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RESUMO

Neste trabalho, é conduzida uma investigacao tedrica e experimental da balanca de Poggen-
dorff (ou aparato de Poggendorff). Ele consiste em uma balanga de brago com uma maquina
de Atwood servindo como peso em uma das pontas. Tal aparato foi projetado por Johann
Christian Poggendorff para demonstrar a variacao no peso aparente entre uma méaquina de
atwood parada e em movimento. Foi desenhada e construida uma versao moderna da balanca
de Poggendorff na qual a maquina de atwood é presa a uma barra rigida de aluminio, com um
contrapeso na outra ponta, e 0 movimento da polia é travado por um fio de massa negligenciavel.
Quando o fio que trava o movimento da maquina de Atwood é queimado, a maquina de Atwood
entra em movimento e o equilibrio até entao presente na balanca se desfaz. O angulo depen-
dente do tempo «a(t) do brago da balanga com relacao a horizontal é medido utilizando uma
montagem de potenciometro e Arduino e os dados sao registrados com alta resolucao temporal.
As previsoes tedricas sao obtidas utilizando o formalismo Newtoniano e o formalismo Lagrangi-
ano para a polia em duas configuracoes: polia “paralela” e polia “perpendicular”. As equagoes
de movimento obtidas sao integradas numericamente utilizando Fortran e gerando resultados
quase idénticos para os trés modelos. Foi visto que os calculos concordam qualitativamente com
o experimento; no entanto, desvios quantitativos dos resultados foram observados e podem ser
atribuidos a falta de sincronia entre a queima do fio e o comego da coleta de dados (além dos
efeitos de fric¢ao no potencidmetro). O valor de experimentos historicamente negligenciados no
ensino de fisica também é discutido, especificamente na ilustracao da forca como causa versus
consequencia do movimento e na comparacao das abordagens Newtoniana e Lagrangiana para

a resolucao de problemas em mecanica.

Palavras-chave: Experimento de Poggendorff. Maquina de Atwood. Mecanica Newtoniana.

Mecanica Lagrangiana. Ensino de Fisica

1 INTRODUCAO

A maquina de Atwood é um aparato bem conhecido e aparece em exemplos e problemas em
virtualmente todo livro de fisica basica e pode ser utilizada para averiguar problemas mecanicos

com precisao, como medir o valor local de g (COELHO, 2012).
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Figura 1: Esquema do experimento de Poggendorff feito por Mach. O contrapeso a possui a
mesma massa que a maquina de atwood (descontando a polia). O fio conectando o peso P + p
ao centro da polia ¢ mantem o sistema em repouso (MACH, 1902).

No século XIX, Johann Christian Poggendorff (1796-1877) desenvolveu um experimento para
demonstrar que o peso efetivo de uma maquina de Atwood muda quando ela estd em movimento.
O fisico e filésofo Ernst W. Josef Wenzel Mach (1838-1916) esquematizou o experimento de
Poggendorff com a figura 1 (MACH, 1902, p. 206-207).

Na figura 1, o fio que liga P 4+ p a ¢ mantem a méaquina de atwood e, consequentemente,
toda a balanca em repouso. Se removermos o fio, queimando-o para perturbar o sistema apenas
no minimo possivel, as massas na maquina de Atwood comecam a se mover, dando inicio ao
movimento da barra abc.

Esse experimento foi esquecido pelos livros didaticos de fisica, com pouquissimas excecoes
(COELHO; SILVA; BORGES, 2015). Apesar disso, ele apresenta implicagoes educacionais
substanciais ao mostrar que a consideracao de que a forca causa aceleracao é uma afirmacao
mais metafisica que fisica. Nesse caso a aceleragao das massas da maquina de Atwood gera
uma mudanga na forga resultante no sistema (COELHO, 2012).

Apesar de pouco conhecido, alguns experimentos sobre a balanca de Poggendorff foram
realizados. Em 1970, o fisico brasileiro Cintra do Prado pesou uma maquina de Atwood em
uma versao do aparato de Poggendorff que ele construiu. Ele verificou que o peso diminui com
o movimento (PRADO, 1970). De maneira semelhante, o Professor Ricardo Lopes Coelho, de
Portugal, pesou uma maquina de Atwood em repouso e em movimento e mostrou uma redugao
no peso compativel com a previsao tedrica. Mais precisamente, a diminui¢ao de peso foi um

pouco menor que a previsao teorica (cerca de 3% e 6%), “atribuivel a uma pequena inclinag¢ao



do sensor de forga ou alguns outros pequenos erros sisteméticos” (COELHO; SILVA; BORGES,
2015).

Decidimos medir o angulo do brago da balanca, a linha abc na figura 1, em relagao a
horizontal (que é a posicao inicial, quando a balanga se encontra em repouso). Com isso,
podemos comparar os resultados experimentais e a previsao tedrica gerada pelos formalismos
Lagrangiano e Newtoniano da mecanica classica. Distintivamente das andlises que encontramos
na literatura, nao foi assumido que a polia é ideal. E interessante notar que durante a andlise
da bibliografia sobre o aparato de Poggendorff, nao foi encontrada analises do experimento

utilizando o formalismo Lagrangiano.

2 MATERIAIS E METODOS

Como brevemente discutido na introdugao, a montagem da balanca de Poggendorff é, de
forma sucinta, uma balanca de pesagem onde o peso a ser medido é uma maquina de Atwood
que consiste em dois pesos conectados por um fio inextensivel através de uma polia. Na figura
2a esta a montagem da balanga de Poggendorff feita com uma balanca de braco onde o braco
¢ uma barra de aluminio.

A versao da balanca construida para esse experimento é constituida por uma barra de
aluminio, presa a um suporte vertical, que pode girar com baixa friccao interna. De um lado
ha um contrapeso conectado a uma das extremidades da balanca, na outra extremidade esta a
maquina de Atwood, construida com dois pesos, uma polia de aluminio e um fio de barbante.
A maquina de Atwood estd conectada ao braco da balanca por uma haste de aluminio em
formato de “U”. O contrapeso tem peso aproximadamente igual ao peso da méquina de Atwood
acrescido ao peso da haste em para manter o repouso. Como jé indicado, a maquina de Atwood
¢ mantida em repouso por um fio pequeno com uma das extremidades amarrada na maquina e
outra no brago da balanga (visto na figura 2b, este fio é queimado para iniciar o experimento,
adicionando o minimo de perturbacao possivel no sistema.

Tomamos medidas das grandezas relevantes do sistema usando as unidades do SI. As massas
estdo apresentas na tabela 1, e os tamanhos na tabela 2. As incertezas das medidas foram
ignoradas para viabilizar os cadlculos necessarios para as andalises teoricas do experimento. De
qualquer forma, o erro estatistico do experimento suplantaria as incertezas nas medidas de

massa e tamanho.



(a) O aparato de Poggendorff completo. (b) A méquina de Atwood.

Figura 2: O aparato de Poggendorff utilizado. Na figura 2(a) temos uma visao do aparato
construido para medir o angulo entre a barra de aluminio e a horizontal a(¢). Em (b) aplicamos
zoom na regiao da maquina de Atwood do lado direito do aparato de Poggendorff. A seta
vermelha indica o fio mantendo a maquina de Atwood (e toda a balanga) em repouso. Esse fio

é queimado para iniciar o experimento.

Objeto Massa

Polia (mp) 36,07 g

Haste de sustentacao (m,.) 39,79 g
Parafuso e borboleta da haste (m,) 9,56 g

Peso b (my,) 110,81 g

Peso ¢ (m,.) 172,80 g

Barra (braco da balanca) (mg) 135,86 g

Peso a, parte de m, 355,04 g

Estrutura que segura o peso a, parte de m, | 12,99 g

Tabela 1: Tabela contendo todas as massas relevantes para o experimento.




Objeto Comprimento

Comprimento da barra (brago da balanca) (2R) 86,1 cm

Distancia entre o centro da polia e a barra (r) 2,69 cm
Comprimento da corda na maquina de Atwood 2,03 m
Raio da polia (D) 3,1 cm

Tabela 2: Tabela contendo todos os comprimentos relevantes para o experimento.

Figura 3: Esquema da balanga de Poggendorff utilizada no experimento. A configuracao exibida
tem o eixo de rotagao da polia paralelo ao eixo de rotagao da balanca.

O modelo tedrico utilizado leva em consideragao as massas dos pesos da maquina de Atwood,
a massa (e o momento de inérica) da barra de aluminio, da polia e da haste segurando a polia.
O fio foi considerado inextensivel, sem massa e permanecendo sempre na vertical (exceto na
dobra em que ele faz quando em contato direto com a polia). As figuras 3, 4 e 5 mostram os
elementos considerados no modelo tedrico, bem como a nomenclatura usada para definir cada
elemento nos célculos.

Na figura 3, R representa a barra de aluminio que constitui o brago da balanca, mais
precisamente, a distancia entre o eixo de rotacao da balanga e a extremidade do braco da
balanca. A haste que prende a polia ao braco da balanca é representada por r. O termo r’
representa a distancia entre o eixo de rotacao da balanca e o centro da haste que segura a
polia e R’ representa a distancia entre o eixo de rotacao da balanca e o centro da polia. O
contrapeso ¢ representado por a e a distancia entre a balanca e o contrapeso é [,. Os pesos

da maquina de Atwood sdo representados por b e ¢ e as distancias (verticais) entre os pesos e
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Figura 4: Esquema destacado da méquina de Atwood que compde o aparato de Poggendorttf.

a polia sao, respectivamente, [, e [.. A polia é representada por P; nas equagoes usaremos D
para representar seu raio . Exceto quando explicitado o contrario, utilizamos uma letra z para
representar o tamanho de um objeto e m, para a massa. Note que a representa o angulo entre
o brago da balanca e a horizontal.

Na figura 4 temos a polia em foco, destacando a coordenada angular generalizada da polia
¢ e o raio D da polia.

Além das grandezas destacadas nas figuras, os modelos tedricos também levam em consi-
deracao o angulo # entre R’ ¢ R e o angulo #" entre ' ¢ R, bem como as massas do contrapeso
(mg), dos pesos na maquina de Atwood (m; e m,.), da polia (mp), da haste segurando a polia

(m,), da barra de aluminio (mpg) e do conjunto parafuso e borboleta segurando a haste (m,).

2.1 Formalismo Newtoniano

A abordagem Newtoniana para um problema que é basicamente uma balanca de braco
pesando uma maquina de Atwood é, prima facie, simples, basta: 1) resolver a méaquina de
Atwood; 2) determinar o peso efetivo da méquina de Atwood; 3) resolver a balanga.

Comecamos pela maquina de Atwood: exibida na figura 2b e esquematizada na figura 4.

Primeiramente, devemos notar que a polia tem massa finita. Além disso, a polia estd sendo

acelerada (inicialmente para cima), o que pode ser modelado como se ela estivesse sob efeito de



Figura 5: Esquema da balanga de Poggendorff utilizada no experimento. A configuracao exibida
tem o eixo de rotacao da polia perpendicular ao eixo de rotacao da balanca. Essa configuracao
aumenta a complexidade do movimento, uma vez que agora a polia rotaciona em dois eixos
independentes: seu eixo “padrao”, que se encontra perpendicular ao eixo da balanca, e em torno
de si em um eixo paralelo ao da balanca, forcando um tipo de precessao do eixo “padrao”.

um campo gravitacional modificado! : ¢’ = g + R'(‘%"cas(a +7+6)— ‘Z—?Qsm(a +7m+46)). Os
termos de seno e cosseno se devem a uma rotagao acelerada do braco da balanca. Lembrando
sempre que «(t) é o angulo entre o brago da balanga e a horizontal (que é a posigao definida
como inicial do experimento), convencionado de forma a aumentar quando o brago gira no
sentido anti-horario, como mostrado nas figuras 3 e 5.

Considerando o momento de inércia da polia como o de um cilindro uniforme e aplicando

as leis de Newton temos as seguintes equagoes:

(
meg —T. = mea

Ty — mpg = mpa (1)

Tc — Tb = %mDa.
\

Onde T, e T}, sao as tensoes nos fios [, e [, respectivamente e cujos resultados sao:

_ _(me—mp)g"
a= mc—i—mb—‘r%mD
T, = meg/(1 — —2e=me ) (2)

mc—&-mb—i-%mp

Tb — mbg’(l + M)

L mc-i—mb—‘r%mp :



E facil verificar que se ¢ for negativo, a tensao no fio empurrara a polia para cima e, do
ponto de vista da polia, os pesos irdo “cair para cima” (de outro ponto de vista, a aceleracao
para baixo dos pesos é menor que a da polia). Se ¢’ for grande o suficiente, teremos o peso
aparente (a forca que a maquina de Atwood faz na polia) sendo maior que o peso de repouso.
Ambos os casos podem acontecer em um movimento circular com velocidade suficiente.

Seguindo o raciocinio da referéncia (COELHO; SILVA; BORGES, 2015), a segunda lei de
Newton nos déa o peso efetivo de uma maquina de Atwood. Em (COELHO; SILVA; BORGES,
2015), a polia é considerada sem massa, o que resulta em W,, = 2T, onde W,, é o peso da
maquina de Atwood e T a tensao no fio. Porém, aqui temos uma polia com massa, o que

resultaria em W, = (T. + T}) + mpg. Substituindo T, e T}, chega-se a:

s o (L)) (o (L)

me +my + mp me + my + smp

Também é possivel calcular a diferenga entre o peso efetivo da maquina de Atwood em
movimento e o peso dela em repouso W,.. O peso no lado da maquina de Atwood, antes do fio
que trava a maquina ser queimado, deve ser igual ao peso m,g no lado do contrapeso. Nesse
caso, a aceleracao que define a maquina de Atwood é 0, pois a maquina de atwood esta travada
pelo fio que a conecta a barra de aluminio. Matematicamente, o peso da maquina de Atwood
nessa situagao é a soma dos pesos de suas componentes. Vale notar que as tensoes T}, e T}, nao
sdo iguais as tensoes descritas em (2), que entrard em vigor apds a queima do fio.

Com W, definido, temos que a variacao de peso na maquina de Atwood AW é dada por:

AW =W, = Wy, = (my +me +mplg  —
N / _ / (4)
(ng’ + (mcg' — M, (me = ms)g ) + <mbg' + my, (me = m)g )>

1 1
Mme + My + 5Mp me + My + 5Mp

Também é necessario saber o momento de inércia I, da barra de aluminio se movendo.
Com o teorema dos eixos paralelos, podemos dividir o momento de inércia em varias partes.
Primeiramente, o momento de inércia da barra com relagao ao seu eixo de rotagao, que passa
pelo seu centro e é perpendicular a sua extensao. Em segundo lugar temos o momento de
inércia da pequena haste segurando a maquina de Atwood, que precisa ser considerada ja que

estd rotacionando presa a barra de aluminio. O movimento da haste pode ser dividido em uma



rotagao em torno de si composta com uma translacao em torno do eixo de rotacao da balanca;

entao, utilizando o teorema dos eixos paralelos temos:

mrR?>  m,r?
]0 = }; —|— 12 + mTTIQ + mpR2. (5)

Com as tensoes na maquina de Atwood calculadas, comecamos a modelar a aceleracao
angular da balanga. Sao considerados dois fatores chave: (1) o torque gerado pelos pesos e (2)
as forgas de reacao do par acao-reagao da barra de aluminio acelerando os pesos. Considerar o
fator (2) é matematicamente equivalente a incluir os pesos no momento de inércia da balanga,
mas gera expressoes mais faceis de serem tratadas.

O torque total sobre a barra da balanca (incluindo a haste em U que sustenta a polia) é:

2 2 2 , . -
‘fiT?(m’gR + 2=+ m,r? +my, R?). Isto é, a soma dos torques provenientes dos pesos, das tensoes

no fio da maquina de Atwood, do peso da polia e das forcas de reacao dos componentes sendo
empurrados e puxados, que sdo, em suma, uma combinagao de forgas de rea¢ao (a0 movimento)
e peso.

O torque considerado como proveniente dos pesos é o torque gerado pela haste segurando a
polia (de massa m,.), da polia (de massa mp), do parafuso e da borboleta segurando a haste (de
massa m,) e do contrapeso (com massa m,): —g[R(mgcos(a) + mycos(a+ 7)) +mpR'cos(a +
T+ 0) + m,r’cos(a + w4+ 0')]. O torque das forcas de reacao é proveniente da reagao da polia
e do contrapeso ao serem empurrados pela balanca e da componente horizontal da forca de
reacao dos pesos na maquina de atwood, representada pelos termos acompanhados de seno
na expressao (a componente vertical da resisténcia ao movimento dos pesos na maquina de
Atwood estd contabilizada nas tensoes no fio e a inércia da haste segurando a polia esta inclusa
no momento de inercia), resultando em:—”f;Tg‘[maR2 + R?(mp + (my + me)sin?®(a + 7 +0))] —
%2R’2(mb + me)sin(a+ m+ 0)cos(a + 7w + 6). Por fim, o torque gerado pelas tensoes no fio da
maquina de Atwood, que contabiliza a componente vertical dos pesos da maquina de Atwood
quando ela é acelerada pela barra de aluminio, é —(T}, + T¢.)R'cos(a + 7 + 0).

Com isso, podemos calcular o torque resultante e, a partir dele, chegar na equagao de

movimento:
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—g lR(ma cos(a) + mycos(a+ 7)) + m,r’ cos(a+ 7+ 6')

my + me + 2

_ 2
+R’cos(oz+7r+9)(mb+mc+mD_ (me —my) )}
2

(me — mb)2

2
— (d_a) R?cos(a+m+0) sin(a+7+6)

d204 dt my + me + WZQ_D
dt2 - T2 mR (6)
TTL,«(?”/2 + E) +R2(mp+ma+ T)

(me — mb)2

+R'2(mb+mc+mp — cos2(oz+7r+0)>

ot et 5

Aproximando a equagao (6) para angulos pequenos e considerando r = 0, temos que o

sistema é equivalente a uma maquina de Atwood composta, possuindo a mesma equacao de

movimento:

—glma — (my +my, + my + me +mp) + me—my)?

]

o _ my+me+ 3
A R(I + mg +m, +my, +my +m, +mp — memma)?_y

mb—&-mc-i-;—%

Como demonstrado em (COELHO; BORGES; KARAM, 2016), podemos relacionar a ace-
leracao em uma maquina de Atwood com uma mudanca de posicao no eixo de uma balanca de
braco simples se a balanca sustentar os mesmos pesos que a maquina de Atwood, o que torna
os dois problemas equivalentes, permitindo um estudo do problema utilizando torque.

E claro que algumas simplificagoes foram exigidas. Por exemplo, o fio conectando os pesos
b e ¢ foi considerado sem massa, qualquer oscilagao que os pesos ou o contrapeso possam sofrer
durante o movimento da balanca foi negligenciado e o ponto onde os fios tocam a polia foi
considerado constante. Além disso, fric¢oes e a resisténcia do ar foram desconsideradas.

Uma caracteristica interessante que observamos utilizando o formalismo Newtoniano é sa-
ber qual lado se move para baixo e qual lado se move para cima. Se a aceleracao da barra for
considerada negligenciavel (efetivamente transformando o problema em uma pesagem com ba-
lanca de braco, cujo objetivo é descobrir qual o torque feito por uma massa que se deseja pesar
quando o sistema esta em equilibrio), a forga total exercida no lado da polia é W,,,+¢'(m, +m,,),
onde ¢’ = g porque a aceleracao vertical da polia é, nesse cendrio, nula. Nesse caso, para que a
polia comece a descer (e o contrapeso a subir), precisamos que a inequagao % +m,+my, > mg

seja verdadeira. Assim,
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(mc - mb)2

mp + m, + my, +my + m. — ( ) > mp 4+ me +mp +m, +m,. (7)

i
me +mp + 5Mp

O que resulta em: —(m,. —my)? > 0.Tal resultado implica em uma massa imaginaria, o que
¢ absurdo! Ou seja, a maquina de Atwood sempre comeca indo para cima quando parte do

repouso, tendo peso aparente menor que a soma dos pesos de suas componentes.

da(t)

5~ que faca com que o peso

Isso nao impede, é claro, que exista uma combinagao de «(t) e
aparente do lado da maquina de Atwood seja maior que o do contrapeso em algum instante
t > 0 (ou com outras condigoes iniciais (que ndo partem do repouso e de a(0) = 0), como

apontado na andlise da equacao (2)).

2.2 Formalismo Lagrangiano

Também ¢é possivel achar a equagdo de movimento para «(t) utilizando as equagoes de
Euler-Lagrange. Antes disso, é prudente discutir os vinculos do sistema. Um sistema fisico
recebe tratamentos diferentes no formalismo Lagrangiano dependendo da holonomicidade de
seus vinculos. Um vinculo é holonémico se ele pode ser expressado da forma: f(q1,qo, ..., Gn, 1),
onde ¢, qo, ..., ¢, sao as coordenadas generalizadas e t é o tempo.

Vinculos nao holonémicos podem tornar o tratamento matematico do sistema complicado.
O fator chave aqui é integrabilidade: um vinculo é integravel quando ele é escrito de forma que
nao satisfaz a condigao para holonomicidade, mas a equacao que o define pode ser integrada,
sendo equivalente uma equagao para um vinculo holonomico. Assim, o vinculo também é
equivalente a um vinculo holonomico(LEMOS, 2003).

O vinculo do sistema de interesse é o rolamento sem deslizamento (para a polia da méquina
de Atwood), que pode ser descrito matematicamente como: D%gt) = %ﬁt), que nao se apresenta
de forma holonomica. Felizmente, no sistema de interesse, esse vinculo é integravel, sendo
equivalente a Do(t) + lo = l.(t). Isso significa que podemos utilizar vinculos holonémicos na
modelagem do sistema e, dessa forma, ele pode ser substituidos diretamente nas coordenadas,
habilitando o uso direto das equagoes de Euler-Lagrange.

Considerando a configuragao do sistema com a rotagao da polia paralela a rotacao da ba-

lanca, que foi explorada utitlizando formalismo newtoniano e esta representada na figura 3, o

procedimento para achar a equacao de movimento é simples: escrever a energia cinética e a
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energia potencial em fungao de a(t), ¢(t), do{;( ) o d"ﬁ—(t) e, entdao, montar a Lagrangiana e aplicar

as seguintes equacoes de Euler-Lagrange:

i( Gd[; )_B_L:Texa

S g
(5257 ~ g = Tesor

onde T,,, é a soma dos torques de fontes externas afetando a velocidade angular de a(t).
T..s ¢ a soma dos torques externos afetando a velocidade angular de ¢(t)2.

Para construir as expressoes para as energias do sistema, a origem do sistema, o ponto
(0,0) nas coordenadas (x,y), foi colocada no centro do brago da balanga (o eixo de rotagao
da balanga). Trivialmente, o eixo y é alinhado verticalmente, de forma que tudo que esta na
altura da barra tem energia potencial (gravitacional) igual a 0. Dessa forma, a energia potencial
gravitacional da barra de aluminio pode ser ignorada, pois sempre que uma metade dela estiver
acima da coordenada y = 0, a outra metade estara abaixo, cancelando a energia potencial da
metade acima.

Para o restante das massas no sistema, seu valor ¢ multiplicado por sua posicao y: para
mg € my, temos myy, = (—l, + Rsin(a))m, e mpy, = Rsin(a + m)m,; para my, e m, temos,
respectivamente, myy, = (=, + R'sin(a + 60 + m))my = (—(lyo — Do) + R'sin(a + 0 + 7))my,
e mye = (—l. + R'sin(a+ 6 + 7))m. = (—D¢ + R'sin(a + 6 + 7))m,; a energia potencial da
polia se d& por meio da expressao mpyp = R'sin(a+ 60 + 7)mp e, por fim, a energia potencial

da haste segurando a polia é m,y, = r'sin(a + 0’ + m)m,. Portanto, a energia potencial é

E, = g|r'sin(a + 0 + m)m, + R'sin(a + 0 + m)(mp + mp + m,)
(9)
+ Rsin(a + m)m, + (—l, + Rsin(a))m, — (lpo — Do)my — Dopme|.

Para a energia cinética, a energia de rotacao do brago da balanca pode ser escrita como

2 . .
fn(dayr — mplt(day2 (g termos relacionados ao movimento da massa a e do parafuso e

borboleta da haste que segura a maquina de Atwood também sao consideravelmente simples:
MR2(d—"‘)2. A energia cinética da polia pode ser dividida em energia cinética translacional,

dado pela expressao “52 (R’ do‘) e energia rotacional, dada por IZD Cfi‘f = %(D‘;—‘f)? A situagao

¢ semelhante para o suporte da polia, com suas energias translacional e rotacional sendo,

%(T/d_a)Q o Irda? _ 4( da)?

respectivamente, “ 0 SR 0
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Os termos de energia para as massas b e ¢ sao um pouco mais complicados. Suas velocidades
sao composigoes de termos dependentes de «(t) e ¢(t), apresentando termos cruzados. O termo
de energia cinética para b é %[R’Q‘fi—‘;‘z + DQ%Q + 2R D% cos(a + 7 + 0)], enquanto para c
temos %[R’Qﬁ—‘z‘g + D2%2 — 2R D% cos(a + 7+ 0)).

A energia cinética total é a soma de todos esses termos, sendo escrita matematicamente

COIMo:

2
T (da) {mRRZ N Tna+7npR2+R,2 (mD—i-mb—i-mC) L <7"/2+I_2>]

% 6 9 5 5 5
dp\* [m my +m do _do (10)
2 Y D b c B yda dg
+D (dt) [ 4 + 5 }—f—(mb me)R dtht cos(a + 7+ 0).
Entao, a Lagrangiana do sistema é:
da\? [mrR®  m,+m mp + my +m m 2
L=\ s LR? & ¢ My (2 T
() o g () 5 )
2
D? @ mp +mb+mc "‘(mb—mC)R/d—QD@COS(a—l—T(-’_Q)_
dt 4 2 dt — dt "

g {r’ sin(a + 60" 4+ m)m, + R'sin(a + 0 + 7)(mp + mp + me)+

Rsin(a + m)my, + (—l, + Rsin(a))m, — (lpo — Dp)my, — D¢mc] )

Aplicando a lagrangiana obtida (11) nas equagoes de Euler-Lagrange mostradas em (8), as

equacoes de movimento obtidas sao:

2
2¢ Tez¢+D(mc—mb)(g+R’(%cos(a—l—w—l—@)—(%)%in(a—i—w—&—@)))

az D2(TL +mp+me)

Lo Texa—g[R’(mb+mc+mD)cos(a+7r+c9)+r’mrcos(a+7r+€’)+R(macos(a)+mpcos(a+7r))}—R’D(mb—mc)cos(a—&—w—&—@)‘i—g

a (B2 4ma-+mp)+ R (mp+my+me)+me (r2+15)) '
(12)

E importante notar que se substituirmos a equa¢ao de movimento para ¢(t) na equagao de
a(t), recuperamos a equagao (6), demonstrando que o formalismo Lagrangiano e o formalismo
Newtoniano, por caminhos diferentes, levam ao mesmo resultado®.

Para a configuracao do experimento onde o eixo de rotagao da polia se encontra perpendi-
cular ao eixo de rotagao da balanga, como mostrado na figura 5, a Lagrangiana é consideravel-

mente parecida, com a excegao de que a polia gira em torno de um eixo perpendicular ao eixo
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da balancga e também rotaciona em torno de si no eixo paralelo ao eixo principal da balanga, em
um movimento analogo a uma precessao. Essa mudanca adiciona um termo de energia cinética
equivalente a “2 (Dda) o que produz uma pequena modificagao na Lagrangiana do sistema.
Utilizando as mesmas equagoes de Euler-Lagrange em (8), mas aplicadas a nova Lagrangiana,

obtemos as equagoes de movimento abaixo:

2¢ Tewp+D(me— mb)(g+R/( 2 Seos(otm+0)— (d—o‘) sin(a+m+6)))
B D2( D my+me)
2o _ Texa—g[R' (mb+mc+mD)cos(a+7r+9)+r mrcos(a+7r+€’)+R(macos(a)+mpcos(a+7r)]7R/ (mp— mc)cos(aJrTrJr@)—g’

dt? (L D2+ R2("3f mg+myp)+ R (mp+my+me)+ma (r2+53)
(13)
As equagoes (12) e (13) s@o muito parecidas, diferindo apenas pelo termo de rotagao da polia
sobre um segundo eixo: ™2D? o que diminui a aceleracao na (13) em relagéo & (12) para um
mesmo torque. Essencialmente, aumentando o momento de inércia em relagao a configuracao

com a polia paralela.

2.3 Métodos numéricos e coleta de dados

As equagoes de movimento (6), (12) e (13) s@o complicadas demais para serem resolvidas de
forma analitica. Felizmente, como uma balanca de Poggendorff foi construida e os parametros
experimentais relevantes coletados, foi possivel inserir os parametros experimentais em um
software desenvolvido em Fortran que discretiza a integral das equagoes de movimento para

obter solucdes numéricas. Para tal, um somatério onde a(t) = > 0.5(52 . Ao YA e B

At % At
> ‘%‘(a(t), AO‘(t))At foi implementado.

Na coleta de dados experimentais, foi utilizado um potencidometro associado a uma unidade
Arduino (CC, 2024) em conjunto com um programa Python. Com o potenciémetro acoplado a
balanca por uma engrenagem que gira junto com a balanca e esta presa ao potenciometro por
uma correia de borracha.

O tamanho da resisténcia entre o pino inicial (ou final) e o pino central do potenciometro
depende do angulo no potenciometro (mais precisamente, do seletor do potenciémetro). O que
o Arduino essencialmente faz é aplicar uma tensao por toda a extensao do potenciometro e
medir a diferenca de potencial entre uma das pontas do potenciometro e o pino central. Como

a diferenca de potencial entre os pinos é diretamente proporcional ao tamanho da resisténcia
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0.0 1 0.0 4

—=0.1 A —=0.1 A

-0.2 —0.2

Angulo (rad)
Angulo (rad)

0 1 2 3 4 5 0 5 10 15 20 25
Tempo (s) Tempo (s)

(a) Solugao numérica com duragao de 5 segun- (b) Solucao numérica com duragao de 25 se-
dos. gundos.

Figura 6: Solugoes numéricas com diferentes durages para a equacao de movimento (6). O
angulo «(t) é apresentado em radianos.

entre os dois pontos, que ¢ proporcional ao angulo do potenciometro, que é proporcional ao
angulo da balanca, existe uma funcao linear entre o angulo da balanca e a tensao medida
pelo Arduino. Essa funcao linear é calibrada medindo a tens@o para dois valores de angulo
conhecidos. Os dados sao entao transmitidos via porta serial para um computador, onde um

programa Python registra os dados para serem salvos e analisados.

3 RESULTADOS

As solugbes para as equagoes de movimento (6), (12) e (13) foram numericamente calculadas
em um programa desenvolvido em Fortran e substituindo os parametros pelos valores presentes
nas tabelas 1 e 2.

A solu¢ao numérica para a equacao de movimento do caso Newtoniano, (6), para a confi-
guracao da polia paralela presente na figura 3, foi calculada para diferentes duracoes do expe-
rimento, exibida nas figuras em 6:

Um padrao oscilatorio para o aparato de Poggendorff como um todo foi visto nas solugoes
numéricas (figura 6b. Esse padrao continua indefinidamente apds os 25 segundos e também
pode ser visto na figura 7, nas solugbes numéricas para as equagoes de movimento (12) (polia
paralela mostrada na figura 3), assim como para a equacao (13) (polia perpendicular mostrada

na figura 5).
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—— Polia paralela -+ Polia perpendicular —— Polia paralela ~ ----- Polia perpendicular

0.0 0.0 4
—0.14 —0.14
~ =02 _ -02
E E
2 s
g -0.3- g -0.3
& &
-0.44 -0.44
—0.54 —0.51
0 1 2 3 4 5 0 5 10 15 20 25
Tempo (s) Tempo (s)
(a) Solucao numérica com duragao de 5 segun-  (b) Solugdo numérica com duragao de 25 segun-
dos para as solugoes com configuracoes paralela  dos para solugoes com configuragoes paralela e
e perpendicular. perpendicular.

Figura 7: Solug¢oes numéricas com diferentes durages para as equagoes de movimento (6), polia
paralela com formalismo Newtoniano, em amarelo, (12), polia paralela com formalismo Lagran-
giano, em vermelho e (13) polia perpendicular com formalismo Lagrangiano, em vermelho. O
angulo «(t) é apresentado em radianos.

Como esperado, as configuragoes paralela e perpendicular para o aparato de Poggendorff
geram movimentos muito semelhantes, pois, comparada a massa total da balanca, a massa da
polia é bem pequena, e um momento de inércia como %D2 altera pouco o resultado final.
Além disso, o raio D da polia tem um dos menores comprimentos medidos para o experimento;
em outras palavras, é razoavel esperar que ambas as solugoes sejam visualmente iguais.

Ademais, todas as solugdes seguem o mesmo padrao de oscilagao. O ponto interessante aqui

é observar como essa oscilagao se transpoe para a polia. Isso pode ser observado na figura 8,

d?¢(t)
dt?

que representa uma solucao para quando acrescida de uma solugao numérica para «(t).

A solucao numérica para o movimento da polia, feita considerando um fio ideal suficien-

temente grande, mostra que a aceleracao da prépria maquina de Atwood também exibe um

d2¢(t)
dt2 -

movimento oscilatério sincronizado entre «(t) e

Com a balanca montada, o experimento foi realizado diversas vezes para ambas as con-
figuracoes do aparato de Poggendorff (polia paralela e polia perpendicular). Demonstragoes
do experimento para ambas as configuracoes estao disponiveis em (POGGENDORFFEXPE-
RIMENT, s.d.). Apés a coleta, os dados foram processados e comparados com as respectivas

solugoes numeéricas.
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—— Balanga de Poggendorff (angulo) —— MaAéquina de Atwood (aceleragdo)

1.00 A

0.75 4

0.50 4

0.25 4

0.00 4

—0.25 A

—0.50 A

—0.75 A

—1.00 A

10 15 20 25
Tempo (s)

o
[&))

Figura 8: Solugoes normalizadas para a equacao de movimento da balanca e a aceleracao da

polia. O angulo da balanga a(t) com a horizontal é representado em azul e a aceleragdo da

coordenada generalizada para o angulo da balanca, d2jt(t), é representado em laranja.

—— Solugao numeérica ¢ Dados experimentais —— Solugao numérica * Dados experimentais

0.05 4 .
0.00 4

—0.05 -
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& -0.15 S
Z E

—0.20 A

—0.25 A

—0.30 A .

—0.35 1 T T T T T ... T T T T T T T T . T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Tempo (s) Tempo (s)

(a) Comparagao entre solugdo numérica e da- (b) Comparacao entre solu¢do numérica e da-
dos experimentais para polia paralela. dos experimentais para polia perpendicular.

Figura 9: Comparacao entre solugoes numéricas (em azul), desconsiderando resisténcia do ar e
friccao, e dados experimentais (em laranja) para o angulo «(t)
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Qualitativamente os dados experimentais estao muito préximos das solugoes tedricas, como
visivel na figura 9, mas ha um desvio sistematico entre eles. A principal fonte de erro é a
falta de sincronia entre o inicio do script de coleta de dados e a queima do fio para iniciar o
movimento, que nao ocorre de forma automatizada. Outra fonte de erro pode ser a friccao, que

nao pode ser eliminada completamente e pode ser proveniente da instalacao do potenciometro.

4 CONCLUSOES E CONSIDERACOES FINAIS

O experimento da balanca de Poggendorff é muito mais rico do que parece, e continua
subexplorado. Além da discussao ja citada sobre a aceleragao ser a causa da forca ou wice-
versa (COELHO, 2012), ele também mostra como os formalismos Lagrangiano e Newtoniano
chegam as mesmas equacoes de movimento, reforcando a utilidade do formalismo lagrangiano
para analisar sistemas complicados.

Crucialmente, esse aparato historico tem um valor educacional significativo. Com ele, estu-
dantes podem aprimorar o pensamento critico e confrontar sutilezas, adquirindo um conheci-
mento mais profundo sobre a natureza e o fazer cientificos. Esse experimento exemplifica muito
bem como experimentos historicos podem enriquecer o aprendizado de fisica e a capacidade de
resolugdo de problemas, de ordem tanto tedrica quanto experimental, dos estudantes (COE-
LHO, 2012). Assim, é justificavel acreditar que ele (o experimento da balanga de Poggendorff)
deveria ser incorporado ao ensino de fisica*.

Para pesquisa futura, existem trés caminhos imediatos. No ambito educacional, podemos
explorar o impacto de sua implementacao no aprendizado. No aspecto experimental, pode-
mos focar em automatizar e sincronizar o inicio da coleta de dados e o inicio do movimento
do sistema. Em substituicao a queima do fio, poderiamos montar um mecanismo usando um
eletroima que manteria a maquina de Atwood parada e que poderia ser desligado automatica-
mente pelo inicio do script de coleta de dados. Sob o aspecto tedrico, um estudo do espaco de

fase do sistema também pode vir a ser explorado.
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Notas

d? = d*y 2 . . .
. g = g+ %#. No nosso caso a aceleracao 5;# ¢ a componente vertical de um movimento circular acelerado.

. O torque externo aqui é proveniente da resisténcia do ar e de friccao, que serao desconsiderados.

. O que também serve para conferir se o desenvolvimento das equagdes foi feito de forma correta; afinal, o sistema

fisico foi modelado da mesma forma e as mesmas leis da natureza sdo consideradas.

. Experimentos cientificos que foram esquecidos pelo canone didético, chamados de experimentos complementares,
além de fomentar o pensamento critico e serem relevantes para ensino, podem reabrir discussoes cientificas e

filoséficas que cairam no esquecimento sem uma conclusao (CHANG, 2016).
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