
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

Allan Henrique Kamimura

Study and Implementation of an Embedded Image
Processing System in Autonomous Inspection Robots

São Carlos

2024

Allan Henrique Kamimura

Study and Implementation of an Embedded Image
Processing System in Autonomous Inspection Robots

Monografia apresentada ao Curso de
Engenharia Aeronáutica, da Escola de
Engenharia de São Carlos da Universidade
de São Paulo, como parte dos requisitos
para obtenção do título de Engenheiro
Aeronáutico.

Advisor: Prof. Dr. Glauco Augusto de Paula
Caurin

São Carlos
2024

I AUTHORIZE THE TOTAL OR PARTIAL REPRODUCTION OF THIS WORK,
THROUGH ANY CONVENTIONAL OR ELECTRONIC MEANS, FOR STUDY AND
RESEARCH PURPOSES, SINCE THE SOURCE IS CITED.

 Catalog card prepared by Patron Service at “Prof. Dr. Sergio
Rodrigues Fontes” Library at EESC/USP

 Kamimura, Allan Henrique

K15s Study and implementation of an embedded image

processing system in autonomous inspection robots / Allan

Henrique Kamimura ; Supervisor Glauco Augusto de Paula

Caurin. -- São Carlos, 2024.

 Monograph Bachelor Final Thesis (Undergraduate in

Aeronautics Engineering) -- São Carlos School of

Engineering, at University of São Paulo, 2024.

 1. Computer vision. 2. Embedded systems.

3. Object detection. 4. Depth estimation. 5. Real time

processing. 6. Edge computing. 7. Robotics automation.

8. Autonomous navigation. I. Title.

Elena Luzia Palloni Gonçalves – CRB 8/4464

FOLHA DE APROVAÇÃO
Approval sheet

Candidato /Student: Allan Henrique Kamimura

Título do TCC / Title : Study and Implementation of an Embedded Image Processing

System in Auíonomous Inspection Robots

Data de defesa /Date: 19/12/2024

Comissão Julgadora /Examining committee

Professor Titular Glauco Augusto de Paula Caurin

Instituição / Affiliation: EESC - SAA

Henrique Borges Garcia

Instituição/Affiliation: TORADEX

Tiago Fontes de Oliva Costa

Instituição / Affiliaíion: EMBRAER

Resultado fresult

A^TCA/C^CO

>ro\/acío

71 Q ^ÇÍO

Presidente da Banca / Chairofthe Examining Committee:

^
Professor Titulàr^lauco Augusto de Paula Caurin

(assihatura / signature)

To my mother
whose faith never faltered,
even when mine did

ACKNOWLEDGEMENTS

Thanks to my advisor, Professor Glauco Augusto de Paula Caurin, for providing
me with a direction during my internship and later on my graduation thesis. Your insights
and encouragement have been invaluable in shaping my academic journey. Thank you for
inspiring me to write this work.

I also extend my gratitude to Toradex, the company where I had the privilege of
working as an intern, for providing the hardware and resources. Your support during my
internship made it possible to explore and implement the ideas presented in this thesis and
I am sincerely thankful for the opportunity to work with such a cutting-edge company.

Lastly, I want to thank Mr. Laurence Moroney, The "AI Guy" who inspired me to
take the first steps into deep learning and TensorFlow. Thanks for making AI accessible
for everyone, with easy to digest MOOC lessons and interesting code examples.

“What we observe is not nature in itself but nature
exposed to our method of questioning.”

Werner Heisenberg

“The higher we soar, the smaller we appear
to those who cannot fly.”

Friedrich Nietzsche

“Toda a sabedoria humana não vale
um par de botas curtas.”

Machado de Assis

ABSTRACT

Kamimura, A. H. Study and Implementation of an Embedded Image Processing
System in Autonomous Inspection Robots. 2024. 54 p. Monograph (Conclusion
Course Paper) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2024.

This study presents an end-to-end analysis of computer vision models applied to embedded
scenarios that can be used for further research. Includes a brief background on commonly
used models and comparison metrics. One of the main challenges in deploying such models
is that in most cases they are not intended for embedded devices, as they are optimized for
accuracy with no concern for runtime speed, memory or model complexity. To address this
issue, the trade-off of using strategies such as model quantization and prediction delegates
is explored in detail. As a result, we obtain a hybrid object detection and monocular depth
estimation solution using a mobilenet-v2 backbone with an inference time of 0.019 s per
frame, capable of real-time processing, running on the verdin i.MX8M Plus NPU.
Code is available at: https://github.com/AllanKamimura/ComputerVisionPipelines

Keywords: Computer Vision, Embedded Systems, Object Detection, Depth Estimation,
Real-Time Processing, Edge Computing, Robotics Automation, Autonomous Navigation

https://github.com/AllanKamimura/ComputerVisionPipelines

RESUMO

Kamimura, A. H. Estudo e implementação de sistema embarcado de
processamento de imagens em robôs autônomos de inspeção. 2024. 54 p.
Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2024.

Este estudo apresenta uma análise abrangente de modelos de visão computacional aplicados
a cenários embarcados, que podem ser utilizados para pesquisas futuras. Inclui um breve
contexto com os modelos mais comumente utilizados e métricas de comparação. Um dos
principais desafios na implementação de tais modelos é que, na maioria dos casos, eles
não são projetados para dispositivos embarcados, pois são otimizados para precisão, sem
preocupação com a velocidade de execução, memória ou complexidade do modelo. Para
abordar essa questão, o estudo explora em detalhes o equilíbrio entre as estratégias de
quantização de modelos e delegação de predição. Como resultado, obtemos uma solução
híbrida de detecção de objetos e estimativa de profundidade monocular utilizando uma
arquitetura backbone mobilenet-v2, com um tempo de inferência de 0,008 segundos por
quadro, capaz de processamento em tempo real, operando na NPU do Verdin i.MX8M Plus.
Código disponível em: https://github.com/AllanKamimura/ComputerVisionPipelines

Palavras-chave: Visão Computacional, Sistemas Embarcados, Detecção de Objetos,
Estimativa de Profundidade, Processamento em Tempo Real, Computação de Borda,
Automação Robótica, Navegação Autônoma

https://github.com/AllanKamimura/ComputerVisionPipelines

LIST OF FIGURES

Figure 1 – Verdin i.MX8M Plus setup . 30
Figure 2 – NVidia Jetson Nano setup . 30
Figure 3 – Raspberry Pi 4 setup . 31
Figure 4 – Data Pipeline (Source: Author) . 32
Figure 5 – Comparison of Original and Predicted Images (Source: Author) 37
Figure 6 – Bounding Boxes Prediction (Source: SSD: Single Shot MultiBox Detector) 38
Figure 7 – The SSD model Architecture (Source: Author) 39
Figure 8 – The YOLO model Architecture (Source: Author) 40
Figure 9 – Prediction without NMS (Source: Author) 41
Figure 10 – Comparison of Original and Predicted Images (Source: Author) 43
Figure 11 – Illustration of the U-Net Architecture (Source: Towards Data Science) . 44
Figure 12 – NPU Overview (Source: NXP i.MX8M PLUS Product Page) 45
Figure 13 – TIM-VX Custom Operator . 47
Figure 14 – Evaluation Test Result . 50

https://arxiv.org/pdf/1512.02325
https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS

LIST OF TABLES

Table 1 – Comparison of Embedded Devices . 29
Table 2 – Comparison of Embedded Devices for Future Works 29
Table 3 – Embedded Devices with Base OS and Runtime Information 30
Table 4 – Comparison of Object Detection Models 34
Table 5 – Comparison of Depth Estimation Models 34
Table 6 – Models Benchmark . 49
Table 7 – Selected Model Setup . 50

LIST OF ABBREVIATIONS AND ACRONYMS

UAV Unmanned Aerial Vehicles

AI Artificial Inteligence

YOLO You Only Look Once

SSD Single Shot MultiBox Detector

OS Operational System

GPU Graphical Processing Unit

CPU Central Processing Unit

NPU Neural Processing Unit

TPU Tensor Processing Unit

FPGA Field-Programmable Gate Array

IoU Intersection Over Union

RMSE Root Mean Squared Error

mAP Mean Average Precision

FlOps Floating Point Operations

MAC Multiply-Accumulate Operations

FPS Frames per Second

LIDAR Light Detection and Ranging

CNN Convolutional Neural Network

NMS Non Max Suppression

RGB Red, Green, Blue

BGR Blue, Green, Red

CONTENTS

1 INTRODUCTION . 25
1.1 Motivation . 25
1.2 Objectives . 26
1.3 Chapters Overview . 26

2 RELATED WORK . 27

3 METHODOLOGY . 29
3.1 Hardware . 29
3.2 Setup and Configuration . 29
3.3 Metrics and Models Descriptors . 32
3.4 Models and Datasets . 34
3.4.1 Object Detection . 34
3.4.2 Depth Estimation . 34

4 OBJECT DETECTION . 37
4.1 Introduction . 37
4.2 Context . 37
4.3 Implementation Overview . 37
4.4 Non-Max Suppression (NMS) . 40

5 MONOCULAR DEPTH ESTIMATION 43
5.1 Introduction . 43
5.2 Context . 43
5.3 Implementation Overview . 43

6 EDGE RUNTIME . 45
6.1 Introduction . 45
6.2 Context . 45
6.3 Quantization . 46
6.4 Delegates . 46

7 RESULTS . 49

8 CONCLUSION . 51

REFERENCES . 53

25

1 INTRODUCTION

This chapter presents the motivation and objectives of this study, highlighting the
relevance of the topic discussed and providing the foundation for the theoretical framework
and experimental investigations discussed in the subsequent chapters.

1.1 Motivation

Recent developments in the fields of embedded systems and AI has led to significant
breakthroughs in robotics automation, particularly in sectors requiring high-level computer
vision tasks, such as infrastructure maintenance, quality control, and agriculture monitoring.
Autonomous inspection robots equipped with advanced sensing capabilities have become
increasingly valuable for performing repetitive, hazardous, or other repetitive tasks that
challenge human operators. Some examples include autonomous UAVs used for power line
inspections, border control, and crop analysis; mobile ground robots that assess industrial
machinery or inspect construction sites; and underwater robots that monitor submerged
infrastructure such as oil rigs and pipelines. The versatility of these robots relies heavily on
their capacity to interpret their surroundings accurately and on their mobility to navigate
the environment in real-time.

While algorithms for object detection and depth estimation are well-established
in the industry they are frequently deployed on standard computing platforms. How-
ever, implementing them on embedded devices presents unique challenges because unlike
conventional PCs, which offer virtually unlimited computational power, memory space,
high-end GPUs, and full access to cloud resources; embedded devices are typically com-
pact, lightweight, and optimized for energy efficiency. This constrained design makes them
ideal for mobile and autonomous systems like inspection robots but imposes significant
limitations on the development of real time applications that rely on computation-heavy
models.

Moreover, embedded devices are designed to work autonomously in real-world
environments where consistent internet connectivity may not be available, so they cannot
offload high-processing tasks to the cloud. Furthermore, to lessen the down-time spent
on battery recharging on swaps, energy efficiency should also be a key aspect. As a
result, models that are easily deployed on a PC require significant modification to run on
embedded devices, including quantization, pruning, and optimization techniques aimed at
reducing model size and computational requirements.

26

1.2 Objectives

The aim of this thesis is to assess the feasibility of implementing object detection
and depth estimation algorithms on embedded ARM-based systems, which are often used
in low-power autonomous devices like drones and small robots. The end goal is to achieve
real-time inference for these computer vision tasks on constrained hardware, by applying
optimization techniques such as model quantization and reduction. By ensuring these
models can operate within the limited processing power and energy budgets of embedded
devices, this research will make complex perception capabilities accessible for autonomous
inspection applications.

Additionally, to evaluate the system’s practical application, a second objective is
to test the embedded solution in a real-life inspection scenario with a camera mounted on
top of a robot to capture its surroundings. This setup will simulate operational conditions,
such as varying lighting, distance to objects, and complex backgrounds, that are typical
in industrial or field inspection tasks. The aim is to confirm the system’s suitability for
deployment in operational inspection tasks where autonomous decision-making is essential.

1.3 Chapters Overview

The structure of this thesis is as follows: first, the theory behind object detection
and depth estimation models and a review of related work; then, a detailed explanation
of the adaptation process for embedded systems, covering model selection, optimization
strategies, and the implementation. Finally, the proposed solution will be validated
through experiments in simulated inspection scenarios, assessing the trade-offs between
performance, accuracy, and computational efficiency. The results aim to advance the
feasibility of deploying complex AI models on embedded devices, making autonomous
inspection robots more effective and resilient in real-world applications.

27

2 RELATED WORK

Early work on embedded computer vision used handcrafted FPGA and classical
algorithms to achieve near real-time performance in tasks such as Stereo Vision (Honegger;
al., 2014), Background Subtraction (Khan; al., 2016), and Object Detection (Zhao; al.,
2016). More recently, significant advances have been made by leveraging the use of more
widely available hardware, such as embedded GPUs (Otterness, 2017; Wofk et al., 2019),
mobile GPUs (Howard; al., 2017; Yang et al., 2018), and TPUs (Sun; al., 2021; Mohammadi;
al., 2023; Alqahtani1; al., 2024). These works explore some of the adaptations required to
run neural networks on embedded devices; however, they do not include the use of NPUs.

The study by (Khalili; al., 2024) proposes the use of an object detection model to
plan the path of the robot manipulator. While this brings focus to real-world application
development, it lacks the trade-off analysis of different hardware and algorithms. On the
other hand, (Alqahtani1; al., 2024) provides thorough benchmarking, but without focusing
on real-world applications. With this in mind, the approach of this work is to find a middle
ground.

29

3 METHODOLOGY

This chapter describes the approach and techniques employed to conduct this study.
It begins with the initial selection of devices and their setup for testing, followed by an
explanation of the models used and the metrics applied to evaluate them. Finally, it details
how the comparison results were analysed to draw meaningful conclusions.

3.1 Hardware

For the choice of hardware to be tested and compared, the criteria were to find a
group of devices that are readily available in the market, affordable, and with close release
dates. Table 1 shows the overall characteristics of each device.

Table 1 – Comparison of Embedded Devices

Device Release Year Price (USD) RAM Camera
Raspberry Pi 4 2020 55 4 GB PiCamera 5MP
Verdin i.MX8M Plus 2020 300 4 GB AR0521 CSI 5MP
NVidia Jetson Nano 2019 99 4 GB AC340 Warrior 1080p

During this market research, another group of devices showed great potential, but
was discarded because it was either too expensive for the scope of this work or was not
readily available. However, this can be used for reference for future works.

Table 2 – Comparison of Embedded Devices for Future Works

Device Release Year Price (USD) RAM (GB)
Raspberry Pi 5 + AI Kit 2024 150 8
Aquila AM69 2024 1100 32
NVIDIA Jetson Orin Nano Super 2023 249 8

3.2 Setup and Configuration

Table 3 shows the basic setup for each device. The reason for NVidia Jetson using
a different runtime is that NVidia don’t support LiteRT nor TFLite. Also, using their
proprietary runtime TensorRT requires changes to the underlying structure of the model,
which, in turn, would require the models to be re-evaluated.

30

Table 3 – Embedded Devices with Base OS and Runtime Information

Device Base OS Linux Kernel Runtime
Raspberry Pi 4 Raspbian OS Bookworm 6.6 ai-edge-litert-
Verdin i.MX8M Plus Torizon OS 6.8.0 5.15 ai-edge-litert
NVidia Jetson Nano JetPack 4.6.1 4.9 tensorflow

Figure 1 – Verdin i.MX8M Plus setup

Figure 2 – NVidia Jetson Nano setup

31

Figure 3 – Raspberry Pi 4 setup

The image processing pipeline uses GStreamer1 to capture the images, process it
and display the results on a screen. The image pre/post processing are handled by openCV
2 library. For the inference runtime, a custom build of LiteRT3 and of TensorFlow 4 are
used. Figure 4 summarizes this pipeline.

It can be divided into 2 parts: the first part is a queue that accumulates frames
from the camera and transforms the raw pixels into images and serves it to an appsink.
When the new frame signal is triggered, the image goes through the prediction pipeline,
and the resulting post-processed output is shown on a display with a waylandsink.

1 https://gstreamer.freedesktop.org
2 https://opencv.org/
3 https://github.com/AllanKamimura/LiteRT/blob/main/gen/litert_pip/python3/dist/ai_-

edge_litert_nightly-1.0.1.dev20241024-cp311-cp311-linux_aarch64.whl
4 https://developer.download.nvidia.com/compute/redist/jp/v461/tensorflow/

https://gstreamer.freedesktop.org/
https://opencv.org/
https://github.com/AllanKamimura/LiteRT/blob/main/gen/litert_pip/python3/dist/ai_edge_litert_nightly-1.0.1.dev20241024-cp311-cp311-linux_aarch64.whl
https://github.com/AllanKamimura/LiteRT/blob/main/gen/litert_pip/python3/dist/ai_edge_litert_nightly-1.0.1.dev20241024-cp311-cp311-linux_aarch64.whl
https://developer.download.nvidia.com/compute/redist/jp/v461/tensorflow/

32

Figure 4 – Data Pipeline (Source: Author)

The benchmarks are taken under good illumination and with a batch size of 1.
After a 1 minute warm-up with the model running, the time is measured as the average of
400 predictions.

The complete scripts related to this benchmark can be found at the author’s GitHub
repository Computer Vision Pipelines5

3.3 Metrics and Models Descriptors

When comparing two models or hardware, it’s common to use a set of metrics and
descriptors. Some authors are ambiguous about what they are measuring, most notably
the FPS and inference FPS. This section tries to bring some clarity to this underlying
difference as well as give a short background about other commonly used metrics.

• Inference Time: This measures how long it takes for the model to run inference at
a single frame input. Lower is better.

• Inference FPS: The mathematical reciprocal of the inference time. It measures
how many frames the model can process in a single second. Higher is better.

• Latency: Also referred to as total time, this is a more practical time measurement,
as it takes into account the entire end-to-end workflow: camera capture, image
conversion, image pre-processing, the inference, post-processing, and image display.
Lower is better.

5 https://github.com/AllanKamimura/ComputerVisionPipelines

https://github.com/AllanKamimura/ComputerVisionPipelines

33

• FPS: The reciprocal of the latency. The actual number of frames we are going to
see on the screen. Higher is better.

• MAC: It measures the computational complexity of a model. It’s the counting of
multiple accumulated operations and is used to compare model efficiency. After the
pruning and quantization steps, this number will be higher than the actual value.
Higher is more complex.

• FlOps: It measures the computational complexity of a model. It’s the counting of
floating-point operations and is used to compare model efficiency. After pruning, this
number will be higher than the actual value; and after quantization steps, the model
will be in integer format. Higher is more complex.

• Params: The total count of parameters (weights and biases) in the model. After the
pruning and quantization steps, this number will be higher than the actual value.
Higher is more complex.

• Delta1%: This metric evaluates the accuracy of depth estimation models by measur-
ing the percentage of pixels where the predicted depth is within a specific threshold
(commonly 1.25 times) of the ground truth depth. A higher Delta1 percentage indi-
cates that a greater proportion of predictions are "close enough" to the actual depth.
Higher is better.

• RMSE: This metric is used when the output of the model is an array of continuous
values, which is usually the case for depth estimation tasks. [Add mathematical
definition]. Lower is better.

• IoU: This metric measures the overlap between the predicted output and the ground
truth. It is commonly used in segmentation and object detection tasks to evaluate
the accuracy of predicted masks or boxes. The IoU score ranges from 0 to 1, where 1
indicates perfect overlap.

• mAP: This metric evaluates the performance of object detection models by calculat-
ing the average precision for each class and then taking the mean across all classes.
It considers various thresholds of IoU. Higher is better.

• Precision: This metric measures the proportion of true positive predictions among
all positive predictions (both true and false). It is used in classification and object
detection tasks. Higher is better.

• Recall (Sensitivity): This metric measures the proportion of true positive pre-
dictions among all actual positive cases. It indicates how well the model identifies
positive cases. Higher is better.

34

• Average Precision: This metric calculates the area under the precision-recall curve
for a specific class. It is used in object detection to evaluate performance per class
before computing mAP. Higher is better.

• Input size: In the context of computer vision, it’s the resolution of the image.
Usually, more detailed images increase the model’s performance at the cost of higher
inference time and model complexity.

3.4 Models and Datasets

The datasets are collections of data used to train and validate machine learning
models.

The models are quantized in INT8 format. Details about the quantization process
are in the runtime section (6), while details about the models implementation are in section
(5.3).

3.4.1 Object Detection

Table 4 – Comparison of Object Detection Models

Dataset Model Name Input Size GigaMACS mAP
COCO Yolov_11n 640x640 3.241 0.538
COCO Yolov_5nu 640x640 3.862 0.421
COCO Yolov_11s 320x320 2.683 0.516
COCO Yolov_5su 320x320 2.999 0.486
COCO ssd_mobilenet_v2 300x300 0.728 0.222

• COCO (Lin et al., 2014): It’s the most widely used dataset for object detection and
segmentation. It consists of 2.5 million labeled images classified into 91 classes of
common objects. In this work, the COCO2017 is used.

• ImageNet Large Scale (Russakovsky et al., 2015): It was the first large-scale
standardized dataset of 14,197,122 images labeled into 1,000 classes. Most of the
early successful CNN models started from this competition .

3.4.2 Depth Estimation

Table 5 – Comparison of Depth Estimation Models

Dataset Model Name Input Size GigaMACs Delta1%
NYUDepthV2 Fast Depth 224x224 0.3664 77.1
NYUDepthV2 MiDaS-small (v2.1) 192x256 3.446 86.67

35

• KITTI-Depth (Zhou et al., 2018): It’s a dataset of 94,000 LIDAR point clouds
that were matched with stereo vision depth estimation .

• NYU-Depth V2 (Silberman et al., 2012): It’s a dataset of 2,347 images with depth
estimation and semantic segmentation collected using a Kinect .

37

4 OBJECT DETECTION

4.1 Introduction

This chapter begins with a brief contextualization of object detection. Then it
presents a general idea about the SSD and YOLO model architectures. Lastly, it presents
the NMS algorithm.

4.2 Context

Object Detection is a computer vision task that involves identifying and locating
objects within an image. The localization information is usually a bounding box around the
object, while the classification is a predefined class label. Commonly used in applications
like surveillance, autonomous vehicles, robotics, and augmented reality, object detection
relies on convolutional neural networks (CNNs) to recognize and distinguish objects under
various conditions and environments. 5 shows an example:

Figure 5 – Comparison of Original and Predicted Images (Source: Author)

The object detection models usually consists of three parts:

• Backbone Model: A general-purpose feature extract model with no specific task

• Bounding Box: A localization + classification model

• Box Fusion: Usually a NMS algorithm

4.3 Implementation Overview

The core idea of the object detection model is to use a cell based grid classification.
First it defines a default bounding box centered on each cell and tries to encapsulate the

38

object by offsetting the size of each box. Then the object inside this box is classified into
predefined categories.

Figure 6 – Bounding Boxes Prediction (Source: SSD: Single Shot MultiBox Detector)

The figure 6 illustrates this idea. The output of the backbone model, the feature
map, condense semantic information in a lower spatial resolution, which is used for the
classification and box estimation.

(Liu et al., 2016) suggests SSD, a box detector that uses the feature maps at
different stages of the backbone, and, thus with different resolutions, the estimation can
"naturally" handle objects of different sizes.

https://arxiv.org/pdf/1512.02325

39

Figure 7 – The SSD model Architecture (Source: Author)

Figure 7 shows this: from top to down, we can see 5 branches of feature maps with
different resolutions. At the end, the box predictions at different scales are concatenated
into a final prediction. This same process is repeated for the class prediction. This multi
staged prediction was later reproduced by other object detection algorithms such as the
YOLO.

Also in (Liu et al., 2016), the backbone model used is the VGG-16 (Simonyan;
Zisserman, 2015), but in this work, we use the implementation from (Yu et al., 2020) that
uses the mobilenetv2 (Howard et al., 2017) as the backbone for a better computational
performance.

The YOLO (Redmon et al., 2016) model uses a similar approach, but with one
key difference, both the label classification and the box regression comes from the same
convolutional layer, as illustrated on figure 8. From top to down, there is 3 main branches
of different resolutions, the final layer concatenates all the predictions into a final output.
It has the advantage of sharing weights, which makes the overall model more compact,
light-weighted and faster.

40

Figure 8 – The YOLO model Architecture (Source: Author)

In this work we are using the Ultralytics (Jocher, 2020) (Jocher; Qiu, 2024) imple-
mentation of the algorithm. While those models are open source, there’s actually little
information available about the design concepts and decisions.

4.4 Non-Max Suppression (NMS)

The use of the cell grid and the different scales can lead to redundant bounding
boxes. The NMS is a post-processing technique that merges boxes with the same class and
a high IoU into a single box that represents the object, thus avoiding duplicated boxes.
The figure 9 shows an example of object detection with redundant boxes. By eliminating
duplicates, NMS enhances both the performance and the interpretability of the outputs,
which are crucial for autonomous robots.

41

Figure 9 – Prediction without NMS (Source: Author)

Algorithm 1 Non-Maximum Suppression
Require: List of boxes B, scores S, and thresholds TIoU , TS

Ensure: Selected boxes
1: Sort B by S in descending order
2: Remove from B Where S < TS

3: Initialize R← ∅
4: Initialize Q← ∅
5: while B is not empty do
6: M ← box with highest score in B
7: Add M to R
8: Add sM to Q
9: Remove M from B

10: for each b ∈ B do
11: if IoU(M, b) > TIoU then
12: Remove b from B
13: end if
14: end for
15: end while
16: return R, Q

The pseudo-code 1 shows the vanilla NMS algorithm, which is O(n2) with the
number of boxes above the score threshold.

43

5 MONOCULAR DEPTH ESTIMATION

5.1 Introduction

This chapter gives a short context about the monocular depth estimation task. It
also explains, in the high level, how this problem is modeled as a deep learning task.

5.2 Context

Depth perception is a key aspect of robotic tasks such as localization, mapping and
obstacle detection and it typically relies on stereo-vision or external sensors like LiDAR and
structured light. Those solutions, however, may be prohibitively expensive, both monetary
and computationally, for large scale embedded projects. On the other hand, Monocular
Depth Estimation predicts depth information from just a single image. This poses quite a
challenge, for the problem is highly under-constrained and the model must rely on subtle
visual cues and prior context. Figure 10 shows an example of a depth prediction: the
brighter colors indicates that the object is closer to the camera.

Figure 10 – Comparison of Original and Predicted Images (Source: Author)

5.3 Implementation Overview

Depth estimation is an image-to-image task in which the output is a pixel map
where the pixel values are the predicted distances. Those type of models usually use
the encoder-decoder architecture: the model progressively reduces the spatial dimensions
(downsampling) to extract meaningful features while recovering spatial resolution (upsam-
pling) to make pixel-level predictions. The higher dimension direct connection is often
called a skip connection. Figure 11 illustrates the U-net (Ronneberger; Fischer; Brox, 2015)
architecture, which is the mostly widely know encoder-decoder model.

44

Figure 11 – Illustration of the U-Net Architecture (Source: Towards Data Science)

From left to right, the encoder extracts high-level spatial and contextual features
from the input image, translating the spatial information into feature channels. The
decoder reconstructs the depth map from the encoder’s feature representation. The arrows
are called skip connections and indicates that the latter layers have access to both spatial
information and high level features.

(Ranftl et al., 2019) proposes the MiDaS1 model, which uses a Resnet (He et al.,
2015) encoder trained on ImageNet (Russakovsky et al., 2015). The main contribution of
those authors, however, is not from the model architecture, but on the training part. They
propose the use of a custom dataset agnostic loss function which allows the integration
of training data of different sources and formats, such as depth maps, cloud points, and
stereo-graphical movies.

(Wofk et al., 2019) proposes the FastDepth2, a model optimized for inference on
embedded devices. The main idea is to use the MobileNet (Howard et al., 2017) as the
encoder. This model uses the Depthwise Separable Convolutions Layers (Chollet, 2016),
which the authors agrees that it enhances computational efficiency and reduces model size.
The FastDepth’s authors also make use of a harware aware model pruning (Yang et al.,
2018) to further optimize the network for runtime inference.

1 MiDaS: Robust Monocular Depth Estimation
2 FastDepth: Fast Monocular Depth Estimation on Embedded Systems

https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a
https://github.com/isl-org/MiDaS
https://github.com/dwofk/fast-depth

45

6 EDGE RUNTIME

6.1 Introduction

This chapter presents some details about running computer vision models on
embedded devices. It gives an overview about the high level of the NPU and introduces 2
keys components: the quantization step and the delegates runtime.

6.2 Context

Most modern embedded devices include dedicated hardware accelerators for heavy
computational tasks. As opposed to a common CPU, which is designed for general purpose
tasks, NPUs, GPUs and TPUs are optimized to perform a specific task.

The NPU, used by the Verdin i.MX8M Plus, is a piece of hardware optmized to
INT8 and INT16 Multiply-Accumulate operations. Figure 12 shows the high level of the
NPU. The Vision Engine is optimized for fixed function pixel operations, such as blur
and filtering, while the neural engine, for convolutional operations using dynamic kernels.
The interface between the host system and the hardware accelerator is handled by the
OpenVX™ API with NN Extensions.

Figure 12 – NPU Overview (Source: NXP i.MX8M PLUS Product Page)

On the other hand, the Jenson Nano GPU uses the Maxwell architecture with 128
NVIDIA CUDA® cores. It works with float16 and float32, and while it doesn’t have any
special neural network accelerator, it still is a lot faster than a CPU given the parallel
capacity.

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS

46

6.3 Quantization

Model quantization is a machine learning optimization technique that reduces the
precision of a deep learning model’s parameters. The primary goal is to minimize the
model’s size, accelerate inference, and lower power consumption, making it especially
useful for resource-constrained devices like embedded systems.

A common quantization process involves converting 32-bit floating-point representa-
tions to 8-bit integers. This results in up to a 4x reduction in model size, with a trade-off in
precision. Despite the slight loss in accuracy, quantization significantly enhances inference
performance by improving memory efficiency (e.g., reduced bandwidth and better cache
utilization) and leveraging hardware-optimized integer operations, which leads to faster
execution and reduced latency.

(Jacob et al., 2017) proposes a schema to translate float32 into a int8 space and to
efficiently handle the most common operations in the limited quantized space. The scale
and zero point can be defined per tensor of per tensor channel.

real_value = (int8_value− zero_point)× scale (6.1)

Usually, the layers quantization is handled by conversion tools such as Edge AI
Torch 1, TensorFlow Model Optimization 2 or ONNX Quantization 3, when exporting the
model to runtime format such as .tflite or .trt.

On the practical side, one point of attention is how to integrate the preprocessing
function, the input quantization and the model. While images are usually represented
using uin8 RGB or BGR, in general computer vision models, it is common to either scale
([0, 1]) or normalize ([−0.5, 0.5]) the inputs.

6.4 Delegates

As the name suggests, delegates are the mechanism used by runtime frameworks,
such as TFLite or LiteRT, to assign instructions to the NPU, offloading the CPU. This
is one of the biggest challenges of running embedded models. The delegate works as a
bridge interface between a specific runtime framework and a specific hardware low level
API, therefore, for each combination of runtime framework and hardware accelerator we
need a specific set of delegations.

The TIM-VX4is a software integration module from VeriSilicon that creates bindings
1 https://github.com/google-ai-edge/ai-edge-torch
2 https://www.tensorflow.org/model_optimization
3 https://github.com/microsoft/onnxruntime/tree/main/onnxruntime/python/tools
4 https://github.com/nxp-imx/tim-vx-imx

https://github.com/google-ai-edge/ai-edge-torch
https://www.tensorflow.org/model_optimization
https://github.com/microsoft/onnxruntime/tree/main/onnxruntime/python/tools
https://github.com/nxp-imx/tim-vx-imx

47

from the most common operations from, for instance, TFLite to calls, using the OpenVX™
API, to the NXP i.MX8M Plus NPU.

This introduces two key limitations to the type of deep learning models we can be
executed on the NPU:

• Only a subset of operations used by general machine learning frameworks (TensorFlow
and PyTorch), are available for the runtime framework (TFLite)5

• Only a subset of the runtime operations are covered by the delegations.

The TIM-VX module does have support for compound custom operators, that is,
new operations that can be described from built-in base operators. The Figure 13 shows
an overview of how to implement an RNN Cell based on the Fully Connected Layer and
the Tanh operators. The support for new operators, however, are out of the scope of this
work.

Figure 13 – TIM-VX Custom Operator

5 Refer to: i.MX Machine Learning User Guide.

https://www.nxp.com.cn/docs/en/user-guide/IMX-MACHINE-LEARNING-UG.pdf

49

7 RESULTS

Table 6 – Models Benchmark

Device Model Inference Time (ms) FPS
Jetson FastDepth 31.0 ± 5.0 8.48 ± 0.4
Raspi FastDepth 68.0 ± 0.5 8.45 ± 0.04
Verdin FastDepth 10.0 ± 0.1 13.2 ± 0.2
Jetson Midas not run not run
Raspi Midas 402.0 ± 0.7 2.26 ± 0.02
Verdin Midas 159.0 ± 20.0 4.86 ± 0.01
Jetson SSD 215.0 ± 10.0 3.52 ± 0.2
Raspi SSD 125.0 ± 2.0 6.03 ± 0.04
Verdin SSD 8.0 ± 0.0 13.3 ± 0.3
Jetson Yolo11n_640 92.0 ± 4.0 3.89 ± 0.4
Raspi Yolo11n_640 461.0 ± 0.5 1.8 ± 0.02
Verdin Yolo11n_640 117.0 ± 0.4 5.82 ± 0.03
Jetson Yolo11s_320 113.0 ± 6.0 5.13 ± 0.2
Raspi Yolo11s_320 314.0 ± 0.4 2.73 ± 0.02
Verdin Yolo11s_320 49.0 ± 0.0 10.6 ± 0.06
Jetson Yolov5nu_640 47.0 ± 6.0 3.87 ± 0.2
Raspi Yolov5nu_640 538.0 ± 0.6 2.43 ± 0.02
Verdin Yolov5nu_640 66.0 ± 0.2 6.83 ± 0.1
Jetson Yolov5su_320 47.0 ± 2.0 6.23 ± 0.1
Raspi Yolov5su_320 361.0 ± 0.5 2.45 ± 0.02
Verdin Yolov5su_320 31.0 ± 0.0 13.2 ± 0.09

Following the steps described in 3.2, table 6 shows a comparison between the
different models (include the tasks columns) for each device, the highlighted row shows
the fastest inference time. From this objectives, we want to choose an object detection
and a depth estimation algorithms that can be used at the same time; and, a hardware
that can deliver real-time processing.

The NVidia Jetson was not able to run the Midas model because of an incompati-
bility between the model and the version of tensorflow runtime.

For the YOLO models, when comparing versions 5 and 11, overall we observed an
increase in the inference time between models of the same input and model sizes. When
comparing the Toradex Verdin with the NVidia Jetson, we observed that for Verdin is
better for smaller input sizes, while for the 640 pixels version, the Jetson is faster.

The choice for the final setup is described in table 7.

50

Table 7 – Selected Model Setup

Device Object Detection Depth Estimation Inference Time (ms) FPS
Verdin-iMX8MP SSD_MobileNet_V2 FastDepth 19.2 ± 0.4 12.40 ± 0.19

One of the reasons to choose the SSD model over the YOLO is that the first share
the same backbone model as the fastdepth model. This can improve the runtime inference
speed, as part of the calculation can be used for both models. The resulting prediction
can be seen on Figure 14.

Figure 14 – Evaluation Test Result

51

8 CONCLUSION

In this work we evaluate the feasibility of using object detection and monocular
depth estimation models in embedded devices. After a carefull study of computer vision
models and evaluation metrics, the final setup is obtained through empirical benchmarking.
This setup is assembled and evaluated in a real world environment.

53

REFERENCES

ALQAHTANI1, D.; AL. et. Comprehensive benchmarking on tpus. arXiv preprint
arXiv:2409.16808, 2024. Disponível em: https://arxiv.org/pdf/2409.16808.

CHOLLET, F. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016. Disponível em: http://arxiv.org/abs/1610.02357.

HE, K. et al. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
Disponível em: http://arxiv.org/abs/1512.03385.

HONEGGER, D.; AL. et. Stereo vision for uavs. IROS 2014, 2014. Disponível em:
https://people.inf.ethz.ch/pomarc/pubs/HoneggerIROS14.pdf.

HOWARD, A. G.; AL. et. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. Disponível em:
https://arxiv.org/pdf/1704.04861.

HOWARD, A. G. et al. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. CoRR, abs/1704.04861, 2017. Disponível em:
http://arxiv.org/abs/1704.04861.

JACOB, B. et al. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. CoRR, abs/1712.05877, 2017. Disponível em:
http://arxiv.org/abs/1712.05877.

JOCHER, G. Ultralytics YOLOv5. 2020. Disponível em: https://github.com/
ultralytics/yolov5.

JOCHER, G.; QIU, J. Ultralytics YOLO11. 2024. Disponível em: https:
//github.com/ultralytics/ultralytics.

KHALILI, E.; AL. et. Object detection for robotic manipulators. arXiv preprint
arXiv:2409.06693, 2024. Disponível em: https://arxiv.org/abs/2409.06693.

KHAN, M.; AL. et. Background subtraction on fpga. IEEE Transactions on VLSI
Systems, 2016. Disponível em: https://colab.ws/articles/10.1109/tvlsi.2016.2567485.

LIN, T.-Y. et al. Microsoft coco: Common objects in context. arXiv preprint
arXiv:1405.0312, 2014. Disponível em: https://arxiv.org/abs/1405.0312.

LIU, W. et al. Ssd: Single shot multibox detector. In: . Computer Vision –
ECCV 2016. Springer International Publishing, 2016. p. 21–37. ISBN 9783319464480.
Disponível em: http://dx.doi.org/10.1007/978-3-319-46448-0_2.

MOHAMMADI, M.; AL. et. Tpu adaptations for neural networks. arXiv preprint
arXiv:2305.15422, 2023. Disponível em: https://arxiv.org/pdf/2305.15422.

OTTERNESS, N. e. a. Embedded gpu for object detection. IEEE Embedded Systems,
2017. Disponível em: https://ieeexplore.ieee.org/document/7939053.

https://arxiv.org/pdf/2409.16808
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1512.03385
https://people.inf.ethz.ch/pomarc/pubs/HoneggerIROS14.pdf
https://arxiv.org/pdf/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1712.05877
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/2409.06693
https://colab.ws/articles/10.1109/tvlsi.2016.2567485
https://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/pdf/2305.15422
https://ieeexplore.ieee.org/document/7939053

54

RANFTL, R. et al. Towards robust monocular depth estimation: Mixing datasets for
zero-shot cross-dataset transfer. arXiv preprint arXiv:1907.01341, 2019. Disponível
em: https://arxiv.org/abs/1907.01341.

REDMON, J. et al. You Only Look Once: Unified, Real-Time Object Detection.
2016. Disponível em: https://arxiv.org/abs/1506.02640.

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks for
biomedical image segmentation. In: Medical Image Computing and Computer-
Assisted Intervention (MICCAI). Springer, 2015. v. 9351, p. 234–241. Disponível em:
https://arxiv.org/abs/1505.04597.

RUSSAKOVSKY, O. et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, Springer, v. 115, n. 3, p. 211–252, 2015.
Disponível em: https://arxiv.org/abs/1409.0575.

SILBERMAN, N. et al. Indoor segmentation and support inference from rgbd images.
arXiv preprint arXiv:1208.6106, 2012. Disponível em: https://arxiv.org/abs/1208.
6106.

SIMONYAN, K.; ZISSERMAN, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015. Disponível em: https://arxiv.org/abs/1409.1556.

SUN, Y.; AL. et. Google tpu: Hardware for scalable neural networks. arXiv preprint
arXiv:2108.13732, 2021. Disponível em: https://arxiv.org/pdf/2108.13732.

WOFK, D. et al. Fastdepth: Fast monocular depth estimation on embedded systems. In:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). [S.l.: s.n.], 2019. p. 6101–6108. Disponível em: https://arxiv.org/abs/1903.03273.

YANG, T.-J. et al. NetAdapt: Platform-Aware Neural Network Adaptation for
Mobile Applications. 2018. Disponível em: https://arxiv.org/abs/1804.03230.

YU, H. et al. TensorFlow Model Garden. 2020. https://github.com/tensorflow/models.

ZHAO, R.; AL. et. Object detection with embedded systems. In: Proceedings
of Computer Vision Conference. [S.l.: s.n.], 2016. Disponível em: https:
//link.springer.com/chapter/10.1007/978-3-319-56258-2_22.

ZHOU, W. et al. Learning depth from monocular videos using direct methods. arXiv
preprint arXiv:1811.01791, 2018. Disponível em: https://arxiv.org/abs/1811.01791.

https://arxiv.org/abs/1907.01341
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1208.6106
https://arxiv.org/abs/1208.6106
https://arxiv.org/abs/1409.1556
https://arxiv.org/pdf/2108.13732
https://arxiv.org/abs/1903.03273
https://arxiv.org/abs/1804.03230
https://github.com/tensorflow/models
https://link.springer.com/chapter/10.1007/978-3-319-56258-2_22
https://link.springer.com/chapter/10.1007/978-3-319-56258-2_22
https://arxiv.org/abs/1811.01791

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	Objectives
	Chapters Overview

	Related Work

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	Methodology
	Hardware
	Setup and Configuration
	Metrics and Models Descriptors
	Models and Datasets
	Object Detection
	Depth Estimation

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	Object Detection
	Introduction
	Context
	Implementation Overview
	Non-Max Suppression (NMS)

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	Monocular Depth Estimation
	Introduction
	Context
	Implementation Overview

	Edge Runtime
	Introduction
	Context
	Quantization
	Delegates

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	Results
	CONCLUSION

	Study and Implementation of an Embedded Image Processing System in Autonomous Inspection Robots
	References

