ESCOLA POLITECNICA DA UNIVERSIDADE DEASAO PAULO
DEPARTAMENTO DE ENGENHARIA MECATRONICA E DE
SISTEMAS MECANICOS

Comunicag&o entre Programas para a Simulacéo [
de Sistemas Produtivos

Caio Klasing Pandolfi

Sé&o Paulo
2005

ESCOLA POLITECNICA DA UNIVERSIDADE DE SAO PAULO
DEPARTAMENTO DE ENGENHARIA MECATRONICA E DE
SISTEMAS MECANICOS

Comunicag&o entre Programas para a Simulago Distribuida
de Sistemas Produtivos

Monografia apresentada & Escola
Politécnica da Universidade de Sao
Paulo para relacionado 2 disciplina
PMR2550 — Projeto de Conclusio do
Curso Il

Caio Klasing Pandolfi

Orientador:
Prof. Dr. Paulo Eigi Miyagi

Sao Paulo
2005

RESUMO

Em fungdo da crescente complexidade e aumento de dispersdo entre as partes que
compdem um sistema produtivo, existe a necessidade de novas ferramentas para apoiar 0
projeto e avaliagdo destes sistemas. Neste contexto, tem sido introduzido o conceito de
simulagfo distribuida, mas, para sua efetiva implementagsio & necessario especificar como se
realiza a troca de informagdes entre entidades que estdo simulando partes diferentes de um
sistema produtivo. Desta forma, este trabalho analisa técnicas para implementar mecanismos
de comunicagio entre programas de simulagio, e tem por objetivos identificar as
caracteristicas necessdrias ds conexdes que irdo realizar a troca de informagdes entre estas
partes ¢ avaliar dois métodos para implementar tais conexdes. Foram assim, desenvolvidos
programas baseados em Web-Services € CORBA para integrar aplicativos distribuidos e
sugeridas arquiteturas para uma plataforma de simulacéo baseada nestas tecnologias. Através
dos estudos e programas implementados foram levantadas as vantagens e desvantagens de

cada um dos métodos para a utilizagdo na plataforma de simulagdo.

Palavras-Chave: Sistemas distribuidos, comunicacdio entre programas, sistemas

produtivos, edes de Petri.

SUMARIO

L. Introdu¢so....... - ettt as b st e sersissnnrsenserresnnsenns |
L.1. Motivagdo e Attt 3
Ot 4

2. Conceitos Fundamentals 5

2.1 Caracteristicas dos Sistemas Produtivos OPEESOS ottt 5
2.2. Simulagdo em R 6
2.2.1 Como criar Modelos para SIEBGRO. .o 8

2.3. Conceitos bdsicos de Redes de Peyyi) 9
2.4, Estrutura dos modelps da Plataformy de SHIBGEO .t i2
S O o 19
252 Compoes i GORBA 19

2.5.2 Componentes do CORBA o L 23

o S o e o 47
2.6.1 Server Oriented e 43

26 I 44

2.6.3 Interagdo entre g e oo 46

2.6.4 Estrutura da s 48
26.5WSde Fenten gL 50

2.6.6 Componentes de OB Lo e oo 51

2.6.7 Web Service Description Language V8D 54
e S 60
R 68

3. Mecanismos de Integracio e coordenaciio da Plataforma de Simulacio......... vonrnseane 12
3.1. Informagdes de Tt 73
3.2. Informagées sobre O avango do tempo e singis de controle e monitoramento da simulagdo.............. 74
3.3. Informagées sobre a hierarquia e permissdes de acesso dos PORUOS oo 76
3.4. Implementacdo com ettt 78
5420 sty 79

3.4.2 O servigo B 84

3.4.3 Servigo B 86

3.5 Implementag:ﬁo et 88
3.5.1 Programa e — 89

3.5.2 O programa dorg e 90

3.5.3 Programa PO T 95

4. Andlise dos Resultados ¢ Comparacio dos Métodos ..., .99
4.1, Arquitetura da Plataforma de Simulagdo baseada em S ettt 99
4.2. Modelo de arquitetura para g Plaiatorma de Simulagdo baseada em CORBA. oo 101

5. Comentirios finais € Conclusées . o I — 1|
APENDICE A - Uma visiio geral de Redes TCP/IP e 107
1 O modelo de pilha de 4 Ser Gt O oo 108
1.1 Descrigio das fungdes de cada e PPttt 109

1.1.1 Descrigiio de Dispositivos de redes TCBR .ttt 111

1.1.2 Enderecamento e FOUAMOID 1 oottt 112

1.1.3 Como se processa a comunicagdo em uma rede TCPAIP. 113
APENDICE B - Como funcionam os sockets...... . 115
12 BSUTUMIR Q08 SOCKELS....o ot 116

1 Conextes blocking e PONBIOCKNG ottt oo 119
1.3 Vantagens das conexdes OLOCKING: ..ottt 120

1.4 Vantagens de conexdes POIBIOCKING. .t i21

2 SOCKELS € THFCOLS st 127

LISTA DE FIGURAS

Figura 2-1 - (a) marca (b) lugar (c) transicio (dyarco ..o
Figura 2-2 - Disparo de ANSIGAO ..o

Figura 2-6 - Representagfio grafica de um aplicativo, mostrando a interagdo entre os

COMPOREHLES ottt

Figura 2-7 - Exemplo esquematico da arquitetura fisica da Plataforma de Simulagéo
Figura 2-8 - Exemplo esquematico da arquitetura de programas na Plataforma de

SUBUAGHD et

Figura 2-9 - Esquema da estrutura de dominios e federagdes na Plataforma de

SIUAGEO. ottt
Figura 2-10 - Categorias de interfaces do reference model loOMA ...
Figura 2-11 - Exemplo de cenério de uso do reference model........................._
Figura 2-12 - Esquema da arquitetura CORBAcooommvoccvomcr
Figura 2-13 - Cédigo de uma interface IDL oo

Figura 2-16 - Estrutura da arquitetura orientada a servigos.............._ .
Figura 2-17 - Exemplo de ChOreography ...
Figura 2-18 - Conjunto de documentos que descrevem um SEIVICO ...ocooveaiioarn
Figura 2-19 - Relacionamento entre UDDIL SOAP e WSDL.....coooooooo
Figura 2-20 - Niveis de protocola na estruterade um WS...................

Figura 2-21 - Arquitetura de aplicativos para a web e tecnologias utilizadas na

COMUIMCAGED ..ot
Figura 2-22 - Definicdo de servigo expresso pelo elemento service.... ...
Figura 3-1 - Representagiio da fusdo de Iransicdes entre dois objetos (J unqueira)
Figura 3-2 — Conexdes em “ane]” para monitoramento e controle da simulagdo

Figura 3-3 - Gerenciamento da hierarquia e acesso a objetos através de servigos de

GITRHOTIOS. .ot

.......... 18

Figura 3-8 - Tela do programa cliente depois que os servigos primeiro e segundo foram

BRECULAAOS ...ttt et e s et 83
Figura 3-9 - codigo da unit de interface do servigo primeiro..........o.coo.ovovvoooeoooooe 84
Figura 3-10 - ¢Odigo da Unit PrimEIr0ooovvovr v oo 85
Figura 3-11 - Unit com componentes utilizados para servidores de WSoovoovoooovo, 86
Figura 3-12 - Cédigo da implementacio da fungBo segundo............oooerveoveoovvoooooo 87
Figura 3-13 - ParAmetros de entrada e saida dos métodos primeiro € segundo 88
Figura 3-14 - Cddigo da unit do formuldrio do programa cliente..............o.ovvevvvovooooooe, 89
Figura 3-15 - Formulario do programa CHente.................ccooevvervroorooeoeooeeeoooeeoeooooooo 90
Figura 3-16 - Formulério do programa cliente apés a execugfo dos métodos dos objetos
CORBA TEIMOLOScoovivirrarieecctes oot eees et eses e 90
Figura 3-17 - Interface, stub e skeleton do objeto Primeiro.............o.cooovovoovoooooo 92
Figura 3-18 - Declaragfio do object factory na unit servidor] TLBo..coooovvoeoeerooo . 92
Figura 3-19 - Codigo da unit iMpPPIIMEIT0.ovcoovremoeee oo 94
Figura 3-20 - Documento IDL do objeto Primeiro........ocoovoovvoooooeoeooe oo 95
Figura 3-21 -Implementagfio da fungo SegUNAOccoeooriooveroeeeeeeeooeeeeoeeoo 96
Figura 3-22 - Documento IDL do objeto Segundo..............oovvrcoieeoeooreoroeeeeeeoeeeoeoe o, 96
Figura 4-1 - Arquitetura da Plataforma de Simulagfio baseada em WS.........oooooivoovoii) 100
Figura 4-2 - Arquitetura da Plataforma de Simulagéo baseada em CORBAooooooovenn . 102

Figura 4-3 - Objetos CORBA gerados pelo compilador com a estrutura de sockets
EMBULIAAooiiiiiiie ettt e 103

LISTA DE TABELAS

Tabela 2-1 - Mapeamento entre tipos IDL e C++ adaptado de Vinsoski

................................. 29
Tabela 3-1 - Significado dos valores do campo de Statuso..ooooveovcereoo 75
Tabela A-1 - Camada de protocolos TCP/IP.......oocoeo 108

BOA
CORBA
DCE
Dil
DNS
DSI
ESIOP
FMS
FGD
GIOP
HTTP
IDL
[HOP
IIs

IOR

OMA
ISO
MEP
OA
OAD
OMG

ORB

LISTA DE SIGLAS E ABREVIACOES

Basic Object Adapter

Common Object Request Broker Architecture
Distributed Computing Environment
Dynamic Invocation Interface

Domain Name Service

Dynamic Skeleton Interface

Environment Specific Inter-ORB Protocol
Ferramenta de Modelagem e Simulagsio
Ferramenta de Gerenciamento de Dominio
Generic Inter-ORB Protocol

Hyper Text Transfer Protocol

Interface Definition Language

Internet Inter-ORB Protocol

Internet Information Server

Interoperable Object Reference

Internet Protocol

Interface Repository

Object Architecture Model

International Standarization Organization
Message Exchange Pattern

Object Adapter

Object Activation Domain

Object Management Group

Object Request Broker

RdpP
SOA
SOAP
TCP
T1
UDDI
W3C
WS

WSDL

Redes de Petri

Service Oriented Architecture

Simple Object Access Protocol

Transmission Control Protocol

Tecnologia de Informagio

Universal Description, Discovery and Intergration
World Wide Web Consortium

Web-Service

Web-Service Description Language

Extensible Markup Language

1. Introducio

As atuais ferramentas de modelagem e analise de sistemas produtivos apresentam
limitagbes como, por exemplo, quanto: (1) ao grau de detalhamento que permitem e (2) &
forma com que os modelos sdo estruturados (destacando-se a falta de uma abordagem
hierarquica de modelagem) (Junqueira et. al. 2005).

Segundo Ho e Cao (1991), & possivel considerar sistemas produtivos como sistemas
dindmicos a eventos discretos. Para criar modelos de sistemas deste tipo, as Redes de Petri
(RdP) sdo uma ferramenta especialmente bem adaptada para esta tarefa, pois permitem que
caracteristicas como concorréncia, sincronismo e paralelismo, tipicos em sistemas produtivos,
sejam representadas com uma sintaxe e semantica clara e uma representagdo grafica intuitiva.
Além disso, os modelos em RdP, podem ser objeto de simulagio para a andlise detathada da
dinémica do sistema.

Neste projeto, entende-se por Plataforma de Simulagdo um sistema computacional
modular e disperso fisicamente, onde as partes dispersas sdo interligadas através de uma rede
de comunicacfio e operam de forma combinada para realizar a simulagdo de um modelo de um
sistema baseado no conceito de sistemas a eventos discretos, utilizando como método de
modelagem as RdP.

Na literatura sfio encontradas duas abordagens de como gerenciar uma simulagfo
distribuida wtilizando-se RdP, a conservativa ¢ a otimista. (Junqueira et. al.) Uma vez que a
Plataforma de Simulacdo estudada neste projeto utiliza uma rede de computadores para
processar a simulagéio, o que implica na nfo existéncia de uma meméria compartilhada entre

0s processadores envolvidos na simulagdo, o que € necessario ao se adotar o método otimista,

Observacdo: As palavras marcadas em italico no texto, servem para representar termos com um significado
especifico para esta monografia. O significado de cada uma destas palavras encontra-se no proprio texto. Palavras
com a fonte Courier New representam termos associados a c6digo de programagdo ou documentos XML

2

a Plataforma de Simulagdo ¢é baseada no método comservativo. Além do problema do
comgpartilhamento de memoéria, existe no método ofimista a necessidade de se guardar
informagdes sobre estados anteriores do modelo, pois existe a possibilidade da ocorréncia de
eventos inconsistentes durante a simulagio. Quando isso ocorre, o simulador precisa voltar
atras na ocorréncia do evento e recuperar o estado anterior. Esta volia poderia sobrecarregar
demasiadamente o trafego de dados na rede de comunicacio, o que tornaria inviavel a adogfio
do método otimista para a estrutura da Plataforma de Simulagdo (Beraldi, Nigro, 1999). Por
fim, uma outra caracteristica do método conservativo, ¢ a necessidade da existéncia de
sincronismo de operagdo entre as partes distribuidas da Plataforma de Simulagdo. Este
sincronismo garante a consisténcia na ocorréncia de eventos do modelo que esta sendo
simulado. Na revisfio bibliografica sdo apresentados os conceitos basicos de RdP e & dada uma
explicagdio sobre o mecanismo de ocorréncia de eventos.

Para que a modelagem utilizando a Plataforma de Simulagdo possa ser feita de forma
modular, ela mesma deve ser um sistema distribuido, 0 que gera a necessidade de trocar
grandes volumes de informagdes entre as partes que compde a plataforma. A interagdo entre
as partes, se dd, por exemplo, pela fusdo de eventos. Esta fusdo ¢ realizada através da troca de
mensagens entre duas partes, o que requer o estabelecimento de uma conexdio entre os
computadores que estiverem executando as partes. Além disso, pelo fato da Plataforma de
Simulagdo basear-se na abordagem conservativa para realizar a simulagéo dos médulos de
RdP, torna-se necessdrio criar um mecanismo que sincronize a evolugio do tempo de
simulagdo entre todos as partes envolvidos na simulagio. Isto pode ser feito pela circulago de
uma mensagem entre eles, contendo a informages correspondentes ao avanco do tempo de
simulagdo. Por fim, para que a estrutura hierarquica da Plataforma de Simulagdo seja mantida
€ suas partes possam ser gerenciadas, uma conex3o entre os computadores e o gerenciador do

dominio precisa ser estabelecida.

1.1. Motivacio e Justificativa

Nas dltimas duas décadas e ainda hoje, podem-se identificar as seguintes
transformacdes e fatos que vem ocorrendo na sociedade que motivam e justificam o
desenvolvimento da Plataforma de Simulagdo em questiio:

e crescimento dos sistemas produtivos de manufatura, acarretando uma maior
complexidade de sua estrutura e funcionamento, sendo que muifas vezes estes
sistemas sHo estabelecidos de forma distribuida através do planeta;

* grandes avangos na 4rea de TI que reduzem as barreiras geograficas, aumentaram a
velocidade de transmissdo, disponibilidade e facilidade de acesso as informagdes;

* necessidade de ferramentas que auxiliem 2 tarefa de projetar sistemas de
manufatura com as caracteristicas exigidas atualmente e modificar os j4 existentes,
de forma a reduzir os riscos, custos € o tempo demandado por estas atividades.

Tais fatos sugerem o desenvolvimento de uma nova geragdo de ferramentas com a
capacidade de manipular estes sistemas produtivos. A ferramenta a ser desenvolvida pode ser
uma Plataforma de Simulacdo conforme anteriormente definida que tem por objetivo auxiliar
a tomada de decisGes, fornece andlises qualitativas e previsdes de comportamento de um dado

sistema produtivo através de simulaggo.

1.2, Objetivos

Este trabalho trata do estudo de mecanismos para implementar a comunicagio entre as
partes que compdem uma Plataforma de Simulagdo de sistemas produtivos. Os objetivos que
se pretendem alcangar através deste estudo sdo:

¢ Identificar formas de efetuar e trocar de informagdes entre programas pertencentes

a Plataforma de Simulagdo que estiverem sendo executados em um ambiente

distribuido e interligados através de uma rede de comunicagio;

* Investigar tecnologias que possam ser utilizadas para implementar as conexdes e
relacionar seu uso & Plataforma de Simulagdo, de forma a torna-la um sistema
flexivel e escalavel. Neste estudo, as tecnologias investigadas sio Web-services e
CORBA, dois padrSes desenvolvidos para serem utilizados em aplicativos

distribuidos;

* Desenvolver programas de teste que implementem conexdes entre computadores

através das tecnologias investigadas;

¢ Comparar os dois métodos testados quanto a implementagfio das conexdes e

avaliacdo de qual se adapta melhor ao uso na Plataforma de Simulagéo.

2. Conceitos Fundamentais

2.1. Caracteristicas dos Sistemas Produtivos Dispersos

Desde 1980 tem-se observado uma profunda reestruturacdo da indistria e da
economia. Esta reestruturaciio se refere as mudangas na forma como bens e servigos sdo
desenvolvidos, projetados e produzidos. Os principais fatores que impulsionaram estas
mudangas foram; a evolugdo da tecnologia de comunicagdo e transporte, o acelerado ritmo de
transferéncia de tecnologia, as reformas sociais ¢ econdmicas e as meodifica¢Ses nos habitos
de consumo dos paises desenvolvidos e em desenvolvimento, gerando uma intensa
competigdo global entre empresas (Shi; Gregory, 1998; Lee; Lau, 1999). Com os mercados se
tornando mais globais e independentes de barreiras geograficas, um maior nimero de
industrias de manufatura tem se estabelecido de forma distribuida, aproveitando o crescimento
das redes de comunicago e Tecnologia da Informagdo (TI), permitindo, entre outras
vantagens, uma maior cooperagio transnacional, De forma a aproveitar as oportunidades num
mercado global e lidar com novos padrdes de competi¢do, os sistemas produtivos devem
apresentar novas caracteristicas permitindo cobrir a dispersio geografica e a coordenagio
interdependente, além do tradicional foco em diversas plantas produtivas. A incorporagiio da
TT nos processos industriais estd permitindo a integracio dos diversos sistemas da empresa,
em seus diferentes niveis (Sanz; Alonso, 2001). Além disso, os sistemas de supervisio e
controle (responsiveis pelas operagdes do chio de fabrica), tipicos em uma instalagio
moderna de médio e grande porte s3o compostos por uma colegdo heterogénea de dispositivos

de hardware e software que se encontram distribuidos, compondo sistemas e subsistemas

6

(estagdes de operagdo, unidades remotas, processos computacionais, controladores
programaveis, etc.) interligados através de sistemas de comunicagdo (cabeamentos
analogicos, linhas seriais, Jieldbuses, LANs ou mesmo comunicagio via satélite)
heterogéneos.

Em um sistema produtivo disperso a troca de informagBes e materiais entre as
cmpresas requer uwma alta flexibilidade o que aumenta a complexidade dos
sistetnas.(Junqueira, Miyagi, Villani, 2005). Portanto, torna-se imprescindivel utilizar
métodos de validagfo do sistema, para evitar erros e falhas. Esta validago nfio € um processo
trivial, mas pode ser realizado aproveitando-se 0s avangos na drea de Tl e da expansio do uso
das redes de comunicaglio como as Inrranets e a propria Internet, que permitem criar uma
nova geracdo de Plataformas de Simulagdo de sistemas, Esta plataforma pode ser utilizada
para realizar a validagio de um sistema de forma distribuida através de simulagdes feitas em
computadores, onde o processamento ¢ dividido entre diversos computadores conectados
através de uma rede de comunicagfio. Esta abordagem torna possivel tratar modelos de
sistemas relativamente mais complexos do que as ferramentas de simulagdo da atualidade sdo

capazes de manipular.

2.2. Simula¢iio em computadores

O termo “simulagio” tem varios significados atribuidos a ele. Usualmente, refere-se a
representaco do comportamento de algo maior, ou de uma atividade mais complexa. Todos
os simuladores usam um modelo que € uma representacdo do comportamento de um sistema
que pode ou nio existir e que geralmente é maior e mais complexo que o modelo (Seila;
1995).

O modelo pode ser fisico, ou pode ser representado por um programa de computador,

como no exemplo dos processos de um sistema produtivo. Em todos os casos, 2 idéia principal

7

¢ que a simulagdo ¢ uma realizagfo alternativa do comportamento de um sistema, que pode
ser testado e avaliado em diversas circunstancias.

A Simulagiio feita em computadores j4 vem sendo usada desde a década de 1950 e a
idéia por tras dessas simulagdes & testar estrategias de agfo através de modelos simplificados
da realidade que podem ajudar na tomada de decisdo no mundo real. Nem todos os sistemas
reais séo apropriados para uma modelagem computacional, porém em muitos casos, modelos
feitos em computadores sfo a methor forma de se desvendar o comportamento de um sistema
real.

B preciso deixar claro que existem diferentes formas de se fazer uma simulagdo, sendo
a utilizagdo de computadores apenas uma delas. B possivel, por exemplo, fazer testes
diretamente no mundo real de forma restrita, porém muitas vezes isto se torna impraticavel,
seja pelo custo ou pelo risco de se realizar tais testes. Uma outra forma de realizar simulagdes
¢ modelar um sistema matematicamente, caracterizando equagles que se adaptam ao
comportamento sistémico. Tal abordagem pode se tornar impraticavel para sistemas muito
complexos onde a obtengio do modelo matematico e sua solugdo seriam impossiveis.

A terceira opgdo ¢ simular um sistema em um modelo computacional e entdo testi-lo
para varias estratégias e ver qual se adapta melhor 3 realidade.

A simulagdo feita por computadores melhor se aplica e tem um melhor desempenho
quando;

¢ o0s sistemas sfo dindmicos e variam de comportamento ao longo do tempo. Esta

variagdo no tempo ocorre devido a fatores desconhecidos que precisam ser tratados
estatisticamente, ou entio podem ser representados por equagdes que os

computadores conseguem resolver;

* 0s sistemas sfo interativos, ou seja, o sistema ¢ formado de varios elementos que
interagem entre si € com isso resultam em um comportamento diferenciado. A
interagdio de muitos fatores pode ser processada por computadores;

* os sistemas sdo complexos e existem muitos fatores interagindo entre si ¢ cada
fator funciona de maneira complexa e precisa ser analisado com cuidado;

¢ as simulagdes t&ém maior credibilidade junto aos tomadores de decisio do que
outros métodos disponiveis.

Apesar de poder ser aplicado a sistemas com certa complexidade, os resultados obtidos
através de simulagdes ndo sfio exatos, indicando apenas um intervalo de confianga para os
pardmetros de saida, que nfio sfio exatamente o comportamento do sistema real e, portanto
estdo sujeitos a variagdes. Além disso, construir simulagdes pode ser relativamente caro,
porque os modelos precisam ser verificados ¢ validados minuciosamente para que fornecam

dados confidveis.

2.2.1 Como criar Modelos para Simulagio

O modelo de um sistema ¢ o coragio de qualquer simulagio feita em computadores.
Portanto, a primeira etapa a ser realizada, ¢ a obtengio deste modelo (Pidd; 1994).

Para criar um modelo, ¢ necessario observar e coletar dados do sistema que se deseja
analisar. E importante notar que pessoas diferentes podem ter interpretacdes diferentes de um
sistema e seu funcionamento, portanto o mesmo sistema pode ser modelado de diferentes
formas (Centeno; 1996).

Através da interpretacdio da realidade e da analise dos dados colhidos, chega-se a um
modelo conceitual do sistema. E a partir do modelo conceitual que um programa de
computador ¢ criado. Este modelo funciona de forma mais simples do que a realidade.

Portanto modelagem em computador ¢ um trabalho de simplificagdo e abstragfio no qual o

9

modelador tenta identificar os fatores cruciais do sistema do qual se deseja estudar o
comportamento através de simulagéio. Este processo depende da quantidade de informagdes
que se tem do sistema, assim como o proposito pelo qual o modelo estd sendo criado (Pidd;
1994),

Em muitos casos, 0 modelo a ser elaborado ndo estd baseando €m um sistema que
existe no mundo real, mas sim em uma idealizagdo abstrata de um sistema que se deseja criar.
Nestes casos, 0 modelo & utilizado para analisar se as necessidades do sistema idealizado

serdo atendidas.

2.3. Conceitos bésicos de Redes de Petri (RdP)

O texto que segue, trata-se de trechos adaptados de Moore e Brennan (1996).

Uma das formas de se representar sistemas a eventos discretos, é por RdP. As RdP sio
uma técnica de modelagem matematica e grafica, desenvolvida por C. A. Petri no inicio da
década de 1960, para caracterizar operagdes concorrentes em sistemas de computadores. As
RdP evoluiram de forma a contemplarem muitos aspectos importantes de sistemas de grande
porte, incluindo atributos, relagbes de tempo, e eventos estocasticos. A grande vantagem da
utilizago de RdP ¢é sua simplicidade conceitual e seu carter gENerico, que permite que sejam
utilizadas para modelar sistemas bastante variados.

As RdP consistem de quatro elementos primitivos (marcas, Iugares, transi¢des e
arcos) e as regras que definem suas operagbes. As RdP sdo baseadas na idéia de marcas que
$¢ movem através de uma rede. Essas marcas sio representadas por pontos e representam os
objetos on entidades em um sistema, (Deve-se tomar cuidado para nfo confundir os odjetos
mencionados aqui, com os objetos definidos na hierarquia dos modelos da Plataforma de
Simulacdo, na introdugio. Apesar da duplicidade de significado atribuido & palayra “objeto”,

0 contexto em que o termo estiver inserido deixard claro qual o significado atribuido a ele.) Os

10

lugares s#io representados por circulos e representam as localidades onde objetos aguardam
um processamento. Os /ugares podem representar espagos fisicos (por exemplo, uma fila onde
uma pega aguarda para ser processada), ou um esfado (recurso ocioso).

Transicdes sio representadas por retdngulos e indicam processos ou evenfos (por
exemplo, ou a usinagem de uma pega). Finalmente, os arcos representam as ligagdes ou
caminhos entre objetos de um sistema. Os arcos conectam os lugares 3s transices € as

transi¢es a lugares; a direcio de um arco ¢é indicada por uma seta na sua extremidade Figura

o () | —

Figura 2-1 - (a) marca (b) lugar (c) transicio (d) arco

2-1.

As regras de disparo de uma RdP definem o comportamento das rransigdes, ou seja, a
condigfo necessaria para que um pProcesso ou evenfo possa ocorrer. Trés regras regem o
disparo de uma fransi¢do:

Quando todos os /ugares que antecedem a transicdo estdo ocupados com pelo menos
uma marca, a fransi¢do esta ativa. Uma vez ativa, a transicdo dispara. Quando a fransicdo
dispara, uma marca ¢ retirada de cada /ugar exatamente antes da fransicdo, ¢ uma marca é
colocada em cada /ugar subseqitente a transicdo.

A Erro! Fonte de referéncia ndo encontrada. ilustra as regras para uma transicdo

(agrupamento) que contém dois /ugares conectados a montante (A e B) e um /ugares a jusante

(montagem).

11

Fega A

= i

Agrupamanto Montagem

Agrupamenta Maontagem

{2) Madele Simples (b) Chagada e uma marca am um lugar a montante -
Agrupamento parclalmente faito

Pega A
Paga A

Poaga B

Montagem

Montagem Agrupamento

Agrupamento
{e) Ghegada de uma marca o segundo fugar - {d) “Agrupamento™ & disparado, removendo uma
Agrupamsito completo marca de cada lugar antes da transicso e

colocanto uwia marca na “montagem”.

Figura 2-2 - Disparo de transicio

Regras de tempo podem ser associadas as fransicdes e representam o tempo necessario
para se completar uma atividade. Uma regra de fempo pode ser estocéstica, baseada em uma
funcdo probabilistica, um valor computado, ou uma constante. Regras de decisdes sdo
associadas aos fugares e decidem sobre problemas onde uma ou mais marcas ativam mais do
que uma fransicdo ao mesmo tempo. Existem trés tipos de regras de decisio: prioridade,
probabilidade ¢ estruturada. A regra de decisdo de prioridade estabelece que, se todas as
outras regras de decisfo coincidem, as marcas irdo seguir o caminho com a mais alta
prioridade. A regra de decisio de probabilidade incita que se todas as outras regras de decisdo
coincidem, as marcas tomario um caminho baseado em uma probabilidade. A regra de
decisio estruturada permite que o usuario especifique a condicio sob a qual uma marca
selecionara um caminho, no caso das regras de decisdo coincidirem. Exemplos de regras séo

mostrados na Figura 2-3.

12

Loja Depésito Loja Depésite

Pedido

Cumpride
Pedido Pedido
(a}) Ambas as transigées ativas; “Cumprir” (&) "Cumprlr” dispara consumindo as marcas
sefa disparada desde que tenha prioridade de Produto e Pedido e colocando uma marca
mais alta em "Padldo Cumprido”

Figura 2-3 - Efeito da regra de Deciséio de Prioridade

Atributos so utilizados para especificar um conjunto de caracteristicas associadas a
uma marce (tamanho, tipo, prioridade, identidade, etc.). O valor destes arributos pode ser
modificado nas transicdes. Eles podem ser utilizados também para determinar regras de
tempo ¢ decisio. O valor dos atributos pode ser passado para algoritmos externos ¢ 0s
resultados incorporados ao modelo de RdP.

Existem ainda outros dois tipos de arcos além do arco padriio, estabelecem outras
condigdes para o disparo da fransigdo, porém nfio serfio abordadas neste topico introdutério ao

assunto. Maiores informagdes sobre o assunto podem ser encontrados em Morata (1989).

2.4. Estrutura dos modelos da Plataforma de Simulacéo

Para alcangar a modularidade necessaria aos modelos do sistema a serem simulados na
Plataforma de Simulagdo, foi incorpora-se o paradigma de orientacdo a objeto ao formalismo
das RdP. O paradigma de orientacdo a objetos, permite que um modelo seja composto de um
conjunto de sub-modelos que interagem entre si. A interagiio entre os sub-modelos é feita
atraves da troca de mensagens entre eles. Os dados que devem ser trocados assim como sua
correta interpretagdo, dependem da definigio de uma interface que descreva quais as
informagdes que devem ser trocadas e como um objeto deve ser acessado. Com este tipo de

abordagem, pode-se, portanto utilizar uma rede de comunicagdo para executar uma simulaco

13

em um ambiente onde os sub-modelos encontram-se distribuidos entre diversos
computadores.

Seguindo o paradigma da orientacdo a objetos, pode-se dizer que o sistema
distribuido ¢ composto de um conjunto de ohjetos que interagem entre si com o objetivo de
executar certa tarefa, chamado aplicativo, onde um objeto ¢ uma instincia de uma classe e
uma classe representa um elemento genérico de um sistema. Por sua vez, 0 comportamento de
uma classe ¢ definido por uma RdP. Uma defini¢io mais completa destes elementos é dada a
seguir;

* Classes correspondem & modelagem do sistema real (ou partes deste), como suas

funcionalidade de interesse, utilizando-se para tanto as RdP. A representagio

grafica das classes é mostrada na Figura 2-4,

e 0

Tl T =B
il fQ O
i L e

SO -O

Figura 2-4 - Representac¢io grifica de uma classe

» Componentes séio os agrupamentos de um ou mais objefos bem como de zero ou
mais componentes. Entende-se por objeto, uma instincia de uma classe existente.

A representacdo grafica dos componentes é mostrada na Figura 2-5.

e

< Objeto 3

Compouente 1

Figura 2-5 - Representaciio grifica de um componente

14

* Aplicativos sio compostos por um ou mais componentes para criar o modelo
completo que se deseja simular. A representagdo grafica dos componentes é

mostrada na Figura 2-6.

Componente 4 |

Componente 3 Componente 2

Figura 2-6 - Representacio gréfica de um aplicativo, mostrando a interacio entre os componentes

A interagio entre dois objeros é feita través de chamadas a métodos disponibilizados
por ele. A chamada a um método se dé através da troca de mensagens entre dois objetos. Para
a RAP que implementa a classe do objeto, a troca de mensagens entre dois objetos representa a
fusfo de duas transicdes (sendo uma transicao do objeto que faz a chamada e a outro do
objeto invocado com a chamada).

Com essa estrutura modular dos modelos da Plataforma de Simulacdo, pode-se criar
modelos de uma forma descentralizada envolvendo diversos modeladores trabalhando em
diversos médulos simultaneamente. Para se ter proveito desta caracteristica do método de
modelagem, a Plataforma de Simulagcdo em si deve ter a estrutura de um sistema distribuido,

O sistema distribuido pelo qual a Plataforma de Simulagdo ¢ composto apresenta uma
estrutura fisica composta por computadores interligados por uma rede de comunicagdo. Os
computadores que fazem parte da Plataforma de Simulagdo podem ser classificados de acordo
com o tipo de tarefa que irfio desempenbhar, e cujas definigées sdo dadas a seguir:

* Estagdo: Sdo os computadores que contém o ambiente de modelagem e simulagio

da plataforma. As estagdes sio nés da rede de comunicagfio utilizada pela

15

Plataforma de Simulacio para trocar informagdes entre computadores. Nas
estagdes o0 usuario cria modelos e requisita 0 processamento de uma simulagio;

* Gerenciador: Os gerenciadores sio computadores que, assim como as estacdes,
representam nos da rede de comunicagdo utilizada pela Plataforma de Simulagéo.
A diferenca em relagfio as estagdes € que os gerenciadores executam o programa
de gerenciamento da Plataforma de Simulagdo. O gerenciador também pode conter
o ambiente de modelagem e simulagio.

A Figura 2-7 ilustra um exemplo de uma possivel arquitetura fisica para a Plataforma

de Simulagdo.

ek

(0 Cabsamento analégico
{Etharnat}

Gerenciador

Pondo de acesso

: RF
)]
Computacores 7 é
Holsadary Ponto de moasso [= %

Rede d& comunicaggio RE 6o e T Estagho
RF

Interfaces com o usugrio

Hub

Figura 2-7 - Exemplo esquemaitico da arquitetura fisica da Plataforina de Simulacio
Assim como existem duas classificagdes para os computadores que compdem a

Plataforma de Simulacéo, existem também dois tipos de programas, um programa para ser

executado nas estagdes € um segundo programa para ser executado nos gerenciadores. Estes

16

programas trocam informagdes entre si através da rede de comunicagfo e sdo descritas a

seguir:,

A Ferramenta de Modelagem e Simulagao (FMS) ¢ o programa utilizado para criar as

classes baseadas no formalismo das RdP e processar simulagdes de forma distribuida. Este

programa ¢ executado nas estacdes e possui uma interface grafica para que o usuario possa

interagir com ele, e pode conectar-se a outros programas da Plataforma de Simula¢do quando

estiver executando uma simulagéo ou procurando por arquivos de modelos na rede.

A Ferramenta de Gerenciamento de Dominio (FGD) é um programa que gerencia e

integra todos os programas e maquinas que compdem a Plataforma de Simulacdo e &

executado nos gerenciadores. A FGD tem as seguintes funcdes:

Estabelecer conexdes com as FMSs de uma Plataforma de Simulagio;

Armazenar informagées sobre modelos criados nas FMSs,

Armazenar informagdes sobre status das F MSs;

Receber pedidos de processamento de simulagdes das FMSs;

Viabilizar o processamento de simulagdes de forma distribuida, dividindo-o entre

as FMSs.

A Figura 2-8 mostra de forma esquematica os programas que compbem a Plataforma

de Simulacdo.

17

Conexéio Conexao

FMS

Conexdo

Conexéo

Figura 2-8 - Exemplo esquemdtico da arquitetura de programas na Plataforma de Simulacdo

Para organizar a forma pela qual se d4 a interag8o entre os programas da Plataforma
de Simulacdo, ¢ definida uma hierarquia entre eles, baseada em trés niveis de abstragio
definidos a seguir:

Um dominio ¢ um conjunto de estages conectadas a um gerenciador (Figura 2-9).
Dentro de um dominio, tem-se apenas um gerenciador que executa a FGD e uma ou mais
estagbes que executam a FMS conectadas a ele. Além disso, o usuario que estiverem
operando uma Ferramenta de Modelagem e Simulagdo conectada a um dominio, tem acesso
ilimitado aos modelos pertencentes a ele.

Uma federagao é o resultado de um acordo de cooperagio entre dominios, que permite
que membros de um dominio, utilizem modelos desenvolvidos em outros dominios,
pertencentes a uma mesma federacdo. Como conseqliéncia direta, uma federagdo, para existir,
deve ser composta por dois ou mais dominios (Figura 2-9). Ao contrario do que ocorre para
membros de um mesmo dominio, membros de dominios distintos, apesar de poderem utilizar
modelos pertencentes & federagdo, ndio possuem acesso 4 implementagdo dos mesmos. Para

que esta troca de informagdes entre dominios possa acontecer, ¢ preciso conecta-los de

18

alguma forma. Isto é feito através de uma conexgo entre os gerenciadores de cada dominio de

uma federagdo.

"~

-
-
4o

/““

e il \
e t{E

/ % nginio@ \)

/ § €
~

o)

| Dominio

-
-~

-
I

Figura 2-9 - Esquema da estrutura de dominios e federacées na Plataforma de Sinmlacdo.

A arquitetura e hierarquia apresentadas para a Plataforma de Simulacdo, oferecem
uma grande flexibilidade a plataforma, pois torna sua estrutura escaldvel, onde podem ser
adicionados e removidos computadores, adaptando o tamanho da plataforma a complexidade
do sistema que se deseja modelar.

Com as informagdes apresentadas sobre as RdP, evidencia-se como funciona a
estrutura de modulos nos quais a Plataforma de Simulagdo é baseada. A informaco que deve
ser trocada entre médulos é em qual instante uma marca aparece ou & apagada de um lugar ¢
qual € a fransi¢do ativa a inclusdo ou exclusdo de uma marca nos lugares. E importante
lembrar, que os objetos que participam deste processo, podem estar localizados no mesmo
computador, ou entéio em computadores diferentes, porém interligados através de uma rede de

comunicagao.

19

A seguir serdo apresentadas duas tecnologias utilizadas para o desenvolvimento de

plataformas distribuidas, CORBA e WS.

2.5. CORBA

Manipular a heterogeneidade de plataformas distribuidas é uma tarefa complexa. Em
particular, desenvolver programas que utilizam de forma eficiente os recursos distribuidos
através de uma rede de conexdes torna-se um grande desafio. Muitas interfaces de
programagio ¢ pacotes prontos com implementagdes destes recursos existem atualmente para
auxiliar o desenvolvimento deste tipo de programas (Vinoski, 1997).

Em fung#o das dificuldades nesta drea de desenvolvimento e programas, foi fundado a
Object Managemnet Group (OMG), em 1989, para elaborar, adotar e promover padrdes para
o desenvolvimento de programas em um ambiente heterogéneo distribuido. Desde que surgiu,
a OMG cresceu e tornou-se um dos maiores consércios de desenvolvimento de padrdes para
programas nesta area. Os membros do consércio contribuem com idéias e tecnologias em
resposta a pedidos de propostas enviadas a OMG. As respostas vém em forma de
especificagdes baseadas em métodos com alta disponibilidade e difusio no mercado da
informética (OMG, 2005).

A seguir tem-se uma introdugdo ao conceito de Object Management Architecture
(OMA) elaborado pela OMG, com foco em seu conjunto principal de especificacdes, o

Common Object Request Broker Architecture (CORBA).

2.5.1 OMA

O OMA ¢ um modelo baseado no paradigma da orientagdo a objetos, composto por

um Object Model e um Reference Model. O Object Model define como objetos distribuidos

20

podem ser descritos, enquanto o Reference Model caracteriza as interagdes entre estes objefos.
Criando-se especificacdes que se enquadram nos conceitos do OMA, estas permitem o
desenvolvimento de interoperabilidade entre objetos distribuidos em ambientes heterogéneos.

No Object Model, um objeto é uma entidade encapsulada com uma identidade distinta
e imutével, cujo servico pode ser acessado através de uma interface pré-definida. Entende-se
por servico uma funcionalidade que o objefo disponibiliza e que pode ser acessada por outros
objetos. Clientes fazem uma requisigio de algum servigo oferecido por um objeto utilizando
as interfaces definidas de acordo com o Object Model.

A Figura 2-10 mostra os componentes do Reference Model. O Object Request Broker
(ORB) ¢ responsével por facilitar a comunicagdio entre objetos. Existem quatro categorias de

componentes que utilizam a especificagdo de interfaces para interagirem com o ORB,

definidas a seguir:
~ e {,—7 —
Application 1 [Domain]ﬂ [Common]
Interface Interfaces Facilities
S g Ne——/ S
¥ ¥ v v v L 4 4 Y ¥ \
‘ \
Obyect Request Broker)
L4
1‘ ‘f 1‘ /
/
J
/
Object
Services

Figura 2-10 - Categorias de interfaces do reference model do OMA

Object Services interfaces sdo interfaces independentes da aplicagio, que sdo
utilizadas por muitas plataformas baseadas em objeros distribuidos. Por exemplo, um servigo
que tem por finalidade procurar outros servigos disponiveis € necessirio em praticamente

qualquer plataforma. Dois exemplos de Object Services que desempenham esta tarefa sfo:

31

Se a defini¢io de fipos do resto da plataforma mudar futuramente, de tal forma que se torne
incompativel com as definiges contidas no programa, o programa precisa ser recompilado
com as novas informagdes.

No entanto, para alguns programas, o conhecimento estitico sobre um IDL de
definicio de tipos é impraticavel. Considere por exemplo, um gateway que permite que
programas que utilizam outros tipos de programagio distribuida (como o COM da Microsoff)
acessem objetos CORBA. Se for necessario recompilar o gateway toda vez que um novo IDL
de defini¢io de fipos & adicionado a plataforma, o resultado seria uma grande dificuldade para
gerenciar e manter 0 gateway. Ao invés de proceder desta forma, ¢ melhor que o gateway
possa encontrar ¢ utilizar informagdes sobre tipos dinamicamente, na medida em que fosse
necessario.

O CORBA /nterface Repository (IR) permite que um IDL de defini¢do de tipos seja
acessado e programado em tempo de execugdo. O IR em si é um objeto CORBA cujas
operagdes podem ser invocadas como em qualquer outro objeto CORBA. Utilizando o IR,
programas podem percorrer uma hierarquia completa de informagdes sobre IDLs.

Como o IR permite que programas encontrem informagdes sobre tipos em tempo de
execugdo, sua utilidade real estd no suporte a0 CORBA dynamic invocation (que ¢ descrito no
topico Dynamic Invokation e Dispatch). O IR pode ser utilizado também como uma forma de
gerar c4digo estatico para programas, como sera visto no préximo topico, ja que as definigdes
de um IDL em um IR sdo equivalentes as definigdes obtidas diretamente pelo arquivo que

contém a defini¢do do IDI...

2.5.2.5 Stubs e Skeletons

Além de criar tipos de linguagens de programacdo, os compiladores e tradutores de

IDL geram client-side stubs e server-side skeletons. Um stub é um mecanismo que cria um

32

request quando demandado pelo cliente, Os skelefons encaminham os requests até a
implementagio do objero CORBA. Como estes dois mecanismos fazem parte das
especificagdes da OMG referente as IDLs, os stubs e skeletons costumam ser especificos para
cada interface.

A transacfio entre stubs e skeletons muitas vezes é chamada de staric invocation, pois
estes sdo0 criados diretamente dentro do aplicativo cliente e da implementagdo do objeto
CORBA. Portanto, os stubs e os skeletons, precisam conhecer a IDL do objeto CORBA que
estd sendo invocado a priori.

Language mapping usualmente mapeiam invocagdes de operagdes para algo que seja
equivalente 2 chamada de uma fungfio. Por exemplo, dado uma referéncia a um objeto

chamado Factory em C++, o cédigo que gera um request € visto na Figura 2-14:

!/ CH++

Factory var factory objref;

// Initialize factory objref using Naming or

// Trading Service (not shown}, then issue request
Object var objref = factory objref->create():

Figura 2-14 - Cédigo utilizado para gerar um request

Este codigo faz com que uma invocaggo da operagdo create no objefo que se deseja
acessar, pareca uma chamada rotineira de uma fungfio na linguagem C++. No entanto, esta
chamada esta invocando um stub. Pelo fato do stub estar integrado no programa que faz o
request para o objeto (provavelmente implementado remotamente), este costuma ser chamado
de surrogates ou proxies. O stub interage diretamente com o0 ORB do cliente para “codificar”
(marshal) o request, ou seja, o stub auxilia na conversio do request de sua representa¢do na
linguagem de programaggo para uma representacdo adequada que serd transmitida através da
conexdo até o objeto alvo.

Quando o request chega ao objeto alvo, 0 ORB do servidor ¢ o skeleton trabalham de

forma conjunta para “decodificar” (unmarshal) o request (converté-lo do formato utilizado

33

para a transmissdo, para o formato da linguagem de programagdo) e encaminha-la até o
objeto. Quando o objeto processa o request, a resposta ¢ enviada de volta pelo mesmo
caminho que percorreu na vinda: através do skeleton, passando pelo ORB do servidor, pela
conexdo ¢ de volta para 0 ORB do cliente e pelo siub, antes de chegar ao programa cliente. A
Figura 2-12 mostra onde o stub e o skeleton estio alocados em relagiio ao programa cliente, o
ORB e a implementagio do objeto.

Nota-se, portanto que os stubs e skeletons tém um papel importante na conex&o entre o
ambiente de linguagem de programagiio e o ORB. Neste sentido, estes se assemelham ao
padrdo de Adapter e Proxy. O stub adapta a forma de se chamar uma fungio através dos
language mappings para o mecanismo de invocagdio de um request do ORB. O skeleton
adapta o mecanismo de entrega do request do ORB 2 forma de chamada compativel com a

tmplementagdo do objero.

2.5.2.6 Dynamic Invokation e Dispaich

Aleém das static invocations que podem ser feitas pelos stubs e skeletons, CORBA
contém duas interfaces para invocagdes dindmicas, que s30:
¢ Dynamic Invokation Interface (DIT) — que permite que requests de clientes sejam
invocados de forma dinidmica;
* Dynamic Skeleton Interface (DSI) — que permite a entrega de requests aos objetos
de forma dindmica.
Tanto o DII quanto o DSI podem ser vistos como um sfub e um skeleton genéricos,
respectivamente. Cada um deles ¢ uma interface disponibilizada diretamente pelo ORB e

nenhum dos dois depende da IDL do objero que esta sendo invocado.

34

Dynamic Invokation Interface (DI)

Usando o DII, um programa cliente pode invocar requests para qualquer objeto sem
previamente ter conhecimento de sua interface. Por exemplo, considerando o objeto gateway
descrito acima. Quando uma invocagio ¢ recebida pelo objeto estrangeiro, o gateway precisa
transformar esta invocagio em uma entrega de um request para o objeto CORBA desejado.
Recompilar o programa do gateway para incluir novos stubs estéticos toda vez que um novo
objeto CORBA ¢ criado torna-se impraticavel. Ao invés disso, o gatewqy pode simplesmente
utilizar o DII para invocar reguests para qualquer objeto CORBA. O DII é também 1itil para
programas interativos como browsers que podem obter valores necessarios para os
argumentos que um objefo necessita diretamente do usudrio,

E através de operagdes do tipo create_request disponibilizadas pela interface
CORBA: :Object, que aplicativos criam pseudo-objetos de requests. Como toda IDL herda o
CORBA: :Object, todo objefo automaticamente contém a operagdo create request. Ao
executar esta operagdo para uma referéncia de um objeto que se deseja acessar, um programa
pode criar um reguest dindmico para este objeto. Antes do request poder ser invocado, os
argumentos necessarios precisam ser preenchidos, invocando-se operagbes diretamente no
pseudo-objeto request. Os tipos de argumentos podem ser determinados utilizando-se o
Interface Repository.

Quando o pseudo-objeto request tiver sido criado e os argumentos necessarios tiverem
sido adicionados a ele, este pode ser invocado de trés formas:

* Synchronous Invocation: o cliente invoca o request ¢ entdo bloqueia o restante do

processamento enquanto aguarda a resposta. Do ponto de vista do cliente, isso

35

equivale ao comportamento de uma RPC*, Este é o método mais usual para invocar
requests em programas que utilizam CORBA, pois ¢ utilizado também em stubs
estaticos;

* Deferred Synchronous Invokation: o cliente invoca o request e continua o
processamento do restante do programa enquanto o request é encaminhado,
coletando a resposta em um instante posterior. Isto é util quando um cliente precisa
invocar um grande nimero de servigos independentes que requerem um tempo
prolongado de processamento. Ao invés de invocar cada request em série e
aguardar pelas respostas seqiiencialmente, todos os requests sio processados em
paralelo e as respostas podem ser coletadas na medida em que sfo retornadas;

* Oneway Invocation — O cliente invoca o request € continua o processamento do
programa sem coletar uma resposta. Esta forma ¢ chamada de “fire and forget”,
pois a anica maneira que um cliente tem de saber se um reguest foi recebido é por
alguma outra via, como por exemplo, fazer com que o objeto invoque um reguest
separadamente quando o primeiro reguest (enviado pelo cliente) tiver sido
processado.

Apesar da flexibilidade oferecida por DIIs, ¢ preciso estar ciente das desvantagens
associados ao seu uso. Criar um request DIl pode causar que o ORB acesse de forma
transparente o IR para obter informagdes sobre os tipos de argumentos e respostas de um dado
servigo. Como o IR € em si um objero CORBA, cada request IR transparente feito pelo ORB
pode na realidade ser uma invocagdo remota. A criagio e invocagio de um Gnico reguest DII
poderia demandar varias invocagdes remotas, fazendo com que um request DII torne-se mais

lento ¢ exija mais processamento do que uma invocagdo estatica equivalente. Invocagdes

* RPC: Um mecanismo que permite que rotinas que se encontram em computadores remotos sejam executadas
atraves de uma rede de comunicagio. A comunicagio com estas rotinas é feita passando-se argumentos, de
forma que a comunicagio entre os computadores fique oculta ao programa que faz a chamada 3 rotina.

36

estaticas nfo dependem do processo demorado de acessar 0 IR jd que as informacdes sobre os

fipos envolvidos no request estfio compiladas diretamente no programa.

Dynamic Skeleton Interface (DS1)

De forma anéloga ao DII, o lado do servidor dispde de Dynamic Skeleton Interfaces
(DSI). Assim como o DII permite que clientes invoquem requests sem ter acesso a stubs
estaticos, 0 DSI permite que servidores possam ser codificados sem possuirem skeletons para
0s objetos que estio sendo invocados e que normalmente seriam compilados estaticamente
dentro do programa.

O objeto externo gateway descrito anteriormente ¢ um bom exemplo de um programa
que necessita do mecanismo de DSL Um gateway bidirecional precisa ser capaz de
Comportar-se tanto como um cliente quanto como um servidor, traduzindo requests de objetos
estrangeiros em requests de objetos CORBA e transformar requests de programas CORBA
em invocagles de objeros estrangeiros. Como mencionado anteriormente, o programa pode
utilizar DIIs quando desejar atuar como cliente. Para atuar como servidor, no entanto, o
programa necessita de um mecanismo equivalente ao DII, permitindo que ele receba requests
sem necessitar skeletons estaticos para cada interface de objeto compilado dentro dele.
Recompilar o gateway cada vez que uma nova IDL for introduzida no 4mbito dos servigos
CORBA, ndo funcionaria de maneira satisfatéria na prética.

Diferente da maioria dos outros sub-componentes CORBA, que faziam parte das
especificagdes CORBA inicialmente, o DSI foi introduzido na versdo 2.0. A razio principal
para sua introdugfo foi de criar uma forma de implementar gateways entre ORBs, utilizando
diferentes protocolos de comunicagdo. Apesar dos protocolos inter-ORB também terem sido
introduzidos na versio 2.0, acreditava-se que os gafeways tornariam-se a escolha

predominante para operagdes entre ORBs. Pelo fato da maioria dos ORBs disponiveis

37

comercialmente ja terem suporte ao Internet Inter-ORB protocol (IIOP) (descrito mais
adiante), as previsdes quanto ao uso de gateways ndo se tornaram realidade. Ainda assim, o
DSI € uma ferramenta til para certos tipos de aplicagdes, especialmente para criar “pontes”

entre ORBs ¢ entre servicos CORBA e servigos de outros tipos.

2.5.2.7 Object Adapters

O Object Adapter (OA) serve como uma especie de “cola” para implementagdes de
objetos CORBA ¢ 0 ORB. Como descrito no padrdo Adapter, um OA ¢ um objeto que adapta
a interface de outro objeto 4 interface esperada por quem faz a chamada. Em outras palavras, o
OA € um objeto que permite que um request seja invocado sem que o cliente conhega de

antemao a interface do objero. A Figura 2-15 ilustra o funcionamento dos OAs.

Interface A Interface X
Chamada Object Adapter Objeto
A chamada aguarda Object Adapter adapta a Objeto fornece
ainterface A Interface X 4 inlerface A Interface X

Figura 2-15 - Representaciio esquemitica da funcionalidade dos OAs

Além disso, os OAs apresentam outros aspectos que demonstra a preocupagiio de se
manter o ORB o mais simples possivel, como pode ser percebido pelas suas funcionalidades
descritas a seguir:

* Object registration: OAs geram referéncias a objetos CORBA;

* Server process activation: quando necessdrio, OAs inicializam processos no

servidor nos quais objetos podem ser ativados;

38

o Object activation: OAs ativam objetos se estes nio estiverem previamente ativados

quando um request chega até eles;

® Request demultiplexing: OAs cooperam com o ORB no sentido de garantir que

requests sejJam encaminhados através de maltiplas conexdes sem serem bloqueadas
indefinidamente em uma conexdo:;

* Object upcalls: OAs entregam os requests aos objetos CORBA registrados.

Sem os OAs, a capacidade do CORBA lidar com diversos tipos de implementagdes
ficaria comprometida. A falta de um OA significaria que o0s objetos se conectariam
diretamente a0 ORB para receber reguests. Se existisse apenas um conjunto limitado de
interfaces de objetos padronizados, apenas um numero limitado de objetos poderia ser
implementado e utilizado no CORBA. Criar um grande niimero de interfaces padronizadas
iria aumentar desnecessariamente a complexidade e o tamanho do ORB.

Portanto, CORBA permite o uso de varios OAs. Um OA diferente ¢ necessario para
cada linguagem de programacdo. Por exemplo, um objeto implementado em C, seria
registrado junto ao OA, fornecendo um ponteiro de uma estrutura que descreves seu estado
juntamente com um conjunto de ponteiros de fungdes, correspondentes as operagdes definidas
pelo padrio IDL da OMG. Ja para a linguagem C++, teria-se um OA que permitisse que uma
implementagio de um objeto herdasse uma implementagio de um objefo padronizado,
fornecendo a interface de chamada ao objeto. Usando-se o OA da linguagem C para um
objeto implementado em C++ ou vice-versa, seria algo “estranho” para programadores de
ambas as linguagens.

Apesar das especificagdes CORBA determinarem que seja permitida a utilizacdo de
diferentes OAs, estas s6 definem um tipo de OA, o Basic Object Adapter (BOA). Quando
especificado pela primeira vez, esperava-se que 0 BOA seria suficientemente robusto para

atender a maioria de implementagdes de objetos ¢ que outros OAs teriam apenas papéis

39

secundarios para tratarem de casos especiais. O que nfio foi previsto pelos projetistas do BOA
¢ que OAs costumam ter uma ligagio forte com uma linguagem de programagfo. Com isto,
para atingir o objetivo de tornar o BOA um OA compativel com diversas linguagens de
programac8o, sua especificagdo precisou ser vaga ¢ genérica em certos pontos, como por
exemplo, na forma de determinar o mecanismo utilizado para registrar objetos de uma
linguagem de programagfio para tornarem-se objetos CORBA. Isto gerou problemas de
portabilidade entre diferentes implementagdes do BOA, pois os ORBs desenvolvidos por
diferentes empresas tiveram que “preencher” as partes néo especificadas de forma vaga com
solugdes proprietarias.

A OMG logo reconheceu este problema e a partir disso desenvolveu uma nova
especificagdo de OA denominada Portable Object Adapter (POA). O POA ¢ compativel com
diferentes linguagens de programagfo, o que fez com que o problema de portabilidade seja
resolvido. Outras melhorias foram adicionadas ao POA, como por exemplo, a forma utilizada
para gerar sincronismo entre objetos, que fornece um gerenciador baseado em uma maquina
de estados com quatro estados, permitindo que mais de um grupo de objetfos seja controlado

simultaneamente.

2.5.2.8 Inter-ORB Protocols

Nas versdes anteriores ao CORBA 2.0, 0 maior problema em relagio aos ORBs era a
falta de interoperabilidade que apresentavam. Isto era causado pelo fato das especificacdes
CORBA nesta €poca nfio definirem nenhum formato particular para comunicagio com o
ORB. O motivo principal pelo qual CORBA nfio especificava nenhum protocolo ORB antes
da versdo 2.0, era que a interoperabilidade nfio era um objerivo importante a ser alcancado.

CORBA 2.0 introduziu uma arquitetura para o ORB que formece uma

interoperabilidade direta de ORB para ORB e para interoperabilidade baseada em “pontes”.

40

Interoperabilidade direta ¢ possivel quando ORBs residem dentro do mesmo dominio ~ em
outras palavras, eles entendem as mesmas referéncias a objetos, 0 mesmo tipo de IDL e talvez
compartilhem das mesmas informagdes de seguranca. Interoperabilidade baseada em “pontes”
¢ necessaria quando ORBs de dominios distintos precisam se comunicar. O objetivo das
“pontes” € mapear informagdes especificas de um ORB de um dominio para outro.

A arquitetura de interoperabilidade ORB ¢ baseada no Gerneral Inter-ORB Protocol
(GIOP), que especifica a sintaxe e o padriio de formato das mensagens para operagdes entre
ORBs para qualquer tipo de conexdo e protocolo de transporte. GIOP & projetada para ser
facil de implementar e permitir uma alta escalabilidade e performance.

O Internet Inter-Orb Protcol (IOP) especifica como o GIOP ¢ criado para funcionar
com conexdes do tipo TCP/IP. De certa forma, a relagio entre IIOP e GIOP é parecida com a
relagdo entre uma interface IDL de um objefo € sua implementagdo. GIOP especifica um
protocolo, assim como as IDLs da OMG definem o protocolo entre um objefo e seu cliente.
Por outro lado, o IIOP determina como o GIOP pode ser implementado para trabalhar com
TCP/IP, assim como uma implementagdo de um objeto determina como sua interface deve ser
criada. Para 0 CORBA 2.0, ¢ obrigatorio que exista compatibilidade com o GIOP e HOP.

A arquitetura ORB de interoperabilidade também fornece outros environment-sepecific
inter-ORB protocols (ESIOPs). ESIOPs, permitem que ORBs sejam criados para situagBes
especiais nas quais uma infra-estrutura para o processamento distribuido ja é utilizado. O
primeiro ESIOP, que utiliza Distributed Computing Environment’ (DCE), é chamada de DCE
Inter-ORB Protocol (DCE-CIOP) e pode ser utilizado por ORBs em ambientes nos quais DCE

Ja € empregado. Isso permite que o ORB utilize fungBes DCE pré-existentes, assim como

% DCE: norma criada e suportada por varias empresas de software que usa RPC para criar um ambiente
heterogéneo de computagiio com um conjunto predefinido de servigos incluindo RPC, servigo de nomes, gestiio
de processos, seguranca, etc.

41

permite uma integragio simplificada do CORBA com programas DCE. O suporie a DCE-
CIOP ou qualquer outro ESIOP na versfio 2.0 do CORBA ORB & opcional.

Além dos protocolos padronizados de interoperabilidade, referéncias padronizadas a
objetos também sdo necessarias para a interoperabilidade entre ORBs.

Apesar das referéncias a objetos serem “opacas” aos programas, os ORBs utilizam as
informagdes das referéncias a objeros para determinar como fazer um request a um objeto. Em
CORBA, existe uma especificagio que padroniza as referéncias a objefos chamada
Interoperable Object Reference (IOR). O IOR armazena as informagdes necessarias para fazer
a localizagdo e comunicagio com um objero utilizando-se diversos protocolos. Por exemplo,
um IOR contém informagGes sobre IIOP, armazena nomes de hosts ¢ nimeros de ports
TCP/IP,

A maioria dos ORBs disponiveis no mercado contém suporte ao ITOP e IOR e foram
testados para garantir que haja interoperabilidade. Estes testes podem ser feitos diretamente
testando-se a interoperabilidade com outros ORBs disponiveis no mercado, ou entdo com um
sistema desenvolvido especificamente para isto pela OMG chamado CORBAnet, que pode ser

utilizado interativamente através de um Web browser em Corbanet (2005),

2.6. Web Services

Um Web Service (WS) pode ser definido como sendo uma interface que descreve um
conjunto de operagbes acessiveis através de trocas de mensagens padronizadas por meio de
uma rede de comunicagdio. Esta interface é descrita em um documento chamado service
description, que contém todos os detalhes necessdrios para a interagio com um servigo
disponibilizado. Isso inclui o formato das mensagens (que detalham a operagiio), protocolos
de transferéncia de informagdes e a localizagio de servicos. A interface oculta os detathes da

implementagdo de um servigo, 0 que permite que esta seja feita independentemente do sistema

42

de hardware e software utilizado e também independa da linguagem de programagfio em que
¢ escrita. Pode-se dizer ainda que um WS ¢ a implementagio de uma funcionalidade definida
por uma interface (Farrel, Lublinsky, 2002).

Uma outra defini¢do, dada pela IBM para WS € “WS sdo um novo tipo de aplicativos
Web. Este aplicativo funciona de forma independente, é auto-descritivo e tem uma arquitetura
modular que pode ser publicada, encontrada e invocada através da Web. WS executam
fungBes, que podem ser simples pedidos de informagdo até complicados processos de
negocios. Uma vez que um W8 ¢ implementado, o aplicativo (e outros WS) pode encontrar e
invocar o servigo”,

Ainda de outra forma, pode-se dizer que os WS conectam computadores e dispositivos
que utilizam a mesma rede de comunicagdo (como a Internet, por exemplo), para trocarem
dados ¢ combina-los de uma forma conveniente pré-determinada. WS podem ser definidos
como objetos de um software que sio agrupados através de uma rede utilizando-se protocolos
padronizados que executam fungdes e processos de negdcios. A principal caracteristica de WS

é a criagio “on-the-fly™

de softwares através do emprego de componentes loose coupled que
podem ser reutilizados, (Fensel, Bussler; 2002).

Com um WS pode-se, portanto criar rotinas e disponibiliza-las para outros programas
que possam ter interesse em executd-las. Para que estas rotinas sejam acessadas, deve-se saber

de antemdo sua localizag#o, ou entdo, deve-se dispor de um mecanismo que faz uma procura

para localizar onde os servigos desejados encontram-se disponiveis. Uma vez localizado um

® On-the-fly: alterag@io de configurages sem que seja necessario desligar o sistema ou alterar o seu modo de
operagdo.

" Loose coupled é a uniio entre WS sem que exista qualquer tipo de incompatibilidades, mesmo quando usarem
tecnologias de sistemas incompativeis. Sistemas loose coupled podem ser acoplados quando requisitados para
criar servigos compostos ou desvinculados, de uma forma simples. Para tanto, os participantes neste processo
devem compartilhar de um framework com uma seméntica pré-estabelecida, para garantir que mensagens
trocadas pelos participantes mantenham as informag@es trocadas consistentes (Loosely Coupled website).

43

servico, deve-se enviar uma mensagem ao né® da rede que contém sua implementagio. Esta
mensagem deve seguir uma formatagdo padronizada pré-determinada, e contém informagdes
de qual rotina deseja ser executada, assim como informagdes sobre os parimetros necessarios

para tanto,

2.6.1 Server Oriented Architecture

Desenvolver um programa que oferece e acessa Servicos através da Web & uma tarefa
relativamente simples. Porém, o fato de ym programa utilizar servicos, ngo implica que este
esteja seguindo o padrio Service Oriented Architecture (SOA). Existe uma grande diferenca
entre um aplicativo que usa ym Servico € um aplicativo que é baseado em SOA.

SOA ¢ um modelo conceitual detalhado de como projetar a 16gica de aplicativos na
forma de servigos através de um protocolo de comunicagfio. Quando se utiliza WS para
estabelecer a comunicagio deste Sframework, isto Iepresenta uma implementagio Web da
arquitetura SOA. A arquitetura SOA estabelece um paradigma dentro do qual WS & ym
componente chave. Isto significa dizer que quando se deseja migrar ou projetar um aplicativo
de acordo com a arquitetura SOA, est se assumindo que o desenvolvimento de WS sera uma
parte fundamental do ambiente deste aplicativo.

Arquiteturas baseadas em servigo representam uma evoluglio da arquitetura baseada
€m componentes, que sio focadas na comunicagdo entre processos. O CORBA ¢ baseado
neste tipo de arquitetura, A principal diferenga entre essas duas abordagens ¢ que 0s servicos
podem ser oferecidos e acessados apenas pela interpretaciio de suas interfaces, enquanto que o

acesso a servicos oferecidos segundo a arquitetura de componentes necessita da

*No: entende-se por 06 de rede um computador conectado 4 rede de comutticagdo, apto a trocar informag@es com
outros computadores,

44

implementagdo de um elemento adicional que ¢ dependente da plataforma utilizada para fazer
a ligagfio entre o servigo e seu requisitante (no caso do CORBA este dispositivo é o ORB).

Uma arquitetura SOA com WS baseados em Extensible Markup Language (XML)
expe a logica do servigo oferecido para que possam ser acessados por terceiros, criando uma
interface loose coupled entre o requisitante ¢ o provedor do servico. Para este tipo de modelo,
0 SOA fornece um mecanismo para a localizag8io de servigos que sdo oferecidos na Web.

Néo serdio apresentados detalhes do modelo SOA, pois o conhecimento aprofundado
desta arquitetura nfio compromete o entendimento dos métodos utilizados neste projeto.
Maiores informag3es sobre a arquitetura SOA podem ser obtidas no SOA Center (2005). A

Figura 2-16 mostra de forma simplificada os blocos construtivos do modelo orientado a

SErvicos.
Dados Légica Integragao | Loglca | Dados
>l - »
s P
Apresentagio L . Apresentagiio
] _'-q—
|]]
Légica
g g
't &~
8] 2
= =
@ [
[£ L
c =
L o
| 0 (77}
Figura 2-16 - Estrutura da arquitetura orientada a servicos
2.6.2 WS roles

Um aplicativo que estiver utilizando ou disponibilizando servigos pode desempenhar
diferentes papéis de acordo com o cendrio de interagdo no qual esta envolvido. Dependendo

do contexto em que o servigo ¢ analisado, assim como o estado da tarefa em execugfio, o

45

mesmo WS pode mudar de papel (role), ou pode desempenhar multiplos roles
simultaneamente.

* Service Provider: um WS desempenhando o papel de provedor de servico
(provider) expde uma interface publica com a qual pode ser invocado por
requisitantes do servigo (requestors). Esta interface é disponibilizada publicando-
se uma descrig@o do servico. Em um modelo cliente-servidor, o provider pode ser
comparado a um servidor. O termo “service provider” pode ser usado também para
descrever a organizagdo ou o ambiente que esta disponibilizando o servico. Um
service provider pode agir também como um requestor. Por exemplo, um WS pode
desempenhar o papel de service provider quando um requestor pede que uma
funcdo seja desempenhada por ele. Em seguida, pode atuar como um requestor,
quando contata o servigo que primeiramente fez a requisigio (que neste instante
atua como provider), para pedir informagoes de status.

* Service Requestor: um service requestor é um WS ou o programa que envia uma
mensagem requisitando um WS especifico. O service requestor pode ser
comparado a um cliente fazendo-se a analogia ao modelo cliente-servidor. Em
certas ocasides, um service requestor pode atuar como service provider. Por
exemplo, em uma situagdo que segue o padrio pergunta-resposta, o WS que inicia
0 processo atua como service requestor, ao requisitar informagGes de um service
provider. O mesmo WS desempenha o papel de service provider quando estiver
respondendo a requisi¢3o original.

* Intermediary: o papel de intermediary ¢ desempenhado pelo WS quando este
recebe uma mensagem de um service requestor € encaminha esta mensagem a um
service provider. Durante o processo de recepcdio e encaminhamento de uma

mensagem, o infermediary desempenha também os papéis de service provider ¢

46

service requestor, respectivamente. Os intermediaries podem existir de diversas
formas. Alguns s3o passivos e apenas “roteiam” a mensagem para o prdximo no,
€nquanto outros processam a mensagem antes de passa-la adiante. Normalmente,
0S infermediaries estdo autorizados apenas a executar o cabegalho da mensagem.
Initial Sender: os initial senders sdo responsaveis por iniciarem a transmissio de
uma mensagem e, portanto podem ser considerados requestors. O termo inicial
sender serve para diferenciar o primeiro WS a enviar uma mensagem de
intermediaries que também podem atuar como service requestors.

Ultimate Receiver: o {iltimo WS a receber uma mensagem € chamado de u/timate
receiver. Estes servigos representam o destinatirio final de uma mensagem, e

podem ser considerados também service providers.

2.6.3 Interaciio entre WS

Quando mensagens sfo trocadas entre dois ou mais WS, uma série de cenarios de

interag8io pode ocorrer. A seguir é dada a defini¢fio de alguns destes cenarios, seus nomes e

como podem ser identificados.

Message path: A rota pela qual uma mensagem € encaminhada ¢ chamada message
path. O message path deve conter um initial sender, um wultimate receiver ¢ pode
conter zero ou mais intermediaries. O caminho de transmissdo realizado por uma
mensagem pode ser determinado dinamicamente por intermediaries de roteamento.
A logica de roteamento pode ser invocada em resposta a necessidade de manter um
balanceamento de carga de processamento, ou pode ser baseado em caracteristicas

da mensagem ou outras varidveis lidas e processadas por intermediaries.

48

* Activity. Os padrdes de mensagens formam a base para as activities {também
conhecidas como tasks). Uma activity consiste em um grupo de WS que interagem
¢ colaboram para executar uma fungfo ou um grupo légico de fungdes. A diferenca
entre uma choreography e uma activity esté no fato de que uma activity geralmente
estd associada a uma fungdo especifica de um programa como, por exemplo, o

processamento de uma tarefa de negdcios.

2.6.4 Estrutura da descri¢io de WS

Como mencionado anteriormente, existem diversas formas de implementar WS ¢
devido a crescente aceitagio do modelo orientado a servigos, torna-se cada vez mais comum
utilizar WS baseados em XML. Um WS baseado em XML & descrito através de uma série de
documentos com definigdes que constituem a descri¢do do servigo. A Figura 2-18 mostra a
relagdo entre os diferentes tipos de documentos que contém estas definigdes descritas a seguir.

Segundo a defini¢io dada por Erl (2004), documentos de definigBes sio como blocos
construtivos da descrigdo de um servico onde:

Abstract + Concrete = Service Definition

Service Definition + Supplementary Definitions ~ Service Description

49

Definigéo do servico

Abstract
(definicGes sobre as
interfaces do servigo)

Definigles
suplementares

Concrete
(definigbes sobre
implementagao do

servigo)

L Descrigdo do servigo

Figura 2-18 - Conjunto de documentos que descrevem um servico

* Abstract: a descrigiio de uma interface de um WS independente dos detalhes de sua
implementagdo, é chamada abstract. Em um documento Web Service Description
Language (WSDL), esta definicio da interface abstract é feita através de
interface construct e message construct. Estes sio criados com a ajuda
de um types construct declarado separadamente. Estes elementos sdo
descritos em mais detalhes no tépico que trata de documentos WSDL. Em uma
arquitetura baseada em componentes, a interface do servico ¢ frequentemente
comparada a uma IDL. O termo “abstract” substituiu o termo “service interface
definition” de acordo com as especificagdes da arquitetura de WS publicadas pela
W3C (2003).

* Concrete: Informagdes mais especificas sobre a localizagdo e implementacgo de
um WS podem ser encontradas na parte concrete de um documento WSDL,

representados pelos elementos binding, service € endpoint (ou port).

50

* Service Definition: Geralmente, o contetido de um documento WSDIL, constitui a
service definition que inclui as definigdes de interface (abstract) ¢ implementag3o
(concrete).

* Service Description: Muitas vezes, a service description consiste de apenas um
documento WSDL que fornece uma service definition. No entanto, existem casos
€m queé uma service description pode conter uma série de documentos adicionais
além da service definition com defini¢des suplementares (como por exemplo, como

0 servigo se relaciona com outros servigos).

2.6.5 WS de primeira geracio

Na medida em que a utilizagio de WS foi se expandindo para o desenvolvimento de
programas Web, surgiu a necessidade de se criar uma especificagdo que padronizasse este tipo
de arquitetura de sistema, para que servigos oferecidos por diferentes desenvolvedores
tivessem a capacidade de interoperar. A World Wide Web Consorsium (W3C) surgiu desta
necessidade. A W3C ¢ de um consércio internacional onde as organizagdes membro, uma
equipe interma e o publico trabalham juntos para elaborar padrdes para tecnologias
relacionadas ao desenvolvimento de aplicativos para a Web. Dentre os padrdes elaborados
pela W3C encontram-se as especificagbes de WS, SOAP ¢ WSDL, descritas mais adiante.
Daqui em diante, qualquer mencdo feita a WS, refere-se a servicos web baseados na
arquitetura € padrdes elaborados pela W3C, a menos que seja explicitado que este ndo é o
caso.

As especificagbes da W3C para WS baseiam-se em documentos e mensagens com
formato XML para criar interfaces com recursos distribuidos em uma rede. O protocolo
utilizado para a troca de informagdes ¢ chamado Simple Object Access Protocol (SOAP)

tratado em um tépico especifico mais adiante. Ndo existem restrigbes quanto ao tipo de

51

protocolo de transporte que deve ser utilizado para a troca de informagées entre nos da rede
nas especificagdes da W3 C, porém, a forma mais comum de se fazer requisi¢es de servigos é

utilizando o protocolo HTTP,

2.6.6 Componentes de um WS

Existem trés especificagdes que formam g2 “espinha dorsal” do Jramework para
desenvolver, disponibilizar e fazer uso de WS. A primeira delas é o SOAP. O SOAP ¢ um
protocolo baseado em XML e serve Como um mecanismo de troca de informagdes em um
ambiente descentralizado e distribuido. SQOAP permite que exista uma interface entre
aplicativos que independa da plataforma de programacao, sistema operacional e do tipo de
dados que um programa utiliza. Pelo fato de WS normalmente serem implementados
empregando-se o protocolo HTTP como base para a troca de informagdes, normalmente eles
podem ser incorporados faciimente & plataforma de Uma empresa fazendo-se poucas
alteragdes 4 infra-estrutura pré-existente, sendo que na maioria dos casos nem ao menos é
necessario modificar configuragdes de firewalls.

As outras duas tecnologias necessarias aos WS sio Universal Description, Discovery,
and Intergration UDDI e 0 WSDL. De forma parecida aos name services € directory services
do CORBA, UDDI é um mecanismo de busca que localiza onde ¢ quem estd disponibilizando
um servico especifico que precisa ser acessado. O WSDL especifica a interface destes
servigos, quais dados devem ser fornecidos, e quais sio retornados. Desta forma, tem-se que
0 SOAP, UDDI e WSDL, acoplados ao principio de modelagem orientado a servigos, formam
uma SOA basica estruturada em XML. A Figura 2-19 mostra o relacionamento entre estes trés
padrdes tecnoldgicos. Utilizando estes conceitos, sistemas de diferentes dominios, ambientes
independentes ou arquiteturas diferentes, podem operar de uma forma cooperativa para

desempenhar servigos, SOAP, UDDI e WSDL podem ser implementados através de diferentes

52

protocolos de internet como, por exemplo, HTTP, FTP ¢ SMTP. A F igura 2-20 mostra os
diferentes niveis de protocolos utilizados pelos WS e onde ficam alocadas as camadas que

contém a implementagio do SOAP, UDDI e WSDL.

g

Provider
&\
0\
& S~
M
Service
Broker = Requester
Procurar

Figura 2-19 - Relacionamento entre UDDI, SOAP ¢ WSDL

l_ Web Services "

— R e s —
] SOAP _f_ UbDI f WSDL J

{ Padrées XML e padrées relacionados ao XML,]

-
HTTP SMTP ' FTP
|

L Protocolos da rede ,

— e ——

Figura 2-20 - Niveis de protocola na estrutura de um WS

WS tem uma série de vantagens sobre outros métodos utilizados para desenvolver
processamento distribuido com alta interoperabilidade, mesmo sendo uma abordagem
relativamente nova que ainda ests em fase de adogdo e sendo “experimentada” pelo mercado.
Existem algumas caracteristicas que separam os WS dos métodos desenvolvidos

anteriormente e fazem com que este tenha maior chance de ser bem-sucedido:

53

* ¢ um padrio apoiado pelos principais desenvolvedores de programas como a
Microsoft, IBM e SUN. Nenhuma outra tecnologia de processamento distribuido
oferece suporte ¢ compatibilidade tfo amplos por empresas;

* O processamento de WS € Joose coupled. As tentativas anteriores 20 WS de atingir
interoperabilidade utilizavam um ambiente comum para os aplicativos nos dois nés
da transagio. WS permite que o cliente e o servidor de servicos adotem uma
metodologia que elimina este ambiente intermedidrio;

* usando XML, WS dispde de um modelo flexivel para a troca de dados
independente da plataforma que est4 utilizando os servicos,

* utilizagio de protocolos que s3o padrdes da Internet, o que significa que a maioria
das organizagdes ja dispde de muitos softwares de comunicagfo ¢ a infra-estrutura
necessdria para adotar WS. Alguns poucos protocolos novos precisam ser
incorporados e linguagens de desenvolvimento pré-existentes podem ser usadas
para isto.

As desvantagens de se utilizar WS podem ser dividias em duas categorias.
Primeiramente, WS nfo ¢ um método amplamente testado. Existem suspeitas de que WS €
apenas “uma moda passageira” e, como muitos outros métodos empregados para realizar
processamento distribuido, ndo seri uma solugio suficientemente pratica e eficiente para
tornar-se um padréo definitivo para este tipo de aplicagdo. Esta ¢ uma questio que apenas o
tempo ird responder, porém as vantagens oferecidas pelo WS lhe ddo boas chances de
SUCESSO.

A segunda desvantagem apontada em relagio aos WS & a grande dependéncia do
padrdo XML. Apesar de existirem muitas vantagens em se utilizar XML, o tamanho das
mensagens trocadas entre nos ndo ¢ uma delas. O uso de XML amplia vertiginosamente o

volume de dados que necessita ser armazenado, transportado e processado. Criar ligagbes de

54

processamento entre dominios requer uma representacdo flexivel. Esta flexibilidade depende
de uma quantidade maior de informagdes que precisam ser especificadas, o que aumenta o
tempo necessario para acessar e processar um servigo. Por outro lado, a W3C recentemente
criou um grupo de trabalho para desenvolver uma representacdo “bindria” de documentos
XML em uma conexdo, o que pode melhorar o desempenho na transmissdo de dados. A
Figura 2-21 mostra mais uma vez a estrutura da arquitetura SOA e identifica onde as

diferentes tecnologias sfo empregadas neste modelo, inclusive como esta pode interagir com

outras tecnologias.
Interface
Web Services
Client-Tier Component-Tier | Back-Office Tier |

Presentation-Tier ,
15 RMI/DCOMAJOP

- e
Aplicativo !
Cliente —1 | SOAPTTFP
[1 |
Browser SiHE

Web

Service

{

COM+ |

CORBA '

(JoyN=T Web Server

Programa '_!:iT_-TP
Java

J2EE

HTMLY
[EAF

| Banco de |
f Dados

|
il
aspner IR -
|
|

'l

Figura 2-21 - Arquitetura de aplicativos para a web e tecnologias utilizadas na comunicaciio

2.6.7 Web Service Description Language (WSDL)

WS precisam ser definidos de forma consistente para que possam ser encontrados e
interfaceados com outros servigos e aplicativos. O WSDL é uma especificagio da W3C que
fornece a linguagem utilizada para descrever definigdes de servigos (service definitions).

A camada de integracfio introduzida no Sframework dos WS estabelece uma interface
de programagcfio padronizada, universalmente aceita. Como mostrado na Figura 2-21, WSDL
permite a troca de informagdio entre estas camadas, pelo fato de conter descrigdes

padronizadas dos dois extremos da conexdo.

55

A melhor forma de entender como um WS ¢ expresso € definido por um documento
WSDL, ¢ analisando cada um de seus elementos que coletivamente representam sua
definigdo.

O primeiro elemento (ou construct) a ser apresentado, chama-se definitions, e
pode ser comparado a um envelope, dentro do qual se encontram todas as definigdes do
servico. O documento XML da Figura 2-22 mostra um exemplo de uma definigéio de servico,

expressa pelo elemento definitions,

<definitions>
<interface name="Catcalog">

</interface>

<message name="BookInfo">
</message>

<gervice>

</service>»

<binding name="Bindingl">
</binding>

</definiticns>

Figura 2-22 - Defini¢iio de servico expresso pelo elemento service

A defini¢do de um WSDL pode conter uma colecio dos seguintes constructs:

* interface

* message

* service

* binding

A Figura 2-23 mostra como os dois primeiros constructs representam a defini¢io da

interface do servigo e os dois Ultimos fornecem os detalhes de sua implementagao.

56

— —— ——————
Defini¢do do servige e | Documento WSDL.
e
‘ <definitions> i |
Abstract | P : K
(definigoes sobre as S i | <intarace name = "Catalog™ |
interfaces do servigo) B R = i i e D
™ <message name = "Bookinfo> |
| Rl H
| 3 1
| | U | |
=== a
| i1 ssenvice> A |
Concrete | e i l
(definigdes sobre e | P :m‘“;m_ i |
implementagao do (|5 "Blndlnng1“> i
servico) | S
[| j </binding>
|| e .
SR S - W e
Descrigho do servigo

Figura 2-23 - Detalhamento da estrutura de um documento WSDL

2.6.7.1 Abstract Interface definition

As interfaces individuais de um WS sdo representadas pelos elementos interface.
Estes constructs contém um grupo de operagdes logicas relacionadas. Em uma arquitetura
baseada em componentes, uma interface WSDL pode ser comparada a uma interface de um
componente. Uma operagdo ¢, portanto, equivalente a um método de um componente, pois

representa uma agéo ou fungfo tnica (Figura 2-24).

<definitions>
<interface name="Catalog">
<operation name="GetBook">
</operation>
</interface >
</definitions>

Figura 2-24 - Definicio dos elementos de uma operaciio

37

Um elemento operation tipico consiste de um grupo de mensagens de entrada e
saida relacionadas. A execucdo de uma operagdo requer a transmissdo ou troca destas
mensagens entre o service requestor € o service provider.

Mensagens de operagio sdo representadas pelo construct message que sdo
declarados separadamente abaixo do elemento definitions. O nome das mensagens sio

referenciados nos sub-elementos de entrada e saida das operagdes (Figura 2-25).

<definitions>
<message name="BookInfo">

</message>
<interface name="Catalog”>
<operation name="GetBook">
<input name="Msgl" message="BookInfo" />
</operation>
</interface>
</definitions>

Figura 2-25 - Entradas e saidas de uma operacito em documentos WSDL

<definitions>
<message name="BookInfo">
<part name="title" type="xs:string">
Field Guide
</part>
<part name="author" type="xs:string">
Mr, T
</part>
</message>
</definitions>

Figura 2-26 - Exemplo de utilizacio do elemento " part "

Um elemento message pode conter um ou mais parimetros de entrada e saida
pertencentes a uma operagio. Cada elemento do tipo part define um destes pardmetros,
fornecendo a ele um conjunto com um nome, valor e tipo de dados. Em uma arquitetura
baseada em componentes, um documento WSDL part € equivalente a um pardmetro de
entrada ou saida (ou um valor de retorno) de métodos utilizados em componentes (Figura

2-26).

58

A seguir é apresentado um resumo dos principais constructs que podem ser
utilizados para criar uma defini¢o de interface abstrace:

¢ interfaces representam interfaces de servicos, ¢ podem conter multiplos
operations;

* operations representam funges de um WS e podem fazer referéncia a multiplas
mensagens;

¢ messages representam conjuntos de pardmetros de entrada e saida, e podem
conter multiplos parts;

* parts podem representar dados de pardmetros de operations de entrada ou

saida.

2.6.7.2 Defini¢do da implementacio — Concrete

Como os elementos descritos nos topicos anteriores, um documento WSDL pode
estabelecer detalhes da implementagio de bindings para protocolos como, por exemplo, o
SOAP ¢ HTTP. Dentro de um documento WSDL, o elemento service representa um ou mais
nds onde um WS pode ser acessado. Estes elementos contém informagdes sobre o protocolo

de acesso e a localizagio do né e sdo armazenados em um conjunto de elementos do tipo

endpoint (Figura 2-27).

<definitions>
<service name="Servicel">
<endpoint name="Endpointl" binding="Bindingl">
.. .Concrete implementation details...
</endpoint>
</service>
</definitions>

Figura 2-27 - Exemplo de utilizagio do elemento "endpoint"

59

Uma vez que a descrigio de como acessar um WS foi feita, podem-se definir os
requisitos para invocar cada uma de suas operagdes. O elemento binding associa 0 formato
do protocolo ¢ dos dados de mensagens necessarias para acessar uma operagio (Figura 2-28).
O construct operation que reside dentro dos blocos binding tem sua definigio alocada

dentro dos elementos interface.

<definitions>
<gervice>
<binding name="Bindingl">
<operation>
<inpput name="Msgl" message="book" />
</operation>
</binding>
</service>
</definitions>

Figura 2-28 - Exemplo de utilizagiio do elemento "binding"

A descri¢do das defini¢Ses concrete dentro de um documento WSDL pode ser
resumida da seguinte forma:
¢ service contém conjuntos de definigdes de nds representados individualmente
pelos elementos endpoint;
* bindings sdo elementos associados aos constructs do tipo operation;
¢ endpoints sdo elementos de referéncia dentro dos comstructs binding e

portanto relacionam as informagdes de um no ds operagdes oferecidas por ele.

60

2.6.7.3 Constructs adicionais

Uma forma adicional de fornecer suporte a tipos de dados para definigbes de WS é o
elemento types. Este construct permite que XSD schemas® possam ser embarcados ou

importados para dentro do documento de definigdo (Figura 2-29).

<definitions>
<types>
<xs5d:schema

targetNamespace="http://www.examples.ws/"
xmlns="http://www.w3.org/ZOOO/lO/XMLSchema">

</xsd:schema>
</types>
</definitions>

Figura 2-29 - Elemento XSD embarcado no documento de definicio

Por fim, um elemento opcional chamado documentation permite que informacdes

suplementares sejam adicionadas a definigio (Figura 2-30).

<definitions>
<documentation>
I wrote this service definition some time ago,

when I was younger and times were simpler for us all...
</documentation>
</definitions>

Figura 2-30 - Insercdio do elemento "documentation" nas definicées

2.6.8 SOAP

SOAP ¢ um protocolo unidirecional, baseado em XML e utilizado para transmitir

informagdes. Apesar de sua unidirecionalidade, mensagens SOAP podem ser combinadas de

? XSD: Uma forma de descrever e validar em uma a

mbiente XML. Um schema é um modelo de estrutura das
informagdes.

61

tal forma que possa haver uma interacdo do tipo request-response, ou até mesmo formas mais
sofisticadas de didlogo.

Além dos nés da rede que recebem e enviam mensagens SOAP, o roteamento das
mensagens ¢ feito pela passagem por nds intermedigrios. Mensagens SOAP podem ser
roteadas através de um né intermedidrio para chegar ao destinatério como descrito no topico
WS roles. Os nos intermedidrios em SOAP ndo devem ser confundidos com os nés
intermedidrios de protocolos que estejam sendo utilizados em uma camada inferior ao SOAP
como, por exemplo, o TCP/IP,

SOAP descreve uma linguagem baseada em XML para troca de dados estruturados e
de tipos. Como ¢ feito em muitos protocolos, o SOAP é composto de duas partes; uma parte
com a descricio das mensagens que sfo enviadas, incluindo o formato e regras de
representagdo, e uma segunda com a seqiiéncia de mensagens trocadas. O SOAP ¢ uma
especificagdo do esqueleto do formato das mensagens. Este tipo de especificagdo permite que
mensagens sejam moldadas para usos especificos em aplicagbes. Além do protocolo em si,
existem bindings (ligagdes) que descrevem como uma mensagem SOAP pode ser transportada
utilizando diferentes tipos de protocolos de transporte. Atualmente, HTTP ¢ SMTP sdo os
tnicos protocolos que tem especificagdes de binding elaborados pela W3C, porém outros

bindings podem ser desenvolvidos e utilizados por terceiros.

2.6.8.1 Processando mensagens SOAP

Os dois principais nds que irdo processar uma mensagem SOAP, sio: 0 né que enviou
a mensagem € 0 no a quem a mensagem & destinada. Além destes dois nés, exister nos
intermedidrios, que recebem as mensagens e em um outro instante as encaminham em direciio
a0 receptor final. Estes n6s intermedidrios também desempenham um papel no processamento

de mensagens SOAP.

62

Diferentemente do corpo da mensagem, o cabegalho pode ser:

¢ explicitamente direcionado a um receptor unico e concreto através de uma URIlO;

* direcionado a um receptor baseado na sua posicdo relativa na corrente de

processamento;

* direcionado usando-se algum critério definido pelo programa.

O criador do cabegatho pode especificar se o receptor deve processar o cabegalho ou
se o cabegalho pode ser ignorado. Se existir algum requisito necessario para entender algum
clemento da mensagem, o receptor precisa parar o processamento da mensagem e enviar uma
mensagem SOAP de falha. Isto € itil para que se possa ter certeza de que informacdes de
seguranga que precisam ser processadas de forma segura cheguem e sejam interpretadas pelo

receptor final de forma correta.

2.6.8.2 Ordem de processamento

O processamento de mensagens SOAP precisa ser feito na seguinte ordem.
Primeiramente, o receptor precisa decidir qual sua fungfio. Ele sera o receptor intermediario
ou o receptor final? O receptor poderd consultar informagdes no cabegalho ou corpo da
mensagem para tomar esta decisgo.

Em seguida, o n6 que receber a mensagem deve identificar elementos do cabegalho
destinados a ele e deve entender e decidir se deve ou ndo processar estes elementos. Caso o né
n4o seja capaz de processar os elementos, todo o processo deve parar ¢ uma mensagem de
falha deve ser gerada.

Se todos os elementos do cabegalho que sdo obrigatérios podem ser processados, o né

deve processé-los e no caso do receptor final, processar o corpo da mensagem. O né pode

1 R Enderego codificado por um idenfificador Universal de Recursos (URI), para recursos disponiveis na
web

63

escolher por ignorar um elemento do cabegalho que no seja de processamento obrigatério.
Qutros tipos de falhas devem ser gerados também nesta fase.

Finalmente, se o receptor for um né intermediario, este deve remover os elementos do
cabegalho destinados unicamente a ele e entdo encaminhar a mensagem ao proximo receptor.

Neste ponto, algumas questdes que ndo foram explicadas podem surgir:

¢ Como um receptor sabe o que deve fazer com a mensagem? O destinatirio de uma

mensagem € sempre o préximo receptor, mas ¢ também o receptor final?

e Como um receptor decide qual ordem ir4 utilizar para processar os cabegalhos?

e Como um no determina quem sera o préximo receptor para que a mensagem possa

ser roteada até ele?

Estas sdo perguntas pertinentes, porém o SOAP ndo tem respostas para elas. Estas
decisdes devem ser tomadas usando-se algum algoritmo embutido dentro do programa, ou
entfio determinado por algum outro método que esta fora do escopo do SOAP.

Uma vez que estas decisdes foram tomadas, instrugdes que refletem as respostas
geradas podem ser incorporadas nos cabecalhos da mensagem. Por exemplo, o criador da
mensagem pode incluir informagSes sobre o roteamento e instrugdes mais detalhadas sobre
como processar as instrugdes do cabegalho. Outra abordagem seria cada nd incluir instrugdes

para o receptor seguinte.

2.6.8.3 Formato das Mensagens

A forma bésica minima de uma mensagem SOAP é mostrada no documento XML da
Figura 2-31. Uma codificagdo usando apenas tipos incorporados no protocolo SOAP e sem
defini¢fes adicionais ¢ recomendada nas especificagbes. Este esquema minimo para uma
mensagem SOAP permite que ela seja validada sem necessitar de documentos XML shema.

No entanto, XML shemas especificos para dadas aplicagdes sdo permitidos, que necessitam de

64

validagdes adicionais. Cada mensagem SQAP ¢ identificada como um documento XML 1.0
que contém um elemento com o nome do envelope. Este elemento ¢ qualificado com o
namespace http://'www.w3c.org/2002/06/soap-envelope. Além de identificar o namespace
como sendo um namespace SOAP, o URL identifica a versio do SOAP que esta sendo
utilizada. O envelope contém sub-elementos de um cabegalho (opcional) e de um corpo

(obrigatorio) que sera descrito mais adiante,

Além do que foi discutido, ndo é preciso mais nenhum elemento dentro do envelope
SOAP que identifica o tipo de mensagem. Nio h4 necessidade de se incluir a identidade do né
que criou e enviou a mensagem, tampouco do receptor, da data de criagio ou titulo da
mensagem. Espera-se que cada programa defina estes elementos se forem necessarios. Com
excegdo das especificagBes quanto & formatagdo, o receptor determina por ele mesmo como
interpretar o conteudo da mensagem. Espera-se que o receptor faga isso, utilizando e
entendendo o namespace que associa elementos ¢ atributos com o aplicativo implementado

pelo receptor.

<? ¥ml version=‘1l.0" ?>

<env:Envelope xmlns:env=“http://www.w3.0rg/2003/05/s0cap~
envelope”™>

<env:Header>

</env:Header>

<env:Body>

</env:Body>

</env:Envelope>

Figura 2-31 - Mensagem SOAP

2.6.8.4 O cabegalho de mensagens SOAP

O cabegalho de uma mensagem SOAP mostrado na Figura 2-32 que é uma versio
modificada da mensagem da Figura 2-32 ¢ uma parte opcional de uma mensagem SOAP.
Seu nome local é seader ¢ ¢ identificado usando o mesmo namespace que o envelope.

O cabegalho pode conter zero ou mais identificadores de namespaces de sub-elementos. Dois

65

outros atributos, role e mustUnderstand, podem ser associados com sub-elementos do

cabecalho. No exemplo, hd z1 € identificado no namespace www.widgets.com/logging/.

<? ¥ml version=‘1.0f 2>

<env:Envelope zmlns:env=
“http://waw.w3.0xrg/2003/05/scap~-envelope”>
<env:Header>

<sec:hdrl xmlns:sec="http://www.widgets.com/legging”
sec:actor=
“http://www.w3.0rg/2003/05/soap-envelope/role/next”
sec:mustUnderstand="true”>

</sec:hd ri>

</env:Header>

<env:Body>

</env:Body>

</env:Envelope>

Figura 2-32 - Mensagem SOAP com cabegalho

Diferentemente do corpo da mensagem, que ndo pode ser alterado, o cabegalho € uma
parte dindmica da mensagem. Nos intermediarios as vezes precisam apagar elementos do
cabegalho que sdo destinados unicamente a eles e podem inserir novos elementos se
Necessario.

Cada elemento do cabegalho sera processado no maximo por um WS. No entanto,
outros poderdio examinar estes elementos, mesmo que ndo sejam destinados a eles. Caso 0 WS
seja um intermedidrio, este deve apagar os elementos do cabegalho destinados a ele ¢ pode

adicionar outros elementos para receptores subseqiientes antes de repassar a mensagem.

2.6.8.5 O corpo de mensagens SOAP

E natural que se pense no SOAP como sendo um protocolo do tipo request-response,
porém ndo h4 necessidade de se retornar uma responsta para uma dada mensagem que foi
recebida. Ainda assim, sub-elementos do corpo da mensagem foram definidos e sdo a

conseqiiéncia logica de certas entradas. Por causa disto, a discussdo sobre o corpo da

66

mensagem sera dividida entre elementos do corpo da mensagem do tipo request e response. O
SOAP trata a comunicagio em cada sentido como eventos separados e nio-relacionados.

O corpo da mensagem de um request feito em SOAP pode conter um ou mais sub-
clementos. Caso existirem miltiplos sub-clementos, eles podem representar uma Gnica
unidade de trabalho, multiplas unidades de trabalho ou entio uma combinagio de trabalho e
dados. Elementos de mensagens sdo andlogos a documentos em papel que contém uma
estrutura de acordo com o contetido descrito, como por exemplo, pedidos de compra,
itinerarios, receitas, efc...

O conteado de uma mensagem de resposta pode ser um documento, uma resposta
RPC, ou uma falha SOAP. Assim como um documento pode ser recebido, um documento
pode resultar de uma receita de um documento.

Uma mensagem de resposta SOAP, pode conter uma falha SOAP. Qs unicos sub-
elementos que sdo definidos pelas especificagdes SOAP, sio as falhas, que sfo geradas em
resposta a erros e podem conter também outras informagGes de status. Sub-elementos do tipo
code € reason slo necessarios dentro do elemento de falha. Qutros dois sub-elementos,
node € role ¢ detalhes sdo opcionais. Code € uma estrutura que contém um valor que
designa a falha em um alto nivel e um sub-elemento opcional chamado subcode que informa
sobre mais detalhes da falha. Node identifica o né SOAP que identificou a falha. Role
identifica qual a operac@io que o nd estava processando quando a falha ocorreu. Finalmente,

detail contém informagdes especificas da aplicagéo sobre a falha,

2.6.8.6 Caracterisiticas do SOAP

A chave para o sucesso do SOAP estd na habilidade de se estender e adicionar

funcionalidades a ele. As caracteristicas do SOAP sfo abstratas e referem-se a troca de

67

mensagens entre nos. Estas funcionalidades podem incluir confiabilidade, garantia de entrega
€ seguranga.

Quando uma funcionalidade ¢ implementada em um né SOAP, esta é implementada
modificando-se o modelo de processamento SOAP. Se a funcionalidade afetar a interagdo
entre dois nds consecutivos, a funcionalidade é implementada como parte do SOAP binding.
Uma limitagdo de um protocolo binding é que ele relaciona dois nés conectados por uma
Unica transmissdo. Transmissdes de wma ponta a outra, podem ser implementadas usando-se
diferentes protocolos, necessitando de multiplas transmissdes. Nestes casos, a funcionalidade
deve ser expressa em blocos de cabegalho SOAP e implementadas no modelo de
processamento.

Funcionalidades sdo expressas como médulos alocados em cabegalhos SOAP. Um
modulo, ou Message Exchange Pattern (MEP) é um femplate, definido nas especificagdes
SOAP (W3C, 2005), usado para descrever a troca de mensagens entre nés SOAP. A parte
principal de se especificar um binding ¢ descrever como ou protocolo ¢ utilizado para
implementar MEPs que este deve saber interpretar. Dois MEPs, request-response e response,
ja foram definidos. O MEP request-response ¢é exatamente o que se espera. O MEP de

response € o envio de uma resposta SOAP depois de receber um request nio SOAP.

2.6.8.7 HTTP Binding

Existe uma especificagéio para o binding de HTTP (W3C, 2002). A nfio ser que seja
informado explicitamente, SOAP através de HTTP ¢ transmitido usando este binding. O
binding permite aos MEPs de request-response ¢ response sejam utilizados e especifica como
o HTTP deve lidar com mensagens para implementar padrdes. Para o0 MEP reguest-response,
mensagens com requests sdo enviadas utilizando-se chamadas do tipo HTTP POST. O HTTP

URI identifica o né de destino assim como o programa que recebe a mensagem. A resposta

68

correspondente ¢ enviada utilizando-se HTTP response, fornecendo um meio natural de
correlacionar a resposta com o pedido.

No binding HTTP, a mensagem de resposta SOAP ¢ enviada em resposta a um request
HTTP. Se o MEP for request-response, a mensagem SOAP de request foi enviada através de
uma chamada HTTP POST. Se o MEP for de resposta, o request foi transmitido como uma
chamada HTTP GET. O binding HTTP apenas entende este tipo de MEPs para realizar
requests. Quando utilizado desta forma, a interagfio sera indistinguivel de um envio
convencional de informacdes através de HTTP. O MEP de resposta pode apenas ser utilizado
quando nfo existem intermedidrios entre o primeiro né que enviou a mensagem € © NO
receptor final. A informagdo retornada ¢ identificada apenas pelo URL, pois ndo ha um

envelope SOAP para transmitir informagdes ao provedor de servicos.

2.6.9 UDDI

Um dos componentes fundamentais da arquitetura orientada a servigos € o mecanismo
utilizado por potenciais requisitantes para encontrar descrigdes de WS. Para estabelecer esta
parte do framework de um WS, um diretorio central para hospedagem de descrigbes de
servigos é necessario. Este diretorio pode tornar-se parte integral de uma organizag@o ou
comunidade na Internet e é considerada uma extensfio da infra-estrutura.

E por isso que as especificagdes UDDI estdo se tornando cada vez mais importantes.
Um elemento chave do UDDI ¢ a padronizagio de registros de perfis armazenados neste
diretorio, também conhecidos como registry. Diferentes implementagdes do registro podem
ser criadas, dependendo do objetivo do servigo e para qual tipo de aplicacgdo € intencionado.

A partir da versdo 3 do UDDI, este tornou-se um padrio OASIS (2004). As
especificagdes do UDDI sfo baseadas em tecnologias desenvolvidas pela W3C e da Internet

Engineering Task Force como o XML, SOAP e Domain Name Services. (OASIS UDDI).

69

Um public business registry é um diretério global com descrigdes de servigos de
negocios internacionais. Instdncias deste registro sdo hospedadas por grandes corporagdes
(também chamadas de node operators) em uma série de servidores UDDI dedicados.
Registros UDDI séo replicados automaticamente entre instincias de repositério. Algumas
empresas também atuam como registradores de UDDI, permitindo que terceiros adicionem ou
editem suas descri¢es de WS. O public business registry é complementado por um grande
numero de service marketplaces que oferecem WS genéricos.

Private registrys sdo repositorios de descrigdes de servico hospedados dentro de uma
organizagio. Normalmente, quem tem acesso a estes diretorios s§o parceiros de negdcios. Um
registro a usudrios internos é chamado de internal registry.

Os registros de um UDDI sdo organizados utilizando-se seis tipos basicos de dados:

o Dusiness entities: oferecem informacdes sobre o servigo registrado, incluindo o
nome, a descrigio € um identificador tunico, sfio representados pelo elemento
businessEntity.;

s business services: representam o servigo oferecido pelo WS registrado. O elemento
de descrig8o neste caso é 0 businessServices;

* specific pointers: As informagdes oferecidas pelos Specific pointers sdo utilizadas
para mapear a implementagiio do servigo através de um enderego. Com esta
informagédo, um desenvolvedor pode aprender a conectar-se ao servigo;

* service types. Registro UDDI fornece um meio de apontar para definigdes de
servigos através de um tModel. O tModel ¢ um documento XML que representa a
definigdo do service tfype UDDI ¢ também pode conter informacgdes sobre formatos
de mensagens, assim como protocolos de mensagens e de seguranga;

o business relationship: representados pelo elemento publisherAssertion,

permitem estabelecer uma relagfio entre dois ou mais businessEntitys;

70

o subscriptions: Possibilitam informar aos associados do registry quando alguma

informag#o sobre um cadastro de servigo foi atualizada.

O documento XML apresentado na Figura 2-33 contém um registro de servigo UDDI.
Pode-se identificar todos os elementos descritos acima encapsulados dentro do elemento raiz
businessEntity. Este arquivo € um exemplo extraido de Erl (2004).

Apesar de terem sido apresentados os fundamentos do UDDI (com foco da estrutura
de entidades de servigos), a discussdio ndo foi aprofundada até o cerne do UDDI registry: o
tModel. Este componente disponibiliza o acesso aos detalhes técnicos necessarios para que
requisitores possam interagir com WS através de uma interface. Maiores informagdes

referentes ao tModel, podem ser encontradas nas especificagdes do UDDI (OASIS, UDDI,

2005b).

71

<businessEntity xmlns:xsd="http://www.w3.0org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/200l/XMLSchema—instance"
businessKey="e9355d51—32ca~49cf~8eb4~1ce59afbf4a7"
operator="Microsoft Corporation"
authorizedName="Thomas Frl"
xmlns="urn:uddi—org:api_v2">
<discoveryURLs>
<discoveryURL useType=
“businessEntity">http://test.uddi.microsoft.com/discovery
?businesskey=e9355d51—32ca—49cf—8eb4—lce59afbf4a7
</discoveryURL>
</discoveryURLs>
<name xml:lang="en">
XMLTC Consulting Inc
</name>
<description xml:lang="en">
XMLTC has been building end-to-end enterprise
eBusiness solutions for corporations and
government agencies since 1996. We offer a
wide range of design, development and
integration services
</description>
<businessServices>
<businessService
serviceKey="1eeecfa1-6f99-460e—a392—8328d38b763a"
businessKey=“e9355d51—32ca—49cf~8eb4~1ce59afbf4a7">
<name xml:lang="en-usg">
Corporate Home Page
</name>
<bindingTemplates>
<bindingTemplate
bindingKey="48b02d40—0312—4293~a7f5—4449ca190984“
serviceKey="1eeecfa1—6f99—46Oe—a392—8328d38b7633">
<description xzml:lang="en">
Entry point into the XMLTC Web site
through which a number of resource
Sites can be accessed
</description>
<accessPoint URLType="http">
http://www.xmltc. com/
</accessPoint>
<tModellnstancebetails />
</bindingTemplate>
</bindingTemplates>
<categoryBag>
<keyedReference
tModelKey="uuid:clacf26d—9672~4404-9d70—39b756e62ab4"
keyName="Namespace"” keyValue="namespace" />
</categoryBag>
</businessService>
</businessServices>
</businessEntity>

Figura 2-33 - Estrutura de um registro UDDI

72

3. Mecanismos de Integracio e coordenacio da Plataforma de
Simulacio

Pelo fato da Plataforma de Simulacdo em si ser um sistema distribuido e baseada na
interagéio entre modulos que contém mformagdes sobre os modelos elaborados, esta requer
que mecanismos de integragiio e gerenciamento da troca de informagdes entre médulos
executados em computadores remotamente sejam criados. Os métodos que foram tratados no
capitulo anterior como tecnologias de integragdo para aplicativos distribuidos, CORBA ¢ WS,
sdo especialmente adequados para esta tarefa, oferecendo a interoperabilidade e escalabilidade
necessdrias & Plataforma de Simulacdo. Tanto o CORBA quanto os WS encapsulam
funcionalidades desejadas em arquivos com programas ou bibliotecas que podem ser
publicados e acessados por aplicativos externos para executarem algum servico desejado. A
aplicagdio deste conceito para a Plataforma de Simulagio consiste em fazer o encapsuilamento
dos médulos nos formatos especificados por estas tecnologias e assim publicé-los em uma
rede como servigos ou objetos CORBA, fazendo com que possa ocorrer um processamento
distribuido entre diversos computadores. Portanto, tem-se modelos elaborados em RdAP que
podem ser convertidos em servicos ou objetos CORBA que interagem entre si.

Para que os médulos convertidos possam processar uma simulagio segundo o
formalismo das RdP e respeitar a hierarquia de modelos elaborada para a Plataforma de
Simulacdo, torna-se necessério trocar informagdes de trés naturezas entre eles que sdo:

 informagdes sobre transicdes;

* informagBes sobre o avango do tempo e sinais de controle e monitoramento da

simulagdo;

73

* informagdes sobre a hierarquia e permissdes de acesso dos modulos.
A seguir ¢ apresentada uma visio mais detalhada das fungdes e da arquitetura de cada

um dos trés agrupamentos citados acima.

3.1, Informacdes de transi¢io

A relag8o ente os objetos elaborados com a Plataforma de Simulagdo se d4 através da
fuséio entre suas transicdes. Desta forma, um objeto A pode conter uma transi¢do ta), cujo
lugar seguinte encontra-se em um outro objeto B. Este segundo objero, contém uma transigdo
tp1 que € ativada pela marcagio nos lugares do objeto A. Na realidade as transigdes ta1 € tpy
representam a mesma fransigdo, porém em objetos diferentes. Desta forma, a (ransicdo ta
estd “fundida” com a transicdo ts;. Um exemplo de como se dé a interagdo entre dois objetos
¢ mostrado na Figura 3-1, onde ocorre a fusdo das transi¢fes ta € tg) e posteriormente a fusio

emntre tpy € tas.

|
R | /—-\ g
I\ | g\ 1 :
[Py Sy T pad — — —— !
Fm—— - — N | 2 ¢ 1
1 v - it |
| X),:I't I/-\/’I' : I v o~
I \
L o3 N ~ Al _/ !
: HIB,]_ _/ —tBn 1

e e e e e i e s o

Figura 3-1 - Representaciio da fusdo de transigdes entre dois objetos (Junqueira)

Traduzindo esta interago entre objetos para a implementagio da Plataforma de
Simulagdo utilizando CORBA e WS, tem-se que os objetos A e B representam
implementagdes de objeros CORBA ou servicos web que apresentam na sua interface,
publicados os métodos ta; e taz para o objero A e tg; e para o objeto B, que podem ser

mvocados remotamente.

74

As transicdes sdo, portanto o elemento que interliga os varios médulos de um modelo
elaborado na Plataforma de Simulagdo. E apresentado a Seguir como gerenciar este caso para

que o processamento de uma simulago possa ocorrer satisfatoriamente.

3.2. Informacdes sobre o avan¢o do tempo e sinais de controle e monitoramento
da simulacio

Partindo-se da abordagem conservativa para o processamento de RdP em um ambiente
distribuido, ¢ preciso desenvolver uma forma de sincronizar o progresso da simulagdo entre os
objetos que fazem parte de um mesmo modelo. A forma encontrada para este sincronismo
entre os objetos, ¢ baseada na criacio de uma seqii€ncia de conexdo entre eles, formande um
“anel” l6gico por onde constantemente circula um rétulo com dados sobre o instante de tempo
da simulagio. Desta forma informagGes de monitoramento e controle da simulagdo sdo
recebidas e enviadas por todos os objetos que participam do processamento de uma mesma
simulagdo de forma ciclica, informando qual o proximo instante de tempo e quando este sera
adotado, assim como outras informagdes de erro e mensagens do tipo broadcast para todos os
moédulos. Um esquema da conexo em “anel” entre 0s objetos pode ser visto na Figura 3-2.

O rétulo que circula pelo anel 16gico contém 5 campos com as seguintes informagGes:

* Station Identity Field: este campo indica qual foi o dltimo odjeto a modificar o

valor dos outros campos da mensagem;

¢ Future time Field: este campo contém a informagio do tempo de simulagZo

requerido pelo objeto indicada no campo Station ldentity Field,

* Status Field este campo indica o status atual o objeto indicada no campo Station

Identity Field. A Erro! Fonte de referéncia nio encontrada. mostra os possiveis

valores que este campo pode assumir;

75

* Instruction Field este campo contém informagdes para todos os objetos, como
iniciar, parar, e pausa na simulacéo;

* Error Field: este campo ¢ utilizado para o tratamento de erros de simulagio, como
por exemplo, quando um objeto ¢ desconectado devido a um problema de
comunicagio na rede.

Objeto A
-t b }
g

©_ |

Objeto C

2 Y ‘}
Légio]

Figura 3-2 - Conexdes em “anel” para monitoramento e controle da simulacgio

Tabela 3-1 - Significado dos valores do campo de status

Valor

do

campo Significado

de

Status

0 Nenhuma estacdo esta utilizando a mensagem.

1 A estacgdo estd verificando 0 status de outras
estagdes
A estacdo estad enviando uma ordem para todas as

2 outras estac¢des para atualizarem o valor do tempo de
simulac¢do para o valor indicado no campo future time
field,

3 A estagd3o encontra-se em um estado de deadlock.

Para estabelecer o “anel” 16gico entre os objefos, é necessdrio ue, a0 implementar os
)}

objetos na forma de objetos CORBA ou WS, seja incluido neles um componente que

76

estabeleca esta conexdo. Uma das formas de se fazer isso ¢ inserir uma estrutura de sockets
em cada objeto. Os sockets sio componentes que implementam conexdes TCP/IP do tipo
cliente-servidor com base nos dados da porta e enderego IP do programa ao qual desejam se
conectar. Assim, cada componente teria um client-socket e um Server-socket embutido em seu
codigo para estabelecer uma conexfo com um objeto e receber pedidos de conexdo de outros
objefos. Desta forma, quando o server-socket receber a mensagem com as informagdes de
monitoramento e controle descritas acima, o objeto CORBA ou WS ird processar as
informagdes contidas nela, alterar suas informagdes (se necessério), utilizar o client-socket
para estabelecer uma conexdo com outro objeto, enviar a mensagem processada, fechar a
conexdo ¢ aguardar até que a mensagem complete uma volta através do “anel” légico e
chegue novamente através do estabelecimento de uma conexdo do server-socker requisitada
pelo objeto que se encontra na posigio anterior no “anel” l6gico e recomece o ciclo.
InformagBes sobre o funcionamento de sockers e redes TCP/IP podem ser encontradas

nos Apéndices A e B.

3.3. Informacdes sobre a hierarquia e permissdes de acesso dos médulos

Ao se iniciar uma simulagdio, deve-se primeiramente fazer uma busca para encontrar
todos os mddulos necessarios para completar o modelo que serd simulado. Para encontrar
estes modulos, deve-se analisar as fransicdes que interligam os objetos da Plataforma de
Simulagdo, pois elas sdo os elementos que unem todo o modelo.

Além disso, como visto na introdugdo, os objetos da Plataforma de Simulagdo tém
uma hierarquia baseada em dominios e Jederagdes que deve ser respeitada. Quando um objeto
¢ implementado na forma de um objeto CORBA ou WS, as informagdes de dominio e
Jederagdo devem ser compiladas juntamente com os dados do modelo. Desta forma, quando o

processamento de uma simulagdo for requisitado, e os objetos necessarios estiverem sendo

77

procurados, as permissdes de acesso estardio contidas nos proprios objetos CORBA ou WS,
estabelecendo o tipo de acesso permitido entre diferentes servigos.

Para que possam ser encontrados os objetos CORBA ou WS, sdo utilizados os Servicos
de diretdrio como object services, naming service ¢ trading service, no caso do CORBA eo
UDDI na caso dos WS. Estes diretorios podem conter restrigdes de acesso e privilégios
definidos para usudrios de um dominio e Jederagdo. Desta forma, pode-se encontrar uma
descricdo dos modelos gerados na Plataforma de Simulagdo em um diretério virtual da rede.
Quando um médulo de interesse ¢ localizado pode-se acessar sua descrigdio de interface, IDLs
no caso de objetos CORBA ¢ WSDL no caso de WS. Com estes documentos, torna-se
possivel acessar o local onde o servico esta implementado e interligar os objetos da
Plataforma de Simulagédo para iniciar o processamento de uma simulacdio.

Os objetos CORBA ou WS, precisam conter um metodo que faga uma busca por
servicos que estejam relacionados a eles, ou seja, cada objefo precisa encontrar quais sfo os
objetos que serdo usados na fusdo de suas interfaces, através de um comando de busca. O
mecanismo de procura e acesso a objetos que compde o modelo com auxilio de servicos de

diretdrios é mostrado na F igura 3-3.

78

Servigo de Diretério

2) Cual objeto contém g

transiciio de fusio? Dominio A Dominio B Dominio C
13_3:];105:'(“ Irlriclaa / | eumentacao Obj. A1 | Documentagao Ob). Bt | Dosumentagie Obj. C1
ido de simufagao -
e 4 | Documentagio Obj. A2 Docurentagaic Olf, B2 Documengprdio Obj. C2

Obi. X Dotumentagsio Obj. A3 Docgmshmgéaoom.ce |
- P §

3) Documentagio Obj. Decumentagdo Ob). G4

Al ' S S R

% \ 5) Obl'A1 procura dbjstos

relaclonades

4) Conexo com R
mplementagéio do Obj. A1
¢ “
> Obj. A1 €} Obj. Al conecta-sen .- ¥
1 Objetos relacionados. ..~

™~
N,

Figura 3-3 - Gerenciamento da hierarquia e acesso a objetos através de servigos de diretérios

3.4. Implementa¢io com WS

A aplicagdo considerada para implementar com WS, ¢ composta por um cliente que
acessa um servico, que por sua vez acessa outro servi¢o. O cliente invoca o servigo através da
chamada a fun¢io primeira, Cujo nome remete ao fato deste ser o primeiro servico
acessado. Esta funcfio recebe um pardmetro de entrada do tipo string e retorna também
uma string. A fungfio primeiro é implementada no servico chamado primeiro. Quando a
fungdio primeiro é executada pelo servigo, este faz uma invocagdio a um outro servigo
chamado segundo. A invocagdo ao servigo segundo é feito através da chamada & sequndo. A
fungdo sequndo também recebe como pardmetro de entrada e retorna uma string, sendo
que a string de entrada consiste da string recebida pelo cliente concatenada com a
string “0O primeiro servico foi executado.”. Quando o servigo segundo recebe
esta string, adiciona a ela mais um pedago com o seguinte texto: “O segundo servicgo
fol executado” Apés adicionar este texto 3 string, esta € retornada ao servigo primeiro,
que por sua vez repassa a string como resultado da funcdo primeiro ao cliente. Quando a

fungéio primeiro retorna no cliente, 0 string recebido é mostrado na tela.

79

A programagio do teste descrito foi desenvolvido com a plataforma Delphi versio 7,
pois esta disponibiliza uma forma relativamente ficil e rapida de se implementar servigos
web, com interface grafica e assistentes para a criago de servidores de servigos e clientes.

Para que um servigo possa ser acessado, é preciso publicé-lo assim como dispor de um
servidor web para que possa ser acessado. Quando se utiliza 0 SOAP baseado em HTTP, ¢
preciso ter um servidor web sendo executado no computador que oferega o servigo, para que
ele possa receber mensagens SOAP no formato HTTP ¢ transmiti-las a0 servico que fard seu
processamento. Este servidor web pode ser programado dentro de um aplicativo com as
proprias ferramentas do Delphi, ou entfio, pode-se utilizar um servidor web disponivel no
mercado. Para testar os servigos desenvolvidos neste exemplo, foi utilizado o servidor web da
Microsoft que estd incluido na distribui¢iio do Windows XP, o Internet Information Server
(1I8) versdo 5.1. Outros servidores como o Apache poderiam ter sido utilizados também.

Quando se inicia um projeto novo no Delphi, existem alguns templates prontos para
diferentes tipos de programas. No caso de WS, existem templates que criam a estrutura de um

WS cliente e servidor. Primeiramente & analisado o cliente.

3.4.1 Programa cliente

O programa cliente consiste de um formuldrio com uma caixa de texto para o
pardmetro que & passado a funcdo primeiro, € um campo de texto para mostrar o resultado
da fungfio na tela, além de um botio que, ao ser clicado, faz a chamada a fungfo primeiro

(Figura 3-4).

80

7 Form1 E]@

Envie uma mensagem ao sevigos:

lf Executar f

Figura 3-4 - Formulirio de programa cliente

Além do formuldrio, o cliente contém duas units (o equivalente ao conceito de
classes em C++) que implementam a interface com o servigo primeiro. A estrutura destas
units s§o criadas automaticamente pelo Delphi, através do assistente de importagdo de
especificagdes de servigos. Este assistente cria a estrutura do codigo necessario para
implementar a interface com servigos baseado no documento WSDL de um servigo. Portanto,
através do documento WSDL do servigo primeiro, é criada uma unit com a descrigdo da
interface com o servigo, € uma fungio que cria um componente capaz de gerar mensagens
SOAP que sdo enviadas ao servidor que esté disponibilizando o servico primeiro. O ¢ddigo

desta unit ¢ mostrado na Figura 3-5 e Figura 3-6:

81

unit Iprimeirol;
interface
uses InvokeRegistry, SOAPHTTPClient, Types, XSBuiltIns;
type
Iprimeiro = interface (IInvokable)
["{C95911108-2135-4DB6-1EB4-E79637D92694} ']

function primeiro{const a: WideString): WideString; stdcall;
end;

Figura 3-5 - Implementaciio da Unit primeiro

82

function GetIprimeiro (UseWSDL: Boolean=System.False; Addr:
string="'; HTTPRIO: THTTPRIO = nil): Iprimeiro;

implementation

function GetIprimeiro (UseWSDL: Boolean; Addr: string; HITPRIO:
THTTPRIO} : Iprimeiro;
const

defWSDL = 'D:\Caioc - documentos\Poli\PMR2550 - Projeto de
Conclusado do Curso II\Projetos\Web
Services\Cliente\l1\Iprimeiro.xml"';

defURL = 'http://localhost/Scripts/wsl.exe/soap/Iprimeiro’;
defSvc = 'Iprimeiroservice!';
defPrt = ‘*IprimeiroPort';
var
RIO: THTTPRIO;
begin
Result := nil;
if (Addr = '") then
begin

1f UseWSDL then
Addr := defWsDL
else
Addr := defURL;
end;
if HTTPRIO = nil! then
RIO := THTTPRIO.Create(nil)
else
RIG := HTTPRIO;
try
Result := (RIO as Iprimeiro);
if UseWSDL then
begin
RIO.WSDLLocation := Addr;
RIO.Service := defSve;
RIO.Port := defPrt;
end else
RIOC.URL := Addr;
finally
if (Result = nil) and {(HTTPRIO = nil) then
RIO.Free;
end;
end;

initialization
Ianegistry.Registerlnterface(TypeInfo(Iprimeiro),

‘urn:primeiroIntf-Iprimeiro', 'utf-8");
Ianegistry.RegisterDefaultSOAPAction(TypeInfo(Iprimeiro),

'urn:primeiroIntf-Iprimeiro#primeiro’);

end.

Figura 3-6 - implementaciio da Unit primeiro - continuacio

83

Pode-se identificar a declaragdo da fungio primeizro na parte da interface desta
unit. O c6digo presente na parte da implementa¢3o serve para criar o componente que ird
elaborar a mensagem SOAP,

A fungo primeiro é chamado no evento OnClick do botdio que se encontra na

unit que descreve o formulario. O codigo do evento OnC1ick é mostrado na Figura 3-7.

procedure TForml.ButtonlClick (Sender: TObject) ;

begin
Memol.Lines.Add(Getlprimeiro.primeiro(Editl.Text));

end;

Figura 3-7 - Evento OnClick do botio Executar

A Figura 3-8 mostra o resultado da execugdo dos servicos primeiro e segundo depois

de apertado o botfio Executar.

7 Form1

Envie uma mensagem ao servigos:

S

Feste

teste O primeito servico foi executado, O segundo
servigo fol executado.

Figura 3-8 - Tela do programa cliente depois que os servicos primeiro e segundo foram
executados

84

3.4.2 O servi¢o primeiro

O servigo primeiro contém a implementagéio da fun¢io primeiro chamada pelo
programa cliente. A estrutura de um servico pode ser criada a partir de um assistente de
servidores de servigos no Delphi. Este assistente gera as seguintes units:

* primeiroIntf: unit com a interface do servico primeiro, com o codigo

mostrado na Figura 3-9:

{ Invokable interface Iprimeiro }
unit primeiroIntf;
interface

uses InvokeRegistry, Types, XSBuiltIns;

type

{ Invokable interfaces must derive from IInvokable }
Iprimeiro = interface (IXnvokable)
['{3549E819—CA6C~44E2-ABDB—79A4991C8354}']

function primeiro{a: string) :string; stdcall;

{ Methods of Invokable interface must not use the default }

{ calling convention; stdcall is recommended }

end;
implementation
initialization

{ Invokable interfaces must be registered }

Ianegistry.RegisterInterface(TypeInfo(Iprimeiro));

end.

Figura 3-9 - c6digo da unit de interface do servigo primeiro

* primeiroImpl:unit com a implementagdo da interface do servigo primeiro, que
contém o codigo listado na Figura 3-10. Note que nesta unit encontra-se a
implementagdio da fungo primeiro e que esta fungfo faz uma chamada a funcfo

segundo, implementada no servigo segundo.

85

type

{ Tprimeiro }
Tprimeiro = class (TInvokableClass, Iprimeiro)
public

function primeiro(a: string) :string; stdcall;

end;

implementation

uses Isegundol;

{ Tprimeiro }

function Tprimeiro.primeiro(a: string): string;

begin
result := GetIsegundo.segundo{a + ' O primeiro servico foi
axecutado. ");
end;
initialization

{ Invokable classes must be registered }
Ianegistry.RegisterInvokableClass(Tprimeiro);

end.

Figura 3-10 - cédigo da unit primeire

® wmllunit com os componentes que recebem mensagens SOAP com pedidos de
clientes, invocam a funcgfo do servico e elaboram mensagens SOAP com o
resultado da execugdo da fungdo. Os componentes deste mddulo podem ser vistos
na Figura 3-11. O componente WSDLHTMLPublishl que pode ser visto na Figura
3-11 serve para publicar 0 documento WSDL do servigo. Além destas units,
existe uma quarta unit que contém a interface necesséria para acessar o servigo
segundo. Novamente foi utilizado o assistente de importagdio de WSDL, porém

desta vez foi utilizado o documento WSDL do servico segundo.

86

7 WebMod... [Z]
| &

HTTPSoapDispatcher!

(:!.)
)
| HTTPSoapPascallnvoker]

ary

WSDLHTMLPublish

Figura 3-11 - Unit com componentes utilizados para servidores de WS

3.4.3 Servico segundo

O servigo segundo ¢ implementado da mesma forma que o servico primeiro, atravéds
do assistente de criagdio de servidores de servicos web. Este servico contém apenas uma
fungdo, a fungdo segundo que recebe a string do servico primeiro e retorna a string
alterada.

O cédigo da implementagdo da fingfio segundo pode ser visto na Figura 3-12:

87

unit segundolmpl;
interface
uses InvokeRegistry, Types, XSBuiltIns, segundolIntf;
type
{ Tsegundo }
Tsegundo = class (TInvokableClass, Isegundo)
public
function segundo(b: string):string; stdcall;
end;
impiementation

{ Tsegundo }

function Tsegundo.segundo (b: string): string:;

begin
result := b + ' O segundo servico foi executado.': end;
initialization

{ Invokable classes must be registered }
Ianegistry.RegisterInvokableClass(Tsegundo);

end.

Figura 3-12 - Cédigo da implementagio da funcio segundo

A implementagfo da fungfio primeiro e segundo so relativamente simples, porém
poderiam incluir logicas complexas que representassem o processamento de RdP por
exemplo. Da mesma forma, os pardmetros de entrada e saida das fungdes primeiro e
segundo sdo0 apenas strings, porém poderiam ser dados de fusio entre transicdes ativas
dos modelos em simulagéo, ou informagdes sobre o dominio e a federagdo da qual o servigo

pertence, no momento em que estiver procurando servicos relacionados a ele.

88

3.5. Implementagio com CORBA

O exemplo desenvolvido utilizando a tecnologia CORBA, também programado com o
Delphi 7, consiste de dois aplicativos servidores, servidor] e servidor2, que contém os objeto
CORBA Primeiro e Segundo, respectivamente. Um terceiro programa cliente, acessa o objeto
Primeiro implementado no servidorl. Este objeto contém um método chamado primeiro,
que recebe como pardmetro de entrada uma string e retorna também uma string ¢como
resultado do processamento. Por sua vez, a fungfio primeiro do servidor! faz uma chamada
ao método segundo do objero segundo implementado no servidor2. Este método, assim
como o método primeiro do servidor!, tem como parimetros de entrada e saida uma
string.

O programa cliente contém um formuldrio com uma caixa de texto na qual o usuario
digita uma string que serd passada como parimetro de entrada da fungfio primeirc. A
chamada ao método primeiro é feito quando o usudrio pressiona o botdo Executar contido
no formulario. Quando a fungdio primeiro recebe este pardmetro, esta repassa-0 como
parametro de entrada para o método segundo, porém antes disso acrescenta a string “O
servigo ‘primeiro’ foi executado” a ela. O método segundo, ao receber o parimetro enviado
pelo método primeiro, acrescenta a ela a string “O servigo ‘segundo’ foi executado” ¢ a
retorna como resultado. Este resultado ¢ recebido pela fungdo primeiro, que o repassa como

resultado para o programa cliente (Figura 3-13).

Slnng Strlng
AP 4 1B

Servidor1 Servidor} Servudom

OnClick() primeiro() segundo(L'
L s \ [y

String String
AN 4 9BP 4 4O A" 4+ B 4G

Figura 3-13 - Parimetros de entrada e saida dos métodos primeiro e segundo

89

3.5.1 Programa cliente

O programa cliente contém apenas uma unit que contém o codigo do formulario
utilizado para que o usudrio entre com o parimetro inicial que € passado a fun¢do primeiro,
fazer sua chamada e mostrar o resultado na tela. O formuldrio pode ser visto na Figura 3-15.

A funglio primeiro é executada ao se clicar no botio Executar. O codigo contido

neste evento pode ser visto na Figura 3-15.

unit Unitil;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
bDialogs, CorbaObij,
StdCtrls, serverl TLB;

type
TForml = class (TForm)
Buttonl: TButton;
Editl: TEdit;
Memol: TMemo;
procedure ButtonlClick(Sender: TObject);

private
{ Private declarations }
public
InfoServer: IPrimeiro;
end;
var

Forml: TFormi;

implementation

{SR *.DFM}

procedure TForml.ButtonlClick(Sender: TObject) ;

begin
InfoServer := TPrimeiroCorbaFactory.CreateInstance(");
Memol.Lines.Add(InfoServer.primeiro(Editl.Text));

end;

end.

Figura 3-14 - Cédigo da unit do formulirio do programa cliente

50

Nota-se que nas declaragbes de importagdo (comando us es) encontra-se uma unit
chamada serverl TLB. Esta unit contém 0 stub do objeto CORBA Primeiro. O codigo
desta unit serd visto quando o programa servidor] for explicado. No codigo do evento
OnCLick do botdo do formulario pode ser visto que um objeto chamado InfoServer &
criado. Este objeto implementa a interface do objeto Primeiro. Além da fungdo primeiro, a
implementagdo desta unit contida no servidorl, cria um factory object. A fungio do Jactory
object ¢ criar o objeto Primeiro para executar a funglio primeiro. A chamada a esta fungdo

pode ser vista na segunda linha de codigo do evento onC1ick.

*F Form1

Figara 3-15 - Formuldrio do programa cliente

No programa cliente, a string recebida ¢ mostrada no formulario. O resultado de

uma execucdo com o pardmetro inicial “Teste” & mostrado na Figura 3-16.

*I" Form1 E”E]

] Teste

[Teste. 0 se:vi;? “Dprimeiro" foi executado,
0 servigo “segundo" foi executado.

Figura 3-16 - Formulirio do programa cliente apés a execu¢dio dos métodos dos objetos CORBA remotos

3.5.2 O programa servidorl

Assim como existe um assistente para criar servidores de WS, o Delphi 7 possui um

assistente para criar objetos CORBA. Este assistente & utilizado para implementar o objeto

91

Primeiro no aplicativo servidor. Foi mencionado que o programa cliente utiliza a unit
servidorl TLB, de onde utiliza as definigbes do srub para acessar o objefo Primeiro. Na
realidade, esta unit € criada no servidorl pelo assistente e consiste na interface do objeto
CORBA que se deseja criar. A interface contém também a descrigio de um object
factory que foi utilizado pelo programa cliente para criar o objeto Primeiro. Além de
fornecer a interface, € através desta unit que o Delphi gera um documento IDL para o objeto,
que pode ser publicado para que outros aplicativos saibam como conectar-se aos Servigos
oferecidos pelo objeto. A unit servi dorl TLB gerada pelo assistente contém apenas as
declaragGes necessarias para criar um objeto. Cabe ao programador decidir quais propriedades
¢ métodos compdem o objeto. Existe um editor no Delphi 7, chamado 7ype Library Editor,
pelo qual, pode-se adicionar estes métodos e propriedades, sem que seja necessério escrever o
codigo de programagio diretamente.

Utilizando o editor, foi adicionado ao objeto Primeiro o método chamado primeiro,
€ seus pardmetros de entrada e safida. Os trechos de codigo que definem a interface do objefo,

0 stub ¢ o skeleton estio mostrados na Figura 3-17.

92

//Interface do objeto Primeiro
IPrimeiro = interface (IDispatch)
['{88D7532D-D957—4107—BBBD—23CDCF0994D6}']
function Primeiro(const Mensagemi: WideString): WideString:
safecall;
end;

//Stub do objeto Primeiro
TPrimeiroStub = class (TCorbaDispatchStub, IPrimeiro)
public
function Primeiro(const Mensageml: WideString): WideString;
safecall;
end;

//Skeleton do objeto Primeiro
TPrimeiroSkeleton = class (TCorbaSkeleton)
private
FIntf: IPrimeiroc;
public
constructor Create{const InstanceName: string; const Impl:
IUnknown}; override;
procedure GetImplementation (out Tmpl: IUnknown); override;
stdcall;
published
procedure Primeiro(const InBuf: IMarshalInBuffer; Cookie:
Pointer);
end;

Figura 3-17 - Interface, stub e skeleton do objeto Primeiro

Entre outros elementos, esta unit também contém a definigdo do object factory
utilizado para criar o objeto Primeiro. QO Delphi contém um tipo especifico para criago destes

objetos e o codigo da Figura 3-18 mostra como utiliza-lo.

TPrimeiroCorbaFactory = class
class function Createlnstance (const InstanceName: string) :
IPrimeiro;
end;

Figura 3-18 - Declaraciio do object fuctory na unit servidor!_TLB

O assistente de criagiio de objetos CORBA cria também uma segunda unit onde €
implementada a interface do objeto Primeiro, chamada impPrimeiro. O tunico cédigo que

precisa ser colocado manualmente nesta unit, ¢ a légica dos métodos que o0 objeto oferece,

93

neste caso, o unico método presente ¢ a fungdio primeiro. O cédigo da unit
impPrimeiro, pode ser visto na Figura 3-19. No final da listagem, encontra-se uma secdo
denominada initialization, que cria o objeto quando o aplicativo ¢ inicializado,
permitindo que este possa ser invocado por programas clientes.

O cddigo que implementa a fungdo primeiro nesta unit, contém na primeira linha
um comando para criar um objefo do tipo Segundo. Na parte da declaragdo, vé-se que o
objeto Segundo tem uma interface do tipo ISegundo, que refere-se ao objeto Segundo que se
encontra no servidor2. Da mesma forma que o programa cliente teve que importar o stub do
objeto Primeiro, o objeto Primeiro, dentro da implementa¢dio do seu método primeiro,
utiliza o stub do objeto Segundo para fazer uma chamada ao método segundo. Portanto,
pode-se notar na parte de importagdes (comando uses) da unit impPrimeiro, a unit
server2 TLB,

Na segunda linha de implementagfio da fungfio primeiro, encontra-se a chamada ao

método segundo do objeto Segundo.

94

unit impPrimeiro;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
ComObj, Stdvcl,
Corbalbj, serverl TLB, serverZ TLB;

type
TPrimeiro = class(TCorbaImplementation, IPrimeiro)
private
{ Private declarations }
public
{ Public declarations }
protected

segundo: ISegundo;
function primeiro(const Mensageml: WideString): WideString;
safecall;
end;

implementation
uses CorbInit;

function TPrimeiro.primeiro (const Mensageml: WideString):
WideString;
begin

segundo := TSegundoCorbaFactory.CreateInstance('');

result := segundo.segundo (Mensageml + '. O servigo "primeiro"
foi executado.');
end;

initialization
TCorbaObjectFactory.Create('PrimeiroFactory', '"Primeiro’,
'IDL:serverl/PrimeiroFactory:1.0', IPrimeiro,
TPrimeiro, iMultilInstance, tmSingleThread);
end.

Figura 3-19 - Codige da unit impPrimeiro

O documento IDL gerado pelo Delphi para o objeto Primeiro pode ser visto na Figura

0-8.

95

module serverl
{

interface IPrimeiro;

interface IPrimeiro
{

wstring Primeiro{in wstring Mensageml);
}:

interface PrimeiroFactory
{
IPrimeiro CreateInstance (in string InstanceName) ;

}s
IN

Figura 3-20 - Documento IDL do objeto Primeiro

3.5.3 Programa servidor2

O aplicativo servidor? é implementado de forma semelhante ao aplicativo servidor]
com a ajuda do assistente de criagiio de objetos CORBA, gerando uma unit de interface para
0 objeto Segundo, que também contém um object factory, o stub e o skeleton, chamada
servidor2 TLB. A unit de implementagfio impSegundo, contém o cddigo mostrado na

Figura 3-21 para implementar a fungdio segundo e o IDL mostrado na Figura 3-22.

96

function TSegundo. segundo (const MensagemZ: WideString):
WideString;
begin

result := Mensagem2 + ' Q servigo "segundo" foi executado. ';
end;

Figura 3-21 -Implementacio da funcio segundo

module server?

{
interface ISegundo;

interface ISegundo

{
wstring Segundo(in wstring Mensagem?) ;

}i

intexrface SegundoFactory
{

ISegundo Createlnstance(in string InstanceName) ;
b

Figura 3-22 - Documento IDL do objeto Segundo

Além dos aplicativos desenvolvidos como teste, para que a interagfo entre os objeros
distribuidos possa ocorrer, ¢ necessario dispor de um ORB que faca a integracfio entre eles. A
Borland, empresa desenvolvedora do Delphi (entre outras palataformas de programagio),
criou um ORB para ser utilizado por aplicativos com tecnologia CORBA. O ORB da Borland
chama-se VisiBroker e a versio utilizada para executar os programas de teste desenvolvidos
foi a versdio 3.3. Além do ORB, o VisiBroker contém alguns objetos CORBA para que os
programas desenvolvidos possam interoperar de forma correta,

O primeiro objeto incluido no VisiBroker é o Smart Agent. O objetivo do Smart Agent
¢ providenciar um servico de diretério para desempenhar a tarefa de encontrar objetos
CORBA para clientes que requisitam algum servico que se encontra em um aplicativo
servidor CORBA (Long, Brian, 2005). Os Smart Agents podem ser encontrados pelo ORB

através de um broadcast pela rede.

97

O segundo objeto incluido no VisiBroker ¢ 0 Object Activation Domain. (OAD) Este
objeto permite que ohjetos CORBA sejam registrados e assim ndo precisam estar sendo
executados para que possam oferecer um servigo a um cliente. Através dos registros contidos
10 OAD, o ORB pode acesss-lo (0 OAD) como se fosse o objero requisitado pelo cliente. Se o
OAD tiver um registro do objeto desejado, este trata de iniciar o aplicativo que contém sua
implementagdo e redirecionar a conexdo do ORB a ¢le. Quando nfio existe um OAD ou um
objeto ndo est4 registrado a nenhum OAD, para que um cliente possa acessa-lo, o aplicativo
que contém sua implementagdo precisa estar sendo executado.

Para que o VisiBroker funcione, é imprescindivel que o computador esteja ligado a
uma rede TCP/IP. A localizagio de objetos s6 & possivel se existir pelo menos um Smart
Agent sendo executado na rede. E importante lembrar que cada computador que estiver
executando programas que utilizem objetos CORBA, precisam também dispor de um ORB ¢
inicia-lo para que possa ocorrer a interoperagéo entre objetos.

Seria possivel utilizar outras implementagdes de ORBs para executar o aplicativo
cliente desenvolvido neste projeto, porém optou-se pelo VisiBroker, por ser o mais renomado
ORB disponivel no mercado ¢ estar incluido na distribuicdo da plataforma Delphi 7 (verso
Enterprise). Na Intemnet existem varios sites com comentarios e /links para downloads de
outras implementagdes do ORB. Uma boa referéneia para o assunto ¢ o site The Jree CORBA
page (2005), que contém /links para distribui¢des gratuitas de ORBs entre outros assuntos
relacionados ao CORBA.,

Poderia-se criar programas que, ao invés de utilizarem stubs e skeletons para trocar
informages entre objetos, fizessem invocagdes dindmicas (DI) por parte do cliente e
acessassem o servidor também de forma dindmica (DSI). Para que isso seja possivel, € preciso
manter um registro de IDLs em um IR, O VisiBroker oferece um servigo deste tipo, chamado

irep e portanto, poder-se-ia criar clientes que acessassem as informagdes sobre a interface do

98

objeto em tempo de execugdo. Desta forma, basta que se tenha uma object reference que é
passada para o IR para acessar o objeto remoto.

Da mesma forma que os servicos gerados utilizando a arquitetura de WS poderiam
representar os modelos em RdP da Plataforma de Simulacdo, os objetos CORBA
desenvolvidos poderiam exercer esta mesma tarefa Assim, um modelo completo seria
executado através da interagdio entre objeros CORBA através de aplicativos ¢ ORBs. Mais
uma vez, o gerenciamento de tempo de simulagdo poderia ser feito inserindo-se sockets na
implementagdo dos objetos, e métodos publicados que recebessem e enviassem informagdes

sobre a conex#o, para criar o “anel” légico entre os objetos.

99

4. Analise dos Resultados e Comparacio dos Métodos

As implementagGes apresentadas no capitulo anterior em CORBA e WS nio visam
apresentar uma solugdo pronta que possa ser integrada diretamente na Plataforma de
Simulagdo, mas sim entender melhor os mecanismos utilizados por cada uma das tecnologias
€ prover um meio de compara-las qualitativamente.

A seguir, € apresentada uma estrutura de como 0s WS ¢ o CORBA poderiam ser
utilizados para a implementagio da Plataforma de Simulagdo. Sio feitos também alguns

comentarios apontando as vantagens e desvantagens de cada método.

4.1. Arquitetura da Plataforma de Simula¢do baseada em WS

A Figura 4-1 mostra como a Plataforma de Simulagdo poderia ser estruturada, caso

utilizasse a tecnologia de WS para gerenciar a comunicagfo entre servigos.

100

e

XML da RdP Servidor Web
| o 1
A Editor de RdP' *dfsmiggl
L |

l Ll

Compilador

1 " te no Compulador Amblente da Reds

Figura 4-1 - Arquitetura da Plataforma de Simulacio baseada em WS

Na estrutura baseada em WS, 2 FMS contém trés elementos basicos que s#o:

* Editor de RdP: este elemento seria um ambiente com interface para que o usuario
criasse modelos baseados em RdP. Estes modelos seriam armazenados na forma de
documentos XML como indicado na Figura 4-1.

¢ Compilador: o compilador, baseado no documento XML gerado pelo editor, gera
um servico € o compila para que possa ser acessado por outros clientes. O
publicador que se encontra dentro do servigo, ¢é utilizado para publicar a interface
do servico para que terceiros possam encontri-lo e saber como acessi-lo, O
documento WSDL do servico pode conter também o elemento documentation,
no qual pode ser inserido o arquivo XML com a descrigio completa da logica da
RdP gerada, caso seja interessante divulgar esta informag#io. Os servigos gerados

pelo compilador devem conter também os sockets utilizados para estabelecer a rede

101

de comunicagio em “anel” entre os servicos durante o processo de simulagdo, para
que possa haver um controle do processamento e do avango do tempo de
simulagéo.

* Processador de simulagio; este elemento serve para iniciar o processamento de um

servio. Ele invoca o primeiro servigo que inicia a simulagdo do modelo. A partir
desta inicializaggo, as interfaces entre os servicos fazem com que 0s objetos gue
contém os modelos interajam através de suas interfaces.

G UDDI oferece um servigo de diretério, no qual as informagdes sobre servigos
criados possam ser encontrados e utilizados pelas pessoas com acesso as suas informacdes.
Quando um desenvolvedor pretende utilizar um servico pré-existente para interoperar com um
modelo que esteja criando, este deve conhecer sua interface ¢, portanto o seu documento
WSDL.

Para que servicos remotos possam acessar servigos disponibilizados localmente, é
preciso fornecer um servidor para o protocolo HTTP. Este servidor pode ser um servidor ja
existente no mercado, como o IS (que foi utilizado para executar 0s servicos de teste
desenvolvidos neste projeto), o Apache ou algum outro. Estes servidores precisam conter
suporte a extensGes de servicos. No caso de WS isto significa que os servidores precisam
saber reconhecer uma mensagem com cabegalho SOAP e encaminha-la a0 servico correto.
Além disso, pode-se desenvolver um servidor dedicado a tarefa de disponibilizar os servicos
na rede. Criar um servidor HTTP e fazé-lo funcionar com SOAP ¢ uma tarefa relativamente
simples e pode ser feita no Delphi com algumas poucas linhas de cddigo. Dusyukov (2005),
explica como ¢ possivel criar servidores no Delphi com os componentes Indy, que tenham

suporte ao SOAP.

4.2. Modelo de arquitetura para a Plataforma de Simulagiio baseada em CORBA

102

A Figura 4-2, mostra como a Plataforma de Simulagdo poderia ser estruturada, caso

utilizasse a tecnologia CORBA para gerenciar a comunicagio entre objetos.

FMS _l -
| XML da RdP P il IR J
/
Registrador
\ EdtordeRAP | e Opietos Impl. de
I Obieto
\
[I— "-' OA Seivar Skelston
1\ Compe?adar] ms‘::r:_la;:::) | l ‘_
[L | I
| 7| —
l ORB
E
"gﬂg }/ DL do Objeto
1
Server Siwleton |
C*Gl’llstlhs—l‘
L [« da Rede

Figura 4-2 - Arquitetura da Plataforma de Simulaciio baseada em CORBA

Neste modelo, existem quatro elementos contidos na FMS, descritos a seguir:

¢ Editor de RdP: este elemento seria um ambiente com interface para que o usuario
criasse modelos baseados em RdP. Estes modelos seriam armazenados na forma de
documentos XML como indicado na Figura 4-2.

¢ Compilador. o compilador tem a tarefa de interpretar os documentos XML e
transforma-los em uma implementacfo de um objeto CORBA. A implementagio
gerada teria um skeleton para processar chamadas de objetos externos, € stubs para
acessar outros objetos. Os stubs e skeletons sdo utilizados para descrever a
interface das fusGes de transigdes entre objetos, entre outras fungdes, como enviar
informagdes sobre as conexdes entre os objetos para controlar e gerenciar o tempo
de simulago. A Figura 4-3 mostra que quando um objeto é criado pelo

compilador, este inclui os sockeis necessarios para estabelecer a rede de

103

gerenciamento de tempo entre os objetos. Além da implementacio dos objetos, o
compilador gera também um documento IDL que descreve as interfaces do objeto.

* Registrador de Objetos: os objefos criados pelo compilador precisam ser

registrados junto a um OA e suas IDLs podem ser registradas em um IR. O registro
do objeto junto a um OA, serve para que outros objefos possam encontra-lo e
acessa-lo, enquanto que o registro da IDL no IR, serve para que outros objetos
possam ser criados com stubs de acesso aos seus métodos. Ou seja, um
desenvolvedor pode criar um outro chjeto com uma RdP que faz a fusdo com as
transi¢des oferecidas pelo primeiro objeto.

* Processador de Simulagfio: o processador de simulagfio é um cliente que acessa o

primeiro objeto de um modelo que deve ser simulado. Desta forma, o processador

invoca este objeto ¢ faz um pedido para que a simulagdo seja iniciada.

I 3_

Impl. Do 2 = T

CObsEkay J a8: ﬁ Impl. Do

- 8 l Objeto *C”
Server Skeleton
Client Stubs Server Skeleton
o Client Stubs
impl. Do

ockets

Objeto “B”

Server Skelston

L Client Stubs

L

Figura 4-3 - Objetos CORBA gerados pelo compilador com a estrutura de sockets embutida

Além da FMS, a arquitetura da Plataforma de Simulagdo contém um ORB para que a
comunicagdo entre os objelos possa ser efetuada. Na Figura 4-2, pode-se notar que, quando o
processador de simulacdo inicia um objeto, este contém interfaces com outros objeros

remotos. Para acessa-los, € necessério ter um ORB sendo executado e dispor de um OA na

rede para encontrar o objero desejado.

104

5. Comentirios finais e Conclusdes

Com base nos estudos realizados, verificou-se que o fato da Plataforma de Simulacdo
ser um sistema distribuido e modular, fez com que esta tenha uma estrutura similar aos
aplicativos orientados a objetos ou entio aplicativos orientados a servicos, 0 que permite que
sejam empregadas as tecnologias CORBA ¢ WS, respectivamente,

O trabalho confirmou que ambas as tecnologias sdo capazes de implementar e executar
0 programa de teste proposto satisfatoriamente. Isto significa que a principio, ambas poderiam
ser utilizadas como base para implementar a integracdo das partes da Plataforma de
Simulacdo. Existem, porém, caracteristicas distintas entre os dois métodos que podem ser
decisivas na escolha entre uma das tecnologias.

O primeiro aspecto refere-se a interoperabilidade alcangada por cada um dos métodos,
Em CORBA, a ligagfo entre o programa que implementa um determinado objeto e 0 ORB, e
alguns objefos que 0 ORB acessa & tight-coupled, o que significa dizer que o programa e o
ORB tém uma forte interagdo, relacionada a linguagem de programagéio utilizada para o
desenvolvimento dos odjetos e 0 ORB. Isto pode limitar a utilizagio de objetos em diferentes
plataformas. Além disso, a implementagdo do ORB em si est4 ligada a um tipo de sistema
operacional para o qual foi desenvolvido.

Por outro lado, os WS sdo totalmente baseados em documentos XML, o que faz com
que esta tecnologia seja totalmente independente do sistema de hardware e software utilizados
na implementagdo de servigos. Assim, caso se deseje projetar uma plataforma capaz de ser

utilizada com diferentes sistemas, € permitir que terceiros elaborem suas proprias solugdes

105

para interagir com a Plataforma de Simulagdo, a tecnologia baseada em WS ¢ mais apropriada
do que 0 CORBA.

O segundo aspecto refere-se ao desempenho das duas tecnologias. Estudos mostraram
que 2 diferenca de tempo de execugio e resposta entre o CORBA ¢ WS pode chegar a uma
relagdo de 400:1 (Elfwing, 2002). Isto significa que se o tempo de execugio for um pardmetro
Importante para a escolha do método utilizado na Plataforma de Simulagdo, deve-se abrir mao
da interoperabilidade oferecida pelos WS ¢ optar pelo CORBA e mesmo com a identificagsio
dos pontos criticos ¢ alteragdes efetuadas na forma com que as mensagens SOAP sio passadas
pelo protocolo HTTP, a diferenca ainda continua alta, de 7:1.

Qutros aspectos que podem ser mencionados referem-se a facilidade de programar e
compilar objetos e servigos utilizando cada um dos métodos, Muitas das diferencas entre o
processo de desenvolvimento com CORBA e WS dependem de qual linguagem de
programagdo esti sendo utilizada. Caso seja utilizada uma estrutura de Plataforma de
Simulagdo baseado nas solugdes apresentadas no tépico de analise de resultados, nota-se que é
preciso desenvolver um conversor de arquivos XML (que representam as RdP) em codigo de
programacéo a ser compilado por algum compilador, para disponibilizar os servigos ¢ objetos.
A dificuldade de desenvolver este conversor para cada um dos métodos & relativamente a
mesma, porém, outras configuragdes que precisam ser feitas apds a compilagdo, como
registrar odjetos ¢ disponibilizé-los para terceiros, no caso do CORBA, mostram-s¢ muito
dependentes do tipo e vers3o de ORB que esta sendo utilizado. Os WS dependem do tipo de
servidor web que esta sendo utilizado para disponibilizar servigos na rede, porém o registro
neste caso € relativamente menos trabalhoso. Além disso, pelo fato de todas as especificacBes
¢ acoplamentos entre partes remotas serem feitas através de documentos XML no caso dos

WS, nfo ¢ preciso desenvolver um interpretador € compilador para cada linguagem de

106
programaco diferente que se queira utilizar, pois 0 XML & exatamente o mesmo para

qualquer sistema operacional e linguagem de programagio.

107

APENDICE A - UMA VISAO GERAL DE REDES TCP/IP

O texto a seguir, sdo trechos adaptados de Lorenzo (2005).

Atualmente, dentre os varios protocolos de comunicagio de alto nivel entre m4quinas
que existem, o mais difundido é o protocolo conhecido por TCP/IP. Este ¢ um conjunto de
protocolos originalmente desenvolvido pela Universidade da Califérnia em Berkeley, sob
contrato para o Departamento de Defesa dos EUA, e tornou-se o conjunto de protocolos
padrdo das redes locais e remotas, suplantando conjuntos de protocolos bancados por grandes
empresas do mercado, como a IBM (com o protocolo SNA), Microsofi (com o protocolo
NetBIOS/NetBEUI) e Novell (com o protocolo /PX/SPX).

Mesmo antes do popularizagio da Internet, o TCP/IP j& era o protocolo obrigatorio
para grandes redes, formadas por produtos de muitos fornecedores diferentes, ¢ havia sido
escolhido pela Microsoft como o protocolo preferencial para o seu sistema operacional
Windows NT, devido as limitagdes técnicas do sen proprio conjunto de protocolos, o
NetBEUI.

Todos os softwares de redes sdo baseados em alguma arquitetura de camadas, e
normalmente nos refere-se a um grupo de protocolos criado para funcionar em conjunto como
uma pilha de protocolos (em inglés, protocol stack, por exemplo “the TCP/IP stack™). O
termo "pilha" ¢ utitizado porque os protocolos de uma dada camada normalmente interagem

somente com os protocolos das camadas imediatamente superior e inferior.

108

1 O modelo de pilha de 4 camadas do TCP/IP

O TCP/IP foi desenhado segundo uma arquitetura de pilha, onde diversas camadas de
software interagem somente com as camadas imediatamente acima e abaixo., H4 diversas
semelhancas com o modelo conceitual OS] da International Standarization Organization
(ISO), mas o TCP/IP ¢ anterior & formalizagio deste modelo €, portanto possui algumas
diferengas.

OSI é um modelo conceitual, e nfio a arquitetura de wma implementagéio real de
protocolos de rede. Mesmo os protocolos definidos como padrio oficial pela ISO, a entidade
criadora do modelo OSI, néio foram projetados e construidos segundo este modelo,

O nome TCP/IP vem dos nomes dos protocolos mais utilizados desta pilha, o Internet
Protocol (IP) e o Transmission Control Protocol (TCP). Mas a pilha TCP/IP possui ainda
outros protocolos, dos quais serdo apresentados aqui apenas os mais importantes,
indispens4veis para que o TCP e o0 IP desempenhem corretamente as suas fungdes.

Visto superficialmente, o TCP/IP possui 4 camadas, desde os programas de rede até o

meio fisico que carrega os sinais elétricos até 0 seu destino (Tabela A-1):

Tabela A-1 - Camada de protocolos TCP/IP

Camada Protocolo
4 | Aplicacdo (Servigo) |FTP, TELNET, LPD, HTTP, SMTP/PQE3, NFS, etc.
3 | Transporte TCP, UDP
2 |Rede P
1 | Enlace Ethernet, PPP, SLIP

109

Além das camadas propriamente ditas, tem-se uma série de dispositivos, que realizam

a interface entre as camadas (Tabela A-2):

Tabela A-2 - Componentes auxiliares para a utilizacfio dos protecolos

Camada Componentes

Aplicagdo / Transporte DNS, Sockets
Rede / Enlace ARP, DHCP

1.1 Descri¢fio das fungbes de cada camada TCP/IP

Os protocolos de enlace t&m a fungiio de fazer com que informagdes sejam
transmitidas de um computador para outro em uma mesma midia de acesso compartilhado
(também chamada de rede local) ou em uma ligagéio ponto-a-ponto (ex: modem).. A
preocupacio destes protocolos é permitir 0 uso do meio fisico que conecta os computadores
na rede ¢ fazer com que os bytes enviados por uma maquina cheguem a uma outra maquina
diretamente desde que haja uma conexfio direta entre eles,

J& o protocolo de rede, o (IP), & responsével por fazer com que as informacgoes
enviadas por uma maquina cheguem a outras méquinas mesmo que eles estejam em redes
fisicamente distintas, ou seja, mesmo que ndo exista uma conexdo direta entre eles. Como o
proprio nome (Internet) diz, o IP realiza a conex3o entre redes. E ¢ ele quem assegura a
capacidade da rede TCP/IP de se "reconfigurar" quando uma parte da rede est4 fora do ar,
procurando um caminho (rota) alternativo para a comunicagio.

O objetivo dos protocolos de transporte ¢ diferente dos protocolos que se encontram
em um nivel inferior da pilha. Ao invés de conectar dois equipamentos, estes t&m a tarefa de
conectar dois programas. Pode-se assim ter em um mesmo computador vérios programas
trabalhando com a rede simultaneamente, por exemplo, um web browser e um leitor de e-

mail. Da mesma forma, um mesmo computador pode estar executando 20 mesmo tempo um

110

web server e um servidor POE3. Os protocolos de transporte (UDP e TCP) atribuem a cada
programa um numero de porta, que ¢ anexado a cada pacote de mensagens de modo que o
TCP/IP saiba para qual programa entregar cada mensagem recebida pela rede.

Finalmente os protocolos de aplicagdo sdo especificos para cada programa que faz uso
da rede. Desta forma existe um protocolo para a conversaggo entre um web server e um web
browser (HTTP), um protocolo para a conversagdo entre um cliente Telnef € um servidor
(daemon) Telnet, e assim por diante. Cada aplicagio de rede tem o sey préprio protocolo de
comunicagdo, que por sua vez utiliza-se dos protocolos das camadas mais baixas para poder
atingir o seu destino.

Pela Tabela A-2, nota-se que existem dois protocolos de transporte no TCP/IP. O
primeiro € o UDP, um protocolo que trabalha com datagramas, que sdo mensagens com um
comprimento maximo pré-fixado e Cuja entrega ndo ¢ garantida. Caso a rede esteja
congestionada, um datagrama pode ser perdido e o UDP nio informa os programas desta
ocorréncia. Outra possibilidade & que 0 congestionamento em uma rota da rede possa fazer
com que os pacotes cheguem ao seu destino em uma ordem diferente daquela em que foram
enviados. O UDP é um protocolo que trabalha sem estabelecer conexdes entre os programas
que estio se comunicando.

Ja o TCP é um protocolo orientado a conexdo. Ele permite que sejam enviadas
mensagens de qualquer tamanho e cuida de quebré-las em pacotes que possam ser enviados
pela rede. Ele também ¢ responsavel por rearranjar os pacotes quando chegam ao destino e de
retransmitir qualquer pacote que seja perdido pela rede, de modo que a mensagem entregue,

seja idéntica a mensagem enviada originalmente.

111

1.1.1 Descricéio de Dispositivos de redes TCP/IP

O Domain Name Service (DNS) é um dispositivo que sera visto com maiores detalhes
mais adiante ¢ fornece 0s nomes logicos da Internet como um todo ou de qualquer rede
TCP/IP isolada.

Temos ainda o ARP que é um dispositivo que realiza o mapeamento entre os
enderegos TCP/IP e os enderegos Ethernet, de modo que os pacotes possam atingir o seu
destino em uma rede local (pois quem efetivamente entrega os pacotes de informagdes na rede
local € o Ethernet, nio o TCP ou o IP).

Existem também os componentes que ficam na interface entre os niveis 3 e 4 e entre os
niveis 1 e 2.

O sockets é uma API" para a escrita de programas que trocam mensagens utilizando o
TCP/IP. Ele fornece fungBes para testar um endereco de rede, abrir uma conexdo TCP, enviar
datagramas UDP e esperar por mensagens da rede.

Em uma rede TCP/IP, cada maquina (ou melhor, cada placa de rede, caso a maquina
possua mais do que uma) possui um enderego numérico formado por 4 octetos (4 bytes),
geralmente escritos na forma w.Xyz Além deste endereco IP, cada maquina possii uma
mascara de rede (network mask ou subnet mask oy netmask), que é um numero do mesmo
tipo, mas com a restrigiio de que ele deve comegar por uma seqiiéncia continua de bits em 1,
seguida por uma seqiiéncia continua de bits em zero. Oy seja, a méscara de rede pode ser um
ntmero como 11111111.11111111.00000000.00000000 (255.255.0.0), mas nunca um nimero
como 11111111.11111111.00000111.00000000 (255.255.7.0).

A madscara de rede serve para quebrar um endereco IP em um endereco de rede e um

enderego de 4ost”. Todos os com utadores em uma mesma rede local (fisicamente falando,
P

1 API: Application Programmer Interface é uma interface que permite que um programa utilize recursos
oferecidos por um outro programa, fazendo-se uma chamada a este programa, ou sendo chamado por ele.

112

por exemplo, um mesmo barramento Ltherner) devem ter 0 mesmo enderego de rede, ¢ cada
um deve ter um endereco de /ost diferente. Tomando-se o enderego IP como um todo, cada
computador em uma rede TCP/IP (inclusive em toda a Internet) possui um endereco IP tnico

¢ exclusivo.

1.1.2 Enderecamento e roeteamento

O InterNIC controla todos os enderegos IP em uso ou livres na Internet, para evitar
duplicagdes, e reserva certas faixas de enderecos chamadas de enderegos privativos para
serem usados em redes que ndo irfio se conectar diretamente a Internet.

Quando o IP recebe um pacote para ser enviado pela rede, ele quebra o enderego
destino utilizado a m4scara de rede do computador ¢ compara o enderego de rede de destino
com o enderego de rede dele mesmo. Se os enderecos de rede forem iguais, isto significa que
a mensagem serd enviada para um outro computador na mesma rede local, neste caso o pacote
€ repassado para o protocolo de enlace apropriado (em geral o Ethernet). Se os enderegos
forem diferentes, o IP envia o pacote para o default gateway, que é o equipamento que fornece
a conexdo da rede local com outras redes, Este equipamento pode ser um roteador® dedicado
ou pode ser um servidor com multiplas placas de rede, e se encarrega de encaminhar o pacote
para a rede local onde est4 o endereco IP do destino.

E importante que o enderego IP do default gateway esteja na mesma subner que o da
maquina sendo configurada, caso contrario ela ndo terd como enviar pacotes para o default

gateway e assim s6 podera se comunicar com outros hosts na mesma subner.

" Host: servidor de dados ou programas

'3 Roteador: dispositivo de comunicagéo que interliga duas ou mais redes e determina o melhor caminho a ser
seguido por um pacote de mensagem para chegar ao seu destino, através de informag@es sobre as redes e
algoritmos que decidem pelo melhor caminho.

113

Resumindo, uma méquina qualquer em uma rede TCP/IP deve ser configurada com
pelo menos estes trés parAmetros: o seu endereco IP exclusivo, a sua mdscara de rede (que
deve ser a mesma utilizada pelas demais maquinas na mesma LAN Myeo enderego IP do

default gateway.

1.1.3 Como se processa a comunicaciio em uma rede TCP/IP,

Supenha que o 4ost com o endereco IP 172.16,1.101 deseje enviar um pacote para o
enderego 172.16.2.102. Caso a mdscara de rede seja 255.255.0.0, fazendo-se a operacioc AND
bindrio do enderego fonte serd 172.16.0.0, ¢ 0 AND bindrio do enderego destino serd
172.16.0.0, indicando que ambos possuem o mesmo enderego de rede e, portanto estio
diretamente conectados no nivel de enlace.

Neste caso, o nivel IP envia um pacote ARP pela rede Etherner para identificar qual o
enderego Kthernet do host cujo IP € 172.16.2.2. Este pacote € enviado como um broadcast®’,
de modo que todos os Aosts conectados no mesmo segmento Ethernet receberdo o pacote, e o
host configurado para o enderego desejado ird responder ao pacote ARP indicando o seu
endereco Ethernet. Assim o IP pode montar o pacote Ethernet corretamente enderecado e
envia-lo ao seu destino.

Agora suponha que a mdscara de rede ndo fosse 255.255.0.0, mas sim 255.255.255.0.
Neste caso, os enderegos de rede da origem ¢ destino seriam, respectivamente, 172.16.1.0 e
172.16.2.0. Como os enderecos de rede sio diferentes, isto significa que ndo se tem
conectividade direta (no nivel de enlace) entre os dois Aosts, portanto o pacote devera ser

entregue por intermédio de um roreador.

" LAN. Local Area Network é uma rede de computadores que se encontra em uma area especifica, como uma
rede doméstica, ou uma rede em um escritorio. A topologia deste tipo de rede define sua estrutura fisica,

"* Broadcast: um pacote de informagdes enviado para todos os pontos de uma rede

114

Digamos que o defaulr gateway seja 172.16.1.1 (observe que o enderego de rede do
defauit gateway & 172. 16.1.0, 0 mesmo do /ost de origem). Entdo o host ird enviar um pacote
ARP pela rede para descobrir o endereco Ethernet do default gateway, e enviara o pacote para
este,

Ao receber o pacote, o defaulr gatewaqy verificard que o enderego IP de destino ¢ o IP
de outro /ost diferente do dele, ¢ ira processar qual o enderego de rede do destino. Pode ser
que o pacote esteja enderegado para uma rede local com a qual 0 default gateway tenha uma
conexdo direta, ou pode ser que o default gateway tenha que direcionar o pacote para um
outro roteador mais préximo do destino final. De qualquer forma, o defaulr gateway segue o
mesmo processo de gerar o enderego de rede utilizando a netmask, e em seguida enviar um
pacote ARP pedindo o enderego Ethernet do proximo Aost a receber o pacote. A diferenga &
que um rofeador ndo tem um defaulr gateway, mas sim uma tabela de roteamento, que diz
quais enderegos de rede podem ser alcangados por quais roteadores.

Este exemplo considerou apenas a comunicagiio entre dois equipamentos, niio entre
dois programas, ficando, portanto apenas no nivel de rede da pilha TCP/IP. O proximo nivel
tem um processamento simples e funciona da seguinte forma: o IP verifica que tipo de pacote
foi recebido (TCP, UDP ou outro) e repassa o pacote para o protocolo apropriado.

O protocolo de transporte ir entfio verificar o namero de porta contido no pacote ¢
qual programa est utilizando ela. Este programa sera notificado da chegada de um bacote, ¢
serd responsabilidade dele decodificar e utilizar de alguma forma as informagdes contidas no

pacote,

115

APENDICE B - COMO FUNCIONAM OS SOCKETS

Os sockets foram desenvolvidos com o intuito de estabelecer um eio de se comunicar
entre dois PCs que seja similar ao método utilizado para manipulagdo de arquivos, como:
abrir, ler, escrever e fechar (Colibri, Felix John, 2005).

A principal diferenga entre um sistema de arquivo ¢ uma rede de comunicagio é que
um sistema de arquivos estd sempre disponivel e pronto para ser acessado em uma maquina,
enquanto que em uma rede de comunicagiio é preciso primeiramente encontrar o computador
que se deseja acessar e verificar se esta disponivel.

A comunicagiio entre computadores através de sockets segue o modelo Cliente
Servidor onde: servidor ¢ iniciado e aguarda por clientes quando um cliente deseja comunicar-
se, deve procurar por um servidor, iniciar a comunicagfo, que se prolonga até o instante em
que o cliente e/ou o servidor resolvem interrompé-la.

Portanto, tem-se sockets que tém a funcionalidade de clientes e de servidores em uma
conexdo. Como o protocolo utilizado pelo sockets é o TCP/IP, a identificagdo do servidor &
feita através de um numero de IP. Quando um cliente que deseja enviar uma informagfio a um
servidor, este precisa procura-lo na rede e, ao encontra-lo, este precisa informar que tipo de
operagdo deseja realizar; enviar um e-mail, fazer o download de uma pagina, fazer o
download de um arquivo, etc. As operacBes de operagdes oferecidas pelo servidor sio
chamadas servigos. Cada servigo é associado a um niimero de porta, assim, o padrdo para, por
exemplo, enviar uma pégina da Internet é a porta 80 e para enviar e-mail a porta de niimero
110. O niimero da porta esta associado a um tipo de protocolo que especifica o formato ¢ a

estrutura da comunicagfio. Ao se criar um novo protocolo, pode-se associar um numero de

116

porta que ainda ndo tenha nenhum protocolo associado, como serd o caso nos programas de

exemplo documentados mais adiante.

1.2 Estrutura dos sockets

Basicamente, um socket & uma estrutura de dado que contém quatro propriedades:

enderego local;

¢ porta local;

enderego remoto;

¢ norta remota.

Para iniciar a comunicagio entre dois computadores, precisa-se criar uma estrutura de
socket através de um programa e preencher os dados de enderego ¢ porta Jocal. Para que a
conexéo seja feita, um cliente precisa localizar um servidor que esteja disponivel no nimero
de porta especificado. Quando o servidor & encontrado na rede, as outras propriedades da
estrutura do socket sdo preenchidas e o servigo pode ser oferecido pelo servidor. Para ilustrar
este processo, a Figura B-1 mostra de forma esquematica as etapas para a conexdo via sockets
entre dois computadores.

Um servidor tem a capacidade de conectar-se a varios clientes simultaneamente,
portanto as propriedades das conexdes com os clientes nio podem ser armazenadas em apenas
uma esfrutura de socker. Para viabilizar isto, a cada nova conexdo com um cliente, o servidor
automaticamente cria uma nova instincia de um socket, que ir4 se dedicar aquela conexdo.
Com isso, as conexdes estabelecidas sio executadas em uma estrutura dedicada e a parte,
enquanto o servidor continua livre e pode aguardar por outros pedidos de conexdo de clientes.

Este processo est4 ilustrado na Figura B-2.

O servidor & iniciado com o enderego IP; 43.3.1.0

Rede
TCP/IP
% |_ Bocket
Enderaco Porta
4310 b41a Local
% ? 7 Remoia
Sanvittor
Um cliente & iniciado no IP: 3.22.0.1 e tenta conectar-se ao servidor,
Rede
TCRIP
Socket L R\J Sockat
P—————— —T
za 7 bocal 43319 sars Lecal
43310 878 Rawmon % % ?) Remols
Chents Servidor
O servidor recebe o pedido de conexfio e os dados de ambos os sockets sdio completados
Rede
TCP/P
] S,
M) 4 N Somn
Endereqo Ports L M? D Enderego Pora
J22014 ? Local 43310 S6T4 Local
e] SO g e e
; Cliente

Sarvudor

Figura B-1 - Conexiio entre sockets cliente ¢ wm socket servidor

117

118

O servidor utiliza um ServerSocksf para receber os pedidos de conexfio de clientes. Cada hovo cliente
inicialmente conecta-se ao ServerSocket.

Rede %@

TCPAP

Ciiente

Client l N S
Server
Socket Socket J'

O servidor cria um novo ClientServerSocket para onde direciona a conex3o com o cliente, assim o
ServerSocket fica livre para receber novos pedidos de conexdo,

. &

Cliente TCPAP

Servidor
Client

Server
S Sacket

Il

ServerClisnt
Sockst

Cada novo cliente usa sey préprio ClientServerSocket.

& P

Servidor
Cliont Rede Sarver
Socket TCPIP Socket

ServerClient
Socket

ServerCliant
@ Socket

Cliente

Client
Socket Cliento ServerCliont
. Sockat
Hent
Sacket

Figura B-2 - Representaciio da relacio de milltiplos clientes para um servidor

119

1 Conexdes blocking e non-blocking

O pacote Indy utilize-se de sockets do tipo blocking (ou synchronous). Este tipo de
sockets funciona de forma muito semelhante ao processo de leitura e escrito em um arquivo
comum. Quando deseja-se ler ou escrever dados em uma conexdo, utiliza-se fungdes com
Read ¢ Write, que somente retornam quando a operagfo tiver sido completada e impedem com
iss0 que o restante do programa seja processado neste meio tempo. A primeira vista, pode
parecer que frabalhar com conexdes do tipo blocking traz desvantagens por inserir gargalos de
processamento no programa, mas este nfo ¢ o caso. Um exemplo pode ser dado imaginando-
se uma situagdo em um servidor precisa ler dados de uma conexiio enviados por um cliente,
através de um socket do tipo blocking. Como o servidor nfo sabe quando os dados irdo
chegar, este inicia a rotina de leitura de dados da CONExao € espera até o momento em que as
informagdes enviadas pelo cliente cheguem e possam ser lidas, bloqueando o processamento
do restante do programa até o termino da leitura, Como serd visto adiante, pode-se utilizar
recursos de processamento paralelo neste caso, fazendo com que a leitura dos dados da
conexdo ocorra simultaneamente com a execugdo do restante do programa, evitando o
problema de bloqueio.

Os sockets surgiram primeiramente nos sistemas operacionais Unix, onde era possivel
executar processamentos paralelos em programas. Porém, quando os sockets foram adaptados
a0 sistema operacional Windows pela primeira vez, surgiu um problema, pois este sistema
operacional néo era capaz de executar processamento paralelo. Para solucionar este problema,
o método de funcionamento dos sockets teve que ser adaptado, surgindo ent3o o conceito de
sockets non-Blocking, que adequavam-se a sistemas operacionais que nfio permitiam
processamento paralelo, e ainda assim conseguiam evitar o problema do bloqueio da execucdo

do restante do programa

120

Isto foi conseguido mudando-se o conceito inicial dos sockets que trabalhavam de uma
forma seqiiencial, para um modelo de sockets baseada em eventos, onde as rotinas de leituras,
escrita, abertura e fechamento eram executadas no disparo de eventos associados a estas
agdes. Com o surgimento do Win32'°, esta limitag@o foi retirada, porém o conceito de sockets
non-Blocking prevaleceu e atualmente muitas implementagBes de sockets permitem criar
conexdes tanto do tipo dlocking, quanto non-blocking.

Nos sistemas operacionais Unix e Linux, o nico modo de conexdes de sockets que
existe sdo do tipo blocking, motivo pelo qual os componentes /ndy seguem esta linha de
programagdo, fato que viabiliza que o pacote seja multi-plataformas.

Abaixo estfio relacionadas as vantagens de cada um dos dois tipos de conexdo:

1.3 Vantagens das conexdes blocking:

* Ficil de programar: ¢ relativamente facil programar com conexdes do tipo
blocking, pois todo o codigo referente & conexdo pode ficar agrupado em um tnico
local, seguindo uma seqiiéncia em séria desde sua abertura até o fechamento.

* Ficil exportar para sistemas Unix e Linux: como o Unix e Linux utilizam este
padrdo de conexdo, torna-se relativamente facil escrever codigo de programagio
com portabilidade entre estes sistemas operacionais e implementar esta logica
nestas plataformas.

* Funcionam bem com processamento paralelo: como o cddigo de conexdes do
tipo blocking é seqiiencial e fica encapsulado em um tmico local, fica relativamente

fécil utiliza-lo com processamento paralelo.

' Win32: Sistema operacional da Microsoft a partir da versio Windows 95, que utiliza instrugBes de 32 bits e
passou também a suportar processamento paralelo.

121

eliminando as vantagens oferecidas por este recurso. Neste projeto, por serem utilizados os

componentes /ndy, serdo utilizadas conexdes do tipo blocking com tecursos de mudti-

threading.

A seguir apresenta-se as principais vantagens em se utilizar threading em sockets com

conexdes do tipo blocking:

L]

Priorizagdio — E possivel ajustar prioridades para diferentes threads de conexdes,
permitindo que certas rotinas tenham mais oy menos tempo de processamento.
Encapsulamento — Cada conex3o fica encapsulada em uma seqiiéncia de
instrugdes diminuindo a chance de diferentes conexdes interferirem umas nas
outras.

Seguranga - Cada thread pode ter diferentes atributos de seguranga.

Miiltiples processadores — Threading automaticamente far uso das vantagens em
maquinas com miltiplos processadores.

Concorréncia — Threading promove um processamento concorrente, sem o qual
cada conexdo teria que ser manipulada por um tnico processo. Para que isso
funcione, cada tarefa precisa ser dividida em pequenas tarefas que podem ser
executadas rapidamente. Se por acaso alguma tarefa demorar muito a ser
executada, todas as outras tarefas ficarfio paradas. Com threading, cada tarefa pode
ser programada como uma seqiiéncia completa e fechada de instrucdes e a divisdo

do tempo de processamento no processador fica a cargo do sistema operacional.

122

BIBLIOGRAFIA

BERALDI, R.; NIGRO, L. “Distributed Simulation of Timed; Petri Nets: A Modular
Approach Using Actors and Time; Warp” IEEE Concurrency, vol. 7, no.4, 52-62, 1999

BEZNOSOV, KONSTSNTIN, FLINN, DONALD J., HARTMAN, BRET, KAWAMOTO,
SHIRLEY. Introduction to Web services and their security. University of British Columbia,
Vancouver, Canada. Information Security Technical Report, 2005.

BUSSLER, CHRISTOPH, FENSEL, DIETER. The Web Service Modeling Framework,
Division of Mathematics and Computer Science, Faculty of Science, Vrije Universiteit
Amsterdam Neederland, 2002,

CENTERO, MARTHA A. An Introduction to Simulation Modeling; Department of Industrial
& System Engineering, College of Engineering and Design, Florida International University,
USA 1996.

CORBANET; Demonstrating ORB Interworking through WWW Integration. Disponivel em
<http.//archive.dstc.edu.au/events/dse96/demos/flyers/corbanet-flyer. html>; Acesso em 12 de
Junho de 2005.

DOSYUKOV, 8. Distributed Information System. From A to Z. — Borland Developers
Network, 2003. Disponivel em <http:/bdn.borland.com/article/0.1410,30025.00. html>;
Acesso em 02 de Abril de 2005.

ELFWING, ROBERT; LUNDBERG, LARS; PAULSSON ULF, Performance of SOAP in
Web Service Environment Compared to CORBA; Department of Software Engineering and
Computer Science, Nlekinge Institute of Technology, SE-372 25 Ronneby, Sweden, 2002,

ERL, T. Server-Oriented Architecture: A Field Guide to Integrating XML and Web Services;
Prentice Hall PTR; First Edition; 2004.

FARREL, MICHAEL JR., LUBLINSKY, BORIS, Web Services the implementation Iceberg,
eAl Journal - Digital Magazine (<http://www.bijonline.com/Default.asp>); June 2002;

FENSEL, D., BUSSLER, C. The Web Service Modeling Framekork WSMF. Division of
Mathematics and Computer Science, Faculty of Science, Vrije Universiteit Amsterdam (v,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Publishet at the Electronic
Commerce Research and Application, 2002.

FREE CORBA PAGE; Free ORBs; Disponivel em:
<http://adams. patriot.net/~tvalesky/freecorba.html>; Acesso em 22 de Novembro de 2005,

123

HARVEY, M. Multi-threading - the Delphi ~ way; Disponivel em:
<http://www.pergolesi.demon.co.tﬂc/prog/threads/ToC.html#Introduction>; 2000. Acesso em
05/07/2005.

HO, Y.C,, CAO, X R. Pertubation Analysis of Discrete Event Dynamic Systems, Kluwer Ac.
Publishers, 1991,

HOWER, CHAD Z. Why Indy? <http://www.atozed.com/indy/Texts/Whylndy.iwp> Acesso
em: 10/01/2005

INDY PROJECT, THE The Indy Project; <http.//www.indyproject.org> Acesso em:
18/09/2004

JUNQUEIRA, FABRICIO, MIYAGL, PAULO E., VILLANI, EMILIA. A Petri Net Based
Platform for Distributed Modeling and Simulation of Productive Systems; Escola Politécnica
da USP, 2005. Trabalho apresentado no Emerging Technologies and
Factory Automation (ETFA), 2005.

LEE, W. B, LAU, H. C. W., Multi-agent modeling of dispersed manufacturing networks,
Pergamon, Expert Systems with Applications, No. 16, pp. 297-306, 1999.

LORENZA, FERNANDO, Arquitetura de Redes TCP/IP, Disponivel em:
<http://www.lozano. eti.br/>. Acesso em: 22/09/2005

IBM, Web Services Architecture Overview, Setembro de 2000; Disponivel em <http://www-
128.ibm.com/developerworks/web/library/w—ovr/index.html> . Acesso em 5 de Outubro de
2005.

LONG, BRIAN; CORBA and Deiphi; Disponivel em:
<http://www.blong.com/Conferences/DCon99/Corba/Corba.htm# Toc462140981>; Acesso
em 22 de Novembro de 2005.

LOOSELY COUPLED WEBSITE, Glossary. Disponivel em
<http://100selycoupled.com/glossary/loose%2000upling>. Acesso em 12 de Agosto de 2005.

MOORE, KEDRA. E; BRENNAN, JOHN E. Alpha/Sim Simultion Software Alphatec, Inc.
Burlington, MA 018003-4562, USA, 1996,

MURATA, T., Petri Nets - Properties, Analysis and Applications, Proceedings of the IEEE,
vol.77, no. 4, 1989,

MURPHY, NIALL, Introduction to CORBA for Embedded Systems, Disponivel em
<http://www.embedded.com/98/9810fe2 htm> Acesso 15 de Maio de 2005.

OASIS UDD], About UDDI, Disponivel em <http.//'www.uddi.org/about html>: Acesso em
15 de Outubro de 2005,

124

OASIS UDDI, UDDI Spec Technical Committee Draft, Dated 20041019; Disponivel em
<http:/fuddi.org/pubs/uddi-v3.0.2-20041019.htm>; Acesso em 15 de Qutubro de 2005.

OMG; Catalog of OMG IDL / Language Mappings Specifications. Disponivel em:

<http://www.omg.org/technology/documents/id2x_spec_cataloghtm>. Acesso em 12 de
Junho de 2005.

PIDD, MICHAEL The Management School, Lancaster University, UK. 1994.

PILHOFER, F. Design and Implementation of Portable Object Adapters, Johann Wolfgang
Goethe — Universitat. Frankfurt am Main, Alem#nha. 23 de Junho de 1999. Disponivel em
<http://www.fpx.de/fp/Uni/Diplom/diplom.html>. Acesso em 15 de Setembro de 2005.

SANZ, R., ALONSO, M., CORBA for control systems, Pergamon, Annual Reviews in
Control, No. 25, pp. 169-181, 2001.

SEILA, ANDREW F. Introduction to Simulation, Terry College of Business, The University
of Gedrgia, USA, 1995.

SHI, Y., GREGORY, M., International manufacturing networks — to develop global
competitive capabilities, Journal of Operations Management, Vol. 1, No. 16, pp. 195-214,
1998.

SUN MICROSYSTEMS, Introduction to CORBA, Disponivel em
<http:/fjava.sun.com/developer/onlineTraining/corba/corba. html>. Acesso 20 de Junho de
2005.

VINOSKI, S.; CORBA: Integrating Diverse Applications within Distributed Heterogeneous
Environments. IONA Technologies, Inc., 60 Aberdeen Ave. Cambrige, MA USA, 1996.

W3C - WORLD WIDE WEB CONSORCIUS, Web Interface Definition Language, 22 de
Setembro de 1997, Disponivel em <http//www.w3.org/TR/NOTE-widl-970922> Acesso 12
de Junho de 2005.

W3C - WORLD WIDE WEB CONSORCIUS, WSDL 2.0 http Binding Namespace, 30 de
Setembro de 2003, Disponivel em <http://www.w3.0rg/2006/01/wsdl/http> Acesso 15 de
Outubro de 2005.

W3C - WORLD WIDE WEB CONSORCIUS, SOAP Specifications Version 1.2, 24 de Junho
de 2003, Disponivel em <http://www.w3.org/TR/soap/> Acesso 12 de Junho de 2005.

W3C - WORLD WIDE WEB CONSORCIUS, Web Services Architecture, 11 de Fevereiro de
2003, Disponivel em <http:.//www.w3.org/TR/ws/arch/> Acesso 12 de Junho de 2005.

WEBOPEDIA, OpenDoc; Disponivel em
<http://www.webopedia.com/TERM/O/OpenDoc.html>; Acesso 26 de Outobro de 2005,

125

WIKIPEDIA A ENCICLOPEDIA LIVRE, Framework, Disponivel em
<http://pt.wikipedia.org/\adki/Framework>; Acesso em 01/11/2005.

