
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

SABRINA NABUCO DE OLIVEIRA

CONTROLE DE MOVIMENTAÇÃO DE UM VEÍCULO SUBAQUÁTICO

SÃO PAULO

2016

SABRINA NABUCO DE OLIVEIRA

CONTROLE DE MOVIMENTAÇÃO DE UM VEÍCULO SUBAQUÁTICO

Relatório final, apresentado a Escola

Politécnica da USP, como parte das

exigências para a obtenção do título de

Engenheira Eletricista.

Orientador: Prof. Dr. Felipe Pait

Coordenador: Prof. Dr. Fuad Kassab

SÃO PAULO

2016

Dedico este trabalho aos meus pais,

familiares e amigos, que sempre

acreditam nos meus sonhos e me apoiam

para realizar minhas conquistas na vida.

AGRADECIMENTOS

Aos meus pais por sempre acreditarem em mim e fornecerem

incondicionalmente todo apoio estrutural para que eu pudesse prosseguir nos

estudos.

Aos meus irmãos, familiares e amigos.

Ao meu orientador, Prof. Dr. Felipe Pait, pelo acompanhamento, orientação e

amizade.

Ao meu coordenador, Prof. Dr. Fuad Kassab, pelo apoio, disponibilidade e

confiança.

Ao Anselmo por todo suporte e assistência fornecidos.

À OBMEP por ter estado presente na minha vida como incentivo.

Às jovens e aos jovens negros e periféricos que infelizmente não tiveram a

mesma oportunidade que eu tive para realizar esse curso.

Aos meus colegas e professores da rede pública que sempre me apoiaram e

me incentivaram nos estudos.

“Eu sou definida como a outra em todos

os grupos de que participo. A forasteira,

tanto pela força como pela fraqueza"

(Audre Lorde)

RESUMO

Este trabalho consiste na modelagem e análises hidrodinâmicas de um ROV,

projeto de controladores que possam levar o ROV a estados desejados, uso de

eletrônica capaz de possibilitar a movimentação e controle do ROV, a troca de toda

essa eletrônica inicial, motores, hélices, sensores, proteções entre eletrônica de

controle e motores, desenvolvimento de um joystick e a remodelagem do ROV. Todo

o processo é explicado ao longo do texto, o qual abrange desde a modelagem

matemática até a programação e testes físicos.

As principais motivações deste trabalho são: aplicar os conhecimentos

adquiridos durante o curso de engenharia na Poli USP como, por exemplo,

eletrônica embarcada, mecânica dos fluidos, modelagem de sistemas e técnicas de

controle; trabalhar com um domínio interessante e atual da robótica no Brasil, pois

esse é um domínio científico recente, principalmente em relação aos aspectos

experimentais.

A ideia final do projeto é desenvolver o ROV de forma a ter três graus de

liberdade ativamente controlados. Além disso, funcionar com o modo de operação

de controle manual.

Palavras-chave: ROV. Mecânica dos fluidos. Técnicas de Controle.

ABSTRACT

This part of the work consists in the modeling and hydrodinamical analysis of

our ROV, project of controllers that take our ROV to the desired state, use of

electronics capable of making the ROV moveable and controllable, replacement of all

electronics from the beggining, motors, propellers, sensors, protection between

control electronics and motor, a joystick development and the ROV remodeling. The

entire process is explained along the text, with ranges from mathematical modeling to

programming and physical tests.

The goal motivations of this work are to apply the knowledge acquired during

the engineering course at Poli USP, such as embedded electronics, fluid mechanics,

systems modeling and control techniques; work with an interesting and current field

of robotics in Brazil, because this is a new scientific field, especially regarding

experimental aspects.

The final idea of this project is to implement an ROV in order to have three

degrees of freedom actively controlled. In addition, a manual operation mode of

control.

Keywords: ROV. Fluid mechanics. Control Techniques.

LISTA DE ILUSTRAÇÕES

Figura 1 - Cronograma 2º semestre de 2015..18

Figura 2 - Cronograma...18

Figura 3 - Nova placa de aquisição - Raspberry pi B+ ...19

Figura 4 - Camera - Raspberry pi B+ ...20

Figura 5 - Sensor GY-80 ...20

Figura 6 – Motor com eixo de 4 mm ..21

Figura 7 – Motor com eixo de 3 mm ..21

Figura 8 - ESC ..21

Figura 9 – Desenho da caixinha para os motores ...23

Figura 10 – Tampa para o motor com eixo de 3 milímetros ...23

Figura 11 - Tampa para o motor com eixo de 4 milímetros ..23

Figura 12 – Rolamentos para os motores ..24

Figura 13 – Hélices com 2 pás..25

Figura 14 – Hélices com 3 pás..25

Figura 15 – Representação gráfica do recipiente para o motor com eixo de 3 milímetros28

Figura 16 – Representação gráfica da tampa para o motor com eixo de 3 milímetros28

Figura 17 - Representação gráfica do recipiente para o motor com eixo de 4 milímetros...................29

Figura 18 - Representação gráfica da tampa para o motor com eixo de 3 milímetros........................29

Figura 19 – Tampas dos Recipientes ..30

Figura 20 – Processo de Fabricação dos Recipientes ..31

Figura 21 – Recipientes usinados...31

Figura 22 - Modelo 3D Antigo do ROV (esquerda) e modelo 3D Atual do ROV (direita)36

Figura 23 - Diagrama de Blocos Canônico ..38

Figura 24 - Resposta ao Degrau ...39

Figura 25 - Lugar Geral das Raízes ...40

Figura 26 - Diagrama de Nichols ..40

Figura 27 - Diagrama de Bode ...41

Figura 28 - Diagrama de Nyquist ...42

Figura 29 - Resposta ao degrau de G1 no plano z ..44

Figura 30 - Resposta ao degrau de G2 no plano z ..44

Figura 31 - Resposta ao degrau de G1 e G2 no plano s...45

Figura 32 - Lugar das raízes de G1 e G2 ...46

Figura 33 - Diagramas de bode de G1 e G2 ..47

Figura 34 - Diagrama de Nyquist de G1 ...48

Figura 35 - Diagrama de Nyquist de G2 ...48

Figura 36 - Diagrama de Nichols de G1 e G2 ..49

Figura 37 – Diagrama em Simulink para o Rastreamento ...52

Figura 38 – Referência ...52

Figura 39 – Saídas e ..53

Figura 40 – Sinal do erro...53

Figura 41 – Esforço de Controle ..54

Figura 42 – Diagrama para simulação de rastreamento com distúrbio ..54

Figura 43 – Referência ... 55

Figura 44 - Distúrbio... 55

Figura 45 - Saídas ... 56

Figura 46 – Erro de rastreamento ... 56

Figura 47 – Esforço de Controle ... 56

Figura 48 – Última alteração física do ROV em 2015.. 57

Figura 49 – Hélice de aeromodelismo à esquerda. Hélice para ROV à direita. 58

Figura 50 – Encaixe da hélice de aeromodelismo .. 58

Figura 51 – Hélice do ROV e Spinner ... 58

Figura 52 – Hélice com rosca ... 59

Figura 53 – Hélice conectada ao Spinner ... 59

Figura 54 – Hélice acoplada ao motor sem e com o recipiente do motor ... 59

Figura 55 – Preparação do cabo .. 60

Figura 56 - Conector ... 61

Figura 57 – Cabos finalizados com conectores ... 61

Figura 58 – Problema do comprimento dos fios do motor e ESC ... 62

Figura 59 – Orifícios laterais .. 63

Figura 60 – Alocação dos motores ... 63

Figura 61 – Visão interna do ROV .. 64

Figura 62 – ROV com os Hélices .. 64

Figura 63 – Circuito Motor e Esc.. 65

Figura 64 – Finalização da montagem ... 65

Figura 65 – ROV Finalizado e com cabo umbilical .. 65

Figura 66 - Joystick .. 68

Figura 67 - Controle vertical e Joystick .. 70

Figura 68 - Resultados do Sensor GY-80 .. 71

Figura 69 - Joystick finalizado .. 71

Figura 70 - Dados Atualizados ... 72

Figura 71 - Dados Atualizados e lanterna ligada .. 73

Figura 72 - Lanternas Ligadas .. 73

LISTA DE TABELAS

Tabela 1 - Dimensões do ROV ...35

Tabela 2 - Centro de Massa e Flutuação ..36

LISTA DE ABREVIATURAS E SIGLAS

 ROV Remotely Operated Vehicle

 NDF Núcleo de Dinâmica dos Fluidos

 USP Universidade de São Paulo

SUMÁRIO

1 INTRODUÇÃO ...15

2 OBJETIVOS..16

3 FASE INICIAL DO PROJETO NO 2º SEMESTRE DE 2015 ...17

4 CRONOGRAMA ...18

5 ESTRUTURAÇÃO DO ROV ...19

5.1 PLACA DE AQUISIÇÂO – RASPBERRY PI ..19

5.2 SENSORES ..19

5.2.1 Câmera ..19

5.1.1 Sensor GY-80 ..20

5.3 MOTORES E ESC ..21

5.3.1 Recipientes para os motores ...22

5.3.2 Novo projeto de recipientes para os motores ...26

6 REMODELAGEM DO ROV ...33

6.1 DESCRIÇÃO MATEMÁTICA DA PLANTA ..33

6.2 REMODELAGEM DOS PARÂMETROS HIDRODINÂMICOS34

6.2.1 Inércia Estrutural ...35

6.2.2 Inércia Adicional ..36

7 MALHA DE CONTROLE ...38

7.1 SIMULAÇÕES PLANTA VERTICAL ...38

7.2 ESPECIFICAÇÕES DA PLANTA HORIZONTAL ..42

7.2.1 Desacoplamento ...42

7.3 SIMULAÇÕES DO MODELO HORIZONTAL ..43

8 RASTREAMENTO ...50

8.1 PROBLEMA DE RASTREAMENTO ...50

8.2 SIMULAÇÃO DO RASTREAMENTO ...51

8.2.1 Simulação sem Distúrbio..51

8.2.2 Simulação com Distúrbio..54

9 FINALIZAÇÃO DA MONTAGEM DO ROV ...57

9.1 HÉLICES ...57

9.2 CABO UMBILICAL ...60

9.3 CONEXÃO MOTORES E ESC..61

10 INTEGRAÇÃO ..66

10.1 CONTROLE INTEGRADO PARA RASPBERRY PI .. 66

10.2 CONTROLE VERTICAL PARA RASPBERRY PI .. 66

10.3 ESTRUTURAÇÃO DA INTEGRAÇÃO ... 67

10.3.1 Integração Joystick e Controle .. 68

10.3.1.1 Controle Horizontal ... 68

10.3.1.2 Controle Vertical.. 69

10.3.2 Integração Joystick e Lanterna .. 69

10.3.3 Integração Joystick e Sensores... 70

11 CONCLUSÃO ... 75

12 REFERÊNCIAS BIBLIOGRAFICAS .. 76

13 APÊNDICES ... 78

13.1 CÓDIGO RASTREAMENTO ... 78

13.2 CÓDIGO CONTROLE VERTICAL PARA RASPBERRY PI.................................... 79

13.3 CÓDIGO DE INTEGRAÇÃO SENSOR E JOYSTICK ... 81

13.4 CÓDIGO FILTRO DE KALMAN E CONTROLE ... 86

14 ANEXOS ... 93

14.1 TESTE DOS DO SENSOR GY-80 .. 93

14.2 TESTE DO MOTOR ... 95

15

1 INTRODUÇÃO

Os oceanos são uma fonte muito rica de recursos para a humanidade e

grande parte dessa riqueza é ainda inexplorada. Dessa forma, surge um grande

desafio para a engenharia: desenvolver e implementar novas tecnologias que

viabilizem o desbravamento das profundezas dos oceanos. Vale ressaltar a

necessidade de explorar esses recursos naturais de maneira sustentável e para

isso, conhecer o ambiente marinho será muito importante.

Os veículos subaquáticos operados remotamente são uma opção muito

interessante como ferramenta de pesquisa, pois podem coletar dados, permitir

observações, realizar monitoramentos, efetuar trabalhos de implantação e

manutenção de instalações subaquáticas a grandes profundidades e com a grande

vantagem de não colocar vidas humanas em risco. Mesmo que esses veículos já

sejam bem utilizados na indústria de extração de petróleo, no Brasil, existem poucos

trabalhos concernentes a pesquisas experimentais que abordam a construção física

desses equipamentos.

16

2 OBJETIVOS

O projeto tem como objetivos gerais a implementação de um veículo

subaquático nos três graus de liberdade: translação no eixo vertical, translação no

eixo horizontal e rotação em torno do eixo vertical.

Durante a atual etapa do projeto, os objetivos são:

 Finalizar a remodelagem do ROV

 Resolver e implementar o problema de rastreamento

 Finalizar a montagem do ROV

 Integração do ROV

17

3 FASE INICIAL DO PROJETO NO 2º SEMESTRE DE 2015

Este projeto foi iniciado no segundo semestre de 2013 e primeiro semestre de

2014 pelo Diego Antônio Moreira, sendo que o atual ROV foi pensado para ser um

submarino acadêmico segunda versão de protótipo da Engenharia Elétrica, ênfase

em Automação e Controle (LAC). O projeto foi continuado pelo Fernando dos Santos

Barbosa no primeiro semestre de 2014 juntamente com o Diego e no segundo

semestre de 2014 com o Ricardo Hitoshi Nakano. No primeiro semestre de 2015 o

projeto prosseguiu com Ricardo e Leandro Caboatan dos Santos.

Além disso, o projeto contou com a ajuda de dois alunos franceses que

cursavam engenharia naval e faziam diploma duplo na Poli: Thierry Malavaud e

Gaspard Douxchamps. Eles fizeram seu trabalho de formatura estudando os

parâmetros hidrodinâmicos de um ROV, com base no nosso protótipo.

No segundo semestre de 2015 o projeto prosseguiu com Leandro e Sabrina

Nabuco de Oliveira. Naquele momento o projeto passava por uma reestruturação

física com a troca de motores, hélices, e plataforma de programação. Assim, era

necessária a remontagem e remodelagem do ROV vem como a consequente

revisão dos parâmetros utilizados em toda sua programação já existente.

Nessa etapa de desenvolvimento do ROV foram propostas a troca de motores

e hélices, o uso do filtro de Kalman para melhorar o sensoriamento e a aplicação de

controle multivariável para finalmente programar o controle horizontal (resolver o

problema de rastreamento) que até essa etapa não havia sido desenvolvido.

18

4 CRONOGRAMA

Os cronogramas utilizados para o segundo semestre de 2015 e primeiro

semestre de 2016 são mostrados a seguir.

Figura 1 - Cronograma 2º semestre de 2015

Figura 2 - Cronograma

19

5 ESTRUTURAÇÃO DO ROV

5.1 PLACA DE AQUISIÇÂO – RASPBERRY PI

No início do semestre de 2015 o ROV passou por uma reestruturação e

aquisição de novos componentes. Esse capítulo será dedicado à exposição dos

componentes e suas respectivas características.

A Raspberry Pi B+ foi adquirida com o objetivo de se ter uma saída na placa

que não limite em relação ao tamanho dos fios utilizados. Além disso, a placa

possibilita a utilização de Ethernet como saída, viabilizando a existência de uma

interface homem-máquina.

O principal desafio da aquisição de uma nova placa tanto para o grupo

anterior quanto para o grupo imerso na nova fase é a necessidade de refazer um

circuito que já estava pronto, além disso faz-se necessário o aprendizado de um

novo sistema operacional (Linux) e do estudo de como programar nele. A linguagem

a ser utilizada é a Python, uma linguagem de programação de alto nível.

Figura 3 - Nova placa de aquisição - Raspberry pi B+

5.2 SENSORES

5.2.1 Câmera

 Foi adquirida uma câmera com o objetivo de mapear a região desejada, para

poder gravar e registrar o que há nas regiões onde o ROV passar. Além disso, a

20

câmera serve para ajudar no controle de direção e nos da uma visão melhor de onde

o ROV esta se locomovendo.

Figura 4 - Camera - Raspberry pi B+

5.1.1 Sensor GY-80

O sensor GY-80, que contém os módulos giroscópio (L3G4200D), 3 eixos do

Acelerômetro (ADXL345), 3 eixos Magnetômetro (HMC5883L) e mais o sensor de

pressão e temperatura (BMP085), foi adquirido com a finalidade de implementar o

controle de direção e monitorar de forma precisa o ROV.

Figura 5 - Sensor GY-80

21

5.3 MOTORES E ESC

Para o melhor desempenho do ROV, foram adquiridos novos motores, mais

potentes e mais uniformes, possibilitando um controle mais confiável.

Figura 6 – Motor com eixo de 4 mm

Figura 7 – Motor com eixo de 3 mm

Figura 8 - ESC

22

 Os motores são do tipo Brushless, ou seja, não possuem contatos internos, e

são Outrunner, ou seja, a parte que gira é a parte externa do motor, não são

passíveis de inversão de corrente portanto não invertem o sentido da rotação,

absorvem mais corrente que os motores escovados e necessitam para um correto

funcionamento serem ligados à ESC`s (do inglês Electronic Speed Controller,

traduzido para controlador eletrônico de velocidade). Por serem controlados por

ESC`s individuais esses motores são muito confiáveis em seu funcionamento e a

particularidade fundamental deles é que o conjunto ESC + motor deve ser

alimentado por uma tensão de aproximadamente 12V e controlado por PWM (do

inglês Pulse Width Modulation, traduzido para modulação de largura de pulso).

A corrente a mais que é puxada pelo conjunto ESC + motor provem da fonte de

alimentação e é controlada pela ESC, e suporta um pico de 30 A em funcionamento

normal de acordo com especificações, não ocasionando riscos de queima para o

circuito de controle, a Raspberry Pi, que é relativamente sensível.

 Temos uma ESC para cada motor e essas servem de maneira que a corrente

alta que o motor exige para seu funcionamento não prejudique o restante do circuito.

A ESC funciona ao mesmo tempo como uma interface de comunicação entre o

motor e o circuito de controle e como uma proteção. Essa proteção é o motivo pelo o

qual utilizávamos anteriormente o Shield de proteção do Arduino, o qual não se

mostrou muito eficiente. A proteção realizada pela ESC é realizada de forma que o

motor e o circuito de controle não tenham nenhum compartilhamento de corrente, de

forma que a corrente que o motor e o circuito de controle utilizam sejam

completamente independentes. O modo pelo o qual o circuito de controle e a ESC

se comunicam é a partir do sinal PWM.

5.3.1 Recipientes para os motores

 Devido ao nosso robô precisar funcionar sobre a água e esses motores não

poderem ter contato com a água, realizamos o projeto de quatro recipientes, as

quais deverão isolar cada motor da água.

Segue, nas figuras 21 a 23, o desenho do modelo de caixinha e das tampas

pretendido incialmente.

23

Figura 9 – Desenho da caixinha para os motores

Figura 10 – Tampa para o motor com eixo de 3 milímetros

Figura 11 - Tampa para o motor com eixo de 4 milímetros

 Observa-se pelas figuras que a base das quatro caixinhas é a mesma, porém

há diferença nas tampas.

24

 A base se trata de uma peça que seria fabricada a partir de uma chapa de

alumínio e que tem suas laterais a partir do dobramento das extensões da base.

Além das laterais da caixa, nessa peça temos também que a partir de cada lateral

tem-se uma pequena extensão para possibilitar a passagem de parafusos para a

fixação da tampa com a base.

 Após os devidos dobramentos da peça base, ainda seria necessário que

uníssimos de alguma maneira uma lateral a outra e também que essa união sirva de

isolamento à água, objetivo principal da caixinha.

 A solução encontrada para a união das laterais foi a solda. A partir dessa

garantir-se-ia união sólida e resistente à água.

 As tampas foram pensadas a partir de dois modelos, os quais se caracterizam

para se adequarem aos dois tipos de motores disponíveis. Ambas as tampas

possuem dimensões compatíveis com a base para o encaixe e parafusar a tampa e

com a base.

 A diferença entre as tampas se encontra no rolamento que vai com cada uma

delas. Esse rolamento tem tamanho dependente do tamanho do eixo dos motores,

que possuem diâmetros de 3 e 4 mm, fazendo necessário que o diâmetro interno

dos rolamentos sejam compatíveis.

 Os rolamentos são conectados às tampas por interferência para garantirem

isolamento dessas à água.

 A necessidade de termos presentes rolamentos às nossos recipientes se

encontra na eliminação da dificuldade de rotação dos motores, dificuldade que era

observada com a disposição dos motores antigos e suas caixinhas que dificultavam

sua rotação. O rolamento é o item mecânico desenvolvido especificamente para

isso.

Figura 12 – Rolamentos para os motores

25

Figura 13 – Hélices com 2 pás

Figura 14 – Hélices com 3 pás

 A eliminação da dificuldade de rotação se torna necessária devido a um

motivo simples, quanto maior a dificuldade de rotação para o motor mais corrente

esse exige da fonte de alimentação para compensar a dificuldade. Esse, aliás, é um

motivo muito provável dos defeitos ocorridos nos testes na água de 2014.

 Como sabemos que os itens elétricos, fora os motores e seu controlador,

funcionam com correntes na ordem de mili ampères, precisamos eliminar a

possibilidade de acontecer algo que os queime.

 O fabricante dos motores especifica que a corrente de pico máxima é de 20 A

e as ESC`s que possuímos estão especificadas a aguentar até 30 A.

 Na tentativa de fabricar os recipientes para os motores nos deparamos com

diversos problemas, os quais devido a não termos experiência de fabricação e de

dependermos do serviço pedido para a oficina e técnicos do prédio da engenharia

mecatrônica da Escola Politécnica.

26

 Outro problema ainda foi o acesso aos tanques de provas presentes na

Escola Politécnica, sendo eles o TPN (Tanque de Provas Numérico) e os dois

tanques presentes no prédio da mecatrônica, na parte de mecânica dos fluidos, o

qual possui acesso ao software AQWA e que é necessário para revermos a

modelagem.

 A falta de experiência com fabricação provém da inexistência de disciplinas

para tal em nossa grade curricular da engenharia elétrica. O problema de

dependência para com os técnicos gera uma série de problemas, dentre os quais

problemas burocráticos, falta de noções de processo de fabricação e inexperiência

com desenhos profissionais para que um profissional que fabrica peças possa

realizar o trabalho adequadamente.

 Tais problemas para a fabricação dos recipientes geraram demora para que

os desenhos chegassem aos técnicos, problemas de comunicação com esses

profissionais e gerou a necessidade de mudarmos completamente o projeto dos

recipientes pela inadequação da ideia de como seria concebida os recipientes e

tampas para com o modo de fabricação, que foi pensado ser simples porém se

mostrou um empecilho.

 Após passarmos por tais problemas e de conversas com os técnicos expondo

nossas ideias e ouvindo a opinião deles quanto aos problemas de fabricação e

pontos a melhorar no projeto acabamos por realizar o projeto de outro tipo de

caixinha para o isolamento dos motores.

5.3.2 Novo projeto de recipientes para os motores

Para o novo projeto dos recipientes e tampas reformulamos o formato físico dos

recipientes que conterão os motores e acrescentamos detalhes para garantir a

fixação efetiva dos motores e rolamentos.

Optamos pelo formato cilíndrico para podermos efetuar o fechamento do

recipiente através de rosqueamento. Essa técnica é mais eficiente pois além de ser

um processo acessível para usinar, eliminamos eventuais problemas de vazamento

que poderiam surgir através dos parafusos como elaborado no primeiro projeto.

Como os motores adquiridos possuem rotação externa (outrunner), a

necessidade de evitar que sua superfície de rotação encoste na superfície dos

recipientes, evitando assim o atrito entre eles e consequente perda de rotação e

27

torque. Dessa forma fixaremos os motores pelas bases e calculamos os diâmetros

(30mm) dos recipientes de forma a garantir uma distância segura entre as

superfícies.

Um dos motores apresenta uma saliência em sua base que também rotaciona

externamente, para evitar atrito com essa região quando fixarmos a base,

acrescentamos uma depressão central.

No novo projeto acrescentamos um orifício para a passagem dos fios trifásicos

dos motores. O diâmetro do orifício foi calculado para ser o suficiente apenas para a

passagem dos fios (8mm) e depois será fechado com shrink tube (plástico termo

retrátil) para evitar vazamento de água para o interior do recipiente.

O projeto da tampa também foi reelaborado, além da nova forma de fechamento

através de rosqueamento, acrescentamos apoios para a fixação dos rolamentos

evitando inesperadas instabilidades.

Finalmente, mantivemos o alumínio como material de fabricação para evitar

oxidação já que o recipiente estará em contato direto com a água. Inicialmente

optamos por uma espessura de 1mm para facilitar as trocas de calor, porém,

novamente ao conversar com colegas da engenharia mecânica fomos informados

que para o rosqueamento ser possível há padrões de espessura a serem seguidos e

por isso devemos aumentar a espessura do recipiente para que o processo de

usinagem da rosca não fure o material. As demais características do recipiente e

tampas permanecem as mesmas.

28

Figura 15 – Representação gráfica do recipiente para o motor com eixo de 3 milímetros

Figura 16 – Representação gráfica da tampa para o motor com eixo de 3 milímetros

29

Figura 17 - Representação gráfica do recipiente para o motor com eixo de 4 milímetros

Figura 18 - Representação gráfica da tampa para o motor com eixo de 3 milímetros

30

Nessa etapa do projeto tivemos um atraso no cronograma uma vez que a

usinagem dos recipiente dos motores apresentou diversos problemas. Por sermos

alunos da Engenharia Elétrica, em nossa grade curricular não existem disciplinas

que nos ensinem os processos de usinagem de uma peça. Deste modo,

terceirizamos o trabalho para a oficina de mecatrônica. Entretanto a oficina recebe

diariamente pedidos de diversos departamentos, incluindo de professores da

graduação que tinham prioridade sobre o nosso projeto. O prazo de dez dias

estipulado pela própria oficina durou um mês e meio, e as justificativas apontadas

para nós foram projetos prioritários, problemas com a falta de ferramentas

(alargador) que tivemos que fornecer para a oficina, e com a ausência de ferramenta

precisa para realizar a rosca que fecharia o recipiente. O trabalho foi então enviado

para uma oficina do PME quando finalmente foi concluída.

 As imagens a seguir mostram o processo de fabricação dos recipientes dos

motores em andamento. E em seguida temos os recipientes dos motores

concluídos.

Figura 19 – Tampas dos Recipientes

31

Figura 20 – Processo de Fabricação dos Recipientes

 Figura 21 – Recipientes usinados

Com a finalização da usinagem dos recipientes dos motores, foi possível

realizar a pesagem dos recipiente juntamente com os motores e os rolamentos.

Dessa forma, foi possível dar continuação ao cálculo das novas matrizes inerciais

que permitem rever a modelagem do nosso ROV. Inserimos a matriz de centro de

massa no programa de simulação AQWA.

Os novos pesos obtidos foram 111g para os motores em laranja que serão

usados na direção vertical e 0,85g para os motores em vermelho que serão usados

na direção horizontal. O critério utilizado para a escolha de quais motores usar em

32

cada posição foi a potência de cada motor. Acreditamos que o motor de maior

potência deva ser utilizado na direção vertical, já que será responsável pelo

deslocamento nessa direção que exige mais força, já que pode atuar contra a ação

da gravidade.

33

6 REMODELAGEM DO ROV

A troca de componentes do ROV para o segundo semestre de 2015 acarretou

na necessidade de remodelagem do ROV. O ROV sofreu uma reestruturação física

e consequentemente se modelo matemático também precisou ser alterado.

Atualmente, o ROV possui quatro motores de corrente contínua, tratam-se de

motores outrunner, ou seja, a sua rotação é externa. Dois dos motores estão

localizados na parte superior, disposto verticalmente e dois na parte traseira,

disposto horizontalmente. Os dois motores traseiros conferem ao modelo seu

deslocamento no plano horizontal, enquanto que os superiores são usados para

controlar sua profundidade na água.

O controle atual é feito por uma Raspberry Pi e a linguagem de programação

utilizada é a Python. Com a Raspberry é possível realizar o controle dos motores

passando pelas ESCs, o controle dos motores é feito através de pulsos PWM

fornecidos pela Raspberry. A Raspberry também é responsável por controlar as

luzes e sensores.

6.1 DESCRIÇÃO MATEMÁTICA DA PLANTA

Uma vez que a modelagem do ROV já foi realizada anteriormente nesse

projeto, e a alteração de componentes não afeta tal modelagem, não

desprenderemos tempo reexplicando a forma como a descrição matemática da

planta foi obtida, tal explicação pode ser vista em [1].

Das simplificações obtidas em [1], temos:

Onde é o vetor de velocidades no sistema solidário ao ROV. Os três

primeiros componentes fazem referência à velocidade linear em avanço, deriva e

afundamento, respectivamente; já os três últimos são referentes às velocidades

angulares em jogo, arfagem e guinada, respectivamente.

34

Onde é o vetor referente ao sistema fixo na embarcação. Os três primeiros

componentes descrevem a posição cartesiana do ROV, enquanto que os três

últimos, os respectivos ângulos.

E o modelo hidrodinâmico do ROV pode ser resumido a:

 τ é o vetor de forças de controle produzidas pelos motores.

Ainda é possível fazer as seguintes simplificações [2]:

 Como não existe nenhum motor na direção de deriva, é admitido que a

velocidade neste eixo seja sempre nula, ou seja, .

 Devido à estabilidade em relação ao plano horizontal, admite-se .

Não há velocidade angular em nenhuma destas direções.

 Como implicação da simplificação acima, .

Como mencionado nas considerações acima, o sistema resultante é

desacoplado em relação aos movimentos horizontal e vertical e, assim, pode ser

dividido em dois subsistemas independentes [3] onde:

- correspondem ao movimento planar horizontal;

- correspondem ao movimento vertical.

Reescrevendo o modelo hidrodinâmico separadamente para cada

subsistema, temos:

 Modelo horizontal:

 Modelo Vertical:

Com .

6.2 REMODELAGEM DOS PARÂMETROS HIDRODINÂMICOS

Durante a remodelagem, os parâmetros hidrodinâmicos foram obtidos por

meio de simulação computacional.

35

6.2.1 Inércia Estrutural

A princípio fez-se necessária a estimativa da inércia estrutural, cálculo

realizado analiticamente.

O veículo foi dividido em oito peças consideradas homogêneas. As

dimensões de cada peça foram estimadas e são apresentadas na tabela a seguir

(em mm):

Comprimento 343

Comprimento do tubo principal 318

Comprimento dos tubos secundários 305

Boca B 335

Largura entre centros dos tubos secundários B 207

Diâmetro do tubo principal 110 (105, 120)

Diâmetro do tubo secundário 40 (40,3)

Altura H 198

Altura no topo do tubo principal H 180

Espaçamento entre armaduras de proa e popa L 125

Comprimento das armaduras longitudinais 225

Comprimento das armaduras transversais 180

Comprimento das armaduras oblíquas 85

Largura das armaduras metálicas 25

Espessura das armaduras metálicas 3

Comprimento dos compartimentos dos motores I 46

Diâmetro dos compartimento dos motores I 36

Comprimento dos compartimentos dos motores II 46

Diâmetro dos compartimento dos motores II 36

Diâmetro dos hélices 54

Comprimento dos eixos dos hélices 34

Diâmetro do sensor de pressão 45

Comprimento do sensor de pressão 35

Diâmetro das lâmpadas 28

Comprimento das lâmpadas 39

Diâmetro do umbilical de alimentação geral 6

Diâmetro dos umbilicais de alimentação auxiliares 4

Diâmetro dos umbilicais de comunicação 3

Comprimento dos umbilicais 5800

Tabela 1 - Dimensões do ROV

Com esses valores e o peso medido do ROV (3,524 kg), obteve-se a matriz

de inércia estrutural, e as coordenadas dos centros de flutuação e de massa,

mostrados a seguir:

36

 x (mm) y (mm) z (mm)

Centro de massa (G) -6 0 -48

Centro de carena (B) -11 0 -32

Tabela 2 - Centro de Massa e Flutuação

Modificou-se então os modelos computacionais para a simulação. Novamente

utilizamos o software Aqwa® para a o desenho do modelo 3D e determinação da

Matrizes de Massa Adicional. Apesar de boa parte do modelo já estar construído nos

arquivos elaborados em etapas anteriores, foi necessário um tempo de aprendizado

e reconhecimento do ambiente do software utilizado. Também foi necessária uma

releitura minuciosa da forma como a modelagem foi feira no princípio do projeto.

As figuras a seguir mostram o modelo antigo e o modelo atual do ROV.

Figura 22 - Modelo 3D Antigo do ROV (esquerda) e modelo 3D Atual do ROV (direita)

6.2.2 Inércia Adicional

Prosseguindo o trabalho com o software Aqwa®, vários valores de inércia

adicional foram obtidos em função da frequência de oscilação imposta. Sendo que

as variações eram pequenas menos de 1 %, fez-se a média dos valores para se

37

obter a matriz de inércia adicional simulada, desconsiderando os termos

desprezíveis chegou-se a (unidades métricas em milímetros):

 Em termo de MA tem-se:

38

7 MALHA DE CONTROLE

A partir das novas matrizes obtidas acima, bem como valores já estabelecidos

em [1] é possível recalcular as plantas que serão utilizadas para a resolução do

problema de rastreamento e de controlabilidade.

O problema do projeto é encontrar um compensador K(s) de forma que y

acompanhe r com uma precisão pré-estabelecida e com um esforço de controle

razoável, a despeito das presenças de perturbações d e do erro de medida n.

A seguir temos o diagrama de blocos do sistema nominal, em que:

K(s) - compensador a ser projetado.

G(s) - modelo nominal da planta a ser controlada

d(s) - representa os sinais de perturbações externas

n(s) - representa os erros de medida do sistema

r1(s) - sinal de referencia a ser seguido pela saída

r(s) - sinal de referencia após pré-filtro

e(s) - erro entre a referencia e a saída medida

u(s) - sinal de controle

y(s) - saída controlada do sistema

Figura 23 - Diagrama de Blocos Canônico

7.1 SIMULAÇÕES PLANTA VERTICAL

Com o intuito de entender melhor como a planta reage aos estímulos, um

programa no MatLab foi desenvolvido para desenhar vários gráficos já conhecidos

na área de controle. Para isso, duas plantas foram utilizadas:

39

Isso devido ao fato de que a primeira planta tem como saída a velocidade de

afundamento do ROV e, como o intuito do projeto é controlar a profundidade,

colocou-se um integrador na saída. Então, tem força em Newton como entrada

e velocidade em metros por segundo como saída, enquanto que possui a

mesma entrada, porém como saída a profundidade em metros.

A primeira figura a seguir mostra as respostas de ambos os modelos a uma

entrada degrau de 1 N.

Figura 24 - Resposta ao Degrau

É possível verificar que, com esta entrada, a velocidade final de afundamento

do ROV é de 1.18 m/s e que, em aproximadamente 10s, estaria a 5m de

profundidade. A próxima imagem mostra o Lugar das Raízes de ambos.

40

Figura 25 - Lugar Geral das Raízes

Esta imagem é bem esclarecedora quanto aos efeitos da implantação de um

polo em zero na segunda planta. Pois bem, a próxima imagem representa o

Diagrama de Nichols.

Figura 26 - Diagrama de Nichols

41

Nesta imagem decidiu-se colocar o resultado das duas plantas no mesmo

gráfico, com o intuito de facilitar a comparação. O tracejado mais a direita é referente

à primeira planta, com margem de fase de 148º e margem de ganho infinita. Já o

segundo sistema possui uma margem de fase de 17.5º, também com margem de

ganho infinita. Passemos então ao Diagrama de Bode.

Figura 27 - Diagrama de Bode

Nesta imagem, a planta dois é a representada mais acima, em baixas

frequências, no gráfico de módulo e mais abaixo no gráfico de fase. Este gráfico

também é bem representativo sobre como a implantação de um polo é capaz de

alterar a dinâmica da planta. O último diagrama a ser mostrado é o Diagrama de

Nyquist.

42

Figura 28 - Diagrama de Nyquist

O controlador para o modelo vertical foi realizado através de técnicas de QFT,

baseado na teoria de controle robusto. Como não fazia parte do escopo do

cronograma desse semestre e seria necessário um background teórico sobre o

assunto ele não foi revisado nessa etapa. Passou-se então para a próxima etapa do

cronogrâma, o controle horizontal.

7.2 ESPECIFICAÇÕES DA PLANTA HORIZONTAL

7.2.1 Desacoplamento

De acordo com o descrito em [1], houve uma necessidade de realizar o

desacoplamento das entradas do modelo horizontal, que é descrito a seguir.

:

43

 (4)

 (5)

7.3 SIMULAÇÕES DO MODELO HORIZONTAL

As equações desacopladas foram obtidas através do Matlab e são dadas a

seguir:

Chamaremos de e as equações discretas para as entradas e

respectivamente. Tendo posse das equações discretas, obtidas em Matlab [1], para

cada saída podemos traçar os gráficos da resposta ao degrau que nosso sistema

real deve apresentar em malha aberta.

Para nosso discretizado, a resposta ao degrau é apresentada pela figura 9.

44

Figura 29 - Resposta ao degrau de G1 no plano z

Para o discretizado, a resposta ao degrau é apresentada pela figura 10.

Figura 30 - Resposta ao degrau de G2 no plano z

A seguir fazemos análise mais aprofundada de cada função de transferência,

 , de acordo com a teoria de controle de modo que possamos compreender

melhor esse comportamento mostrado na resposta ao degrau.

No plano s, temos que a resposta ao degrau de é apresentada pela

figura a seguir.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

Step Response

Time (sec)

A
m

p
lit

u
d
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step Response

Time (sec)

A
m

p
lit

u
d
e

45

Figura 31 - Resposta ao degrau de G1 e G2 no plano s

Notamos que a resposta ao degrau da guinada é muito mais rápida do que a

velocidade linear para atingir seu ponto de regime permanente.

Os lugares da raiz para respectivamente é apresentada pela figura

seguinte.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Resposta ao degrau

Tempo (sec)

V
e
lo

c
id

a
d
e
 (

m
/s

)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Resposta ao degrau

Tempo (sec)

G
u
in

a
d
a
 (

ra
d
)

46

Figura 32 - Lugar das raízes de G1 e G2

Na qual notamos que para a função temos um zero em s = -3.45 e em

temos um zero em s = -0.075.

Os pólos de estão em s1 = -3.45 e s2 = -0.075. Os pólos de estão em =

-3.45 e = -0.075, evidentemente os mesmos de pois ambas funções de

transferência possuem o mesmo denominador.

A partir desses pólos e zeros e dos gráficos notamos que as duas funções de

transferência, , são muito semelhantes. A diferença dessas duas plantas

evidenciada pelo lugar das raízes está em como seus pólos e zeros se combinam,

sendo que em o zero cancela o pólo mais rápido e em o zero cancela o pólo

mais lento, tornando a resposta de em torno de 100 vezes mais rápida que de .

Prosseguindo com as análises temos que os Diagramas de Bode para

conforme segue.

-12 -10 -8 -6 -4 -2 0 2
-1

-0.5

0

0.5

1
0.750.930.970.9850.9930.997

0.999

1

0.750.930.970.9850.9930.997

0.999

1

24681012

Lugar das Raízes

Real Axis

Im
a
g
in

a
ry

 A
x
is

-12 -10 -8 -6 -4 -2 0 2
-1

-0.5

0

0.5

1
0.750.930.970.9850.9930.997

0.999

1

0.750.930.970.9850.9930.997

0.999

1

24681012

Lugar das Raízes

Real Axis

Im
a
g
in

a
ry

 A
x
is

47

Figura 33 - Diagramas de bode de G1 e G2

Observando o Diagrama para a função de transferência temos que a margem

de ganho evidenciada pelo gráfico é infinito pelo sistema ser de primeira ordem,

devido ao cancelamento de um pólo com um zero, e nunca atingir os 180 graus. A

margem de fase que se observa para é de 94.3 graus em aproximadamente 1

radiano.

Para temos que observando o Diagrama de Bode tanto a margem de ganho

quanto a margem de fase valem infinito, pois, o gráfico de fase nunca chega a 180

graus e o gráfico de ganho nunca cruza o zero.

Em seguida analisamos o Diagrama de Nyquist para , respectivamente

pelas figuras 34 e 35.

-100

-50

0

50

M
a
g
n
itu

d
e
 (

d
B

)

Bode Diagram

Frequency (rad/sec)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

-90

-45

0

System: sys1

Phase Margin (deg): 94.3

Delay Margin (sec): 1.65

At frequency (rad/sec): 0.997

Closed Loop Stable? Yes

P
h
a
s
e
 (

d
e
g
)

48

Figura 34 - Diagrama de Nyquist de G1

Figura 35 - Diagrama de Nyquist de G2

Analisando ambos os gráficos notamos que tanto quanto tem o grau do

polinômio do denominador menos o do numerador igual a 1 devido à aproximação

da origem pelo quarto quadrante. Confirmamos também que são do tipo zero.

-2 0 2 4 6 8 10 12 14
-8

-6

-4

-2

0

2

4

6

8

0 dB

-10 dB
-6 dB

-4 dB

-2 dB

10 dB
6 dB
4 dB

2 dB

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 dB

-20 dB

-10 dB-6 dB-4 dB-2 dB

20 dB

10 dB 6 dB 4 dB 2 dB

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

49

Analisando o Critério de Nyquist, para a robustez de estabilidade, temos que

tanto para quanto para o gráfico de Nyquist dá uma volta completa no sentido

horário, porém para nenhuma das duas funções de transferência temos o

envolvimento da origem. Portanto, tanto quanto atendem o Critério de Nyquist,

para robustez de estabilidade, e podem ser ditos estáveis.

Prosseguindo com a análise, temos as Diagramas de Nichols para na

figura 36.

Figura 36 - Diagrama de Nichols de G1 e G2

A partir dos gráficos do Diagrama de Nichols observamos diretamente as

margens de ganho e de fase, já expostas anteriormente com os gráficos de Bode.

-360 -315 -270 -225 -180 -135 -90 -45 0
-60

-50

-40

-30

-20

-10

0

10

20

30

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

Nichols Chart

Open-Loop Phase (deg)

O
p
e
n
-L

o
o
p
 G

a
in

 (
d
B

)

50

8 RASTREAMENTO

8.1 PROBLEMA DE RASTREAMENTO

 Até essa etapa do projeto, apenas o controle vertical havia sido realizado. O

controle de profundidade foi baseado na teoria de controle robusto através das

técnicas de QFT.

 Agora passamos para uma etapa essencial que é o controle horizontal. Tal

controle será responsável pelo avanço e guinada do ROV.

 Uma vez que se trata de um sistema com duas entradas, optou-se por

desenvolver o controle a partir da Teoria de Regulação e do Rastreamento. A teoria

do rastreamento estuda o problema de projetar um sistema de controle que garanta

que a saída do sistema siga um sinal de referência r(t) com um erro assintótico nulo.

A teoria da regulação trata do problema de projetar um sistema de controle capaz de

eliminar assintoticamente o efeito de uma perturbação na saída, uma vez que o

problema de regulação é um caso particular do problema do problema de

rastreamento [4], pretendemos resolver ambos.

 Queremos resolver o problema de rastreamento para o sistema

 Que pode ser reescrito da seguinte forma:

 Mostraremos que o problema de rastreamento é solúvel. Para isso

utilizaremos o Teorema 9 de [4].

 O sistema possui grau relativo:

 Para

51

 O grau relativo , pois ao derivarmos apenas uma vez, já obtemos

uma dependência explícita da entrada . Além disso, temos que:

 Para

 O grau relativo , pois ao derivarmos apenas uma vez, já obtemos

uma dependência explícita da entrada . Além disso, temos que:

 Finalmente temos

 E podemos calcular , portando a matriz de

desacoplamento A(x) é não singular.

 Finalmente, , que é igual à dimensão do espaço.

 Portanto, de acordo com [4] o problema de rastreamento é solúvel.

8.2 SIMULAÇÃO DO RASTREAMENTO

Após mostrarmos que o problema de rastreamento é solúvel partimos para

sua implementação e resolução em Matlab conforme programa no apêndice 13.1.

8.2.1 Simulação sem Distúrbio

Primeiro realizamos um teste com o sistema sem ruídos. O diagrama em

simulink utilizado é o que segue.

52

Figura 37 – Diagrama em Simulink para o Rastreamento

Colocamos uma onda senoidal como sinal de referência para cada entrada

a fim de avaliar o desempenho do controlador, mas as referências que usaremos na

prática têm um comportamento menos oscilatório.

Figura 38 – Referência

0 5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

Time (Seconds)

Referência

53

O sinal de saída obtido foi extremante satisfatório, muito próximo da

referência. No início notamos que o sinal do erro chega próximo de -0.5 mas,

quando o sistema estabiliza o erro é ínfimo, menos que 0.1 em módulo, conforme

figuras a seguir:

Figura 39 – Saídas e

Figura 40 – Sinal do erro

Na figura a seguir podemos observar o esforço de controle. Inicialmente ele é

maior e diminui conforme a estabilização do sistema.

0 5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

Time (Seconds)

Saídas

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (Seconds)

Erro

54

Figura 41 – Esforço de Controle

8.2.2 Simulação com Distúrbio

Acrescentou-se um sinal de distúrbio ao diagrama do simulink.

Figura 42 – Diagrama para simulação de rastreamento com distúrbio

0 5 10 15 20 25 30
-2

0

2

4

6

8

Time (Seconds)

Esforço de Controle

55

Novamente colocamos uma onda senoidal como sinal de referência para cada

entrada entretanto, dessa vez acrescentou-se um sinal de distúrbio para cada uma

das entradas do sistema. Note que os sinais de distúrbios possuem amplitudes

muito maiores do que as dos sinais de referência.

Figura 43 – Referência

Figura 44 - Distúrbio

Os sinais de saída apresentaram amplitudes maiores do que os sinais de referência, mas

ainda assim é possível notar que o rastreamento foi adequado mesmo com um ruído tão alto.

0 5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Time (Seconds)

Referência

0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

Time (Seconds)

Distúrbio

56

Figura 45 - Saídas

O erro alcançou inicialmente picos de -0.2 e 0.1, muito próximo do valor de referência.

Entretanto a saída não apresentou uma discrepância tão alta. Provavelmente isso se deve aos sinais

de distúrbio.

Figura 46 – Erro de rastreamento

O esforço de controle surpreendentemente não foi muito diferente do caso sem ruído,

conforme pode ser visto a seguir:

Figura 47 – Esforço de Controle

0 5 10 15 20 25 30

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Time (Seconds)

Saídas

0 5 10 15 20 25 30

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Time (Seconds)

Erro

0 5 10 15 20 25 30

-1

0

1

2

3

Time (Seconds)

Esforço de Controle

57

9 FINALIZAÇÃO DA MONTAGEM DO ROV

Após a troca de componentes, remodelagem e resolução do problema de

rastreamento, passou-se à etapa de montagem do ROV. Até o presente momento o

ROV não havia sido montado por completo, os testes que foram realizados em água

não possuíam o cabo umbilical que serve para alimentar o ROV, conectá-lo à

internet e permitir a utilização do Joystick.

Figura 48 – Última alteração física do ROV em 2015

9.1 HÉLICES

Um dos impasses encontrados para a montagem do ROV foi o encaixe dos

hélices nos motores. Os motores e spinners (adaptadores de hélice) adquiridos são

utilizados para aeromodelismo. As hélices utilizadas em aeromodelismo,

diferentemente dos hélices para submarino, possuem um eixo curto, e portanto, são

facilmente ajustáveis aos spinners, responsáveis por conectar o hélice ao motor.

Entretanto, nossos hélices não encaixavam nos spinners, tanto pelo comprimento do

eixo como pelo diâmetro do orifício em nosso hélice, como é possível notar nas

imagens a seguir.

58

Figura 49 – Hélice de aeromodelismo à esquerda. Hélice para ROV à direita.

Figura 50 – Encaixe da hélice de aeromodelismo

Figura 51 – Hélice do ROV e Spinner

Inicialmente pensou-se em adquirir novos spinners que possuíssem um eixo

mais cumprido. Foram visitadas lojas de aeromodelismo e tais spinners não existiam

nas lojas, já que o modelo de hélice utilizado no aeromodelismo era diferente.

Passou-se então à procura de uma alternativa para resolver o problema. A compra

de novos hélices foi descartada uma vez que a geometria do ROV não permitiria um

outro modelo de hélice, no caso, um hélice maior. Pensou-se então em estender o

eixo do spinner com um parafuso, mas a alternativa se tornou inviável tanto pela

descontinuidade da rosca que seria gerada quanto pela incerteza de que tal

resolução permitiria que os hélices ficassem fixos.

59

Após muito se pensar, alternativa encontrada para esse problema foi de uma

simplicidade admirável. A solução foi utilizar um macho de mesmo diâmetro do eixo

do spinner para rosquear o "eixo" interno do hélice. Com essa alternativa não seria

necessário utilizar a parte "superior" do spinner para prender o hélice ao motor, o

próprio rosqueamento já realizaria essa tarefa. O resultado por ser visto nas

imagens a seguir.

Figura 52 – Hélice com rosca

Figura 53 – Hélice conectada ao Spinner

Figura 54 – Hélice acoplada ao motor sem e com o recipiente do motor

60

9.2 CABO UMBILICAL

Cabos umbilicais submarinos são cabos que conectam o ambiente terrestre à

equipamentos submersos. Cabos umbilicais são utilizados para transmitir elétrica

(alimentação, dados do equipamento para a superfície, etc) e fluidos como água e

petróleo em plataformas de petróleo. O cabo umbilical no ROV será responsável

pela alimentação dos motores e da placa Raspberry Pi, e conexão com o

computador (cabo Ethernet).

Para a montagem do ROV foi primeiramente necessário decidir qual tipo de

cabo seria necessário para construir o cabo umbilical. Notou-se que seriam

necessários 11 cabos ao todo: duas perfurações para cada um dos quatro motores

(alimentação e saída da placa para o motor), dois orifícios para as lanternas e um

para o cabo Ethernet. Para evitar que houvessem 11 perfurações e 11 prensa cabos

na tampa, optou-se pela utilização de um cabo de 4 vias. Assim, seria possível

utilizar um cabo para cada dois motores. Foram adquiridos 7 metros desse cabo. A

medida foi baseada na medida do cabo de Ethernet que é de 3 metros. Então serão

3,5m (50 cm de folga) para cada par de motores.

Figura 55 – Preparação do cabo

O cabo foi dividido em dois e então era necessário adaptá-lo para realizar a

conexão com a ESC. Cada um dos fios internos de ambos os cabos foram

descascados e dois a dois soldados ao conector mostrado na figura abaixo.

61

Figura 56 - Conector

Era necessário passar os fios pelos prensa cabos da tampa antes de realizar

o trabalho de soldagem e acabamento, e uma vez soldados não seria possível

remover os cabos. Esse trabalho finalizado é mostrado na figura a seguir.

Figura 57 – Cabos finalizados com conectores

9.3 CONEXÃO MOTORES E ESC

Durante a estruturação física do ROV, notou-se que os fios que conectavam

ESC e motores eram extremamente curtos, o que impossibilitaria que a ESC ficasse

do lado interno do ROV sem contato com a água como pode ser observado na foto

abaixo.

62

Figura 58 – Problema do comprimento dos fios do motor e ESC

A solução imediata para esse problema era prolongar os fios dos motores ou

da ESC. Como ambos são componentes caros e delicados, antes de qualquer

procedimento foi feita uma pesquisa de qual seria a melhor maneira de prolongar

esses fios. Durante as pesquisas e conversas em fóruns de aeromodelismo

descobriu-se que muitos usuários tiveram problemas decorrentes da prolongação

dos fios. Tais problemas advém da forma de funcionamento da ESC, através de

pulsos PWM. Prolongar os fios faz com que a ESC não consiga fazer uma leitura

exata dos pulsos, podendo acarretar em dificuldade para girar os motores, desde

trancos até a parada de funcionamento do motor. Levando isso em consideração, foi

necessário buscar outras alternativas para a resolução do problema.

A alternativa mais factível foi a realização de furos laterais no ROV, assim,

não seria necessária a prolongação dos fios. Apesar de estranha à primeira vista, a

resolução não traz desvantagens, o único porém é a quebra do padrão de se ter

todos os furos na tampa e a dificuldade de manipular os cabos dos motores já dentro

do ROV. As imagens a seguir mostra como ficou o ROV após os furos.

63

Figura 59 – Orifícios laterais

Passou-se então para a alocação dos motores e finalização da montagem do

ROV. Nas imagens a seguir é possível ver o passo a passo dessa montagem. Além

disso é possível observar que os conectores do motor ficam acessíveis dentro do

ROV.

Figura 60 – Alocação dos motores

64

Figura 61 – Visão interna do ROV

Nessa etapa foram encaixados os hélices e o ROV adquiriu a forma a seguir.

Figura 62 – ROV com os Hélices

O circuito para funcionamento do motor é o seguinte: Conecta-se o motor à

ESC, a ESC à fonte e também à Raspberry Pi. As imagens a seguir ilustram o passo

a passo para a montagem do circuito. Nessa etapa, ainda não foi montado o circuito

com a Raspberry pois ainda há a etapa de programação, e é necessário que a

Raspberry esteja fora do ROV.

65

Figura 63 – Circuito Motor e Esc

Figura 64 – Finalização da montagem

Figura 65 – ROV Finalizado e com cabo umbilical

66

10 INTEGRAÇÃO

A etapa de integração pode ser considerada a etapa mais importante desse

projeto. Até o momento, foram realizadas as programações da lanterna, joystick e do

controle vertical. Apesar da aquisição da câmera, não existe uma programação

voltada para o seu funcionamento no ROV. Nessa etapa pretende-se integrar essas

programações e acrescentar a programação do controle horizontal, gerando um

controle geral.

10.1 CONTROLE INTEGRADO PARA RASPBERRY PI

O controle integrado tem como objetivo unificar tudo o que já foi realizado até

então. Até o presente momento foram programados diversos códigos de forma

independente e sem a preocupação de uma integração. Os códigos realizados até

agora tinham como interesse apenas o teste pontual dos dispositivos ou simulações,

com exceção do código do Joystick que já tinha um objetivo prático.

Nessa etapa nos deparamos com os seguintes códigos estruturados de forma

independente: o código do Joystick, os códigos de teste do sensor e dos motores

(conforme anexo 14.1 e 14.2 respectivamente), o código do filtro de Kalman, que até

o momento só havia sido utilizado para simulações em simulink, o código do controle

vertical que ainda estava escrito para funcionar com o Arduino (placa de aquisição

usada anteriormente). O código das lanternas deveria estar entre os códigos,

entretanto o código não foi encontrado salvo entre os arquivos do projeto, então um

novo código e teste deve ser elaborado.

10.2 CONTROLE VERTICAL PARA RASPBERRY PI

A programação do controle vertical sofre duas alterações, a primeira é

referente ao fluxo de dados. Quando o controle vertical foi realizado, considerou-se

que o fluxo de dados se daria entre os motores e o arduino. Agora que utilizamos as

ESCs e a Raspberry Pi, é necessário corrigir a forma como essa troca de dados é

realizada. A segunda alteração está relacionada aos novos parâmetros obtidos após

a remodelagem.

67

Desprendeu-se um tempo considerável para o entendimento de como era

realizado o fluxo de dados no Arduino para então programar a passagem desse

fluxo de dados para a Raspberry Pi. O código obtido até o momento encontra-se no

Apêndice 13.2. Note que a função de controle utilizada ainda é a função obtida antes

da remodelagem. Após a remodelagem foram feitas as simulações de

comportamento do sistema mas não foi realizado um novo controle vertical, apenas

o horizontal. A não realização de um novo controle vertical se deu por não estar

dentro do escopo e do cronograma dessa fase do projeto, além disso, na época em

que foi feito, o controle vertical foi realizado com a utilização da técnica QFT e da

ferramenta SISO-QFTIT. Tentou-se entender a utilização da ferramenta, mas a falta

de conhecimento sobre controle robusto impossibilitou a realização do controle.

Esse estudo demandaria muito tempo e atrasaria o cronograma dando a impressão

de que um trabalho já realizado estava sendo refeito. Então para prosseguir o

projeto do especificado no cronograma, optou-se por não realizar essa etapa

novamente.

10.3 ESTRUTURAÇÃO DA INTEGRAÇÃO

Um dos impasses dessa etapa foi conceber como efetivar a união dos

códigos e como estruturar um código teste para um código funcional, ou seja, um

código que efetivamente executasse seu papel para o projeto do ROV.

O único código que até o momento estava ligado diretamente ao ROV era o

código do Joystick. O Joystick que tínhamos até o presente momento era o que

podemos ver na imagem a seguir.

68

Figura 66 - Joystick

O Joystick apresentado era apenas visual e não funcional, já que quando foi

construído ainda não havia sido realizado o teste dos motores. Além disso a forma

como o Joystick foi pensado não refletia a realidade do que se quer realizar no

projeto. Tanto para o controle horizontal quanto para o controle vertical quer-se

construir um controle autônomo, ou seja, queremos informar para o ROV em que

posição ele deve chegar e a partir daí ele se desloca para a posição. A forma como

o Joystick foi pensada não contempla o controle autônomo, ele apenas informa onde

quero que o motor esteja em um momento imediato.

Partiu-se desse Joystick para a integração do ROV, já que ele apresenta a

interface gráfica do ROV com o usuário.

10.3.1 Integração Joystick e Controle

10.3.1.1 Controle Horizontal

69

Enquanto tentava-se realizar a integração do Joystick com o controle

horizontal, que até o presente momento não havia sido escrito, chegou-se a um

grande impasse: o controle horizontal foi pensado como uma resolução do problema

de rastreamento, ou seja o sistema deveria receber uma função como entrada que

seria seguida pelo controle horizontal. Entretanto não foi encontrada uma forma de o

usuário fornecer uma função com ponto de partida e de chegada para ser seguida

pelo ROV.

Uma das possibilidades para resolver esse impasse era deixar eplícitas

algumas funções dentre as quais o usuário poderia escolher e o ROV seguiria.

Porém ainda assim foi inviável prescrever de antemão uma função, pois

precisaríamos de um gerador de funções ou trabalhar com o Matlab, por exemplo,

para que pudéssemos fornecer uma função a ser seguida pelo sistema.

10.3.1.2 Controle Vertical

Passou-se então a pensar em como o controle vertical poderia ser

implementado partindo do Joystick.A solução foi permitir que o usuário digitasse a

profundidade desejada no Joystick e então, ao clicar em um botão no próprio

Joystick, daria início ao controle vertical. O código do controle vertical pode ser visto

no Apêndice 13.2. Note que nesse código o uso dos sensores já está integrado ao

controle.

O Joystick foi então reelaborado para receber essa função e permitir a

integração do controle vertical com o Joystick.

10.3.2 Integração Joystick e Lanterna

Conforme já foi citado, o código para as lanternas não foi encontrado,

entretando um novo código foi simples de ser elaborado e foi acoplado ao Joystick

com a função de botão Switch, que permite que liguemos e desliguemos as

lanternas.

Na figura a seguir é possível visualizar o Joystick que supre as necessidades

do controle vertical e da lanterna.

70

Figura 67 - Controle vertical e Joystick

10.3.3 Integração Joystick e Sensores

Os dados dos sensores são usados para a realização do controle vertical, na

etapa em que se reescreveu o fluxo de dados do controle vertical, já houve a

integração do sensor com o controle. Nesse momento, achou-se interessante e

importante que o usuário saiba o que está ocorrendo com o ROV. Assim, adicionou-

se ao Joystick a possibilidade do usuário visualizar os dados fornecidos pelos

sensores.

O código de teste do Sensor GY-80 pode ser visto no Anexo 14.1. Um

possível resultado para o sensor pode ser visto na imagem a seguir.

71

Figura 68 - Resultados do Sensor GY-80

A tela desenvolvida que mostra os dados do sensor para o usuário é a

disposta na figura a seguir.

Figura 69 - Joystick finalizado

72

O código dessa integração, tela, leitura e processamento dos dados do

sensor encontra-se no Apêndice 13.3.

Referente aos dados dos sensores, eles são atualizados quando clicamos no

botão "Atualizar", nas próximas imagens podemos ver a resposta para a leitura do

sensor e atualização de tela, os valores são similares, salvo pequenos desvios de

medida.

Figura 70 - Dados Atualizados

73

Figura 71 - Dados Atualizados e lanterna ligada

 Na figura acima o comando de acender as lanternas está ativado. O comando

de fato é funcional como podemos verificar na figura abaixo.

Figura 72 - Lanternas Ligadas

74

O Joystick atualizado é um joystick funcional, ou seja, não se trata mais de

apenas uma tela estática. Os testes dos motores foram refeitos. Quando clicamos

em "Frente", os dois motores horizontais recebem o comando de ligar, quando

clicamos em "Esquerda" o motor da esquerda desliga e o motor da direita é ligado,

fazendo com que o ROV curve-se para a esquerda, de maneira similar, quando

clicamos em "Direita" o motor da direita desliga e o motor da esquerda é ligado,

fazendo com que o ROV curve-se para a direita. Finalmente com o comando "Pare"

todos os motores são desligados.

Essa etapa do trabalho desprendeu um esforço menos visual, já que se tratou

de programação. Embora pareça simples quando observamos as imagens obtidas, o

trabalho de se debugar os códigos e de utilizar o terminal do Linux, por exemplo, é

demasiadamente árduo.

Até o presente momento não foi possível concluir de fato as etapas

remanescentes, e novos problemas foram encontrados como a realização do

controle horizontal, já que precisaríamos ter na entrada um sinal de referência, e não

conseguimos isso com as programações até agora conhecidas. Teríamos que ter

alguma interface com o Matlab para que talvez isso fosse possível. Um problema

que ainda não havia sido avaliado é o da fixação do sensor. Até o momento ele

ficaria solto dentro do ROV, entretando é necessário que o sensor fique fixo. Além

disso, alguns fios, como o de alimentação da ESC ainda não foram passados pelo

prensa cabos, já que precisaríamos cortá-los, além de obter fios maiores que os

convencionais.

75

11 CONCLUSÃO

Durante a elaboração desse projeto muitos desafios foram superados. A

quantidade de conhecimento adquirido a cada desafio foi diretamente proporcional

às demandas exigidas. Foi extremamente proveitoso participar do projeto e

conhecer desde as diversas facetas de um projeto como esse.

Pode-se elaborar desde a modelagem e parte física até o software. Todas as

etapas trouxeram aprendizado, desde princípio as dificuldades Essa etapa do

projeto exigiu um esforço que foi recompensado com demasiado aprendizado.

Aprendeu-se a usar desde um software de análise hidrodinâmica como o Aqwa, até

um componente mais próximo da engenharia elétrica como o Raspberry Pi. Além

disso, os ganhos em se aprender a usar a linha de comando do Linux e a programar

em uma linguagem de alto nível como o Python são inestimáveis.

Desenvolver o ROV trouxe conhecimentos das mais diversas áreas e permitiu

a utilização de conhecimentos vistos em sala de aula de forma prática. O projeto

mostrou-se completo em toda sua extensão, pois permitiu a vivência de um

verdadeiro projeto de engenharia.

76

12 REFERÊNCIAS BIBLIOGRAFICAS

[1] MOREIRA, Diego Antonio; BARBOSA, Fernando Dos Santos. Controle De

Movimentação De Um Veículo Subaquático. 2014. 136f. Trabalho de Conclusão de

Curso - Escola Politécnica da Universidade de São Paulo, São Paulo, 2014.

[2] R. M. Gomes, J. B. Sousa et F. L. Pereira. Modeling and Control of the IES Project

ROV. Porto.

[3] M. L. CENTENO, S. C. GOMES, I. M. PEREIRA, P. J. L. DREWS et S. BOTELHO.

Controle em Profundidade de um Veículo Subáquatico do Tipo ROV. 2006.

[4] SILVA, P. S. P. Controle Multivariável. São Paulo, 2013. (Apostila)

[5] CASTRUCCI, P.B.L., BITAR, A. e SALES, R.M. Controle Automático. Rio de

Janeiro, LTC, 2011.

[6] MARQUES, R. P. et al. Apostila do Curso PTC2619 Laboratório de Automação.

São Paulo, 2016. (Apostila)

[7] S. A. M. R. A. R. E. M. A. M.S.M. ARAS, «DEVELOPMENT AND MODELING OF UNMANNED

UNDERWATER REMOTELY OPERATED VEHICLE USING SYSTEM IDENTIFICATION FOR DEPTH

CONTROLL,» 2013.

[8] W. Wang et C. Clark, «Autonomous Control foa a Differential Thrust ROV».

[9] M. L. CENTENO, S. C. GOMES, I. M. PEREIRA, P. J. L. DREWS et S. BOTELHO, «Controle em

Profundidade de um Veículo Subáquatico do Tipo ROV,» 2006.

[10] H. F. P. N. R. M. SANTOS A. T., « PROJETO DE MINI SUBMARINO TELEGUIADO,» 2012.

[11] S. R. LEONARD N., «THE BELUGA PROJECT DEVELOPMENT OF A TESTED FOR AUTONOMOUS

UNDERWATER VEHICLES,» 2010.

[12] F. T. I., «GUIDANCE AND CONTROL OF OCEAN VEHICLES,» 1994.

[13] A. M. TAVARES, «UM ESTUDO SOBRE A MODELAGEM E O CONTROLE DE VEÍCULOS

SUBAQUÁTICOS NÃO TRIPULADOS,» 2003.

[14] http://www.e-voo.com (visitado em abril e maio de 2016)

77

[15] http://wiki.python.org.br/DocumentacaoPython#Artigos_e_Tutoriais (visitado em abril e

maio de 2016)

[16] https://www.arduino.cc/en/Tutorial/HomePage (visitado em abril e maio de 2016)

[17] https://www.raspberrypi.org (visitado em 2016)

[18] https://learn.adafruit.com (visitado em 2016)

[19] https://docs.python.org/2/tutorial/ (visitado em 2016)

[20] http://python-gtk-3-tutorial.readthedocs.io/en/latest/ (visitado em junho de 2016)

[21] https://pythonhosted.org/RPIO/pwm_py.html (visitado em maio e junho de 2016)

[22] https://cdn-learn.adafruit.com/downloads/pdf/adafruits-raspberry-pi-lesson-3-network-

setup.pdf (visitado em maio e junho de 2016)

[23] http://blog.filipeflop.com/embarcados/tutorial-raspberry-pi-linux.html (visitado em maio

e junho de 2016)

[24] https://www.youtube.com/watch?v=TvINXo_2UrY (visitado em junho de 2016)

[25] https://www.youtube.com/watch?v=nuFf-LfJQmw (visitado em junho de 2016)

[26] http://astrobeano.blogspot.com.br/2014/01/gy-80-orientation-sensor-on-raspberry-

pi.html (visitado em maio e junho de 2016)

[27] https://github.com/bitify/raspi (visitado em junho de 2016)

[28] http://myrobotlab.org/content/gy80 (visitado em junho de 2016)

[29] http://www.instructables.com/id/Raspberry-Pi-I2C-Python/?ALLSTEPS (visitado em

junho de 2016)

[30] http://skpang.co.uk/blog/archives/575 (visitado em junho de 2016)

78

13 APÊNDICES

Este capítulo mostra todos os programas gerados pelos próprios formandos,

responsáveis por este projeto.

13.1 CÓDIGO RASTREAMENTO

clear
close all
clc

%% Parâmetros
%Amortecimento Linear - D
% SIMULACAO NA AGUA
Xu = -0.346;
Yv = -0.547;
Zw = -0.845;
Kp = -0.3;
Mq = -0.3;
Nr = -0.3;
%Massa adicional - Ma
%MATRIZ INERCIA ADICIONAL
Xu_p = -1.091;
Yv_p = -3.891;
Zw_p = -4.048;
Kp_p = -0.021591;
Mq_p = -0.025051;
Nr_p = -0.025060;
%Amortecimento Quadrático - Dq
Xuu = 0;
Yvv = 0;
Zww = 0;
Kpp = 0;
Mqq = 0;
Nrr = 0;
%Inércia
Ixx = 0.046302;
Iyy = 0.035885;
Izz = 0.062105;
Ixy = 0;
Ixz = 0;
Iyz = 0;
%Massa
m = 3.524;
%Matrizes de Massa e Amortecimento
M = diag([m-Xu_p m-Yv_p m-Zw_p Ixx-Kp_p Iyy-Mq_p Izz-Nr_p]);
D = -diag([Xu Yv Zw Kp Mq Nr]);

%% Modelo Horizontal
%Distância dos motores em relação a y
D1 = 0.2;
D2 = -0.2;
%Matrizes de Estado
A = [Xu/(m-Xu_p) 0; 0 Nr/(Izz-Nr_p)];

79

B = [1/(m-Xu_p) 1/(m-Xu_p); -D1/(Izz-Nr_p) -D2/(Izz-Nr_p)];
C = [1 0; 0 1];
D = zeros(2);

zero = zeros(2);

%% Resolução do Problema de Rastreamento
Ao = [0 1; 0.0001 0];
Bo = [0; 1];
Co = [1 0];
Do = 0;

At = [A B*Co' [0;0]; zero Ao];
Bt = [B [0;0]; zero Bo];
Ct = [C zero];

Contr = CTRB(At,Bt);
rank(Contr);
Observ = OBSV(At, Ct);
rank(Observ);

[K,~,~] = lqr(At,Bt, 1e3*eye(4), eye(3));
[H,~,~] = lqr(At',Ct',1e3*eye(4),eye(2));

F = -K;
K = H';

13.2 CÓDIGO CONTROLE VERTICAL PARA RASPBERRY PI

#Código de controle de profundidade, projeto ROV.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)

from Adafruit_BMP085 import BMP085

bmp = BMP085(0x77)

entrada = 1
erro_1 = 0
erro_2 = 0
controle_1 = 0
controle_2 = 0
patm = 92853
pressmed = 0
profundidade = 0
controle = 0
i = 0

tempmed = bmp.readTemperature()
pressmed = bmp.readPressure()
altitude = bmp.readAltitude()

80

print"Temperature: %.2f C"% tempmed
print"Pressure: %.2f Pa"% pressmed
print"Altitude: %.2f m"% altitude

profundidade = (pressmed - patm)/1000
#p = patm + dgh
erro = entrada - profundidade
controle = 1.541*controle_1 - 0.59*controle_2 + 541*erro - 1000*erro_1 + 459.6*erro_2

if controle > 0
 i = 106*controle + 43
 if i > 255
 i = 255
 end

 i= i/255
 iniciaPWM(12, i) #motor1

 #GPIO.setup(12, GPIO.OUT)
 #MotorDir = GPIO.PWM(12, 0.5)
 #MotorDir.start(1)

 iniciaPWM(13, i) #motor2
 #GPIO.setup(13, GPIO.OUT)
 #MotorEsq = GPIO.PWM(13, 0.5)
 #MotorEsq.start(1)

#Motor nao gira para ambos os lados,
#então os motores parar para o restante dos casos

else
 i=0
 finalizaPWM(12)
 finalizaPWM(13)
 #MotorDir.stop()
 #MotorEsq.stop()

end

controle_2 = controle_1
controle_1 = controle
erro_2 = erro_1
erro_1 = erro

81

13.3 CÓDIGO DE INTEGRAÇÃO SENSOR E JOYSTICK

-*- coding: utf-8 -*-
import smbus
import math
import Adafruit_BMP.BMP085 as BMP085

import gi
gi.require_version('Gtk', '3.0')
from gi.repository import Gtk

Registradores de gerenciamento de energia do sensor
power_mgmt_1 = 0x6b
power_mgmt_2 = 0x6c

#Funções do Sensor
def read_byte(adr):
 return bus.read_byte_data(address, adr)

def read_word(adr):
 high = bus.read_byte_data(address, adr)
 low = bus.read_byte_data(address, adr+1)
 val = (high << 8) + low
 return val

def read_word_2c(adr):
 val = read_word(adr)
 if (val >= 0x8000):
 return -((65535 - val) + 1)
 else:
 return val

def dist(a,b):
 return math.sqrt((a*a)+(b*b))

def get_y_rotation(x,y,z):
 radians = math.atan2(x, dist(y,z))
 return -math.degrees(radians)

def get_x_rotation(x,y,z):
 radians = math.atan2(y, dist(x,z))
 return math.degrees(radians)

or bus = smbus.SMBus(0) para placas Revision 1
bus = smbus.SMBus(1)
address = 0x68 # Endereco lido para os Acelerometro e Giroscopio pelo i2cdetect

class joystick(Gtk.Window):

 def __init__(self):
 a = 1
 atual = 1

82

 Gtk.Window.__init__(self, title="Joystick")
 self.set_border_width(10)

 grid = Gtk.Grid()
 self.add(grid)

 button1 = Gtk.Button("\n\n Esquerda \n\n")
 button1.connect("clicked", self.on_click_me_clicked_lf, atual,a)
 grid.add(button1)

 button2 = Gtk.Button("\n\n Frente \n\n")
 button2.connect("clicked", self.on_click_me_clicked_fw)
 grid.attach(button2,1,-10,10,10)

 button3 = Gtk.Button("\n\n Pare! \n\n")
 button3.connect("clicked", self.on_click_me_clicked_stop)
 grid.attach(button3,1,10,10,10)

 button4 = Gtk.Button("\n\n Direita \n\n")
 button4.connect("clicked", self.on_click_me_clicked_rg)
 grid.attach(button4,15,0,10,5)

 label0 = Gtk.Label('Ativar Movimentação \n por Joystick')
 grid.attach(label0,1,200,1,1)

 switch = Gtk.Switch()
 switch.connect("notify::active", self.on_switch_activated)
 grid.attach(switch,1,300,1,1)

 #button5 = Gtk.Button("close")
 #button5.connect("clicked", self.on_close_clicked)
 #grid.attach(button5,100,-100,1,1)

 label2 = Gtk.Label('Lanternas')
 grid.attach(label2,600,200,1,1)

 switch2 = Gtk.Switch()
 switch2.connect("notify::active", self.on_switch2_activated)
 grid.attach(switch2,600,300,1,1)

 #label1 = Gtk.Label('actual angle: ' + str(a))
 #grid.attach(label1,1000,-50,1,1)

 #label2 = Gtk.Label('new angle: ' + str(a))
 #grid.attach(label2,1000,-15,1,1)

 label5 = Gtk.Label('CONTROLE AUTÔNOMO \n\n DE PROFUNIDADE ')
 grid.attach(label5,600,-2,1,1)

 label6 = Gtk.Label(' ')
 grid.attach(label6,500,-2,1,1)

83

 label7 = Gtk.Label(' ')
 grid.attach(label7,1000,-2,1,1)

 label8 = Gtk.Label('\n Profundidade Desejada:')
 grid.attach(label8,600,-1,1,1)

 entry1 = Gtk.Entry()
 entry1.set_text(" ")
 grid.attach(entry1,600,0,1,1)

 button6 = Gtk.Button(" Ir! ")
 button6.connect("clicked", self.on_click_me_clicked_go)
 grid.attach(button6,600,10,1,1)

 button7 = Gtk.Button(" Atualizar ")
 button7.connect("clicked", self.on_click_me_clicked_ad)
 grid.attach(button7,1100,300,1,1)

 #entry2 = Gtk.Entry()
 #entry2.set_text("Horizontal")
 #grid.attach(entry2,500,10,1,1)

 self.gyro_xout = read_word_2c(0x43)
 self.gyro_yout = read_word_2c(0x45)
 self.gyro_zout = read_word_2c(0x47)

 self.accel_xout = read_word_2c(0x3b)
 self.accel_yout = read_word_2c(0x3d)
 self.accel_zout = read_word_2c(0x3f)

 self.accel_xout_scaled = self.accel_xout / 16384.0
 self.accel_yout_scaled = self.accel_yout / 16384.0
 self.accel_zout_scaled = self.accel_zout / 16384.0

 sensor = BMP085.BMP085()

 label1 = Gtk.Label('\n DADOS DO SENSOR \n\n Temperatura (*C): ' +
str(format(sensor.read_temperature())) + ' \n Pressão (Pa): ' + str(format(sensor.read_pressure())) +
' \n Profundidade (m): ' + str(format(sensor.read_altitude())))
 grid.attach(label1,1100,-2,1,1)

 label3 = Gtk.Label('Giroscópio \n\n X: ' + str((self.gyro_xout / 131)) + ' \n Y: ' +
str((self.gyro_yout / 131)) + ' \n Z: ' + str((self.gyro_zout / 131)))
 grid.attach(label3,1100,0,1,1)

 label4 = Gtk.Label('\n Acelerômetro \n\n X: ' + str(self.accel_xout_scaled) + ' \n Y: ' +
str(self.accel_yout_scaled) + ' \n Z: ' + str(self.accel_zout_scaled))
 grid.attach(label4,1100,10,1,1)

 def on_click_me_clicked_lf(self, button,atual, a):
 global viraEsquerda

84

 viraEsquerda = 1
 print(atual + a)
 a = atual + a
 return atual + a

 def on_click_me_clicked_fw(self, button):
 print("foward")

 def on_click_me_clicked_rg(self, button):
 global viraDireita
 viraDireita = 1
 print("right")
 a = a + 1

 def on_click_me_clicked_stop(self, button):
 print("stop")
 ##manda0(11)
 manda0(12)
 manda0(13)
 manda0(15)
 manda0(16)

 def on_switch_activated(self, switch, gparam):
 if switch.get_active():
 state = "on"
 manda1(15)
 manda1(16)
 else:
 state = "off"
 manda0(15)
 manda0(16)
 print("Switch was turned", state)

 def on_switch2_activated(self, switch, gparam):
 if switch2.get_active():
 state = "on"
 manda1(15)
 manda1(16)
 print("Lanternas Ligadas", state)
 else:
 state = "off"
 manda0(15)
 manda0(16)
 print("Lanternas Desligadas", state)

 def on_click_me_clicked_go(self, button):
 print("Go: Controle automático vertical ativado")
 #FAZER CONTROLE VERTICAL

 def on_click_me_clicked_ad(self, button):
 print("Dados Atualizados")

85

 #DADOS DO SENSOR

 self.gyro_xout = read_word_2c(0x43)
 self.gyro_yout = read_word_2c(0x45)
 self.gyro_zout = read_word_2c(0x47)

 self.accel_xout = read_word_2c(0x3b)
 self.accel_yout = read_word_2c(0x3d)
 self.accel_zout = read_word_2c(0x3f)

 self.accel_xout_scaled = self.accel_xout / 16384.0
 self.accel_yout_scaled = self.accel_yout / 16384.0
 self.accel_zout_scaled = self.accel_zout / 16384.0

 sensor = BMP085.BMP085()

 bus.write_byte_data(address, power_mgmt_1, 0)
 print "Giroscopio"
 print "---------"

 gyro_xout = read_word_2c(0x43)
 gyro_yout = read_word_2c(0x45)
 gyro_zout = read_word_2c(0x47)

 print "gyro_xout: ", gyro_xout, " scaled: ", (gyro_xout / 131)
 print "gyro_yout: ", gyro_yout, " scaled: ", (gyro_yout / 131)
 print "gyro_zout: ", gyro_zout, " scaled: ", (gyro_zout / 131)

 print
 print "Acelerometro"
 print "------------------"

 accel_xout = read_word_2c(0x3b)
 accel_yout = read_word_2c(0x3d)
 accel_zout = read_word_2c(0x3f)

 accel_xout_scaled = accel_xout / 16384.0
 accel_yout_scaled = accel_yout / 16384.0
 accel_zout_scaled = accel_zout / 16384.0

 print "accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled
 print "accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled
 print "accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled

 print
 print "Barometro"
 print "------------------"
 sensor = BMP085.BMP085()
 print 'Temp = {0:0.2f} *C'.format(sensor.read_temperature())
 print 'Pressure = {0:0.2f} Pa'.format(sensor.read_pressure())
 print 'Altitude = {0:0.2f} m'.format(sensor.read_altitude())
 print 'Sealevel Pressure = {0:0.2f} Pa'.format(sensor.read_sealevel_pressure())

86

win = joystick()
win.connect("delete-event", Gtk.main_quit)
win.show_all()
Gtk.main()

13.4 CÓDIGO FILTRO DE KALMAN E CONTROLE

-*- coding: utf-8 -*-
import smbus
import math
import Adafruit_BMP.BMP085 as BMP085
OBS.: Utilizando essa biblioteca estamos admitindo que a frequencia da PWM é
de 50 Hz
OBS.: Convencionamos que o Joystick representa a referência do nosso
sistema de controle.
Está controlando apenas a parte horizontal do sistema
import RPIO
from RPIO import PWM
import numpy as np
from numpy.lialg import inv

from gi.repository import Gtk
import RPi.GPIO as GPIO
from motor2 import motor2
from joystick import joystick

GPIO.setmode(GPIO.BOARD)

Registradores de gerenciamento de energia

power_mgmt_1 = 0x6b
power_mgmt_2 = 0x6c

def read_byte(adr):

 return bus.read_byte_data(address, adr)

def read_word(adr):

 high = bus.read_byte_data(address, adr)

 low = bus.read_byte_data(address, adr+1)
 val = (high << 8) + low
 return val
def read_word_2c(adr):
 val = read_word(adr)
 if (val >= 0x8000):
 return -((65535 - val) + 1)
 else:
 return val

87

def dist(a,b):
 return math.sqrt((a*a)+(b*b))

def get_y_rotation(x,y,z):
 radians = math.atan2(x, dist(y,z))
 return -math.degrees(radians)

def get_x_rotation(x,y,z):
 radians = math.atan2(y, dist(x,z))
 return math.degrees(radians)

######### JOYSTICK
#Rotina para jogar 1 para saida
def manda1(pino):
 GPIO.output(pino, GPIO.HIGH)
 return

#Rotina para jogar 0 para saida
def manda0(pino):
 GPIO.output(pino, GPIO.LOW)
 return

def guinada(atual, index):
 futuro = atual + index
 return futuro

def controleAvanco(chanel1, chanel2, avancoJoystick, avancoSensorKalman):

 global vx
 erro_1 = 0
 erro_2 = 0
 controle_1 = 0
 controle_2 = 0
 controle_3 = 0
 controle = 0
 i = 0

 #erro = avancoJoystick - y #y é a saida
 erro = avancoJoystick - avancoSensorKalman

 controle = (-0.001249*erro_2 – 0.000169*erro_1 + 0.001077*erro + controle_3 –
2.861*controle_2 + 2.722*controle_1) / 0.8611

 if controle > 0:
 i = 106*controle + 43
 if i > 255:
 i = 255
 else:
 i=0

 i = i/255
 i = i*100

88

 motor2.setW(i, i)

 if erro < 2:
 mymotor.stop()

############# Fim controleAvanco

############ Controle de guinada

#def controleGuinada(chanel, guinadaJoystick):
def controleGuinada(chanel1, chanel2, guinadaJoystick, guinadaSensorKalman):

 global vy
 erro_1 = 0
 controle_1 = 0
 controle_2 = 0
 patm = 92853
 controle = 0
 i = 0

 #erro = guinadaJoystick - y #y é a saida
 erro = guinadaJoystick - guinadaSensorKalman

 controle = (– 0.04651*erro_1 + 0.04637*erro + controle_2 – 1.861*controle_1) / 0.8611

 if controle > 0:
 i = 106*controle + 43
 if i > 255
 i = 255
 end
 i = i/255
 i = i*100
 #iniciaPWM(chanel, i)
 if viraDireita:
 motor2.setW(i, 0)
 if viraEsquerda:
 motor2.setW(0, i)
 else:
 i=0
 if viraDireita:
 motor2.setW(i, 0)
 if viraEsquerda:
 motor2.setW(0, i)
 end

 #Analisar qual valor de 'erro' é plausível
 if erro < 2:
 mymotor.stop()

#Fim controleGuinada##

#####KALMAN

89

Função Filtro de Kalman

def filtroKalman(avanco, entrada):

 ##Informações sobre o modelo do sistema
 #Amortecimento Linear - D
 Xu = -0.346;
 Yv = -0.547;
 Zw = -0.845;
 Kp = -0.3;
 Mq = -0.3;
 Nr = -0.3;
 #Massa adicional - Ma
 Xu_p = -1.379;
 Yv_p = -3.791;
 Zw_p = -4.6;
 Kp_p = -0.022759;
 Mq_p = -0.025677;
 Nr_p = -0.026896;
 #Amortecimento Quadrático - Dq
 Xuu = 0;
 Yvv = 0;
 Zww = 0;
 Kpp = 0;
 Mqq = 0;
 Nrr = 0;
 #Inércia
 Ixx = 0.059301;
 Iyy = 0.040323;
 Izz = 0.075462;
 Ixy = 0;
 Ixz = 0;
 Iyz = 0;
 #Massa
 m = 4.36;
 #Matrizes de Massa e Amortecimento
 M = np.array([[m-Xu_p, 0, 0, 0, 0, 0],[0, m-Yv_p, 0, 0, 0, 0],[0, 0, m-Zw_p, 0, 0, 0],[0, 0, 0, Ixx-
Kp_p, 0, 0],[0, 0, 0, 0, Iyy-Mq_p, 0],[0, 0, 0, 0, 0, Izz-Nr_p]])
 M = np.diag(M)
 D = np.array([[Xu, 0, 0, 0, 0, 0],[0, Yv, 0, 0, 0, 0],[0, 0, Zw, 0, 0, 0],[0, 0, 0, Kp, 0, 0],[0, 0, 0, 0,
Mq, 0],[0, 0, 0, 0, 0, Nr]])
 D = np.diag(D)

 #Horizontal
 #Distância dos motores em relação a y
 D1 = 0.2;
 D2 = -0.2;
 ## Modelo Físico do Submarino
 A = np.array([[Xu/(m-Xu_p), 0],[0, Nr/(Izz-Nr_p)]])

 if avanco:

90

 B = np.array([[1/(m-Xu_p)],[-D1/(Izz-Nr_p)]])
 else:
 B = np.array([[1/(m-Xu_p)],[-D2/(Izz-Nr_p)]])

 C = np.array([1,0])

 ## define main variables
 ## Onde aparecer Quail entenda-se Submarino e pra Ninja entenda-se Sensor
 ## Acertar dados de ruído a partir de tentativa e erro com observação do comportamento
prático
 u = entrada; # define acceleration magnitude
 Q = np.array([[0],[0]]) #estado inicial do submarino
 Q_estimate = Q; #x_estimate of initial location estimation of where the Quail is (what we are
updating)
 QuailAccel_noise_mag = 0.05; #Confiabilidade de quão bons são os motores
 NinjaVision_noise_mag = 0.1; #pelo o que entendi do código original significa para o
submarino quão boas são as medidas dos sensores
 Ez = NinjaVision_noise_mag^2;# Ez convert the measurement noise (stdv) into covariance
matrix
 Btransposta = B.transpose()
 Ex = QuailAccel_noise_mag^2 * (B*Btransposta); #verificar funcionamento dessa inversa...
 P = Ex; # estimate of initial Quail position variance (covariance matrix)

 # Dado que na realidade não conhecemos, vem junto ao sistema
 #QuailAccel_noise = QuailAccel_noise_mag * parteRandomica;
 #Q= A * Q+ B * u + QuailAccel_noise;
 Q= A * Q+ B * u;
 # Outro dado que na realidade não conhecemos, vem junto à medida
 #NinjaVision_noise = NinjaVision_noise_mag * random();
 #y = C * Q+ NinjaVision_noise;
 y = C * Q;
 Q_loc = np.array([[Q_loc],[Q(1)]]);
 Q_loc_meas = np.array([[Q_loc_meas],[y]]);
 vel = np.array([[vel],[Q(2)]]);

 ## Do kalman filtering

 Q= np.array([[0],[0]]); # re-initized state

 # Predict next state of the quail with the last state and predicted motion.
 Q_estimate = A * Q_estimate + B * u;
 Atransposta = A.transpose();
 P = A * P * Atransposta + Ex;
 Ctransposto = C.transpose()
 inversa = inv(C*P*Ctransposto + Ez)
 K = P*Ctransposto*inversa;
 Q_estimate = Q_estimate + K * (Q_loc_meas(t) - C * Q_estimate);
 Q_loc_estimate = np.array([[Q_loc_estimate],[Q_estimate(1)]]);
 return Q_loc_estimate

91

############# MAIN

 # Global variables
vx = 0
vy = 0
viraDireta = 0
viraEsquerda = 0
chanel1 = 17
chanel2 = 27
chanel3 = 22
chanel4 = 23

######### JOYSTICK
#Define as saidas da RbP
#GPIO.setup(11, GPIO.OUT) #Motor pra frente
GPIO.setup(chanel1, GPIO.OUT) #Motor da esquerda
GPIO.setup(chanel2, GPIO.OUT) #Motor da direita
GPIO.setup(chanel3, GPIO.OUT) #Lanterna1
GPIO.setup(chanel4, GPIO.OUT) #Lanterna2

##GPIO.output(11, 0)
GPIO.output(chanel1, 0)
GPIO.output(chanel2, 0)
GPIO.output(chanel3, 0)
GPIO.output(chanel4, 0)

Inicializações dos conjuntos ESC+motores
mymotor = motor('motores', chanel1, chanel2, simulation=False)

print('***Desligue a energia da ESC')
print('***depois pressione ENTER')
res = raw_input()
mymotor.start()
mymotor.setW(100, 100)

#NOTA: a velocidade angular do motor varia de 0(min) a 100(máx)
#a transformação para PWM é feita na classe "motor"
print('***Ligue a energia da ESC')
print('***Espere o beep-beep')

print('***entao pressione ENTER')
res = raw_input()
mymotor.setW(0, 0)
print('***(Futuro)Espere N beep para as celulas de bateria')
print('***Espere o beeeeeep indicando pronto')
print('***entao pressione ENTER')
res = raw_input()

while 1:

 #Inicia Variáveis de controle

92

 viraDireta = 0
 viraEsquerda = 0

 #Inicia Joystick

 win = joystick()
 win.connect("delete-event", Gtk.main_quit)
 win.show_all()
 Gtk.main()

 ####SENSOR

 # or bus = smbus.SMBus(0) para placas Revision 1
 #bus = smbus.SMBus(1)

 #address = 0x68 # Endereco lido para os Acelerometro e Giroscopio pelo i2cdetect

 #bus.write_byte_data(address, power_mgmt_1, 0)

 #gyro_xout = read_word_2c(0x43)
 #gyro_yout = read_word_2c(0x45)
 #gyro_zout = read_word_2c(0x47)

 #accel_xout = read_word_2c(0x3b)
 #accel_yout = read_word_2c(0x3d)
 #accel_zout = read_word_2c(0x3f)

 accel_xout_scaled = accel_xout / 16384.0
 accel_yout_scaled = accel_yout / 16384.0
 #accel_zout_scaled = accel_zout / 16384.0

 #sensor = BMP085.BMP085()

 leituraAvanco = accel_xout_scaled
 leituraGuinada = accel_yout_scaled

 # Transformação das leituras

 leituraAvanco = vx + 1.42857e-6*leituraAvanco
 leituraGuinada = vy + 1.42857e-6*leituraGuinada

 vx = leituraAvanco
 vy = leituraGuinada

 # Passa os dados dos sensores pelo Filtro de Kalman

 avancoSensorKalman = filtroKalman(1, vx)
 guinadaSensorKalman = filtroKalman(0, vy)

 #Controle das saídas

93

 avancoJoystick = 0
 if viraDireita && viraEsquerda:
 avancoJoystick = 0.5

 if viraEsquerda:
 guinadaJoystick = 0.5
 else:
 guinadaJoystick = 0

 controleavanco(chanel1, chanel2, avancoJoystick, avancoSensorKalman)
 controleGuinada(chanel1, chanel2, guinadaJoystick, guinadaSensorKalman)

14 ANEXOS

A seguir estão todos os anexos referentes a este trabalho, e são de suma

importância para os interessados a se aprofundar nas programações feitas,

principalmente. Apenas os arquivos para testes foram colocados, pois as bibliotecas

completas são extensas demais e podem ser facilmente encontradas na internet.

14.1 TESTE DOS DO SENSOR GY-80

-*- coding: utf-8 -*-
import smbus
import math
import Adafruit_BMP.BMP085 as BMP085

Registradores de gerenciamento de energia

power_mgmt_1 = 0x6b

power_mgmt_2 = 0x6c

def read_byte(adr):

 return bus.read_byte_data(address, adr)

def read_word(adr):

 high = bus.read_byte_data(address, adr)

 low = bus.read_byte_data(address, adr+1)

 val = (high << 8) + low

 return val

94

def read_word_2c(adr):

 val = read_word(adr)

 if (val >= 0x8000):

 return -((65535 - val) + 1)

 else:

 return val

def dist(a,b):

 return math.sqrt((a*a)+(b*b))

def get_y_rotation(x,y,z):

 radians = math.atan2(x, dist(y,z))

 return -math.degrees(radians)

def get_x_rotation(x,y,z):

 radians = math.atan2(y, dist(x,z))

 return math.degrees(radians)

or bus = smbus.SMBus(0) para placas Revision 1
bus = smbus.SMBus(1)

address = 0x68 # Endereco lido para os Acelerometro e Giroscopio pelo

i2cdetect

class Sensor():

 while not(raw_input()) :

 bus.write_byte_data(address, power_mgmt_1, 0)
 print "Giroscopio"
 print "---------"

95

 gyro_xout = read_word_2c(0x43)
 gyro_yout = read_word_2c(0x45)
 gyro_zout = read_word_2c(0x47)

 print "gyro_xout: ", gyro_xout, " scaled: ", (gyro_xout / 131)
 print "gyro_yout: ", gyro_yout, " scaled: ", (gyro_yout / 131)
 print "gyro_zout: ", gyro_zout, " scaled: ", (gyro_zout / 131)

 print
 print "Acelerometro"
 print "------------------"

 accel_xout = read_word_2c(0x3b)
 accel_yout = read_word_2c(0x3d)
 accel_zout = read_word_2c(0x3f)

 accel_xout_scaled = accel_xout / 16384.0
 accel_yout_scaled = accel_yout / 16384.0
 accel_zout_scaled = accel_zout / 16384.0

 print "accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled
 print "accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled
 print "accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled

 print
 print "Barometro"
 print "------------------"
 sensor = BMP085.BMP085()
 print 'Temp = {0:0.2f} *C'.format(sensor.read_temperature())
 print 'Pressure = {0:0.2f} Pa'.format(sensor.read_pressure())
 print 'Altitude = {0:0.2f} m'.format(sensor.read_altitude())
 print 'Sealevel Pressure = {0:0.2f}

Pa'.format(sensor.read_sealevel_pressure())

14.2 TESTE DO MOTOR

O programa que descreve a classe motor é o disposto a seguir.

class motor2(object):
 """Manages the currect Angular rotation
 Implements the IO interface using the RPIO lib
 __init_(self, name, pin, kv=1000, RPMMin=1, RPMMax=100, debug=True,
simulation=True):
 More info on RPIO in http://pythonhosted.org/RPIO/index.html"""

96

 def __init__(self, name, pin1, pin2, kv=1000, WMin=0, WMax=100,
debug=True, simulation=True):
 self.name = name
 self.powered = False
 self.simulation = simulation
 self.__pin1 = pin1
 self.__pin2 = pin2
 self.__kv = kv
 self.setWLimits(WMin, WMax)
 self.setDebug(debug)

 self.__W1 = self.__WMin
 self.__W2 = self.__WMin
 self.__Wh = 10

 try:
 from RPIO import PWM
 self.__IO = PWM.Servo()
 except ImportError:
 self.simulation = True

 def setDebug(self, debug):
 self.__debug = debug

 def getDebug(self):
 return self.__debug

 def setPin(self, pin1, pin2):
 "set the pin for each motor"
 self.__pin1 = pin1
 self.__pin2 = pin2

 def setKv(self, kv):
 "set the kv for each motor"
 self.__kv = kv

 def setWLimits(self, WMin, WMax):
 "set the pin for each motor"
 if WMin < 0:
 WMin = 0
 self.__WMin = WMin
 if WMax > 100:
 WMax = 100
 self.__WMax = WMax

 def saveWh(self):
 "Save Wh = current W%"
 self.__Wh = self.__W1

 def setWh(self):

97

 "Sets current W% =Wh"
 self.__W1 = self.__Wh
 self.__W2 = self.__Wh
 self.setW(self.__W1, self.__W2)

 def getWh(self):
 "returns current W% =Wh"
 return self.__Wh

 def start(self):
 "Run the procedure to init the PWM"
 if not self.simulation:
 try:
 from RPIO import PWM
 self.__IO = PWM.Servo()
 self.powered = True
 #TODO Decidir como gerenciar WMax < 100
 #para manter o throttle no intervalo 0-100
 except ImportError:
 self.simulation = True
 self.powered = False

 def stop(self):
 "Stop PWM signal"

 self.setW(0, 0)
 if self.powered:
 self.__IO.stop_servo(self.__pin1)
 self.__IO.stop_servo(self.__pin2)
 self.powered = False

 def increaseW(self, step=1):
 "increases W% for the motor"

 self.__W1 = self.__W1 + step
 self.__W2 = self.__W2 + step
 self.setW(self.__W1, self.__W2)

 def decreaseW(self, step=1):
 "decreases W% for the motor"

 self.__W1 = self.__W1 - step
 self.__W2 = self.__W2 - step
 self.setW(self.__W1, self.__W2)

 def getW1(self):
 "retuns current W1%"
 return self.__W1

 def getW2(self):

98

 "retuns current W2%"
 return self.__W2

 def setW(self, W1, W2):
 "Checks W% is between limits than sets it"

 PW1 = 0
 PW2 = 0
 self.__W1 = W1
 self.__W2 = W2
 if self.__W1 < self.__WMin:
 self.__W1 = self.__WMin
 if self.__W1 > self.__WMax:
 self.__W1 = self.__WMax
 if self.__W2 < self.__WMin:
 self.__W2 = self.__WMin
 if self.__W2 > self.__WMax:
 self.__W2 = self.__WMax

 PW1 = (1000 + (self.__W1) * 10)
 PW2 = (1000 + (self.__W2) * 10)
 # Set servo to xxx us
 if self.powered:
 self.__IO.set_servo(self.__pin1, PW1)
 self.__IO.set_servo(self.__pin2, PW2)

A seguir temos o código de execução do teste do motor.

#solenero.tech@gmail.com
#solenerotech.wordpress.com

#solenerotech 2013.09.06

from motor2 import motor2

mymotor = motor2('motores', 17, 27, simulation=False)
#where 17 is GPIO17 = pin 11
#where 27 is GPIO27 = pin 13

print('***Disconnect ESC power')
print('***then press ENTER')
res = raw_input()
mymotor.start()
mymotor.setW(100, 100)

#NOTE:the angular motor speed W can vary from 0 (min) to 100 (max)
#the scaling to pwm is done inside motor class
print('***Connect ESC Power')
print('***Wait beep-beep')

99

print('***then press ENTER')
res = raw_input()
mymotor.setW(0, 0)
print('***Wait N beep for battery cell')
print('***Wait beeeeeep for ready')
print('***then press ENTER')
res = raw_input()
print ('increase > a | decrease > z | save Wh > n | set Wh > h|quit > 9')

cycling = True
try:
 while cycling:
 res = raw_input()
 if res == 'a':
 mymotor.increaseW()
 if res == 'z':
 mymotor.decreaseW()
 if res == 'n':
 mymotor.saveWh()
 if res == 'h':
 mymotor.setWh()
 if res == '9':
 cycling = False
finally:
 # shut down cleanly
 mymotor.stop()
 print ("well done!")

