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Resumo

Kauchakje Pedrosa, Aliel Calculation of the complex permittivity of multi-
phase mixtures using the discrete-dipole approximation. 96 p. Trabalho de Con-
clusão de Curso – Escola de Engenharia de São Carlos, Universidade de São Paulo,
2014.

Através do estudo das equações de Maxwell e com auxílio de funções de Green nesse
trabalho a expressão para a aproximação por dipolos discretos (DDA) foi derivada. Essa
expressão foi utilizada para o cálculo da permissividade complexa de misturas. Resultados
de medidas em laboratório e presente na literatura, bem como resultados previstos pela
fórmula de Maxwell-Garnett, foram comparados com os resultados usando o método DDA.
Uma prova da equivalência entre a fórmula de Maxwell-Garnett, no domínio de validade
da última, é dada. Mostrou-se, ainda, que o cálculo da permissividade efetiva através
do método DDA é mais geral que grande parte das fórmulas de mistura usualmente
utilizadas.

Palavras-chave: Permissividade efetiva de misturas, aproximação por dipolos discretos,
teoria de meios efetivos, funções de Green.





Abstract

Kauchakje Pedrosa, Aliel Calculation of the complex permittivity of multi-
phase mixtures using the discrete-dipole approximation. 96 p. Final Course
Assignment – São Carlos School of Engineering, University of São Paulo, 2014.

Through the study of Maxwell’s equations and Green’s functions we derive an ex-
pression for the discrete-dipole approximation (DDA). This expression is used then to
calculate macroscopic (e�ective) dielectric properties of mixtures. We compare labora-
tory measurements of the e�ective permittivity of mixtures with its calculation using the
DDA, the well-known Maxwell Garnett mixing rule. A proof is given that those last two
are equivalent in the domain of valitity of Maxwell Garnett formula. We show that the
DDA is suitable for e�ective permittivity calculation and it is more general than some of
the most used mixing rules.

Keywords: Mixing rules, discrete-dipole approximation, e�ective medium theory, dielec-
tric property of materials, dyadic Green’s function.
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Chapter 1

Introduction

The possibility to control macroscopic electrical properties by tuning the microscopic
composition of a material plays a central role in modern science. Nanotechnology has been
used to the most diverse applications, from finding new inks to try to cure cancer. Wave-
material interaction and optical properties of matter also regained the public attention
in the last few years. There is also, nowadays, a hype surrounding the synthesis of
artificial materials with characteristics that cannot be founded in nature - the so called
metamaterials.

The will to control nature and its electric properties is not recent - electrostatics
studies date from ancient Greece and surface plasmons have been used for many years to
control the color of cathedral windows.

In the beginning of the twentieth century, Maxwell Garnett did a systematic study of
color in metallic fields and derived what is yet the most popular mixing rule - a formula
to predict a e�ective parameter based on the microscopic ones.

In modern days similar problems are still relevant. How can we combine materials to
perform electromagnetic shielding? How can we mix materials so we can control the losses
inside a optical fiber or an optical modulator? How much graphene would be necessary
to put inside a dielectric ink to make it conductive?

Motivated by this questions and by the limitations of the most used mixing formulas a
di�erent approach for calculating the e�ective permittivity of a mixture is proposed. The
method relies on the discrete-dipole approximation (DDA), a well-known technique used
to calculate scattering properties of materials. The main advantage of using this method
is that for any geometric distribution of inclusions inside a host and for any number of
phases, the procedure is the same.

This document will be composed by six chapters that may be read independently.
The second chapter is a reminder of how Maxwell’s equations may be written in a

material media. It introduces essential concepts and the most basic set of equations that
will be used for more complex formulations.

The third chapter is a reminder on electrostatics in order to clarify the di�erences
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between the local and macroscopic field and give intuition on the depolarization field.
The fourth chapter is the true basis of the DDA formulation. Using a dyadic Green’s

function the total electric field for a scatterer is rigorously calculated. The mathematical
development of the equations make some important concepts to appear naturally - it is the
case for the depolarization tensor, for example. Having intuition on the whole derivation
process is also important to have a better understanding and intuition on the mechanics
of the DDA.

The following chapter presents briefly the DDA as it is used and, in the subsequent
chapter will state the mixing problem and use the DDA formulation to solve it. A com-
parison will be made between the Maxwell Garnett formula and the proposed method.

In order to verify the validity of the proposed method, calculations are compared with
experiments and with results gathered in the literature.
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Chapter 2

Maxwell’s macroscopic equations and

constitutive relations

We start by recalling Maxwell’s equations and presenting the problem of calculating
macroscopic quantities.

Macroscopic quantities are spatially filtered quantities. All microscopic changes must
be ignored.

We shall formalize this filtering idea and present a set of equations that are known by
Maxwell’s equation in matter.

The final section of this chapter will present some important constitutive relations
that will be used exhaustively during this dissertation.

2.1 Maxwell’s equations in vacuum
We remember the equations describing the spatial and temporal evolution of the elec-

tric and magnetic fields in the vacuum.

Ò · B = 0
Ò · E = fl

‘0

Ò ◊ B = µ0j + ‘0µ0
ˆE
ˆt

Ò ◊ E = ≠ˆB
ˆt

(1)

The set of equations (1) is called Maxwell’s equations and here they are written in SI
units (JACKSON, 1999).

Another remarkable relation is given by 2 and defines the speed of light in the vacuum.

c = 1
Ô

‘0µ0
(2)
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2.2 Maxwell’s equations in matter
When we consider an electromagnetic wave propagating in the vacuum we suppose

that the source is far from the test particle and that this particle is isolated. When the
wave is propagating in a material medium the test particle is surrounded by other source
points - electrons and nuclei of the atoms that constitutes the material. If we consider that
we may have around 1023 particles per unit volume, the calculation of electromagnetic
fields using equations (1) and (3), that takes into account each and every microscopic
particle, is neither convenient nor practical.

fl

micro

(r, t) =
ÿ

i

q

i

”[r ≠ r
i

(t)]

j
micro

(r, t) =
ÿ

i

q

i

v
i

(t)”[r ≠ r
i

(t)] (3)

Where r is a point in the space and r
i

, q

i

and v
i

are the position, the charge and the
speed of a charge i.

For macroscopic observations we are not interested in the variations coming from the
interaction between those small sources. The relevant quantity are averaged fields that
we will call from now on macroscopic fields (MARQUIER, 2012).

2.2.1 Spatial averages

In order to establish a new set of equations describing the averaged behavior of elec-
tromagnetic fields in a material medium we need to define a spatial average and study its
properties.

Two goals are achieved using averaged fields:

o All fast variations in fl, j, E and B are eliminated.

o fl

micro

and j
micro

are mathematical distributions with ”-type singularities. Averaging
will replace this distribution by continuous functions.

We consider a function f(r) with a compact support of typical length L0. This typical
length should be much bigger than the size of one atom, but small if compared to the
wavelength. We want this function to verify (4) for it to be a probability density function.

⁄
f(r)d3r = 1 (4)

By definition, the averaged charge density is given by (5).

Èfl
micro

Í(r) =
⁄

fl

micro

(rÕ)f(r ≠ rÕ)d3rÕ (5)

For the sake of clarity one example is given.
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2.2.1.1 Case of a single particle

Suppose a single charge q in a position r0(t). From (3):

fl

micro

= q”[r ≠ r0(t)] (6)

Applying the averaging function, from (5):

Èfl
micro

Í(r) =
⁄

fl

micro

(r)Õ
f(r ≠ rÕ)d3rÕ = qf(r ≠ r0(t)) (7)

We can see by mean of equation (7) that the charge is continuously distributed in a typical
volume L

3
0 instead of being a singularity.

2.2.1.2 Deriving an averaged function

Since the averaging function f has a compact support we can show that the average
of the derivative is the derivative of the average.

Èˆ
i

AÍ = ˆ

i

ÈAÍ (8)

This result is intuitive if we understand the averaging function as a linear low-pass filter
for spatial frequencies and knowing that the derivative is a linear operator.

2.2.2 Macroscopic Gauss’s law

Let’s start calculating the macroscopic Maxwell equations by averaging the Gauss law.
From (1), being E

micro

the electric field accounting for all microscopic e�ects we want to
average:

Ò · E

micro

= fl

micro

‘0

ÈÒ · E

micro

Í = Èfl
micro

Í
‘0

Ò · ÈE
micro

Í = Èfl
micro

Í
‘0

(9)

In order to have an expression for Ò · ÈE
micro

Í we need to have an expression for Èfl
micro

Í.

2.2.2.1 Calculation of Èfl
micro

Í

In this section we will call atoms every group of bounded charges: it may be an ion,
or a molecule, for example. Atom is then the smallest element analyzed and may di�er
from the definition of a physical atom. This nomenclature is, however, widely used in the
literature.
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We consider here the case of an isolated composed by particles with position r
i

. Let’s
also consider that the coordinate system is centered at the center of mass of that atom.
The charge density of this atom is given by equation (10)

fl

at

(r) =
ÿ

i

q

i

”[r ≠ r
i

] (10)

Averaging it we get:
Èfl

at

(r)Í =
ÿ

i

q

i

f(r ≠ r
i

) (11)

We assume that all the particles are close to each other in an atomic scale. The choice of
f is such that it has very small variations in that atomic scale, we can than expand (11)
in a first order Taylor expansion.

Èfl
at

(r)Í =
ÿ

i

q

i

f(r) ≠
ÿ

i

q

i

r
i

· Òf(r) = f(r)
ÿ

i

q

i

≠
A

ÿ

i

q

i

r
i

B

· Òf(r) (12)

The sum (q
i

q

i

) in (12) is the total charge of the atom and it is denoted by q. The sum
(q

i

q

i

r
i

) is called dipole moment of the atom. The dipole moment is denoted by p and it
is a gauge of the overall polarity of the atom.

p
at

=
ÿ

i

q

i

r
i

(13)

The understanding of this quantity is crucial for the development of the following chapters
since, as we shall see, it is the quantity that the DDA method will help us calculate.

It is important to note that even a neutral atom may have a non-null average charge
density since the atom may be polarized by an external field or it may have a permanent
dipole moment.

If we now consider not only one single atom but the set of atoms that composes the
material the average charge density is the contribution of all atoms.

In order to recenter our coordinate system we denote the center of mass of each atom
as r

a

, so everywhere we had f(r) is now f(r ≠ r
a

).
Also using the index a to denote each atom and fl to denote the total charge density,

we have:

Èfl(r)Í = È
ÿ

a

fl

a

(r)Í

=
ÿ

a

Èfl
a

(r)Í

=
ÿ

a

q

a

f(r ≠ r
a

) ≠
ÿ

a

p
a

· Òf(r ≠ r
a

) (14)

We recall the following vector identity:

p
a

· Òf(r ≠ r
a

) = Ò · (p
a

f(r ≠ r
a

)) ≠ f(r ≠ r
a

)Ò · p
a

(15)



2.2. Maxwell’s equations in matter 29

We consider that p
a

is a constant vector and then Ò · p
a

= 0. Equation (15) becomes:

p
a

· Òf(r ≠ r
a

) = Ò · (p
a

f(r ≠ r
a

)) (16)

The total charge density may be then written as:

Èfl(r)Í =
ÿ

a

q

a

f(r ≠ r
a

) ≠ Ò ·
ÿ

a

(p
a

f(r ≠ r
a

)) (17)

We define then another important quantity, the polarization or polarization density:

P(r) =
ÿ

a

p
a

f(r ≠ r
a

) (18)

The first term on the right hand side of equation (17) is called free charge density and it
will be denoted by fl

f

. Combining this new notation, equation (18) and (9), we have:

ÒÈE
micro

Í = fl

f

≠ Ò · P
‘0

(19)

We introduce the electric displacement field (20):

D = ‘0E + P (20)

Hereafter the brackets for averaged fields will be omitted since every relevant quantity is
averaged. Using equation (20) Gauss’s law assumes a simple and condensed form:

Ò · D = fl

f

(21)

2.2.3 Macroscopic Ampère’s law

In a similar way we can calculate Èj
micro

Í and introducing the magnetization vector
M and magnetic field H we will reach:

Ò ◊ H = j
f

+ ˆ

t

D (22)

with
H = B

µ0
≠ M (23)

2.2.4 Conclusions

The other two equations may be written as:

Ò ◊ ÈEÍ = ≠ˆ

t

ÈBÍ

Ò ◊ ÈBÍ = 0 (24)

Equations 20, 21, 23 and 22 show that in order to find the unknown fields D and H we
need to know the function linking P and E, D and E and B and H.

The equations making those links are called constitutive relations and they depend on
the material we are considering.

The equations presented in this section, together with the constitutive relations will
allow us to extend the microscopic Maxwell’s equations to the macroscopic ones.
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2.3 Constitutive relations
Constitutive relations are equations linking any two physical quantities. The former

section showed the need to establish relations between D, E, P, B and H in order to have
Maxwell’s equations reformulated.

2.3.1 Ohm’s law

The well known Ohm’s law may can be written in terms of j and E by:

j = ‡E (25)

where ‡ is the electrical conductivity.
As expected, an insulating material such as rubber has a conductivity of order 10≠13S/m,

with means that even with a really strong electric field almost no current will flow.

2.3.2 Polarization density and electric field

The polarization density P is related to E in a very general way by the series expansion
given by equation (26):

P

i

= ‘0(‰ij

E

j

+ ‰

ijk

E

j

E

k

+ ...) (26)

The quantity ‰ is called electric susceptibility of the medium.
If the electric field is smaller than the inter-atomic electric fields, around 108V/m, the

non-linear terms of equation (26) may be neglected and it becomes:

P = ‘0‰E (27)

Although simpler than equation (26), ‰ in equation (27) is a second order tensor once
the medium may be anisotropic.

2.3.3 Locality and dispersion

When writing equations 25 and 27 we have omitted, for sake of clarity, the dependen-
cies of j , ‡, ‰, P and E with the space and frequency, i.e., a = a(Ê, r).

Locality implies that the movement of one electron is only dependent of the electric
field exactly in the point where this electron is found. If the wavelength is much greater
than one electron’s mean free path we can assume locality. This will be considered true
if not stated otherwise.

The relation of the physical quantities with the frequency is called dispersion and
since it is related to the response time of a material will it can be neglected in semi-static
or static approximations. That will not be the case and unless otherwise stated we will
always consider dispersive media.
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2.3.4 Relative permittivity

The relative permittivity or dielectric constant ‘

r

is the quantity that yields D and E
via:

D = ‘0‘r

E (28)

Through equation (27) we may see that ‘

r

is a second order tensor and it is related to the
electrical susceptibility by:

‰ = ‘

r

≠ I (29)

where I is the unit second order tensor.

2.3.5 Magnetic permeability

The magnetic permeability µ

r

is the physical quantity linking B and H for a magnetic
material.

B = µ0µr

H (30)

Unless otherwise stated, from now on µ

r

will be considered unitary and the magnetization
M is considered zero.

2.3.6 Static and dynamic fields

When the electromagnetic field is not varying in time, e.g. when a battery is the
voltage source to a lamp, ˆ

t

P = 0 and the only contribution to the electric current is
j
f

. In this case the material can be characterized by a resistance measurement that will
give the conductivity ‡(Ê = 0) and by a capacitance measurement that will give the
permittivity ‘

r

(Ê = 0).
If, however, ˆ

t

P ”= 0 the e�ects of bounded and free charges are combined and it
is not possible to define conductivity and permittivity as before. For a monochromatic
excitation we define then an e�ective electric current density as

j
eff

(r, Ê) = ‡(Ê)E(r, Ê) ≠ iÊP(r, Ê)
= [‡(Ê) ≠ iÊ‘0(‘r

(Ê) ≠ 1)]E(r, Ê) (31)

The term between square brackets in (31) is called complex conductivity. Hence:

‡

eq

= ‡(Ê) ≠ iÊ‘0(‘r

(Ê) ≠ 1) (32)

Since j = ≠iÊP we define one equivalent polarization density P
eff

as:

P
eff

= ‘0(‘eff

≠ 1)E (33)

with
‘

eff

= ‘

r

+ i

‡

Ê‘0
(34)

We will assume hereafter that all quantities will be the equivalent or e�ective ones here
calculated and the subscript ’e�’ will be omitted.
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2.4 Conclusions
Using the results presented on the two former sections we can rewrite Maxwell’s equa-

tion in a much more convenient form for calculations in a material medium.
Equation (22) becomes:

Ò ◊ H = ˆ

t

D (35)

with
D = D

eff

= ‘0‘eff

E (36)

Using the charge conservation principle Ò · j
f

= iÊfl

f

, equation (21) becomes:

Ò · D = Ò · D

eff

= 0 (37)

The new set of Maxwell’s can be written then as:

Ò · B = 0
Ò · D = 0

Ò ◊ H = ˆ

t

D

Ò ◊ E = ≠ˆ

t

B (38)
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Chapter 3

Macroscopic versus local field

Chapter 2 presents averaged quantities in order to ’filter’ any rapid variation of the
electric and magnetic field inside a dielectric. These quantities are called macroscopic
fields. If we are, however, interested in a smaller scale we cannot make use of the spatial
average used before.

The local field, the one that acts at a given point in the space, is strongly influenced
by the surroundings of the test point and it is usually di�erent form the macroscopic field.

In this chapter we shall clarify the di�erence between the macroscopic and the local
electric fields and point out their relation with dielectric properties of materials.

Hereafter, unless otherwise stated, the index loc will be used to represent local fields,
the index inc to represent the incident field, dep to represent the depolarization field and
the macroscopic field will be used without any index.

The electric fields are assumed here to be uniform. In all other chapters this assump-
tion is not true. However, if we consider that the wavelength of the electric field is much
greater (quasi-static or static approximation) than the size of the dielectric body in study,
all the results derived here are true.

3.1 Depolarization field

When a dielectric body is illuminated by an electric field E
inc

it will polarize and this
polarization will generate a electric field E

dep

inside this body. This electric field opposes
the incident electric field and, for that, it is called depolarization field.

The calculation of the depolarization field due to an uniform polarization P is calcu-
lated using the electrostatic potential (JACKSON, 1999). For simple geometries such as
ellipsoids, one can prove that a uniform polarization creates a uniform depolarization field
and those two quantities are proportional. The proportionality factor is called depolariza-
tion tensor, or depolarization factor, and it will be appear naturally on the development
of the expression for the total field in Chapter 4.
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Figure 1: Dielecric sphere in a uniform field E

inc

with opposing field created by its polar-
ization.

3.1.1 The case of a sphere

The main interest of this chapter, besides given an intuition on the di�erences between
the macroscopic and local field, is to make a link between all relevant physical quantities
to the dielectric properties of a given dielectric body.

In order to show how those links are made, the example of a dielectric sphere of
permittivity ‘

r

will be given. For a dielectric sphere, the expression for the depolarization
field is given by (JACKSON, 1999):

E
dep

= ≠ 1
3‘0

P (39)

The macroscopic field, i.e., the average field sensed by this sphere, is calculated simply
by:

E = E
inc

+ E
dep

= E
inc

≠ 1
3‘0

P (40)

Using equation (33):

P = ‘0‰E

= ‘0‰
3

E
inc

≠ 1
3‘0

P
4

(41)

Hence:

‘

rj = 1 + P

j

‘0Eincj ≠ 1
3P

j

(42)

Equation (42) shows that knowing the polarization density P is su�cient to know the
relative permittivity of a dielectric sphere.

3.2 Local field
The local field at a dipole is the total electric field acting on this dipole. This field is

a superposition of the incident electric field, the depolarization field and the interaction
of the test dipole and all other surrounding dipoles.
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The local field is then a microscopic quantity and it is extremely dependent on the
position were it is measured.

3.2.1 The case of a sphere in a cubic lattice

If we consider a collection of spherical dipoles in a cubic lattice we can prove that
the local field, due to the symmetry of the problem, is equal to the incident electric
field (TSYMBAL, 2013). We can then write it in terms of the macroscopic electric using
equation (40).

E
loc

= E
inc

= E + 1
3‘0

P (43)

The local field is then greater than the macroscopic field by a factor that depends of the
polarization of the dielectric sphere.

We remember that our ultimate goal is to relate all those quantities with the permit-
tivity of the sphere and then, in order to link the polarization with the local field, we
introduce the notion of polarizability. The polarizability (–) is the physical quantity that
gauges how much the dipole moment of a dipole changes with its exciting electric field.
In our case, this exciting electric field is the local field and the polarizability is calculated
by:

p = –E
loc

= –E
inc

(44)

Since the polarization density is the density of dipole moments it can be written by:

P =
ÿ

i

N

i

p
i

=
A

ÿ

i

N

i

–

i

B

E
inc

(45)

where N

i

is the number of dipoles of type i per unit volume.
Using equation (42) we reach:

‘

rj = 1 +
q

i

N

i

–

i

‘0 ≠ 1
3

q
i

N

i

–

i

(46)

This equation is called the Clausius-Mossotti equation and it is best know in the following
equivalent formulation:

‘ ≠ ‘0
‘ + 2‘0

= 1
3‘0

ÿ

i

N

i

–

i

(47)

where ‘ = ‘0‘r

.

3.3 Remarks and conclusion
In this chapter the di�erences between the local and macroscopic field were presented.

Through an overview of the case of a dielectric sphere we could derive important results
linking those quantities and the dielectric properties of that sphere.
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The concepts presented here are the base for the derivations made on the next chapters
and are a essential key to understand and solving the mixing problem.
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Chapter 4

Free space dyadic Green’s function

In this chapter we are interested in calculating the total electric field inside a dielectric
scatterer in free space. This scatterer is illuminated by an electric field E

inc

, it is supposed
to be non-magnetic and it has a volume V . Here F \ V is used to denote everywhere but
V . Hence F = F \ V fi V is the whole free space.

From Maxwell’s curl equations (1):

Ò ◊ E(r) ≠ iÊB(r) = 0
Ò ◊ B(r) + iÊ‘0µ0E = µ0j(r), r œ F (48)

Using previous results, the source term in (48) can be calculated by:

j(r) = 0, r œ F \ V

j(r) = ≠iÊ‘0(‘r

(r) ≠ I)E, r œ V (49)

The solution for the electric field equation in (48) is given by the integral equation
(LAKHTAKIA, 1992) (50):

E(r) ≠ E
inc

(r) =
⁄

V0
d

3
r

Õ(iÊµ0
¯̄G(r, rÕ)j(rÕ))

=
⁄

V0
d

3
r

Õ(k2
0

¯̄G(r, rÕ)E(rÕ)), r œ F (50)

The dyadic ¯̄G is the free space dyadic Green’s function. In this chapter we shall find
an expression for ¯̄G and develop (50) in a way to avoid the singularities that may arise.

4.1 Free space Green’s function
Before calculating the dyadic Green’s function for free space we calculate the Green’s

function for the inhomogeneous wave equation (51).

(Ò2 ≠ k

2
0ˆ

2
t

)f = ≠fl(r, t)
‘0

(51)
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Writing the same equation for the Green’s function and taking the Fourier transform in
relation to r and t:

(≠k

2 + k

2
0)G(k, Ê) = ≠1 (52)

Since G is a distribution (in the mathematical sense), the result of equation (52) is given
by:

G(k, Ê) = pv

A
1

k

2 ≠ k

2
0

B

+ C”(k ≠ k0) + C

Õ
”(k + k0) (53)

where pv represents the principal value of a distribution and C and C

Õ are constants
defined by the boundary conditions.

Applying the inverse Fourier transform in respect to k on (53) we reach:

G(r, Ê) = pv

⁄ 1
(2fi)3 G(k, Ê) exp (ik · r)d3k (54)

Rewriting (54) in a spherical coordinate system it is easy to see that G(r, Ê) is:

G(r, Ê) = 1
2fi

2
r

Im

5
pv

⁄ Œ

0
kG(k, Ê) exp (ikr)dk

6

= 1
2fi

2
r

Im

C

pv

⁄ Œ

0

A
k

k

2 ≠ k

2
0

+ Ck”(k ≠ k0) + C

Õ
k”(k + k0)

B

exp (ikr)dk

D

= 1
4fir

(Res(k0) + Res(≠k0)) + 1
2fi

2
r

Im [Ck0 exp (ik0r)] + 0

= 1
4fir

cos (k0r) + 1
2fi

2
r

Ck0 sin (ik0r) (55)

Equation (55) may be written in function of complex exponential functions so the physical
meaning of waves coming to and from the source are easily identified. Introducing two
dummy constants K and K

Õ.

G(r, Ê) = K

exp (ik0r)
r

+ K

Õ exp (≠ik0r)
r

(56)

Sommerfeld radiation condition implies that should be no energy sinking at the source,
so K

Õ must be zero.

K

Õ = 1
4fi

+ iCk0
2fi

2

= 0 (57)

We can then calculate C = ifi(2k0)≠1 and hence

G(r, Ê) = 1
4fir

exp (ik0r) (58)
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4.2 Dyadic Green’s function
When finding the scalar Green’s function (58) the source was supposed to be scalar.

If we consider a vector source j(r), by using both equations in (48):

Ò ◊ Ò ◊ E = iÊB

= k

2
0E + iÊµ0j (59)

Isolating the source on the right hand side of (59) the Green’s function to be found must
be the result of the di�erential equation (60):

((Ò ◊ Ò◊) ≠ k

2
0) ¯̄G(r, rÕ) =

((ÒÒ·) ≠ Ò2 ≠ k

2
0) ¯̄G(r, rÕ) = ¯̄I”[r ≠ rÕ] (60)

In order to find ÒÒ · ¯̄G we take the divergence of (60).

Ò · ((Ò ◊ Ò◊) ≠ k

2
0) ¯̄G(r, rÕ) = Ò · (¯̄I”[r ≠ rÕ])

= (Ò · ¯̄I)” + ¯̄IÒ”

= Ò” (61)

Since (Ò · Ò ◊ A) = 0:

≠k

2
0Ò · ¯̄G(r, rÕ) = Ò” (62)

Taking the gradient of equation (62).

≠k

2
0ÒÒ · ¯̄G(r, rÕ) = ÒÒ” (63)

Hence
ÒÒ · ¯̄G(r, rÕ) = ≠ 1

k

2 ÒÒ”[r ≠ rÕ] (64)

and the equation (60) becomes:

(Ò2 + k

2
0) ¯̄G(r, rÕ) = ≠

3
¯̄I + ÒÒ

k

2

4
”[r ≠ rÕ] (65)

One may observe that we can leverage the scalar function G found in Section 4.1, equation
(58), since (Ò2 + k

2)G = ”. Considering this fact we test ≠
1¯̄I + ÒÒ

k

2

2
G as a solution for

(60).

(Ò2 + k

2
0) ≠

3
¯̄I + ÒÒ

k

2

4
G(r, rÕ) = ≠

3
¯̄I + ÒÒ

k

2

4
(Ò2 + k

2
0)G(r, rÕ)

≠
3

¯̄I + ÒÒ
k

2

4
”[r ≠ rÕ] (66)

Using Sommerfeld radiation condition this solution is proven to be unique.

¯̄G(r, rÕ) = ≠
3

¯̄I + ÒÒ
k

2

4
G(r, rÕ) (67)

We note that since ¯̄G Ã G, the dyadic Green’s function has a singularity when r is equal
to rÕ.
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4.3 Removing the singularity
To evaluate the integral in (50) we should remove the singularity introduced by ¯̄G.

Many techniques may be applied to solve this problem. As shown by Yaghjian (YAGHJIAN,
1980), some developments, although concise and reaching the right result, are not rigorous
and should be avoided. Yurkin in (YURKIN; HOEKSTRA, 2007a) emphasizes that di�erent
approaches may lead to di�erent results.

We choose to remove the singularity using an approach that is a combination between
Yaghjian’s (YAGHJIAN, 1980) and Lakhtakia’s (LAKHTAKIA, 1992) approaches. Some
important concepts will arise on this development, such as the depolarization factor.

The first stage of the development of expression (50) must be understood in depth
since it will provide the basic idea on how we will treat the mixing problems - in other
words the problem of having inclusions inside a volume.

This insightful and intuitive approach will have as result the equation that will be the
basis of the discrete dipole approximation.

4.3.1 Yet another formulation for Maxwell’s equations

In order to ease the mathematical burden we shall rewrite the wave equation for the
electric field (59) in a more convenient way.

We recall the vector identity:

Ò ◊ Ò ◊ A = Ò(Ò · A) ≠ Ò2A (68)

We use this identity to calculate Ò ◊ Ò ◊ (E ≠ j
iÊ‘0

):

Ò ◊ Ò ◊
3

E ≠ j
iÊ‘0

4
= Ò

3
Ò ·

3
E ≠ j

iÊ‘0

44
≠ Ò2

3
E ≠ j

iÊ‘0

4
(69)

By Gauss’s law and charge conservation equations:
Y
]

[
Ò · E = fl

‘0

Ò · j ≠ iÊfl = 0
∆ Ò ·

A

E ≠ j
iÊ‘0

B

= 0 (70)

Equation (69) then becomes:

Ò ◊ Ò ◊
A

E ≠ j
iÊ‘0

B

= ≠Ò2
A

E ≠ j
iÊ‘0

B

(71)

Subtracting Ò ◊ Ò ◊ ( j
iÊ‘0

) from both sides of (59):

Ò ◊ Ò ◊
A

E ≠ j
iÊ‘0

B

= k

2E ≠ iÊµ0j ≠ Ò ◊ Ò ◊ j
iÊ‘0

= k

2
A

E ≠ j
iÊ‘0

B

≠ Ò ◊ Ò ◊ j
iÊ‘0

(72)
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Substitution of (71) into (72) yields the desired wave equation:

Ò2
A

E ≠ j
iÊ‘0

B

+ k

2
A

E ≠ j
iÊ‘0

B

= Ò ◊ Ò ◊ j
iÊ‘0

(73)

The same development can be made for B and the result would be:

Ò2 (B) + k

2 (B) = ≠µ0Ò ◊ j (74)

Equations (70), (73), (74) and Ò · B = 0 together are proven to be equivalent to
Maxwell’s equations in free space (YAGHJIAN, 1980).

4.3.2 Solving the wave equation

Again we use the Green’s function method for solving di�erential equation (73).

Using the Green’s method for solving di�erential equations, we look for a function G
such that:

Ò2
G + k

2
G = ” (75)

where ” is the Dirac’s delta function. One may see that equation (75) was solved in section
(4.1), so G is the same as found there.

We have then:

A

E(r) ≠ E
inc

(r) ≠ j(r)
iÊ‘0

B

= 1
iÊ‘0

⁄
d

3
r

Õ [Ò ◊ Ò ◊ j(rÕ)] G(r, rÕ) (76)

4.3.3 Divide et impera

We use here the dielectric scatterer of volume V used in the beginning of the chapter.
Hereafter, V will be used interchangeably to make reference to the scatterer itself or to
the mathematical set if the points composing it.

We consider now another volume V0 fully contained in V , so V0 µ V . This volume
shall be always electrically small when compared to V .

Inside V0 we choose an arbitrary point r0 as shown in Figure (2) and, fixing the shape
of V0 we can make it shrink around this point.
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Figure 2: Decomposition of V in order to ease equation (50) calculation. Although here
represented by ellipses, there are no constraints on the shapes of V and V0.

We remove the singularity on (76) by simply taking out the volume V0.

A

E(r0) ≠ E
inc

(r0) ≠ j(r0)
iÊ‘0

B

= 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ [Ò ◊ Ò ◊ j(rÕ)] G(r0, rÕ) (77)

Now we recall the following vector identity, being Â a scalar and A a vector:

Â[Ò ◊ A] = Ò ◊ (ÂA) ≠ ÒÂ ◊ A (78)

We make Â = G and A = Ò ◊ j:

G[Ò ◊ Ò ◊ j] = Ò ◊ (GÒ ◊ j) ≠ ÒG ◊ (Ò ◊ j) (79)

We recall yet another vector identity and, being ˆV the boundary of a volume V and n̂
the outward normal to this volume:

⁄

V

(Ò ◊ A)dV =
⁄

ˆV

(n̂ ◊ A)dS (80)
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Using (80) and (79) in (77):
A

E ≠ E
inc

≠ j
iÊ‘0

B

= 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ [Ò ◊ (GÒ ◊ j) ≠ ÒG ◊ (Ò ◊ j)]

= 1
iÊ‘0

Q

a lim
V0æ0

⁄

V \V0
d

3
r

Õ [Ò ◊ (GÒ ◊ j)]

≠ lim
V0æ0

⁄

V \V0
d

3
r

Õ [ÒG ◊ (Ò ◊ j)]
R

b

= 1
iÊ‘0

Q

a
⁄

ˆV

d

2
r

Õ
3

n̂ ◊ (GÒ ◊ j)
4

≠ lim
V0æ0

⁄

ˆV0
d

2
r

Õ
3

n̂ ◊ (GÒ ◊ j)
4

≠ lim
V0æ0

⁄

V \V0
d

3
r

Õ [ÒG ◊ (Ò ◊ j)]
R

b

= ≠ 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ [ÒG ◊ (Ò ◊ j)] (81)

Since V is chosen to lie outside the source region, the integral over this surface vanishes.
The surface integral over ˆV0 also vanishes because V0 is shrinking and its surface varies
as r

2 whereas the function being integrated, G, varies as 1/r. As usual, r = |r ≠ r0|.
Now we use the fact that ÒÂ ◊ A = (Ò ◊ Â

¯̄I) · A, where ¯̄I is the unit dyadic:

E ≠ E
inc

= j
iÊ‘0

≠ 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ
53

Ò ◊ G

¯̄I
4

·
3

Ò ◊ j
46

(82)

For convenience we will introduce ¯̄G
m

as ¯̄G
m

= (Ò ◊ G

¯̄I). It is easy to prove that ¯̄G
m

is the solution to the magnetic dyadic wave equation in free space. The development is
analogous to the one done in section (4.2) and since we are interested in the electric field
it will not be made here. Even if not proved, this fact justify the index m on ¯̄G

m

, m

standing for magnetic.
Proceeding with the development of equation (82):

E ≠ E
inc

≠ j
iÊ‘0

= ≠ 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ ¯̄G
m

· (Ò ◊ j)

= 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ(Ò · (j ◊ ¯̄G
m

) + j · Ò ◊ ¯̄G
m

)

= 1
iÊ‘0

lim
V0æ0

⁄

V \V0
d

3
r

Õ(j · Ò ◊ ¯̄G
m

+ Ò · (j ◊ ¯̄G
m

))

= 1
iÊ‘0

Q

a lim
V0æ0

⁄

V \V0
d

3
r

Õ(j · Ò ◊ ¯̄G
m

)

+ lim
V0æ0

⁄

ˆV0
d

2
r

Õ(( ¯̄G
m

◊ n̂) · j)
R

b (83)

If we consider a constant current density within ˆV0 the surface integral on (83) may be
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simplified.
⁄

ˆV0
d

2
r

Õ(( ¯̄G
m

◊ n̂) · j) =
⁄

ˆV0
d

2
r

Õ((Ò ◊ ¯̄I) ◊ Gn̂) · j)

= ≠j ·
⁄

ˆV0
d

2
r

Õ((¯̄I ◊ ÒG) ◊ n̂)) (84)

Use has been made of dyadic identities found in appendix A.
If we calculate the gradient of the scalar Green’s function G found in equation (58)

we reach:

ÒG =
A

ik ≠ 1
r

ÕB

r̂Õ exp (ikr

Õ)
4fir

Õ (85)

where, as usual, r’ is the distance between r and rÕ (rÕ = |r ≠ rÕ|) and r̂

Õ is the unitary
vector pointing from rÕ to r (r̂Õ = (rÕ ≠ r)/r

Õ).
Injecting (85) into (84):

⁄

ˆV0
d2rÕ(( ¯̄G

m

◊ n̂) · j) = ≠j ·
⁄

ˆV0
d2rÕ

CA
¯̄I ◊

1
ik ≠ 1

r

Õ2
r̂Õ exp (ikrÕ)

4firÕ

B

◊ n̂
D

= j · 1
4fi

⁄

ˆV0
d2rÕ

CA
¯̄I ◊ r̂Õ

rÕ2

B

◊ n̂
D

= j · 1
4fi

⁄

ˆV0
d2rÕ

A
r̂Õn̂ ≠ (r̂Õ · n̂)Ī

rÕ2

B

= ≠j ·
C
¯̄I ≠ 1

4fi

⁄

ˆV0
d2rÕ r̂Õn̂

rÕ2

D

(86)

Some remarks must be made regarding the result obtained in (86). First, the limit V0 æ 0
is implicit and that justifies why the term ik vanishes. Second,the integral of r̂Õ · n̂/(rÕ2)
over a surface is the definition of solid angle and the result of this integral is independent
of the shape and size of V0. Since we are integrating over the whole surface of V0 the
result is 4fi.

To the remaining integral in (86) we give a special name: depolarization dyadic, noted
¯̄L. It is a simple exercise to prove that this dyadic is real, symmetric, that it has an
unitary trace and also that its value is not dependent of the size of V0, but only its shape.
For a sphere this dyadic is diagonal with all elements equals to 1/3 - independently of the
volume of the sphere.

In order to finish the analysis we combine equations (86), (84) and (83) reaching:

E ≠ E
inc

= 1
iÊ‘0

Q

a lim
V0æ0

⁄

V \V0
d

3
r

Õ(j · Ò ◊ ¯̄G
m

) + ¯̄L · j
R

b (87)

We introduce ¯̄G
e

= (≠1/k

2)Ò ◊ ¯̄G
m

. Similarly to ¯̄G
m

, the e index is a reference to the
electric field, meaning that ¯̄G

e

is the solution to the electric dyadic wave equation in free
space. Since the dyadic wave equation in free space was solved in section (4.2) ¯̄G

e

must
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be equal to ¯̄G. In fact,

¯̄G
e

= ≠ 1
k

2 Ò ◊ ¯̄G
m

= ≠ ≠ 1
k

2 Ò ◊ Ò ◊ G

¯̄I

= ≠ 1
k

2

Ë
≠Ò2(G¯̄I) + Ò(Ò · G

¯̄I)
È

= ≠
3

¯̄I + 1
k

2 ÒÒ
4

G

= ¯̄G (88)

Using the fact that j = ≠iÊP = ≠iÊ‘0‰E and equation (88) in (87) we finally reach our
desired equation.

E(r) = E
inc

(r) + k

2
⁄

V \V0

¯̄G(r, rÕ)‰(rÕ)E(rÕ)d3
r

Õ ≠ ¯̄L(ˆV0, r)‰(r)E(r) (89)

4.4 Remarks and conclusion
In this chapter important concepts were introduced, such as the Green’s function and

dyadic Green’s function for free-space and the depolarization factor. The mathematical
procedure for the singularity removal was made step by step so those concepts could
appear naturally.

As well as understanding the mathematical development, it is essential to have a good
understanding on how the singularity removal is done. The idea of using an exclusion

volume where the sources are situated is the base for some homogenization techniques
and will be the base for calculating the e�ective permittivity of a mixture here.

Equation (89) has a clear physical meaning - The electric field in a source region is
the joint e�ect of the external field and one electric field that is dependent of the shape of
the exclusion volume. The knowledge of free space dyadic Green’s function alone is not
su�cient for knowing the electric field at source regions.

The discretization of equation (89) will lead to the discrete dipole approximation
formulation used in this dissertation. It is then the most relevant equation to yield the
aimed result of calculating e�ective permittivity of mixtures using the DDA method.

Some useful properties of the depolarization factor, as well as values for several shapes
are given in the Appendix B.
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Chapter 5

The discrete dipole approximation

The discrete-dipole approximation (DDA) or coupled-dipole approximation is a com-
putational method used mainly to compute scattering properties of arbitrarily-shaped
bodies. It consists on the simple idea of dividing the scatterer in a finite number of
dipoles. The dipoles interact with each other and with the illuminating electric field and,
using the DDA method, the dipole moments of those dipoles may be calculated by solving
a linear system (YURKIN; HOEKSTRA, 2007a).

This method was originally developed in the 70’s by Purcell and Pennypacker(PURCELL;

PENNYPACKER, 1973) to compute extinction cross-section and other scattering proper-
ties of interstellar dust. Composing dipoles in cubical cells and computing their inter-
action, they where able to find the dipole moments of those dipoles and then calculate
the desired scattering properties. Even with the computational limitation, the results
for spheres where close to that predicted theoretically by Mie theory. Besides its sim-
ple and highly intuitive formulation, the DDA approach became popular when scientists
started sharing their software to the community. Draine and Flatau (DRAINE; FLATAU,
1994) were the first to make a free Fortran implementation of the DDA, named DDSCAT.
Since then many other implementations such as ADDA (YURKIN; HOEKSTRA, 2011) by
Yurkin, OpenDDA (DONALD; GOLDEN; JENNINGS, 2009) by Mc Donald and the Mat-
Lab Toolbox (LOKE; MENGÜÇ; NIEMINEN, 2011) by Loke were developed and great e�ort
was done to improve the method accuracy (CHAUMET; RAHMANI, 2004), (CHAUMET; RAH-

MANI, 2009), (DRAINE; GOODMAN, 1993), (PILLER; MARTIN, 1998), (YURKIN; HOEKSTRA,
2007b), (YURKIN; MIN; HOEKSTRA, 2010).

In this chapter we are going to present the classical DDA formulation by discretizing
equation (89). This formulation will be the basis for solving the mixture problem.

5.1 DDA formulation

We use the same conventions used in chapter (4).
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Let V be a finite volume that contains all the problem’s source points. The total elec-
tric field E inside one of those source points V0 µ V is calculated by equation (89)(YURKIN;

HOEKSTRA, 2007b).

E(r) = E
inc

(r) + k

2
⁄

V \V0

¯̄G(r, rÕ)‰(rÕ)E(rÕ)d3
r

Õ ≠ ¯̄L(ˆV0, r)‰(r)E(r) (89 revisited)

The DDA formulation basis is the discretization of equation (89) making the right
assumptions and considerations. Before starting the discretization we show the explicit
expression for k

2 ¯̄G(r, rÕ), that we will call hereafter ¯̄A - the interaction matrix.

¯̄A(r, rÕ) = 1
4fi

· exp(ikr

Õ)
r

Õ

C

k

2(r̂Õr̂Õ ≠ ¯̄I) + ikr

Õ ≠ 1
r

Õ2 (3r̂Õr̂Õ ≠ ¯̄I)
D

(90)

where r

Õ is the distance between r and rÕ and r̂Õ is the unitary vector pointing from rÕ to
r.

5.1.1 Discretization

We divide the original volume in a finite number of smaller subsets that don’t overlap.
Those subsets will be called dipoles from now on.

V = fiV

i

V

i

fl V

j

= ÿ, i ”= j

(91)

The first step is to consider two di�erent points r
j

and r
k

and write the Dyadic Green’s
function and depolarization factor expressions for those particular points:

L̄
j

= L̄(ˆV

i

, r
j

) = ≠ 1
4fi

j

ˆV0

n̂
k

· r̂
jk

r

3
jk

d

2
r

k

, r

k

œ V0 \ ˆV0 (92)

Ajkj”=k = 1
4fi

· exp(ikr

jk

)
r

jk

C

k

2(r̂
jk

r̂
jk

≠ ¯̄I) + ikr

jk

≠ 1
r

2
jk

(3r̂
jk

r̂
jk

≠ ¯̄I)
D

(93)

Where r

jk

= |r
j

≠ r
k

|, r̂

j

k is the unitary vector pointing from r
j

to r
k

and n̂
k

is the
outward normal unitary vector to the surface ˆV0 at r

k

.
If we consider the one of the volumes V

i

being electrically small, it is a fair assumption
to consider E and ‰ constant inside this dipole. Hence:

E(r) = E
i

, ’r œ V

i

‰(r) = ‰

i

, ’r œ V

i

(94)

We make one dipole V

i

as the exclusion V0 used in chapter (4). Since V

i

is small, two
points r

i1 and r
i2 are close to each other and their distance to one point outside V

i

.
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If we have another yet small volume V

j

this assumptions are also valid and we have:

|r
i

≠ r

Õ| ¥ |r
i

≠ r

ÕÕ| = rij, ’r

Õ
, r

ÕÕ œ V

j

(95)

Hence:
⁄

Vj

d

3rÕ
Ë ¯̄A(ri, rÕ)‰(rÕ)E(rÕ)

È
= V

j

¯̄A
ij

‰(rj)E(rj) (96)

Reinjecting equations (94) and (96) into (89):

E
i

= E
inci +

ÿ

j ”=i

Ë
V

j

¯̄A
ij

‰

j

E
j

È
≠ ¯̄L

i

‰

i

E
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(97)

Recalling the definition of the polarization density:

P
i

= ‘0‰i

E
i

(98)

For one dipole, we can approximate its dipole moment by:

p
i

= V

i

‘0‰i

E
i

(99)

Introducing the polarizability tensor defined by p = –E (SALSKI, 2012):

¯̄
–

i

= V

i

‰

i

[¯̄I + ¯̄L
i

‰

i

]≠1 (100)

we reach:

E
inci = 1

‘0
·

Q

a(–̄
i

)≠1p
i

+
ÿ

j ”=i

Ā
ij

p
j

R

b (101)

Define:

¯̄AÕ =

Y
_]

_[

¯̄
–

≠1
i

, i = j

¯̄A
ij

, i ”= j

(102)

Hence we have the linear system

E
inc

= 1
‘0

· AÕp (103)

with dipole moments as unknowns.

5.2 Remarks and conclusion
Solving the DDA problem means finding a set of vectors p such that (103) is verified.

In order to make it possible the knowledge of three parameters are essential: the incident
electric field, the geometrical position of the dipoles in the space and the polarizability of
each dipole.
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The linear system (103) is then a very practical and simple method for calculating the
dipole moment of a set of interacting dipoles. The solution of this linear system is made
usually through iterative methods such as the conjugate-gradient method or minimal
residual method. Since r

ij

= r

ji

the interaction matrix is symmetric and several opti-
mization methods may be used (YURKIN; HOEKSTRA, 2007a), (GOODMAN et al., 1991).
This method has been applied in a big range of problems from the Purcell and Panny-
packer’s work on interstellar dust scattering to the study of plasmon resonance (WAHBEH,
2011).

The next chapter will present the mixing problem and how to use the DDA to solve
it.
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The mixing problem

Pure materials are di�cult to find in nature. Usually they all contain a certain number
of impurities that give a material particular characteristics. A good example is the snow:
the snow is composed by, in a simple approximation, ice, air and water - it is a mixture
of several materials in di�erent volume fractions and all contribute di�erently to the
macroscopic (or e�ective) properties of the snow such as color, permittivity, density and
so on.

The mixing problem has as goal to calculate the e�ective permittivity of a mixture of
several materials given the relative quantities of the components of this mixture. In our
example of the snow - the mixing problem would be to calculate the permittivity of the
snow knowing the dielectric properties of the water, ice and air present in the mixture as
well as their volume fraction.

The idea of e�ective permittivity is based on the permittivity that is measured ignoring
all the microscopic components of the mixture. It is the same permittivity ’sensed’ by an
incident wave impinging on a homogeneous body.

Knowing and describing with complete fidelity all the elements of a mixture is an ex-
tremely challenging, to not say impossible, task. Even if the description of all microscopic
elements contributing to the macroscopic electric properties were known, the computa-
tion of all of those elements and their e�ect on the macroscopic properties of the mixture
would be unfeasible. Simplified models are then made with appropriate considerations to
attempt to solve this problem and to help to predict values we only know for sure when
they are measured.

Those models are, of course, extremely dependent on the ratio of the typical size of the
inclusions and the wavelength used since smaller the wavelength, more sensitive to small
variations the measure will be. Therefore e�ective permittivity (or any other e�ective
parameter) is meaningful in a long-wave limit. Most of the approximate formulas to solve
the mixing problem, usually called mixing rules, are derived using quasi-static or static
arguments (SIHVOLA, 1999).

A mixing rule usually has the goal to derive macroscopic properties of a mixture
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knowing its microscopic composition and properties. Some important applications have,
however, an inverse goal: knowing the macroscopic properties it seeks to know the micro-
scopic composition. This is the case of the remote sensing problem and the very important
material synthesis problem.

If, for example, one wants to produce a conductive ink with conventional dielectric ink
and graphene, or if one wants to control the losses to an optical modulator introducing
graphene impurities into the optical guide the mixing rule may be used to calculate
beforehand what is the ideal composition to the desired result.

In this chapter we are going to present some basic definitions of problems dealing with
mixture and the most used homogenization techniques and mixing rules.

We will also, as the target result of this dissertation, derive an expression using the
DDA to calculate the e�ective permittivity of a mixture for an arbitrary number of phases
and geometric distribution of the inclusions - what is not, in general, the case for usual
mixing formulas.

6.1 Basic definitions
The introduction defined what we are going to understand as the e�ective permittivity

of a mixture. It will be the permittivity of a homogeneous body somehow equivalent to
the mixture.

In order to describe the mixture we need to know the dielectric properties of the bulk,
or host material. For a given mixture, ‘

h

denote this quantity.
In the mixture we also have the inclusions, materials that are not host. If we have N

kind of inclusions, ‘

incj for j œ 0, 1, ..., N denotes the permittivity of each inclusion.
The number of phases of a mixture is the number of di�erent materials that can be

find in that mixtures - counting bulk and inclusions. A biphasic mixture is then a mixture
composed by one host and one type of inclusions, a three-phase mixture by one host and
two types of inclusions and so on. A set of inclusions sharing the same electrical and
geometrical properties are understood to be of the same type.

6.1.1 From vacuum to the host

The results that will be derived in this chapter have inclusions immersed in a host ma-
terial that may or may not be the vacuum. All equations derived so far were, nevertheless,
considering the free-space as host.

We will go around this problem by simply scaling all the physical quantities form the
vacuum to the new host: ‘0 æ ‘

h

and ⁄0 æ ⁄0/
Ô

‘

h

.
Care must be taken to convert properly relative permittivities such as ‘

inc

. The relative
permittivity of the inclusions are relative to the vacuum and value such as the suscepti-
bility must be calculated with the permittivity relative to the host. For the sake of clarity
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we write the expression for the susceptibility of one inclusion and the Clausius-Mossotti
equation (47) as examples.

‰

i

= ‘

i

≠ 1 æ ‰

i

= ‘

i

≠ ‘

h

‘

h

(104)
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(105)

6.2 Usual mixing formulas

Although study of electrostatic properties of materials date from ancient Greece, stud-
ies of dielectric properties of mixtures of several materials started to appear only in
the nineteenth century with the already presented Clausius-Mossotti equation (SIHVOLA,
1999). This equation gives the e�ective permittivity in terms of the polarizability and
the number of the molecules composing a dielectric body. Later, after the studies of the
electromagnetic nature of light by Maxwell, Lorentz and Lorenz derived a similar equation
showing that the refractive index is dependent of the volume of the test body.

Later, great scientists such as Rayleigh, Mie, Bruggeman and Maxwell Garnett had
interest in solving similar problems.

This last name, James Clerk Maxwell Garnett, in his seminal paper (GARNETT, 1906),
while studying the color of metallic films, derived a formula that is still widely used.

Maxwell Garnett’s formula will be used in this dissertation as a gauge to the DDA
method that will be deduced and for that reason it will be analyzed in more depth than
any other mixing rule.

6.2.1 Maxwell Garnett mixing rule

Maxwell Garnett formula can be deduced without trouble considering spherical inclu-
sions, using the Clausius-Mossotti formula and assuming that the mixture is diluted, i.e.,
that the volume fraction f of the inclusions is small implying N

i

small.
A more generic derivation such as made by Salski (SALSKI, 2012) will be presented.

The formula obtained will be valid for a diluted mixture (f << 1) where the inclusions are
randomly distributed and there is no correlation between the inclusions positions inside
the host, i.e., there is no preferred position for the inclusions. The inclusions must also
be much smaller than the wavelength.

We first write the equation for the electric displacement vector. It defines the e�ective
permittivity ‘

eff

. Here E is the macroscopic field, E
loc

denotes the local field and E
inc

the incident electric field.
D = ‘

eff

E = ‘

h

E + P (106)
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In a simplistic approximation we will consider that one inclusion is not a�ected by the
scattered field by another one. In this case the local field is equal to the incident field.

E
loc

= E
inc

= E +
¯̄LP
‘

h

(107)

Combining p = ¯̄
–E

loc

and P = q
i

N

i

p
i

with equation (106):

‘

eff

= ‘

h

¯̄I +
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i

N

i

¯̄
–

i

C
¯̄I ≠ 1

‘

h

ÿ

i

N

i

¯̄
–

i

¯̄L
i

D≠1

(108)

It is important to remark that ‘

eff

is a tensor as well as the polarizability and the depo-
larization tensor.

Equation (108) is Maxwell Garnett formula for a multiphase mixture.

Some modifications on Maxwell Garnett formula may be used to get around its va-
lidity hypothesis. One example is the formula derived by Salski (SALSKI, 2012) for a 2D
inclusion’s distribution.

6.3 Using DDA to solve the mixing problem

During the derivation of Maxwell Garnett formula we considered that there was no
interaction between the inclusions.

Here we are going to approximate the inclusions as dipoles and we are going to use
the DDA formulation to find the dipole moment of each one of those inclusions.

The assumptions are, for now, the same as in the section 5.1. The volume V is a
statistically relevant sample of the mixture whose e�ective permittivity we want to calcu-
late. This volume may be composed by one host and a finite number of inclusions. The
inclusions may have di�erent permittivities and geometries and they may be distributed
arbitrarily inside V .

This is a fundamental di�erence between this method and Maxwell Garnett. While
in Maxwell Garnett no preferred position for the inclusions is possible, here nothing is
limiting the relative position of the inclusions, as exemplified in Figure 3. When using MG
approximation we assume that the distribution of the inclusions within the volume V is
random, uniform and non-correlated(MALLET; GUÉRIN; SENTENAC, 2005). If we restrict
the inclusions distribution geometry, MG may be adapted for simpler cases(SALSKI, 2012),
but it fails for a general case.
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(a) Uniform and non-correlated

(b) Strongly correlated

(c) Non-uniform probability distribution

Figure 3: Random distributions of inclusions within V . Maxwell-Garnett formula would
be applicable only in (a) whereas the DDA approach can calculate the e�ective permit-
tivity for any distribution of inclusions.

The volume V considered is finite and has a depolarization factor ¯̄L
h

. If we consider
the volume a homogeneous body of permittivity ‘

eff

, the macroscopic field is calculated
by:

E = E
inc

≠
¯̄L

h

· P
‘

h

(109)

We remember that the ’free-space’ has now permittivity ‘

h

and that is why this value
appears on equation (109).

We use now the definition of the e�ective permittivity given by equation (106). Solving
it for ‘

eff

we obtain expresion (110).
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h

+ P

j
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· P
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h

j = x, y, z (110)

The polarization P is linked to the dipole moments of the inclusions (JACKSON, 1999).
Let n

i

be the number of inclusions of type i, v

i

its volume, Èp
i

Í its average dipole moment
and f

i

its volume fraction. So:
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i

Í (111)
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Since DDA equation gives us the dipole moments of each inclusion, the right hand side
of equation (110) is completely known and so is the e�ective permittivity.

6.3.1 Remarks

In the method presented above all inclusions are modeled as dipoles under multiple
scattering of the incident electric field, i.e., all inclusions are not only excited by the
external electric field, but also by the scattered field of the other dipoles. If the wavelength
of the incident field is ⁄0 in the air, inside V it is ⁄0\

Ô
‘

h

and this wavelength must be
much greater then the inclusions characteristic size so that the dipolar approximation
holds. Figure (4) exemplifies that a bad choice of wavelength may lead to unacceptable
error.

Figure 4: E�ective permittivity calculated for a mixture of air (host) and spherical inclu-
sions with ‘

inc

= 4, diameter d = 1mm and volume fraction f = 50%. In the flat region
of the curve, the quasi-static region, the inclusions can be approximated by dipoles and
the method described here is applicable.
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6.3.2 Equivalence with the Maxwell Garnett formula

If we consider that the mixture is very diluted the depolarization field of the host may
be ignored and also that ¯̄A

ij

¥ 0. Equation (110) becomes then:
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effj = ‘

h

+ P

j

E

incj

= ‘

h

+ P

j

E

locj ≠

1 ¯̄L
i

· P
2

j

‘

h

j = x, y, z (112)

Equation (112) is the same as (108) and the results are consequently the same using both
DDA or Maxwell Garnett mixing rule. We remark that in equation (112) E

inc

refers to
the incident electric field and that ¯̄L

i

refers to the inclusion depolarization dyadic.

Figure (5) shows that for small volume fractions (f < 0.01) there is a perfect agree-
ment between the Maxwell Garnett and DDA results for spherical dielectric body with
characteristics described in Table (1).

Frequency 1GHz
Wavelength 300mm
Number of points composing the sphere 3112
Geometry of the dipole Spheres d=1mm
Lattice spacing 1mm
‘

Õ
h

1
‡

h

0
‡

i

0
Polarizability Simple
LS solving method QMR (converged for all points)

Table 1: Parameters used to produce Figure 5



58 Chapter 6. The mixing problem

Figure 5: Comparison between MG and DDA results for a mixture described by Table 1.
For low volume fractions the results given by both methods are rigorously the same.

6.3.3 Implementation

During the project two implementations of the DDA to calculate e�ective permitivitty
were made. The first prototype was programmed based on Luke’s MATLAB DDA imple-
mentation (LOKE; MENGÜÇ; NIEMINEN, 2011). As a final version a new implementation
was made from scratch in C++ for faster calculations.

The inputs of the software are the necessary data to run the DDA: the geometrical
characteristics of the inclusions as well of its positions inside the bulk, their permittivities
and the permittivity of the host. Figure (6) shows how the calculation is performed.

If the input with inclusions positions is randomly generated a Monte-Carlo simulation
should be performed. The final result is the average of each individual iteration result. As
default, the code runs 500 iterations, but this value can be passed as an optional input.

It is important to note that all calculations are transparent to the final user, i.e., the
user provide the inputs and get as result the e�ective permittivity. No intermediate step
or extra calculation is needed.
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Figure 6: Simple diagram to exemplify how the implemented software works. The user
give the inputs and the e�ective permittivity is returned.

6.3.4 Future improvements

Although coming from a very simple idea, the DDA method implementation can be
improved to increase both accuracy and computational cost.

The list bellow is a compilation of ideas that were not yet tested but that should make
the e�ective permittivity results closer to the expected.

o The inclusions are now treated each as a single dipole limiting the usage of the
method in a quasi-static approximation. The inclusions may, however, be subdivided
in spherical dipole clusters, what would be computationally costful yet more flexible.

o Now two inclusions never occupy the same space. This is not always true. Some-
times in a mixture two inclusions may be so close that they merge - it is the case
for instance of a emulsion decanting or creaming. The implementation would be
straightforward, if they share a point in space their depolarization factor is calcu-
lated for the merged structure and not for each individual inclusion.
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o Using FFT to speed calculations as described by Purcell (GOODMAN; DRAINE;

FLATAU, 1991).

o Use another Green’s function such as the FCD (PILLER, 1999), (YURKIN; KANTER;

HOEKSTRA, 2010)

o Add surface interaction to account for the reflected field on the interface of the test
volume V

6.4 Conclusions
A method for calculating the e�ective permittivity has been derived from the DDA

method. DDA is usually used for scattering studies and, to the best of the author knowl-
edge, it has not been used for e�ective permittivity calculation so far although the deriva-
tion is simple and intuitive.

A brief proof of the equivalence of the Maxwell Garnett mixing formula and the DDA
formulation when Maxwell Garnett validity hypothesis hold. A simple simulation showed
that the results are almost the same in that case.

Since the implementation is still young, much has to be done to make it faster, more
precise and more generic. The results so far are, nevertheless, promising as we shall see
in the validation chapter.
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Chapter 7

Validation of the proposed method

7.1 Comparison with the literature

Two papers were selected to put the proposed method into test. In the first presented, a
mixture of epoxy and hollow glass microspheres, there are uncertainties on the permittivity
of the epoxy resin used and also on the microspheres themselves. The results obtained
were, however, closer to the experimental ones than the approximation given by the
Maxwell-Garnett formula.

In the second selected case a much more complicated geometry and mixture is given.
The inclusions are conductive and are not spheres, but fibers. In addition to that fact,
the mixture is a thin epoxy film, which means that the fibers cannot rotate freely in all
three dimensions, but only in two. Maxwell-Garnett in its original formulation cannot
be used to solve this problem, but some modifications proposed by Salski (SALSKI, 2012)
in Maxwell-Garnett’s formula allow us to use it in this case. We will show that the
proposed method, without any modification, had results almost as good as the modified
Maxwell-Garnett and that making more appropriate approximations the results may be
even better.

7.1.1 Hollow glass microspheres

Zhu et al. (ZHU et al., 2012) studied the dielectric properties of a mixture of hollow
glass microspheres (HGM) immersed in an epoxy host. Those microspheres have a thin
glass shell, their permittivity is estimated by a simple weighted mean, the properties of
each sphere are shown in Table 2.
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Type of HGM Radius(µm) ‘

i

‘

h

‡

h

1
S

m

2

K1 32.5 1.22 4.641 1.28 · 10≠5

K20 32.5 1.36 4.641 1.28 · 10≠5

S38HS 20 1.69 4.641 1.28 · 10≠5

S60HS 15 2.10 4.641 1.28 · 10≠5

Table 2: HGMs properties

In the original paper, the measures were compared to Maxwell-Garnett results. Here
we compare the measurements with Maxwell-Garnett and DDA results and, as one may
see in the figures bellow, for all HGMs, DDA results were, in general, closer to the
experimental ones than MG.

Figure 7: Hollow glass microspheres K1 inside an epoxy matrix. Comparison between
Maxwell Garnett, DDA and measurements
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Figure 8: Hollow glass microspheres K20 inside an epoxy matrix. Comparison between
Maxwell Garnett, DDA and measurements

Figure 9: Hollow glass microspheres S38HS inside an epoxy matrix. Comparison between
Maxwell Garnett, DDA and measurements
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Figure 10: Hollow glass microspheres S60HS inside an epoxy matrix. Comparison between
Maxwell Garnett, DDA and measurements

7.1.2 Carbon fibers

In (ROSA; MANCINELLI; SARASINI, 2009) studies were made in a epoxy film filled with
carbon fibers. The complex e�ective permittivity was measured and the result compared
to Maxwell-Garnett’s predictions with a suitable correction for the geometrical restriction
The characteristics of the film and the inclusions are presented in Table 3.

Epoxy permittivity 3
Film thickness 550µm

Fiber length l=4mm
Fiber diameter d=7µm

Fiber permittivity 2
Fiber conductivity ‡

f

= 40kS/m

Fiber volume fraction f

i

= 2.8 · 10≠4

Table 3: Characteristics of the films studied in (ROSA; MANCINELLI; SARASINI, 2009)

For convenience and ease of calculation of the depolarization dyadic, the shape of
the fibers was approximated by ellipsoids with same aspect ratio and same electrical
properties. The position of each inclusion was randomly selected as well as its orientation
on the xy plane since the film is thinner than the length of the fibers, allowing rotations
only in one direction.
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Figure 11 shows the comparison between the results obtained with DDA, Maxwell-
Garnett and the measurements.

As expected, in the y direction the permittivity was almost equal to that obtained
for the x direction and in the z direction the permittivity was close to that of the host
material.

The DDA method had fairly accurate results without any modification, as needed for
the MG formula to work in this case. The accuracy of the DDA may increase if the fibers
are considered as thin cylinders instead of ellipsoids and if small random elevation angles
are allowed.

Figure 11: Experimental data, DDA and Maxwell Garnett results for an epoxy film with
carbon fibers following the specifications in Table 3

7.2 Comparison with experiments

In order to validate the proposed method several samples of mixtures of a resin and
other known materials were made. The experimental setup consisted essentially of a
rectangular waveguide with cutting frequency of 6.4GHz, sample holders that would be
attached to the waveguide setup, the samples and one Rohde&Schwarz ZVA 40 vector
network analyzer(VNA). More details on the setup may be found on Appendix D.

All samples were tested in X-band frequencies - between 8Ghz and 12GHz and the
S-parameters measured by VNA were used for the e�ective permittivity using the method
described on Appendix C.
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7.2.1 The host material

A vegetable oil-based polyurethane (PU) derived from castor oil plants was used as
host material. In order to produce the resin two components must be added, one yellow
(component A, figure (12)) and one brown (component B, figure(13)) - no details on the
composition of those two parts were given by the vendor. Mixing the two parts in a
proportion of 2xA parts for each component B part gives origin to a firm yellow resin
(Figure 14), with an approximate density of 1.05g/cm

3.

Figure 12: Component A used to make the vegetable oil-base PU resin used as host
material for the studied mixtures.

Figure 13: Component B used to make the vegetable oil-base PU resin used as host
material for the studied mixtures.
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Figure 14: PU resin after 24 hours curing.

7.2.1.1 Making the resin

The mixture of components A and B is exothermic and become sticky after approx-
imately 2 minutes. Care must be taken so the mixture do not become bubbly - mixing
with a stick after the first minute increased enormously the number of bubbles in the final
resin. The best approach found was to mix the components with a stick and depose it in
a transparency sheet in a flat surface or inside the holder and cover it with a polyethylene
(trash) bag. Although the first one generated a block of resin with thickness variations
on the borders that method was preferred since the bubbles generated could go out of the
resin during the curing process. Since in the second method the mixture is confined during
the curing process, the bubbles do not have where to go out and stay in the mixture. As
we will see later, bubbles are sometimes desired and this method is then also useful. The
total curing process time took about one day for each batch of samples that was made.

7.2.2 Mixtures

Several mixtures were made adding new components to the resin before the curing pro-
cess or inducing bubbles. The dimensions of the samples were cut to fit the sample holder
and the unavoidable air gaps were compensated by an algorithm described on Appendix
C. Several holders were used in order to have a good match between the thickness of the
sample and the thickness of the sample holder - all the holders are listed on Appendix D.

Table 4 is a synthesis of the samples that were made and the characteristics of the
inclusions.
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Samples mixing ferrite powder and the base resin and also graphite powder and the
base resin were produced but will not be presented here in the first version of this doc-
ument due to time constraints. We are going then to focus on the sample with air
inclusions.

Table 4: List of all the samples analyzed with the inclusions characteristics

Sample Inclusion Volume Fraction (%) ‘

r

@10GHz Shape Comments
PU1 none - - - ‘

h

= 2.31@10GHz
PU2 none - - - ‘

h

= 2.46@10GHz
PU3 none - - - ‘

h

= 2.39@10GHz
PU4 none - - - ‘

h

= 2.37@10GHz
Air1 Air 3.9 1 spheres non-uniform distribution

7.2.3 Dielectric properties of the resin

Based on measures done for the samples PUx,x œ 1...4, the average permittivity of
the PU resin used is given by Figure (15).

Figure 15: E�ective permittivity of the PU resin used as host. Average over 4 samples.
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7.2.4 Air1 sample

The first mixture to be studied is a mixture of PU and air bubbles. The air bubbles
are not evenly distributed in the sample, they are concentrated in a area in its middle
that is approximately circular (Figure (16)).

Figure 16: Sample Air1. The air bubbles are not distributed within all volume of the
sample. They are approximately distributed in a circle in the middle of the sample.

Since the creation of the bubbles is not a controlled process, its volume fraction f

must be indirectly measured after the resin is cured.
The density of the mixture is given by:

fl

mix

= m

air

+ m

P U

V

air

+ V

P U

= fl

P U

+ fl

air

f

1 + f

(113)

Hence:

f = fl

P U

≠ fl

mix

fl

mix

≠ fl

air

(114)

Since all those quantities are known, f can be calculated. In this case fl

P U

= 1.05g/cm

3,
fl

mix

= 1.01g/cm

3 and fl

air

= 0.001225g/cm

3 and then f = 3.9%. Using a computer
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vision algorithm we can process an image of the sample and extract the typical size of
the bubbles.

Figure 17: Colorized and zoomed air bubbles in sample Air1. Using a computer vision
algorithm it is possible to extract the typical size of a bubble. In this case the typical
diameter of the spheres is 0.559mm.

We compare the measure of the e�ective permittivity with the calculations made by
using the DDA method and Maxwell Garnett mixing formula. Instead of a Monte Carlo
simulation as done in the case of the carbon fibers, here only one solution was taken. The
solution for a low volume fraction takes no more then a few seconds when solved in any
modern computer.

We may note that, in general, the DDA results and Maxwell Garnett have a similar
behavior. The DDA method is, however, more precise around 10GHz and 11.7Ghz (Figure
18). Even for a single calculation, and not an average, the results are close to what is
expected.
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Figure 18: Comparison between DDA, MG and measured results for a mixture composed
by PU and air with 3.9% volume fraction.
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Conclusion

Although the calculation of the permittivity of mixtures and homogenization problems
have been explored for more than one century, they are still a rich research domain. Clas-
sical approximate formulas have been modified to fit to specific problems and numerical
methods have been used when a more general approach is needed. The proposed method
is a mix between an analytical and computational method and it aims to be general and
computationally e�cient by making the appropriated assumptions and approximations.
Before presenting the main result and its validation, a synthesis is made on Maxwell’s
equations in a material media and on Green’s functions to solve the wave equation in free
space. This second problem was explored in depth and one expression was derived by
removing the singularity of the dyadic Green’s function in a source region, this equation
is then used to reach the final expression used in the usual discrete dipole approxima-
tion. A simple formula and intuitive formula was then derived and experimental data was
gathered and compared to the results given by the proposed method.

The studies made here show the path to explore the mixing problem using the classical
tools and also gives new paths to may lead to very promising results. Even if many
improvements must be done to increase the accuracy of DDA for e�ective permittivity
calculation and to theoretically set bounds for where the method is valid, the comparison
between experimental and theoretical data shows clearly that for rough approximations
the method is valid and, due to its high simplicity, easy to understand and use.
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APPENDIX A

Vector and tensor identities

This appendix aims to be a summary of the useful identities used throughout the text
and to clarify the vector and dyadic/tensorial notation used. The Einstein notation and
the Levi-Civita symbol are introduced and used to prove some of the identities. A more
exhaustive list of identities may be found in (NITSCH; WOLLENBERG, 2009), (SCHEY,
1973), (GUIO, 2011), (YORK, 2012).

A.1 Notation

In this appendix and through the text the following notation is used:

o Â - Scalar functions are represented by non-bold and non-italic characters

o A, a - Vectors are represented by bold characters

o

¯̄D - Dyadic tensors are represented by bold capital letters with a double bar

o n̂ - Unitary vectors are represented in small letters with a hat

o ê
i

- A basis vector is represented be the letter e

A.2 The Levi-Civita symbol

The Levi-Civita symbol is a tensor of order 3 that is defined by:

Á

ijk

=

Y
____]

____[

0, if i = j or i = k or j = k

1, if ijk is a cyclic permutation of 1, 2, 3

≠1, if ijk is a anti-cyclic permutation of 1, 2, 3

(115)
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Example:

Á

iik

= 0
Á

ijk

= Ákij = 1
Á

kji

= ≠1

A.2.1 Properties

The Kronecker delta is defined by:

”

ij

=

Y
_]

_[

0, if i ”= j

1, if i = j

(116)

The Levi-Civita tensor can be written in terms of the Kronecker delta.

Á

ijk

Á

imn

= ”

jm

”

kn

≠ ”

jn

”

km

(117)

A.3 Einstein notation

The standard vector notation is:

A =
ÿ

i

a

i

ê

i

In Einstein notation the summation symbol is implicit so:

A = a

i

ê

i

Dyadic tensors are the made by two juxtaposing vectors.

¯̄D = D

ij

ê
i

ê
j

= a

i

b

j

ê
i

ê
j

The transpose of a dyadic tensor is

¯̄DT = D

ji

ê
j

ê
i

= a

j

b

i

ê
j

ê
i

And its trace:
Tr

Ë ¯̄D
È

=
ÿ

i=j

a

i

b

j

ê
i

ê
j

= A · B (118)

Where A and B are the vectors composing the dyadic.
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A.3.1 Di�erential operators and usual operations using the Ein-
stein notation

ê
i

· ê
j

= ”

ij

ê
i

◊ ê
j

= Á

ijk

ê
k

A ◊ B = Á

ijk

a

j

b

k

ê
k

A · B = a

i

b

i

Ò(Â) = ˆ

i

Â

Ò · A = ˆ

i

a

i

Ò ◊ A = Á

ijk

ˆ

j

a

k

A.4 Vector Identities

A + B = B + A (119)

Proof.

A + B = a

i

+ b

i

= b

i

+ a

i

= B + A

A · Aú = |A|2 (120)

Proof.

A · Aú = a

i

a

ú
i

= |a
i

|2

= |A|2

A · B = B · A (121)

A ◊ B = ≠B ◊ A (122)
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Proof.

A ◊ B = Á

ijk

a

i

b

j

ê
k

= ≠Á

jik

b

j

a

i

ê
k

= ≠B ◊ A

(A + B) ·C = A ·C+B ·C (123)

(A + B)◊C = A◊C+B◊C (124)

A ·(B ◊ C) = B ·(C ◊ A) = C ·(A ◊ B) (125)

Proof.

A · (B ◊ C) = (a
i

ê
i

) · Á

lmn

b

l

c

m

ê
n

= Á

lmn

a

i

b

l

c

m

(ê
i

· ê
n

)
= Á

lmn

a

i

b

l

c

m

”

in

= Á

nlm

a

n

b

l

c

m

= Á

mnl

b

m

c

n
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A◊(B ◊ C) = (C ·A)B≠(B ·A)C (126)
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n

)
= Á

lmn

Á

ink

a

i

b

l

c

m

ê
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ê
k

= (”
lk

”

mi

≠ ”

li

”

mk

a

i

b

l

c

m

ê
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A◊(B ◊ C) = (C ·A)B≠(B ·A)C (127)
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Proof.
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n

)
= Á

lmn

Á

ink

a

i

b

l

c

m

ê
k

)
= Á

nlm

Á

nki

a

i

b

l

c

m

ê
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Ò(Â + „) = ÒÂ + Ò„ (128)

Proof.

Ò(Â + „) = ˆ

i

(Â + „)
= ˆ
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Â + ˆ
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„

= ÒÂ + Ò„

Ò(Â„) = ÂÒ„ + ÂÒ„ (129)

Proof.

Ò(Â„) = ˆ
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chain rule= Âˆ
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„

= ÂÒ„ + „ÒÂ

Ò · (A+B) = Ò ·A+Ò ·B (130)

Ò · (ÂA) = ÂÒ ·A+A ·ÒÂ (131)

Proof.
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= ÂÒA + A · ÒÂ



86 APPENDIX A. Vector and tensor identities

Ò ·(A◊B) = B(Ò◊A)≠A ·(Ò◊B) (132)

Proof. Check (127).

(133)

Ò◊ (A+B) = Ò◊A+Ò◊B (134)

Ò◊ (ÂA) = ÂÒ◊A+A◊ÒÂ (135)

Ò · Ò ◊ A = 0 (136)

Proof. For a three-dimensional system:
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= 0 (137)

Ò ◊ ÒÂ = 0 (138)

Ò · ÒÂ = Ò2
Â (139)

Ò◊ (Ò◊A) = Ò(Ò ·A)≠Ò2A (140)

Proof.
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A.5 Dyadic tensors identities

A · ¯̄D = ¯̄DT · A (141)

1
A ◊ ¯̄D

2
T

= ≠
1 ¯̄DT ◊ A

2
(142)

¯̄D ·(A◊B) = ≠( ¯̄D◊B) ·A = ( ¯̄D◊A) ·B (143)

A◊(B◊ ¯̄D) = B(A · ¯̄D)≠(A ·B) ¯̄D (144)

(A◊ ¯̄D) ·B = A◊ ( ¯̄D ·B) (145)

(A · ¯̄D)◊B = A · ( ¯̄D◊B) (146)

(A◊ ¯̄D)◊B = A◊ ( ¯̄D◊B) (147)

Ò · (Â ¯̄D) = (ÒÂ) · ¯̄D+ÂÒ · ¯̄D (148)

Ò◊ (Â ¯̄D) = (ÒÂ)◊ ¯̄D+ÂÒ◊ ¯̄D (149)

Ò ·(A◊ ¯̄D) = (Ò◊A) · ¯̄D≠A ·Ò◊ ¯̄D (150)

Ò◊ (Ò◊ ¯̄D) = Ò(Ò · ¯̄D)≠Ò2 ¯̄D (151)
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A.5.1 Unit dyadic tensor properties

¯̄I = ¯̄IT (152)

A · ¯̄I = A (153)

¯̄I ◊ A = A ◊ ¯̄I (154)

Ò · (Â¯̄I) = ÒÂ (155)

Ò · (¯̄I ◊ A) = Ò ◊ A (156)

Ò ◊ (Â¯̄I) = ÒÂ ◊ ¯̄I (157)
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Depolarization dyadic examples

Table 5: Depolarization dyadic for some widely used shapes

Shape Depolarization Dyadic Figure

Sphere ¯̄I
3

Cube at center ¯̄I
3

Pillbox (1 ≠ h

2r

)e
z

e
z

+ h

4r

(e
x

e
x

+ e
y

e
y

)

Ellipsoid N

x

e
x

e
x

+ N

y

e
y

e
y

+ N

z

e
z

e
z

A much more exhaustive list may be founded on (BLADEL, 2007) and (YAGHJIAN,
1980).
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Parameter extraction algorithm

The samples presented in Chapter 7 had inclusions in a very low volume fraction and
since the resin (the host material) is low-loss, a low-loss mixture was expected.

In order to calculate the constitutive parameters of a low-loss material using the
waveguide method and the S-parameters measurements a modified version of the clas-
sical Nicolson-Ross-Wier (NRW) (NICOLSON; ROSS, 1970) was used. This method was
introduced by Adriano Luiz de Paula et al. in (PAULA; BARROSO; REZENDE, 2011).

The final expression for the measured permittivity is a function of only the S11 and
S21 scattering parameters, the cuto� frequency of the waveguide used, the thickness of the
sample and the frequency of the illuminating field. The formula, derived on de Paula’s
paper, is given by:

µ

r

= ⁄0g

� · 1 + �
1 ≠ � (158)

‘

r

= ⁄

2
0

µ

r

·
3 1

�2 + 1
⁄

c

4
(159)

where ⁄

c

is the cuto� frequency of the waveguide (6.4Ghz in the experiments made)
and

⁄0g

= ⁄0Ò
1 ≠ (⁄0

⁄c
)2

(160)

� = j

2fid

ln(T ) (161)
(162)

Where � and T are the reflection and transmission coe�cients calculated with the
S-parameters given.

A much more extensive list of algorithms for parameter extraction may be found on
(KUEK, 2006).
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Experimental setup

In order to measure the S-parameters a VNA Rohde&Swarz ZNA-40 was used. Using
its TCP/IP communication, the VNA was connected to a computer running a Python
script to automatically calculate the e�ective permittivity once the S11 and S21 were
measured.

For all samples the measurements were made in the X-band in a rectangular waveguide
mounted as shown in Figure (19).

Figure 19: Experimental setup with rectangular waveguides, a sample holder (waveguide
flange), attenuators and the VNA

Figure (20) gives the general shape and inner dimensions of the waveguide. Using
equation (163) one can calculate the cuto� frequency of this guide for TE10 waves.
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Figure 20: Typical rectangular waveguide used for the measurements

f

c

= c

2a

(163)

where ’a’ is the larger internal dimension of the guide in meters and c is the speed of light.
The calculated value of 6.42GHz matches perfectly the measured cuto� frequency.
One may note that in both left and right terminations of the waveguide the ends

have attenuators with ends opened. The goal of having this setup is to minimize internal
reflections, avoiding the waveguide behaving like a cavity resonator.

D.1 VNA calibration procedure
Before a series of measurements the VNA should be calibrated appropriately. The

most appropriate calibration for the measurements with waveguides is the thru-reflect-
line(TRL) calibration procedure. For the VNA used, the best algorithm was the NIST

optimized TRL that may be found as one of the calibration options. The TRL calibration
is done in three stages:

o Thru: all the waveguides are connected without any sample holder or separator

o Line: a ⁄/4 flange is used to separate the two waveguides, as shown in Figure (21).
In this case we chose 10GHz as central frequency and the flage has to have 3.5mm
length.
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o Reflect: both waveguides are covered by a mirror (a piece of metal)

Figure 21: Example of quarter-wave flange used for calibration Line procedure

D.2 Sample holders

The sample holders consisted of metal flanges of several thicknesses to match the
thickness of the measured sample. Thicknesses di�erences between the sample and the
holder must be compensated in the VNA by software, introducing the new air path
introduced by the thicknesses di�erences.

Besides the thickness di�erence, the holders were also di�erent by how the sample
would be put on it: for some holders (Figure (22)) the sampled would be cut and snapped
in and for others (Figure (23)) the sample would be cured inside of it and the sample
would be then permanently attached to it.

Both types of holders have drawbacks: the geometrical di�erences between the sample
and the holder of the first kind would create air gaps that needs to be compensated
(KUEK, 2006), (NOTE, 2006). For the second type of holders, during the curing process
of the resin, air bubbles couldn’t get out of the sample and would be present on it after
the curing was done.
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Figure 22: Holder were the sample must be snapped into it before the measurement. Air
gaps due to geometric di�erences must be compensated on the post-processing of the
S-parameters measured.

Figure 23: Holders were the resin was cured on it. The sample was attached to the holders
permanently. On the first picture the holder is sandwiched by two plastic flanges in order
to make the sample as flat as possible. Second picture shows a holder before snapping
the top flange.


	Folha de rosto
	Folha de aprovação
	Acknowledgements
	Epígrafe
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Maxwell's macroscopic equations and constitutive relations
	Maxwell's equations in vacuum 
	Maxwell's equations in matter
	Spatial averages
	Case of a single particle
	Deriving an averaged function

	Macroscopic Gauss's law
	Calculation of "426830A micro "526930B 

	Macroscopic Ampère's law
	Conclusions

	Constitutive relations
	Ohm's law
	Polarization density and electric field
	Locality and dispersion
	Relative permittivity
	Magnetic permeability
	Static and dynamic fields

	Conclusions

	Macroscopic versus local field
	Depolarization field
	The case of a sphere

	Local field
	The case of a sphere in a cubic lattice

	Remarks and conclusion

	Free space dyadic Green's function
	Free space Green's function
	Dyadic Green's function
	Removing the singularity
	Yet another formulation for Maxwell's equations
	Solving the wave equation
	Divide et impera

	Remarks and conclusion

	The discrete dipole approximation
	DDA formulation
	Discretization

	Remarks and conclusion

	The mixing problem
	Basic definitions
	From vacuum to the host

	Usual mixing formulas
	Maxwell Garnett mixing rule

	Using DDA to solve the mixing problem
	Remarks
	Equivalence with the Maxwell Garnett formula
	Implementation
	Future improvements

	Conclusions

	Validation of the proposed method
	Comparison with the literature
	Hollow glass microspheres
	Carbon fibers

	Comparison with experiments
	The host material
	Making the resin

	Mixtures
	Dielectric properties of the resin
	Air1 sample


	Conclusion
	Bibliography
	Appendix
	Vector and tensor identities
	Notation
	The Levi-Civita symbol
	Properties

	Einstein notation
	Differential operators and usual operations using the Einstein notation

	Vector Identities
	Dyadic tensors identities
	Unit dyadic tensor properties


	Depolarization dyadic examples
	Parameter extraction algorithm
	Experimental setup
	VNA calibration procedure
	Sample holders



