

1

LEONARDO MARIANO GOMES

HANDHELD SOUND GENERATOR

Trabalho de Conclusão de Curso apresentado à

Escola de Engenharia de São Carlos, da

Universidade de São Paulo

Curso de Engenharia Elétrica com ênfase em

Eletrônica

ORIENTADOR: Evandro Luís Linhari Rodrigues

São Carlos

2013

2

3

4

5

This work is dedicated to my parents Roberto and Vera, and to my brother Roberto.

6

7

ACKNOWLEDGEMENT

 The development of this work overcame my expectations and took lot of efforts for doing it.

However, it would not have been possible without the support and help of many individuals and

organizations. I would like to extend my sincere thanks to all of them.

 First, I’d like to thank my parents for the attention and care during all my life, supporting my

decisions and always giving me advices about all aspects of this complicated life. Special thanks to

my father, who introduced me to the world of electronics and machines and made me to love the smell

of soldering and, above all, made me love the idea of building stuff and solving problems. I’d like

also to thank my brother, for all the moments, from childhood until now, for the chats and funny

moments.

 I’m really grateful to all my friends, especially the undergraduate ones. All of you contributed

somehow for my professional and mostly personal formation. During the course, we faced different

situations together, from scary exams to funny (sometimes weird) parties and pleasant talks. We’ve all

learned together and I hope seeing all of you in the next years.

 I’d like to thank the University of São Paulo and the teachers I had, the opportunities given by

being on this rich in knowledge environment and the knowledge and skills I obtained here. Many

thanks to CAPES and to the opportunity I've received of studying in the University of Glasgow. In

Scotland I had the opportunity to grow more and more as a professional and learn things from a

different perspective. Thanks also to the technicians of the University of Glasgow who helped me a

lot on prototyping the equipment I’ve designed. Special thanks to both supervisors I had: Calum

Cossar and Evandro, both contributed to the final result of my project and my personal development.

 At last but very far from least, I’d like to thank my girlfriend Fernanda, for all support given,

attention and dedication during the period we are together. You helped me when I was sad, when my

project was not working and I was almost kicking the electronic boards but mainly when I was

missing you and my heart freezing in Scotland. It’s not easy dating thousands miles away but you are

being strong and making me strong every day, making me wish to love you every moment of my life.

8

9

Abstract

 This work was aimed at designing new electronic equipment which was used to generate

sound according to the movements of the user. Two different sensors were used to measure different

signals: an accelerometer detected the angular position of the user’s arm and Electromyography

(EMG) electrodes correctly positioned detected the muscular activity in the same arm where the

accelerometer was placed. The information obtained by the sensors was processed using an embedded

system and electronic circuits, and a wireless communication system was responsible for transferring

this information to a remote computer. The software present in this computer acquired the information

transmitted from the equipment and converted it into musical sounds. The characteristics of the

generated sound could change dynamically, following the movements of the user. Simulations and

experimental procedures were used to evaluate the results of the developed electronic equipment and

software. After prototyping the equipment, the EMG signals could be amplified and measured using a

portable oscilloscope, the angles of the user’s arm were measured and compared with the calculated

expected angles. The software on computer was able to connect to the equipment, processing the

information received and generating musical sounds. The work accomplished its goals because a

fully operational equipment was designed fulfilling the requirements of generating sound, as the

parameters of the generated sound changed in function of the motion of the person using the

equipment.

Keywords: Accelerometer, Electromyograph (EMG), wireless communication, sound, embedded

system.

10

11

Resumo

 Este trabalho teve como objetivo o projeto de um novo equipamento eletrônico o qual foi

usado para gerar sons de acordo com os movimentos do usuário. Dois sensores diferentes foram

usados para medir diferentes sinais: um acelerômetro mediu a posição angular do braço do usuário e

eletrodos de Eletromiografia (EMG) corretamente posicionados detectaram a atividade muscular, no

mesmo braço onde o acelerômetro estava localizado. A informação obtida pelos sensores foi

processada usando um sistema embarcado e circuitos eletrônicos, e comunicação sem-fio é

responsável por transmitir a informação para um computador remoto. O software presente neste

computador recebeu a informação transmitida do equipamento e converteu-a em sons musicais. As

características do som gerado pode variar dinamicamente, de acordo com os movimentos do usuário.

Simulações e procedimentos experimentais foram utilizados para validar os resultados do

equipamento eletrônico e software desenvolvidos. Após a prototipagem do equipamento, os sinais de

EMG puderam ser amplificados, e medidos através de um osciloscópio portátil, as posições angulares

do braço do utilizador foram medidos e comparados com os angulos calculados esperados. O software

do computador foi capaz de conectar-se com o equipamento, processar a informação recebida e gerar

sons musicais. O trabalho cumpriu seus objetivos, pois um equipamento totalmente operacional foi

desenvolvido preenchendo os requisitos,onde os parâmetros do som gerado alteravam em função dos

movimentos do indivíduo ao usar o equipamento.

Palavras-chave: Acelerômetro, Eletromiógrafo (EMG), comunicação sem-fio, sons, sistema

embarcado.

12

13

Contents

ACKNOWLEDGEMENT .. 7

ABSTRACT .. 9

RESUMO .. 11

CONTENTS .. 13

LIST OF IMAGES .. 15

CHAPTER 1 – INTRODUCTION ... 19

CHAPTER 2 – THEORY & CONCEPTS .. 23

CHAPTER 3 – PROJECT DESCRIPTION .. 35

CHAPTER 4 – EXPERIMENTAL TECHNIQUES ... 49

CHAPTER 5 – RESULTS .. 65

CHAPTER 6 – DISCUSSIONS .. 83

CHAPTER 7 – CONCLUSIONS ... 84

BIBLIOGRAPHY ... 87

IMAGES REFERENCE ... 89

APPENDIX A..91

APPENDIX B..95

14

15

List of Figures

Figure 1 - Accelerometer triple axis inclination calculation ... 26

Figure 2 - angles for independent inclinantion sensing .. 26

Figure 3 - floating electrode .. 29

Figure 4 - Instrumentation Amplifier .. 30

Figure 5 - Ideal frequency response of (a)low-pass filter (b) high-pass filter (c)band pass filter (d)

band rejection filter ... 31

Figure 6 - data frame ... 32

Figure 7 - block diagram of equipment system ... 35

Figure 8 - Accelerometer with arm band .. 36

Figure 9 - Electrodes positioning and connection ... 36

Figure 10 - Accelerometer, cable and connectors ... 37

Figure 11 - Electrodes connectors ... 37

Figure 12 - STM32F4 Discovery development board .. 39

Figure 13 - Xppower - ac/dc power supply ... 41

Figure 14 - Bluetooth module HC-05 ... 42

Figure 15 - ADXL 335 accelerometer board .. 44

Figure 16 - firmware ... 45

Figure 17 - Keil MDK ARM user interace ... 46

Figure 18 - Python Application Program .. 48

Figure 19 - nerve impulse amplifier ... 49

Figure 20 - Passive Filters ... 50

Figure 21 - Active Filters (a) LP (b) HP (c) Notch ... 51

Figure 22 - voltage regulators and LED indicators ... 52

Figure 23 - EMG amplifiers board (original size), red is top layer and blue is bottom layer 53

Figure 24 - DC-DC voltage converter (original size), red is top layer and blue is bottom layer 53

Figure 25 - Active Filters Board (original size), red is top layer and blue is bottom layer 54

Figure 26 - DC-DC voltage converter board .. 55

Figure 27 - LED voltage status indicators with connectors .. 55

Figure 28 - EMG amplifier boards disposition and connections inside box ... 56

Figure 29 - Intern connections between amplifiers, Bluetooth module and microcontroller board 56

Figure 30 - Power Supply Unit - AC input (left) and DC output (right)... 57

Figure 31 - Device side view with bluetooth LED status indicator (red) ... 57

Figure 32 - Device and power supply front view .. 58

Figure 33 - Device and power supply back view .. 58

16

Figure 34 - Device with cables connected (channel 2 connected) .. 58

Figure 35 - DSO 201 nano oscilloscope ... 59

Figure 36 - Bluetooth module terminals ... 60

Figure 37 - signal source simulating EMG signal ... 65

Figure 38 - signal after instrumentation amp, gain = 10 ... 66

Figure 39 - signal after second stage, gain = 1000 and filtered .. 66

Figure 40- output signal (red), signal after first stage (blue) and from source (black) 67

Figure 41 - LP fc = 300Hz frequency response .. 68

Figure 42 - LP(300Hz) + HP(1Hz) ... 68

Figure 43 - LP, HP and Notch (60Hz) frequency response .. 69

Figure 44 - all filters frequency response .. 69

Figure 45 - frequency responses in the same graph .. 70

Figure 46 - Active Filters frequency response .. 70

Figure 47 - arm resting position .. 71

Figure 48 - thumb flexing ... 71

Figure 49 - index finger flexing .. 72

Figure 50 - middle finger flexing .. 72

Figure 51 - ring finger flexing .. 72

Figure 52 - little finger flexing .. 73

Figure 53 - ECG signal not filtered ... 73

Figure 54 - ECG signal filtered ... 74

Figure 55 - Signal with DC bias ... 74

Figure 56 - RealTerm screenshot .. 75

Figure 57 - positions for testing – top view .. 76

Figure 58 - angle measurement values .. 76

Figure 59 - angles used to generating sound ... 77

Figure 60 - 3D model simulation - hand down ... 78

Figure 61 - 3D model simulation - hand up .. 78

Figure 62 - 3D model simulation - hand closed .. 79

Figure 63 - Application Icon ... 79

Figure 64 - Application initial screen ... 80

Figure 65 - Connect command screen ... 80

Figure 66 - Information Screen ... 80

Figure 67 - Received data screen (negative colours) .. 81

Figure 68 - instrumentation amplifiers and gain amplifier ... 91

Figure 69 - Filters: LP (300Hz), HP (1Hz) and Notch (50Hz) ... 91

Figure 70 - ADC interface: DC offset and HP filter (1Hz) ... 92

17

Figure 71 - EMG amplifiers board (original size), red is top layer and blue is bottom layer 92

Figure 72 - voltage regulators and LED indicators ... 93

Figure 73- DC-DC voltage converter (original size), red is top layer and blue is bottom layer 93

Figure 74 - voltage regulators and LED indicators ... 94

Figure 75- DC-DC voltage converter (original size), red is top layer and blue is bottom layer 94

18

19

CHAPTER 1 – INTRODUCTION

I – FOREWORD

 The application of new technologies in different fields of knowledge is growing fast over the

years. The technology used today for doing a task is much more complex but helpful for people in

comparison with the technology used during the last decade. Smartphones are the first example that

comes in mind in terms of evolution of technology, but medical equipment, video-games, electronic

musical instruments and even toys are other examples in which technology is changing constantly.

 Considering the usages of technology mentioned above, it can be highlighted two of them,

which will be important for the ideas and concepts of the work: the medical equipment, specifically

biomedical instrumentation, and electronic musical instruments. These areas will be interconnected in

the project, with the medical instrumentation being used to control a musical instrument, not

necessarily a well-known instrument, but a set of hardware and software which will work like it, as

will be explained in the following.

 The biomedical engineering involves the application of engineering techniques to improve

health care and health services to enhance the quality of human life. Different fields of knowledge are

covered by the biomedical engineering, for example medical devices, biomechanics, medical imaging

and biological signal processing [1]. The biomedical engineering begun after the second world war,

primarily studying complex biological systems and the rehabilitation of soldiers. The evolution of

technology made possible the biomedical engineering to develop instruments for medical usage [2].

Many diseases can be diagnosed through the medical devices and medical monitors. A classical

example is the ECG (electrocardiograph), which is the equipment responsible for monitoring the

electrical activity of heart and helps detecting cardiac diseases. Another medical device which works

similarly with the ECG is the EMG, or Electromyograph.

 Electromyography is a technique for evaluating and recording the electrical activity produced

by skeletal muscles [3]. EMG signals are used in many clinical and biomedical applications as a

diagnostics tool for identifying neuromuscular diseases, for example problems with the transmission

of electrical signals from brain to muscles, but also the study of human kinects (Kinesiology). The

EMG signals can also be used to control prosthetic devices and help the life of persons who have

limited conditions of moving or have lost their members for any reason.

 As any medical instrumentation device, the EMG has the purpose of measure or determining

the presence of a physical quantity, in its case the muscular activity, and assists the medical personnel

to make better diagnosis and treatment. Certain characteristic features, which are common to most

instrumentation systems, are also applicable to medical instrumentation systems and any medical

20

instrument would comprise of the following basic functional components: measurand,

transducer/sensor, signal conditioner and display system [4]. This work will explain what the four

basic functional components are and how they are used in this project.

 The second area of interest or usage of technology, which deserves special attention in this

work, is the musical instruments area. As mentioned above, the area of medical instrumentation and

music generation will be connected to produce new equipment, which can be classified as a musical

instrument or more specifically, an electronic musical instrument.

Music is present every day, every moment in the life of all the people. Whether in personal

music players, on the gym as an ambient sound, on a jingle of an advertisement or in a concert hall,

people are listening to music in different ways, different styles and being influenced by it, without

even realizing it. Each person has an involvement with the music depending on their personal

interests, but certainly music influences and is also influenced by society.

 With advanced electronic circuits, different software resources and open-source platforms,

even for electronic and software, it is becoming easier for people to transform their ideas into practical

works and machines, and thereby easily integrate specific knowledge, needing to solve a problem and

creativity into applications which can be used for everyone and everywhere. The importance of music

can be verified on society but also on individuals by the influences and the effects caused by music on

people. Music is considered a universal language because it can be understood the same way by

different cultures that not necessarily spoke the same language. Music also inspires emotion and

influences mood of people mostly in a healthy way. Music also contributes for education of adults but

more of children because it enhances learning and makes it more enjoyable. The act of playing music

sparks the imagination and makes children develop and improve skills such as motor control, hearing,

sight, memory and teaches us self-discipline and time management skills [5][6].

Musical instruments are an essential part on process of music creation. They have been

developed since the ancient ages and on different parts of the world. From 18th- century, an

emergency of electric musical instruments and after that electronic started to being explored by

numerous scientists and musicians. With the fast development of technology through years, those

instruments became more improved and popular, making possible the creation of new music genres.

 A musical instrument can be defined as a device created or adapted to make musical sounds.

The characteristics and physical properties of an instrument are used to classify it as a musical

instrument and in its sub-genres. Musical instruments are able to control characteristics of the

generated sound, for example timbre, volume, sound duration and intensity and the way sound is

produced can be used to categorize instruments by its user interfaces. Some examples of user

interfaces are keys on a keyboard, reeds on a saxophone and strings on a guitar. Musical instruments

can also be classified as acoustic, when the sound is produced by physical properties, for example the

shape of the body, or as electronic, when sound is produced by electronic circuits and a loudspeaker.

21

 An important component responsible but also a result of the fast evolution of technology is

the embedded system. These systems are defined as systems which have at least one microprocessor

and this microprocessor is responsible for a specific task. With the constant size reduction of the

electronic components and also their manufacturing cost reduction, it became profitable to include

these systems inside general equipment. Different usages of embedded system can be noticed

nowadays in most of applications mentioned on the beginning of this section. Embedded systems

comprises to main parts: the hardware and the software. The hardware consists of electronic

components and circuits, and the software is a written code, which is recorded in the memory of the

microcontroller or externally in a memory component. The software, also called firmware, is

responsible for making the electronic circuits functioning and developing the specific task required by

the equipment.

II – AIMS

 This project aims at developing electronic equipment which will generate sound and the

characteristics of sound will change dynamically following the motion of the person using the

equipment. The idea is to integrate different subjects of the Electronics Engineering and develop the

equipment from the simulations to the final working project and evaluate the knowledge acquired

during the undergraduate course.

III – TEXT ORGANIZATION

 This work will be organized into 7 chapters. Chapter 1 discuss the basic areas of knowledge

whose have some relation to the project presented in this work and also exposes the aims of the

project. Chapter 2 presents the theory and concepts used in this project and familiarizes the reader of

this work with some terms used in the other chapters. In chapter 3, can be found information about the

working principles of the equipment design and how its components are important to the system.

Chapter 4 present the experimental techniques used for designing circuits and build the prototype, but

also programming techniques are explained. Chapter 5 is about the results from circuit simulation and

measurements and Chapter 6 is a discussion about the results obtained. Finally, chapter 7 will present

conclusions about the project and a brief discussion about future works that can be developed

considering the hardware and software of equipment. In the end of this work, appendixes containing

electronic circuit projects and program codes, can be found.

22

23

CHAPTER 2 – THEORY & CONCEPTS

The theory involved with the project is related to digital data acquisition, sampling and

quantization, which were used on data acquisition and conversion from analog sensors by the

microcontroller and its peripherals. The processing of accelerometer data involves math theory,

considering the conversion of voltage into angle of orientation information. To generate sounds that

can be considered as musical sounds, it was necessary to calculate the frequency of notes following

concepts of music theory. The principle of acquiring the muscular signal will be discussed, as well the

way this signal is generated in human body. Concepts of electronics such as instrumentation

amplifiers and analog filters will be briefly explained. The concept of serial communication will also

be explained in the context of this work.

2.1 - SAMPLING AND QUANTIZATION

A signal can be defined as physical quantity, varying in time, which carries information about

the behaviour of a system. In general it can be represented mathematically by a function of one or

more independent variables. The signals present in this project only depend on time, for example

voltage in function of time.

 The independent variable is an important quantity used to classify the signals as continuous

(analog) or discrete in time (digital). On digital signals, the independent variable assumes discrete

values, which can be represented as a sequence of numbers. The amplitude of a signal can be also

discrete or continuous. On discrete case, it is quantized; this means the amplitude value can be

approximated to a value present in a finite set of possible amplitudes that can be digitally codified.

 To obtain a digital signal from an analog signal, the amplitude values must be recorded at

regular time-intervals and this process is called sampling. The sampling interval is denoted �� and its

reciprocal, the sampling frequency or sample-rate, is denoted as �� = �
��

. To reconstruct an analog

signal from a digital version of it, an important requirement about the time between samples must be

considered and this condition is stated by the Nyquist Sampling Theorem. The sampling theorem

states, that a band-limited signal, whose components larger than W Hz, can be reconstructed or

recovered from its samples if the signal was sampled at least with a rate equal or larger than 2W

samples per second (Hz)[7].

� <
�
� (1)

24

 Expression (1) represents the condition stated by Nyquist theorem, in which �� represents the

highest frequency present on a signal and

�
� is known as Nyquist frequency.

 After sampling, a second process must be applied and it is called quantization. In signal

processing context, quantization is the process of assign discrete values to a signal which its

amplitude varies in an infinite values range. A physical quantity is considered quantized and it can’t

assume vales between two possible ones. On quantization, values are assigned for the maximum and

minimum possible continuous input and the continuous values of amplitude are assigned to the

intermediate discrete numbers between the possible ranges of inputs. In other words, amplitude of the

input signal will be interpreted as a finite set of numbers on a pre-determined sequence.

2.2 - PITCH NOTE/ FREQUENCY CALCULATION

Sound is the propagation of a mechanical longitudinal wave, which propagates through

different materials, but normally air. Sounds are a composition of sine signals and they have a speed

of oscillation called frequency, which can be measured in Hz (hertz) unit. The human auditory system

is capable of detecting sounds in the range of 20Hz to 20 kHz. A musical tone is a steady periodic

sound which can be characterized by its duration, pitch, intensity and timbre. A simple tone has a

sinusoidal waveform and a complex musical sound can be represented by a sum of sine waves of

different frequencies and amplitudes.

Musical sounds can be performed by following a musical scale. A musical scale is a discrete

set of pitches used in making music and each pitch corresponds to a particular frequency of sound. A

scale has an interval of repetition, normally the octave, in which the frequency of an octave has

exactly twice the value of the previous one. Several melodic scales have been created during centuries

and the equal-tempered scale will be used to calculate the playable musical notes on the project.

In equal-tempered scale, the frequency value of musical notes is separated by a ratio of

rational numbers, in this case 2 �
�� = �, which is equal to about 1.059463094359. The basic formula

for the frequencies of the notes is given by:

�� = �� ∗ (�)� (2)

In equation 2, �� is the frequency of one fixed note which must be defined. A common choice

is setting the A musical note above middle C (��) at �� = 440 Hz. The variable n is the number of half

steps away from the fixed chosen note. For higher notes, n is positive and for lower notes, n is

25

negative. The constant a is the twelfth root of 2, a number which when multiplied by itself 12 times is

equals to 2 [8].

2.3 - ACCELEROMETER – TILT CALCULATIONS

In this project, the accelerometer will be used to convert the angular displacement from user’s

arm, compare it with a reference position and the information of the angle will be used to modify the

frequency of output sound. To accomplish this task, the microcontroller should be able to convert the

voltage signal from the accelerometer to a value in angle and for that reason some mathematical

considerations about axis orientation and respective angles has to be done.

The accelerometer is a sensor that measures the physical acceleration experienced by an

object due to inertial forces or due to mechanical excitation. Conceptually, an accelerometer behaves

as a damped mass on a spring. When the accelerometer experiences acceleration, the mass is

displaced and the displacement is then measured to give the acceleration [9].

In this project, the accelerometer can be classified also as a transducer, because its input

(acceleration) is converted into a voltage signal. In some applications, where the net acceleration or

force on a system over the time is gravity, an accelerometer can be used to measure static angle of tilt

or inclination. Inclination sensing uses the gravity vector and its projection on the axes of the

accelerometer to determine the tilt angle [10].

The equations used for angle calculation follows the instructions presented in the application

note [10], written by the manufacturer of the sensor used in project. As the angular position of the

sensor changes, a variation of voltage output can be sensed in the corresponding pin for each tri-

dimensional axis.

The angles that will be determined by using the formulas are show in figure 1. These angles

are named theta(θ), psi(Ψ) and phi (Φ) and correspond respectively to the variation of x, y and z axis

in respect with a fixed reference position.

The formulas used for calculating the angles are presented in figure 2 in which An,out,

represents the value in volts of the current output minus the voltage value for the reference position.

In these formulas, n represents the axis being measured. A full explanation about how the formulas

for calculating the angles are derived can be found in the reference document [10].

26

Figure 1 - Accelerometer triple axis inclination calculation

Figure 2 - angles for independent inclination sensing

 The inclination angle is given in radians and to convert its value into degrees, equation

present in figure 2 has to be multiplied by (180/�).

2.4 - PRINCIPLE OF MUSCLE CONTRACTION

 The muscle consists of a large number of a structure called muscle fibres. Each muscular fibre

is composed of microfibrils and they consist of two filaments called actin and myosin. Contractions

on muscles can be classified as voluntary and involuntary and for voluntary muscles are stimulated by

signals sent by the brain. These signals are in the form of action potentials and are sent through the

nervous system by the motor neuron. Contractions can also occur as result of nervous reflexes of the

27

spinal cord. Involuntary muscles such as the heart contract as a result of non-conscious brain activity

[11].

 Muscles can be classified by the type of muscles tissues: Skeletal, responsible for movements;

Cardiac, responsible for pumping blood and Smooth, responsible for sustained contractions in the

blood vessels, and other areas of the body.

The sliding filament model is used to describe generation of active tension or action potential.

Action microfibril consists of two negatively charged molecules in spiral shape and the myosin is

much ticker filaments with globular heads and Adenosine triphosphate (ATP) molecule attached.

 The action potential originated on brain comes through the nerves and causes a release of a

neurotransmitter Acetycholyne. This neurotransmitter is sent by structures called transverse tubules

that surround the actin and myosin microfilaments. The acetylcholine diffuses and activates receptors

on the neuromuscular junction. The action potential also causes the opening of pores that release

Ca++ ions. The diffusion of acetylcholine causes the depolarization of inner portion of muscle fibers.

The Ca++ ions are bind to the actin filaments making it positively charged. Because depolarization,

negatively charged ATP from myosin are attracted to positively charged actin filaments. After the

contact of myosin head and actin, a power stroke occurs and causes filaments to slide. The head of

myosin now contains Adenosine diphosphate (ADP) and binds to the newly uncovered binding sites,

receiving a new ATP and after the stimulus of the brain, the process repeats. Through successive

cross-bridging the muscle twitches whiles shortening and work is done. The cross bridge is the

process of transferring ATP charge to positively charged actin [12].

 The process of contraction in smooth muscles is the same as skeletal muscles, based on the

sliding actin and myosin filaments. The difference is because some proteins involved in contraction

are not similar.

2.5 - ELECTROMYOGRAPH SIGNAL

An electromyogram (EMG) is a procedure used to record electrical activity of muscles during

its activity. When muscles are active, they produce an electrical current, which is proportional to the

level of the muscle activity. There are two types of electromyography, one which uses internal

electrodes, in needle shapes, and another that uses external sensors, characterizing this method as

surface electromyography, or (SEMG). In this report, SEMG will be called by EMG.

The EMG signal can be measured by the difference of potential between two points and has

an order of few mV. This signal has low amplitude because the energy generated by muscles is small.

The EMG records asynchronous activation of many motor units, which are made up of a motor

neuron and skeletal muscle fibers. The motor units close to the surface contribute the most for

generating signal. As the signal goes through fat and skin, its amplitude is reduced and an amplifier

must be used for making the signal detectable for electronic devices and computers.

28

Another factor that contributes for the quality of EMG signal is the impedance of the skin.

This impedance can vary due to moisture, skin oil and thickness of dead cell layer. To reduce the

impedance, it is recommended to use an abrasive cream and alcohol and an electrolytic medium to

improve conductivity.

EMGs can be used to detect abnormal electrical activity of muscle that can occur in many

diseases and conditions, including muscular dystrophy, inflammation of muscles, pinched nerves,

peripheral nerve damage and others [13].

There are two types of EMG recordings; one is called monopolar and the other bipolar. The

monopolar one is characterized by measuring the signal between on point over the muscle and the

other point somewhere on the body. This last point is called reference and normally is chosen in a

place where there is no activity of the analysed muscle. The other type of recording is the bipolar,

which is the voltage signal measured between two points over the muscle and a reference point. The

reference will act as a ground for the body and device of recording EMG.

2.6 - ELECTRODES

For recording EMG signals, electrodes are placed over the muscle and the reference point. An

electrode is an electrical conductor used to make contact with a non-metallic part, for example skin,

and a circuit. EMG electrodes can be found in different types and are used for different contexts of

measuring muscular activity. The most common types are direct contact electrode, which can be

directly placed on a skin and is gold or silver plated, has a layer of Ag/AgCl to stabilise electrical

potential of skin and is reusable; Floating electrodes, present on figure 3, which are housed within a

cup filled with an electrolytic medium, are suitable to dynamic movements and as single use. This

model will be used in the project; Hydrogel electrodes, made by Ag/AgCl and covered with dry sticky

layer of gel, as high impedance and can be reused [14].

The electrodes can be classified as passive or active electrodes. The passive ones where

described as having the necessity of using a conductive gel to improve its performance. Most of times,

this type of electrode can’t be reused and this can be considered a problem. The active electrodes do

not require the same preparation of the passive ones and can be reused. This feature is available

because this type of electrode has an electronic buffer with high input impedance. The signal

transmitted is less noisy than the signal transmitted by the passive electrode but as disadvantage, each

electrode needs to be supplied with voltage [14].

29

Figure 3 - floating electrode

2.7 - INSTRUMENTATION AMPLIFIER

An instrumentation amplifier is a type of differential amplifier that has been outfitted with

input buffer amplifiers, which eliminate the need of input impedance matching and thus make the

amplifier particularly suitable for use in measurement and test equipment [14].

This electronic device is responsible for increasing the amplitude of the EMG signal and

making this signal suitable for being analysed by electronic circuits and computers. As the impedance

of the amplifier has to be 10 – 100 times larger than the impedance of the skin, this amplifier can be

used because among its characteristics, it presents very high input impedance, with a low current

consumption. This characteristic allows the signal to be amplified without being distorted. Another

important feature of this amplifier is the high common mode rejection. This feature is responsible for

cancelling signals which are common to the measured points, for example noise, that is unwanted and

causes distortion in the information represented by the EMG signal.

The gain of the amplifier can be adjusted and allowing the correct amplification of the EMG

signal. As mentioned in the last section, the EMG signal originally has a very low amplitude value,

which it impossible for being measured and processed. It also makes the signal very suitable for

influence of different sources of noise.

The circuit present in figure 4 represents the instrumentation amplifier and its basic blocks.

The output voltage is shown as equation 3.

30

Figure 4 - Instrumentation Amplifier

�� = �
 �

 . "1 + � $
 %

& . (�� − ��) (3)

2.8 - FILTERS

As mentioned previously, different sources of noise can distort the EMG signal, making the

information presented in it lost or mistaken. The sources of noise which the EMG recording can deal

are the skin, the quality and correct placement of electrodes, the leads that can receive interferences

and electrical noise in the amplifier circuit. Noise can classified as instrumental, for example 60Hz

from mains, computers, fluorescent lamp, radio frequency (picked up in leads) and electromagnetic

force from moving the cables; Biological noise, which consists of ECG (electrocardiogram) artefacts,

movement artefact (seen as a DC current shift), respiration and cross talk from distant muscles.

To reduce the effect of these sources of noise, filters are used in conjunction with the

amplifier circuit. Filters are the basic building block of signal processing and are much used in

electronics. Filters can be designed in different ways following numerous approaches. They can be

classified as Analog and Digital. Digital filters are implemented in computers by an algorithm that

performs mathematical operations in the sampled signal. Analog filters are designed with electronic

components and acts in the continuous signal. Both filters are responsible for separating or rejecting

the desired information of the components present in the filtered signal. In this project, analog filters

are used due to its simplicity of design and calculation. Analog filters can be classified as active and

passive filters. Active filters use active electronic components, for example operational amplifiers,

allowing the filtered signal to have a gain in respect with the input original signal. Each active

electronic component needs a power supply. Passive filters are easier to build and use passive

components, as resistor, capacitors and inductors. The trade-off because the simplicity of circuits is

31

that the filtered signal will always has a decrease in its amplitude in comparison with the original

signal.

There are various types of filter considering the transfer function response in the frequency

domain. The main types of filter are: low-pass, high-pass, band rejection or notch, band pass and all

pass. The ideal response of each filter is presented in figure 5.

Figure 5 - Ideal frequency response of (a)low-pass filter (b) high-pass filter (c)band pass filter (d) band rejection filter

Each filter has an important parameter called cut-off frequency. The values of electronic

components are calculated to reach the desired cut-off frequency, which is the frequency “where the

filter acts”. The low-pass filter is characterised by allowing signals with frequency lower than the cut-

off to be transmitted and signals with higher frequency to be attenuated and not be transmitted. The

high pass filter acts as the low-pass, but transmit only signals with frequency higher than the cut-off

frequency. The notch filter is responsible to filter only a desired frequency, and in the project will be

designed to reject 60Hz, and reduce the noise caused by mains and other electrical activity.

Another important specification parameter for filters is the Quality Factor, or Q. The

parameter represents the relation between the cut-off frequency (central frequency) and the pass band

with attenuation of -3dB. The higher the Q value, more selective the filter is. The value of Q will

depend on the topology chosen and the type of filter used (active or passive). Generally, passive filters

can’t reach the Q value larger than 0.3 but active filters can have Q larger than 50. It is possible to

32

increase the Q factor of filter by increasing its order, for example adding more filter blocks in the

output of the first filter block. This method is called increasing the order of a filter.

2.9 - SERIAL COMMUNICATION - UART

Asynchronous serial communication in its most primitive form is implemented over a

symmetric pair of wires connecting two devices. Data is transmitted one bit a time, sequentially, over

a communication channel. One of the devices is called host and the other is target. Whenever the host

has data to send to target, it does so by sending an encoded bit stream over its transmit (TX) wire; this

data is received by the target over its receive (RX) wire. Transmission of data can also be from the

target to host. This mode of communication is called “asynchronous” because the host and target

share no time reference. Instead, temporal properties are encoded in the bit stream by the transmitter

and must be decoded by the receiver [15].

For accomplish serial connection, part of the microcontroller hardware used is dedicated in

translate data from the internal bus from parallel to serial. The UART (Universal asynchronous

receiver/transmitter) is a peripheral, part of microcontroller’s integrated circuit and has a dedicated

function.

The UART is present in both sides of communication channel (host and target), the

transmitter side and the receiver side. Bytes of data are transmitted by bits sequentially and a group of

bytes is called frame. Each frame is formed by a fixed number of bits and this number depends on the

configuration of the serial communication. An example of a frame is show in figure 6.

Figure 6 - data frame

 The bits are represented as changes in voltage logical level. When the level is high, the bit is 1

and when low is 0. “Each character is sent as a logic low start bit, a configurable number of data bits

(usually 8, but users can choose 5 to 8 or 9 bits depending on which UART is in use), an

optional parity bit if the number of bits per character chosen is not 9 bits, and one or more logic high

stop bits”.

The receiver tests the incoming data to detect the start and the stop bits and synchronize with

the transmitter. All the operations of UART hardware are controlled by a clock signal. To result

successful connection and transmission of data, both UART must be configured with the same

33

settings. These settings include speed, or data rate, which is the number of bits per second and is given

in baud (bit/s). Commercial devices operates in standard baud rate values, for example 75, 110, 300,

1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200 bit/s. Number of data bits is another

setting that must match between both sides of communication channel. This setting corresponds to the

number of bits in each transmitted character and can be 5, 6, 7, 8 and 9, with 8 bits the commonly

used number. Parity is a method of detecting errors in transmission, and is a setting that can be

activated or not. When activated, an extra data bit is sent making the data rate decrease. Stop Bits are

used to allow the receiver detect the end of a character transmission. This setting has the value of 1 or

2 bits, with 1 normally used.

34

35

CHAPTER 3 – PROJECT DESCRIPTION

3.1 – THE SYSTEM

 The equipment developed in this project consists in a set of integrated sub-systems, including

sensors, hardware and software. These sub-systems work together to accomplish the main goal of

project: convert the motion of the body into musical sounds. The technology applied in the equipment,

which nickname is Handheld Sound Generator, involves different concepts of electrical engineering,

biomedical engineering and a small part of music theory.

 The system present in figure 7 represents the main parts of the equipment developed. The

basic functioning can be described as following: the sensors (electrodes and Accelerometer) are

responsible for converting the motion of body into electrical signals, each one in its own manner. The

accelerometer is used with a wristlet and positioned in the underside of arm. Two electrodes are

placed in the same arm that the wristlet is being used, more specifically the underside of the forearm,

two finger away from the bend of the elbow and two centimetres apart each other. A third electrode

must be placed elsewhere in the body, but far from first two electrodes, for example in thigh or

abdomen. This last electrode is called reference electrode. The correct positioning of both

accelerometer and electrodes can be visualized in figures 8 and 9 respectively. The measurand of the

system are both the angle of arm measured by the accelerometer and the muscular activity electrical

signals measured by the electrodes.

Figure 7 - block diagram of equipment system

36

Figure 8 - Accelerometer with arm band

Figure 9 - Electrodes positioning and connection

37

 The accelerometer is connected to the equipment by a cable containing supply voltage and

signal transmission wires. The bipolar electrodes (placed on the forearm) are connected with a cable

using alligator terminals and jack to one of the four connectors present in the front panel of the

equipment. Each connector corresponds to one channel of the EMG amplifier. The reference electrode

is also connected to the equipment using a cable and an alligator terminal, but its cable is separated

from the bipolar electrodes cable and has its own connector on front panel. The images of the cables

described are shown below, on figures 10 (accelerometer) and 11 (electrodes).

Figure 10 - Accelerometer, cable and connectors

Figure 11 - Electrodes connectors

38

 Inside the equipment, electronic circuits are present for conditioning and processing signals

provided by the sensors through cables. The main circuits are the 4 channel EMG amplifier, the

filters, the microcontroller board and the Bluetooth module. The EMG amplifier increases the

amplitude of the measured signals about 1000 times. The filters are responsible for removing the

noise and make the measurements reliable for being processed. The microcontroller board is an

evaluation kit and has several functions, for example Analog to Digital conversion and serial

communication interface. This board converts the filtered signal into useful information, for example

the voltage from the accelerometer is converted into angle information. A Bluetooth

receiver/transmitter module is connected to the microcontroller board and communicates with it using

serial interface (UART). The Bluetooth module is responsible for transmitting the information of

muscular activity and angular position of the person using the equipment, to a remote computer.

 The computer that will receive the information must have a built-in Bluetooth receiver or an

external dongle capable of doing this kind of communication. In this computer, software is

responsible for receiving the information transmitted by the equipment and processing it. The result of

this processing will be generation of musical sound, which will change its characteristics dynamically

depending on the way the user are moving. Every time the user closes its hand or only the middle

finger, a sound is triggered and generated by the speakers connected to the computer. Depending on

the position of the arm when the sound is triggered, characteristics like timbre and note duration will

change. When user lifts his arm, the pitch of the musical note is raised and when it is lowered, the

pitch note decreases. By rotating the arm to the sides, the duration of note played can be extended or

reduced, with a short note played when there is no rotation and a long note played when the arm is 90

degrees rotated in relation to the relaxed position.

3.2 – HARDWARE

The hardware of an electronic device can be defined as the physical parts or what can be seen

or touched on equipment. On the equipment developed in this project, the hardware consists in the

electronic circuits and its components: the microcontroller board; the EMG amplifier and filters board

(one for each of the 4 channels); the power supply unit comprising the AC-DC board and the DC-DC

converter; the Bluetooth module and the sensors, electrodes and accelerometer.

3.2.1 – Microcontroller Board

The Equipment main electronics will be based on a commercial development board called

STM32F4 Discovery, from STMicroelectronics (figure 12). A microprocessor development board is a

39

printed circuit board containing a microprocessor and basic electronic components to make the board

work with minimal requirements and be used by the engineer to learning about that specific

microcontroller, its characteristics, how to programming and to explore about the possibilities of using

that technology on its favour, creating prototype applications for use in future commercial products.

A microcontroller is a small computer on a single integrated circuit containing a processor

core, memory, and programmable input and output peripherals. Microcontrollers are designed to

execute only a single specific task and are much smaller and simplified than microprocessors, which

are used on personal computers. Most of current electronic equipment has a microcontroller, from

micro-ovens and toys to modern cars and military jet planes, and the ideas involved from the

conception of circuit and the programming logic are about the same, with a difference on the

complexity and the way the technology is used. Microcontrollers work based on programs which are

written on a personal computer and are saved on the Flash memory of microcontroller. By this reason

the microcontroller can work without being connected to a computer and can be used inside devices,

controlling other circuits and functionalities, as an embedded system.

 The chosen board has the STM32F407VGT6 microcontroller featuring a 32-bit ARM Cortex-

M4F core, with 1 MB capacity on its flash memory and 192 KB on the RAM memory. ARM is

architecture for microprocessors and this means the way that relations and parts of internal

components are integrated and communicate. This microcontroller can be also classified as a DSP

(digital signal processor) and this means that it is a specialized microcontroller with its architecture is

optimized for the operational needs of digital signal processing, for example to work with filters and

floating point numbers (real number). This feature will be important for the necessary functionality of

the equipment.

Figure 12 - STM32F4 Discovery development board

40

The chosen board includes an ST-LINK/V2 embedded debug tool, a digital accelerometer and

digital microphone, one audio DAC (digital to analog converter), LEDs, push buttons and an USB

OTG micro-AB connector. The board communicates with computer using USB communication

protocol by a mini-USB cable and is able to receive computer programs, called firmware, created by

engineers, to accomplishing certain functionalities and work as an embedded system.

3.2.2 – EMG Amplifier

As it was necessary to use an instrumentation amplifier to amplify the EMG signal and take

advantage of its features, a model of this electronic component was chosen. After some research on

internet and analysis of the most popular amplifiers, the model chosen was the LT1167 from Linear

Technology. It is a single resistor gain programmable, precision instrumentation amplifier and has as

main features the possibility of adjusting gain between 1 to 10,000, very low gain error (0.08%), low

input bias current (350 pA maximum) which characterizes high impedance (about 200GΩ). Its CMRR

(common mode rejection rate) has a value about 125dB. Full specification can be found on datasheet

of component [16]. In datasheet, it also can be found some examples of application circuits including

a nerve impulse amplifier (page 17).

3.2.3 – Filters

 Because of the characteristics of the signal measured, it was necessary using three different

filters: a low-pass with �(= 300Hz, a high-pass with �(= 1Hz and a band rejection filter adjusted to

remove the 60Hz component, with a high Q value. The low-pass filter has the function of removing

high-frequency components, much of it noise and interference but also unnecessary information from

muscular activity (unnecessary for this application, but these components can be used for other

purposes). The high-pass filter is responsible for removing the low frequency components which may

cause error for the signal processing algorithm. These low frequency components are also considered

noise and occur because of movements of the body part being measured by the electrodes. For

example, when an arm being measured moves up and down, a drift or low frequency modulation can

be verified in the EMG signal.

 Two approaches were considered when designing the filters needed, one using passive filters

and the other using active components. The filter type used on the prototype is the passive one. The

topologies used and the components values will be detailed on next chapter.

41

3.2.4 – Power Supply Unit

The power supply unit consist of two parts: one is the AC/DC voltage converter and the other

is the DC/DC voltage converter. The first is necessary to convert the voltage from mains to a DC

value, which can be used by electronic circuits. The second is responsible to convert the output from

the AC/DC supply to voltage values calculated for the EMG amplifiers and filters work.

The AC/DC power supply was decided to be bought because the complexity of its project and

also because the focus of the project was not to design this type of circuit. The model chosen is the

ECL15UT02-S, illustrated on figure 13. The main features are 15W of power, outputs of 12V, -12V

and 5V and input voltage VAC from 85V to 264V. Full specification can be found on it technical

datasheet [17].

Figure 13 - Xppower - ac/dc power supply

The DC/DC voltage converter is responsible to transform the +12V and the -12 V into +3.3V

and -3.3V respectively. This is accomplished by using low dropout voltage regulators, as the LM317

for positive voltage and the LM337 for negative voltage. These are adjustable regulators which the

output voltage depends on the values of connected resistors.

3.2.5 – Bluetooth Module

 The Bluetooth module is responsible for transmitting the data acquired and processed by the

microcontroller’s board, from the equipment to a computer with capable of receiving Bluetooth data.

The chosen module is the HC-05, represented in figure 14. This module is a Bluetooth serial module

used for converting serial port to Bluetooth protocol. It was chosen due its simplicity of programming

and connection but also because it’s low price. The specification of this module is shown below:

42

Specifications:

● Bluetooth protocol: Bluetooth Specification v2.0+EDR

● Frequency: 2.4GHz ISM band

● Modulation: GFSK(Gaussian Frequency Shift Keying)

● Emission power: ≤4dBm, Class 2

● Sensitivity: ≤-84dBm at 0.1% BER

● Speed: Asynchronous: 2.1Mbps(Max) / 160 kbps, Synchronous: 1Mbps/1Mbps

● Size: 28mm x 15 mm x 2.35mm

● Security: Authentication and encryption

● Profiles: Bluetooth serial port

● Power supply: +3.3VDC 50mA

● Working temperature: -20 ~ +75 Centigrade

● Dimensions: 15.2x35.7x5.6mm

Figure 14 - Bluetooth module HC-05

 The dimensions of this module were suitable for being used inside the equipment alongside

with the other circuit boards and this module could also be supplied by the same power supply used

for the microcontroller’s board. The ordinary maximum distance for a reliable connection and data

transmission between two Bluetooth devices is about 10 meters, which is suitable for the application

in this project.

43

3.2.6 – Accelerometer

To accomplish the task of converting motion to sound, a special sensor called accelerometer

can be used. Accelerometer is device used to measure acceleration, i.e. how fast something is

increasing or decreasing its speed. This sensor can be used to detected the orientation of the surface it

is placed in, giving information of orientation, inclination and position over the time because its

characteristic of being affected by the acceleration of gravity. Some important features of

accelerometers that need to be taken into account when choosing a model to be used in a project is the

interface of the electronic component and the number of axis measured.

The interface can be basically analog or digital. When analog, the sensor will convert the

physical quantity, in this case the orientation of motion, into an analog voltage signal, proportional to

the variation of the first quantity. The voltage output needs to be converted into digital by the

microcontroller or other external component and be processed by the computer program, so the

information about acceleration can be interpreted and used for a task. In digital accelerometers, the

output of sensor is already a digital signal or a computer data, for example a digital word, removing

the need of using an additional ADC. The digital information goes to microcontroller and can be

directly processed by it. Relative to axes of measurement, 3 axes can be measured (X, Y and Z) and

accelerometer with different number of total axes measured can be found commercially. The number

of axes measured is related to the quantity of information the microcontroller and the application will

need about the physical variation, for example the angular position and displacement of the object

being measured.

The tilting sensor will be the ADXL-335 accelerometer (figure 15). This sensor is presented

in a breakout board and this device is an analog output interface accelerometer, which can measure up

to 3 axes and its power can be supplied by STM32 board. The choice of using this accelerometer

instead of the digital one occurred by the simplicity present of reading an analog signal using

microcontroller peripherals.

44

Figure 15 - ADXL 335 accelerometer board

 The main features [18] of this accelerometer are listed ahead:

- 3-axis sensing;

- Small, low profile package;

- 4 mm × 4 mm × 1.45 mm LFCSP;

- Low power : 350 μA (typical);

- Single-supply operation: 1.8 V to 3.6 V;

- 10,000 g shock survival;

- Excellent temperature stability;

- BW adjustment with a single capacitor per axis;

- RoHS/WEEE lead-free compliant;

3.3 – SOFTWARE

Software is the part of a device which is untouchable and can’t be seen without using a

computer screen. It’s a set of machine-readable instructions that directs the microprocessor to perform

specific operations. The engineer who creates a device is responsible to project and write a computer

program that must accomplish certain tasks and control the hardware part of device. For

microcontrollers, the program (firmware) is written in a normal computer using specific software

called toolchain. The program codes are usually written using a programming language, which consist

of a set of particular codes with defined syntax (form) and semantics (meaning). The codes are used to

control the behaviour of a machine and express algorithms precisely. Algorithm is a step-by-step

procedure used for calculation data processing and automated reasoning.

45

3.3.1 – Firmware

In this project, the firmware is programmed in C language. This programming language was

adopted because it is a high level language and this reduces the interaction of the engineering with

hardware, for example adjustment of register banks, memory allocation and initialization sequences.

The focus while programming in C is the logic applied to solve certain problem and not the intern

microcontroller details.

As mentioned previously, the microcontroller has the function of sampling and quantizing the

filtered EMG signal, which comes from the EMG Electrodes through the amplifier and filters but also

the 3 voltages from the accelerometer (one for each axis being measured). The microcontroller will

also calculate the angular information using the voltage values measured by the accelerometer and

create the data package which will be sent by Bluetooth to a computer. The microcontroller is

responsible to configure the Bluetooth module using serial transmission parameters and also

command the communication.

Next in figure 16, a flowchart is shown illustrating the operation of the firmware.

Figure 16 - firmware

46

3.3.2 – Toolchain

A toolchain is the set of programming tools that are used to create a product, which usually is

another computer program or system of programs. A simple software development toolchain consist

of a compiler and a linker to transform the source code into an executable program, libraries to

provide interfaces to the operating system and a debugger. Library is a set of commands describing a

behaviour in terms of a language and are made for be used in different programs, independent of the

program’s purpose. A debugger is a computer program that is used to test other programs. The code to

be examined run on a simulator and changes on states of microcontroller peripherals and memory are

shown. Possible errors on syntax of code or odd results can be verified by debugger and are shown to

programmer that can correct the errors and make the program work as expected.

 In this project, the firmware will be developed using KEIL MDK ARM toolchain. This

program is a complete software development environment for the microcontroller of the chosen

board. By this toolchain is possible to write a program or a system of programs in C language and

store them in memory of microcontroller. The debug tool also is very important because makes

possible to analyse the code in real time and compare simulated results with the expected working of

the machine. The free version used has the limitation of a maximum 32kb size firmware can be

developed. The user interface of toolchain is presented in figure 17.

Figure 17 - Keil MDK ARM user interace

47

3.3.3 – Application Software

The application software is responsible for converting the received data, containing values of

voltage and angles, into sound. For accomplishing that, a Python program was written. Python

language was chosen because its simplicity of programming and because useful modules can be easily

found on internet, providing functionalities needed in complex projects. Python is an object-oriented

programming language and high-level, providing features as dynamic type system and automatic

memory management.

The Python program can be divided in three main blocks: serial communication which is

responsible for connecting the program with the Bluetooth module, handle exceptions, read incoming

data and close connection when necessary; Data handling block is responsible for receiving the

information from the first block, split the data correctly and assign values for variables and Sound The

third, generation block, which contains functions to convert angles in appropriate ways and generating

the sound. It also detects when a finger moves and trigger a function, playing sound instantly.

Python scripts can be found in second part of Appendix B, with detailed comments explaining

why certain functions were chosen. The block diagram representing the application program is shown

in figure 18.

48

Figure 18 - Python Application Program

49

CHAPTER 4 – EXPERIMENTAL TECHNIQUES

 In the experimental techniques chapter, all the aspects related to the construction of the

equipment’s prototype will be presented. The study of electronic circuits, projects and simulations

will be detailed and prototyping procedures will be explained. The measurement procedures, from

electronic circuits and signals, to angular position of accelerometer, will be presented. The processes

of configuring the Bluetooth module, programming and setting up the communication between it and

computer will also be explained, the programming sequential steps and evolution will be briefly

shown as well.

4.1 – CIRCUIT SIMULATIONS

 The EMG amplifier circuit was based on the ‘nerve impulse amplifier’ example present in the

datasheet of the instrumentation amplifier chosen [16].

The circuit presented consists in the instrumentation amplifier LT1167 working alongside

with another operational amplifier, the LT1112. The resistors connected to the instrumentation

amplifier makes this stage has a gain of 10. One of the LT1112 has the function of increasing the gain

from first stage, by adding a gain of 100, making the whole circuit amplify the input signal 1000

times. The second operation amplifier has the function of creating a virtual ground for the common

mode signal and maintains the stability of the patient ground.

The characteristics of circuit present on figure 19 attend the requisites of the EMG amplifier.

The main characteristics of this circuit are the high CMRR (115dB) and high gain (1000 times) to

amplify the low amplitude EMG signals.

Figure 19 - nerve impulse amplifier

50

 The results of simulation can be found in next chapter. The components C4, R5, R9, R10 and

R11 correspond to the ADC interface. The function of this part of circuit is to add a DC offset to the

AC signal from amplifier output, allowing the signal to be measured by the AD converter present on

microcontroller board.

The next step was to design the filters for rejecting unwanted noise. As mentioned in previous

chapter, both approaches (active and passive) filters were used at designing circuits but the passive

filters were prototyped and included in the EMG amplifier board.

The passive filters use only resistors and capacitors as components. All filters will be from 1st

order, i.e. will have only on stage of capacitor and resistor. To calculate the values of components and

reach the necessary specification, online tools were used, whose can be found in [19][20][21]. The

suggested design for filters is widely used in different applications because its simplicity and

functionality. In those websites, it was necessary to input the value of cut-off frequency or a

suggestion of electronic component value. By clicking calculate button, the other calculated

components are given, in addition to a frequency response diagram and the transfer function. The

chosen cut-off frequencies for the LP, HP and notch are 300Hz, 1Hz and 60Hz respectively.

The circuit diagram was designed and simulated again on LTSPICE IV software. Filtering

circuit is shown on figure 20.

Figure 20 - Passive Filters

 In figure 20 it is represented the low pass filter (R1 and C1), the High pass filter (C2 and R2)

and the notch filter (R3, R4, R5, C3, C4, C5). C6 and R6 correspond to another high pass and is part

as the ADC interface circuit.

 The second approach was designing an active filters board. As mentioned above, this circuit

was only designed, but the board wasn’t manufactured until the moment this work was written. The

active filters should have the cut-off frequencies in comparison with the passive filters, but two other

parameters were changed. The first parameter was the gain of each filter. As in the active filter, the

51

gain is a parameter which can be chosen, the value components were calculated to provide a unitary

gain or G = 1. The second changed parameter is the order of filter and consequently its quality factor.

The topology chosen for each filter will provide a second order filter, with a sharper frequency

response.

 The topology of the low-pass and high-pass filters was chosen taking as reference the options

presented in [22]. For the mentioned filters, Sallen-Key topology of second order and unitary gain was

chosen. The values of components were calculated following the recommended procedures for this

topology. The value of constants used can be found in Butterworth table, last chapter of [22].

 For the notch filters, it was necessary to use a topology different from the options present in

[22] because these topologies couldn’t provide a quality factor as a parameter while using unitary

gain. The solution was found on an online tool [23]. The components used on this circuit provide an

central frequency of 60 Hz and Q factor equal 2.5. Figure 21 represents the circuit for the three active

filters.

Figure 21 - Active Filters (a) LP (b) HP (c) Notch

The DC/DC voltage converter is responsible to transform the +12V and the -12 V into +3.3V

and -3.3V respectively. As mentioned in previous chapter, the main component of this circuit is the

voltage regulator LM317. The circuit was based on the examples found in datasheet [24] and resistor

were calculated following instructions on it. The requirement for the voltage regulator to work is the

input voltage is at least 1.5V larger than the desired output voltage. Power dissipated must not be high

to eliminate the necessity of using heat sinks. Figure 22 illustrate the DC-DC converter circuit

schematics. Two LEDs (Light Emitting Diodes) were used to indicate the status circuit voltages. The

52

voltage supply +12V and – 12V comes from the XPPower power supply unit, which is connected to

the mains and works as a AC/DC converter.

Figure 22 - voltage regulators and LED indicators

4.2 – PROTOTYPING

After simulation the circuit diagrams were transposed to software called Cadsoft Eagle

version 6.4.0. This software is responsible to convert the electronic diagram to printed circuit board

layout. Each component has its model containing the fingerprint and pads in real size. The project of

the board consists in allocate the components in the dimension of the board in an optimized way.

After that, the software can link the components using a tool called autorouter. The software tries to

link all points but hardly can it be done. For example, if 90% of the connections are made

automatically, the engineer needs to link the unrouted pads manually. Two layers of connections (top

and bottom) were used in this board. Figures 23, 24 and 25 represent the allocation of components in

real size PCI (printed circuit board) and also the trace connections between component terminals.

53

Figure 23 - EMG amplifiers board (original size), red is top layer and blue is bottom layer

Figure 24 - DC-DC voltage converter (original size), red is top layer and blue is bottom layer

54

Figure 25 - Active Filters Board (original size), red is top layer and blue is bottom layer

 In the project of boards, it was used PCB connectors to connect the boards with wires. The

wire must be placed inside one of the connector’s input and a screw is rotated, pressing a metallic

piece inside connector. This will fix the wire connected to the connector and consequently to the PCB.

The dimension of the EMG amplifier board is 60x70mm, the same dimensions of the Active

electrodes Board. The DC/DC converter board has 70x70mm.

 The boards were manufactured by the technicians of the Electronics Engineering department,

from University of Glasgow. They transferred the printed mask to the copper board using UV

radiation. After that, the board is submitted to an etching process, which removes the unwanted

copper. Only the trace routes between pads remains with copper. The technicians also drilled the holes

of component pads, making the process of soldering electronic components the only remaining.

 After soldering components to the PCB, connectors were placed and wires connected to them.

To accommodate the electronic boards, connectors and wires, a plastic black box were used. The

external dimensions of this box are: 58.0mm (height), 102.1mm (width) and 148.0 mm (length). Four

drills were made in front panel for placing the EMG amplifiers input jack, and a fifth hole for the

reference electrode connector. Two additional smaller holes were made for voltage indicator LEDs.

On the cover of the box, two rectangular holes were made for placing the connectors of the STM32F4

discovery board. A smaller box was used for placing the AC/DC power supply. This second box

contains a LED for indication of power status and a cable is connected between the power supply and

the main equipment box. This cable contains +12V, -12V, GND and + 5V voltages. A second cable is

present in the smaller box and contains a plug for the AC voltage.

 In the left side of box, a small hole is placed and through it is possible to see the LED status

indicator from the Bluetooth module.

55

 Figures 26 and 28 represent the PCBs manufactured. The power status LED indicators are

shown in figure 27 with their respective connectors. Figure 29 shows how the connections between

amplifiers, DC/DC converter and microcontroller’s board are made internally. Figures 30 to 34 show

the equipment’s final with different views.

Figure 26 - DC-DC voltage converter board

Figure 27 - LED voltage status indicators with connectors

56

Figure 28 - EMG amplifier boards disposition and connections inside box

Figure 29 - Intern connections between amplifiers, Bluetooth module and microcontroller board

57

Figure 30 - Power Supply Unit - AC input (left) and DC output (right)

Figure 31 - Device side view with bluetooth LED status indicator (red)

58

Figure 32 - Device and power supply front view

Figure 33 - Device and power supply back view

Figure 34 - Device with cables connected (channel 2 connected)

59

4.3 – MEASURING

 For measuring the EMG amplified signals but also other important voltages of the circuits, it

was used a portable oscilloscope DSO201 nano, from the SainSmart manufacturer. The main features

of this instrument are [25]:

� Super portable and lightweight

� 2.8” color 320*240 display

� Basic 1Msps sample rate with 12bit resolution

� Various measurement markers

� Various trigger mode

� Build-in test signal

� USB chargeable battery

� Open source

� 700Mah 3.7V chargeable Lithium Battery, over 2.5 Hours battery lasting

Signals can be measured and recorded in a micro SD card. The data is transferred to the

computer using a SD card adapter and images of signals can be displayed easily in monitor.

Figure 35 is a picture of the oscilloscope used in this project.

Figure 35 - DSO 201 nano oscilloscope

60

4.4 – COMMUNICATION

 The HC-05 connection terminals are shown in figure 36. The STATE pin is normally

connected to a LED and blinks depending on the status of Bluetooth connection. VCC and GND pins

are used to provide supply voltage to module and 3.3V is used in this project. The KEY pin is

normally connected to GND but when the module is at configuring mode, this pin is set to VCC. RXD

and TXD pins are responsible for the communication with microcontroller and are connected to TX

(PB6) and RX (PB7), respectively.

 While in configuration mode, a program communicates with module and sends AT

commands. These commands are responsible for changing the firmware present in module, and

change parameters as name of Bluetooth module as password for pairing.

 To connect this module with a computer, a paring operation must be done. In this operation,

the computer identifies the Bluetooth module by its name and asks for a password. The password can

be the default one programmed on Bluetooth firmware or a modified one. After entering the correct

password in computer, the two devices are paired and data transmission can occur.

Figure 36 - Bluetooth module terminals

UART was configured to transmit 8 bits of data, with no parity and 1 stop bit, using a data

rate of 115200 baud. This value was calculated based on the amount of information necessary to be

transmitted.

Information that will be transmitted from the equipment to computer by Bluetooth is stored in an

array of characters and has the following form: [aaaaxbbxccxddxee\n]. In this array, aaaa represents

the voltage detected by the electrodes and amplified by EMG amplifier board, for example 1204

represents 1.204V. Next, bb, cc and dd represent three angles (theta, psi and phi), in degrees, as

explained in previous sections. The double e is a generic command which for example can represent a

flag (01 or 05 or 11 are examples). Each x is a data separator which will be used in the next program.

The last is a special character ‘\n’ called line feed. This character is used to represent the end of a line

or end of transmitted data.

61

4.5 – PROGRAMMING

 The experimental techniques for programming the firmware and the application software

were basically the same. It consisted on determining what functions would be necessary for

accomplish the main requisites of project and studying lots of code examples whose can be found on

internet. After studying the examples, the code started being written and was tested.

The development of firmware present on microcontrollers board started by choosing the

appropriate toolchain, studies on the manufacturer’s (STMicroelectronics) example codes and

templates and then writing the firmware.

The choice of Keil MDK ARM as a toolchain was made by comparing this software with

others of same type suggested by manufacturer. The chosen program presented as advantage, the

possibility of using a debugger tool, the fact of have full functionality, with a limitation on code

length of 32kB, which is enough for application. Numerous examples of projects and tutorials were

available and would help on understanding the toolchain and how to work with its functions. The

software also was free and capable of working with the STM32F4 Discovery evaluation board.

The familiarisation with microcontroller and development board is an essential step necessary

before the implementation of functionalities required by a project. Example codes and application

notes are usually provided by any development board manufacturer to help the user get started quickly

with their product. On example codes, preconfigured functions and libraries can be found and they

help the user to understand how that board and microcontroller works and the knowledge acquired by

studying examples, can be used by the engineer or programmer to think the best ways of

programming that device to execute the functions needed. Application notes are also helpful because

they present detailed description of case studies using the microcontroller or board. The problems

described on applications notes can have the same solutions of problems that could happen on the

process of creating a new application for a device.

For the equipment developed in this project, some specific tasks should be accomplished,

including converting the signal from the accelerometer into a signal that can be processed by

microcontroller, processing the angle information and the EMG signals, and send information via

serial communication. Some peripheral firmware examples were used and the most helpful studied for

creating the firmware will be explained.

The first program studied was the GPIO toggle example. This program has the function of

making the four LEDs present on board to blink from times to times. By studying this program was

possible to understand how to configure de LED’s on board using built in functions and how to

creating a delay function, using the timer of microcontroller.

After that, an example called EXTI was studied. This program shows how to configure an

external interrupt line. An interruption is a function or feature present on most microcontrollers and

62

this function can make the microcontroller stop of executing an instruction, execute an important

instruction when required, and return executing the previous instruction. The useful information about

this program was to learn how to configure the external interruption that could be used to make

buttons activating specific functions of the program.

The next programs were the related to analog to digital conversion. It was possible to learn

how to convert an analog signal connected to the pin of microcontroller into digital information,

which could be processed. The variation of the analog quantity, in this case a voltage signal was made

using a potentiometer. The potentiometer is an electrical resistance that can have its value changed by

rotating a knob. When a fixed voltage is applied to its first and last terminals, a varying voltage can be

measured on the middle terminal. The middle terminal was connected on the correct pin of

microcontroller. The maximum voltage that can be read by microcontroller is 3.3 V and this value is

because the power supply used for the board.

From the knowledge obtained from studying example codes, it was possible to write the

firmware with all its functionalities. The process of developing the firmware was making functions,

testing of function isolated, joining functions and testing integration.

The process of programming the application software was basically the same used for the

firmware: study of examples, write basic functions, test smaller programs, join programs creating new

functions and modules, searching for required modules on internet and test of functionalities and

integration.

 The application program consists on the integration of seven python scripts. The name of each

script and its function is listed below:

app_gui.py: This script is responsible to generate the graphical interface. Improvements can be done

in future to make interface more friendly and interactive.

app_main.py: Main program. This program is responsible to execute and call the other files, assign

the main variables and play sound.

app_serial.py: Class for receiving data. This class is responsible to configure the serial port, open

connection, receive data and close connection.

app_manage_data.py: Data handling class. This class will split the values of the received string

accordingly to the protocol.

app_processing.py: Functions to convert data received to appropriate values.

63

app_sound.py: This script is used to generate sound using Python Musical and Pygame modules.

app_setup.py: This script is used to generate the EXE file from python script.

64

65

CHAPTER 5 – RESULTS

It shall be shown in this chapter the results obtained from the final working device. The

evaluation of angle measurements will be compared for the analog and digital versions. The measured

EMG signals will also be presented as images from the oscilloscope. Circuits simulation will be

presented for illustrate further discussion.

5.1 - ELECTRONIC CIRCUITS SIMULATION

As mentioned previously, the simulations were made by software, using the LTSPICE IV

software. The component models were found on the standard components library, which comes with

the main program. To draw the circuit, it is needed to choose the necessary components in the

components library list place them on the screen, assign values for the components which need it, and

then draw wires connecting the terminals.

After running the simulation of the circuit shown in figure 19, the following graphs were

generated. Figure 37 represents the source signal, generated by the difference of power supplies V3

and V4, with 100Hz and 53Hz respectively, and 100µV amplitude. Its maximum amplitude is nearly

the value from the output of electrodes and the frequencies are two components of the EMG signal

spectrum. Figure 38 represents the signal after the amplification of the instrumentation amplifier. The

gain of this first stage is 10. The signal with total amplification and first filtering can be found in

figure 39. At this stage, the total gain is about 1000 and a transient behaviour can be verified. The

amplitude varies in a range of 400mV. All signals can be compared in figure 40, as they are presented

in the same graph just to give a notion of the amplification process.

Figure 37 - signal source simulating EMG signal

66

Figure 38 - signal after instrumentation amp, gain = 10

Figure 39 - signal after second stage, gain = 1000 and filtered

67

Figure 40- output signal (red), signal after first stage (blue) and from source (black)

 Figures 41, 42, 43, 44 and 45 represents different frequency responses for the filters of the

passive filters block (figure 20). The circuit’s schematic was generated the same way as the amplifier

circuit, by placing components on screen and assigning values for it. After running, it is necessary to

click in the point which the measurement is required to be taken. Figure 41 represent the signal in the

point between R1 and C1 and is the signal filtered by a low pass filter, with about 300Hz as cut-off

frequency. The previous measured signal, after being filtered by a high pass filter, is shown in figure

42. The cut-off frequency in this stage is 1Hz and signal is taken between C2 and R2. As all the

frequency response graphs, y axis represents the amplitude in dB and x axis is the frequency in Hz.

The trace-line and the right side of the y-axis represent the phase response. The effect of the addition

of the 60Hz notch filter is represented in figure 43. Figure 44 represents the effect of all filters, with

the addition of another high-pass filter with cut-off frequency 1Hz, present on the ADC interface

circuit. In figure 45 is possible to check all the frequency responses in the same graph. The colours

dark-blue, black, light-blue and red represents the 1st, 2nd, 3rd and final stages of amplification

respectively.

68

Figure 41 - LP fc = 300Hz frequency response

Figure 42 - LP(300Hz) + HP(1Hz)

69

Figure 43 - LP, HP and Notch (60Hz) frequency response

Figure 44 - all filters frequency response

70

Figure 45 - frequency responses in the same graph

 The active filters present on figure 21 were simulated and their frequency response is show in

figure 46. The frequency parameter of each filter is has the same value of the equivalent passive filter,

i.e. LP (300Hz), HP (1Hz) and Notch (60Hz).

Figure 46 - Active Filters frequency response

71

5.2 - EMG SIGNAL MEASUREMENT

In this section, the signals measured from the PCB outputs are shown, in the format of

oscilloscope measurements. All measurements were made by placing the electrodes correctly on the

arm of the user as explained previously. The signals were measured using a DSO-201 portable

oscilloscope, with 1x amplification probe. The electrodes were placed on the downside of the arm, 10

cm distant from the wrist and 2 cm apart each other. The reference electrode was placed on the left

thigh.

The resting arm signal is shown in figure 47. The arm was stretched with the palms facing

down. Figure 48 represents the EMG signal amplified, caused by the flexion of the thumb. The

flexion was made by continually closing the finger and returning to the rest position. Figures 49, 50,

51 and 52 represent the measurement of the same procedure for the other fingers.

Figure 47 - arm resting position

Figure 48 - thumb flexing

72

Figure 49 - index finger flexing

Figure 50 - middle finger flexing

Figure 51 - ring finger flexing

73

Figure 52 - little finger flexing

The effect of filters can be verified by comparing figures 53 and 54. They represent not an

EMG signal, but an ECG signal measured by the device. The reason of measuring this signal was the

simplicity of being measured while operating the measurement instruments, as the hands are free

because electrodes and wires are placed on chest. Note that the ECG signal is not used in this project,

but the device is capable of measuring it and sampling for post processing and future use. Figure 53

represents the signal without filtering and figure 54 represents it filtered.

Figure 53 - ECG signal not filtered

74

Figure 54 - ECG signal filtered

The signal with the effect of ADC interface circuit, i.e. the addition of a DC offset and high

pass filter, is shown in figure 55. The signal is an ECG, again used only to exemplify the application.

Figure 55 - Signal with DC bias

5.3 – BLUETOOTH COMMUNICATION

After configuring the serial communication settings by programming the microcontroller

board and connecting the Bluetooth module, the communication could be verified by using a terminal

simulation program, as the RealTerm. First it was needed pairing computer with Bluetooth module. A

serial port was created and the COM5 name was assigned to it. On RealTerm software, it was needed

to configure the baud rate and select the correct serial port. After that, the transmitted data is shown

75

on the screen in real time. Figure 56 is a screenshot of the RealTerm software screen while receiving

the data from the Bluetooth module.

Figure 56 - RealTerm screenshot

5.4 – ACCELEROMETER ANGLE MEASUREMENTS

The accelerometer angle measurements were made by two ways: the analog and the digital

one. In the analog version, after positioning the sensor, the voltage was measured on the pin

corresponding to each axis. The values were converted to angles using the formulas presented in

figure 3. The digital measurements were taken directly of the debugger of the toolchain, using the

76

variables of the microcontroller board program. The digital angles are calculated by applying the same

formulas of figure 3 but the voltage values are results of analog-to-digital conversion.

Positions used for measurements are presented in figure 57 and the corresponding angle

measurements are presented in figure 58.

Figure 57 - positions for testing – top view

Angle Measurements

Analog Digital Error

Position

θ

(angle1)

Ψ

(angle2)

Φ

(angle3)

θ

(angle1)

Ψ

(angle2)

Φ

(angle3)

θ

Ψ

Φ

1 0° 0° 0° 1.002° 0° 0.808° 1.002° 0° 0.808°

2 46.0416° 0° -46.0416° 48° 1.216° -46.04° 1.9584° 1.216° 0.0016°

3 3.0413° 50.2919° -50.4561° 2.410° 47.3° -51.21° 0.6313° 2.9919° 0.7539°

4 -47.0368° 2.9963° -47.1938° -44.85° 2.52° -48.42° 2.1868° 0.4763° 1.2262°

5 -1.5282° -46.0598° -46.1005° 0.918° -42.053° -47.85° 2.4462° 4.0068° 1.7495°

6 0° 3.0665° 3.0665° 0.255° 1.655° 5.06° 0.255° 1.4115° 1.9935°

7 0° -1.0230° -1.0230° 0.412° 0° -2.102° 0.412° 1.023° 1.079°

8 61.3895° 0° -61.3899° 68.052° 1.23° -57.865° 6.6625° 1.23° 3.5249°

Figure 58 - angle measurement values

77

The angles that effectively work for generating sounds are presented on figure 59. They are

denoted as angle A and angle B but correspond to twice the absolute value of angles 2 and 1

respectively.

Figure 59 - angles used to generating sound

 A simulation of the equipment functioning was also carried out using a 3D model of a hand.

This simulation made using the Blender software. Blender is free and open-source 3D computer

graphics software, visual effects, 3D models and interactive 3D applications. Python scripting is also

possible when using Blender. A script can be written and included in the software alongside other

modules. These scripts can be used for controlling a 3D model for example. In this project, the angle

measured by the accelerometer is transferred to the computer using Bluetooth communication

protocol and a Python program is responsible for receiving and processing this data. The same script,

with some adaptation, can be included in Blender and the angle information are used do rotate the 3D

model of a human hand. The script can also use the information of muscular activity measured by the

electrodes to trigger an animation of the hand opening and closing, accordingly to the movements of

the person using the equipment. Figures 60, 61 and 62 show the simulation running on Blender

environment. The 3D hand model was downloaded from [26].

78

Figure 60 - 3D model simulation - hand down

Figure 61 - 3D model simulation - hand up

79

Figure 62 - 3D model simulation - hand closed

 The final result of the Python programming was the application program itself. An executable

file was created from the scripts, so there is no need of having Python installed on the computer where

the application program is running and the equipment is connected. Figures 63 to 67 represent the

screens in the order they appear when the application program is running.

Figure 63 - Application Icon

80

Figure 64 - Application initial screen

Figure 65 - Connect command screen

Figure 66 - Information Screen

81

Figure 67 - Received data screen (negative colours)

82

83

CHAPTER 6 – DISCUSSIONS

In this chapter, the evaluation of results presented is done and an analysis over factors that

could have influenced results will be considered.

The results from section 5.1 were made by the circuit simulation software. The simulation

worked as expected since the models used were correct and the circuit diagram was drawn by

following the instructions of the datasheet. For the amplifier circuit, the gain was 1000 and the signal

successfully was amplified and filtered as expected. Even with a high gain value, the output isn’t

saturated because the maximum amplitude is smaller than the power supply of amplifiers (3.3V).

Considering the DC offset, which has a value of half of the amplifier source, i.e. 3.3V/2 = 1.65V, this

value allows the output not being saturated and consequently, all amplitude values of the EMG signal

can be read by the microcontroller. If other values of R9 and R5 in circuit of figure 6 are used, the

calculation must consider the maximum permitted output value, 3.3V. For passive filters circuit, it can

be noticed the effect of each filter by looking at the frequency response diagrams, in figures 41 to 45.

At the cut-off frequency, it is expected to each filter has attenuation of 3dB but as the effect of filters

is added to the previous filter, the attenuation is also summed. The final response of all filters together

has maximum amplitude which is approximately 5dB attenuated in comparison with the raw signal.

The attenuation occurs in the respective cut-off frequency of each filter, presenting satisfactory results

but it can be noticed the notch filter isn’t very sharp, i.e. it may filter some important frequencies near

its cut-off frequency. The active filters presented a unitary gain and a frequency response

corresponding to the desired values. Considering the circuit uses components with commercial values,

the frequency is not much different from the frequency response using exact calculated values of

components.

Section 5.2 shows that the EMG signal can be measured successfully. The signal from the

electrodes is amplified by the amplifier circuit and the result of a finger motion, for example, can be

measured by an oscilloscope. The signal from electrodes couldn’t be measured because its amplitude

is very small and the oscilloscope is not sensible enough to detect it. In resting position, it can be

noticed the interference from 60Hz noise, which is not totally filtered by the passive filters circuit. For

the other finger motions, the signal was acquired successfully and, as the electrodes were placed on

the middle of arm, the strongest signal measured corresponds to the motion of middle finger. The

position of electrodes influences the amplitude of the measured EMG signal. Figures 53 and 54 show

the effect of the attenuation caused by the passive filters. The maximum amplitude of the measured

signal is about 1.25V for the raw signal and 0.5V for the filtered signal. This attenuation corresponds

to a value of -7.95dB which is slightly different from the simulated version (about -7dB). Figure 55

shows the signal with the DC offset applied. The average voltage is about 1V and the expected value

84

was 1.65V. This means that the circuit must be draining current at some point or the measurement

method was incorrect, with the reference terminal placed wrongly.

The Bluetooth communication module worked as expected. The transmitted data is shown in

terminal software with the settings chosen correctly. The transmission rate of 115200 baud is enough

for this application but if more data would be transmitted per second, the baud rate must be calculated

again and changed even in microcontroller board program and in terminal software.

Analysing the angle measurements, it can be noticed in figure 58 the digital and analog

measurements present approximately the same values. The difference may be caused by bad

calibration of analog to digital converter or rounding error in formulas. All the measured angles are

correct and follow the position represented in figure 27. Angle A and angle B results are not show in

table because are direct result from a multiplication of the corresponding angle for 2, and an

approximation to an integer value.

To successfully integrating Blender simulation software and the equipment’s application

software, it was needed to use a socket programming approach. By using this technique, it was

possible to run both software at same time and see on a computer screen, the 3D model of a hand

rotating, following the real motion of the user’s arm.

The developed software present in computer worked as expected. The user interface was self-

explanatory and had an intuitive way of using. The program could receive the data from the

equipment using the Bluetooth receiver from the computer where it was installed process it and apply

the angular and muscular activity on the generation of sound. The sound generated was in the form of

pulse of square wave, with a certain duration and pitch note.

For effect of comparison, the results obtained from the developed electromyograph weren’t

compared with measurements of commercial electromyograph equipment. In respect of the

application described in this work, the developed equipment had an enough performance, but for

some other application, for example diseases diagnosis, it may not provide enough signal information.

85

CHAPTER 7 – CONCLUSIONS

The equipment developed in this project accomplished the desired aims. Music could be

created by sensing the motion of the player and the sound generation was triggered after detection of

finger flexion, by an EMG signal amplifier. The inclination of the sensor placed in the wrist in one

direction changes the frequency of the sound, in a range of 440 to 880Hz. This range can be changed

on the Python program but not when application is running. By tilting the accelerometer in the second

way, the duration of generated sound is changed. When the hand is positioned horizontally, the

duration is maximum and equal to 1 second. This parameter can also be changed in code. By turning

the wrist, the duration of note decreases until no note is played. The sound generation is triggered by

flexing the finger and depending on the position of electrodes one of the fingers will generate a

stronger signal than the others. The correct positioning of the electrodes is essential for the good

functioning and detection of the muscular activity or finger flexing. The Python application runs as

expected. The generated sound has a fixed timbre as it is detected by the same function of the Python

module every time. The device can be played generating sounds which changes its properties

depending on the actions of the player.

Regarding to the hardware chosen for developing this equipment, considerations can be taken:

the selected microcontroller board (STM32F4 discovery) presented enough processing capacity for

performing the functions of the equipment, for example sampling the EMG signals, converting it to a

digital version with enough resolution, acting as a host regarding the wireless communication and

calculating all the necessary parameters, especially using floating point units. No delay could be

verified in any stage where the microcontroller’s board was present. As the idea of the project is to

add more complex signal processing functions, the board will continue being used, as its architecture

has some special features for DSP, but in the present application, a simpler microcontroller and board

could be used, for example a homemade PCB using a Microchip PIC microcontroller, considering the

board and microcontroller has the minimum peripherals needed (ADC, UART, Timers).

Still commenting on hardware used, the manufactured EMG amplifier performed well, as

they could amplify the biosignals, as demonstrated on results chapter. An improvement which can be

done is to change all the electronic components for their SMD package version. This would reduce

considerably the dimensions of the PCB and also the size of box for allocating all circuit modules.

The passive filters present on the EMG board were able to filter the amplified EMG signals

and transmit it to the microcontroller board but, as show in result sections, the caused an attenuation

on the filtered signal in relation to the not-filtered signal. This attenuation is not a problem but is

unnecessary as other type of filters can reduce this effect. For changing in this characteristic, the

passive filters can be turned off by using the jumpers present on board correctly, and then connecting

the EMG board output to the active filters board, which was also designed and shown in this work. As

86

the gain of active filters is unitary, no attenuation would be verified in the pass band, only where it is

really necessary, for example in the cut-off frequency.

Considering the application software, the results obtained, as data transmission and sound

generation, overcome expectations. The application could successfully open a connection with the

equipment, using Bluetooth protocol, receive information and the close the connection, preventing

problems of pairing in future connections. The timbre used by generating the sound came from a

native python module and was based on Windows OS system sounds. The sound characteristics could

be modified as explained during the work but the timbre can be improved. One possible way of

improving the timbre is to interfacing the application program with synthesizer software. Many open

source software can be found on internet or even developed using the appropriate programming,

signal processing and music concepts. The integration can be based on MIDI protocol, for example.

In general, both hardware and software accomplished their goals successfully and their

integration provided the necessary functioning of a new concept of electronic equipment, which has

potential use in many areas, for example entertainment and medical.

Future improvements can be made as the hardware is fully functional and tools for

programming are already implemented. As the device includes a 4 channel EMG amplifier, more

electrodes can be connected to perform a full signal acquisition of signals in different parts of arm.

The signals can be sampled and processed with a proper algorithm for a complex detection of which

movement is being performed. The third axis of accelerometer can also be added for controlling

another property of the generated sound. The sound generation program can be changed to produce

more rich sounds in terms of timbre. For last but no less important, passive electrodes can be changed

by active electrodes. This would remove the necessity of using conductive gel and discarding the

electrodes after using. The usage of information obtained by the equipment can also be expanded to a

number of other applications. For example, the motion of user can be used to control a character in

video-games or even control a prosthesis used by a person who lost a member, but is still capable of

send nervous impulses through muscles. The equipment can also measure other signals with not many

alterations on hardware and software. ECG and EEG (electroencephalogram) could also be measured

and used in any application.

87

BIBLIOGRAPHY

[1] FLINDERS UNIVERSITY; Biomedical Engineering [on-line]. [2013-10-19]. Available from:

< http://www.flinders.edu.au/science_engineering/csem/disciplines/bme/>.

[2] PEB – UFRJ; Definindo Engenharia Biomédica; Engineering [on-line]. [2013-10-20].

Available from: <http://www.peb.ufrj.br/eb.htm >

[3] KAMEN, GARY. Electromyographic Kinesiology. In Robertson, DGE et al. Research

Methods in Biomechanics. Champaign, IL: Human Kinetics Publ., 2004.

[4] R S KHANDPUR; Handbook of Biomedical Instrumentation, Second Edition, Tata McGraw-

Hill, 2003.

[5] MARK MAXWELL; 7 Top reasons why music is so important. [on-line]. [2013-07-12].

Available from:<http://ezinearticles.com/?7-Top-Reasons-Why-Music-is-So-

Important&id=566580 >.

[6] DOTAN; The importance of music in your life. [on-line]. [2013-06-30]. Available from:

<http://www.pianoacrossamerica.com/the-importance-of-music-in-your-life/ >

[7] MARCELO B. JOAQUIM, M.A. ROMERO; SEL 346 – Comunicação Digital I – lecture

notes, 2013.

[8] B. H. SUITS; Physics of Music – Notes, Physics Department, Michigan Technological

University, (copyright 1998-2013). [on-line]. [2013-04-02]. Available from:

<http://www.phy.mtu.edu/~suits/NoteFreqCalcs.html >

[9] UNKNOWN AUTHOR; Chapter 2 - Accelerometer Theory & Design. [on-line]. [2013-07-

12]. Available from:

<http://shodhganga.inflibnet.ac.in/bitstream/10603/2272/8/08_chapter%202.pdf>

[10] ANALOG DEVICES; Using accelerometer for Inclination Sensing. [on-line]. [2013-01-16].

Available from: <http://www.analog.com/static/imported-files/application_notes/AN-

> 1057.pdf

[11] TASSINARY; CACIOPPO (2000); “The Skeletomotor system: surface electromyography”.

In Cacioppo, John T.; Tassinary, Luois G.; Bernston, Gary G. Handbook of

Psychophysiology (Second ed.) Cambridge: Cambridge University Press.

[12] UNIVERSITY OF GLASGOW; EMG - Biosignatures signal processing – Lecture Notes,

2013.

[13] WILLIAM C. SHIEL JR; Electromyogram (EMG). [on-line]. [2013-03-27]. Available from:

< http://www.medicinenet.com/electromyogram/article.htm >

[14] JOSÉ HIGINO CORREIA, JOÃO PAULO CARMO; Introdução à Instrumentação Médica –

Editora Lidel, 2013.

88

[15] GEOFREY BROWN; Discovering the STM32 Microcontroller, 2012.

[16] LINEAR TECHNOLOGY; Single Resistor Gain, precision instrumentation amplifier

Datasheet. [on-line]. [2013-05-18]. Available from:

<http://cds.linear.com/docs/en/datasheet/1167fc.pdf>

[17] 5-30 Watts ECL Series from XPPOWER [on-line]. [2013-06-10]. Available from:

<http://www.xppower.com/pdfs/SF_ECL05-30.pdf>.

[18] ANALOG DEVICES; ADXL 335 Datasheet. [on-line]. [2013-02-09]. Available from:

<http://www.analog.com/static/imported-files/data_sheets/ADXL335.pdf>

[19] RC low-pass filter design tool from OKAWA Electric Design. [on-line]. [2013-05-12].

Available from: <http://sim.okawa-denshi.jp/en/CRlowkeisan.htm>.

[20] RC high-pass filter design tool from OKAWA Electric Design.

 [on-line]. [2013-05-12]. Available from: <http://sim.okawa-denshi.jp/en/CRhikeisan.htm>

[21] Twin-T Notch filter design tool from OKAWA Electric Design.

 [on-line]. [2013-05-12]. Available from: <http://sim.okawa-denshi.jp/en/TwinTCRkeisan.htm>

[22] BRUCE CARTER, RON MANCINI; Op Amps for Everyone, Newnes, 2009.

[23] CHANGPUAK LABORATORY; Active Twin T – Notch Filter Calculator. [on-line]. [2013-

06-01]. Available from: <http://www.changpuak.ch/electronics/Active_Notch_Filter.php>.

[24] TEXAS INSTRUMENTS; 3-Terminal Adjustable Regulator. [on-line]. [2013-04-22].

Available from: <http://www.ti.com/lit/ds/symlink/lm317.pdf>.

[25] SainSmart ARM NANO DSO201 Oscilloscope Mini Storage Digital Pocket-Sized Portable

Kit. [on-line]. [2013-09-20]. Available from: < http://www.sainsmart.com/sainsmart-arm-

nano-dso201-oscilloscope-mini-storage-digital-pocket-sized-portable-kit.html>.

[26] DENNISH2010; Rigged Hand. [on-line]. [2013-10-23]. Available from:

<http://www.blendswap.com/blends/view/66039>.

89

FIGURES REFERENCE

Figure 1 - Accelerometer triple axis inclination calculation

ANALOG DEVICES; Using accelerometer for Inclination Sensing . [on-line]. [2013-01-16].

Available from: < http://www.analog.com/static/imported-files/application_notes/AN-

1057.pdf>

Figure 2 - angles for independent inclinantion sensing

ANALOG DEVICES; Using accelerometer for Inclination Sensing. [on-line]. [2013-01-16].

Available from: < http://www.analog.com/static/imported-files/application_notes/AN-

1057.pdf>

Figure 3 - floating electrode

[on-line]. [2013-10-25]. Available from: <http://www.global-medical-solutions.com/Skintact-

FS-TC110up-Foam-ECG-Gel-Electrode_p_135.html>

Figure 5 - Ideal frequency response of (a)low-pass filter (b) high-pass filter (c)band pass filter (d)

band rejection filter

[on-line]. [2013-09-26]. Available from: <-line]. [2013-01-16]. Available from:

<http://cnx.org/content/m19836/latest/?collection=col10667/latest >

Figure 6 - data frame

[on-line]. [2013-03-05]. Available from:

<http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter >

Figure 12 - STM32F4 Discovery development board

[on-line]. [2013-01-20]. Available from:

<http://www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/PF252419 >

Figure 13 - Xppower - ac/dc power supply

 [on-line]. [2013-07-09]. Available from: <http://www.xppower.com/pdfs/SF_ECL05-30.pdf >

Figure 15 - ADXL 335 accelerometer board

[on-line]. [2013-01-16]. Available from: <http://www.evilmadscientist.com/2009/basics-

updated-using-an-accelerometer-with-an-avr-microcontroller/>

Figure 35 - DSO 201 nano oscilloscope

[on-line]. [2013-10-13]. Available from:

<http://www.thebgastation.com/index.php?route=product/product&product_id=344>

Figure 36 - Bluetooth module terminals

[on-line]. [2013-05-01]. Available from: <http://www.fasttech.com/product/1129200-jy-mcu-

hc-05-bluetooth-wireless-serial-port-module>

90

91

Appendix A

EMG amplifier:

Schematics:

Figure 68 - instrumentation amplifiers and gain amplifier

Figure 69 - Filters: LP (300Hz), HP (1Hz) and Notch (50Hz)

92

Figure 70 - ADC interface: DC offset and HP filter (1Hz)

Board:

Figure 71 - EMG amplifiers board (original size), red is top layer and blue is bottom layer

93

DC-DC voltage converter:

Schematics:

Figure 72 - voltage regulators and LED indicators

Board:

Figure 73- DC-DC voltage converter (original size), red is top layer and blue is bottom layer

94

Active Filters Board:

Schematics:

Figure 74 - voltage regulators and LED indicators

Board:

Figure 75- Active Filters Board, red is top layer and blue is bottom layer

95

Appendix B

Firmware code:

main.c

/**
 **
 * @file Handheld Sound Generator/main.c
 * @author Leonardo Mariano Gomes
 * @version V2.0.0
 * @date 30-July-2013
 * @brief Main program body.
 **
 * @attention
 *
 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
 *
 * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
 **
 */

/* Includes --*/
#include "stm32f4_discovery.h"
#include <stdio.h>
#include <math.h>
#include "stm32f4xx_it.h"
#include <string.h>
#include <main.h>

/** @addtogroup STM32F4_Discovery_Peripheral_Examples
 * @{
 */

/** @addtogroup ADC_ADC1_DMA
 * @{
 */

/**
 * @brief Main program
 * @param None
 * @retval None
 */
int main(void)
{
 /*!< At this stage the microcontroller clock setting is already configured,
 this is done through SystemInit() function which is called from startup
 file (startup_stm32f4xx.s) before to branch to application main.
 To reconfigure the default setting of SystemInit() function, refer to
 system_stm32f4xx.c file

 */

 /* Configures User Button */
 STM_EVAL_PBInit(BUTTON_USER, BUTTON_MODE_EXTI);

 STM_EVAL_LEDInit(LED4); //green
 STM_EVAL_LEDOn(LED4);

 /* ADC1 configuration ***/
 /* - Enable peripheral clocks */
 /* - DMA2_Stream0 channel2 configuration */
 /* - Configure ADC Channel12 pin as analog input */
 /* - Configure ADC1 Channel12
 */

 ADC1_CH12_DMA_Config();
 init_USART1(BT_BAUD);

 /* SysTick end of count event each 1ms */

96

 if (SysTick_Config(SystemCoreClock / 1000))
 {
 /* Capture error */
 while (1);
 }

 /* Start ADC1 Software Conversion */
 ADC_SoftwareStartConv(ADC1);

 /* Get accelerometer reference position voltages */
 x_ref = acc_ref(4);
 y_ref = acc_ref(5);
 z_ref = acc_ref(6);

 inittim3();

 while (1)
 {

 //strcpy(buf,create_packet(finger, angle1, angle2, angle3, mode_flag));
 //UARTSend(buf, sizeof(buf));

 strcpy(prot,create_protocol(ADC1ConvertedVoltage[0], angleA, angleB, angle3, mode_flag));
 UARTSend(prot, sizeof(prot));

 }
}

/*
* Sampler function makes the sampling of the input signals and stores it in different arrays
*/

void sampler(void)
{

 for (i=0;i<n_channels;i++)
 {
 /* convert the ADC value (from 0 to 0xFFF) to a voltage value (from 0V to 3.0V)*/
 ADC1ConvertedVoltage[i] = ADC1ConvertedValue[i] *3000/0xFFF;
 }

 ch1_buf[sample] = ADC1ConvertedVoltage[0];
 ch2_buf[sample] = ADC1ConvertedVoltage[1];
 ch3_buf[sample] = ADC1ConvertedVoltage[2];
 ch4_buf[sample] = ADC1ConvertedVoltage[3];

 sample++;

 if (sample>n_samples)
 {
 sample = 0;
 }

 x_voltage = ADC1ConvertedVoltage[4];
 y_voltage = ADC1ConvertedVoltage[5];
 z_voltage = ADC1ConvertedVoltage[6];

}

/*
 * Get the reference voltage for the required accelerometer axis
 */

int acc_ref(uint8_t channel)
{
 uint32_t v_ref = 0;

 for (i=0; i<50; i++)
 {
 ADC1ConvertedVoltage[channel] = ADC1ConvertedValue[channel] *3000/0xFFF;
 v_ref = ADC1ConvertedVoltage[channel] + v_ref;
 Delay(1);
 }
 v_ref = (float)v_ref/50;

return v_ref;
}

/*
*calc_angles calculates the 3-axis accelerometer angles
*/
void calc_angles(void)
{

 const float angle_const = 180/3.1415;

 double x_real = 0;
 double y_real = 0;
 double z_real = 0;

 x_real = abs(x_voltage - x_ref);
 y_real = abs(y_voltage - y_ref);
 z_real = abs(z_voltage - z_ref);

 angle1 = atan(x_real/sqrt((y_real*y_real)+(z_real*z_real)));
 angle1 = angle1*angle_const;

97

 angle2 = atan(y_real/sqrt((x_real*x_real)+(z_real*z_real)));
 angle2 = angle2*angle_const;

 angle3 = atan((sqrt((x_real*x_real)+(y_real*y_real)))/z_real);
 angle3 = angle3*angle_const;
}

/*
*Adjust the angles of accelerometer to be used in human arm, as arguments of application program
*/
int angle2arm(float angle)
{
 int angle_arm;

 angle_arm = (int)(2*angle);

 if (angle_arm>90)
 angle_arm = 90;

 return angle_arm;
}

/**
* @brief Method to create data packet.
* @param custom parameters
* @return returns packet buffer
*/
char * create_packet(int par1, float par2, float par3, float par4, int par5)
{
 int n;
 char data_end = '\0';
 char title[] = "Data Packet: \r\n";
 static char arr [150];

 n = sprintf (arr, "\n %s", title);
 n += sprintf (arr+n, " - Detected Finger: %d\r\n", par1);
 n += sprintf (arr+n, " - X-axis angle: %f\r\n", par2);
 n += sprintf (arr+n, " - Y-axis angle: %f\r\n", par3);
 n += sprintf (arr+n, " - Z-axis angle: %f\r\n", par4);
 n += sprintf (arr+n, " - Mode: %d\r\n", par5);
 n += sprintf (arr+n, "%c", data_end);

 return &(arr[0]);
};

/**
* @brief Method to create protocol and data package.
* @param finger emg voltage, angleA(angle1), angleB(angle2), angle3(empty for now), command
* @return returns packet buffer
*/
char * create_protocol(int f_voltage,int angle1,int angle2,int angle3,int command)
{
 int n;
 static char arr [20];
 char data_end = '\n';
// Data for testing communication
// f_voltage = 1234;
// int angle1 = 45;
// int angle2 = 38;
 angle3 = 10;
 command = 1;

 if (f_voltage<10)
 n = sprintf (arr, "000%dx", f_voltage);
 else{
 if (f_voltage<100)
 n = sprintf (arr, "00%dx", f_voltage);
 else{
 if (f_voltage<1000)
 n = sprintf (arr, "0%dx", f_voltage);
 else
 n = sprintf (arr, "%dx", f_voltage);
 }
 }

 if (angle1<10)
 n += sprintf (arr+n, "0%dx", angle1);
 else
 n += sprintf (arr+n, "%dx", angle1);

 if (angle2<10)
 n += sprintf (arr+n, "0%dx", angle2);
 else
 n += sprintf (arr+n, "%dx", angle2);

 if (angle3<10)
 n += sprintf (arr+n, "0%dx", angle3);
 else
 n += sprintf (arr+n, "%dx", angle3);

 n += sprintf (arr+n, "%d", command);
 n += sprintf (arr+n, "%c", data_end);

 return &(arr[0]);

98

};

/**
* @brief Method to create output stream.
* @param sampled signal buffer
* @return returns output stream buffer
*/
char * create_stream(int *buf)
{
 int n,i;
 char data_end = '\0';
 static char arr[1000];

 for (i=0;i<4;i++)
 {
 sprintf (arr, "%d", buf[i]);
 strncat (arr,arr,10);
 }

 sprintf (arr, "%c", data_end);
 return &(arr[0]);
};

/**
* @brief test.
* @param custom parameters
* @return returns packet buffer
*/
char * create_test(int par1)
{
 int n;
 char data_end = '\0';
 static char arr [6];

 n = sprintf (arr, "%d\n", par1);
 //n += sprintf (arr+n, "%c", data_end);

 return &(arr[0]);
};

/**
* Method that send a string to the UART.
* @param *pcBuffer buffers to be printed.
*@param ulCount the buffer's length
*/
void UARTSend(unsigned char *pucBuffer, unsigned long ulCount)
{
 //
 // Loop while there are more characters to send.
 //
 while(ulCount--)
 {
 while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)
 {
 }
 USART_SendData(USART1, (uint8_t) *pucBuffer++);
 /* Loop until the end of transmission */

 }
}

/* This funcion initializes the USART1 peripheral
*
* Arguments: baudrate --> the baudrate at which the USART is
* supposed to operate
*/
void init_USART1(uint32_t baudrate){

 /* This is a concept that has to do with the libraries provided by ST
 * to make development easier the have made up something similar to
 * classes, called TypeDefs, which actually just define the common
 * parameters that every peripheral needs to work correctly
 *
 * They make our life easier because we don't have to mess around with
 * the low level stuff of setting bits in the correct registers
 */
 GPIO_InitTypeDef GPIO_InitStruct; // this is for the GPIO pins used as TX and RX
 USART_InitTypeDef USART_InitStruct; // this is for the USART1 initilization
 NVIC_InitTypeDef NVIC_InitStructure; // this is used to configure the NVIC (nested vector interrupt controller)

 /* enable APB2 peripheral clock for USART1
 * note that only USART1 and USART6 are connected to APB2
 * the other USARTs are connected to APB1
 */
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);

 /* enable the peripheral clock for the pins used by
 * USART1, PB6 for TX and PB7 for RX
 */
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

 /* This sequence sets up the TX and RX pins
 * so they work correctly with the USART1 peripheral
 */
 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; // Pins 6 (TX) and 7 (RX) are used
 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; // the pins are configured as alternate function so the USART peripheral has access
to them
 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; // this defines the IO speed and has nothing to do with the baudrate!
 GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; // this defines the output type as push pull mode (as opposed to open drain)
 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; // this activates the pullup resistors on the IO pins

99

 GPIO_Init(GPIOB, &GPIO_InitStruct); // now all the values are passed to the GPIO_Init() function which
sets the GPIO registers

 /* The RX and TX pins are now connected to their AF
 * so that the USART1 can take over control of the
 * pins
 */
 GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_USART1); //
 GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_USART1);

 /* Now the USART_InitStruct is used to define the
 * properties of USART1
 */
 USART_InitStruct.USART_BaudRate = baudrate; // the baudrate is set to the value we passed into this init function
 USART_InitStruct.USART_WordLength = USART_WordLength_8b;// we want the data frame size to be 8 bits (standard)
 USART_InitStruct.USART_StopBits = USART_StopBits_1; // we want 1 stop bit (standard)
 USART_InitStruct.USART_Parity = USART_Parity_No; // we don't want a parity bit (standard)
 USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // we don't want flow control (standard)
 USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; // we want to enable the transmitter and the receiver
 USART_Init(USART1, &USART_InitStruct); // again all the properties are passed to the
USART_Init function which takes care of all the bit setting

 /* Here the USART1 receive interrupt is enabled
 * and the interrupt controller is configured
 * to jump to the USART1_IRQHandler() function
 * if the USART1 receive interrupt occurs
 */
 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); // enable the USART1 receive interrupt

 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; // we want to configure the USART1 interrupts
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;// this sets the priority group of the USART1 interrupts
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; // this sets the subpriority inside the group
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // the USART1 interrupts are globally enabled
 NVIC_Init(&NVIC_InitStructure); // the properties are passed to the
NVIC_Init function which takes care of the low level stuff

 // finally this enables the complete USART1 peripheral
 USART_Cmd(USART1, ENABLE);
}

/*- Interruption handler ---*/

// this is the interrupt request handler (IRQ) for ALL USART1 interrupts
void USART1_IRQHandler(void){

 // check if the USART1 receive interrupt flag was set
 if(USART_GetITStatus(USART1, USART_IT_RXNE)){

 static uint8_t cnt = 0; // this counter is used to determine the string length
 char t = USART1->DR; // the character from the USART1 data register is saved in t

 /* check if the received character is not the LF character (used to determine end of string)
 * or the if the maximum string length has been been reached
 */
 if((t != 'n') && (cnt < MAX_STRLEN)){
 received_string[cnt] = t;
 cnt++;
 }
 else{ // otherwise reset the character counter
 cnt = 0;
 }
 }
}

/* This function is used to transmit a string of characters via
 * the USART specified in USARTx.
 *
 * It takes two arguments: USARTx --> can be any of the USARTs e.g. USART1, USART2 etc.
 * (volatile) char *s is the string you want to send
 *
 * Note: The string has to be passed to the function as a pointer because
 * the compiler doesn't know the 'string' data type. In standard
 * C a string is just an array of characters
 *
 * Note 2: At the moment it takes a volatile char because the received_string variable
 * declared as volatile char --> otherwise the compiler will spit out warnings
 * */
void USART_puts(USART_TypeDef* USARTx, volatile char *s){

 while(*s){
 // wait until data register is empty
 while(!(USARTx->SR & 0x00000040));
 USART_SendData(USARTx, *s);
 *s++;
 }
}

 /*
 inittim3() configures timer 3 to roll over at a
 the desired sample frequency, and to trigger the ADC every
 time it rolls over.

 Timer 3 is associated with the APB1 bus. The timer 3 clock frequency
 twice the APB1 bus frequency: 2*42MHz = 84 MHz. The input parameter
 daccount should be the desired number of timer counts before each adc output
 should be generated. For example, to generate ADC outputs at a 48k samples/sec,

100

 set adccount= (84 MHz)/(48 ksps) = 1750.
 */
 void inittim3(void)
 {
 TIM_TimeBaseInitTypeDef timinfo;
 NVIC_InitTypeDef NVIC_InitStructure;

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

 TIM_TimeBaseStructInit(&timinfo);
 timinfo.TIM_Period = 168000-1;
 timinfo.TIM_Prescaler = 1;
 timinfo.TIM_ClockDivision = TIM_CKD_DIV1; // no division, 42 MHz timer clock
 timinfo.TIM_CounterMode = TIM_CounterMode_Up;
 timinfo.TIM_RepetitionCounter = 0; // Not used for TIM3

 TIM_TimeBaseInit(TIM3, &timinfo);

 /* TIM3 TRGO selection */
 TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);

 NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 13;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);
 TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE) ;

 /* TIM3 enable counter */
 TIM_Cmd(TIM3, ENABLE);
 }

/**
 * @brief ADC1 channel12 with DMA configuration
 * @param None
 * @retval None
 */
void ADC1_CH12_DMA_Config(void)
{
 ADC_InitTypeDef ADC_InitStructure;
 ADC_CommonInitTypeDef ADC_CommonInitStructure;
 DMA_InitTypeDef DMA_InitStructure;
 GPIO_InitTypeDef GPIO_InitStructure;

 //NVIC_InitTypeDef nvic;

 /* Enable ADC1, DMA2 and GPIO clocks **/
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

 /* Enable ADC1 clock so that we can talk to it */
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

// nvic.NVIC_IRQChannel = DMA2_Stream4_IRQn; // ADC 1 buffer half full and complete
// nvic.NVIC_IRQChannelPreemptionPriority = 0;
// nvic.NVIC_IRQChannelSubPriority = 0;
// nvic.NVIC_IRQChannelCmd = ENABLE;
// NVIC_Init(&nvic);
// DMA_ITConfig(DMA2_Stream4, DMA_IT_TC, ENABLE);

 //DMA_DeInit(DMA2_Stream4);

 /* DMA2 Stream0 channel0 configuration **************************************/
 DMA_InitStructure.DMA_Channel = DMA_Channel_0;
 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_ADDRESS;
 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADC1ConvertedValue;
 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
 DMA_InitStructure.DMA_BufferSize = n_channels;
 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
 DMA_InitStructure.DMA_Priority = DMA_Priority_High;
 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
 DMA_Init(DMA2_Stream4, &DMA_InitStructure);

 DMA_Cmd(DMA2_Stream4, ENABLE);

 /* Configure ADC1 Channel12 pin as analog input ******************************/
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_6|GPIO_Pin_7;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* Configure ADC1 Channel12 pin as analog input ******************************/
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4| GPIO_Pin_5;

101

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
 GPIO_Init(GPIOC, &GPIO_InitStructure);

 /* Configure ADC1 Channel12 pin as analog input ******************************/
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0| GPIO_Pin_1;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
 GPIO_Init(GPIOB, &GPIO_InitStructure);

// /* ADC Common Init **/
 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8;
 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
 ADC_CommonInit(&ADC_CommonInitStructure);

 /* ADC1 Init **/
 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
 ADC_InitStructure.ADC_ScanConvMode = ENABLE;
 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO;
 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
 ADC_InitStructure.ADC_NbrOfConversion = n_channels;
 ADC_Init(ADC1, &ADC_InitStructure);

 /* ADC1 regular channel12 configuration *************************************/
 ADC_RegularChannelConfig(ADC1, ADC_Channel_4, 1, ADC_SampleTime_3Cycles);
 ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 2, ADC_SampleTime_3Cycles);
 ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 3, ADC_SampleTime_3Cycles);
 ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 4, ADC_SampleTime_3Cycles);
 ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 5, ADC_SampleTime_56Cycles);
 ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 6, ADC_SampleTime_56Cycles);
 ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 7, ADC_SampleTime_56Cycles);

 /* Enable DMA request after last transfer (Single-ADC mode) */
 ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);

 ADC_DiscModeChannelCountConfig(ADC1,7);
 ADC_DiscModeCmd(ADC1,ENABLE);
 //ADC_ContinuousModeCmd(ADC1, ENABLE);

 /* Enable ADC1 DMA */
 ADC_DMACmd(ADC1, ENABLE);

 /* Enable ADC1 */
 ADC_Cmd(ADC1, ENABLE);
}

// void DMA2_Stream4_IRQHandler(void)
// {
// if(DMA_GetITStatus(DMA2_Stream4, DMA_IT_TC) == RESET)
// {
//
// /* Toggle LED4 */
// //STM_EVAL_LEDToggle(LED4);
// sampler();
// calc_angles();

// /* Clear the Right Button EXTI line pending bit */
// DMA_ClearITPendingBit(DMA2_Stream4, DMA_IT_TC);
// }
//
// }

void TIM3_IRQHandler(void)
{
 TIM_ClearITPendingBit(TIM3, TIM_IT_Update);
 STM_EVAL_LEDToggle(LED4);
 sampler();
 calc_angles();
 angleA = angle2arm(angle2);
 angleB = angle2arm(angle1);

}

void Delay(__IO uint32_t nTime)
{
 TimingDelay = nTime;

 while(TimingDelay != 0);
}

/**
 * @brief Decrements the TimingDelay variable.
 * @param None
 * @retval None
 */
void TimingDelay_Decrement(void)

102

{
 if (TimingDelay != 0x00)
 {
 TimingDelay--;
 }
}

#ifdef USE_FULL_ASSERT

/**
 * @brief Reports the name of the source file and the source line number
 * where the assert_param error has occurred.
 * @param file: pointer to the source file name
 * @param line: assert_param error line source number
 * @retval None
 */
void assert_failed(uint8_t* file, uint32_t line)
{
 /* User can add his own implementation to report the file name and line number,
 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

 /* Infinite loop */
 while (1)
 {
 }
}
#endif

/**
 * @}
 */

/**
 * @}
 */

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

main.h

#ifndef __MAIN_H
#define __MAIN_H

/* Private typedef ---*/
/* Private define --*/
#define ADC1_DR_ADDRESS ((uint32_t)0x4001204C)

#define n_samples 1000
#define n_channels 7

#define BT_BAUD 115200
#define MAX_STRLEN 20 // this is the maximum string length of our string in characters

/* Private function prototypes ---*/
/* Private functions ---*/
void ADC1_CH12_DMA_Config(void);

void inittim3(void);

void sampler(void);

void calc_angles(void);

int acc_ref(uint8_t channel);

void Delay(__IO uint32_t nTime);

void EXTILine1_Config(void);

void init_USART1(uint32_t baudrate);

int angle2arm(float angle);

/* Private macro ---*/
/* Private variables ---*/

/* You can monitor the converted value by adding the variable "ADC1ConvertedValue"
 to the debugger watch window */
__IO uint16_t ADC1ConvertedValue[n_channels*1000] ;
__IO uint32_t ADC1ConvertedVoltage[n_channels] ;

/* Buffers of sampled EMG signals */
__IO uint32_t ch1_buf[n_samples];
__IO uint32_t ch2_buf[n_samples];
__IO uint32_t ch3_buf[n_samples];
__IO uint32_t ch4_buf[n_samples];

/* Variables for Accelerometer output */
__IO uint32_t x_voltage = 0;
__IO uint32_t y_voltage = 0;
__IO uint32_t z_voltage = 0;

__IO uint32_t x_ref = 0;

103

__IO uint32_t y_ref = 0;
__IO uint32_t z_ref = 0;

__IO double_t angle1 = 0; //theta
__IO double_t angle2 = 0; //psi
__IO double_t angle3 = 0; //phi

__IO uint32_t angleA = 0;
__IO uint32_t angleB = 0;

/* Variables for UART - Bluetooth */
char * create_packet(int par1, float par2, float par3, float par4, int par5);
char * create_stream(int *buf);
char * create_test(int par1);
char * create_protocol(int f_voltage,int angle1,int angle2,int angle3,int command);

/* Delay variables--*/
static __IO uint32_t TimingDelay;
void UARTSend(unsigned char * pucBuffer, unsigned long ulCount);
void USART_puts(USART_TypeDef* USARTx, volatile char *s);
volatile char received_string[MAX_STRLEN+1]; // this will hold the recieved string

unsigned char prot [16];
unsigned char buf [133];
char stream[1000];

int n;
int finger = 1;
// float x_angle = 49.5632;
// float y_angle = 0.1245;
// float z_angle = -9.6541;
int mode_flag = 3;

int i = 0;
int sample = 0;

#endif

Stm32f4xx_it.c (interrupt routines)

/**
 **
 * @file ADC3_DMA/stm32f4xx_it.c
 * @author MCD Application Team
 * @version V1.0.0
 * @date 19-September-2011
 * @brief Main Interrupt Service Routines.
 * This file provides template for all exceptions handler and
 * peripherals interrupt service routine.
 **
 * @attention
 *
 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
 *
 * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
 **
 */

/* Includes --*/
#include "stm32f4xx_it.h"
#include "stm32f4_discovery.h"

/** @addtogroup STM32F4_Discovery_Peripheral_Examples
 * @{
 */

/** @addtogroup ADC_ADC3_DMA
 * @{
 */

/* Private typedef ---*/
/* Private define --*/
/* Private macro ---*/
/* Private variables ---*/

void TimingDelay_Decrement(void);

/* Private function prototypes ---*/
/* Private functions ---*/

/**/
/* Cortex-M4 Processor Exceptions Handlers */
/**/

/**
 * @brief This function handles NMI exception.
 * @param None
 * @retval None

104

 */
void NMI_Handler(void)
{
}

/**
 * @brief This function handles Hard Fault exception.
 * @param None
 * @retval None
 */
void HardFault_Handler(void)
{
 /* Go to infinite loop when Hard Fault exception occurs */
 while (1)
 {
 }
}

/**
 * @brief This function handles Memory Manage exception.
 * @param None
 * @retval None
 */
void MemManage_Handler(void)
{
 /* Go to infinite loop when Memory Manage exception occurs */
 while (1)
 {
 }
}

/**
 * @brief This function handles Bus Fault exception.
 * @param None
 * @retval None
 */
void BusFault_Handler(void)
{
 /* Go to infinite loop when Bus Fault exception occurs */
 while (1)
 {
 }
}

/**
 * @brief This function handles Usage Fault exception.
 * @param None
 * @retval None
 */
void UsageFault_Handler(void)
{
 /* Go to infinite loop when Usage Fault exception occurs */
 while (1)
 {
 }
}

/**
 * @brief This function handles SVCall exception.
 * @param None
 * @retval None
 */
void SVC_Handler(void)
{
}

/**
 * @brief This function handles Debug Monitor exception.
 * @param None
 * @retval None
 */
void DebugMon_Handler(void)
{
}

/**
 * @brief This function handles PendSVC exception.
 * @param None
 * @retval None
 */
void PendSV_Handler(void)
{
}

/**
 * @brief This function handles External line 0 interrupt request.
 * @param None
 * @retval None
 */
void EXTI0_IRQHandler(void)
{
 if(EXTI_GetITStatus(USER_BUTTON_EXTI_LINE) != RESET)
 {

 /* Toggle LED4 */
 STM_EVAL_LEDToggle(LED4);

 /* Clear the Right Button EXTI line pending bit */
 EXTI_ClearITPendingBit(USER_BUTTON_EXTI_LINE);
 }

105

}

/**
 * @brief This function handles SysTick Handler.
 * @param None
 * @retval None
 */
void SysTick_Handler(void)
{
 TimingDelay_Decrement();
}

/**/
/* STM32F4xx Peripherals Interrupt Handlers */
/* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */
/* available peripheral interrupt handler's name please refer to the startup */
/* file (startup_stm32f4xx.s). */
/**/

/**
 * @brief This function handles PPP interrupt request.
 * @param None
 * @retval None
 */
/*void PPP_IRQHandler(void)
{
}*/

/**
 * @}
 */

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

stm32f4xx_it.h (interrupt routines header)

/**
 **
 * @file ADC3_DMA/stm32f4xx_it.h
 * @author MCD Application Team
 * @version V1.0.0
 * @date 19-September-2011
 * @brief This file contains the headers of the interrupt handlers.
 **
 * @attention
 *
 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
 *
 * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
 **
 */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F4xx_IT_H
#define __STM32F4xx_IT_H

#ifdef __cplusplus
 extern "C" {
#endif

/* Includes --*/
#include "stm32f4xx.h"

/* Exported types --*/
/* Exported constants --*/
/* Exported macro --*/
/* Exported functions --- */

void NMI_Handler(void);
void HardFault_Handler(void);
void MemManage_Handler(void);
void BusFault_Handler(void);
void UsageFault_Handler(void);
void SVC_Handler(void);
void DebugMon_Handler(void);
void PendSV_Handler(void);
void SysTick_Handler(void);

#ifdef __cplusplus
}
#endif

#endif /* __STM32F4xx_IT_H */

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

106

Application Sotware code:

app_gui.py

""" This script is responsible to generate the graphical interface"""
""" Improvements can be done in future to make interface more friendly and interative"""

import easygui as eg
import sys
import os

image = "description.gif"
msg = " "
title = "HandHeld Sound Generator v1.0"
choices = ["Start","Quit"]
reply = eg.buttonbox(msg,title,image=image,choices=choices)

if reply == "Start":
 pass
else:
 sys.exit(0)

msg = "Turn the Device on and choose an option:"
choices = ["Connect","Cancel"]
reply = eg.buttonbox(msg,title,choices=choices)

if reply == "Connect":
 if eg.ccbox("Connected! Receiving information from Device. To cancel the program, press Ctrl+C and Y after finish", title):
 pass
 else:
 eg.msgbox("Device Disconnected. Program Stopped",title, ok_button="Finish")
 sys.exit(0)
else:
 sys.exit(0)

try:
 import app_main
except KeyboardInterrupt:
 eg.msgbox("Program Stopped",title, ok_button="Finish")
 sys.exit(0)

app_main.py

""" Main program """
""" This program is responsible to execute and call the other files, assign the main variables and play sound"""

import app_serial
import app_manage_data
#import app_sound
from app_processing import *
import sys
import thread
import winsound

def play(a1,a2,a3,c):
 #c = app_sound.CreateSound() # These two lines can generate sound but presented bad functioning
 #c.playsound() # while working on Windows environment. An
option was to use winsound to generate sounds.
 if convert_finger(f_voltage)==1:
 winsound.Beep(int(a2f(angle1)*octave(angle3)), int(a2l(angle2)*1000)) # Generate sound based on angle values of accelerometer

a = app_serial.SerialData() # Configure and open serial port

try:
 while True:

 data = []
 values = []

 data = a.read_data(1) # read one line per time
 #data = ["2000x10x89x10x1\n"] # array for testing
 print data

 b = app_manage_data.Manage(data)
 b.all_indices()
 values = b.split_data() # Split the received string

 f_voltage = int(float(values[0]))
 angle1 = int(float(values[1]))
 angle2 = int(float(values[2]))
 angle3 = int(float(values[3]))
 command = int(float(values[4]))

 print "finger voltage:",f_voltage
 print "angle 1(theta):",angle1
 print "angle 2(psi) :",angle2
 print "angle 3(phi) :",angle3

107

 print "command code : ",command

 # This thread is used to make possble to generate sound while receiving data from serial port
 # without this thread, the sound generation stopped abruptly after a while because the computer
 # couldnt handle the incomming information properly.

 thread.start_new(play, (angle1,angle2,angle3,command,))

except KeyboardInterrupt:
 a.close() # Close serial to make possible a future connection without needing to reboot the device

app_serial.py

""" Class for receiving data """
""" This class is responsible to configure the serial port, open connection, receive data end close connection"""

import serial
import time
import numpy
import sys

Based on the example found in: http://www.roman10.net/serial-port-communication-in-python/

#initialization and open the port
#possible timeout values:
1. None: wait forever, block call
2. 0: non-blocking mode, return immediately
3. x, x is bigger than 0, float allowed, timeout block call

class SerialData:
 def __init__(self):
 self.ser = ser = serial.Serial()
 self.ser.port = "COM5" # This value must be modified if bluetooth is
connected to another port
 self.ser.baudrate = 115200 # This values must be modified if transmission speed is changed on
the other side of connection
 self.ser.bytesize = serial.EIGHTBITS #number of bits per bytes
 self.ser.parity = serial.PARITY_NONE #set parity check: no parity
 self.ser.stopbits = serial.STOPBITS_ONE #number of stop bits
 #self.ser.timeout = None #block read
 #self.ser.timeout = 0 #non-block read
 #self.ser.timeout = 10000 #timeout block read
 self.ser.xonxoff = False #disable software flow control
 self.ser.rtscts = False #disable hardware (RTS/CTS) flow control
 self.ser.dsrdtr = False #disable hardware (DSR/DTR) flow control
 self.ser.writeTimeout = 2 #timeout for write
 #print"Serial Configured"

 self.ser.open()
 print "Serial Succesfully Connected"

 def read_data(self,lines):
 """ This method reads the incoming data and creates a list with chosen size"""

 self.lines = lines # This parameter corresponds to desired length of list
 datalist = [] # Empty data list which will store the incoming data

 self.ser.flushInput() #flush input buffer, discarding all its contents
 time.sleep(0.1) #give the serial port sometime to receive the data

 for i in range(0,lines+1):
 data = self.ser.readline()
 datalist.append(data)#concatenate the list
 #print "Read Data: " + data

 del datalist[0] # delete first item which sometimes is received incorrectly

 #self.ser.close()
 #print "Serial Succesfully Closed"
 return datalist

 def close(self):
 self.ser.close()

 def __del__(self):
 self.ser.close()
 print "Serial Succesfully Closed"

Lines for script testing

#data = []
#a = SerialData()

#while True:
 #data = a.read_data(1)
 #print data
 #print len(data[0])

app_manage_data.py

108

"""Data handling class """
"""This class will split the values of the received string accordingly to the protocol """

#data = "1234x45x38x10x1"
#print data

class Manage:

 def __init__(self,data):
 self.data = data[0]
 self.indices = []
 self.f_voltage = 0
 self.angle1 = 0
 self.angle2 = 0
 self.angle3 = 0
 self.command = 0

 def all_indices(self, value = "x"): # "x" is the protocol values separator
 idx = -1
 while True: # The index of each "x" is identified
in the input string
 try:
 idx = self.data.index(value, idx+1)
 self.indices.append(idx)
 except ValueError:
 break

 def split_data(self): # values in the input string are separeted following
the index of each separator

 self.f_voltage = self.data[0:self.indices[0]]
 self.angle1 = self.data[(self.indices[0])+1:self.indices[1]]
 self.angle2 = self.data[(self.indices[1])+1:self.indices[2]]
 self.angle3 = self.data[(self.indices[2])+1:self.indices[3]]
 self.command = self.data[(self.indices[3])+1:len(self.data)]

 return self.f_voltage, self.angle1, self.angle2, self.angle3, self. command

lines for script testing

#values = []
#a = Manage(data)
#a.all_indices()
#values = a.split_data()
#print values[0]

app_processing.py

"""Functions to convert data received to apropriate values"""

def convert_finger(f_voltage,base = 950, threshold = 400):
 '''
 calculates the derivative of a series of values to determine
 when to set a trigger
 '''
 if f_voltage > base + threshold or f_voltage < base - threshold:
 trigger = 1
 else:
 trigger = 0
 return trigger

def a2f(angle, f0 = 440):
 '''
 Converts the input angle to a frequency value linearly
 -90 < angle < 90 (degrees)
 '''
 angle = abs(angle) # make all angle input positive
 semitones = 12. # number of semitones in range
 angle_lim = 90. # max angle permited
 n = int(angle*(semitones/angle_lim)) # linear conversion of angle to semitones
 freq = int(f0*(pow(2,n*0.08333333))) # semitones to frequency conversion using 440Hz as base

 return freq

def a2l(angle,max_len = 1, max_angle = 90.):
 '''
 Converts the input angle to duration of note in seconds
 '''
 angle = abs(angle)
 length = max_len - ((max_len*angle)/max_angle)

 return length

def a2v(angle,max_angle = 90.):
 '''
 Converts the input angle to volume [0 100]
 '''
 angle = abs(angle)
 volume = int(((max_angle - angle)/max_angle)*100)

 return volume

def octave(angle):
 '''
 Changes base frequency Octave accordingly to input angle
 '''

109

 angle = abs(angle)
 if angle < 22:
 factor = 1
 else:
 if angle < 45:
 factor = 2
 else:
 if angle < 67:
 factor = 3
 else:
 factor = 4
 return factor

Lines for script testing

#for i in range(91):
print("angle:", i,"freq:", angle2freq(i))

#for i in range(91):
print(i," --> ",(a2v(i)))

app_sound.py

""" This script is used to generate sound using Python Musical and Pygame modules """

Python-Musical Module ps://code.google.com/p/python-musical/
import source
import playback
import effect
import encode

import math

class CreateSound:
 def __init__(self):
 self.freq = 0
 self.length = 0
 self.data = []

 def playsound(self,freq=440,length=1,volume = 100,command = 1):
 self.freq = freq
 self.length = length
 self.command = command
 self.volume = volume

 self.volume = 0.108268*(math.exp(self.volume*0.02325944) - 1)
 # logarithmic response to compensate human loudness hearing

 if command == 1:
 self.data = source.sine(self.freq,self.length)
 if command == 2:
 self.data = source.square(self.freq,self.length)
 if command == 3:
 self.data = source.sawtooth(self.freq,self.length)

 self.data = self.volume*self.data
 self.data = encode.as_uint16(self.data)
 playback.play(self.data)
 #print self.data
 #winsound.PlaySound(self.data ,winsound.SND_MEMORY)

#a = CreateSound()
#data = []
#data = a.playsound(440,0.4,100,2)
#data = a.playsound(440,0.4,10,2)
#data = a.playsound(440,0.4,25,2)
#data = a.playsound(440,0.4,100,2)
#data = a.playsound(440,0.4,0,2)
#for i in range(0,100,5):
 #data = a.playsound(440,0.5,i,3)

app_setup.py

""" This script is used to generate the EXE file from python script"""

from distutils.core import setup
import py2exe

setup(console=['app_gui.py'])

