number , Node e DOF, no qual sdo descritos os graus de liberdade a serem

restritos. Ex: “X Y RZ” que restringe X, Y e a rotacdo em Z.

continuacao
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Né Descricao

NodalLoads N6 no qual devem estar contidos todos os carregamentos nodais

No6 que contém um carregamento nodal. Contém os atributos: Fx, Fy, Fz, Mx,
NodalLoad
My, Mz e Node

conclusao

Além disso, € necessario um cabegalho indicando que se trate de um arquivo XML, como por

exemplo, o exibido na Figura 15.

<?¥ml version=%"1.0%" 2>
4 l== Arguivo de Entrada -->

Figura 15 — Cabecalho do arquivo XML de entrada

Quando se trata de um arquivo de saida, este cabegalho ¢ gerado automaticamente pelo

programa.

11.6.4 Bibliotecas externas

A Ttnica biblioteca externa utilizada nesta etapa de projeto foi a biblioteca “opensoure*
denominada TinyXML, e esta disponivel para “download” em SourceForge

(http://sourceforge.net), a qual permite a leitura do XML através da criagdo de elementos do



http://sourceforge.net/
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tipo XML como nds, muito similar a uma estrutura de dados em arvore. A gravacao do XML
ocorre da mesma maneira, porém de maneira inversa na arvore, uma vez que a leitura ¢ feita
primeiro nos ndés mais extremos enquanto a gravacao ¢ feita a partir do no6 raiz e posterior

inserc¢ao deste no arquivo de saida.

II.7 Simulacoes Realizadas

Com o objetivo de validar o método ndo linear desenvolvido, bem como realizar analises
linecares de MEF utilizando a estruturagdo empregada no software, foram feitas algumas
simulagdes a respeito de certas geometrias de riser, das quais eram previamente conhecidas as

solugdes analiticas.

O programa ¢ capaz de solucionar casos em que ndo existe solugdo analitica, como
configuracdes que sofrem efeito de corrente maritima, porém na fase inicial de testes, foram
feitas comparagdes com casos em que ¢ possivel se determinar analiticamente a solug¢ao

esperada, para em seguida comparar-se casos reais com programas comerciais.

11.7.1 Cabo bi-apoiado

Uma possivel configuragdo de riser para aplica¢des na industria offshore, utilizada quando se
deseja interligar duas unidades flutuantes, ¢ a forma de cabo bi-apoiado, submetido apenas ao
carregamento do peso proprio. Fixando-se, como condig¢des de contorno, os dois extremos do
cabo, e entrando com seu comprimento, pode-se calcular analiticamente a tragdo em toda sua

extensdo. Tal calculo foi feito desconsiderando-se os efeitos de corrente maritima.



88

Alternativamente, pode-se realizar uma discretizacao no sistema, dividindo-o em elementos
de treliga ou cabo, e utilizar o software em desenvolvimento para determinar a geometria

final, bem como a tra¢do em todos os elementos.

Foi feito um primeiro teste para um caso particular cujo comprimento do cabo ¢ de

L=970,2m, a massa especifica do material ¢ de 7,5Kg/m e os pontos de fixacdo extremos

do cabo sdo:

A=(0,241,0)

B=(246, 734, 0)

Adotou-se como malha inicial uma discretizagdo da propria geometria da solugdo analitica, e,
o papel do software foi apenas de determinar corretamente a tracdo distribuida no cabo.
Realizando uma discretizacdo com 491 elementos, foram realizadas simulagdes utilizando

elementos de treliga e de cabo. Os resultados estdo mostrados a seguir, da Figura 16 a Figura

19.

Nota-se nos graficos apresentados que a solucao analitica e a obtida por MEF nao linear (com
elementos de Trelica e Cabo) praticamente se sobrepuseram, tanto na geometria da linha
elastica como na tragdo ao longo do cabo. Como na solugdo analitica ndo existem elementos,
o calculo da tracdo para comparagdo com o resultado numérico foi feito nos pontos médios

entre os nos. Esse procedimento também foi realizado na simulac¢ao posterior.
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Figura 17 — Tracéo vs. Abscissa Curvilinea S do caso Cabo bi apoiado — Simulacio realizada utilizando

elementos de Trelica
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Figura 18 — Linha Elastica do caso Cabo bi-apoiado — Simulacio realizada utilizando elementos de Cabo
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elementos de Cabo
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11.7.2  Lazy-Wave sem “touchdown point”

Em muitas aplicagdes, risers sdo utilizados para interligar a unidade flutuante a ancora no
fundo do mar. Quando a tracdo no topo do riser se torna muito alta, ao utilizar uma
configuracao do tipo catenaria, por exemplo, pode se tornar viavel a utilizacdo de flutuadores
fixados em certo comprimento do riser, proporcionando a redu¢do na tragdo do topo. Com
essa insercao, surge a configuragcdo Lazy-Wave. Também determinéavel analiticamente quando
submetido apenas ao peso proprio, sem correntes maritimas, um caso de Lazy-Wave foi

simulado com elementos de treliga, com as seguintes caracteristicas:

Trecho 1: L,=350,0m P, =47.7TI5SN
Trecho 2: L,=3783m P, =-27.805N
Trecho 3: L,=472,1m p; =34.699N
Coordenada da ancora: A=(0,0,0)
Coordenada do topo: B=(558,784,0)

Discretizagdo para solucao por MEF: 658 elementos

Exibe-se além dos valores dos comprimentos o peso efetivo do cabo, calculado pela diferenca
entre o peso do cabo e o empuxo exercido pela dgua. Os resultados obtidos com esse conjunto

de dados foram os seguintes:
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Note na Figura 20 que desta vez a malha inicial utilizada para simular o caso com o MEF nao
possui a mesma geometria da configuragao analitica. Portanto, exigiu-se do programa nao sé
0 ajuste da tracdo, mas também grandes deslocamentos de nds, de maneira a atingir a
geometria esperada como solucdo. Tanto a geometria determinada, como a tracdo distribuida

estdo muito proximas da solugdo analitica.

11.7.3  Riser hibrido auto sustentdavel (RHAS)

O riser hibrido auto sustentavel (RHAS) é uma configuracgao alternativa de riser, que consiste
em um riser rigido vertical, com um “jumper” flexivel na sua extremidade superior, e fixado

no outro extremo em uma unidade flutuante (Figura 22).

Figura 22 — Riser Hibrido Auto Sustentavel
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O modelo utilizado para simular o jumper do RHAS consiste em admitir uma rigidez

equivalente de flexao do topo da estrutura do riser vertical. A Figura 23 ilustra esse modelo.

Undeformed Shape

Figura 23 — Modelo adotado na simulacdo do RHAS

O modelo proposto possui solu¢cdo numérica obtida com auxilio de um software comercial,
com a qual foi comparado o resultado obtido pela simulagdo realizada utilizando MEF. Os

dados de entrada estdo descritos a seguir:

D=100m
d=100m
L =386m
K=19N/m

p=75Kg/m
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A Figura 24 ilustra a linha elastica determinada por simulacao utilizando MEF. Note que o
caso testado possui um valor de K (constante da mola de rigidez equivalente de flexdo) muito
pequeno. Por isso, houve um deslocamento tdo grande (mais de 150 metros) do extremo do

cabo situado na articulagdo com rodas.

Y (m)

X (m)

‘— Malha Inicial do MEF — Solugdo por MEF ‘

Figura 24 — Linha Elastica do RHAS simulado com elementos de trelica

Foi feita uma comparagao de resultados obtidos na simulagdo utilizando MEF e na solugao

analitica.A Tabela 7 mostra alguns valores comparativos.
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Tabela 7 — Resultados comparativos do caso RHAS

Pontos Minimos da Linha Elastica

X (m) Y (m) Z (m)
MEF 180.247 -39.1854 0
Sol. Analitica ~ 179.902 -39.1814 0
Forca na Mola
MEF 309.3348 N

Sol. Analitica  309.3356 N

Nota-se que os resultados comparativos entre MEF e solucdo analitica estdo muito proximos.

11.7.4  Configurag¢do Lazy Wave com touch-down point

Uma vez realizadas algumas simula¢des para comparagdo com solugdes analiticas, também
foram montados casos de mais dificil convergéncia numérica, como € o caso da imposi¢do do
contato unilateral com o solo. Assim, foram realizadas duas simula¢des de um caso Lazy-

Wave com contato unilateral com o solo. Os dados do problema estdo descritos a seguir:
Pontos extremos: A(0,0,0)
B(2340,0,1255)
Cotado solo: z=0m
Cota da superficie da dgua: z=1255m

Densidade da 4gua: 1025 Kg/m3
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Aceleragdo da gravidade: g =9,807 m/s2
Numero de segmentos: 3 segmentos

Propriedades dos segmentos (de A até B) — Exibido na Tabela 8.

Tabela 8 — Propriedades do riser simulado de uma configuraciao Lazy-wave

Segmento 1 2 3
Diametro (m) 0,4572 1,137 0,4572
Peso no ar (KN/m) 3,4 3.4 3.4
EI (KNm2) 167450 167450 167450
GJ (KNm2) 334900 334900 334900
EA (KN) 7159999 7159999 7159999
Comprimento (m) 1075 377 1591

Foram feitas duas simulag¢des para comparar com outros programas comerciais:
a) Nao considerando a rigidez flexional (elementos de trelica)
b) Considerando a rigidez flexional (elementos de portico)

Os resultados das linhas elasticas estdo mostrados na Figura 25 e na Figura 26.
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Figura 25 — Linha elastica de configuracio Lazy-Wave simulada com elementos de trelica com touch-

down point (eixos X e Z em metros)

1400

1200

1000

a00

600

400

200

0 500 1000 1400 2000 2500

Figura 26 - Linha elastica de configuracio Lazy-Wave simulada com elementos de portico com touch-

down point (eixos X e Z em metros)
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Alguns valores numéricos comparativos obtidos estdo mostrados na Tabela 9 e na Tabela 10.

Tabela 9 - Alguns resultados comparativos para a configuracio Lazy-Wave com touch-down point

simulada com elementos de trelica

OrcaFlex® PoliFlex UltraFlex
Tracao no topo (KN) 2199,3104 2199,0939 2195,947
Posi¢do do TDP (m) 67 66,36 68,38
Tracao no TDP (KN) 956,67 955,57 955,38

Tabela 10 - Alguns resultados comparativos para a configuracio Lazy-Wave com touch-down point

simulada com elementos de portico

OrcaFlex® PoliFlex UltraFlex
Tragdo no topo (KN) 2197,255 2199,039 2193,805
Posi¢ao do TDP (m) 56 53,13 56,086
Tracao no TDP (KN) 952,9714 956,9669 959,265

Os resultados se mostraram compativeis com os outros dois programas de computador, que
possuem métodos diferentes de andlise, servem de comparagdo para validacdo dos modelos

implantadas no software desenvolvido.
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I1.8 Conclusao

Em todas as simulagdes realizadas e que foram comparadas com solug¢des analiticas houve
otimos resultados. Isso leva a conclusdo da eficiéncia do método nao-linear empregado,
mesmo quando foi mais exigido, como ¢ o caso das simulagdes Lazy-Wave, na qual a
geometria da malha inicial ¢ bastante distante da solucdo final esperada, ¢ no caso do RHAS,
no qual se verificaram grandes magnitudes de deslocamentos em muitos nos presentes na
malha inicial. E importante frisar que o calculo dos esforcos restauradores em todas as
simulagdes presentes neste relatorio foi feito através do método apresentado no Método B em
6.2.2. O Método A em 6.2.2 ¢ igualmente eficiente para utilizagdo com elementos de treliga,
cabo e portico, apresentando a vantagem de estar formulado de maneira genérica,

independente do tipo de elemento.
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CAPITULO III — PRE-PROCESSADOR

III.1. Especificacoes Técnicas

Faz-se aqui necessaria uma nova avaliacdo das especifica¢des, uma vez que cada modulo do
software ¢ feito de maneira independente e, deve atender as suas necessidades especificas.

Nesse modulo, as especificagdes a serem atendidas sdo:

e A criacdo de um ambiente grafico, ndo necessariamente multiplataforma, com o qual

seja possivel a geracdo de um arquivo de entrada para o nicleo do ambiente.

e O software necessita ser “user-friendly”, facilitando a entrada de dados e geracdo de
malha, bem como a visualizagdo da configuragdo inicial. Deve-se ressaltar que o
objetivo ¢ tornar simplificada e intuitiva a entrada de dados no programa central para o

usudrio ao qual a ferramenta se destina.

e Deve possuir fungdes de leitura e gravacdo de dados em XML, para que nao seja

necessaria nenhuma intervenc¢ao do usudrio no arquivo.

e Deve-se optar por uma linguagem de programacdo e bibliotecas graficas que
apresentem um compromisso entre velocidade e requisitos de hardware compativeis e

que possam ser utilizadas na maioria dos computadores pessoais atuais.
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1II.1.1. Linguagem de Programacdo

Com base nos requisitos anteriormente descritos, definiu-se que o sistema operacional alvo
seria 0 Microsoft Windows®, por ser bastante difundido e estar instalado na grande maioria
das empresas, laboratorios e residéncias, possibilitando uma maior abrangéncia do software
no tangente aos usudrios finais. Assim, a linguagem de programacao escolhida foi o C# ,
componente da estrutura da Microsoft® denominada .NET, que ¢ executavel em qualquer
sistema Windows ¢ a biblioteca grafica a ser utilizada o OpenGL®. As justificativas das

escolhas feitas sdo detalhadas nos subitens a seguir.

Linguagem C#

Como foi feito anteriormente, levantaram-se todas as possibilidades de linguagens a serem
utilizadas na confec¢do do pré-processador. De inicio descartaram-se todas as linguagens de
baixo nivel e sem orientagdo a objetos, ja que nessa etapa busca-se a criagdo de didlogos com
menus e recursos graficos e tais linguagens quando permitem a utilizagdo deste tipo de

recurso tornam-se demasiadamente complicadas e ndo confiaveis.

Assim, partiu-se para a escolha da linguagem dentro das de alto-nivel com orientagdo a
objetos e possibilidade de criacdo de uma interface grafica, chegando-se entdo as linguagens

C++, Managed C++, C# e Java.

Considerou-se inicialmente que a linguagem escolhida deveria possuir um bom desempenho
quando em execucdo, sendo essa caracteristica primordial, uma vez que o tratamento grafico

demanda maiores recursos do equipamento e se a linguagem ja comprometesse parte desse
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recurso, o projeto ficaria inviabilizado. Assim descartou-se a linguagem Java por ser

interpretada.

A escolha natural seria o C++ ou o Managed C++ e, por isso, foi alvo de algumas
investigagdes. Primeiro concluiu-se que o Managed C++ oferecia uma grande vantagem: a
possibilidade de uso dos Forms que substituem o Microsoft Fondation Classes (MFC). Como
visto em Templeman, J., 2003 ([14]) ), o uso do MFC ¢ desaconselhado em projetos novos,
sendo s6 recomendado em casos que o programa precisa de pequenos ajustes, nao
compensando assim a sua conversao. Um ponto a ser ressaltado ¢ que o Managed C++ ¢ uma
linguagem um pouco confusa, mesmo para pessoas acostumadas com o C++. Por isso,
buscou-se conhecer uma opgao na qual fosse possivel usufruir de todo beneficio do Windows

Forms, o C#.

O C# pode ser descrito como uma linguagem muito semelhante ao C++ e ao Java, com as
melhores coisas que podem ser encontradas em ambos. Possui uma estruturagdo parecida com
Java em termos de classes , com o uso do garbage collector, e permite toda a encapsulacao,
generalidade, polimorfismo e possibilidade de se reescrever operadores encontradas no C++,
além do uso dos Forms. Como desvantagens do C# tem-se que ela é parcialmente
interpretada, sendo compilada para uma linguagem denominada Microsoft Commom Runtime
Language, como pode ser visto em Sharp, J., 2003 ([15]) ) e também em Schildt, H., 1998
([16]) e que possui certas limitagdes quanto a linguagem, se comparadas com o C++, como

por exemplo, a proibigdo de reescrever o operador de atribuicdo de uma classe.

Considerando todas as vantagens e desvantagens oferecidas por cada linguagem, bem como o
nivel de conhecimento de cada uma, além de uma previsdo de trabalho — tanto para o
aprendizado da linguagem quanto para implementacao de métodos — baseado na experiéncia e

observacao dos autores optou-se por usar o C#.
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Biblioteca Grdfica OpenGL®

A biblioteca grafica a ser usada foi decidida de uma maneira muito mais simples do que a
linguagem de programagao, ja que a escolha se restringiu as duas mais conhecidas: DirectX
da Microsoft € Open Graphics Library (OpenGL®) da Silicon Graphics Internationa (SGI),
pois estas possuem maior literatura disponivel e também sdo as mais utilizadas em

desenvolvimento grafico.

Passou-se por uma fase de estudo de ambas e concluiu-se que o uso do DirectX seria inviavel
dentro do prazo previsto para a execucdo do projeto, pois demandaria um tempo de
aprendizado muito maior, ja que este permite apenas a geragdo de graficos por Shaders e por
Pipelines que utilizam uma linguagem de baixo nivel de acesso ao hardware grafico. Por
outro lado, a biblioteca OpenGL® possui implementagdo na linguagem C , e ¢ apresentada
por um grande numero de livros e sites especializados no assunto (vide [17] a [20]) ), sendo o
site NeHe Gamedev ([18]) o principal, que contém diversos tutoriais e ¢ recomendado pela

SGI.

O uso do OpenGL® inicialmente mostra-se conflitante com a escolha da linguagem de
programacdo, uma vez que essa biblioteca ndo € escrita em C#. Tal problema foi resolvido de
uma maneira muito simples. Com uma pesquisa no site oficial do OpenGL® ([17]) ,
percebeu-se que além dos arquivos headers do C, a implementagao consistia em um conjunto
de bibliotecas de vinculo dinamico (em inglés DLL -Dynamic Link Library). Assim, se fosse
possivel importar as fungdes dessas DLL’s para o C#, ou mesmo criar uma DLL proépria, o

problema seria resolvido.

Tentou-se inicialmente a criagdo da DLL baseando todo o raciocinio sobre o que foi

encontrado em um site especializado em programagao ([21]), o qual explicava como trabalhar
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com OpenGL® e C# em uma mesma aplicagdo. Porém, tal solu¢do mostrou-se
demasiadamente trabalhosa, uma vez que necessitaria do aprendizado de trés tipos de

linguagens (C++, Managed C++ e C#).

Por isso, a opcdo adotada foi baseada na implementagdo do Framework TAO, freeware e
opensource ([22]) . Gerou-se um conjunto de classes que consiste em importar as fungdes da
biblioteca OpenGL® diretamente de suas DLL’s, bem como algumas fun¢des auxiliares e

também uma implementagdo de um controle OpenGL® para ser utilizado nos Forms.

Uma vez estabelecido a linguagem de programagao, a biblioteca ¢ 0 modo como seria usado o

OpenGL® no CH#, partiu-se para a concepgao do programa.

I11.2.Estimativa Inicial da Configuracio — Solucio de um Cabo com n Trechos em

Catenaria

Um dos grandes objetivos do pré-processador ¢ facilitar a entrada de dados para analise.
Assim, deseja-se que o usuario possa delimitar um cabo de coordenadas extremas conhecidas,
com trechos de comprimento e peso efetivo conhecidos e com base nisso possa gerar uma
configuracdo similar & configuracdo inicial do cabo. Do ponto de vista computacional, isso
facilita o célculo pelo nucleo do programa, uma vez que a estimativa inicial da configuragao
dos cabos ¢ baseada em solugdes analiticas, que refletem a fisica real do problema e, do ponto
de vista do usudrio, permite uma visualizagdo prévia da configuragdo antes da imposi¢ao de

carregamento e condi¢des de contorno.

Assim, criou-se um algoritmo que estima a configurag@o inicial de um cabo em catenaria. O

algoritmo foi generalizado de tal forma que dado um numero qualquer de trechos com
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comprimentos € pesos especificos conhecidos, bem como as posigdes extremas, fosse capaz
de determinar os pontos intermedidrios e os pardmetros que definem a curva (dados através da
solugdo analitica detalhada mais a frente). O procedimento para a criagdo do algoritmo sera

descrito nos sub-itens a seguir, da forma como o raciocinio foi construido.

Inicialmente determinam-se os dados de entrada e incdgnitas para o caso de um cabo
composto por um Unico trecho. Passa-se entdo para o caso com trés trechos e com base neste

generaliza-se o problema e assim tem-se o algoritmo desejado.
11.2.1. Solug¢do Para uma Catenaria Simples

Para facilitar, utilizar-se-a o mesmo raciocinio em todos os casos, sendo inicialmente listados
os parametros de entrada, bem como as incognitas. Porém, neste subitem serdo retomadas as

equagdes para um cabo em catendria entre dois pontos descritos no Capitulo II.

Como visto no referido capitulo, a solu¢do da equacao diferencial leva a equagao (I11.1).
y(x) = ﬁcosh(lx + Aj +B (IIL1)
4 H

Tal equacao permite descrever a catenaria, sendo dado qualquer valor da abscissa, a ordenada
¢ imediatamente obtida. Observa-se que o sinal, que fica indeterminado na solug¢dao pode ser
dado pelo sinal do vy, ja que se o peso efetivo € negativo, a curva toma uma forma idéntica a
positiva, porém simétrica em relagdo ao eixo das abscissas. Acresce-se a essa, a equacao para
calculo do comprimento do cabo, que pode ser obtida facilmente, sendo tal demonstragao feita

a seguir.
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Inicialmente, determina-se uma parametrizagao para a curva, sendo a escolhida a exibida em

(I11.2).
I(x) = (x,ﬁcosh(%x 4 Aj + B] (111.2)
y

E a partir disso, utiliza-se a formulacio de calculo de comprimento de uma curva no espaco,

como na (IIL.3).

L-p |

d 1.3
™ (IIL.3)

Assim, calcula-se 0 modulo da derivada da curva (I11.4), obtém-se (IIL.5).

%(x) = (1, sinh(%x + AD (IIL.4)
‘%m =\/1+Sinh2[%x+f1j (I1L.5)

Lembrando que 1+sinh®(a) = cosh® () tem-se o médulo dado por (I11.6).

;ﬂu)

X

= cosh(lx + Aj (I11.6)
H

E com isso tem-se uma formula bem simplificada para o comprimento (II1.7).

xf
L=["cosh| L x+ .4 |dx = H inn( 2 x+ 4 (111.7)
% H 4 H .

0

E finalmente, a expressao final para o comprimento (I11.8).

L= ﬂsinh(l X, + AJ - Esinh(l X, + Aj (I1L.8)
/4 H - /4 H
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Assim, para cada cabo ¢ possivel escrever trés equagdes, sendo duas delas a partir das

coordenadas extremas do cabo e, uma, a partir do comprimento do cabo.

Uma vez que foram descritas as equagdes da catenaria, pode-se passar para a listagem os
parametros de entrada e incognitas, feita na Tabela 11 e na Tabela 12 Para uniformizar a

nomenclatura, mesmo com um trecho, o cabo recebera um indice subscrito 1.

Tabela 11 — Parametros de Entrada — Catenaria Simples

Parametro Simbolo do parametro
Ponto inicial — Coordenada X X0
Ponto inicial — Coordenada Y Yo
Peso especifico do trecho Y1
Comprimento do trecho L;
Ponto final — Coordenada X X¢
Ponto final — Coordenada Y \G

Tabela 12 — Incognitas— Catenaria Simples

Incdgnita Simbolo da incognita
For¢a Horizontal H
Variavel de Integragdo Ay
Variavel de Integragdo B,

Um comentdrio a ser feito ¢ que a forca horizontal ndo possui indice porque a mesma

mantém-se constante no cabo inteiro, independentemente do numero de trechos, o que pode
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ser demonstrado fazendo o equilibrio de forgas na dire¢ao horizontal em todos os pontos do

cabo.

De posse das equacdes que relacionam os parametros e variaveis ¢ possivel a construcao de

um sistema matricial ndo-linear com base nas equagdes do sistema (II1.9).
ﬁ(x05y0aylaLlax_/'ay/'aH’AlaBl) = O
fz(xo7y0’7/1’L1’x_/"y_/'7HﬂAlJBI):O (I11.9)
ﬂ(xoayOJylaLl>xf>yf9H’A1’Bl) = 0

Para a resolucdo do sistema, foi utilizado o método de Newton para sistemas nao-lineares, que

¢ descrito no Apéndice E.

Deve-se ressaltar que a ordem das equacdes na matriz interfere na resolugdo do problema,
levando inclusive a ndo-convergéncia do método no caso de uma ordenacdo ruim,
possivelmente causando condicionamento matricial ruim. Assim, a ordenagdo feita para o
caso de existir apenas um trecho ¢ a seguinte: A;, H, By, pois dessa forma podem ser evitados
valores nulos na diagonal principal, que eventualmente seriam problemadticos para o método
de resolucdo utilizado. Consequentemente as equacdes ficam ordenadas na seguinte
seqliéncia: equacao do extremo inicial (II1.10), equagdo do comprimento (III.11) e equacao do

extremo final (II1.12).

Yo = yﬁcosh(% Xy + 4, ) +B, (II1.10)
1
L = Esinh[% X, + 4 j — Esinh(% X, + Al] (IIL11)
Vi Vi
v, = gcosh(%xf + Alj +B, (II1.12)
1
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Colocando na forma Matricial, obtém-se os vetores x das incognitas (III.13), F das fungdes a

serem zeradas (I11.14) e a matriz J do jacobiano das fung¢des (I11.15).

Al
x={H (I1L.13)
Bl
ﬁcosh[ﬁx0 + AIJ+Bl -
71 H
F= Esinh(ﬁxf + Alj—ﬁsinh(ﬁxo + AIJ—LI (IIL.14)
4 H 71 H
Ecoshtﬁxf +A1J+B1 -y,
—smh(ﬁx0 + Al] —cosh(ﬁx0 + Alj——osmh(ﬁxo + Alj 1
Vi Vi H Vi
L
—{cosh(y1 X, +A1j El__[xf cosh(j/1 X, +Alj
y=|” 0 (111.15)

Esinh ﬁxf + 4, Lcosh ﬁxf + 4, — 0 Sinh ﬁxf +4, ] 1
H H 7 H

11.2.2. Solucdao Para uma Catenaria de Trés Trechos

Para trés trechos, o raciocinio foi andlogo, porém resultando em um sistema de ordem nove.
Inicialmente serdo listados os pardmetros do cabo (Tabela 13) e as incdgnitas associadas ao

problema (Tabela 14), como feito anteriormente.



Tabela 13 — Parametros de Entrada — Catenaria com Trés Trechos
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Parametro

Simbolo do parametro

Ponto inicial — Coordenada X
Ponto inicial — Coordenada Y
Peso especifico do trecho um
Comprimento do trecho um
Peso especifico do trecho dois
Comprimento do trecho dois
Peso especifico do trecho trés
Comprimento do trecho trés
Ponto final — Coordenada X

Ponto final — Coordenada Y

X0
Yo
Y1
L;
Y2
L,
V3
L;
Xf

yr

Tabela 14 - Incégnitas— Catenaria com Trés Trechos

Incdgnita

Simbolo da incognita

For¢a Horizontal
Variavel de Integragdo

Variavel de Integragao

Ponto Intermediadrio entre trechos um e dois

Variavel de Integragao

Variavel de Integragdo

Ponto Intermediario entre trechos dois e trés

Variavel de Integragdo

Variavel de Integragao

H
Ay
B,
X1
Ay
B,
X2
As

B3
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Nota-se que aparecem como incognitas os pontos intermedidrios Ressalta-se que os valores de
v dos pontos intermedidrios ndo sdo incognitas, pois, uma vez determinada as coordenadas x
intermediarias entre os trechos de cabo, os valores de y correspondentes podem ser obtidos

diretamente pela solugdo analitica.

Nesse caso, a ordenagao do vetor x escolhida é a seguinte: A, x;, By, Az, X2, By, A3, H, Bs,
sendo essa tal que evita um mal-comportamento numérico ja explicado para o caso de apenas
um trecho de cabo. A seguir sdo exibidas as equagdes que compdem o vetor F — equagdes

(II1.16) a (II1.24) — e que servirdo para o calculo da matriz Jacobiana.

y, = ﬁcosh[ﬁ ) j +B, (IIL.16)
i H

L = Esinh[ﬁ x, + 4, j - Esmh(ﬁ X, + Alj (IIL.17)
71 H 71 H

ﬁcosh(ﬁx1 + Alj +B = Ecosh(ﬁx1 + Azj +B, (IIL18)

7 H V> H

sinh{ 20 x, + 4, |=sinh| 22 x, + 4, (IIL.19)
H H

L, = Esinh(& X, + Azj—ﬂsmh(& X, + Azj (111.20)
72 H 72 H

ﬂcosh(ﬁxz + Azj +B, = ﬁcosh(ﬁx2 + A3j + B, (IIL.21)

e H 73 H

sinh| 22 x, + A4, |=sinh| 22 x, + 4, (II1.22)
H H

mlﬁ

L, =£sinh(&xf +4 j——smh(
H

5+ A3j (IT1.23)
73
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H 4
=—cosh| Zx,+4, |[+B 111.24
yf 75 (H S 3) 3 ( )

Observa-se que (I11.18) e (II1.19) s@o equacdes de compatibilidade entre os trechos um e dois,
impondo respectivamente a mesma posi¢do e dngulo dos cabo na jungdo. Analogamente,

(II1.21) e (II1.22) impdem essas condigdes para a juncao dos trechos dois e trés.
111.2.3. Generalizagdo para Catendria de n Trechos

Para a generalizacdo do codigo, alguns pontos devem ser considerados. Primeiro, observa-se
que a inclusdo de cada trecho aumenta em trés o niumero de incdgnitas do problema, mas ao
mesmo tempo fornece mais trés equacodes. Segundo, percebe-se um padrao nesse conjunto de
equagdes adicionadas, composto de duas equacdes de compatibilidade de posi¢ao e angulo e
uma equagdo referente ao comprimento do trecho. Outro ponto a ser observado ¢ que a
ordenacdo das variaveis que foi feita permite a inclusdo de um bloco intermedidrio, sem

causar mal condicionamento numérico.

A seguir, sdo listadas as incognitas (Tabela 15) e os parametros do cabo (Tabela 16) para o

caso genérico de n trechos.
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Tabela 15 — Parametros de Entrada — Catenaria com n Trechos

Parametro Simbolo do parametro
Ponto inicial — Coordenada X X0
Ponto inicial — Coordenada Y Yo
Peso especifico do trecho i Yi
Comprimento do trecho i L;
Ponto final — Coordenada X X¢
Ponto final — Coordenada Y Ve

Tabela 16 — Incégnitas— Catenaria com n Trechos

Incdgnita Simbolo da incognita
For¢a Horizontal H

Variavel de Integragdo Ay

Variavel de Integragao B,

Ponto Intermediario entre trechos i e i+1 Xi

Variavel de Integragao Aj

Variavel de Integragdo Bi

Variavel de Integragao Ay

Variavel de Integragdo B,

Onde 1 varia de um ao n-1, onde n € o niimero de trechos. A ordenacao das variaveis fica: A,
X1, Bi, Ai, Xi, Bi,..., Ay, H, B, Percebe-se que as equacdes, quando ndao envolvem apenas

variaveis do mesmo trecho, envolvem no maximo varidaveis do trecho seguinte, gerando
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alguns “blocos” na matriz. A Unica incdgnita que aparece em todas as equacdes ¢ a forca
horizontal. Assim, determinou-se que essa sempre fica na penultima posi¢do do vetor,

independentemente do nimero de trechos.

Com todas essas observagdes, foi possivel a criagao do algoritmo generalizado para n trechos
de cabo em catendria para um cabo qualquer usando o método de Newton aplicado a

resolugdo de sistemas nao-lineares.

II1.3.Descricao do médulo de entrada de dados

Esse modulo constitui a interface entre o usudrio ¢ o programa de resolu¢ao de cabos em
configuracdo estatica, sendo de extrema importancia para a geracdo de casos com diversos

elementos, nos, carregamentos € com corrente.

A Figura 27 mostra a janela principal do programa, a qual ¢ descrita com mais detalhes logo

adiante.
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Figura 27 — Janela principal do programa
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Como pode ser visto, a janela ¢ constituida de uma barra de titulos, na qual ¢ exibido o nome

do programa — UltraFlex Preprocessor —, bem como o arquivo aberto. No caso da Figura 27, o

arquivo aberto € o inicial: um caso sem nome ¢ sem nenhum dado. No inferior da mesma

observa-se uma barra de status, na qual sdo exibidas mensagens ao usuario, informando-o

sobre uma acdo ou exibindo uma dica sobre o objeto apontado. Entendem-se por objetos

todos os botdes e menus visiveis nessa janela. Também pode ser visto uma barra de menus

que sera descrita com maiores detalhes nos proximos itens.

Destacam-se trés partes fundamentais neste pré-processador: a barra de ferramentas, a barra

de visualizacdo ¢ a area de desenho.
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111.3.1. Barra de ferramentas

A barra de ferramentas ¢ exibida em detalhe na Figura 28.

L1z K|P| /|

Figura 28 — Barra de ferramentas

O primeiro botdo (New) permite a criagdo de um novo projeto. O segundo botdo (Open)
permite a abertura de um arquivo e o terceiro botao (Save), permite que o arquivo atual seja

salvo. Esses comandos serdao descritos com mais detalhes no item I111.4.1.

O segundo grupo de botdes sdo atalhos para as trés primeiras janelas que permitem a
modelagem do problema. Sao na ordem: Keypoints, Properties ¢ Cables, que serdo descritas

com mais detalhes no item 111.4.2.

1I1.3.2. Area de desenho

Nesse espaco reservado (area preta na Figura 27) € que serdo desenhadas as estimativas
iniciais do cabo, bem como as suas malhas, permitindo ao usuario uma maior percepcao do
problema (e também de uma possivel configuragdo, ja que a estimativa inicial ¢ feita por
composi¢ao de diversos trechos de catenaria, como descrito no item II1.2). Essa regido nada

mais é que um controle implementado utilizando-se algumas bibliotecas OpenGL".
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1I1.3.3. Barra de Visualiza¢do

A barra de visualizagdo permite um controle da area desenhada do cabo o qual estd
selecionado. Essa barra, como pode ser visto na Figura 29, permite primeiramente a escolha
do cabo a ser visualizado, seguido do tipo de visualizacdo: geometria ou malha e possui
também botdes que permitem ao usuario visualizar as partes desejadas do cabo. Todos os
comandos do grupo View Tools serdo descritos com mais detalhes no menu View (item

111.4.5).

Yizualization

|Cable 1 |

" Geometry

¥ Mesh
Yiew Tools

Zoom In

Zoorm Out

Fit e

Up

‘il

Left | PanRight |

Do

Figura 29 — Barra de ferramentas de visualizacio

Os comandos do grupo Visualization estdo presentes apenas nesta barra e, portanto serdao
descritos aqui. Permite-se a escolha do cabo a ser visualizado ou o conjunto de todos os cabos

e keypoints atualmente inseridos.
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A seguir permite-se a escolha entre malha e geometria. A Figura 30 mostra o caso em que a

geometria ¢ exibida, enquanto a Figura 31 mostra o caso em que ¢ exibida a malha.

55 UltraFlex Preprocessor - Untitled. ufp

File Modeling Simulation Parameters... %ML Data  View Help

L1l K|P/|

“isualization
[Catle 1 ~

(+ Geometry

~

“iew Tools

Zoom Out

Fit iew

Up
Left FAN Right
Do

Here comes program's information and tooltips.

Figura 30 — Janela principal exibindo geometria

5! UltraFlex Preprocessor - Untitled

File Modeling Simulation Parameters... XML Data View Help

L | KIP|s|

“Wisualization

Ea—
" Geometry
@ Mesh

Wiew Tools

Zoom In
Zoom Out
Fit Wiew

_ue |
Left PaM I Right
Dow

Madify mezh and mesh parameters.

Figura 31 — Janela principal exibindo malha
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I11.4.Descricao dos menus e das janelas componentes do modulo

O menu principal foi construido de tal forma que permite ao usuédrio uma maior facilidade na
inclusdo de dados e para tal, foi feito de forma intuitiva. Procurou-se seguir uma ordem logica
comum na constru¢do de um modelo de cabo a ser simulado. A seguir sdo descritos com mais
detalhes todos os itens nos menus, exibindo as janelas para as quais eles permitem acesso,

bem como uma descri¢do das mesmas.

111.4.1. Menu File

O menu File é mostrado na Figura 32. Possui os itens New, Open, Save, Save As, Close e Exit

que sdo descritos a seguir.

File Modeling  Simulation Para

Mew. .. Zhrl+h
Qper, ., Chrl+D
Save... Chr+5
Save As... Ctrl+shifk+3
Close CEFlC
E:xik alk+F4

Figura 32 — Menu File
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e Comando New:

O comando New permite a criagdo de um caso vazio e sem titulo.

e Comando Open:

O comando Open permite a abertura de um arquivo do tipo “ufp” que contém dados

anteriormente salvos do programa. A Figura 33 mostra a tela de abertura de arquivo quando o

botao ¢ pressionado.

Open...
E xaminar: J ¢ Meu computador _v_] - o E

by ._ﬁ.Disquete de 314 (A

L\,ﬁ e Disco local (1)

Documentos |2 Unidads de DVD-RAM (D)
1eeertes || inidads de DVD (E:)

?TLI EﬂDocumentos compartihados
i{_jRodrigo - documentas
Desktop 58 Minhas Pastas de Compartihamenko

€2 Mero Scout

Meus
documentos

Meu computadaor
-4
Meus locaiz d :
eusreodceas = et arquivo: I| ﬂ A hbir |
Arquivos dotipe: | UlnsFles Preprocessor files (% ufp) | Cancelar

Figura 33 — Janela de abertura de arquivo
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e Comando Save:

O 1ultimo botdo do primeiro grupo (Save) permite que o arquivo atual seja salvo. Caso o nome
ndo tenha sido especificado anteriormente, abre a janela que permite que o mesmo seja salvo

(Figura 34).

Salvar em: | e Dizco local [C) ﬂ ; = EE-
k! ) Arquivos de programas
bﬁ [ChDocuments and Settings

Documentos ([ SyRodrigo
1BERleS o WINDOWS

Desktop

Meus
documentos

r-
8
teu computador
o
Meus locais d
eusrec-dceam = MNome do arquivao: |Untitled

Salvar

Salvar como tipo: |UItlaFIe:-: Preprocessor files [*.ufp) ﬂ Cancelar

Figura 34 — Janela que permite que o arquivo seja salvo com o nome desejado

e Comando Save As:

Esse comando permite salvar um arquivo ja salvo com um outro nome. Abre uma janela

semelhante a exibida na Figura 34.
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e Comando Close:

Encerra o arquivo atual, esperando a abertura de um novo arquivo ou um arquivo

anteriormente salvo.

e Comando Exit:

Encerra o programa UltraFlex Preprocessor.

111.4.2. Menu Modeling

O menu Modeling ¢ mostrado na Figura 35. Esse ¢ o principal do programa, uma vez que
permite o acesso as janelas nas quais sdo inseridos os dados referentes ao modelo a ser
estudado. Possui os seguintes comandos: Environment, Keypoints, Properties, Cables, Mesh,
Constraints € Loads, sendo que dentro do menu Loads encontram-se os subitens Nodal Loads

e Current.
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Maodeling = Simulation Paramete

Environment... CkrlH+E

Kevpoints, ., ChrlHE,

Properties..,  CkrlH+P

Cables... Ckrl+E

Mesh... Ckrl4-M

Constrainks.,.  CRHT |

Loads F: Modal Loads... Chkel+D

Current., ., Chrl4L

Figura 35 — Menu Modeling

e Comando Environment:

O comando Environment abre a janela que permite a configuragdo do ambiente no qual o

modelo serd simulado. Essa janela ¢ exibida na Figura 36.

55 Environment [g ] @
Gravity: | 9,60665 7
L Reference
Water Denzity: J 1024
Gravity

: 100
‘whater Depth; J Water Depth ‘14
Seabed Position: J 1]

Seabed Position
ak. | Cancel | K r

Figura 36 — Janela de configuracio do ambiente

Nesse didlogo € possivel inserir os valores da aceleracdo da gravidade local, a densidade da

agua, bem como a lamina d’agua e a posi¢ao do solo.
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e Comando Keypoints:

Keypoints sao pontos no espaco que servem para auxiliar o projeto, indicando locais nos quais
serdo gerados futuros nods, sendo de fundamental importancia na defini¢do do problema. O
comando Keypoints faz com que a janela de inser¢do de keypoints seja aberta. A Figura 37

mostra essa janela.

| 9Ll Keypoints |—._]EI@

I1 ﬁ | oK I Cancel Apply |

— Keypaint Coordinates
K.eypoint Label: IKeypoint 1
¥ Coordinate: I il wl
Y Coordinate: I i

Remove Selected |

Z Coordinate: I i

Mumber | Label | ® Coordinate | Coordinate | Z Coordinate

1 K.eypoint 1 ] ] ]

Figura 37 — Janela de insercio de keypoints

Nessa janela podem ser adicionados ou excluidos os keypoints selecionados através do
nimero, exibido no canto esquerdo superior do didlogo. A inclusdo e remocao sdo feitas
clicando-se nos botdes Insert New... € Remove Selected respectivamente. Para modificar tanto
o rotulo e as coordenadas desses keypoints, basta utilizar os campos no centro da tela. A
tabela da parte inferior permite ver quais keypoints ja existem, facilitando assim a

compreensdo do usudrio.
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Para que qualquer atualizagdo seja feita, basta pressionar-se o botdo Apply. Caso o usuario
clique em OK, o didlogo ¢ encerrado ¢ as alteragdes sdo salvas. Caso o usuario clique em
Cancel, as alteragdes feitas sdo perdidas, sendo que se o usudrio clicou em Apply em algum

momento na utilizagdo deste didlogo, apenas as alteragdes posteriores sdo perdidas.

e Comando Properties:

O comando Properties faz com que a janela de inser¢ao de propriedades seja aberta. A Figura

38 mostra essa janela.

= Properties =JoEd
l 3: Froperty Mame: IF'roperty‘I Ok Cancel | Apply |

—Rigid Properties Flexible Properties

Young Modulus: I 1] Amial Stiffness [EA] I
ik Puoizzon Ratio: I 0 Flexional Stiffness [E1]: I
External Diameter: I ] Torsional Stiffness [GJ]: I

Inzert Mew... |
Thickness: I 1] Hidraulic Diameter: I

Property Tupe

= Rigid

Remaove Selected |

. Hidraulic Properties
I—U Mormal Drag Coeficient; I i
T angential Drag Coeficient: I ]

Specific Mass:

Mumber | Mame |Y0ung M odulus | Paizson Ratio | Esternal Diameter | Thickness |Axial Stiffness
1 a a a 1}

Froperty 1

Mumber | Flexional Stiffnes | Toarsional Stiffress | Hidraulic Diameter | Specific Mass | MNormal Dirag | Tangential Drag

1 e e e 0 0 0

Figura 38 — Janela de insercio de propriedades
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Nessa janela podem ser adicionados ou excluidos dados de propriedades relativas a cabos em
geral, independentemente do seu tipo. Analogamente ao descrito anteriormente, nesse didlogo
altera-se as propriedades do Property selecionados, sendo tal selegdo feita através do ntimero,
exibido no canto esquerdo superior do didlogo. A inclusdo e remogdo sdo feitas clicando-se

nos botdes Insert New... € Remove Selected, como também foi descrito.

E possivel uma escolha entre propriedades de cabos rigidos e flexiveis, sendo que as seguintes

propriedades sdo comum a ambas:
0 Um nome que o identifique;
0 Massa por unidade de comprimento;

0 Propriedades hidrodinamicas: coeficiente de arrasto nas dire¢des normal e

tangencial.

Quando se escolhe o tipo do cabo como flexivel, os dados a serem fornecidos sdo os modulos
equivalentes (axial, flexao e tor¢do) e também o didmetro hidraulico. Quando o tipo ¢ rigido,
os dados a serem fornecidos sdo o modulo de elasticidade, coeficiente de Poisson, diametro e

espessura do tubo.

Existe na parte inferior da janela uma tabela que permite ao usuario verificar as propriedades
até o momento inseridas. Da mesma maneira que no didlogo dos Keypoints, para que qualquer
atualizacdo seja feita, basta pressionar-se o botdo Apply. Os botdes OK e Cancel possuem a

mesma funcionalidade descrita anteriormente.
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e Comando Cables:

O comando Cables faz com que a janela que permite a criagdo do cabo seja exibida. O
referido didlogo ¢ exibido na Figura 39. Um ponto a ser considerado ¢ que esse didlogo

somente esta disponivel caso existam pelo menos dois keypoints € uma propriedade definida.

|®E Cables Z
[ Cable Setting
Cable Hames Cable Name IEabIe 1 Apply | aK |
Inzert New

Cable

Remove Current
Cable

Murmber of Segrments |1 Cancel |
Start Keypoint Name |Se|ect Start Keppoint vi

End Keypoint Namne ISeIectEnd K.eypoint _v]

START
o END

SEG 1 SEG2

—Segment Setting i~ Pre-Salver Dptions

Mumber |1 3; Froperties Name ISeIect Propeties j Lenght I b aximum Iterations Mumber
IWZDDD
| Number | Properties Name | Lenght

Precision

lu.nuum

Relaxation Factor

Inzert Mew Segment

Femove Curent
Segment

!

0.m

Calculate Initial Guess... |

Figura 39 — Dialogo de inserciio de cabos

O comando Insert New Cable insere um novo cabo na analise. E possivel inserir quantos
cabos forem desejados pelo usudrio. Para cada um inserido é necessario indicar algumas
caracteristicas: nome do cabo, nome (rétulo) do keypoint de inicio, e do keypoint do fim da
extensdo do cabo. Essas informag¢des de todos os cabos ficam armazenadas em uma tabela

localizada abaixo de uma lista de nomes dos cabos previamente inseridos.
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O usudrio pode, através dessa lista, selecionar ainda os segmentos que existirdo no interior de
cada cabo. Assim, uma vez feita cada selecdo, serdo exibidos na parte inferior do didlogo os
segmentos previamente existentes no cabo selecionado. A inser¢do de um segmento inclui a
entrada de dois dados: o comprimento e a propriedade. As propriedades disponiveis sdo

exibidas em um combo box acima da tabela de dados dos segmentos.

Apoés a entrada dos dados do cabo e, de seus segmentos, o didlogo exibe o nimero de

segmentos inseridos, junto as propriedades do cabo.

A partir desses dados, e utilizando o método apresentado em II1.2, é possivel a partir das
solugdes analiticas para cada segmento, determinar uma estimativa inicial da malha a ser
utilizada. A geracdo da malha ocorre quando o usuario aciona o comando Calculate Initial
Guess. Como opgdes para esse pré-solver, estdo o numero de iteragdes maximo do método de
Newton Raphson, o fator de relaxacdo do método e, a precisdo requerida para o calculo.
Alguns valores padrdes para esses dados ja estdo com valores padroes no didlogo. A resposta
do pré-solver ¢ exibida através de duas mensagens possiveis. A Figura 40 exibe a mensagem
de quando ndo ocorre convergéncia no método, e a Figura 41 exibe a mensagem de

convergéncia obtida com sucesso.

Os comandos OK, Apply e Cancel sdo equivalentes aos dos didlogos Properties € Keypoints,

jé apresentados.

r

Error '

@ Mo solution was obtained! Please modify the parameters,

Figura 40 — Erro na solucio da estimativa inicial
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e =~

Solution is done @

\lj) Solution was sucessfully obtained!

Figura 41 — Sucesso na solu¢io da estimativa inicial

e Comando Mesh:

O comando Mesh exibe o didlogo que permite a inser¢do e modificagio de malhas. Esse

dialogo, exibido na Figura 42, s6 esta disponivel quando pelo menos um cabo esta criado.

s
Cable to be Meshed: | Select Cable.. | o
Mumber of Elemerts: | 1
Cancel
Tuvpe of Element; |Select Element Type... _ﬂ

Mesh I Clear Mesh I

Figura 42 — Didlogo de geracio de malha

Primeiramente, deve-se selecionar o cabo para qual deve ser gerada a malha, bem como o
nimero de elementos e tipo de elemento desejado. Para gerar a malha automaticamente, clica-

se no botdo Mesh. No caso do usudrio ndo colocar o cabo ao qual serd aplicada a malha, ¢
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exibida uma mensagem de erro (Figura 43). Também ¢ exibida uma mensagem de erro caso

ndo exista um tipo de elemento selecionado (Figura 44).

@ Mo cable Selected! Please seleck ane,
(0] 4

Figura 43 — Erro quando nio ha cabo selecionado

."\

@ Mo element bype Selected! Please select ane,

Ik

Figura 44 — Erro quando nio ha elemento selecionado

Caso este cabo possua uma malha anterior, uma mensagem de aviso sera exibida (Figura 45).

i r
g

Questiu n

9

\_..() This cable has been already meshed, Are vou sure wou wank o re-mesh it?

Sirm D]

Figura 45 — Mensagem de aviso de malha pré-existente
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Se o usudrio desejar excluir a malha do cabo selecionado, basta que ele clique em Clear
Mesh. Nesse caso, também serd exibido um aviso alertando-o que estd prestes a excluir a
malha atual, como pode ser visto na Figura 46. Para que as alteragdes sejam feitas, clica-se em
OK. Clicando-se em Cancel, as alteragdes ndo sdo salvas nas listas globais de nds e

elementos.

- =

Warning

' ?/ Are you sure clearing the mesh in this cable?

Sim [ ETu]

Figura 46 — Mensagem de aviso de exclusio de malha

A seguir, na Figura 47, na Figura 48 e na Figura 49 sdo exibidos exemplos de malhas gerados
com 12, 25 e 100 elementos, sendo que um exemplo de malha menos refinada — com 6

elementos — foi exibida anteriormente, na Figura 31.
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File Madeling  Simulation Parameters.,. ¥MLData View Help

L1l KIP|/|

fodify mesh and mesh parameters.

Wisualization
[Cable 1 B
" Geometry
+ Mesh

Wigw Tools

Zoom |n
Zoom Ouk
Fit Wiew
e |

Left | PAN i Right
| Diow

Figura 47 — Malha com 12 elementos

85! UltraFlex Preprocessar - Untitled

File Modeling Simulation Parameters... XML Data View Help

L1l K|P

todify mesh and mesh parameters.

Wisualization
[Cable 1 |
" Geometry
" Mesh

Wigw Tools

Zoom |n
Zoom Out
Fit Wigw
i

Left | PaN . Fiight
) Crow

Figura 48 — Malha com 25 elementos
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File Modeling Simulation Parameters,,. ®MLData  Wiew Help

Lzl K[P|_/]

Modify mesh and mesh parameters.

Wisualization

|Cable 1 -

" Geomnetry

* Mesh

Wiew Tools

Zoor In
Zoom Dut
Fit Wigw

Left

Up
PAMN - Right

Dow

Figura 49 — Malha com 100 elementos

e Comando Constraints:

134

O comando Constraints exibe o didlogo que permite a inser¢cdo e modificagdo de restrigdes

nodais. Esse didlogo, exibido na Figura 50, s6 estd disponivel quando pelo menos um cabo

possui malha.
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5/ Constraints ™ =)
Mumnber; |2 3: ar. | Cancel | Apply |
Mode: I'I 2 j Inzert Mew. .. |
Constraint Type: IW vl Remove Selected |

. Degrees of Freedom

% v Iz ¥ mx | ¥ Rz
Humber | Mode | X | |2 | R | RY |RZ
1 1 v ¥ [v v I Iv
2 12 [v v [¥ [v [ [¥

Figura 50 — Didlogo de inserciio de restri¢oes

Nesse didlogo selecionam-se qual o numero da restricdo a ser modificada, da mesma forma
que nos didlogos keypoints e properties, permitindo a inser¢ao e remog¢ao dos mesmos através
dos botdes Insert New... € Remove Selected, respectivamente. Com uma restri¢ao selecionada,
¢ possivel escolher-se o n6 no qual essa agird e também o tipo de restri¢ao dentre uma lista:
fixed, que nao permite nenhum tipo de movimento nodal; joint, que permite apenas rotagoes; e
user defined, que permite que o usudrio escolha quais graus de liberdade serdo presos. A
escolha desses graus ¢ feita através do quadro abaixo do menu de selecdo do tipo da restri¢ao,

que se torna editdvel quando da escolha de user defined.

Os restantes dos botdes funcionam também da mesma forma que nos didlogos keypoints e

properties.

e Comando Loads — Nodal Loads:
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O comando Nodal Loads do submenu Loads exibe o didlogo que permite a insercdo e
modificacdo de carregamentos nodais. Esse dialogo, exibido na Figura 51, como no caso do

dialogo de restrigdes, so6 esta disponivel quando pelo menos um cabo possui malha.

| W& Nodal Loads |;|[§i@
Mumber: G (.8 | Cancel | Apply |
Inzert Mew... |
Mode: 1 -
o I J Femove Selected |
— Modal Loads
» Force: I a * Mament: I 1]
Y Force; I o ' Mament: I 1]
Z Force: I 0 Z Marment: I 1]
Mumber | Mode | Fx | Fy [ Fz | M | My | Mz
1 1 i 1] i 1] 1] ]

Figura 51 — Dialogo de carregamentos nodais

Nesse dialogo seleciona-se qual o numero do carregamento nodal a ser modificado, da mesma
forma que nos dialogos keypoints e properties, permitindo a inser¢ao e remog¢ao dos mesmos
através dos botoes Insert New... ¢ Remove Selected, respectivamente. Com um carregamento
selecionado, ¢ possivel escolher-se 0 n6 no qual essa agird, além de permitir a inser¢do das

projegoes das forgas e momentos nos trés eixos, gerando assim um conjunto de seis esforgos.
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Na parte inferior do didlogo ¢ exibida uma tabela, que permite visualizar todos os
carregamentos até agora inseridos. O restante dos botdes funciona, também, da mesma forma

do que nos dialogos keypoints e properties.

e Comando Loads — Current:

O comando Current do submenu Loads exibe o didlogo que permite a inser¢ao e modificagao

de uma corrente, através de perfis de corrente. O didlogo ¢ exibido na Figura 52.

82 Current o

Diirection: I 0 —|EIK
. Profile Data ————— Cancel |

MNurnber: |1 3:
Apply |

Depth; I 0
Inzert Mew. . |

Welocity: I 0
Remaove Selected |

Murmber | Depth | Welocity

il 0 0

Figura 52 — Didlogo de inserc¢io de corrente
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Nesse dialogo insere-se a direcdo da corrente ¢ modifica-se o perfil da corrente da mesma
forma que se modifica uma propriedade ou um keypoint. Insere-se para cada perfil a
profundidade e a velocidade nessa propriedade. Nesse dialogo estdo presentes os botdes Insert

New..., Remove, Cancel, OK e Apply como nos didlogos anteriormente descritos.

111.4.3. Menu Simulation Parameters

O menu Simulation Parameters ¢ mostrado na Figura 53. Esse menu permite o acesso as

configuracdes de analise.

FIQ Simulation Parameters g & @1
Sirnulation Method: |Select ethod.. | LJ
Steps: ] 10
Sub Steps: l 1
Solver Snstem; ]Select Sygtem... L]
Analyziz Type: ]Static _"'_l
P axirnum [terations: ] 10
Precision: ] 0.0o1

[ Divide Weight
I Divide Current

[ Divide Seabed Position

oK Cancel

Figura 53 — Dialogo de parametros de simulacéo



139

Nesse didlogo pode-se selecionar o tipo de método a ser utilizado: tangent stiffness,
restauration method e incremental restauration method, bem como o numero de steps e

substeps a serem utilizados. Pode-se escolher o tipo de solver do sistema entre Cholesky e

LDLT.

Dentre as demais opgdes, pode-se escolher o tipo de andlise que permite apenas a analise
estatica, nimero maximo de iteragdes e precisao. Pode-se ainda serem ajustadas algumas flags

que podem facilitar a resolugdo do caso em estudo.

111.4.4. Menu XML Data

O menu XML Data é mostrado na Figura 54. Esse menu permite que dados sejam importados

e exportados no formato XML.

®ML Data - Miew Help

Import =ML, Chrl+I
Export ¥ML... Ctrl+E

Figura 54 — Menu XML Data

e Comando Import XML:

O comando Import XML permite que o usudrio importe os dados para de arquivo XML,

abrindo um dialogo semelhando ao da Figura 33. Nesse caso, todos os dados sdo lidos e
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armazenados no arquivo aberto atualmente e podem ser modificados, facilitando assim a

geracdo de diversos casos com pequenas modificacdes.

e Comando Export XML.:

O comando Export XML permite que o usuario exporte os dados para um arquivo XML,
abrindo um diadlogo semelhando ao da Figura 34. Se esse arquivo exportado contém todos os
dados necessarios para a analise, pode alimentar o moddulo de andlise estitica e
posteriormente, com a saida de outro arquivo XML com os resultados da simulagdo, € possivel

alimentar o pds-processador.

111.4.5. Menu View

O menu View ¢ mostrado na Figura 55 e na Figura 56. Esse permite executar as mesmas
tarefas que os botdes da barra de visualizagdo, com excecdo da mudanga de cabos e alternar

entre malha e geometria.

Wigw  Help
Z0om 3 ZoomIn  Chrl+Ins
Fit Wiew Chrl+F Zoom Cuk Crhrl+Del
Pan b

Figura 55 — Menu View com Zoom expandido



Wiem  Help

Zoam
Fit Wiew Chrl+F
Fan
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Up
Do
Left
Right

Figura 56 — Menu View com Pan expandido

e Comandos Zoom — Zoom In e Zoom — Zoom Out:

O comando Zoom permite que o usudrio se aproxime ou se afaste do desenho do cabo

selecionado, facilitando a verificagdo da malha e da geometria. A Figura 57 mostra um

exemplo quando clica-se em Zoom In, enquanto a Figura 58 mostra o mesmo exemplo quando

em Zoom Out.

5 UltraFlex Preprocessor - Untitled. ufp

File Modeling Simulation Parameters,,. *MLData  Yiew Help

L1z d| K[ P /|

Increases view's prosimity.

Yisualization
|Cable 1 -

+ Geometry

 Mesh

Wiew Tools

Zoom Dut
Fit View
Up

Left | PAM  Right

Diowe

Figura 57 — Zoom In de cabo
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File Modeling Simulation Parameters..., =ML Data ‘View Help

L K[P|_/

Decreazes view's proximity.

“izualization

|Cahle 1 -

* Geometry
" Mesh
iew Tools

Zoom |n

Fit Wiew

i

|

Left | PaN  Right

Do

Figura 58 — Zoom Out de cabo

e Comando Fit View:
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O comando Fit View faz com que o desenho do cabo seja ajustado a area de visualizagdo

atual, mantendo as relagdes de propor¢ao do desenho. A Figura 59 mostra o resultado do

comando Fit View.
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55 UltraFlex Preprocessor - Untitled. ufp

File Modeling Simulation Parameters... XML Data  Wiew Help

|- K[ P[]

Yisualization

|Cable 1 -

* Geomety

r

Yiew Tools

Zoam |n
Zoom Out

Fit Wiews

i

Left | PAN Right

Dow

Here comes program's information and tooltips.

Figura 59 — Efeito do Fit View de um cabo

e Comandos Pan - Left, Pan — Right, Pan — Up e Pan — Down:

Os comandos do grupo Pan permitem que o usuario visualize o cabo movimentando a janela
de visualizagdo. Clicando-se em cada uma das opcdes, a janela de visualizagdo ¢
movimentada. A Figura 60 mostra o efeito do Pan Left, a Figura 61 mosta o efeito do Pan

Right, a Figura 62 o efeito do Pan Up, e finalmente a Figura 63 o efeito do Pan Down.
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WizLalization
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Wiew Tools
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B

Fit Wiew

FAN _Right

Diowe

Increaszes wiew's proximity.

Figura 60 — Efeito do Pan Left

55! UltraFlex Preprocessor - Untitled. ufp

-File Modeling  Simulation Parameters.., XMLData  Wiew Help

L5 || K|P

Visualization
[Cable 1 ~|
* Geomety

" Mesh

View Tools

Zoom In
Zoom Out
Fit Wiew
Up

Lett | PN [Right]
_DUW

Ihcreases view's proximity.

Figura 61 — Efeito do Pan Right
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File Modeling Simulation Parameters. ..

L5 KIP|J|

%ML Data  Miew Help

Increases wiew's praximity.

Wisualization
[Cable 1 |
* Geomety

" Mesh

Wiew Tools

Zoom In
Zoom Jut
Fit Wiew

Left | PaM Fight

Drawy

Figura 62 — Efeito do Pan Up

85! UltraFlex Preprocessor - Untitled. ufp

File Madeling  Simulation Parameters... XML Data

L(d K|P|

View Help

Increases wiew's praximity.

izualization
[Cable 1 =l
* Geomety

" Mesh

Wiew Tools

Zoom In
Zoorm Dut
Fit Yiew
e |

Left | PaN _Pight

Figura 63 — Efeito do Pan Down

145



146

111.4.6. Menu Help

O menu Help ¢ mostrado na Figura 64.Permite acesso aos dados do programa, através do

diadlogo About.

Help
| About...

Figura 64 — Menu Help

e Comando About:

O comando About exibe a janela sobre do programa, como pode ser visto na Figura 65.

- = oy

55 About UltraFlex Preprocessor...

UltraFlex Preprocessor

Version 1.0

Figura 65 — Didlogo Sobre
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CAPITULO IV — POS-PROCESSADOR

IV.1 Especificacoes Técnicas

Da mesma maneira que os moddulos anteriores, o pos-processador possui requisitos

especificos. Nesse modulo, as especificagdes a serem atendidas sdo:

A criagdo de um ambiente grafico, ndo necessariamente multiplataforma, com o qual
seja possivel a leitura de um arquivo de entrada do nticleo do ambiente, sendo possivel

a visualizagdo de gréficos de interesse do usuario.

e O software necessita ser “user-friendly”, facilitando a visualizagdo e geragdo dos

graficos desejados.

e Deve possuir fungdes de leitura e gravacdo de dados em XML, para que ndo seja

necessaria nenhuma intervencao do usudrio no arquivo.

e Deve-se optar por uma linguagem de programacdo e bibliotecas graficas que
apresentem um compromisso entre velocidade e requisitos de hardware compativeis e

que possam ser utilizadas na maioria dos computadores pessoais atuais.

1IV.1.1 Linguagem de Programag¢do

Nesse modulo também se optou pela linguagem de programagdo C#, ja que ela mostra as
vantagens descritas no item III.1.1, referente a escolha da linguagem para o pré-processador.

Um outro ponto que levou a escolha dessa linguagem foi a possibilidade de reutilizar tanto o
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conhecimento adquirido com o desenvolvimento do pré-processador, bem como com o

possivel reaproveitamento de codigo e fungdes de leitura e gravagdo de XML.

J4

Um outro aspecto a ser levantado ¢ a utilizacdo de bibliotecas, ja que estas diferem das
utilizadas no pré-processador. Escolheu-se a biblioteca Nevron® para a gera¢io dos graficos
por ser de facil utilizagdo e por estar disponivel para uso em projetos do laboratério NDF, do

Departamento de Engenharia Mecanica da Escola Politécnica da Universidade de Sdo Paulo.

IV.2 Descricao

O poés-processador é composto de uma janela principal na qual o usuario pode escolher o tipo
de visualizacdo de dados desejada, tanto na forma de uma tabela quanto na forma de um
grafico, escolhendo as colunas (ou os eixos, no caso do grafico) desejadas para essa
visualizagdo. O usudrio ainda tem a possibilidade de criar uma copia do grafico em uma

janela separada, com o intuito de comparar diversos graficos do mesmo caso.

Os dados s3o importados de arquivos XML e somente ap6s a abertura de um desses arquivos

¢ que a janela principal, exibida na Figura 66 torna-se operacional.



Figura 66 — Janela Principal do P6s-processador sem nenhum arquivo de entrada carregado

5 UltraFlex Postprocessor

/oty

File Help

Choose X Axis variable:

¥ Show Table

€ Show Graph

[etach GEraph |

A
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A entrada do arquivo a ser visualizado ¢ feita através do menu File, escolhendo-se a opgao

“Import XML Data...”. E possivel reiniciar-se o processo selecionando-se a op¢do “New...”

no mesmo menu. Uma vez que os dados foram devidamente carregados, € possivel visualizar-

se uma tabela com os dados dos eixos escolhidos (cujo padrdo ¢ X por X), como exibidos na

Figura 67.

Ll UltraFlex Postprocessor

Choose X Axis variable

Element Mumber
Element Tenzion

Choose Y Axis variable

Y
Z
5
Element Mumber
Element Tenzion

' Show Table

"~ Show Graph

Mumber | X dgis - | 7 s -

0 1.4E-05 14E-05

1 4253040702732 4253040702732
2 8506333465596 8506333465536
3 12.759838025179  12.759838025179
4 17.013497953933  17.0134575953933
[} 2126724582968 21 267254502968
E 2862104E922134 25 521046922134
7 2877481877 287748116770
2 3402848266482 34.028482664823
q 38.281991722894  38.281991722894
10 42 535267620019 42 535267620019
1 46.788236460200  46.7853236460205
12 51.040521454341  51.040521484341
13 05.292342971829  55.292942371829
14 59.54451812977 5354451812977
15 £3.795460990597  £3.795460930597
16 68.045682297067  68.045682297067

27 AREARAART AT

27 AREARRART A

[retach Graph |

1
]|
X

Figura 67 — Pés com arquivo de entrada carregado

|Fi|e C:%RodrigotUlraFlexiUlraFlexPost 1.1 0houtput. #ml imported sucessfully.
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Com o arquivo de entrada carregado, ¢ possivel modificar-se a visualizacdo dos resultados
para graficos em duas dimensdes, clicando-se em “Show Graph” no canto esquerdo inferior.

A Figura 68 mostra o mesmo caso anteriormente carregado quando selecionada essa opgao.

Chioosze # Axis waniable:
GO0
ke
Ay
Z 400
5
Element Hurber 400
Element Tension
Chooze ' Axiz wariable: Gt
>~

><: 200
B
. 100
Elernent Humber
Elemert Tension ]

-100

a 50 100 150 200 250 300 350 400 450 500
" Show Table X

* Show Graph

Detach Graph

|Switch Between graph and table vizualization.

Figura 68 — Visualizacio de graficos

As opgoes de graficos possiveis sdo as mais comuns € necessarias para a validagdo e
verificacdo dos modelos. Ainda ressalta-se a possibilidade da visualizacdo de diversos
graficos simultaneamente, uma vez que os graficos podem ficar em novas janelas. Clicando-
se no botdo “Detach Graph”, uma nova janela, similar a da Figura 69, sera exibida. E possivel
alterar o grafico do programa principal, ou mesmo alterar para a visualizagdo dos dados na

forma de tabela sem perder o conteudo do grafico desta nova janela.
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GO0
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Figura 69 — Grafico exibido em nova janela

Nesta janela ainda ¢ possivel ter acesso aos recursos de impressdo e visualizagdo de

impressao, como pode ser visto na Figura 70, na Figura 71 e na Figura 72.

Imprezsora-
Mome: HF Office)et G55 | Propriedades..
Status: Pronta
Tipo: HPF Dificelet G55
Onde: IP_132168.0.82
Camentaria: [ Imnprimnir em arg.
Intervalo de impressao Copiaz
+ Tudo Mumero de cdpias: ﬁ EI:
¢ pagioass s el | | oy
e I P B

e : 1 1

0K | Cancelar

Figura 70 — Janela de Impressiao



Configurar pagina [E] |

— Papel
Tamanhn: |A4 ;I
Origen: I Selegdo automatica LI
— Orientagao argens [milimetros]

* Retrato Esquerda: I'ID Direita: |1D
" Paisagem Supetior; |1D Inferiar: |1D

(0]% | Cancelar | Imp_lessora...l

Figura 71 — Janela de configuragdes de impressao

;E‘ Print preview _[_3@ |
SO 0B BB B | oo Page | =

QA AP 1 Crcis m s Postomznamer

Graphic: X x ¥

Figura 72 — Janela de visualizacio de impressao

Na Figura 73 tem-se uma possivel configuracao do software, exibindo diversos graficos ao

mesmo tempo e, assim, aproveitando a0 maximo os recursos possiveis.
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Figura 73 — Pos processador com diversas janelas de graficos abertas
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APENDICE A — ROTACAO DE SISTEMAS DE COORDENADAS [13]

As formulagdes dos elementos aqui desenvolvidas sdo feitas baseadas no sistema de
coordenadas local dos mesmos. Sendo assim, a matriz de rigidez montada niao ¢ adequada
para qualquer sistema de coordenadas, sendo, portanto necessario realizar uma rotagdo sobre
ela. Executando tal procedimento ¢ possivel escrever a matriz de rigidez de cada elemento

com base no sistema de coordenadas global.

Sendo V um vetor escrito no sistema de coordenadas global, e V o mesmo vetor escrito no
sistema de coordenadas local, existe uma matriz T tal que:

V=TV (A.1)
Onde T ¢ a matriz identidade alterada pelos valores dos cossenos diretores dos componentes

de V medidos no sistema global de coordenadas.

Foram desenvolvidas as matrizes de rotacdo para sistemas de coordenadas bi e
tridimensionais. A equagdo (A.2) encontra a matriz bidimensional para a rotagdo entre os

sistemas de coordenadas da Figura 74.

N
\ P -
\, b
\ L 5

AN -
., -

//I'
I/-"'\‘I(l [pho

Figura 74 — Rotacdo de um sistema de coordenadas bidimensional

T {cos(a) - sen(a)} (A2)

sen(a) cos()
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Para o caso tridimensional foi utilizado um método algébrico, para se determinar os valores

dos cossenos diretores que aparecem na matriz de rotagao.

Sendo (i, j,k) uma base ortogonal, mas nao necessariamente ortonormal de um sistema de
coordenadas e denotando os valores das coordenadas dos dois nos que formam um elemento

(xlaylazl) c (xzayzazz) , pOde'Se definir;
i = (X, =X, Y, = V1,2, — 7))

O valor do produto escalar i ® j =0 pois a base é ortogonal. Sendo ; = (a,b,c) onde a,b e c

sdo constantes reais a serem determinadas, desenvolve-se o produto escalar:

;°j:[(xz_xl)a"'(J’z_J’l)b"'(Zz_Zl)c]:O (A.3)

Admitindo arbitrariamente os valores de @ =0 e b =1, pois esses definirdo as posi¢gdes dos
eixos ortogonais a direcao do elemento, que sdo absolutamente arbitrarios. Agora € possivel

determinar o valor de ¢ com a equagdo (A.3). Encontra-se assim o valor:

c= =) (A.4)

(z,—2z)

Basta agora determinar uma expressao para o vetor k . Fazendo o produto vetorial dos outros

dois vetores ¢ possivel obter a equagdo (A.5).

p :lij:(_ (2’2 __yl))z —(z, _Zl)’(yz _(yl)_(x2)_xl),(x2 _xl)] (A.5)

partir dos vetores escritos € possivel determinar os cossenos diretores entre as coordenadas

globais e locais e montar a matriz de rotacdo tridimensional (equagdo (A.6)):

cos(x, X) = ;.E‘lf,‘(‘)’()) , €os(y,X) = —f : ‘(‘9’1’0) , cos(z,X) = _; : F_,O’l)
i ; ;




cos(x,5) = ’ﬁl"f’(’) cos(y.3) =L ﬁg"‘l’o) cos(z,7) = L° ﬁg"‘o’”
J J J

_ ke(1,0,0) _ ke(0,1,0) _ k(0,0
cos(x,z) = = , cos(y,z) = — , cos(z,z) = —
g g g

cos(y,x) cos(y,y) cos(y,z)
cos(z,x) cos(z,y) cos(z,z)

{cos(x,)_c) cos(x,y) cos(x,E)}
T=

158

(A.6)
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APENDICE B — INTEGRACAO NUMERICA: METODO DOS TRAPEZIOS [13]

O método dos Trapézios ¢ um método de integracdo baseado na aproximagdo da curva a ser
integrada por segmentos de retas entre dois pontos consecutivos. A Figura 75 mostra como ¢

calculada a integragao pelo Método dos Trapézios.

Figura 75 — Método dos Trapézios para intervalo de integracao [a,b]

Aproxima-se a curva por uma reta e a area formada entre esta e o eixo, cuja figura geométrica
da nome ao método, ¢ a integral aproximada do mesmo. Para um caso unidimensional em que
se possui a funcdo f(x) e cujos extremos de integracdo sdo a e b, a integral pelo Método dos

Trapézios ¢ dada por (B.1).
[ro=" @+ 1) (B.1)

Para obter-se um valor mais realistico da integral, deve-se utilizar este método em partes, ou

seja, aproximando pequenos trechos da funcdo por integrais desse tipo, como na Figura 76.
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Figura 76 — Método do Trapézio com n divisdes e passo h

Definindo o passo como a diferenga entre os extremos de integragdo dividida pelo numero de

divisdes desejadas n — equagdo (B.2) — esse problema pode ser resolvido.

(B.2)

Assim, tem-se entdo que a integral pelo Método dos Trapézios para n divisdes iguais —

equacdo (B.3).

ff(x)=g(f(a)+f(b)+if(a+ih)J (B3)
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APENDICE C — INTEGRACAO NUMERICA: METODO DE ROMBERG

O Método de Romberg ¢ um tipo de implementacao de método de integragdo numérica que se
utiliza de uma malha de integracdes feitas através do Método dos Trapézios. Assim, o método
calcula a integral do Método dos Trapézios com um ntimero crescente de divisdes e verifica a
convergéncia, além de poder trabalhar com uma precisao de erro e um critério de parada de
iteracdes. O método ainda fornece como resultado da integragdo numérica uma composi¢ao

do valor da integral, como ¢ exibido a seguir:

45y I

b JHlk-1
[[fe0= 1, =—2E

Jsk—1

Onde,

o indice j € o nimero de subdivisdoes no Método dos Trapézios.

o indice k indica o ordem estimada do erro da aproximacgao.

A implementacao do método pode ser feita da seguinte maneira:

Calcule a integral pelo Método dos Trapézios /; ;.

e Comece com as subdivisdes e calcule /;;, usando o Método dos Trapézios para 2'

intervalos.

e Calcule em subdivisdes com k comegando de 2 e indo até i + / a integral /;,comj = 2

+ i — k e utilize a regra de Romberg descrita anteriormente.

e Finalize as subdivisdes caso atingido o nimero maximo de iteragdes ou o erro.
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APENDICE D — EXPRESSAO PARA O CALCULO DA CURVATURA GEOMETRICAMENTE EXATA

Tomando um elemento infinitesimal de portico, ilustrado na Figura 77 ¢ possivel escrever a

relacdo geométrica da tangente do angulo de inclinagdo, ilustrado na mesma figura.

dd
=]
f
dx
{E———
— ds
. g

Figura 77 — Elemento diferencial de Portico

tan(f) = Z’_f (D.1)
X

Diferenciando-se ambos os lados da equagado (D.1), obtém-se:

2
sec’(0)d0 = d fdx (D.2)
dx

2

Substituindo as equacdes (D.1) e (D.2) na relagio trigonométrica: sec’(d) =1+ tan’(6),

obtém-se:

IEWNEA) .
dx* dé dx '
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E possivel escrever outra relagdo geométrica, a partir do Teorema de Pitagoras, aplicado na

geometria do elemento de portico diferencial:
df* +dx’ =dS? (D.4)
Mas também:

1L _ds
cos(@) dx

5602(9)=[2—SJ =1+(Zl) <:>dS2:dx{1+(le ]
X X by

Pode-se relacionar dS com dx da seguinte forma:

dsS = dx(l + (ij J (D.6)
dx

Como dS = Rd 8, pode-se escrever, isolando-se df) na equagao (D.3):

sec(d) =
(D.5)

2
s d {dx
= dx : (D.7)
[1+(dfj ]
dx
Substituindo (D.6) em (D.7), obtém-se:
d 2 1/2
dx 1+(fj &, af
dx dx? X 1 >
=X @(Ej:/(: X (D.8)

C @)

Onde « ¢ a curvatura do portico.
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APENDICE E — METODO DE NEWTON APLICADO A RESOLUCAO DE SISTEMAS NAO-LINEARES

O método de Newton baseia-se no algoritmo desenvolvido em Rugierro, M. e Lopes, V., 1997
([23]) As autoras descrevem que um sistema de equagdes, pode ser escrito na forma exibida

em (E.1).

Fx)=0 (E.1)
Para resolver o sistema ndo linear, inicialmente ¢ feita uma expansdo em série de Taylor de
cada uma das fungdes ao redor das estimativas de suas raizes (x(k)), uma vez que as mesmas

sdo desconhecidas. Para uma fungdo qualquer f;, calculada em um ponto x ao redor de x*,

tem-se a expansao como em (E.2).
£ =6+ Vfi(e) (x—x*) i=1..,n (E.2)
Onde ¢; é um valor desconhecido entre x e x*. Ao invés de calcular Vf,(c,) mas calculando
V£ (x"), obtém-se uma aproximagio linear para a fungio fi(x), como descrito na equagdo
(E.3).

£ = £+ VL) (x=x®) i=1,....,n (E.3)
Aplicando o método para todas as fungdes fi(x), obtém-se F(x) como na equagao (E.4).

F(x) ~ Fx®)+Jx*)(x-x¥) (E4)

Onde J ¢ a matriz Jacobiana. Agora impoe-se que F(x) seja identicamente igual ao vetor nulo

e com isso obtém-se uma aproximagao para o vetor X.

0=Fx")+Jx*)x-x¥) (E.5)

).

O algoritmo, portanto, consiste em, dado uma estimativa inicial para as raizes x
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e Calcular o vetor Fx®) e Jx).
e Obter a solu¢do do sistema linear J(x®)Ax = F(x*) em Ax.

e Somar os valores de Ax a estimativa inicial e recomeca-se o processo tendo como

estimativa o novo X.

O processo iterativo termina quando o erro residual entre a diferenga entre dois vetores F
consecutivos for menor que a precisao indicada quando da convergéncia ou quando atinge um
limite maximo de iteracdes, que indica que o nimero de iteragdes ndo permitiu obter-se a

resposta dentro da precisdo estabelecida.
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