
Andr6 Yamasaki Martins Vieira

Daniel Abreu Vasconcelos de Paula

Priscilla Barreira Avegliano

Rog6rio Kakehashi

SARC – SISTEMA DE AUTOMAe'AO DOS
RESTAURANTES COSEAS/USP

Monografia apresentada a Escola

Polit&cnica da Universidade de sao Paulo,

como requisito parcial para a graduagao no

curso de Engenharia de Computagao.

sao Paulo

2005

Andr6 Yamasaki Martins Vieira

Daniel Abreu Vasconcelos de Paula

Priscilla Barreira Avegliano

Rog6rio Kakehashi

SARC – SISTEMA DE AUTOMA(,'Ao DOS
RESTAURANTES COSEAS/USP

Monografia apresentada a Escola

Polit6cnica da Universidade de sao Paulo,

como requisito parcial para a graduagao no

curso de Engenharia de Computagao.

Orientadora:

Profa. Dra. Selma Shin Shimizu Melnikoff

sao Paulo

2005

“Nosso cuidado nao deve ser o de vh7er muito, e sim o de viver bem,

porque o primeiro depende do destino, e o segbmdo de

nossa conduta” . S2neca (4 a.C. – 65 d.C.)

“Hd pessoas que desejam saber s6 por saber, e isso d curiosidade; outras, para

atcangarem Jama, e isso d vaidade; outras, para enriquecerem com a sua ci8ncia, e

isso 6 um neg6cio torpe; outras, para serem ediftcadas, e isso d prudencia;

outras, para ediftcarem os outros, e isso & caridade”

sao Tomas de Aquino

AGRADECMENTOS

Dedicamos os nossos mais sinceros agradecimentos a Profa. Dra. Selma Shin

Shimizu Melnikoff pela amizade, comprometimento, conhecimento compartilhado e

por sua odentagao precisa e objetiva em diversos momentos de davidas; aos demais

professores da Escola Polit6cnica da Universidade de sao Paulo, por dividirem parte

valiosa de seus conhecimentos, os quais foram fundamentais em cada parte desta

caminhada; aos nossos pais, por estarem sempre presentes; e a todos os nossos

colegas, os quais tivemos o prazer de vivenciar estes cinco anos de nossas vidas e

que se mostraram verdadeiros amigos na busca pelo mesmo objetivo. A todos voc6s,

nosso muito obrigado.

RESUMO

O objetivo deste trabalho 6 desenvolver um sistema computacional que auxilie o

gerenciamento dos diversos departamentos respons£veis pelo funcionamento dos

restaurantes COSEAS/USP, controlando quest6es nutricionais, estoque dos produtos

utilizados no preparo das refeig6es, transag6es financeiras e o acesso dos clientes aos

restaurantes por meio de catracas eletr6nicas e Smart Cards. Surgiu da necessidade

da modernizagao do sistema utilizado atualmente, de capacidade limitada de

armazenamento, com poucas funcionalidades e de interface pouco amigavel.

Palavras-chave: J2EE, Design Patterns , MVC, Smart Card, Servidores de

Aplicagao, Frameworks de desenvolvimento.

ABSTRACT

The objective of this project is to develop a computational system to aid the
management of the several departments responsible for the COSEAS/USP

restaurants operation, controlling nutritional points, stock levels, financial

transactions and access to the restaurants using Smart Cards through electronic

ratchets. It has emerged from the modernization needed from current system, which

has a limited storage capability, few functionalities and a non-friendly interface.

Keywords: J2EE, Design Patterns, MVC, Smart Card, Application Servers,

Development Frameworks.

I

SUMARIO

LISTA DE FIGURAS

LISTA DE TABELAS

LISTA DE ABREVLATURAS E SIGLAS

LISTA DE SbvIBOLOS

1 UqTRODU(,'Ao ...

2 MODELAGEM DOS PROCESSOS DE NEG6CIO..

,. 1

,. 3

Introdugao .. 3

BPMN – Business Process Modeling Notation ... 3

2.3 Modelagem – principios e notag6es b£sicas .. 4

3 ARQUrrETURAS DE HARDWARE ESOFFWARE 12

3.1 Arquitetura de hardware do sistema... 12

3.2 Arquitetura de software do sistema.. 13

3.2.1

2.1

2.2

Design Pattern MVC... 13

Arquitetura Model 1 e Model 2 .. 15

Conclus6es .. 17

3.2.2

3.2.3

4 TECNOLOGLAS ENVOLVDAS 18

4.1 Smart Cards.. 18

4.1.1 Introdugao ... 18

4.1.2 Tipos de Smart Cards.. 19

4.1.2.1 Memory Cards ... 19

4. 1.2.2 Microprocessor Cards,

Contactless Cards ..

19

4.1.2.3 20

4.1.3 Elementos de Smart Cards .., 20

4.1.3.1 A Unidade de Processamento Central ., 20

4.1.3.2 O Sistema de Mem6ria em Smart Cards .., 21

4.1.3.3 Input/Output em Smart Cards.. 21

I)ispositivos de interface ... 22

O Sistema Operacional.. 22

Estrutura de diret6rios no Smart Card ... 23

Application Protocol Data Units (APDU’s) 24

Comunicagao ... 25

4.1.3.4

4.1.3.5

4.1.3.6

4.1.3.7

4.1.3.8

4.1.3.8.1 Software de Smart Cards .. 25

Seguranga em Smart Cards ... 26

4.1 .3.8.3 Equipamentos e ferramentas utilizadas................................. 27

Plataforma J2EE e frameworks .. 27

J2EE - Java 2 Plataform, Entreprise Edition... 28

4.1.3.8.2

4.2

4.2.1

4.2.1.1 Java Servlet, 30

4.2.1.2 Java Server Pages (JSP) .. 31

4.2.2 JavaBeans.. 31
4.2.3 Struts ... 32

4.2.3.1 Model, 32

4.2.3.2 View .. 33

4.2.3.3 Controller 35

4.2.4 SWIG, 39

4.2.5 Hibernate... 39

4.3 Ambiente de execugao ... 41

I

i

1
4.3.1 JBoss ,........... 41

4.3.2 Tomcat..42

4.3.3 MySQL ...42

4.3.4 Vers6es dos aplicativos...43

4.4 Conclus6es ... 43

DESCRI('Ao DA ORGANIZA('Ao DO SARC... 44
5.1 1)iret6rio src ... 44

5

5.2 Diret6rio web

CONSEDERA('6ES FHVAIS ...
Resultados obtidos . ,

47

6 49

6.1 49

6.2 Dificuldades enfrentadas e solug6es 49

6.3 Contribuig6es ... 51

Vers6es futuras... 516.4

6.5 Viabilidade e implantagao.. 52

ANEXO A – DLAGRAMAS BPMN .. 537

7.1

7.2

Compra de insumos.. 53

Recebimento de insumos.. 53

7.3 (;eragao de card£pio... 54

7.4 Controlefinanceiro...,... 54

8 ANEXO B– MODELO DE CASOS DE USO .. 55

9 ANEXO C–DLAGRAMA DE CLASSES ... 80

10 REFER£NCLAS BIBLIOGRAFICAS

LISTA DE FIGURAS

Figura I - Exemplo de um BPD para um sistema de leilao on-line 8

Figura 2 - Pools e Lanes... 8

Figura 3 - Diagrama de Processos em BPMN ... 9

Figura 4- Arquitetura final de hardware do sistema... 12

Figura 5 - Modelo MVC .. 14

Figura 6 - Arquitetura Model 1 .. 16

Figura 7 - Arquitetura Model 2 .. 16

Figura 8 - Layout de um chip de circuito integrado em um Smart Card 20

LISTA DE TABELAS

Tabela I - Tipos b£sicos de eventos e suas notag6es ... 10

Tabela 2 - Tipos particulares de eventos e suas notag6es .. 11

Tabela 3 - API)U de comando ... 24

Tabela 4 - API)U de resposta...

I
I
I
I

I

I

I

LISTA DE ABREVIATURAS E SIGLAS

APDU – Application Processing Data Unit

API – Application Programming Interface

B2B – BusIness fo Business

BPD – Business Process Diagram

BPEL4WS – Business Process ExecutIon Language for Web Services

BPM – Business Process Management

BPMI – Business Process Management Initiative

BPMN – Business Process Modeling Notation

CPU – Unidade Central de Processamento

CVS – Concurrent Versions System

EEPROM – Electrically Erasable Programmable Read-Only Memory

EJB – Enterprise JavaBeans

GPL – General Public License

HTtP – Hyper Text Transfer Protocol

ISO – International Organization for Standardization

J2EE – Java 2 Ptataform, Entreprise Edition

J2SE – Java 2 Plataform, Standard Edition

JDBC – Java Database Connectivity

JMS – Java Message Service

JSP – Java Server Pages

MIP – Milhao de Instrug6es por Segundo

MVC – Model View Controller

ODBC – Open DataBase Connectivity

POJO – Plain Old Java Object

RAM – Random Access Memory

ROM – Read OnIY Memor)

SARC – Sistema de Automagao dos Restaurantes COSEAS/USP

SQL – Structured Query Language

UML – Unified Modeling Language

URL – Uniform Resource Locator

USP – Universidade de sao Paulo

XML – ExtensibLe Markup Innguage

I
I
:

I

i

t
I

i
I

1 INTRODue'Ao

O objetivo deste trabalho 6 projetar um sistema capaz de modernizar os

processos envolvidos nos restaurantes COSEAS/USP e desenvolver um prot6tipo

que mostra a viabilidade da sua implement Hao. o sistema fornece apoio para a

venda de tickets refeigao e o monitoramento da entrada de clientes nos restaurantes

a16m de automatizar alguns dos principais processos de seu gerenciamento

controlando o estoque de insumos, movimentag6es financeiras e informag6es

nutricionais referentes as refeig6es servidas diariamente nos restaurantes localizados

em diversas unidades da Universidade de sao Paulo.

As principais funcionalidades do sistema englobam:

• A venda de tickets refeigao pela internet;

• O uso de Smart Cards visando uma maior praticidade em operag6es de

cr6dito e d6bito;

• O aprimoramento do controle de acesso aos restaurantes providos de

catracas eletr6nicas;

• A elaboragao de relat6rios gerenciais;

• Omonitoramento da quantidade e da validade de produtos armazenados nos

estoques, verificando a necessidade de novas compras de acordo com o

nfvel atual, e a quantidade demandada em um certo periodo;

• A produgao automatica do cardgpio semanal, procurando atender todos os

requisitos de custo, valor ca16dco e diversificagao de itens.

Para alcangar o objetivo proposto, necessitou-se primeiramente compreender a

relagao entre os processos de todos os m6dulos responsaveis pelo correto

funcionamento dos restaurantes, desde procedimentos bgsicos de compra de insumos

at6 a entrega do produto final ao consumidor e a venda de tickets refeigao aos

clientes. Em uma primeira etapa, foram realizadas diversas reuni6es com os gerentes

destes m6dulos a fim de coletar todas as informag6es necess£rias para compreender

os requisitos funcionais que o sistema deveria apresentar no final do projeto. A cada

encontro foi gerado um documento de especificagao relativo ao m6dulo em questao,

que serviu de base para a definigao dos casos de uso envolvidos.

2

Todo este trabalho surgiu da necessidade da reforma do sistema utilizado

atualmente, de capacidade bastante limitada de armazenamento, com funcionalidades

restritas e de baixa influ6ncia no escopo do processo geral, a16m de possuir uma

interface homem-mgquina pouco amig£vel e intuitiva. Pretendeu-se tamb6m eliminar

a possibilidade de falsificagao dos tickets refeig6es, a16m do gasto com papel e tinta

de impressao. Ha um controle manual de gastos, que favorece a ocorr6ncia de erros e

a perda desnecessaria de tempo com os c£lculos envolvidos. A16m do que foi

mencionado, aliamos a este cenario o nosso desejo de cHar um projeto em beneffcio

a universidade, que tanto contdbuiu para a nossa formagao pessoal e profissional.

O Capftulo 2 trata da modelagem dos processos envolvidos em BPMN

(Business Process Modeling Notation) , um padrao de notagao desenvolvido pela

BPMI (Business Process Management Initiative) para representar processos de

neg6cio por meio de diagramas. Esta notagao foi utilizada para descrever os

principais processos levantados junto ao cliente. O Capftulo 3 descreve a arquitetura

do sistema, bem como o hardware e o software utilizados no prot6tipo para testes do

mesmo. O Capftulo 4 cita o ambiente de desenvolvimento e o dominio da solugao.

Os resultados dos testes e as dificuldades encontradas sao mostrados no Capitulo 5.

No Capitulo 6 6 apresentada a conclusao do trabalho e, em seguida, encontram-se os

anexos e as refer6ncias bibliograficas que serviram como base para a realizagao deste

projeto.

3

2 MODELAGEM DOS PROCESSOS DE NEG6CIO

2.1 Introdugao

Na fase inicial do projeto procurou-se compreender os pdncipais processos de

neg6cio nos diferentes m6dulos que formam a administragao dos restaurantes

COSEAS/USP. A modelagem destes processos foi elaborada seguindo a

especificagao BPMN (Business Process Modeling Notation) , desenvolvida pela

BPMI (Business Process Management Initiative) . A seguir, sao descritos brevemente

os seus principais conceitos e objetivos.

2.2 BPMN – Business Process Modeling Notation

I

Desenvolvido pelo BPMI (Business Process Management Initiative), uma

organizagao independente e sem fins lucrativos que desenvolve especificag6es

abertas para o gerenciamento de processos de neg6cio, o BPMN 6 um padrao de

notagao gr£fica que se ap6ia em diagramas para descrever processos de neg6cio [1] .

Esta notagao foi projetada para representar a seqa&ncia de processos e mensagens

que fluem em um conjunto relacionado de atividades. Um dos seus principais

objetivos & ser facilmente interpretado por todas as pessoas envolvidas nos processos

de neg6cios, desde analistas que cHam os primeiros esbogos dos processos, at6

desenvolvedores que implementam a tecnologia necessaria, a16m dos participantes

que irao monitorar e gerenciar tais processos.

A meta 6 padronizar a modelagem de processos de neg6cio e alcangar o

entendimento por parte de todas as pessoas envolvidas no projeto,

independentemente de sua posigao, atrav6s de uma linguagem simples e intuitiva. O

beneffcio para os seus usuarios acontece de forma similar ao provocado pela UML

(UnifIed Modeling Language) quando esta padronizou a representagao de software

orientado a objetos.

Um segundo objetivo do BPMN, embora nao aplicado diretamente neste

projeto, 6 assegurar que linguagens projetadas para a execugao dos processos de

neg6cio como a XML (Extensible Markup Language) e a BPEUtWS (Business

4

Process Execution Language for Web Services) possam ser representadas com esta

notagao. Estas linguagens estao sendo utilizadas em larga escala nos sistemas de

BPM (Business Process Management) que operam com web services. Elas sao

otimizadas para a operagao e interoperagao entre sisternas de BPM, mas sao menos

adequadas (legfveis) para o uso direto daqueles que projetam, gerenciam e

monitoram os processos envolvidos. Apesar de os sistemas de software conseguirem

tratar, com estas linguagens, processos relativamente complexos, desarticulados e

organizados de uma forma nao intuitiva, o entendimento humano 6 prejudicado, uma

vez que usualmente 6 mais confortavel visualizar processos de neg6cio em um

formato grgfico. Este contexto cHou a necessidade de um mecanismo formal que

pudesse mapear a visualizagao apropriada dos processos de neg6cio (a notagao) em

um respectivo formato apropriado da linguagem de execugao de sistemas BPM

(BPEL4WS). A interoperagao entre os processos de neg6cio pode ser expressa com a

padronizagao do BPMN, que prov6 um BPD (Business Process Diagram) para o uso

de pessoas que projetam e gerenciam os processos de neg6cio. Futuramente, a

capacidade desta notagao sera expandida com a incorporagao da representagao de

conceitos como processos do tipo public e private , tratamento de exceg6es,

transactIons , entre outros.

2.3 Modelagem – principios e notag6es bgsicas

Conforme mencionado na segao anterior, o padrao BPMN especifica a

elaboragao de um diagrama chamado BPD (Business Process Diagram) para

representar os processos de neg6cio de interesse. Este diagrama foi projetado para

realizar eficientemente duas tarefas: em primeiro lugar, deve ser de f£cil utilizagao e

entendimento por parte de todos os seus usu£dos, incluindo pessoas de areas nao

t6cnicas (usualmente a ger&ncia). Em segundo lugar, deve oferecer toda a

expressividade necess£ria para a modelagem de processos de neg6cio relativamente

complexos, a16m de permitir o mapeamento natural para linguagens de execugao [1] .

Para que seja feita a modelagem de todo o fluxo do processo, devem-se

modelar os eventos respons£veis pela ativagao do processo, os que sao efetivamente

executados e os resultados finais de todo o fluxo

5

Etapas de decisao e ramificag6es de fluxos sao modeladas utilizando-se

elementos denominados gateways, cujos sfmbolos sao similares aos de decisao

encontrados em fluxogramas comuns (representada pela figura geom6trica de um

losango). Um gateway pode ser visto como uma questao que 6 langada em um

determinado ponto do fluxo do processo, apresentando um conjunto definido de

alternativas a serem seguidas em fungao da resposta dada. Na Tabela I estao

apresentados os tipos de representagao envolvendo gateways:

Tabela I - :Pipes de gateways e s£mbolos associados

Decisio XOR baseado om dado
Proc8sm 2

AIUrna$73 2
Proc8sm I Prm8sn 3

A!:©natNa 3

Marcixla corrD dal8uIt

t)ecisio XOR baseado em evento

OH
2

XF\ocesso I

XOR

Utilka.s8 gatow8ys do tipo XOfi para
modolaqern de dadsas hasenehs ern
8ventos orI d8dos DeciseIes XC>R
basaado£ eal da&is !go as galaways
mats mnIurrnn'n uillizada. Quanti:>

anl tSach chew no getaway. o
prm89so mltinu8 fXIr um arden
aaawntx> banada aas exFxessbs th
and Mo th cacla alhrnatha.

I
I

I

!

UtHl nse gateways tnseados em
evenkn para a modelagem cIe
6rrnln}xx; que potSent ser tornado!i do
acordo coal a octxr&ada elo LWt

ovento lup8cJfiao no fhrxo do
prOWSSO. Qer8lnnnte O rweblrnento
de uma mensagen1

Cano axanpk>. 6 passiv81 nndelar
tIan parte do um prac8880 ando o
sistenu espna por uma ruFx>sU cIo
dbn le E5ta lxidea ser urn
tulsa{WI do tiP -sim- OU 'rlao”. que
doUrn\inar$ qual o canvnt\o a ser
iarudo

Uniao XOR exclusiva

F+oc8sso 1

f+acesso 2 Proc8su 4

Racesso 3

Utiliza40 ege Upa de gateway para a
macl8lag8m d8 fus6es bas8adas em
daclos ou ewnD3. A$>ena3 linn das
vdria5 whatlas da porta a
s&iockxlada para a salda

6

Deci sao OR inclusive

O ternn -inCIUSIve- siQnrftc8 QUO um
ou mats &rxos de deci5i+o p>dull s&r
lorna&is £ necess bto espuir£ar ual
fhixc, lndlio do saltla

Uniao DR inclusive

O fIuxo do prowssa mlt+nua guarIdo
a printelro sinai chegar ein qualquer
al#ada do goto+'ay_ Se outro& slna6
$ubsWuenes ch8gdrwn em suas
respectwas entracIas, des nao serio
utili/ndcs

Decisio Complexa

E3pecrfr&se uma culdWo e nta
refererc18 in norru dai fluxrxi de

saida do gatuaay . A oxptebsao
d8t8nrina c,ual att8maaya t3av8ri ser
!omaeJa.

Good@c)

Uniao C;omplexa

Picasso I

2
PrcK;MSO 2

3
Prmss<1 3

Especifica-se urna condiqao e e3t8
refer+rcia os names des fluxos de

enIm& do gill amIF elm datios do
proc>msn A BX{XM8£Ia dBlamvna

quando uma tarefa 6 lniciada.

7

B#urcagao paralela {AND}

A
A

Gateway Be
dlvisa> paral8b

UrIne paralela {AND}

B
8

Urn a3bw8y paraleto e tanlbern
chamadc> de AND epfeway Toda.s crs
fluxM desunF,aelcw na saida do

gat8vmy sao tanIaJos.

A porta AND dove watnr urn shIa!
errI t£xIas as 8nuadas para conUnuar o
FxooH£o

Um processo pode englobar sub-processos, que podem ser graficamente

mostrados por meio de outro BPD conectado via um hyperlink para um sfmbolo de

processo. Se ele nao puder ser decomposto, ele 6 considerado uma tarefa – o nfvel

mais baixo de um processo. O uso destes diferentes substantivos simplesmente

reflete a relagao hierarquica entre os mesmos. Um sinaI de '+’ contido no sfmbolo do

processo indica que o mesmo 6 composto por sub-processos (possui ao menos um

diagrama-filho). Caso contrario, pode-se deduzir que ele se trata de uma simples

tarefa.

Para representar a ordem de execugao dos processos dentro de uma

organizagao ou em um departamento, os processos sao conectados atrav6s de

elementos denominados Sequence Flow , cuja representagao grafica 6 uma linha

terminada por uma seta preenchida. Um segundo tipo de linha de fluxo 6 conhecido

como Message Now, que serve para a comunicagao entre diferentes organizag6es ou

departamentos.

A Figura I apresenta, apenas com o intuito de ilustrar, um BPD de um sistema

de leilao onIIne com alguns dos itens bgsicos ja descritos.

item

Colnplar Item i vendKIo?

’Bl- cB
nom alsponjyel para
aqulsQao neste tlpo

do leftac

lt8m ventIICk>

+{“-’T"-
\,

\\:hi\
iI

Data
Objwa

Cornprar
a']ora

FInal do
a doran

narn dIs}nnlvel
para vonda

(- \ hI Regbtrarlhm

_ /–-–l para Mao

~~,

Processo

Pfeltear
Item

Comprar item
agQf8 = true

Pt61tear Item

a+

Final do leitio

Flndizar lei16a

\\
\

Evonto

int8mwd'ddo SIm

FiW ra 1 - Exemplo de um BPD para um sistema de leilao on-line

1

Pode-se especificar tamb6m o escopo das atividades, ou seja, dizer quem toma

as decis6es para executar um determinado conjunto de ag6es ou indicar onde elas

ocorrem, delimitando seus processos e eventos dentro de uma area retangular

sombreada denominada pool . Uma pool 6 utilizada tipicamente para representar uma

organizagao, enquanto que uma lane , um departamento, conforme ilustra a Figura 2.

Depanamento de desenvolvirnento

Elnpresa de Software DepaRamento de gamntia de qualidade

Departamento de su pOrte t6cnico

Pool Lanes

Figu ra 2 Pools e Lanes

9

Podem-se ainda empregar as lanes para representar outros itens, como fung6es

(algo que a organizagao executa, como marketing , vendas ou treinamento),

aplicag6es (um software), locais (uma regiao ffsica da companhia), classes (m6dulos

de software em um programa orientado a objetos) e entidades (representando tabelas

16gicas em um banco de dados). Existem ocasi6es em que os processos necessitam

seguir a execugao em outras pools, porque sao nelas que se encontram os demais

recursos necessados para a continuagao ou a finalizagao de uma atividade. Este

elemento possui um especial destaque na descrigao de processos B2B, onde

diferentes organizag6es trocam mensagens entre si para completarem uma

determinada atividade. A Figura 3 ilustra alguns dos itens descritos at6 o momento

para o mesmo cenado da Figura I (um processo de leilao onliney.

Entra em contato
com o venaodor

Ler descrigao
do item

7
Rever cr6denctais

do ven€!odor

I

e
credenciais do

licitante

i
Pools

/

/

Vendedor

Fluxo de
eq

Figura 3 - Diagrama de Processes ein BPMN

Durante a modelagem de um processo, 6 indispensavel a representagao dos

eventos que disparam os fluxos de atividades, bem como aqueles que ocorrem no

decorrer das etapas ou os que terminam um determinado processo. A simbologia que

a notagao BPMN reserva para estes elementos 6 ilustrada na Tabela I.

10

Tabela I - Tipos b6sicos de eventos e suas notag6es

Evento final

Inicia c ftuxo de
um processo

Ocorre durante
um proce ssa em

andamenta

Finaliza o fluxo
de um processo

Quan(io processos mais complexos, como aqueles envolvendo B2B Web

Services, sao modelados, & preciso representar eventos mais complexos, como

mensagens, timers e condig6es de erro. Da mesma maneira, o padrao BPMN tamb6m

disponibiliza simbolos correspondentes a cada tipo particular de evento, como

exemplificados na Tabela 2.

FreqDentemente um evento ocorre durante um processo em execugao, causando

a sua interrupgao e o disparo de um novo processo. E comum tamb6m que um evento

acontega ao final de um processo, provocando o inicio da execugao de um novo. A

modelagem destes eventos intermediarios se di colocando-se diretamente o sfmbolo

adequado junto ao processo ao qual ele esti associado.

Por tudo o que foi exposto neste capitulo, percebe-se que o padrao BPMN

possui diversas caracterfsticas que o tornam um padrao de modelagem de processos

de neg6cio e web services bastante interessante [1] .

Foram modelados os principais processos de neg6cio da COSEAS/USP,

relevantes ao Projeto de Formatura, segundo os crit6rios estabelecidos pela BPMN,

representando as suas atividades e os fluxos de controle que definem a ordem em que

elas sao executadas. Os exemplos se encontram no Anexo A desta monografia. Vale

ressaltar que foi elaborada apenas uma parte de sua especificagao, objetivando a

obtengao de uma familiaridade minima para a compreensao do neg6cio, a qual

permitiu a especificagao do sistema desenvolvido.

11

Tabela 2 - Tipos particulares de eventos e suas notag6es

Eventos iniciais
Eventos

intermediados
Eventos finais Descrigao

Mensagom inicial

fPn-\WjN
Mensag8m

gal
Men$agem final Uma mensagem inicial de8encadela o inicto de um

proc8sso. ou continua um determinado processo no
caso de um evento intermedlario. Uma mensagem final
denota uma mensa9em geratIa no final de um processo

Tirner inicial Tirner
Um timer nao
pade ser um
even&> final

Um tempo especlfico ou um ciclo (toda s8gunda-tetra as
9 h por exemplo) [>ode ser conflgurado para

desencadear o inicio de um processo ou conUnuar um
outro. no caso de um evento intermed13rlo

Regra inicia! Regra
Uma r8gra nao
F>ode ser um
evento final

Di8para um processo quando as condl96es de uma
determinada regra se tornarem verdadeiras.

Link lnicial Link Link final

©
M01bplo final

©
Exception final

l1(Y)

Carl\PensaQao
final

O
B'
Q

Um link & tim mornnismo uHlizado para cc>nectar o
ovonto final do um processo a um ev8nto inicial da outro

processo .

I

I

Inicio nr01tiplo Multiplo
Para mClltiplos ev8ntos de inicio. hd varias manoiras de

disparar um proc8sso ou continuar um d8t8rminado
processo no caso d8 um 8vento intorm8clidrio. Apenas

um dales 6 n8c6ssario. Para um final m01ti IIIO. ha
divor sas consequ6ncias ao t6rmino dg urn processo

{tadas ocon8rao)

Urna exception
nao pc>de ser urn

evento inicial

Exception
rLTCX

(Ni)
+ n+be q&

A ocon&ncia d8 uma exception final infonna o procoso
quo um arra devo ser g8rado. E ste 8rro sera tratado por

uma exception intermedi8ha

Uma comp©nsagao
nao r>ode ser um

ovento inicial

Compensagao

Um avento do comp8nsaggo final inforrna o processo
que urna compensagao 6 nec8ssada

Um 8vonto final nao 1 Um ov8ato final nao
pode iniciar um I pod8 88r um avonto

procos80 1 intarm6diarlo

Um evento finat signtfiaa que a usuario d8cidiu cancolar
a ax6cutao do pracosso.

Um evento fatal nao 1 Um 8v8nto fatal nao
pode ser um ev8nto I pod8 ser urn evonto

inicial I intormedi6rio

FInal fata E8to ev9nto sign}fica quo ocorreu tim 8rro fatal 8 quo
todas as aUvidades do processo dev8rn ser finalizadas

imediatarn8nte , sam qualjquer katamento ou
earn ponsagio.

12

3 ARQUITETURAS DE HARDWARE E SOFTWARE

Este capftulo descreve as arquiteturas de hardware e de software definidas para

o sistema. Em seguida, serao descritas as tecnologias envolvidas no seu

desenvolvimento e na obtengao da infra-estrutura necessada para a sua execugao.

3.1 Arquitetura de hardware do sistema

A Figura 4 ilustra a arquitetura de hardware final do sistema:

•
Smart
Card

q
Clibnte

OSEAS

Internet) E '$ (1ntranet

Smart
Card

Pocket
PC

Figura 4- Arquitetura final de hardware do sistema

Nesta figura, o equipamento cliente permite o cliente do restaurante adquirir

tickets refeigao atrav&s da internet. O pocket PC permite fazer a atualizagao de

informag6es de nfveis estoque, manipulada por um funcion£do do COSEAS. O

servidor 6 encarregado de hospedar os m6dulos do sistema e o banco de dados

associado 6 respons£vel por armazenar todas as informag6es necess£rias ao

13

gerenciamento dos restaurantes, bem como alguns dados relativos aos clientes,
incluindo os valores de saldo em seus cart6es.

O processo de cr6dito nos Smart Cards 6 realizado por sua leitora. O cliente

deve se dirigir a um guich& pr6pdo do COSEAS (onde esti localizado a leitora do

cartao) e o atendente credita o valor pago no cartao, alan de registr£-lo no sistema

por meio de um portal web (intranet).

As catracas eletr6nicas estao localizadas nas entradas dos restaurantes e sao

responsaveis pelo controle de acesso aos estabelecimentos. A leitura do cartao &

realizada e, havendo cr6dito suficiente, a passagem 6 liberada para o cliente ap6s a

operagao de d6bito.O saldo do cartao 6 atualizado por meio da comunicagao da

catraca com o sistema (intranet).

3.2 Arquitetura de software do sistema

A arquitetura de software do sistema 6 baseada no design pattern Model-View-

Controller (MVC). Este pattern 6 implementado na arquitetura chamada Model 2,

que 6 a utilizada no S ARC.

Inicialmente 6 apresentado o design pattern MVC. Em seguida, & feita a

descrigao dos modelos de arquitetura Model / e Model 2, bem como as suas

vantagens de uso em um sistema.

3.2.1 Design Pattern MVC

O sistema, que usa o design pattern MVC (Model View Controller), 6

organizado em tr6s componentes: o modelo de aplicagao, com a representagao de

dados e a 16gica de neg6cio, o da interface de usu£dos e o controlador das

requisig6es e das respostas. Desta forma, uma modificagao em um dos componentes

pode ser feita sem necessitar alterar nenhum outro, tornando a estrutura mais

adequada para alterag6es [5] .

O MVC possui rafzes antigas em publicag6es antedores a 1973, quando a

programagao orientada a objetos ainda estava sendo concebida e os conceitos de

componentes distribufdos ainda estavam em estudo. Foi formalmente definido em

14

1978 e tem o prop6sito de reduzir a complexidade de interfaces para sistemas

robustos e complexos [4].

Este design pattern, 6 constituido pelos seguintes componentes:

• Model. 6 a representagao das informag6es sobre a qual a aplicagao ira operar

e a 16gica de neg6cio.

• View: 6 geralmente um elemento de interface, que renderiza o modelo em

um formato pertinente a interagao com o usu£rio.

• Controller'. 6 o respons£vel pela resposta a eventos (tipicamente de

usu£rios) e solicita alterag6es no Model ou View quando apropriado.

No padrao MVC, o fluxo da requisigao 6 mediado por um Controller central. E

eIc quem envia as requisig6es – no caso, HTTP requests – ao handler apropdado. Os

handlers estao associados ao Model e cada handler age como um adaptador entre as

requisig6es e o Model. O Model representa, ou encapsula, a 16gica de neg6cio ou o

estado da aplicagao, realizando a requisigao recebida. O controle 6 entao novamente

repassado ao Controller, que repassa ao View apropdado. Esta transfer&ncia pode ser

determinada a partir da consulta de um conjunto de mappings, geralmente carregados

em um arquivo de configuragao. Isto prov6 uma ligagao fraca entre o View e o

Model, o que torna as aplicag6es significativamente fgceis de se criar e manter.

A Figura a 5 ilustra o fluxo em um design pattern MVC:

1

Event

2

34

5
Controller

View

Modei
6

Figura 5 - Modelo MVC

15

1. usuado interage com a interface (por exemplo, aperta um botao).

2. Controller recebe a notificagao da agao.

3. Controller acessa o Model, que realiza as operag6es, de acordo com a agao

do usuario.

4. Model notifica o Controller sobre suas operag6es.

5. Controller consulta o arquivo de configurag6es e repassa o controle ao View

apropriado.

6. View acessa o Model para gerar a interface para o usuario.

A interface esa, entao, pronta para receber novas interag6es por parte do usuario.

O componente Model do design pattern do MVC ainda pode ser dividido em

duas panes: uma que representa o estado interno e outra que realiza as ag6es que

alteram este estado. Pode-se dizer que uma parte 6 o substantivo, que armazena o

estado, e a outra 6 o verbo, que cont6m a 16gica de neg6cio (algoritmos) e realiza as

alterag6es neste estado, ou no substantivo.

No design pattern MVC ocorre uma dissociagao dos componentes da

aplicagao, provendo uma estabilidade a 16gica de neg6cio, apesar das recorrentes

alterag6es na interface. Este fato 6 de suma importancia no desenvolvimento e na

manutengao de aplicag6es de grandes porte e complexidade.

3.2.2 Arquitetura Model le Model 2

Em aplicag6es para Web, geralmente sao utilizados dois tipos de modelos de

arquitetura: Model 1 e Model 2. o primeiro 6 mais simples e 6 recomendado apenas

para aplicag6es de pequeno porte. Ja o segundo 6 indicado para aplicag6es de m6dio

e grande porte e 6 baseado no design pattern MVC [4] .

Os modelos diferem entre si basicamente pela localizagao da carga de

processamento de requisig6es, conforme pode ser visto nas Figuras 6 e 7.

16

Requisigap

Respos

Browser Servidor de AplicaQao Banco de Dados

Figura 6 - Arquitetura Model 1

No Model /, a interface (VIew) 6 respons£vel por processar sozinha as

requisig6es e responder de volta ao cliente.

Requisi Controller

No Model 2, hg uma divisao de tarefas: o Controller processa as requisig6es

que chegam e decide qual View sera encaminhada como resposta ao cliente, a qual 6

responsavel apenas por devolver os objetos instanciados pelo Controller [4] .

A aplicagao S ARC teri uma carga consider£vel de acessos, visto que atender£

a toda a comunidade USP, a16m de ser utilizado pelos funciongrios COSEAS para o

gerenciamento de estoques.

Portanto pode ser considerada uma aplicagao de m6dio porte, tendo o Model 2

como arquitetura mais indicada.

17

3.2.3 Conclus6es

A principal vantagem do emprego do design pattern MVC 6 a separagao entre

a 16gica de neg6cio do sistema, que geralmente se estabiliza antes da interface, que

sofre recorrentes alterag6es para adequar-se aos padr6es est&ticos vigentes e otimizar

a sua usabilidade.

Outro aspecto positivo dessa dissociagao 6 que o tipo de codificagao da

interface permite que cla seja desenvolvida por web designers, que geralmente nao

possuem conhecimentos profundos de programagao Java ou outra linguagem. A16m

disso, este pattern pode (devo) ser empregado em sistemas de grande porte, pois

permite que o desenvolvimento do mesmo seja feito por diversos grupos, que podem

atuar em paralelo, cada qual em uma camada do sistema.

18

4 TECNOLOGIAS ENVOLVIDAS

Esta segao faz um estudo sobre as tecnologias empregadas no S ARC. EIa esti

dividida em tr6s panes: a primeira trata de assuntos relacionados a Smart Cards\ em

seguida 6 descrita a plataforma J2EE (Java 2 Ptataform, Enterprise Edition) e os

frameworks empregados que possibilitaram a implementagao da aplicagao, a16m do

modelo de arquitetura escolhido; por fim sao abordados os recursos de software

utilizados no ambiente de execugao, necess£rios para o funcionamento do sistema.

r.

4.1 Smart Cards

4.1.1 Introdugao

Embora o dispositivo tenha sido inventado no final da d6cada de 60 por dois

engenheiros alemaes, Jurgen Dethloff e Helmut Grottrupp, o termo Smart Card foi

primeiramente utilizado pelo franc6s Roy Bright em1980. Eles solicitaram a patente

em fevereiro de 1969, mas foi concedida apenas em 1982. O jornalista franc6s

Roland Moreno arquivou 47 patentes relacionadas a Smart Cards em 11 pafses entre

1974 e 1979 [22].

Nos 61timos anos, a capacidade de armazenamento e de processamento destes

can6es tem avangado substancialmente. As areas que mais se destacam no

desenvolvimento de aplicag6es para Smart Cards sao as areas banc aia, m6dica, de

identificagao pessoal e de telefonia celular. Conhecimentos a respeito de sistemas

para Smart Cards estao cada vez mais presentes nos trabalhos de profissionais e

pesquisadores especializados em computagao, identificando novas areas de atuagao.

Um Smart Card tem o mesmo formato e tamanho de um cartao de cr6dito

comum, mas pode armazenar tipicamente de 4KB a 64 KB de informagao, a16m de

realizar processamento de dados. Este tipo de cartao 6 especialmente 6til em

aplicag6es que requerem tanto a seguranga quanto a integridade dos dados neles

armazenados

b'

19

4.1.2 Tipos de Smart Cards

Atualmente os Smart Cards sao classificados segundo tr&s categorias principais

[22]:

MemorY Cards – Cart6es de mem6ria (nao realizam processamento dos

dados) providos de um chip de circuito integrado. A comunicagao com o

leitor exige o contato ffsico.

• Microprocessor Cards – Id6nticos ao anterior, mas possuem urn
microprocessador embutido que permite o processamento de dados.

• Contactless Cards – Estes cart6es tamb6m possuem um microprocessador

embutido, mas a comunicagao 6 realizada de maneira eletromagn6tica, nao

necessitando do contato fisico com o leitor.

4.1.2.1 Memory Cards

Este tipo de cartao foi o primeiro a ser desenvolvido. Eles possuem um chip de

circuito integrado contendo apenas uma mem6ria nao volatil e o circuito necessario

para a leitura e escrita nesta mem6ria. sao dependentes do computador ou do leitor

para o processamento e correspondem a maioria dos Smart Cards utilizados

atualmente.

Memory Cards nao sao excessivamente caros e fornecem um nivel modesto de

seguranga. sao adequados para aplicag6es que realizam operag6es determinadas,

como subtragao em cart6es de telefones pr6-pagos, por exemplo.

4.1.2.2 Microprocessor Cards

sao tamb6m conhecidos como chip cards, uma vez que possuem um

microprocessador embutido no corpo do cartao e podem processar dados. A atual

geragao deste tipo de cartao possui um poder de processamento equivalente ao

computador IBM-XT, com menor capacidade de armazenamento. Como exemplos

de aplicag6es, podem-se citar as que necessitam armazenar valores monetarios e

tamb6m as que permitem o acesso a determinadas redes de computadores.

20

4.1.2.3 Contactless Cards

Estes cart6es se comunicam com o leitor atrav6s de sinais eletromagn6ticos. A

energia necessada para executar as operag6es do chip 6 fornecida por meio de

microondas de freqU6ncia determinada pelo leitor. Oferecem maior facilidade de uso

em certas aplicag6es nas quais a posse do cartao 6 suficiente para o seu uso, como

por exemplo a identificagao em certos ambientes.

4.1.3 Elementos de Smart Cards

A CPU (Unidade Central de Processamento), mem6ria e trilhas de entrada e

safda sao montadas em um anico chip de circuito integrado. A Figura 8 ilustra a

organizagao destes componentes no cartao [22] .

(Operating System}

CLK

1/0

NVM i EEPROM

(Applicatk>n Storage)

Figura 8 - Layout de um chip de circuit;o integrado em um Smart; Card

4.1.3.1 A Unidade de Processamento Central

A CPU de um Smart Card consiste de um microcontrolador de 8 bits que

tipicamente utiliza o conjunto de instrug6es do Motorola 6805 ou do Intel 8051.

Executam instrug6es de m£quina na velocidade de aproximadamente 400.000

instrug6es por segundo. Os chips mais atuais podem executar mais de 1 milhao de

21

instrug6es por segundo (1 MIP). O tempo que um Smart Card leva para realizar uma

transagao 6 de 1 a 3 segundos. Alguns chips incluem um co-processador para

acelerar a codificagao de dados [22] .

4.1.3.2 o Sistema de Mem6ria em Smart Cards

Os SrnaM Cards possuem uma quantidade relativamente pequena de mem6ria

RAM (cerca de 256 a 1.000 bytes). Eles tamb6m contaIn uma mem6ria de apenas

leitura (ROM) e uma nao-vol£til (EEPROM).

Os dados armazenados na mem6ria RAM nao sao preservados quando a

energia 6 cortada. Entretanto, o seu papel 6 essencial em algumas aplicag6es, visto

que o tempo que a CPU gasta para ler ou escrever neste tipo de mem6ria 6

relativamente muito mellor.

Os Smart Cards de prop6sito geral cont6m entre 8KB e 32 KB de mem6ria

ROM. E nela que o sistema operacional e as rotinas especfficas de comunicagao e

aritm6ticas sao arrnazenados. As informag6es inseridas neste tipo de mem6ria nao

podem ser modificadas.

Os dados variaveis sao armazenados na mem6ria nao-volgtil do cartao

(EEPROM), cujo conte6do pode ser modificado conforme as necessidades da

aplicagao. Esta mem6ria pode ser lida e escrita e possibilita a retengao do seu

conteido mesmo quando a energia 6 retirada. Os Smart Cards convencionais

possuem geralmente entre 1 KB e 16 KB de EEPROM. Os dados nela armazenados

podem ser preservados por cerca de 10 anos e o tempo de escrita leva cena da 3 a 10

milisegundos [22] .

4.1.3.3 Input/Output em Smart Cards

A comunicagao com o mundo externo 6 feita por meio de uma via simples que

fica aos cuidados do processador, que utiliza protocolos de comunicagao para fihrar

informag6es que sao passadas para e de outros componentes do chip . Estes

protocolos tamb6m podem ser usados para autenticagao, cujos detalhes serao

descritos posteriormente.

22

4.1.3.4 Dispositivos de interface

O Smart Card nao cont6m qualquer fonte de energia ou sinaI de re16gio

independente, que sao necess£dos para o processador inserido no cartao. Desta

maneira, o cartao deve ser conectado a um dispositivo que fornega estes itens. Este

dispositivo 6 conhecido como dispositivo de interface, terminal ou leitor.

A16m destas funcionalidades, o leitor 6 respons£vel por estabelecer um canal de

comunicagao entre a aplicagao residente no computador e o sistema operacional do

cartao. Atualmente quase todos os leitores permitem tanto a leitura quanto a escrita

no cartao.

4.1.3.5 O Sistema Operacional

O sistema operacional encontrado na maioria dos cart6es implementa um

conjunto padrao de comandos (usualmente na ordem de 20 a 30), aos quais o SmaM

Card responde. O padrao mais comum 6 o ISO 7816, que descreve uma faixa de

comandos que podem ser implementados. Alguns fabdcantes podem possibilitar

extens6es deste padrao ou at6 mesmo adig6es. A relagao entre a leitora e o cartao 6

do tipo mestre/escravo: o leitor envia um comando ao cartao e este o executa,

retornando um resultado correspondente, se houver [22] .

A maior parte dos sistemas operacionais dos Smart Cards suportam um sistema

de arquivos baseados no padrao ISO 7816. Um arquivo 6 tratado como um bloco

contfnuo na mem6ria do cartao. Uma vez que um arquivo 6 alocado, ele nao pode ser

estendido, o que significa que cIe deve ser criado com o seu tamanho m£ximo

esperado. o sistema de arquivos nao suporta a fungao de garbage collection ou

qualquer tipo de compactagao. Se um arquivo A, seguido por um arquivo B, for

apagado, o espago ocupado pelo pdmeiro 6 perdido at6 que o segundo tamb&m seja

apagado.

Os sistemas operacionais suportam o conjunto usual de operag6es relacionadas

a arquivos, tais como create , delete , read, wr£fe e update . Outras operag6es nao

usuais sao suportadas em tipos particulares de arquivos. Arquivos lineares, por

exemplo, consiste de uma s&rie de registros de tamanho fixo que podem ser

23

acessados pelo namero do registro ou lidos seqOencialmente usando operag6es como

read neW e read previous [22] .

4.1.3.6 Estrutura de diret6rios no Smart Card

A maioda dos Smart Cards possui um sistema de arquivos baseado na estrutura

de diret6rios do UNIX. Trata-se de um sistema de arquivos hier£rquico cuja raiz,

chamada de Master File , possui o enderego 3f.00. Os nomes de arquivos possuem

tamanho de 2 bytes e podem ser divididos em quatro categorias:

• Arquivos transparentes, que sao vistos como uma seqD6ncia de bytes;

• Arquivos linearmente fixos, que sao vistos como uma seqa6ncia de registros

de tamanho fixo;

• Arquivos linearmente vad£veis, que sao vistos como uma seqti6ncia de

registros de tamanho vadavel;

• Arquivos cfclicos, que sao vistos como uma seqa6ncia infinita de registros

de tamanho fixo.

Um exemplo da estrutura de diret6rios de um Smart Card pode ser visto na

Figura 9.

BC . aa

aa . 02 82 , aa

02.01

Arqui Jo de
pnrta-niqueis
eletr6 nico

Log\de
tran5agae5

ArquivJ de
verificaQgo
de chave

Figu ra 9 E:strut;ura de diret6rios em um Smart Card

24

4.1.3.7 Application Protocol Data Units (APDU’s)

Smart Cards se comunicam com dispositivos de interface por meio de pacotes

de dados que sao construfdos seguindo um protocolo definido. Estes pacotes sao

chamados APDU’s (Application Protocol Data Units), que podem representar um

comando ou uma resposta. Um Smart Card recebe uma APDU do terminal e executa

a agao especificada nele (em um campo do seu protocolo), retornando uma respectiva

APDU de resposta.

A Tabela 3 ilustra o formato da APDU de comando, especificada na quarta

parte do padrao ISO 7816 [22].

TaI>eIa 3 - APDU de comando

APDU de Comando

Cabegalho Parte Condicional

CLA ms Pl P2 Le Campo de
Dados Le

O cabegalho especifica o comando a ser executado pelo Smart Card. Ele 6

composto de quatro campos, cada um formado por um byte:

•

•

•

•

•

CLA (Class byte): Identifica a aplicagao;

INS (Instruction byte): Identifica o c6digo da instrugao;

Pl e P2 (Parameter bytes): Carregam informag6es extras. Geralmente

especificam o enderegamento utilizado pela instrugao definida pelos campos

CLA e INS;

Lc: N6mero de bytes do campo de dados;

Le: Nimmo m&imo de bytes esperado no campo de dados da APDU de

resposta correspondente;

A Tabela 4 ilustra o formato da APDU de resposta, tamb6m especificada na

quarta parte do padrao ISO 7816 [22].

25

Tabela 4 - APDU de resposta

APDU de resposta

Parte
Condicional Bytes de Status

Campo de Dados SW 1 c,,n
-J

SWI SW2

SWI e SW2 (Status bytesy. Informam o status do processamento da APDU de

comando enviada ao cartao. Um deles 6 utilizado para especificar uma categoria de

erro e o outro 6 utilizado para especificar o status de um comando ou indicar a
ocorr&ncia de um erro.

Todos os detalhes com relagao ao protocolo de comunicagao do Smart Card

com a leitora e o padrao ISO 7816 podem ser encontrados em [22] .

4.1.3.8 Comunicagao

O canal de comunicagao do Smart Card 6 do tipo half-duplex . Isto significa

que um dado pode fluir da leitora para o cartao ou vice-versa, mas nao em ambas as

direg6es ao mesmo tempo. A leitora amostra o sinaI da linha serial na mesma taxa

com que o transmissor envia os dados, a fim de se obter uma correta recepgao. Esta

taxa 6 conhecida como bit rate ou baIrd rate . Os dados recebidos e transmitidos pelo

cann sao armazenados em um buffer na mamma RAM do cartao.

ConseqUentemente, pacotes de dados relativamente pequenos (10 a 100 bytes) sao

movidos em cada mensagem [22] .

4.1.3.8.1 Software de Smart Cards

Os softwares de Smart Cards podem ser divididos em dois tipos: Card

Software e Host Software . o pdmeiro 6 conhecido tamb6m como card-side software

e, como o pr6prio nome sugere, 6 executado no pr6prio cartao. Basicamente, ele

prove servigos computacionais para as aplicag6es que acessam os dados contidos no

26

cartao. Al&m disso, 6 capaz de proteg6-1os de aplicag6es que, por algum motivo,

possam vir a acessa-los incorretamente, contribuindo para a manutengao da
integridade dos dados e de propdedades de seguranga em cart6es particulares.

O segundo tipo de software, o Host Software , 6 executado no computador que 6

conectado a leitora do cartao. i conhecido como reader-side software e inclui

aphcativos de usu£rio final. Ao contr£rio do primeiro, que 6 escdto em linguagem

assembl) , host softwares sao geralmente escritos em uma linguagem de programagao

de alto nfvel, como C, C++, Java, etc. A16m disso, geralmente se relacionam com

bibliotecas comerciais e drivers para a comunicagao de can6es e leitores [22] .

4.1.3.8.2 Seguranga em Smart Cards

Uma das principais raz6es da exist&ncia de Smart Cards esti relacionado com a

seguranga. O cartao prov6 uma plataforma computacional onde transag6es e

informag6es podem ser tratadas de maneira segura. A partir destas caracteristicas, os

SmaM Cards sao adequados para reforgar a seguranga em diversos sistemas. Os

principais exemplos destas aplicag6es incluem sistemas de acesso fisico a ambientes

e sistemas financeiros, incluindo aplicag6es de com6rcio eletr6nico. Neste projeto, a

utilizagao de Smart Cards visa justamente atender requisitos de seguranga, tanto no

que diz respeito ao controle do acesso de clientes aos restaurantes COSEAS, quanto

em operag6es de cr6dito e d&bRo.

O acesso a informagao armazenada no Smart Card pode ser configurado para

que seja controlado estritamente pelo portador do cartao, o seu emissor ou o

provedor de qualquer aplicagao especffica no cartao. O controle do acesso 6

geralmente implementado por meio de uma requisigao de uma chave, a fim de se

obter o acesso a certos arquivos. Estas chaves sao armazenadas em arquivos

especfficos no cartao e apenas o Smart Card pode acessa-los para comparar com a

chave obtida do leitor ou usu£rio.

Se o processo de autenticagao nao for realizado com sucesso, a comunicagao 6

bloqueada. Um registro da quantidade de tentativas frustradas pode ser armazenado

no cartao e, uma vez que um certo nimmo de falhas consecutivas for detectado, o

cartao pode destruir completamente o seu conteado.

27

Com relagao a criptografia, alguns cart6es realizam este processo em grande

volume, o que exige um maior poder computacional. Em particular, existem alguns

cart6es que sao fabdcados para este prop6sito e sao equipados com um processador

dedicado exclusivamente a esta tarefa (conhecidos como cr)toprocessors). A

criptografia pode ser aplicada a todas as mensagens para o cartao e provenientes

dele, ou alternativamente para apenas algumas mensagens paniculares. Geralmente

os programadores de Smart Cards nao necessitam projetar algodtmos de

autenticagao ou de criptografia para as suas aplicag6es. Ao inv6s disso, eles usam as

facilidades que sao embutidas no pr6prio cartao, que ja garantem um certo nfvel de

seguranga [22] .

4.1.3.8.3 Equipamentos e ferramentas utilizadas

Para o desenvolvimento do projeto, foi utilizados a leitora Schlumberger

Reflex 72 e o cartao de mem6da Schlumberger Payflex de IK. A leitora possui

interface serial RS-232 e um cabo auxiliar para a alimentagao do tipo PS2.

A comunicagao com o Smart Card sera feita por meio de um software pr6prio,

sob licenga GPL (General Public License), que far£ uso de APDUs capazes de

selecionar arquivos, lcr registros e receber respostas correspondentes. Os comandos

sao transmitidos a leitora por meio da interface serial (nao sera necessario nenhum

driver) e estes sao, por sua vez, encaminhados ao Smart Card.

O desenvolvimento da aplicagao foi feito na plataforma Linux (kernel 2.4.29),

mas pode facilmente ser alterada para ser executada em plataforma Windows. Nao

foi utilizado nenhum kit de desenvolvimento de aplicag6es para Smart Cards .

4.2 Plataforma J2EE e frameworks

Nesta segao sao descritos os principais recursos utilizados neste trabalho, que

sao os seguintes:

• Padrao J2EE (Java 2 Plataform, Enterprise Edition) 6 descrito, bem como

os componentes definidos por esta especificagao e que sao utilizados na

aplicagao [6] ;

28

• JavaBeans que sao definidos na especificagao do J2SE, jg que sao

componentes essenciais da camada de neg6cio do sistema [8] ;

Framework Struts, que faz uso de componentes definidos no padrao J2EE

para permitir a implementagao do modelo MVC em Java [17] ;

Framework Hibernate, que & respons£vel pela persist6ncia dos dados do

sistema no banco de dados [9] .

Este conjunto de padr6es e frameworks formam a base para o desenvolvimento

de aplicag6es de grande porte e sao extremamente ateis, pois tornam este processo

muito mais simples e rgpido, sendo responsaveis pela implementagao de tarefas de

mais baixo nfvel. O programador pode concentrar-se apenas na 16gica de neg6cio,

que 6 o n6cleo principal da aplicagao.

4.2.1 J2EE - Java 2 Plataform, Entreprise Edition

A plataforma J2EE (Java 2 Ptataform, Enterprise Edition) 6 uma colaboragao

entre Ifderes da area de softwares corporativos, incluindo fornecedores de sistemas

operacionais e sistemas de gerenciamento de bancos de dados, vendedores de

middleware e ferramentas e desenvolvedores de componentes e aplicag6es verticais

de mercado.

A J2EE 6 uma plataforma de desenvolvimento para aplicag6es com

arquiteturas de maltiplas camadas, definido por uma especificagao e 6 considerado

informalmente um padrao.

A plataforma J2EE simplifica a arquitetura de aplicag6es de neg6cio,

baseando-as em componentes modularizados e padronizados, a16m de prover um

conjunto completo de servigos para estes componentes, o que diminui a

complexidade da programagao. A16m disso, permite a integragao com diversas

tecnologias legadas.

A plataforma J2EE utiliza varios atdbutos do J2SE (Java 2 Plataform,

Standard Edition) como a portabilidade, API JDBC para acesso ao banco de dados,

tecnologia CORBA para a interagao com recursos ja existentes e um modelo de

seguranga que protege os dados at6 mesmo em aplicag6es na internet. Ainda possui

29

suporte total aos componentes Enterprise JavaBeans , Java Servlet API , Ja\laSer\/er

Pages e a tecnologia XML [2] .
A plataforma J2EE possui testes de compilagao e especificagao que garantem a

portabilidade das aplicag6es atrav6s da diversidade de sistemas capazes de suportar a

plataforma J2EE e ainda assegura servigos Web de interoperabilidade por meio do

suporte ao WS-/ Basic ProfIle .

A portabilidade e a escalabilidade sao palavras-chave na analise de viabilidade

de uma aplicagao e estas caracterfsticas sao inerentes a plataforma J2EE. A16m disso,

esta plataforma engloba fontes ja existentes em aplicag6es multi-camada em um

modelo de aplicagao baseado em componentes. A plataforma J2EE abrange diversos

sistemas, dentre eles os de administragao de banco de dados, monitores de transagao

etc

A plataforma J2EE 6 composta de quatro grandes elementos:

• J2EE Application Programming Model: 6 o modelo padrao de programagao

usado para facilitar o desenvolvimento de aplicag6es multi-camada.

• J2EE Plataforrn. inclui politicas necessadas e APIs como os Java Servtets e

Java Message Service (=IMS).

• J2EE Compatibility Test Suite: garante que os produtos J2EE sao

compativeis com os padr6es da plataforma.

• J2EE Reference Implementation. explica as capacidades e prov& definig6es

operaclonals.

Atualmente, com a inclusao do WS-/ Basic Profile , 6 possfvel construir

aplicag6es na plataforma J2EE, como Web Services, capazes de agir em conjunto

corn Web Services em ambientes nao J2EE.

A plataforma J2EE inclui especificag6es 6nicas de componentes como

Enterprise JavaBeans (EJB), Servlets e Java Server Pages (JSP), entre outros. Os

componentes J2EE sao escritos em linguagem Java e compilados da mesma forma

que qualquer programa nessa linguagem. A diferenga entre os componentes J2EE e

classes Java padrao d que os componentes J2EE sao incorporados em uma aplicagao

J2EE e passam por uma verificagao de sua formagao e adequagao a especificagao

J2EE. Estes componentes sao montados em uma aplicagao J2EE sendo executados e

gerenciados por um servidor J2EE.

30

4.2.1.1 Java Servlet

Os servlets representam os programas Java que sao executados no servidor

web. Um servlet 6 uma classe em Java que geralmente estende as capacidades de

servidores que hospedam o acesso a aplicag6es via um modelo de requisigao-

resposta.

Com os servlets 6 possfvel gerar sites dinamicos em Java e sua principal tarefa

6 receber uma requisigao e gerar a resposta, baseada na mesma.

A Servlet API define as interag6es entre um servlet e o container web, que 6

respons£vel por mapear uma determinada URL para o servlet correspondente e

verificar permiss6es de acesso.

A API tamb6m define subclasses Hmp de requisig6es gen6ricas e suas

respostas, bem como um objeto HTTP sessIon, que rastreia maltiplas requisig6es e

respostas entre o web server e o cliente.

Os servlets devem ser empacotados como uma Web Application e todos os

servtets devem implementar a interface servlet, que define os m6todos do ciclo de

vida: inicializagao do servlet, servigos de requisigao e remogao do servlet do
servidor:

• C) servlet 6 construfdo e inicializado com o m6todo init.

• Qualquer chamada de clientes ao m6todo service sao tratadas.

• o servlet para de trabalhar e 6 entao destrufdo com o m6todo destroY . Em

seguida, 6 recolhido pelo garbage collector e finalizado.

A Interface Servlet prov& os m6todos getSewletConfig, que fornece qualquer

informagao de inicializagao do servlet, e getSewlet Info, que permite que o servlet

fornega qualquer informagao b£sica sobre si mesmo.

Os pacotes javax.servlet e javax.servlet.http fornecem interfaces e classes para

a programagao de sen?lets.

Para a implementagao de um sewigo gen6rico, independente de protocolo, a

classe GenericServlet , que 6 fornecida na API Java Servlet, pode ser usada ou

extendida

31

Para a criagao de um servLet HTTP, a classe HttpServLet deve ser utilizada. EIa

prov& m6todos como doGet e doPost, para lidar com servigos especfficos HTTP.

4.2.1.2 Java Server Pages (JSP)

i a tecnologia Java que permite a geragao dinamica de HTML, XML ou

qualquer outro tipo de pggina web. Permite a insergao de fragmentos do c6digo e de

ag6es pr6-definidas em um documento de texto puro.

Uma pagina JSP possui dois tipos de texto:

• Dados estgticos, que podem ser expressos em qualquer formato baseado em

texto, como HTML, XML etc.

• Elementos JSP, que determinam como o conte6do dinamico da pggina deve

ser construfdo, chamando funcionalidades previamente definidas.

Esta tecnologia ainda permite a criagao de uma biblioteca de tags JSP, que

agem como extens6es das tags padrao HTML ou XML.

JSPs sao compiladas em servlets por meio de um compilador JSP. Este

compilador pode tanto gerar um c6digo do servlet em Java que 6, entao, compilado

em um compilador Java, ou gerar diretamente o byte code do servlet . Em ambos os

casos, 6 o compilador JSP que transforma a pagina em um servlet Java.

De maneira geral, o JSP pode ser considerado como a abstragao de alto nivel

dos sen?lets .

I

4.2.2 JavaBeans

E urn objeto que se adequa aos protocolos de comunicagao e configuragao

definidos pela especificagao JavaBearts . g urn componente integrante da arquitetura

da Java 2 Plataform, Standard Edition (J2SE) e sao programas/componentes

reutiliz£veis.

Certas conveng6es devem ser respeitadas a fim de que a classe seja um

JavaBean . sao elas:

A classe deve ser capaz de ser persistida e de restaurar seu estado (serializaveis).

• Deve ter um construtor sem argumentos.

32

• Suas propriedades devem estar acessfveis somente atrav6s dos m6todos get

e set , que seguem o padrao de nomenclatura.

• Deve conter os m6todos add/remove para eventos.

A API completa do JavaBeans esti empacotada no java.beans , uma das APIs

centrais Java.

JavaBearts sao objetos simples em Java, ou POJOs (Plain Old Java Objectsb,

que seguem padr6es rfgidos de nomenclatura e sao serializ£veis. Nao devem ser

confundidos com Enterprise JavaBearrs , que representam um modelo completo de

um componente, nao uma inica classe apenas. A complexidade dos EJBs 6 alta e

eles nao sao necessados em todas as aplicag6es.

4.2.3 Struts

6 um framework open-source para desenvolvirnento de aplicag6es J2EE,

mantido pelo projeto Jakarta, que esti sob a administragao da Apache Software

Fobtrtdation

Este framework permite que o projeto e implementagao de aplicag6es web de

grande porte seja feito por diferentes grupos de pessoas (designers de paginas,

desenvolvedores de componentes etc).

Pode-se dizer que o Struts 6 a implementagao em Java do design pattern MVC

e, sendo assim, resulta em:

• Model: representado por JavaBeans

• View: representado por JSPs

• Controller: representado por Servlets

4.2.3.1 Model

Aplicag6es de grande porte geralmente representam um conjunto de operag6es

de neg6cio possfveis como m6todos que podem ser acionados por bean ou beans que

armazenam o estado da informagao. Outros sistemas representam as operag6es

disponfveis separadamente, com o uso, por exemplo, de Session EJBs .

33

Em aplicag6es de menor porte, por outro lado, as operag6es disponiveis podem

estar inseridas em classes Action, que fazem parte da camada de controle do Struts.

Isto 6 muito fail quando a 16gica 6 bastante simples ou a reutilizagao da 16gica de

neg6cio em outros ambientes nao 6 contemplada.

O estado real de um sistema 6 geralmente representado como um conjunto de

uma ou mais classes JavaBearts (System State Beans), cujas propriedades definem o

estado atual. Business Logic Beans sao JavaBeans que tem como fungao encapsular a

16gica funcional da aplicagao em m6todos. Estes m6todos podem fazer parte da

mesma classe do STstem State Beans ou podem estar em classes separadas.

No sistema S ARC ocorre esta divisao de BusIness Logic Beans e SYstem State

Beans . Sendo assim, os System State Beans sao passados como parametros nas

chamadas de m6todos dos Business Logic Beans .

As classes Business Logic Beans nao devem ter o conhecimento de que elas

estao sendo executadas em um ambiente de aplicagao web (nao devem importar

ja\?al.servlet. 8, por exemplo). As classes Action (que fazem parte da camada

Controller) devem traduzir todas as requisig6es HTTP em chamadas de m6todos

como get ou set . Isto permite que a classe da 16gica de neg6cio possa ser reutilizada

em ambientes diferentes de uma aplicagao web, para a qual foi inicialmente criada.

6 a classe Business Logic Bean que fara a chamada da classe de acesso ao
Banco de Dados.

I

I

4.2.3.2 View

A camada de View do Struts 6 baseada na tecnologia JavaServer Pages (JSP).

Um conjunto de tags personalizadas, que sao permitidas em JSP, estao inclusas no

Struts. Isto facilita a criagao de interfaces com o usu£rio, visto que estas tags

interagem perfeitamente com os ActionForm Beans . ActionForms recebem e validam

qualquer entrada que 6 requisitada pela aplicagao.

O Struts permite o desenvolvimento de aplicag6es internacionalizadas e

localizadas (adaptadas de acordo com opg6es regionais e de idioma). As classes

padrao que tornam isso possfvel sao:

34

•

•

•

•

Locale'. a classe Java fundamental que permite a internacionalizagao. Cada

Locale representa uma opgao de pafs e idioma (mais um idioma variante

opcionaD e um conjunto de suposig6es de padrao para nameros, datas etc.

ResourceBurldle-. A classe java.util.ResourceBundle prov6 as ferramentas

b£sicas para o suporte a m61tiplas Ifnguas.

PropertYResourceBbmdle'. uma das implementag6es padrao da classe
ResourceBbrrLdte .

MessageFormat-. a classe java.text.MessageFormat permite que partes do

string da mensagem sejam substitufdas, baseados em argumentos definidos

no momento da execugao. Isto 6 atil em casos que as palavras aparecem em

uma ordeal diferente em idiomas distintos.

MessageResources'. h classe org.apache.struts.utit.MessageResources

permite a requisigao de uma string em particular para determinado Locate

(associado ao usu£rio).

•

O Struts fornece uma maneira simples de construir/omns, baseado em Custom

Tag Library do JSP 1.1. Nao ha necessidade de referenciar o JavaBean que cont6m

os valores iniciais a serem retornados. Isto 6 feito automaticamente pela tag JSP, que

faz uso das vantagens deste framework.

O Struts define tags para todos os tipos de campos de entrada listado abaixo:

• Checkboxes

• Campos ocultos

• Campos para insergao de senha

• Bot6es do tipo radio

• Bot6es do tipo reset

• Listas de selgao

+ optIon

• Bot6es do tipo submit

• Campos de entrada de texto

• Caixas de texto

35

Nestes casos, a tag do campo deve estar aninhada em uma tag form, para que o

campo saiba qual bean deve ser usado para a exibigao de valores iniciais. Podem-se

ainda ter outras tags de exibigao:

• [logic] iterate'. repete o corpo da tag uma vez para cada elemento de uma

colegao especificada (que pode ser um Hashtable , Enumeration, Vector ou

um arraY de objetos).

• [/ogic] present depende do atributo especificado, que podem ser: cookie,

header, name, scope, user etc.

• [html] link: gera um elemento HTML do tipo <a> e automaticamente

mant6m a sessao para a URL especificada.

• [bean] parameter. busca o valor especificado no parametro de requisigao e

mostra-o como uma String na p£gina.

A16m da interagao do bean e do form ja descrita, o Struts oferece mais uma

facilidade para a validagao de campos de entrada de dados.

O m6todo validate 6 chamado pelo servlet de controle depois que as

propriedades do bean tenham sido populadas, mas antes do m6todo execute da classe

action correspondente.

Se o m6todo validade encontrar problemas, uma instancia de ActiortErrors 6

retornada, contendo a mensagem de eno (dentro do dominio da aplicagao definido

por MessageResources) que deve ser exibida. o servlet de controle armazena este

array para eIc ser utilizado na tag <html: errors> . Caso contr£rio, ou seja, se nenhum

erro de validagao foi encontrado, o m6todo retorna null e o servlet de controle ira

invocar o m6todo perform da classe Action pertinente.

Esta validagao 6 opcional, mas foi implementada na aplicagao por agilizar o

processo de validagao de dados na entrada. O m6todo validate faz apenas uma

primeira validagao dos dados mais superficial. A 16gica de neg6cio fica responsavel

por validag6es mais complexas.

4.2.3.3 Controller

E a parte da aplicagao responsavel por receber as requisig6es do cliente,

decidindo qual fungao da 16gica de neg6cio deve ser acionada (baseado na requisigao

36

recebida), resgatar os dados da camada Model (se necess£rio) para envia-los ao View

e selecionar o View adequado para responder ao usugrio.

No Struts, o componente b£sico do Controller 6 um servlet da classe

ActiorLServlet . Este servlet 6 configurado a paair de um conjunto de ActionMappings .

Um ActionMapping define o caminho entre a URI requisitada e a classe Action

correspondente. Todas as Actions sao subclasses de org.apache .struts.action.Action .

Actions encapsulam as chamadas das classes da 16gica de neg6cio, interpretam sua

safda e delegam o controle para o componente do View apropdado para gerar a

resposta.

A instancia do ActiorrServlet 6 tamb6m respons£vel pela inicializagao dos

recursos. Quando o Controller 6 inicializado, ele primeiro canega o config da

aplicagao que cont6m todos os parametros de inicializagao.

Para cada requisigao feita ao Controller , o m6todo process seM invocado. Este

m6todo apenas determina qual m6dulo deve servir a requisigao e, entao, chama o

m6todo process do RequestProcessor do m6dulo.

O RequestProcessor 6 onde ocorre a maior carga de processamento das

requisig6es. O m6todo process invoca:

• ProcessPattt. determina o caminho requistado.

• ProcessLocale'. seleciona o locale da requisigao, se nenhuma tiver sido

selecionada ainda.

• Processmapping'. seleciona o ActionMapping associado a este caminho.

• ProcessActionForrrr. instancia (se necess£rio) um ActionForm associado a

este mapeamento e coloca-o no escopo apropriado.

• ProcessPopulate'. popula o ActionForm associado a requisigao, se houver.

• ProcessValidate-. realiza a validagao do ActiorrForm associado a essa

requlslgao .

• ProcessForward'. se este mapeamento representa um Award, encaminha

para o caminho especificado pelo mapeamento.

• ProcessActionPerforrn E o ponto onde o m6todo perform ou execute da

action 6 invocado.

37

ActionForrrt beans sao componentes da camada Controller que realizam o

transporte das informag6es entre a camada Model e View. Possuem propdedades que

correspondem as propdedades do bean da camada Model .

Um ActionForrrr bean 6 uma classe em Java que estende a classe ActiortForm e

6 responsgvel pelos forms de entrada da aplicagao. Ele possui os m6todos get/set ,

mas nenhuma 16gica de neg6cio.

Um ActionForm 6 um JavaBearl associado com um ou mais ActionMappings .

Elc tem suas propdedades inicializadas a partir dos parametros da requisigao antes

que o m6todo execute da Action seja chamado.

Quando as propriedades deste bean forem populadas, mas antes da chamada do

m6todo execute da Action, o m6todo validate do bean 6 executado, verificando se os

valores submetidos pelo usu£do sao validos. Caso haja algum problema na

validagao, uma mensagem de eno & retornada e o servlet de controle ira tratar este

erro. Caso contrario, o m6todo validate retornar£ null, indicando que tudo esti

correto e o m6todo execute daAcfiorz deve ser chamado.

Pode existir apenas um bean para cada form qfrnelY-grained objects) ou um

bean que age em diversos forms ou at6 mesmo toda a aplicagao (coarsely- grained

objects) .

Beans devem ser declarados no arquivo de configuragao do Struts para que o

servlet de controle faga as seguintes operag6es automaticamente antes de invocar o

m6todo apropriado da Action:

• Procurar por uma instancia do bean da classe apropriada, com escopo

apropriado.

• Se taI instancia do bean nao estiver disponfvel, uma nova 6
automaticamente cdada e adicionada ao escopo.

• Para cada parametro da requisigao cujo nome corresponde ao nome propert)

do bean, o m6todo set correspondente sera chamado.

• C) ActionForm bean atualizado sera enviado ao m6todo execute da Action.,

fazendo com que os valores nele contidos se tornem disponiveis aos beans

que armazenam o estado do sistema e os de 16gica de neg6cio.

E interessante que seja realizada a validagao do ActionForm bean, visto que

eles constituem o fIrewall entre o HTTP e o Action . O m6todo vaLidate deve ser

38

chamado, o que impede que beans que falharam na sua validagao sejam enviados a

Action correspondente. Uma Action 6 um adaptador entre o conteado de uma

requisigao HTTP que chega e a 16gica de neg6cio correspondente que deve ser

executada para processar essa requisigao. O Controller selecionarg a Action

apropriada para cada requisigao, ira criar uma instancia dela (se necess£rio) e

invocara o m6todo execute .

As Actions devem ser programadas de maneira thread-safe , pois o Controller

ira compartilhar a mesma instancia para maltiplas requisig6es que poderao ocorrer

simultaneamente.

Quando uma instancia da Action 6 criada, o ControLler ira chamar o m6todo

setServtet com um argumento nao nulo para identificar a instancia do servLet que sera

vinculada a Action. Quando o servlet 6 fechado (ou reiniciado), o m&todo setServlet

sera invocado com um argumento null.

O m6todo execute da Action processa a requisigao e retorna um objeto do tipo

ActionFoward, que identifica para onde o controle deve ser encaminhado (por

exemplo, um JSP).

O m6todo execute realiza as seguintes tarefas:

• Valida o estado atual da sessao do usuado (verifica, por exemplo, se o

usuario efetuou o login. Caso nao tenha feito, redireciona-o para a pagina

inicial).

• Atualiza os objetos do ladD do servidor que serao utilizados para a criagao

da pr6xima p£gina de interface com o usuado.

• Retorna o ActionFow ard apropriado, jg com os beans atualizados.

i

O ActionMapping & a classe Java respons£vel pelo mapeamento da URI de

requisigao e a classe Action correspondente.

As pdncipais propriedades desta classe sao:

• type – nome da classe Java da implementagao da classe Action usada no

rnapearnento.

• name – nome do Form bean definido no arquivo confIg que sera usado pela

Action.

• path – a URI de requisigao que determina o mapeamento a ser utilizado.

39

• validate – deve ser configurado como true caso o m6todo validate da Action

associada deva ser invocado.

• forward – caminho da URI para qual o controle deva ser encaminhado

quando este mapeamento for invocado.

4.2.4 SWIG

Swig 6 uma ferramenta que simplifica a integragao de programas escritos em C

e C++ com linguagens de script , como Perl, Python, Ruby e Tcl (nestas linguagens 6

assumida a exist6ncia de um conjunto de componentes ja desenvolvidos em outras

linguagens, de forma que o objetivo passa a ser o de combinar estes componentes e

nao o de desenvolver programas a partir de estruturas de dados elementares).

Linguagens de script sao tamb6m conhecidas como de linguagens de colagem ou de

integragao de sistemas.

O Swig utiliza as declarag6es contidas nos cabegalhos dos arquivos escritos em

C/C++ para gerar o c6digo intermediado que as linguagens de script precisam para

acessar o c6digo C/C++ subjacente.

ABm das linguagens de script citadas anteriormente, a partir da versao 1.3.6 do

Swig a linguagem Java (Java JDK 1.1 ou superior) tamb6m passou a ser suportada. O

Swig sera atil para integrar o m6dulo do S ARC relacionado ao Smart Card

(implementado em Java) com a aplicagao responsavel pela comunicagao da leitora

com o computador (implementado em C).

4.2.5 Hibernate

O Hibernate prov6 uma solugao para o mapeamento das classes para as tabelas

do banco de dados, sendo a camada de persist&ncia da aplicagao. E um software

livre, open source e distdbufdo sobre a licenga LGPL [9] .

o Hibernate fornece persist6ncia transparente para Plain Old Java Objects (no

caso do S ARC, sao os beans da camada Model) que, para poderem ser persistidas,

devem apenas ter um construtor sem argumentos. A16m disso, o Hibernate trata de

maneira transparente as chaves primarias, estrangeiras e tabelas n:m associativas.

40

O Hibernate prov6 uma camada de abstragao entre a 16gica e os mecanismos de

persist6ncia, fazendo com que a aplicagao seja facilmente alterada (uma troca no

banco de dados nao requer que nenhuma linha de c6digo seja alterada). Apenas o

arquivo hibernate.cfg.xml deve ser atualizado. Com o uso deste framework, o

desenvolvedor deve preocupar-se apenas com a 16gica de neg6cio, visto que toda a

persist6ncia dos dados & feita pelo Hibernate.

Este framework possui uma linguagem pr6pria, similar a SQL, intitulada HQL

(Hibernate Query Language). Esta linguagem faz com que o conceito de linhas no

banco de dados seja abstrafdo. O programador deve pensar apenas em objetos que

devem ser persistidos na base de dados ou retornados em uma consulta.

O mapeamento dos campos da tabela do banco de dados com os campos da

classe POJO 6 feito no arquivo de configuragao .hbm.xml , que deve ser

preferencialmente anico para cada classe Java (uma boa pr£tica recomendada na

documentagao do Hibernate. Algumas ferramentas que utilizam este framework

requerem que o mapeamento seja feito individualmente). Uma mudanga nas tabelas

do banco de dados ou nos atributos da classe Java mapeada faz com que seja

necess£da apenas uma alteragao no arquivo xml e uma nova montagem dos

componentes no servidor de aplicagao.

O arquivo .Ebm.xml deve possuir as seguintes tags que descrevem a relagio dos

atdbutos da classe Java com os campos na tabela do banco de dados:

• <class>: declaragao de uma classe persistente. Pode conter diversos

parametros, dentre eles name, que indica o nome da classe POJO a ser

persistida e table , que indica o nome da tabela no banco de dados para a

qual a classe deve ser mapeada. Caso o parametro name nao esteja presente,

o Hibernate assume que a classe a ser mapeada nao 6 do tipo POJO.

• <id>: deve estar aninhada na tag <class> e 6 uma informagao obrigat6ria no

mapeamento. Indica qual atributo na classe Java 6 seu identificador e

relaciona-o a coluna na tabela que 6 a chave prim£ria. Pode conter

parametros como name, que indica o nome do atdbuto da classe mapeada

que 6 seu identificador, tYpe , que indica o tipo do identificador e column,

que indica o nome da coluna na tabela que 6 a chave primaia.

41

• <property>: deve estar aninhada na tag <class> e 6 a declarag50 de um

atdbuto da classe Java que deve ser persistida. Pode possuir diversos

parametros, dentre eles name, que 6 o nome do atdbuto da classe Java e

column, que indica o nome da coluna da tabela a qual o atributo deve ser

mapeado.

O Hibernate tamb6m possui um arquivo .cfg.xml , que cont6m as informag6es

do Banco de Dados em uso e dados necess£rios para o acesso ao mesmo (como nome

de usuario e senha), a lista de arquivos .ht>m.xml das classes a serem persistidas.

Todos os arquivos xml necessados podem ser facilmente gerados com

ferramentas desenvolvidas. O arquivo de configuragao Lcfg.xml) pode ser gerado

pelo JBoss-IDE [20] e os xmls de mapeamento (. Ebm.xml) com a ferramenta

Hibernator, ambas que podem ser instaladas como plugins para o software Eclipse

[21], que esti sendo utilizado no ambiente de desenvolvimento.

4.3 Ambiente de execug50

Nesta segao 6 feita uma descrigao dos programas utilizados no ambiente de

execugao do S ARC. sao eles: o servidor de aplicagao JBoss, o servidor Web Tomcat

(contido no JBoss) e o banco de dados MYSQL.

Foram preferencialmente escolhidos softwares livres e open-source , fazendo

com que a aplicagao seja independente de fornecedores e marcas. ABm disso, a

aplicagao pode ser executada em plataforma de sistema operacional Windows ou

Linux, pois foi desenvolvida em Java e possui um ambiente de execugao que segue a

filosofia do software livre.

i apresentada, a seguir, uma descrigao resumida de cada um deles.

4.3.1 JBoss

i um servidor de aplicagao open-source totalmente desenvolvido em Java que

implementa os servigos J2EE.

O JBoss lida com toda a 16gica da aplicagao e conectividade do modelo cliente-

servidor. Ele pode ser encarado como o middleware da aplicagao, visto que fornece

uma camada de abstragao aos programadores que nao precisam preocupar-se com o

42

sistema operacional ou com as inameras interfaces que se fazem necessarias em uma

aplicagao voltada para a Web.

O JBoss possui suporte ao framework Hibernate (ambos os projetos encontram-

se sob a supervisao do mesmo grupo, a JBoss Inc), sendo o respons£vel pelo

gerenciamento do pool de conex6es ao banco de dados [11] .

4.3.2 Tomcat

O Tomcat 6 o servidor web voltado para aplicag6es em Java, desenvolvido pela

Apache Software Foundation. Ele ja esti incluso no servidor de aplicagao JBoss e 6

respons£vel polo di£logo com o servlet de controle da aplicagao (por isso tamb6m 6

denominado um servlet container) [16] .

O Tomcat implementa as especificag6es de servlets e JavaServer Pages (JSP)

da Sun Microsystems e cont6m um compilador, o Jasper, que compila JSPs em

servlets .

Ele age como um daemon, servindo documentos web. O Tomcat aceita as

requisig6es HTTP da rede, fornecendo tamb6m uma resposta HTTP.

4.3.3 MySQL

i um sistema de gerenciamento de banco de dados que utiliza a linguagem

SQL (Structured Query Language) como interface. E atualmente um dos bancos de

dados mais utilizados, com mais de 4 milh6es de instalag6es no mundo, sendo

distribufdo sob a GNU General Public Licence (GPL).Diferentemente dos projetos

como o Apache, em que o desenvolvimento de software 6 feito pela comunidade, o

MySQL pertence e tem suporte de uma empresa sueca, a MySQL AB [13] .

O MySQL 6 escrito em C e C++ e 6 reconhecido pelo seu desempenho e

robustez. E multi-tarefa e multi-usu£rio e possui inimeras caracteristicas positivas,

tais como portabilidade (suporta diversas plataformas como Windows, Linux,

MacOS, FreeBSD, Solaris, C)penBSD entre outros), compatibilidade com diversas

linguagens (possui drivers ODBC, JDBC e .NET), possui uma 6tima estabilidade e

requer poucos recursos de hardware.

43

4.3.4 Vers6es dos aplicativos

Para o desenvolvimento do sistema, foram empregadas as seguintes vers6es de

softw ares :

• Java JDK 1.4.2_08;

• Eclipse 3.0.1;

Os frameworks utilizados foram:

• Hibernate 2.1.8

• SWIG

• Struts 1.2.7

No arnbiente de execugao, foram utilizados:

• MySQL 4.1.12 (com o driver MySQL Cortector 3.1)

• JBoss 3.2.5 (a versao 4.x do JBoss nao foi empregada por ser compativel

apenas com o Java JDK 1.5)

4.4 Conclus6es

Atualmente, encontramos diversos frameworks e especificag6es que tornam o

desenvolvimento de aplicag6es de grande e m6dio porte muito mais simples.

Seguindo os padr6es, as aplicag6es tornam-se escalon£veis e moduladzadas e o foco

do desenvolvimento passa a ser a 16gica de neg6cio.

Vale ressaltar que todos as frameworks e softwares utilizados sao livres, o que

nao acarreta em custos com o seu uso, a16m de proporcionar um grau de liberdade

muito maior, independente de plataformas e marcas.

A configuragao do ambiente para o desenvolvimento de uma aplicagao de

grande porte empregando todas as tecnologias mencionadas no capitulo 6 uma tarefa

dispendiosa, mas que se torna compensadora quando analisada em longo prazo. Para

o desenvolvimento de uma 6nica aplicagao, grande parte do tempo sera gasto nesta

configuragao. Entretanto, os frameworks, padr6es e softwares formam uma base para

o desenvolvimento de outras aplicag6es que podem utilizar a mesma infra-estrutura,

por exemplo.

44

5 DESCRI(,'AO DA ORGANIZA(,'AO DO SARC

O objetivo deste capftulo 6 descrever o agrupamento das classes (pacotes) que

formam o sistema. Existem dois diret6dos pdncipais: src e web.

O diret6do src cont6m os c6digos-fonte sob a licenga GPL. O diret6rio web

possui arquivos de configuragao necess£dos para a aplicagao e as telas JSPs, bem

como os arquivos de extensao .css, que definem os aspectos visuais das telas de

interface com o usuario. A seguir, 6 descrito o conte6do destes dois diret6dos com

maior nfvel de detalhamento.

5.1 Diret6rio src

Este diret6rio cont6m o c6digo-foote do sistema, dividido em pacotes. Cada

pacote cont6m os arquivos de extensao .java que fazem parte de uma mesma camada

do software e que possuam funcionalidades relacionadas.

No sistema existem dois tipos de pacotes:

• subcadeia .infra: sao pacotes que cont6m as classes e arquivos de infra-

estrutura, que sao utilizados por todas as demais classes do sistema e que

sao independentes das particulaHdades da aplicagao. Estas classes podem

ser reaproveitadas para outras aplicag6es e podem ser consideradas como

um/framework.

• subcadeia .sarc: sao pacotes diretamente relacionados a aplicagao e que

cont6m todas as classes que implementam as regras de neg6cio e as
entidades do sistema.

Classificando os pacotes segundo o design pattern MVC, tem-se, para a

camada Model:

• br.usp. poll.infra.core.files'. cont6m o arquivo de configuragao XML

utilizado pelo framework Hibernate. Neste arquivo estao contidas as

informag6es necessarias para o acesso ao Banco de Dados (tais como o

nome do usuario, a senha, etc.) e os arquivos que devem ser mapeados

45

(arquivos terminados em .hbm.xml que fazem o mapeamento entre as

classes da camada Model e as tabelas do Banco de Dados).

br .usp .poll.infra.model. cont6m os componentes b£sicos das entidades da

camada Model que representam o estado atual da aplicagao (ou, conforme o

Capftulo 3, sao os substantivos da camada Modely. a classe EntitYObject .

Esta classe 6 uma das mais importantes da infra-estrutura, pois 6

respons£vel por unir as entidades da camada Model com a camada DAO do

Hibernate. Todas as classes da camada Model da aplicagao (substantivos)

estendem esta classe, que 6 a implementagao b£sica de uma entidade do

srsterna.

br .usp.poll.infra.model.business'. Cont6m o componente basico das

entidades da camada Model respons£veis pela 16gica de neg6cio (ou,

conforme o Capftulo 3, sao os verbos da camada Modely. a classe

BusinessObject . Todas as classes desta camada responsaveis pelas regras de

neg6cio estendem esta classe.

br .usp.poli.infra.model.business.exception Cont6m as classes respons£veis

pelas exceg6es langadas caso ocona algum erro na camada de neg6cio da

aplicagao, ou se alguma regra do neg6cio for violada. sao elas,

respectivamente: BusinessException e BusinessValidationException.

br .usp.poll.infra.model .dao I Cont6m as classes fundamentais para a

utilizagao do framework Hibernate pela aplicagao (mais especificamente,

pela camada Model). A classe EntitYDAO 6 a implementagao minima de um

objeto DAO (GoP design pattern) e fornece os m&todos que funcionam

como ponte entre a aplicagao e a camada de persist6ncia. Esta classe permite

a exist6ncia de apenas uma classe DAO, que 6 utilizada por toda a

aplicagao, fazendo com que as classes DAOs relativas a cada classe da

camada Model sejam desnecess£rias. Ja a classe ErLtit)DAOFacton fornece

objetos DAO para toda a aplicagao. EIa implementa os paNcras DAO

(definidos no padrao J2EE) e Factory (GoF design pattern) .

br .usp .poll.infra.model.dao.exceptiorr. Cont6m as classes responsgveis pelas

exceg6es langadas, caso seja encontrado algum eno na inicializagao do

Hibernate: HibernateInitializerException e HibernateAlread)Confrgured

•

•

e

•

•

46

Exception. Cont6m ainda as classes respons£veis pelas exceg6es langadas,

caso haja algum erro na camada DAO (classe DAC)Exception) e caso

alguma entidade recebida pelo sistema seja inv£lida ou nao correspondente

ao seu tipo esperado (classe InvalidEntinException) .

e br .usp.poli.infra.model.dao.hibernate: Cont6m as classes referentes ao

framework Hibernate. A classe HibernateCore implementa os m6todos para

a obtengao de sessIons, transactions e outros elementos inerentes a camada

DAO. A classe Hibernatelnitializer 6 responsavel pela inicializagao do

Hibernate e 6 chamada pela classe InitializerServlet .

• br.usp .poli.infra.security'. Cont6m a classe DigestGenerator , que 6

responsgvel pela utilizagao do algoritmo MD5, que gera o hash de uma

senha. Esta classe 6 utilizada para o armazenamento de senhas dos usugrios

no banco de dados, garantindo a seguranga da aplicagao.

• br.usp.poli.sarc.model: Cont6m as classes referentes a camada Model da

aplicagao e que descrevem seu estado atual. Tamb6m possui os arquivos de

extensao .ht)m.xml, que fazem o mapeamento destas classes para as tabelas

no Banco de Dados.

br .usp .poli.sarc.model.business-. Cont6m as classes referentes a camada

Model da aplicagao, mais especificamente, de sua 16gica de neg6cio. Este

pacote 6 o coragao da aplicagao, pois aqui sao implementadas as

funcionalidades oferecidas ao usu£do pelo sistema.

Classificando os pacotes segundo o desIgn pattern MVC, tem-se, para a

camada yieyy:

• br.usp.poti.sarc.resources'. Cont6m o arquivo ApplicationResources.

properties que permite que a aplicagao seja facilmente transportada para um

outro idioma. Todos os arquivos do tipo JSPs da aplicagao, que comp6em a

camada View, encontram-se no diret6rio web, bem como os arquivos de

extensao .css, que definem a apar6ncia da interface do sistema como o

usu£rlo.

47

Finalmente, classificando os pacotes segundo o design pattern MVC, tem-se,

para a camada Controller'.

• br .asp.poti.infra.controller .action. Cont6m o componente basico da camada

Controller , implementada pelo Struts: a classe Strut sDefaultAction. EIa & a

implementagao minima de uma Action padrao do Struts. Ha ainda uma outra

classe, a StrutsDispatchAction, que estende a classe DispatchAction,

tamb6m definida pelo Struts. Esta Action 6 itil para casos onde a mesma

classe deve ser reaproveitada para diversas tarefas, como no caso de

remogao/insergao/atualizagao no Banco de Dados. O m6todo a ser utilizado

pela Action 6 definido pela propriedade parameter , mapeada no

ActionMappings . Este pacote possui as funcionalidades centrais e basicas da

camada Controller da aplicagao.

br.usp.poti.infra.core'. Cont&m as classes de base para a aplicagao. A classe

Constants define constantes que serao utilizadas em toda a aplicagao. Ja a

classe Initialize rServlet 6 responsavel pela inicializagao do servlet principal

de controle e de todos os recursos que devem ser configurados ou

preparados para a inicializagao da aplicagao. No caso, o recurso Hibernate &

inicializado: sua SessionFactory 6 configurada e inicializada a partir do

arquivo de configurag6es XML, contido no pacote

br .usp.poli.infra.core.files .

br.asp.poli.infra.exception: Cont6m a classe InfraException, respons£vel por

langar as exceg6es, caso ocorra alguma falha nas classes de infra-estrutura

do sistema.

br.usp.poli.sarc.controller.action: Cont6m as classes da camada

Controller da aplicagao, mapeadas no ActionMappings .

•

•

•

5.2 Diret6rio web

O segundo diret6rio principal, definido com o nome web, cont6m todos os

arquivos JSPs das telas do sistema, que comp6e a camada View da aplicagao. Estes

arquivos encontram-so no diret6rio sarc.

48

O diret6rio css cont6m os arquivos de extensao .css que definem o padrao da

interface do sistema.

Outro diret6rio importante 6 o WEB-INF que cont6m os arquivos XML de

configuragao da aplicagao, que sao:

• struts-confIg.xml. este 6 o ActionMapping da aplicagao, que faz o
mapeamento da URL recebida e a classe Action correspondente, bem como

o mapeamento entre os FormBeans e suas classes correspondentes na

camada Model.

• validation.xml: arquivo que descreve as regras de validagao dos FormBeans

da aplicagao. Ele indica quais campos t&m seu preenchimento obrigat6rio e

as regras de validagao dos mesmos (n6mero e tipos de caracteres).

49

6 CONSIDERAC'6ES FINAIS

6.1 Resultados obtidos

At6 o momento o sistema apresenta resultados satisfat6dos. No entanto, sao

necess£rios mais testes com uma quantidade maior de pessoas para averiguar sua

viabilidade.

Testes unit£rios (testes de caixa branca) foram feitos ao longo do processo de

desenvolvimento. Posteriormente, foram realizados testes de caixa preta que

analisavam a integragao dos diversos m6dulos do sistema

No entanto, para assegurar a validagao do sistema, usuarios com o perfil de

funcion£rios do COSEAS testariam funcionalidades envolvendo os controladores de

estoque, nutricionista, alunos, funcion£dos da USP, compradores e administradores

do departamento financeiro.

Seria interessante ainda avaliar com mais precisao o funcionamento correto de

todas as consultas a banco de dados e sua persist6ncia, as interfaces de comunicagao,

hardware, software e comunicagao a16m das pgginas web do sistema.

Aparentemente, o c6digo desenvolvido nao apresenta grandes problemas, com

as funcionalidades essenciais funcionando corretamente. Entre os principais m6dulos

do software em funcionamento, temos o de cadastro, compras, vendas, estoque e

cr6dito.

Os atores atendidos pela versao inicial do sistema sedam os clientes, o caixa,

os nutricionista, o supervisor de estoque e o funcion£rio da administragao.

6.2 Dificuldades enfrentadas e solug6es

Ap6s a instalagao do Hibernate, era necessado alterar arquivos de configuragao

para que a base de dados fosse reconhecida e conetamente persistida no ambiente de

desenvolvimento. Como os tutoriais para criar as configurag6es eram escassos e

pouco claros, foi necess£rio um tempo adicional para atribuir as configurag6es

corretas

50

Outro ponto importante a ser considerado 6 que havia muitos pLugins a serem

instalados e cada um possufa o seu pr6prio padrao. Tamb6m houve problemas com

arquivos do tipo .jar que nao eram encontrados em determinados locais. Mesmo

alterando as vadaveis de ambiente, o problema persistia, Sendo assim, a solugao foi

copiar os arquivos para os diret6dos necessarios.

O JBoss apresentou problemas com relagao ao diret6do em que podeda ser

instalado (nao era permitido o caractere de espago). Ap6s essa corregao, surgiram

outros erros com o plugin de interface com o Eclipse. Ap6s vadas pesquisas na

internet, descobriu-se que a versao era incompatfvel com a do Eclipse. Assim, foi

necessado instalar uma outra versao do plugin para que o JBoss funcionasse

corretamente.

Ap6s a chagao de uma pagina de algum m6dulo do sistema, esta deveria ser

configurada em diversos m6dulos da arquitetura do desIgn pattern MVC para que

esta p£gina fosse incorporada e acessada como parte integrante do sistema.

Existiram dificuldades em gerar alguns scripts no MySQL para fazer com que

as classes de 16gica de neg6cio pudessem acessar corretamente a base de dados

relacional do sistema.

Houve uma certa dificuldade em cadastrar o dep6sito de arquivos do sistema e

acess£-lo remotamente. O problema foi resolvido pesquisando-se outros servidores

para o servigo de CVS, at6 o encontro de um servidor satisfat6do denominado

FreeRepositor) .

Por fim, com relagao aos Smart Cards a maJor dificuldade foi encontrar

informag6es completas a respeito da arquitetura e pregos de equipamentos a venda

em empresas localizadas em territ6rio nacional. As restrig6es inerentes ao processo

de aquisigao de equipamentos por conta da universidade atrasaram excessivamente o

prazo de entrega do produto e entao a compra nao foi concretizada. Passou-se a

utilizar alguns equipamentos do pr6prio departamento para a realizagao de testes,

embora nao possufam nenhuma documentagao. AH o momento da elaboragao deste

relat6rio, nao tivemos sucesso na compreensao total dos dados jg trocados entre a

leitora e o cartao

51

6.3 Contribuig6es

O principal legado do SARC foi o desenvolvimento de uma infra-estrutura para

aplicag6es de m6dio/grande porte. Esta etapa demandou grande parte da fase de

desenvolvimento do projeto e teve como produto um conjunto de classes Java

independente das panicuIMdades da camada de neg6cio da aplicagao. Estas classes

podem ser reaproveitadas em outros projetos sem sofrer qualquer alteragao, podendo

ser consideradas um framework de integragao entre o Hibernate e o Struts.

Outra contribuigao importante da aplicagao 6 o m6dulo respons£vel pela

comunicagao com o Smart Card. A solugao implementada dispensa o uso de kits de

desenvolvimento extremamente caros e de drivers propriet£rios (a comunicagao &

feita diretamente com a porta serial), sendo uma solugao eficiente e barata. A16m

disso, pode ser reutilizada para qualquer leitora de SalaM Card com interface serial

RS-232 que se adeque a especificagao ISO 7816.

Vale ressaltar que o projeto 6 um exemplo de aplicagao desenvolvido

exclusivamente com ferramentas abertas e livres, comprovando a efici6ncia de

softwares que seguem tal filosofia, que, por nao necessitarem do pagamento de

ro)atties , tornam a solugao mais barata.

I

6.4 Vers6es futuras

Como a seguranga nao foi o foco, novos m6todos podedam ser desenvolvidos

para tornar o sistema mais seguro, mas sem perder em demasia a praticidade. Nesse

caminho, ha a possibilidade de implementar novas formas de pagamentos com a

parceria dos bancos.

As vers6es futuras do software teriam novas funcionalidades que com certeza

surgiriam com a utilizagao do sistema. Provavelmente incluidam novos tipos

relat6rios e acessos mais eficazes a determinadas funcionalidades.

Seria interessante a disponibilizagao do site em diversas Ifnguas, visto que USP

recebe estudantes de in6meras nacionalidades. Essa funcionalidade seria de facil

implementagao, uma vez que o sistema foi projetado com esta preocupagao.

52

6.5 Viabilidade e implantag50

O sistema S ARC mostra-se muito eficiente. No entanto, para que sua

implantagao seja vi£vel, 6 necessgdo um bom planejamento e que seja aumentado

sua segurarlga.

Em relagao a parte que envolve o Smart Card, inicialmente, este pode ser

implantado em restaurantes de mellor porte em relagao ao COSEAS, no qual o

S ARC trabalhada em paralelo com o sistema atual. Um grupo pequeno de pessoas

tentaria encontrar problemas no sistema e fazer novas sugest6es, as quais seriam

analisadas de acordo com as facilidades que elas proporcionariam e o grau de

dificuldade de implement&las.

Ap6s a consolidagao do sistema, iniciada a sua implantagao nos demais

restaurantes, ainda mantendo os dois sistemas. Caso o SARC suporte a imensa

demanda, o sistema de pagamento via tickets seda suspenso, e o S ARC atuaria

sozinho, podendo-se efetuar a troca dos tickets durante um periodo. Estima-se que

esse processo levaria cerca de seis meses.

As demais panes do sistema seguiriam um processo semelhante, com sistemas

em paralelos e com um volume manor de dados no in icio. Com a consolidagao, a

carga de dados seria aumentada, at6 que o sistema torne-se auto-suficiente.

53

7 ANEXO A – DIAGRAMAS BPMN

7.1 Compra de insumos

Chamada para
o pregao

Envia novas
ofertas de

pregos

Realiza pedido de
compra atrav6s do
sistema Merc(lrio

Realizar compra
acima da menor

oferta para o leilao

Realiza o
leilao

Realiza a compra
da empresa
contratada

ii
8
a
E

LU

A entrega d
determina

pelo tipo de
produtoAssinar contrato realizada

para o ano ou
semestre inteiro

B
A cada r8f6bao

7.2 Recebimento de insumos

'fscolhe as empM
com o prego at6 1 0%

acima da menor
oferta para o leilao

Divulga a data
do prey B

g
8
a
E

LU

A entrega 6
determ ina

pelo tipo de
produto

Entregar
produto

Assinar contrato

54

7.3 Gerag50 de cardgpio

lg

Pedir consulta
de insumos

7.4 Controle financeiro

Envia infarmagao de
venda para o
financeiros

Enviar dados dos
subsidios fornecidos

55

8 ANEXO B – MODELO DE CASOS DE USO

1. Descrigao dos Atores

• Cliente: Tem suas informag6es cadastrais e de freqD6ncia arrnazenadas pelo

sistema. Pode acessa-lo via Internet para efetuar a compra de tickets

refeigao.

• Caixa: Respons£vel pela venda de tickets refeigao nos postos espalhados

pelas faculdades. Acessa o sistema via Intranet .

• Nutricionista: Acessa o sistema via Intranet utilizando uma senha padrao

para nutricionistas do COSEAS. Aprova o card£pio elaborado pelo sistema

ou faz alterag6es no mesmo. Para tanto, tem acesso aos relat6rios de

estoque, que lista os produtos armazenados, bem como seus prazos de

validade. Tamb6m tem a fungao de cadastrar os pratos que serao utilizados

na elaboragao do card£pio.

• Supervisor de estoque: Acessa o sistema via Intranet , com a senha padrao

de supervisor de estoque. i respons£vel tamb6m pelo cadastro de produtos

no Banco de Dados e pela entrada e safda de insumos nos almoxadfados.

• Funciongrio da administrag5o: Acessa o sistema via Intranet , usando uma

senha padrao de funcionado de administragao. Tem acesso a todos os

relat6rios gerados pelo sistema e 6 responsavel pelo cadastro dos

restaurantes na base de dados do sistema.

2. Descrigao dos casos de uso

2.1 M6dulo de Cadastro

2.1.1 Inserir Produto

Descrigao: Este caso de uso descreve o processo de cadastro de um novo produto.

Evento iniciador: Supervisor de estoque seleciona a area de produtos cadastrados.

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado no sistema.

56

Sequencia de eventos:

1. Supervisor de estoque seleciona a area de produtos cadastrados.

2. Sistema exibe uma lista de todos os produtos cadastros.

3. Supervisor seleciona a opgao de cadastro de novos produtos.

4. Sistema exibe os campos necessarios ao cadastro.

5. Supervisor insere os dados solicitados e confirma a operagao.

6. Sistema registra no banco de dados as informag6es inseridas da etapa

anterior e envia mensagem de sucesso ao usu£rio.

7. Supervisor finaliza a sessao.

P6s-.condigao: Novo produto cadastrado no sistema.

Cen£rio Secundgrio:

1. Supervisor insere um dado inconsistente ou fora de algum padrao: sistema

emite uma mensagem de erro e retorna ao Passo 4

2. Supervisor desiste de cadastrar um novo produto: sistema volta a sua tela

inicial.

3. Supervisor tenta cadastrar um produto jg existente na base de dados: sistema

emite uma mensagem de erro e retorna ao Passo 4

Inclusao: Caso de uso !ogar no sistema (Passo I).

I

2.1.2 Alterar Produto

Descrigao: Este caso de uso descreve o processo de modificagao de um campo de

um produto cadastrado.

Evento iniciador: Supervisor de estoque seleciona a area de produtos cadastrados.

Atores: Supervisor de estoque.

Pr6-condig5o: Supervisor logado no sistema, produto cadastrado.

Seqiiencia de eventos:

1. Supervisor de estoque seleciona a area de produtos cadastrados.

2. Sistema exibe uma lista de todos os produtos cadastros.

3. Supervisor seleciona o produto que ele deseja alterar.

4. Sistema exibe os campos do produto escolhido.

5. Supervisor seleciona a opgao “alterar produto”.

6. Sistema exibe os campos do produto, habilitados para edigao.

57

7. Supervisor insere oCs) novo(s) dado(s) e confirma a operagao.

8. Sistema registra no banco de dados as novas informag6es e envia mensagem

de sucesso ao usu£rio.

9. Supervisor finaliza a sessao.

P6s-condigao: Produto recadastrado no banco de dados.

Cengrio Secund£rio:

1. Supervisor desiste de alterar os dados do produto: sistema volta a sua tela

inicial.

2. Supervisor insere dados inconsistentes (Passo 7): sistema emite uma

mensagem de erro e retorna ao Passo 6.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.3 Excluir Produto

Descrigao: Este caso de uso descreve o processo de remogao de um produto

cadastrado no sistema.

Evento iniciador: Supervisor de estoque seleciona a area de produtos cadastrados.

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado no sistema.

Seqiiencia de eventos:

1. Supervisor de estoque seleciona a area de produtos cadastrados.

2. Sistema exibe uma lista de todos os produtos cadastros.

3. Supervisor seleciona a opgao de exclusao de um determinado produto.

4. Sistema exibe uma mensagem pedindo a confirmagao da operagao.

5. Supervisor confirma a operagao.

6. Sistema remove do banco de dados as informag6es referentes ao produto em

questao e envia mensagem de sucesso ao usuario.

7. Supervisor finaliza a sessao.

P6s-condigao: Produto exclu ido do banco de dados.

Cen£rio Secund£rio:

1. Supervisor desiste de excluir o produto: sistema volta a sua tela inicial.

2. Supervisor tenta excluir produto que possui pend6ncia (compra ja efetuada):

ssitema exibe mensagem de erro e retorna ao Passo 2.

58

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.4 Cadastrar Fornecedor

Descrigao: Este caso de uso descreve o processo de cadastro de um novo fornecedor.

Evento iniciador: Supervisor de estoque seleciona a area de fornecedores

cadastrados .

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado no sistema.

Seqiiencia de eventos:

1. Supervisor de estoque seleciona a area de fornecedores cadastrados.

2. Sistema exibe uma lista de todos os fornecedores cadastros.

3. Supervisor seleciona a opgao de cadastro de novos fornecedores.

4. Sistema exibe os campos necess£dos ao cadastro.

5. Supervisor insere os dados solicitados e confirma a operagao.

6. Sistema registra no banco de dados as informag6es inseridas da etapa

anterior e envia mensagem de sucesso ao usu£rio.

7. Supervisor finaliza a sessao.

P6s-condig5o: Novo fornecedor cadastrado no sistema.

Cen£rio Secundgrio:

1. Supervisor insere um dado inconsistente ou fora de algum padrao: sistema

emite uma mensagem de erro.

2. Supervisor desiste de cadastrar um novo fornecedor: sistema volta a sua tela

inicial.

3. Supervisor tenta cadastrar um fornecedor ja existente na base de dados:

sistema emite uma mensagem de erro e retorna ao Passo 4.

Inclus5o: Caso de uso togar no sistema (Passo I).

2.1.5 Alterar Fornecedor

Descrig5o: Este caso de uso descreve o processo de modificagao de um campo de

um fornecedor cadastrado.

Evento iniciador: Supervisor de estoque seleciona a area de fornecedores

cadastrados

59

Atolres: Supervrsor de estoque.

Pr6-condig5o: Supervisor logado no sistema, fornecedor cadastrado.

Seqiiencia de eventos:

1. Supervisor de estoque seleciona a area de fornecedores cadastrados.

2. Sistema exibe uma lista de todos os fornecedores cadastros.

3. Supervisor seleciona o fornecedor que cIe deseja alterar.

4. Sistema exibe os campos do fornecedor escolhido

5. Supervisor seleciona a opgao “alterar fornecedor

6. Sistema exibe os campos do fornecedor, habilitados para edigao.

7. Supervisor insere oCs) novo(s) dado(s) e confirma a operagao.

8. Sistema registra no banco de dados as novas informag6es e envia mensagem

de sucesso ao usuario.

9. Supervisor finaliza a sessao.

P6s-condigao: Fornecedor recadastrado no banco de dados.

Cen£rio Secundgrio:

1. Supervisor desiste de alterar os dados do fornecedor: sistema volta a sua tela

inicial.

2. Supervisor fornece dados inconsistentes (Passo 7): sistema exibe mensagem

de erro e retorna ao Passo 6.

Inclus5o: Caso de uso logar no sistema (Passo I).

2.1.6 Excluir Fornecedor

Descrigao: Este caso de uso descreve o processo de remogao de um fornecedor

cadastrado no sistema.

Evento iniciador: Supervisor de estoque seleciona a area de fornecedores

cadastrados.

Atores: Supervisor de estoque.

Pr6-condig5o: Supervisor togado no sistema.

Seqii6ncia de eventos:

1. Supervisor de estoque seleciona a area de fornecedores cadastrados.

2. Sistema exibe uma lista de todos os fornecedores cadastros.

3. Supervisor seleciona a opgao de exclusao de um determinado fornecedor.

60

4. Sistema exibe uma mensagem pedindo a confirmagao da operagao.

5. Supervisor confirma a operagao.

6. Sistema remove do banco de dados as informag6es referentes ao fornecedor

em questao e envia mensagem de sucesso ao usuario.

7. Supervisor finaliza a sessao.

P6s'-'condigao: Fornecedor exclufdo do banco de dados.

Cengrio Secund£rio:

1. Supervisor desiste de excluir o fornecedor: sistema volta a sua tela inicial.

2. Supervisor tenta excluir for4necedor com pend6ncia (compra em

andamento): sistema exibe mensagem de erro e retorna ao Passo 2.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.7 Inserir Restaurante

Descrig5o: Este caso de uso descreve o processo de cadastro de um novo restaurante.

Evento iniciador: Supervisor de estoque seleciona a area de restaurantes

cadastrados.

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado no sistema.

Seqaencia de eventos:

1. Supervisor de estoque seleciona a area de restaurantes cadastrados.

2. Sistema exibe uma lista de todos os restaurantes cadastros

3. Supervisor seleciona a opgao de cadastro de novos restaurantes.

4. Sistema exibe os campos necess£rios ao cadastro.

5. Supervisor insere os dados solicitados e confirma a operagao.

6. Sistema registra no banco de dados as informag6es inseridas da etapa

anterior e envia mensagem de sucesso ao usu£rio.

7. Supervisor finaliza a sessao.

P6s-condigao: Novo restaurante cadastrado no sistema.

Cen£rio Secundgrio:

1. Supervisor insere um dado inconsistente ou fora de algum padrao: sistema

emite uma mensagem de erro.

61

2. Supervisor desiste de cadastrar um novo restaurante: sistema volta a sua tela

inicial.

3. Supervisor tenta cadastrar um produto ja existente na base de dados: sistema

unite uma mensagem de erro e retorna ao Passo 4

Inclus5o: Caso de uso logar no sistema (Passo I).

2.1.8 Alterar Restaurante

Descrigao: Este caso de uso descreve o processo de modificagao de um campo de

um restaurante cadastrado.

Evento iniciador: Supervisor de estoque seleciona a area de restaurantes

cadastrados .

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado no sistema, restaurante cadastrado.

Seqaencia de eventos:

1. Supervisor de estoque seleciona a area de restaurantes cadastrados.

2. Sisterna exibe uma lista de todos os restaurantes cadastros

3. Supervisor seleciona o restaurante que ele deseja alterar.

4. Sistema exibe os campos do restaurante escolhido,

5. Supervisor seleciona a opgao “alterar restaurante”

6. Sistema exibe os campos do restaurante, habilitados para edigao.

7. Supervisor insere oCs) novo(s) dado(s) e confirma a operagao.

8. Sistema registra no banco de dados as novas informag6es e envia mensagem

de sucesso ao usuario.

9. Supervisor finaliza a sessao.

P6s-condig5o: Restaurante recadastrado no sistema.

Cen£rio Secund£rio:

1. Supervisor desiste de cadastrar um novo restaurante: sistema volta a sua tela

inicial.

2. Supervisor fornece dados inconsistentes (Passo 7): sistema exibe mensagem

de erro e retorna ao Passo 6.

Inclusao: Caso de uso logar no sistema (Passo I).

62

2.1.9 Excluir Restaurante

Descrigao: Este caso de uso descreve o processo de remogao de um restaurante

cadastrado no sistema.

Evento iniciador: Supervisor de estoque seleciona a area de restaurantes

cadastrados.

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado no sistema.

Seqiiencia de eventos:

1. Supervisor de estoque seleciona a area de restaurantes cadastrados.

2. Sistema exibe uma lista de todos os restaurantes cadastros

3. Supervisor seleciona a opgao de exclusao de um determinado restaurante.

4. Sistema exibe uma mensagem pedindo a confirmagao da operagao.

5. Supervisor confirma a operagao.

6. Sistema remove do banco de dados as informag6es referentes ao restaurante

em questao e envia mensagem de sucesso ao usu£rio.

7. Supervisor finaliza a sessao.

P6s-condigao: Restaurante exclufdo do banco de dados.

Cengrio Secund£rio:

1. Supervisor desiste de excluir o restaurante: sistema volta a sua tela inicial.

2. Supervisor tenta excluir restaurante com pend6ncia (produtos em estoque):

sistema emite mensagem de eno e retorna ao Passo 2.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.10 Inserir Prato

Descrigao: Este caso de uso descreve o processo de cadastro de um novo prato.

Evento iniciador: Nutricionista seleciona a area de pratos cadastrados.

Atores: Nutricionista

Pr6-'condig5o: Nutricionista logado no sistema.

Seqoencia de eventos:

1. Nutricionista seleciona a area de pratos cadastrados.

2. Sistema exibe uma lista de todos os pratos cadastros.

3. Nutricionista seleciona a opgao de cadastro de novos pratos.

63

4. Sistema exibe os campos necessgrios ao cadastro.

5. Nutricionista insere os dados solicitados e confirma a operagao.

6. Sistema registra no banco de dados as informag6es inseridas da etapa

anterior e envia mensagem de sucesso ao usuario.

7. Nutricionista finaliza a sessao.

P6s-condig5o: Novo prato cadastrado no sistema.

Cen£rio Secund£rio:

1. Nutricionista insere um dado inconsistente ou fora de algum padrao: sistema

emite uma mensagem de erro.

2. Nuhicionista desiste de cadastrar um novo prato: sistema volta a sua tela

inicial.

Inclus5o: Caso de uso logar no sistema (Passo I).

4i•l• II aLI Lula 1 1 IULU

Descrig5o: Este caso de uso descreve o processo de modificagao de um campo de

um prato cadastrado.

Evento iniciador: Nutdcionista seleciona a area de pratos cadastrados.

Atores: Nutricionista.

Pr6-'condigao: Nutricionista !ogado no sistema, prato cadastrado.

Seqiiencia de eventos:

1. Nutricionista seleciona a area de pratos cadastrados.

2. Sistema exibe uma lista de todos os pratos cadastros.

3. Nutricionista seleciona o prato que ele deseja alterar.

4. Sistema exibe os campos do prato escolhido, habilitados para edigao.

5. Nutdcionista insere oCs) novo(s) dado(s) e confirma a operagao.

6. Sistema registra no banco de dados as novas informag6es e envia mensagem

de sucesso ao usuario.

7. Nutricionista finaliza a sessao.

P6s-.condigao: Prato recadastrado no banco de dados.

Cenario Secund£rio:

1. Nutricionista desiste de cadastrar um novo prato: sistema volta a sua tela

inicial.

64

2. Nutricionista fornece dados inconsistentes (Passo 5): sistema envia

mensagem de erro e retorna ao Passo 4.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.12 Excluir Prato

Descrigao: Este caso de uso descreve o processo de remogao de um prato cadastrado

no slstema.

Evento iniciador: Nutdcionista seleciona a area de pratos cadastrados.

Atores: Nutricionista.

Pr6-condig5o: Nutdcionista logado no sistema.

Seqiiencia de eventos:

1. Nutricionista seleciona a area de pratos cadastrados.

2. Sistema exibe uma lista de todos os pratos cadastros.

3. Nutricionista seleciona a opgao de exclusao de um determinado prato.

4. Sistema exibe uma mensagem pedindo a confirmagao da operagao.

5. Nutdcionista confirma a operagao.

6. Sistema remove do banco de dados as informag6es referentes ao prato em

questao e envia mensagem de sucesso ao usuario.

7. Nutricionista finaliza a sessao.

P6s-condigao: Prato exclufdo do sistema.

Cen£rio Secundario:

1. Nutricionista desiste de excluir o prato: sistema volta a sua tela inicial.

2. Nutricionista tenta remover prato com pend6ncia (em uso no cardapio):

sistema envia mensagem de erro e retorna ao Passo 2.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.13 Inserir Card£pio Servido

Descrigao: Este caso de uso descreve o processo de cadastro de um novo card£pio

servido.

Evento iniciador: Funcion£rio seleciona a area de card£pio servidos cadastrados.

Atores: Funcion£rio.

Pr6-condigao: Funcion£rio logado no sistema.

65

Seqii6ncia de eventos:

1. Funcionario seleciona a area de cardgpios servidos cadastrados.

2. Sistema exibe uma lista de todos os card£pios servidos cadastrados.

3. Funcionario seleciona a opgao de cadastro de novos cardapios servidos.

4. Sistema exibe os campos necess£rios ao cadastro.

5. Funcionario insere os dados solicitados e confirma a operagao.

6. Sistema registra no banco de dados as informag6es inseridas da etapa

anterior e envia mensagem de sucesso ao usu£do.

7. Funcion£rio finaliza a sessao.

P6s-condigao: Novo cardapio servido cadastrado no sistema.

Cen£rio Secundgrio:

1. Funciongrio insere um dado inconsistente ou fora de algum padrao: sistema

emite uma mensagem de erro.

2. Funcionario desiste de cadastrar um novo cardgpio servido: sistema volta a

sua tela inicial.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.14 Alterar Card£pio Servido

Descrigao: Este caso de uso descreve o processo de modificagao de um campo de

um card£pio servido cadastrado.

Evento iniciador: Funcion£rio seleciona a area de card£pios servidos cadastrados.

Atores: Funcionario.

Pr6-condigao: Funcionario logado no sistema, cardapio servido cadastrado.

Seqii6ncia de eventos:

1. Funcion£rio seleciona a area de card£pios servidos cadastrados.

2. Sistema exibe uma lista de todos os cardapios servidos cadastros.

3. Funcion£rio seleciona o card£pio servido que ele deseja alterar.

4. Sistema exibe os campos do cardgpio servido escolhido, habilitados para

edigao.

5. Funcion£rio insere oCs) novo(s) dado(s) e confirma a operagao.

6. Sistema registra no banco de dados as novas informag6es e envia mensagem

de sucesso ao usuario.

66

7. Funciongrio finaliza a sessao.

P6s-condig5o: Cardapio servido recadastrado no banco de dados.

Cen£rio Secundgrio:

1. Funcionario desiste de cadastrar um novo cardgpio servido: sistema volta a

sua tela inicial.

2. Funcion£rio fornece dados inconsistentes (Passo 5): sistema envia

mensagem de erro e retorna ao Passo 4.

Inclus5o: Caso de uso !ogar no sistema (Passo I).

2.1.15 Excluir Cardapio Servido

Descrigao: Este caso de uso descreve o processo de remogao de um cardapio servido

cadastrado no sistema.

Evento iniciador: Funcion£rio seleciona a area de cardapios servidos cadastrados.

Atores: Funcion£rio.

Pr6-'condigao: Funcionario logado no sistema.

Seqiiencia de eventos:

1. Funcion£rio seleciona a area de card£pios servidos cadastrados.

2. Sistema exibe uma lista de todos os card£pios servidos cadastros.

3. Funcion£rio seleciona a opgao de exclusao de um determinado cardapio

servido.

4. Sistema exibe uma mensagem pedindo a confirmagao da operagao.

5. Funciongrio confirma a operagao.

6. Sistema remove do banco de dados as informag6es referentes ao cardapio

servido em questao e envia mensagem de sucesso ao usuado.

7. Funcion£rio finaliza a sessao.

P6s-condigao: Card£pio servido exclufdo do sistema.

Cengrio Secund£rio:

1. Funcion£rio desiste de excluir o cardapio servido: sistema volta a sua tela

inicial.

2. Funcionario tenta remover card£pio servido com pend&ncia (em uso no

cardapio): sistema envia mensagem de eno e retorna ao Passo 2.

Inclus5o: Caso de uso togar no sistema (Passo I).

67

2.1.16 Inserir Aluno

Descrigao: Este caso de uso descreve o processo de cadastro de um novo aluno.

Evento iniciador: Funcionario seleciona a area de alunos cadastrados.

Atores: Funcionario.

Pr6-condigao: Funcionario togado no sistema.

Seqii6ncia de eventos:

1. Funcionario seleciona a area de alunos cadastrados.

2. Sistema exibe uma lista de todos os alunos cadastrados.

3. Funcionario seleciona a opgao de cadastro de novos alunos.

4. Sistema exibe os campos necessarios ao cadastro.

5. Funciongrio insere os dados solicitados e confirma a operagao.

6. Sistema registra no banco de dados as informag6es inseridas da etapa

anterior e envia mensagem de sucesso ao usuario.

7. Funcionario finaliza a sessao.

P6s-condigao: Novo aluno cadastrado no sistema.

Cengrio Secundgrio:

1. Funcion£rio insere um dado inconsistente ou fora de algum padrao: sistema

emite uma mensagem de erro.

2. Funcion£rio desiste de cadastrar um novo aluno: sistema volta a sua tela

inicial.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.17 Alterar Aluno

Descrigao: Este caso de uso descreve o processo de modificagao de um campo de

um cardapio servido cadastrado.

Evento iniciador: Funcionario seleciona a area de alunos cadastrados.

Atores: Funcion£rio.

Pr6-condig5o: Funcionario logado no sistema, aluno cadastrado.

Seqiiencia de eventos:

1. Funcion£rio seleciona a area de alunos cadastrados.

2. Sistema exibe uma lista de todos os alunos cadastros.

3. Funcion£rio seleciona o aluno que ele deseja alterar.

68

4. Sistema exibe os campos do aluno escolhido, habilitados para edigao.

5. Funcion£rio insere oCs) novo(s) dado(s) e confirma a operagao.

6. Sistema registra no banco de dados as novas informag6es e envia mensagem

de sucesso ao usuario.

7. Funcion£rio finaliza a sessao.

P6s-condigao: Aluno recadastrado no banco de dados.

Cengrio Secund£rio:

1. Funcionario desiste de cadastrar urn novo aluno: sistema volta a sua tela

inicial.

2. Funcionario fornece dados inconsistentes (Passo 5): sistema envia

mensagem de erro e retorna ao Passo 4.

Inclusao: Caso de uso logar no sistema (Passo I).

2.1.18 Excluir Aluno

Descrig5o: Este caso de uso descreve o processo de remogao de um aluno cadastrado

no srsterna.

Evento iniciador: Funcionario seleciona a area de alunos cadastrados.

Atores: Funcionario.

Pr6-condig5o: Funcionario togado no sistema.

Seqii6ncia de eventos:

1. Funcion£rio seleciona a area de alunos cadastrados.

2. Sistema exibe uma lista de todos os alunos cadastros.

3. Funciongdo seleciona a opgao de exclusao de um determinado aluno.

4. Sistema exibe uma mensagem pedindo a confirmagao da operagao.

5. Funcion£rio confirma a operagao.

6. Sistema remove do banco de dados as informag6es referentes ao aluno em

quest50 e envia mensagem de sucesso ao usuario.

7. Funcion£rio finaliza a sessao.

P6s-condig5o: Aluno exclufdo do sistema.

Cenario Secund£rio:

1. Funcionario desiste de excluir o aluno: sistema volta a sua tela inicial

69

2. Funcion£rio tenta remover aluno com pend6ncia (em uso no card£pio):

sistema envia mensagem de erro e retorna ao Passo 2.

Inclusao: Caso de uso logar no sistema (Passo I).

2.2 M6dulo de Cr6dito

2.2.1 Debitar cr6ditos ao passar pela catraca

Descrigao: Este caso de uso descreve o processo de d6bito da conta do usuario ao

passar pela catraca eletr6nica.

Evento iniciador: Cliente passa o cartao no leitor da catraca.

Atores: Cliente.

Pr6.-condigao: Leitor do canao funcionando e aguardando leitura.

Seqiiencia de eventos:

1. Sistema realiza leitura no cartao;

2. Sistema verifica se usuario ja realizou a refeigao;

3. Sistema verifica o cr6dito contido no cartao;

4. Sistema registra a hora da entrada do cliente no restaurante;

5. Sistema destrava catraca, liberando o acesso ao restaurante;

P6s-condig5o: Entrada registrada, namero de cr6ditos no canao decrementado e

catraca liberada.

Cenario secund£rio:

1. Falha na leitura (Passo I) – Informa erro na leitura. Sistema barra entrada e

pede nova leitura;

2. usuado travado (Passo 2) – Informa que usu£rio ja realizou a refeigao.

Sistema barra entrada e pede nova leitura;

3. Aluno sem cr6dito (Passo 3) – Informa que nao hi mais cr6dito. Sistema

barra entrada e pede nova leitura;

Inclus5o: Nenhuma

70

2.3 M6dulo de Compra

2.3.1 Sugerir Compra

Descrig5o: Este caso de uso descreve o processo de sugestao de compra de insumos.

Evento iniciador: Supervisor de estoque requisita a ftmgao de sugestao de compra

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor de estoque logado no sistema.

Seqii6ncia de eventos:

1. Supervisor de estoque requisita a fungao sugestao de compra.

2. Sistema exibe a lista de insumos cadastrados.

3. Supervisor de estoque seleciona os produtos.

4. Sistema consulta sua base de dados do estoque e executa algodtmos para

gerar a sugestao de compra e exibe o resultado na tela.

5. Supervisor de estoque finaliza a operagao.

P6s-condig5o: Sugestao de compra exibida ao Supervisor de estoque.

Cengrio Secund£rio:

1. Supervisor de estoque desiste da operagao (Passos 2 e 3) – sistema retorna a

tela inicial.

Inclus5o: Caso de uso logar no sistema.(Passo I).

2.4 M6dulo de Consumo

2.4.1 Gerar Card£pio

Descrigao: Este caso de uso descreve o processo de geragao do card£pio semanal

utilizado nos restaurantes do COSEAS - USP.

Evento iniciador: Nutricionista requisita a fungao gerar card£pio.

Atores: Nutricionista.

Pr6-condigao: Nutricionista logado no sistema.

Seqiiencia de eventos:

2. Nutricionista requisita a fungao gerar card£pio.

3. Sistema consulta sua base de dados do estoque, gera o card£pio e exibe o

resultado na tela

71

4. Nutricionista aprova o card£pio sugerido.

5. Sistema registra o cardgpio na sua base de dados.

6. Nutricionista finaliza a operagao.

P6s-condig5o: Card£pio cadastrado e disponibilizado para visualizagao na internet .

Extensao:

1. Nutricionista nao aprova o card£pio sugerido e faz as modificag6es

necessadas manualmente, utilizando o botao alterar. (Passo 3) – Caso de uso

Alterar Cardapio.

Inclus5o:

1 Caso de uso logar no sistema(Passo I).

2.4.2 Alterar Card£pio

Descrigao: Este caso de uso descreve o processo de alteragao do cardapio semanal

gerado pelo sistema.

Evento iniciador: Nutdcionista seleciona fungao alterar cardapio.

Atores: Nutricionista.

Pr6-condig5o: Nutricionista logado no sistema e cardapio gerado automaticamente.

Seqiiencia de eventos:

2 Nutricionista seleciona fungao alterar cardapio.

3 Sistema exibe os campos dos pratos constituintes de cada refeigao,

habilitados para edigao

4 Nutricionista altera os dados convenientes e confirma a operagao.

5 Sistema registra o cardapio na sua base de dados.

6 Nutricionista finaliza a operagao.

P6s-condig5o: Card£pio 6 alterado sendo disponibilizado para visualizag50 na
Internet.

Cen£rio Secundgrio:

1 Nutricionista desiste de efetuar a alteragao no cardapio (Passos 2 e 3).

Sistema retorna a tela de exibigao do cardapio gerado automaticamente.

2 Nutricionista fornece dados inconsistentes (Passo 3): sistema envia

mensagem de erro e retorna ao Passo 2.

Inclusao: Caso de uso logar no sistema (Passo I).

72

2.4.3 Gerar Kelat6rio de Dernanda

Descrigao: Este caso de uso descreve o processo de geragao de relat6rios para

averiguar a demanda de um dia. Serao analisadas as demandas com base no cardapio

da refeigao, condig6es clim£ticas, dia da semana e no horgdo em que foi servida

(almogo oujantar).

Evento iniciador: Usu£rio solicita relat6rio.

Atores: Funcionaho da administragao e Nutdcionista.

Pr6-'condigao: dados disponfveis para an£lise e usu£rio logado no sistema.

Seqiiencia de eventos:

1 Usu£do solicita a fungao de geragao de relat6rio de demanda.

2 Sistema solicita ao usu£do o preenchimento opcional da data de infcio, data

de fim, dia da semana, condig6es clim£ticas, hor£do da refeigao e cardapio;

3 Usu£do preenche os dados solicitados e confirma a operagao;

4 Sistema faz uma busca baseada nos dados preenchidos pelo usu£do e

retorna um relat6do padronizado com os dados preenchidos pelo usu£do, o

n6mero de maior movimento, o namero de menor movimento, o namero

m6dio do movimento bem como o desvio padrao e o nimmo de dias
analisados.

P6s-condigao: Relat6rio exibido.

Cen£rio secundgrio:

1 usuario fornece dados inconsistentes (Passo 3): sistema envia mensagem de

erro e retorna ao Passo 2

2 Falha na busca (Passo 4) – Informa a causa da falha. Volta ao Passo 2

Inclus5o: Caso de uso Logar no sistema (Passo I).

2.5 M6dulo de Venda

2.5.1 Vender ticket refeig50 nos caixas

Descrigao: Este caso de uso descreve o processo de venda de

calxas .

Evento iniciador: Caixa requisita a fungao venda de tickets.

Atores: Caixa

ticket utilizando

73

Pr6-condig5o: Caixa logado no sistema.

Seqii6ncia de eventos:

1 Caixa requisita a fungao venda de tickets.

2 Sistema pede a quantidade de tickets.

3 Caixa informa o dado solicitado.

4 Sistema informa o valor da compra e pede a confirmagao da operagao.

5 Caixa confirma a operagao.

6 Sistema requisita o cartao para gravar os dados.

7 Caixa passa o cartao no leitor.

8 Sistema credita o nimmo de refeig6es ao cliente.

9 Caixa finaliza a operag50.

P6s-'condig5o: Aluno recebe cr6ditos para utilizar nos restaurantes da USP.

Cen£rio Secund£rio:

1. Aluno desiste de fazer a compra e o caixa clica no botao cancelar. O sistema

volta a sua tela inicial (passos 2,3,4 e 5).

Inclusao: Caso de togar no sistema (Passol).

2.5.2 Vender ticket refeigao pela Internet

Descrig5o: Este caso de uso descreve o processo de venda de ticket utilizando acesso

rernoto VIa Internet.

Evento iniciador: Usu£do habilitado pelo sistema acessa p£gina do sistema de
venda de tickets.

Atores: Cliente (Aluno ou Funcion£rio).

Pr6'-.condigao: Cliente logado no sistema.

Seqtiencia de eventos:

1 Cliente requisita a fungao venda de tickets.

2. Sistema pede a quantidade de tickets

3. Cliente informa o namero de tickets a serem adquiridos.

4. Sistema informa o valor da compra e gera uma lista de bancos conveniados.

5 . Cliente seleciona o banco de prefer&ncia para efetuar a transagao.

6. Sistema pede a identificagao da transagao.

7. Cliente informa o n6mero de identificagao.

74

8. Sistema gera o comprovante.

9. Cliente imprime o comprovante para apresent£-lo nos caixas. .

10. Cliente finaliza a operagao.

P6s-condigao: Dep6sito feito na conta conente do COSEAS e comprovante de

transagao impresso .

Cen£rio Secundgrio:

1. Aluno desiste de fazer a compra e clica no botao cancelar. O sistema volta a

sua tela inicial (passos 2,3,4, 5 e 6).

Inclus5o: Caso de uso de logar no sistema (Passo I).

2.6 M6dulo de Estoque

2.6.1 Entrar Insumos

Descrigao: Este caso de uso descreve o processo de registro da entrada de insumos

no estoque do COSEAS (que pode ser local ou remoto), procedimento necessado a

supervisao geral da quantidade de insumos disponfveis para o preparo das refeig6es.

Evento iniciador: Supervisor de estoque seleciona a area de entradas de insumos

Atores: Supervisor de estoque.

Pr6-condig5o: Supervisor togado e insumo pr6-cadastrado no sistema.

Seqiiencia de eventos:

1. Supervisor de estoque seleciona a area de entradas de insumos.

2. Sistema exibe todos os campos necessarios ao registro da entrada de um

insumo qualquer.

3 . Supervisor insere os dados solicitados e confirma a operagao.

4. Sistema registra no banco de dados as informag6es inseridas na etapa

anterior e emite uma mensagem notificando o sucesso da operagao.

5. Supervisor finaliza a sessao.

P6s-'condigao: Registro da entrada de um insumo no estoque.

Cen£rio Secund£rio:

1. Supervisor insere um c6digo de insumo invglido (nao cadastrado

previamente): sistema emite uma mensagem de erro.

75

2. Supervisor fornece dados inconsistentes (Passo 2): sistema emite uma

mensagem de erro e retorna ao Passo I.

Inclusao: Caso de uso logar no sistema (Passo I).

2.6.2 Sair Insumos

Descrigao: Este caso de uso descreve o processo de baixa de insumos do estoque do

COSEAS (local ou remoto).

Evento iniciador: Supervisor de estoque seleciona a area de baixa de insumos.

Atores: Supervisor de estoque.

Pr6-condigao: Supervisor logado e insumos armazenados no estoque do COSEAS .

Seqii6ncia de eventos:

1. Supervisor de estoque seleciona a area de baixa de insumos.

2. Sistema pede a identificagao do almoxadfado do qual sera feita a baixa do

lnsumo .

3. usuario preenche os dados solicitados e confirma a operagao;

4. Sistema exibe uma lista de todos os insumos armazenados naquele estoque

do COSEAS .

5. Supervisor seleciona o tipo de insumo que ele deseja dar baixa no estoque.

6. Sistema apresenta a quantidade total disponfvel para retirada, a16m de um

campo adicional onde o supervisor definira o valor a ser contabilizado na

baixa do estoque e o local de destino do insumo.

7. Supervisor informa a quantidade de insumo a ser retirado do estoque e

confirma a operagao.

8. Sistema atualiza o valor da quantidade de insumos disponfveis no estoque e

envia uma mensagem ao usu£do notificando o sucesso da operagao

9. Supervisor finaliza a sessao.

P6s'-condigao: Estoque local quantitativamente atualizado.

Cen£rio Secundario:

1. usuario fornece dados inconsistentes (Passo 3): sistema envia mensagem de

erro e retorna ao Passo 2

2. Supervisor insere um valor acima do total armazenado no estoque (Passo 7):

sistema emite uma mensagem de erro e retorna ao Passo 6.

76

Inclus5o: Caso de uso logar no sistema (Passo I).

2.6.3 Gerar relat6rios sobre prazos de vaHdade

Descrigao: Este caso de uso descreve o processo de geragao de um relat6rio sobre os

alimentos estocados que terao seu prazo de validade vencido at6 determinada data.

Evento iniciador: Usu£rio seleciona a area de relat6rios

Atores: Nutricionista ou Supervisor de estoque.

Pr6-condigao: usuario logado e insumos armazenados no estoque do COSEAS.

Seqiiencia de eventos:

1. usuario seleciona a area de relat6rios.

2. Sistema exibe os tipos de relat6rios disponfveis para o usuario.

3. Usu£do seleciona o tipo de relat6rio de prazos de validade.

4. Sistema pede a data ao usu£rio.

5. usuario entra com a data desejada.

6. Sistema exibe todos os produtos armazenados que terao seu prazo de

validade vencido at6 a data fornecida pelo nutricionista.

7. Usu£rio finaliza a sessao.

P6s-condigao: Relat6rio gerado

Cen£rio Secund£rio:

1. usuario fornece uma data inconsistente (Passo 5): sistema emite uma

mensagem de erro e retorna ao Passo 4.

Inclusao: Caso de uso logar no sistema (Passo I).

2.6.4 Gerar relat6rios sobre produtos em estoque

Descrigao: Este caso de uso descreve o processo de geragao de um relat6rio sobre os

insumos armazenados nos estoques do COSEAS .

Evento iniciador: usuario seleciona a area de relat6rios.

Atores: Nutdcionista ou Supervisor de estoque.

Pr6-condig5o: Nutricionista logado e insumos armazenados no estoque do
COSEAS .

Seqaencia de eventos:

1. usuario seleciona a area de relat6rios

77

2. Sistema exibe os tipos de relat6rios disponiveis para o usu£rio.

3. usuario seleciona o tipo de relat6do de produtos em estoque.

4. Sistema exibe todos os produtos armazenados, bem como sua quantidade,

localizagao e prazos de validade.

5. usuario finaliza a sessao.

P6s-condig5o: Relat6rio gerado.

Inclus5o: Caso de uso logar no sistema (Passo I).

2.7 M6dulo Financeiro

2.7.1 Gerar relat6rio financeiro

Descrig5o: Este caso de uso descreve o processo de geragao de relat6rios de

finangas. Serao mostrados os custos e a receita adquirida com base nos dados de

entrada.

Evento iniciador: Funcion£rio da administragao solicita relat6rio.

Atoms: Funcionado da administragao.

Pr6-.condigao: Funcionario logado e dados disponiveis para analise.

Seqii6ncia de eventos:

1. Funcion£rio da administragao solicita relat6rio;

2. Sistema solicita ao Funcion£do da administragao o preenchimento opcional

da data de infcio, data de fim;

3. Sistema faz uma busca baseada nos dados preenchidos pelo usu£rio e

retorna um relat6rio contendo as despesas e receitas do perfodo.

P6s-condig5o: Relat6rio exibido.

Cengrio secund£rio:

1. Falha na busca (Passo 2) – Informa a causa da falha. Volta ao Passo I.

Inclusao: Caso de uso logar no sistema (Passo I).

2.7.2 Incluir Receita

Descrigao: Este caso de uso descreve o processo de inclusao de receitas no total de

receitas.

Evento iniciador: Funcionario da administragao solicita inclusao de receita.

78

Atores: Funciongrio da administragao.

Pr6.-condigao: Funcion£rio togado .

Seq aencia de eventos:

1. Funcion£rio da administragao solicita inclusao de receita;

2. Sistema solicita ao Funcionario da administragao os dados necess£rios para

a inclusao;

3. Funcionario da administragao entra com os dados;

4. Sistema pede a confirmagao da operagao;

5. Funciongrio da administragao confirma operagao.

P6s-condigao: Receita cadastrada.

Inclusao: Caso de uso togar no sistema (Passo I).

Extens5o: Usu£rio cancela operagao (Passo 4).

2.7.3 Incluir Despesa

Descrig5o: Este caso de uso descreve o processo de inclusao de despesas no total de

despesas.

Evento iniciador: Funcionario da administragao ou supervisor de estoque solicita

inclusao de despesa.

Atores: Funciongrio da administragao e Supervisor de estoque.

Pr6-condigao: Nenhuma.

Seqiiencia de eventos:

1. Funciongrio da administragao ou supervisor de estoque solicita inclusao de

despesa.

2. Sistema solicita ao Funciongrio da administragao ou supervisor os dados

necessarios para a inclusao;

3. Funciongrio da administragao ou supervisor de estoque entra com os dados;

4. Sistema pede a confirmagao da operagao;

5. Funcionado da administragao ou supervisor de estoque confirma operagao.

P6s-condig5o: Despesa cadastrada.

Inclus5o: Caso de uso togar no sistema (Passo I).

Extens5o: Usu£do cancela operagao(Passo 4).

79

2.8 M6dulo Geral

2.8.1 Logar no sistema

Descrigao: Este caso de uso descreve o processo de autenticagao de usuado no

srsterna

Evento iniciador:Usu£rio acessa a pagina de home do sistema.

Atores: Clientes (Alunos ou Funcionarios), Supervisor de estoque, Nutricionista,

Caixa, Funcionado da Administragao.

Pr6-condigao: usuario cadastrado no sistema.

Seqii6ncia de eventos:

1. Sistema pede dados de identificagao do usu£do;

2. Cliente fornece seu login e senha;

3. Sistema verifica a validade dos dados fornecidos, identifica a classe do

usuado e redireciona-o para a sua pagina inicial.

P6s-'condig5o: usu£do logado.

Cen£rio Secundgrio:

1. Usu£rio fornece dados inconsistentes (Passo 2): sistema exibe mensagem de

erro e retorna ao Passo I.

Inclusao: Nenhuma

0
00

9
a)L)
C
10
C
he

0la
g
C
a)
E
>0
:

VI
ba\t
Ul
<J
Q
a
a
<
E

g
a
<H
a

I

(J
0
A
A
Z
<

Iii
a\

81

10 REFERENCIAS BIBLIOGRAFICAS

[1] BPMI, Business Process Management Initiative. Business Process Modeling

Notation (BPMN). Disponfvel em: <http://www.bpmn.org/Documents/BPMN%

20Vl-C)%20May%203%202004.pdf>. Acesso em: 15 de mar. 2005

[2] BOND, Martin et al. Aprenda J2EE em 2/ dias . sao Paulo: Editora Makron

Books, 2003

[3] CRAWFORD, William. Essential Multitie r J2EE Design Patterns (2004) .

Disponivel em <http://www .oracle.com/technology/oramag/oracle/03-jan/

o13j2ee.html>. Acesso em: 07 de abr. 2005

[4] KURNIAWAN, Budi. Almost AH Java Web Apps Need Model 2. Disponfvel em:

<http://www.fawcette.com/javapro/2002_06/online/servlets_06_ 11_02>. Acesso em:

17 de abc 2005

[5] MILLS, Duncan. J2EE Design Patterns : Understanding MVC . Disponfvel em:

<http://otn.oracle.com/oramag/webcolumns/2003/techarticles/mills_mvc.html>.

Acesso em: 18 de abr. 2005

[6] SUN MICROSYSTEMS, Designing Enterprise Applications with the J2EPM

Platform, Second Edition (2002) . Disponfvel em:

<http://java.sun.com/blueprints/guidelines/ designing_enterprise_applications_2e>.

Acesso em: 18 de abr. 2005

[7] ARMSTRONG, Eric and BALL, Jennifer. The J2EE (m 1.4 Tutorial .

Disponfvel em: <http://java.sun.com/j2ee/l.4/docs/tutorial/doc/index.html>. Acesso

em: 18 abr. 2005

[8] SUN MICROSYSTEMS, JavaBeans . Disponfvel em: <http://java.sun.com/

products/javabeans/index.jsp>. Acesso em 20 abr. 2005

82

[9] HIBERNATE. Site Ofrcial do Projeto Hibernate . Disponivel em:

<http://www.hibernate.org>. Acesso em: 20 de abr. 2005.

[10] APACHE SOFtWARE FOUNDATION. Site Ofrciat do Jakarta Struts

Framework. Disponfvel em: <http://jakarta.apache.org/struts/>. Acesso em: 21 de

abr. 2005

[11] MEIVIBERS JBOSS. Site Ofrciat do Projeto Container JBoss . Disponfvel em:

<http://www.jboss.org/index.html>. Acesso em: 22 de abr. 2005.

[12] EVERETT, David B. Smart Card Technology; Introduction To SalaM Cards .

Disponfvel em <http://www.smartcard.co.uk/techl.html>. Acesso em: 16 de mai.
2005 .

[13] MYSQL AB. Disponfvel em: <http://www.mysql.com>. Acesso em: 17 de mai.

2005

[14] MYSQL REFERENCE MANUAL. Disponfvel em: <http://dev.mysql.com/

doc/>. Acesso em: 17 de mai. 2005

[15] SOARES, W. MySQL: Conceitos e Aplicag6es . sao Paulo: Erica, 2001

[16] APACHE SOFTWARE FOUNDATION. Site Ofrcial do Projeto Tomcat .

Disponfvel em: <http://jakarta.apache.org/tomcat/>. Acesso em 20 de mai. 2005

[17] SOUZA, Welington. Struts Tutorial . Disponivel em:

<http://www.portaljava.com.br/home/modules.php?name=Content&pa=showpage&p

id=63>. Acesso em: 25 de mai. 2005

[18] DEITEL, H. M.; DEITEL, P. J. Java Como Programar . 4 Ed., sao Paulo:

Bookman, 2002

83

[19] PRESSMAN, R. S. Engenharia de Software. 5. Ed., Rio de Janeiro:

McGrawHill, 2002.

[20] CULPEPPER, M. JBoss Eclipse IDE. Disponivel em: <http://www.jboss.org/

products/Jbosside>. Acesso em: 10 de jul. 2005

[21] ECLIPSE FOUNDATION. Site Oftcial do Projeto Eclipse . Disponfvel em:

<http://www.eclipse.org/>. Acesso em 10 de mar. 2005

[22] SHILLINGTON, N; WAKER, T. The design ofa Smart Card Interface Device.

Disponfvel em: < http://www.cs.uct.ac.za/Research/DNA/SOCS/rchapl.html>.

Acesso em 20 de jun. 2005

