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RESUMO

Neste trabalho, é conduzida uma investigação teórica e experimental da balança de Poggen-

dorff (ou aparato de Poggendorff). Ele consiste em uma balança de braço com uma máquina

de Atwood servindo como peso em uma das pontas. Tal aparato foi projetado por Johann

Christian Poggendorff para demonstrar a variação no peso aparente entre uma máquina de

atwood parada e em movimento. Foi desenhada e constrúıda uma versão moderna da balança

de Poggendorff na qual a máquina de atwood é presa a uma barra ŕıgida de alumı́nio, com um

contrapeso na outra ponta, e o movimento da polia é travado por um fio de massa negligenciável.

Quando o fio que trava o movimento da máquina de Atwood é queimado, a máquina de Atwood

entra em movimento e o equiĺıbrio até então presente na balança se desfaz. O ângulo depen-

dente do tempo α(t) do braço da balança com relação à horizontal é medido utilizando uma

montagem de potenciômetro e Arduino e os dados são registrados com alta resolução temporal.

As previsões teóricas são obtidas utilizando o formalismo Newtoniano e o formalismo Lagrangi-

ano para a polia em duas configurações: polia “paralela” e polia “perpendicular”. As equações

de movimento obtidas são integradas numericamente utilizando Fortran e gerando resultados

quase idênticos para os três modelos. Foi visto que os cálculos concordam qualitativamente com

o experimento; no entanto, desvios quantitativos dos resultados foram observados e podem ser

atribúıdos à falta de sincronia entre a queima do fio e o começo da coleta de dados (além dos

efeitos de fricção no potenciômetro). O valor de experimentos historicamente negligenciados no

ensino de f́ısica também é discutido, especificamente na ilustração da força como causa versus

consequência do movimento e na comparação das abordagens Newtoniana e Lagrangiana para

a resolução de problemas em mecânica.

Palavras-chave: Experimento de Poggendorff. Máquina de Atwood. Mecânica Newtoniana.

Mecânica Lagrangiana. Ensino de F́ısica

1 INTRODUÇÃO

A máquina de Atwood é um aparato bem conhecido e aparece em exemplos e problemas em

virtualmente todo livro de f́ısica básica e pode ser utilizada para averiguar problemas mecânicos

com precisão, como medir o valor local de g (COELHO, 2012).
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Figura 1: Esquema do experimento de Poggendorff feito por Mach. O contrapeso a possui a
mesma massa que a máquina de atwood (descontando a polia). O fio conectando o peso P + p
ao centro da polia c mantem o sistema em repouso (MACH, 1902).

No século XIX, Johann Christian Poggendorff (1796-1877) desenvolveu um experimento para

demonstrar que o peso efetivo de uma máquina de Atwood muda quando ela está em movimento.

O f́ısico e filósofo Ernst W. Josef Wenzel Mach (1838-1916) esquematizou o experimento de

Poggendorff com a figura 1 (MACH, 1902, p. 206-207).

Na figura 1, o fio que liga P + p a c mantem a máquina de atwood e, consequentemente,

toda a balança em repouso. Se removermos o fio, queimando-o para perturbar o sistema apenas

no mı́nimo posśıvel, as massas na máquina de Atwood começam a se mover, dando ińıcio ao

movimento da barra abc.

Esse experimento foi esquecido pelos livros didáticos de f́ısica, com pouqúıssimas exceções

(COELHO; SILVA; BORGES, 2015). Apesar disso, ele apresenta implicações educacionais

substanciais ao mostrar que a consideração de que a força causa aceleração é uma afirmação

mais metaf́ısica que f́ısica. Nesse caso a aceleração das massas da máquina de Atwood gera

uma mudança na força resultante no sistema (COELHO, 2012).

Apesar de pouco conhecido, alguns experimentos sobre a balança de Poggendorff foram

realizados. Em 1970, o f́ısico brasileiro Cintra do Prado pesou uma máquina de Atwood em

uma versão do aparato de Poggendorff que ele construiu. Ele verificou que o peso diminui com

o movimento (PRADO, 1970). De maneira semelhante, o Professor Ricardo Lopes Coelho, de

Portugal, pesou uma máquina de Atwood em repouso e em movimento e mostrou uma redução

no peso compat́ıvel com a previsão teórica. Mais precisamente, a diminuição de peso foi um

pouco menor que a previsão teorica (cerca de 3% e 6%), “atribúıvel a uma pequena inclinação
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do sensor de força ou alguns outros pequenos erros sistemáticos” (COELHO; SILVA; BORGES,

2015).

Decidimos medir o ângulo do braço da balança, a linha abc na figura 1, em relação à

horizontal (que é a posição inicial, quando a balança se encontra em repouso). Com isso,

podemos comparar os resultados experimentais e a previsão teórica gerada pelos formalismos

Lagrangiano e Newtoniano da mecânica clássica. Distintivamente das análises que encontramos

na literatura, não foi assumido que a polia é ideal. É interessante notar que durante a análise

da bibliografia sobre o aparato de Poggendorff, não foi encontrada análises do experimento

utilizando o formalismo Lagrangiano.

2 MATERIAIS E MÉTODOS

Como brevemente discutido na introdução, a montagem da balança de Poggendorff é, de

forma sucinta, uma balança de pesagem onde o peso a ser medido é uma máquina de Atwood

que consiste em dois pesos conectados por um fio inextenśıvel através de uma polia. Na figura

2a está a montagem da balança de Poggendorff feita com uma balança de braço onde o braço

é uma barra de alumı́nio.

A versão da balança constrúıda para esse experimento é constitúıda por uma barra de

alumı́nio, presa a um suporte vertical, que pode girar com baixa fricção interna. De um lado

há um contrapeso conectado à uma das extremidades da balança, na outra extremidade está a

máquina de Atwood, constrúıda com dois pesos, uma polia de alumı́nio e um fio de barbante.

A máquina de Atwood está conectada ao braço da balança por uma haste de alumı́nio em

formato de “U”. O contrapeso tem peso aproximadamente igual ao peso da máquina de Atwood

acrescido ao peso da haste em para manter o repouso. Como já indicado, a máquina de Atwood

é mantida em repouso por um fio pequeno com uma das extremidades amarrada na máquina e

outra no braço da balança (visto na figura 2b, este fio é queimado para iniciar o experimento,

adicionando o mı́nimo de perturbação posśıvel no sistema.

Tomamos medidas das grandezas relevantes do sistema usando as unidades do SI. As massas

estão apresentas na tabela 1, e os tamanhos na tabela 2. As incertezas das medidas foram

ignoradas para viabilizar os cálculos necessários para as análises teoricas do experimento. De

qualquer forma, o erro estat́ıstico do experimento suplantaria as incertezas nas medidas de

massa e tamanho.
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(a) O aparato de Poggendorff completo. (b) A máquina de Atwood.

Figura 2: O aparato de Poggendorff utilizado. Na figura 2(a) temos uma visão do aparato
constrúıdo para medir o ângulo entre a barra de alumı́nio e a horizontal α(t). Em (b) aplicamos
zoom na região da máquina de Atwood do lado direito do aparato de Poggendorff. A seta
vermelha indica o fio mantendo a máquina de Atwood (e toda a balança) em repouso. Esse fio
é queimado para iniciar o experimento.

Objeto Massa

Polia (mD) 36,07 g

Haste de sustentação (mr) 39,79 g

Parafuso e borboleta da haste (mp) 9,56 g

Peso b (mb) 110,81 g

Peso c (mc) 172,80 g

Barra (braço da balança) (mR) 135,86 g

Peso a, parte de ma 355,54 g

Estrutura que segura o peso a, parte de ma 12,99 g

Tabela 1: Tabela contendo todas as massas relevantes para o experimento.
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Objeto Comprimento

Comprimento da barra (braço da balança) (2R) 86,1 cm

Distância entre o centro da polia e a barra (r) 5,69 cm

Comprimento da corda na máquina de Atwood 2,03 m

Raio da polia (D) 3,1 cm

Tabela 2: Tabela contendo todos os comprimentos relevantes para o experimento.

Figura 3: Esquema da balança de Poggendorff utilizada no experimento. A configuração exibida
tem o eixo de rotação da polia paralelo ao eixo de rotação da balança.

O modelo teórico utilizado leva em consideração as massas dos pesos da máquina de Atwood,

a massa (e o momento de inérica) da barra de alumı́nio, da polia e da haste segurando a polia.

O fio foi considerado inextenśıvel, sem massa e permanecendo sempre na vertical (exceto na

dobra em que ele faz quando em contato direto com a polia). As figuras 3, 4 e 5 mostram os

elementos considerados no modelo teórico, bem como a nomenclatura usada para definir cada

elemento nos cálculos.

Na figura 3, R representa a barra de alumı́nio que constitui o braço da balança, mais

precisamente, a distância entre o eixo de rotação da balança e a extremidade do braço da

balança. A haste que prende a polia ao braço da balança é representada por r. O termo r′

representa a distância entre o eixo de rotação da balança e o centro da haste que segura a

polia e R′ representa a distância entre o eixo de rotação da balança e o centro da polia. O

contrapeso é representado por a e a distância entre a balança e o contrapeso é la. Os pesos

da máquina de Atwood são representados por b e c e as distâncias (verticais) entre os pesos e
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Figura 4: Esquema destacado da máquina de Atwood que compõe o aparato de Poggendorff.

a polia são, respectivamente, lb e lc. A polia é representada por P ; nas equações usaremos D

para representar seu raio . Exceto quando explicitado o contrário, utilizamos uma letra x para

representar o tamanho de um objeto e mx para a massa. Note que α representa o ângulo entre

o braço da balança e a horizontal.

Na figura 4 temos a polia em foco, destacando a coordenada angular generalizada da polia

ϕ e o raio D da polia.

Além das grandezas destacadas nas figuras, os modelos teóricos também levam em consi-

deração o ângulo θ entre R′ e R e o ângulo θ′ entre r′ e R, bem como as massas do contrapeso

(ma), dos pesos na máquina de Atwood (mb e mc), da polia (mD), da haste segurando a polia

(mr), da barra de alumı́nio (mR) e do conjunto parafuso e borboleta segurando a haste (mp).

2.1 Formalismo Newtoniano

A abordagem Newtoniana para um problema que é basicamente uma balança de braço

pesando uma máquina de Atwood é, prima facie, simples, basta: 1) resolver a máquina de

Atwood; 2) determinar o peso efetivo da máquina de Atwood; 3) resolver a balança.

Começamos pela máquina de Atwood: exibida na figura 2b e esquematizada na figura 4.

Primeiramente, devemos notar que a polia tem massa finita. Além disso, a polia está sendo

acelerada (inicialmente para cima), o que pode ser modelado como se ela estivesse sob efeito de
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Figura 5: Esquema da balança de Poggendorff utilizada no experimento. A configuração exibida
tem o eixo de rotação da polia perpendicular ao eixo de rotação da balança. Essa configuração
aumenta a complexidade do movimento, uma vez que agora a polia rotaciona em dois eixos
independentes: seu eixo “padrão”, que se encontra perpendicular ao eixo da balança, e em torno
de si em um eixo paralelo ao da balança, forçando um tipo de precessão do eixo “padrão”.

um campo gravitacional modificado1 : g′ = g +R′(d
2α
dt2

cos(α+ π + θ)− dα
dt

2
sin(α+ π + θ)). Os

termos de seno e cosseno se devem a uma rotação acelerada do braço da balança. Lembrando

sempre que α(t) é o ângulo entre o braço da balança e a horizontal (que é a posição definida

como inicial do experimento), convencionado de forma a aumentar quando o braço gira no

sentido anti-horário, como mostrado nas figuras 3 e 5.

Considerando o momento de inércia da polia como o de um cilindro uniforme e aplicando

as leis de Newton temos as seguintes equações:


mcg

′ − Tc = mca

Tb −mbg
′ = mba

Tc − Tb =
1
2
mDa.

(1)

Onde Tc e Tb são as tensões nos fios lc e lb respectivamente e cujos resultados são:


a = (mc−mb)g

′

mc+mb+
1
2
mD

Tc = mcg
′(1− mc−mb

mc+mb+
1
2
mD

)

Tb = mbg
′(1 + mc−mb

mc+mb+
1
2
mD

).

(2)
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É fácil verificar que se g′ for negativo, a tensão no fio empurrará a polia para cima e, do

ponto de vista da polia, os pesos irão “cair para cima” (de outro ponto de vista, a aceleração

para baixo dos pesos é menor que a da polia). Se g′ for grande o suficiente, teremos o peso

aparente (a força que a máquina de Atwood faz na polia) sendo maior que o peso de repouso.

Ambos os casos podem acontecer em um movimento circular com velocidade suficiente.

Seguindo o racioćınio da referência (COELHO; SILVA; BORGES, 2015), a segunda lei de

Newton nos dá o peso efetivo de uma máquina de Atwood. Em (COELHO; SILVA; BORGES,

2015), a polia é considerada sem massa, o que resulta em Wm = 2T , onde Wm é o peso da

máquina de Atwood e T a tensão no fio. Porém, aqui temos uma polia com massa, o que

resultaria em Wm = (Tc + Tb) +mDg. Substituindo Tc e Tb, chega-se a:

Wm = mDg
′ +

(
mcg

′ −mc

(
(mc −mb)g

′

mc +mb +
1
2
mD

))
+

(
mbg

′ +mb

(
(mc −mb)g

′

mc +mb +
1
2
mD

))
. (3)

Também é posśıvel calcular a diferença entre o peso efetivo da máquina de Atwood em

movimento e o peso dela em repouso Wr. O peso no lado da máquina de Atwood, antes do fio

que trava a máquina ser queimado, deve ser igual ao peso mag no lado do contrapeso. Nesse

caso, a aceleração que define a máquina de Atwood é 0, pois a máquina de atwood está travada

pelo fio que a conecta à barra de alumı́nio. Matematicamente, o peso da máquina de Atwood

nessa situação é a soma dos pesos de suas componentes. Vale notar que as tensões Ta e Tb não

são iguais as tensões descritas em (2), que entrará em vigor após a queima do fio.

Com Wr definido, temos que a variação de peso na máquina de Atwood ∆W é dada por:

∆W = Wr −Wm = (mb +mc +mD)g −(
mDg

′ +

(
mcg

′ −mc
(mc −mb)g

′

mc +mb +
1
2
mD

)
+

(
mbg

′ +mb
(mc −mb)g

′

mc +mb +
1
2
mD

))
.

(4)

Também é necessário saber o momento de inércia I0 da barra de alumı́nio se movendo.

Com o teorema dos eixos paralelos, podemos dividir o momento de inércia em várias partes.

Primeiramente, o momento de inércia da barra com relação ao seu eixo de rotação, que passa

pelo seu centro e é perpendicular a sua extensão. Em segundo lugar temos o momento de

inércia da pequena haste segurando a máquina de Atwood, que precisa ser considerada já que

está rotacionando presa à barra de alumı́nio. O movimento da haste pode ser dividido em uma
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rotação em torno de si composta com uma translação em torno do eixo de rotação da balança;

então, utilizando o teorema dos eixos paralelos temos:

I0 =
mRR

2

3
+

mrr
2

12
+mrr

′2 +mpR
2. (5)

Com as tensões na máquina de Atwood calculadas, começamos a modelar a aceleração

angular da balança. São considerados dois fatores chave: (1) o torque gerado pelos pesos e (2)

as forças de reação do par ação-reação da barra de alumı́nio acelerando os pesos. Considerar o

fator (2) é matematicamente equivalente a incluir os pesos no momento de inércia da balança,

mas gera expressões mais fáceis de serem tratadas.

O torque total sobre a barra da balança (incluindo a haste em U que sustenta a polia) é:

d2α
dt2

(mRR2

3
+ mrr2

12
+mrr

′2+mpR
2). Isto é, a soma dos torques provenientes dos pesos, das tensões

no fio da máquina de Atwood, do peso da polia e das forças de reação dos componentes sendo

empurrados e puxados, que são, em suma, uma combinação de forças de reação (ao movimento)

e peso.

O torque considerado como proveniente dos pesos é o torque gerado pela haste segurando a

polia (de massa mr), da polia (de massa mD), do parafuso e da borboleta segurando a haste (de

massa mp) e do contrapeso (com massa ma): −g[R(macos(α) +mpcos(α+ π)) +mDR
′cos(α+

π + θ) +mrr
′cos(α + π + θ′)]. O torque das forças de reação é proveniente da reação da polia

e do contrapeso ao serem empurrados pela balança e da componente horizontal da força de

reação dos pesos na máquina de atwood, representada pelos termos acompanhados de seno

na expressão (a componente vertical da resistência ao movimento dos pesos na máquina de

Atwood está contabilizada nas tensões no fio e a inércia da haste segurando a polia está inclusa

no momento de inercia), resultando em:−d2α
dt2

[maR
2 + R′2(mD + (mb +mc)sin

2(α + π + θ))]−
dα
dt

2
R′2(mb +mc)sin(α+ π+ θ)cos(α+ π+ θ). Por fim, o torque gerado pelas tensões no fio da

máquina de Atwood, que contabiliza a componente vertical dos pesos da máquina de Atwood

quando ela é acelerada pela barra de alumı́nio, é −(Tb + Tc)R
′cos(α + π + θ).

Com isso, podemos calcular o torque resultante e, a partir dele, chegar na equação de

movimento:
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d2α

dt2
=

−g

[
R(ma cos(α) +mpcos(α + π)) +mrr

′ cos(α + π + θ′)

+R′ cos(α + π + θ)

(
mb +mc +mD − (mc −mb)

2

mb +mc +
mD

2

)]
−

(
dα

dt

)2

R′2 cos(α+π+θ) sin(α+π+θ)
(mc −mb)

2

mb +mc +
mD

2

mr

(
r′2 +

r2

12

)
+R2

(
mp +ma +

mR

3

)
+R′2

(
mb +mc +mD − (mc −mb)

2

mb +mc +
mD

2

cos2(α + π + θ)

)
(6)

Aproximando a equação (6) para ângulos pequenos e considerando r = 0, temos que o

sistema é equivalente a uma máquina de Atwood composta, possuindo a mesma equação de

movimento:

d2α

dt2
=

−g[ma − (mr +mp +mb +mc +mD) +
(mc−mb)

2

mb+mc+
ID
D2

]

R( IR
R2 +ma +mr +mp +mb +mc +mD − (mc−mb)2

mb+mc+
ID
D2

)
.

Como demonstrado em (COELHO; BORGES; KARAM, 2016), podemos relacionar a ace-

leração em uma máquina de Atwood com uma mudança de posição no eixo de uma balança de

braço simples se a balança sustentar os mesmos pesos que a máquina de Atwood, o que torna

os dois problemas equivalentes, permitindo um estudo do problema utilizando torque.

É claro que algumas simplificações foram exigidas. Por exemplo, o fio conectando os pesos

b e c foi considerado sem massa, qualquer oscilação que os pesos ou o contrapeso possam sofrer

durante o movimento da balança foi negligenciado e o ponto onde os fios tocam a polia foi

considerado constante. Além disso, fricções e a resistência do ar foram desconsideradas.

Uma caracteŕıstica interessante que observamos utilizando o formalismo Newtoniano é sa-

ber qual lado se move para baixo e qual lado se move para cima. Se a aceleração da barra for

considerada negligenciável (efetivamente transformando o problema em uma pesagem com ba-

lança de braço, cujo objetivo é descobrir qual o torque feito por uma massa que se deseja pesar

quando o sistema está em equiĺıbrio), a força total exercida no lado da polia é Wm+g′(mr+mp),

onde g′ = g porque a aceleração vertical da polia é, nesse cenário, nula. Nesse caso, para que a

polia comece a descer (e o contrapeso a subir), precisamos que a inequação Wm

g′
+mr+mp > ma

seja verdadeira. Assim,
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mD +mr +mp +mb +mc − (
(mc −mb)

2

mc +mb +
1
2
mD

) > mb +mc +mD +mr +mp. (7)

O que resulta em: −(mc −mb)
2 > 0.Tal resultado implica em uma massa imaginária, o que

é absurdo! Ou seja, a máquina de Atwood sempre começa indo para cima quando parte do

repouso, tendo peso aparente menor que a soma dos pesos de suas componentes.

Isso não impede, é claro, que exista uma combinação de α(t) e dα(t)
dt

que faça com que o peso

aparente do lado da máquina de Atwood seja maior que o do contrapeso em algum instante

t > 0 (ou com outras condições iniciais (que não partem do repouso e de α(0) = 0), como

apontado na análise da equação (2)).

2.2 Formalismo Lagrangiano

Também é posśıvel achar a equação de movimento para α(t) utilizando as equações de

Euler-Lagrange. Antes disso, é prudente discutir os v́ınculos do sistema. Um sistema f́ısico

recebe tratamentos diferentes no formalismo Lagrangiano dependendo da holonomicidade de

seus v́ınculos. Um v́ınculo é holonômico se ele pode ser expressado da forma: f(q1, q2, ..., qn, t),

onde q1, q2, ..., qn são as coordenadas generalizadas e t é o tempo.

Vı́nculos não holonômicos podem tornar o tratamento matemático do sistema complicado.

O fator chave aqui é integrabilidade: um v́ınculo é integrável quando ele é escrito de forma que

não satisfaz a condição para holonomicidade, mas a equação que o define pode ser integrada,

sendo equivalente uma equação para um v́ınculo holonômico. Assim, o v́ınculo também é

equivalente a um v́ınculo holonômico(LEMOS, 2003).

O v́ınculo do sistema de interesse é o rolamento sem deslizamento (para a polia da máquina

de Atwood), que pode ser descrito matematicamente como: D dϕ(t)
dt

= dlc(t)
dt

, que não se apresenta

de forma holonômica. Felizmente, no sistema de interesse, esse v́ınculo é integrável, sendo

equivalente a Dϕ(t) + lc0 = lc(t). Isso significa que podemos utilizar v́ınculos holonômicos na

modelagem do sistema e, dessa forma, ele pode ser substitúıdos diretamente nas coordenadas,

habilitando o uso direto das equações de Euler-Lagrange.

Considerando a configuração do sistema com a rotação da polia paralela à rotação da ba-

lança, que foi explorada utitlizando formalismo newtoniano e está representada na figura 3, o

procedimento para achar a equação de movimento é simples: escrever a energia cinética e a
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energia potencial em função de α(t), ϕ(t), dα(t)
dt

e dϕ(t)
dt

e, então, montar a Lagrangiana e aplicar

as seguintes equações de Euler-Lagrange:


d
dt
( ∂L
∂( dα

dt
)
)− ∂L

∂α
= Texα

d
dt
( ∂L

∂( dϕ
dt

)
)− ∂L

∂ϕ
= Texϕ,

(8)

onde Texα é a soma dos torques de fontes externas afetando a velocidade angular de α(t).

Texϕ é a soma dos torques externos afetando a velocidade angular de ϕ(t)2.

Para construir as expressões para as energias do sistema, a origem do sistema, o ponto

(0, 0) nas coordenadas (x, y), foi colocada no centro do braço da balança (o eixo de rotação

da balança). Trivialmente, o eixo y é alinhado verticalmente, de forma que tudo que está na

altura da barra tem energia potencial (gravitacional) igual a 0. Dessa forma, a energia potencial

gravitacional da barra de alumı́nio pode ser ignorada, pois sempre que uma metade dela estiver

acima da coordenada y = 0, a outra metade estará abaixo, cancelando a energia potencial da

metade acima.

Para o restante das massas no sistema, seu valor é multiplicado por sua posição y: para

ma e mp temos maya = (−la + Rsin(α))ma e mpyp = Rsin(α + π)mp; para mb e mc temos,

respectivamente, mbyb = (−lb + R′sin(α + θ + π))mb = (−(lb0 − Dϕ) + R′sin(α + θ + π))mb

e mcyc = (−lc + R′sin(α + θ + π))mc = (−Dϕ + R′sin(α + θ + π))mc; a energia potencial da

polia se dá por meio da expressão mDyD = R′sin(α+ θ+ π)mD e, por fim, a energia potencial

da haste segurando a polia é mryr = r′sin(α + θ′ + π)mr. Portanto, a energia potencial é

Ep = g

[
r′ sin(α + θ′ + π)mr +R′sin(α + θ + π)(mD +mb +mc)

+Rsin(α + π)mp + (−la +R sin(α))ma − (lb0 −Dϕ)mb −Dϕmc

]
.

(9)

Para a energia cinética, a energia de rotação do braço da balança pode ser escrita como

IR
2
(dα
dt
)2 = mRR2

6
(dα
dt
)2. Os termos relacionados ao movimento da massa a e do parafuso e

borboleta da haste que segura a máquina de Atwood também são consideravelmente simples:

ma+mp

2
R2(dα

dt
)2. A energia cinética da polia pode ser dividida em energia cinética translacional,

dado pela expressão mD

2
(R′ dα

dt
)2, e energia rotacional, dada por ID

2
dϕ
dt

2
= mD

4
(D dϕ

dt
)2. A situação

é semelhante para o suporte da polia, com suas energias translacional e rotacional sendo,

respectivamente, mr

2
(r′ dα

dt
)2 e Ir

2
dα
dt

2
= mr

24
(r dα

dt
)2.
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Os termos de energia para as massas b e c são um pouco mais complicados. Suas velocidades

são composições de termos dependentes de α(t) e ϕ(t), apresentando termos cruzados. O termo

de energia cinética para b é mb

2
[R′2 dα

dt

2
+ D2 dϕ

dt

2
+ 2R′ dα

dt
D dϕ

dt
cos(α + π + θ)], enquanto para c

temos mc

2
[R′2 dα

dt

2
+D2 dϕ

dt

2 − 2R′ dα
dt
D dϕ

dt
cos(α + π + θ)].

A energia cinética total é a soma de todos esses termos, sendo escrita matematicamente

como:

T =

(
dα

dt

)2 [
mRR

2

6
+

ma +mp

2
R2 +R′2

(
mD +mb +mc

2

)
+

mr

2

(
r′2 +

r2

12

)]
+D2

(
dϕ

dt

)2 [
mD

4
+

mb +mc

2

]
+ (mb −mc)R

′dα

dt
D
dϕ

dt
cos(α + π + θ).

(10)

Então, a Lagrangiana do sistema é:

L =

(
dα

dt

)2 [
mRR

2

6
+

ma +mp

2
R2 +R′2

(
mD +mb +mc

2

)
+

mr

2

(
r′2 +

r2

12

)]
+

D2

(
dϕ

dt

)2 [
mD

4
+

mb +mc

2

]
+ (mb −mc)R

′dα

dt
D
dϕ

dt
cos(α + π + θ)−

g

[
r′ sin(α + θ′ + π)mr +R′sin(α + θ + π)(mD +mb +mc)+

Rsin(α + π)mp + (−la +R sin(α))ma − (lb0 −Dϕ)mb −Dϕmc

]
.

(11)

Aplicando a lagrangiana obtida (11) nas equações de Euler-Lagrange mostradas em (8), as

equações de movimento obtidas são:


d2ϕ
dt2

=
Texϕ+D(mc−mb)(g+R′( d

2α
dt2

cos(α+π+θ)−( dα
dt

)2sin(α+π+θ)))

D2(
mD
2

+mb+mc)

d2α
dt2

=
Texα−g[R′(mb+mc+mD)cos(α+π+θ)+r′mrcos(α+π+θ′)+R(macos(α)+mpcos(α+π))]−R′D(mb−mc)cos(α+π+θ) d

2ϕ

dt2

(R2(
mR
3

+ma+mp)+R′2(mD+mb+mc)+mr(r′2+
r2

12
))

.

(12)

É importante notar que se substituirmos a equação de movimento para ϕ(t) na equação de

α(t), recuperamos a equação (6), demonstrando que o formalismo Lagrangiano e o formalismo

Newtoniano, por caminhos diferentes, levam ao mesmo resultado3.

Para a configuração do experimento onde o eixo de rotação da polia se encontra perpendi-

cular ao eixo de rotação da balança, como mostrado na figura 5, a Lagrangiana é consideravel-

mente parecida, com a exceção de que a polia gira em torno de um eixo perpendicular ao eixo
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da balança e também rotaciona em torno de si no eixo paralelo ao eixo principal da balança, em

um movimento análogo a uma precessão. Essa mudança adiciona um termo de energia cinética

equivalente a mD

8
(D dα

dt
)2, o que produz uma pequena modificação na Lagrangiana do sistema.

Utilizando as mesmas equações de Euler-Lagrange em (8), mas aplicadas à nova Lagrangiana,

obtemos as equações de movimento abaixo:


d2ϕ
dt2

=
Texϕ+D(mc−mb)(g+R′( d

2α
dt2

cos(α+π+θ)−( dα
dt

)2sin(α+π+θ)))

D2(
mD
2

+mb+mc)

d2α
dt2

=
Texα−g[R′(mb+mc+mD)cos(α+π+θ)+r′mrcos(α+π+θ′)+R(macos(α)+mpcos(α+π)]−R′D(mb−mc)cos(α+π+θ) d

2ϕ

dt2

(
mD
4

D2+R2(
mR
3

+ma+mp)+R′2(mD+mb+mc)+mr(r′2+
r2

12
))

(13)

As equações (12) e (13) são muito parecidas, diferindo apenas pelo termo de rotação da polia

sobre um segundo eixo: mD

4
D2, o que diminui a aceleração na (13) em relação à (12) para um

mesmo torque. Essencialmente, aumentando o momento de inércia em relação à configuração

com a polia paralela.

2.3 Métodos numéricos e coleta de dados

As equações de movimento (6), (12) e (13) são complicadas demais para serem resolvidas de

forma anaĺıtica. Felizmente, como uma balança de Poggendorff foi constrúıda e os parâmetros

experimentais relevantes coletados, foi posśıvel inserir os parâmetros experimentais em um

software desenvolvido em Fortran que discretiza a integral das equações de movimento para

obter soluções numéricas. Para tal, um somatório onde α(t) =
∑

0.5(∆α
∆t i−1

+ ∆α
∆t i

)∆t e ∆α(t)
∆t

=∑
d2α
dt2

(α(t), ∆α(t)
∆t

)∆t foi implementado.

Na coleta de dados experimentais, foi utilizado um potenciômetro associado a uma unidade

Arduino (CC, 2024) em conjunto com um programa Python. Com o potenciômetro acoplado à

balança por uma engrenagem que gira junto com a balança e está presa ao potenciômetro por

uma correia de borracha.

O tamanho da resistência entre o pino inicial (ou final) e o pino central do potenciômetro

depende do ângulo no potenciômetro (mais precisamente, do seletor do potenciômetro). O que

o Arduino essencialmente faz é aplicar uma tensão por toda a extensão do potenciômetro e

medir a diferença de potencial entre uma das pontas do potenciômetro e o pino central. Como

a diferença de potencial entre os pinos é diretamente proporcional ao tamanho da resistência
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(a) Solução numérica com duração de 5 segun-
dos.

(b) Solução numérica com duração de 25 se-
gundos.

Figura 6: Soluções numéricas com diferentes durações para a equação de movimento (6). O
ângulo α(t) é apresentado em radianos.

entre os dois pontos, que é proporcional ao ângulo do potenciômetro, que é proporcional ao

ângulo da balança, existe uma função linear entre o ângulo da balança e a tensão medida

pelo Arduino. Essa função linear é calibrada medindo a tensão para dois valores de ângulo

conhecidos. Os dados são então transmitidos via porta serial para um computador, onde um

programa Python registra os dados para serem salvos e analisados.

3 RESULTADOS

As soluções para as equações de movimento (6), (12) e (13) foram numericamente calculadas

em um programa desenvolvido em Fortran e substituindo os parâmetros pelos valores presentes

nas tabelas 1 e 2.

A solução numérica para a equação de movimento do caso Newtoniano, (6), para a confi-

guração da polia paralela presente na figura 3, foi calculada para diferentes durações do expe-

rimento, exibida nas figuras em 6:

Um padrão oscilatório para o aparato de Poggendorff como um todo foi visto nas soluções

numéricas (figura 6b. Esse padrão continua indefinidamente após os 25 segundos e também

pode ser visto na figura 7, nas soluções numéricas para as equações de movimento (12) (polia

paralela mostrada na figura 3), assim como para a equação (13) (polia perpendicular mostrada

na figura 5).
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(a) Solução numérica com duração de 5 segun-
dos para as soluções com configurações paralela
e perpendicular.

(b) Solução numérica com duração de 25 segun-
dos para soluções com configurações paralela e
perpendicular.

Figura 7: Soluções numéricas com diferentes durações para as equações de movimento (6), polia
paralela com formalismo Newtoniano, em amarelo, (12), polia paralela com formalismo Lagran-
giano, em vermelho e (13) polia perpendicular com formalismo Lagrangiano, em vermelho. O
ângulo α(t) é apresentado em radianos.

Como esperado, as configurações paralela e perpendicular para o aparato de Poggendorff

geram movimentos muito semelhantes, pois, comparada à massa total da balança, a massa da

polia é bem pequena, e um momento de inércia como md

4
D2 altera pouco o resultado final.

Além disso, o raio D da polia tem um dos menores comprimentos medidos para o experimento;

em outras palavras, é razoável esperar que ambas as soluções sejam visualmente iguais.

Ademais, todas as soluções seguem o mesmo padrão de oscilação. O ponto interessante aqui

é observar como essa oscilação se transpõe para a polia. Isso pode ser observado na figura 8,

que representa uma solução para d2ϕ(t)
dt2

quando acrescida de uma solução numérica para α(t).

A solução numérica para o movimento da polia, feita considerando um fio ideal suficien-

temente grande, mostra que a aceleração da própria máquina de Atwood também exibe um

movimento oscilatório sincronizado entre α(t) e d2ϕ(t)
dt2

.

Com a balança montada, o experimento foi realizado diversas vezes para ambas as con-

figurações do aparato de Poggendorff (polia paralela e polia perpendicular). Demonstrações

do experimento para ambas as configurações estão dispońıveis em (POGGENDORFFEXPE-

RIMENT, s.d.). Após a coleta, os dados foram processados e comparados com as respectivas

soluções numéricas.
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Figura 8: Soluções normalizadas para a equação de movimento da balança e a aceleração da
polia. O ângulo da balança α(t) com a horizontal é representado em azul e a aceleração da

coordenada generalizada para o ângulo da balança, d2ϕ(t)
dt

, é representado em laranja.

(a) Comparação entre solução numérica e da-
dos experimentais para polia paralela.

(b) Comparação entre solução numérica e da-
dos experimentais para polia perpendicular.

Figura 9: Comparação entre soluções numéricas (em azul), desconsiderando resistência do ar e
fricção, e dados experimentais (em laranja) para o ângulo α(t)

18



Qualitativamente os dados experimentais estão muito próximos das soluções teóricas, como

viśıvel na figura 9, mas há um desvio sistemático entre eles. A principal fonte de erro é a

falta de sincronia entre o ińıcio do script de coleta de dados e a queima do fio para iniciar o

movimento, que não ocorre de forma automatizada. Outra fonte de erro pode ser a fricção, que

não pôde ser eliminada completamente e pode ser proveniente da instalação do potenciômetro.

4 CONCLUSÕES E CONSIDERAÇÕES FINAIS

O experimento da balança de Poggendorff é muito mais rico do que parece, e continua

subexplorado. Além da discussão já citada sobre a aceleração ser a causa da força ou vice-

versa (COELHO, 2012), ele também mostra como os formalismos Lagrangiano e Newtoniano

chegam às mesmas equações de movimento, reforçando a utilidade do formalismo lagrangiano

para analisar sistemas complicados.

Crucialmente, esse aparato histórico tem um valor educacional significativo. Com ele, estu-

dantes podem aprimorar o pensamento cŕıtico e confrontar sutilezas, adquirindo um conheci-

mento mais profundo sobre a natureza e o fazer cient́ıficos. Esse experimento exemplifica muito

bem como experimentos históricos podem enriquecer o aprendizado de f́ısica e a capacidade de

resolução de problemas, de ordem tanto teórica quanto experimental, dos estudantes (COE-

LHO, 2012). Assim, é justificável acreditar que ele (o experimento da balança de Poggendorff)

deveria ser incorporado ao ensino de f́ısica4.

Para pesquisa futura, existem três caminhos imediatos. No âmbito educacional, podemos

explorar o impacto de sua implementação no aprendizado. No aspecto experimental, pode-

mos focar em automatizar e sincronizar o ińıcio da coleta de dados e o ińıcio do movimento

do sistema. Em substituição a queima do fio, podeŕıamos montar um mecanismo usando um

eletroimã que manteria a máquina de Atwood parada e que poderia ser desligado automatica-

mente pelo ińıcio do script de coleta de dados. Sob o aspecto teórico, um estudo do espaço de

fase do sistema também pode vir a ser explorado.
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Notas

1. g′ = g + d2y
dt2 . No nosso caso a aceleração d2y

dt2 é a componente vertical de um movimento circular acelerado.

2. O torque externo aqui é proveniente da resistência do ar e de fricção, que serão desconsiderados.

3. O que também serve para conferir se o desenvolvimento das equações foi feito de forma correta; afinal, o sistema

f́ısico foi modelado da mesma forma e as mesmas leis da natureza são consideradas.

4. Experimentos cient́ıficos que foram esquecidos pelo cânone didático, chamados de experimentos complementares,

além de fomentar o pensamento cŕıtico e serem relevantes para ensino, podem reabrir discussões cient́ıficas e

filosóficas que cairam no esquecimento sem uma conclusão (CHANG, 2016).
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