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RESUMO 

Atualmente, equipamentos baseados em eletrônica de potência encontram-se com 

maior frequência nos mais diversos tipos de consumidores, sejam estes industriais, 

comerciais ou residenciais. Dado este incremento na utilização destes equipamentos, 

nota-se que tal emprego é devido à sua eficiência, entretanto, também pode ser 

verificado que as distorções harmônicas tornam-se ainda maiores. Assim, o aumento do 

nível de distorção harmônica está fortemente atrelado à potência harmônica consumida 

pelos equipamentos baseados na eletrônica de potência, equipamentos a arco e 

equipamentos ferromagnéticos. Por este motivo, este trabalho tem como principal 

objetivo a identificação/caracterização de tais categorias de cargas. Além disso, é 

importante comentar que em redes de distribuição de energia elétrica, as distorções 

harmônicas normalmente são medidas na subestação, no entanto, deve-se considerar, 

em determinados casos, medidas realizadas no ponto de acoplamento comum. 

Seguindo este contexto, para que tais medidas fossem adquiridas, optou-se por modelar 

e simular uma rede de distribuição de 20 barras na ferramenta computacional ATP. 

Desta forma, tanto o fluxo de potência harmônico como as medidas no ponto de 

acoplamento comum e na subestação puderam ser obtidas e então gerada uma base de 

dados. Mediante esta base de dados, aplicou-se o sistema inteligente do tipo Neuro-

Fuzzy para que o mesmo viesse a identificar as classes de cargas presentes no sistema 

de distribuição para uma determinada medida. Os resultados obtidos mostram que o 

sistema Neuro-Fuzzy é plausível de ser aplicado para a identificação de fontes 

consumidoras de potências harmônicas. 

Palavras chave: Sistemas neuro-fuzzy, qualidade da energia elétrica, distorções 

harmônicas, sistemas de distribuição de energia elétrica. 
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ABSTRACT 

Nowadays, devices based on power electronics are more frequently found in 

various types of consumers, whether industrial, commercial or residential. Given this 

increase in use of such equipment, it is noted that such employment is due to its 

efficiency, however, can also be verified that the harmonic distortions become even 

greater. Thus, the increased level of harmonic distortion is strongly linked to the 

harmonic power consumed by devices based on power electronics equipment, arc’s 

equipment and ferromagnetic equipments. For this reason, this work has as main 

objective the identification/characterization of such classes of loads. Moreover, it is 

important to mention that in distribution networks of electricity the measured of harmonic 

distortions are made at the substation, however, should be considered in certain cases, 

measurements taken at the point of common coupling. Following this context, so that 

such measures were acquired, we chose to model and simulate a distribution network of 

20 bars on the ATP computer tool. Thus, the harmonic power flow and the measured at 

the point of common coupling and the substation could be obtained and then generated 

a database. Through this database, we applied the intelligent type Neuro-fuzzy so that it 

would identify classes of loads present in the distribution system to a certain extent. The 

results show that the neuro-fuzzy system is likely to be applied to identify consumer 

sources of harmonic powers. 

Keywords: Neuro-fuzzy systems, power quality, harmonic distortion, distribution 

systems of electric power. 
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Capítulo 1  
Introdução 

Recentemente, houve uma crescente proliferação de cargas não lineares sobre o 

Sistema Elétrico de Potência (SEP). Desta forma, nota-se um aumento dos níveis das 

correntes harmônicas requeridas pelos consumidores que, ao interagirem com o 

sistema, irão distorcer a forma de onda da tensão que está sendo fornecida pela 

concessionária no Ponto de Acoplamento Comum (PAC), resultando em uma maior 

degradação da Qualidade da Energia Elétrica (QEE). Normalmente, uma única carga 

não linear pode não representar muitos problemas com relação às distorções 

harmônicas, mas em grandes concentrações essas cargas podem atingir níveis não 

aceitáveis de distorções harmônicas tanto de corrente como de tensão, isto, 

dependendo da forma como uma determinada regulamentação avalia as distorções 

harmônicas (Fernandes, 2011). Desta forma, cabe comentar que no Brasil (pela ANEEL 

- Agência Nacional de Energia Elétrica) as distorções harmônicas são avaliadas em 

termos de tensões, como pode ser visto no PRODIST (Módulo 8, seção 8.1.1.2). 

Assim, constata-se que os distúrbios acarretados como consequência das 

distorções harmônicas podem ser refletidos para as concessionárias, consumidores 

próximos à fonte consumidora de potências harmônicas, bem como ao próprio 

estabelecimento que detém tal fonte. Ressalta-se que na maior parte dos casos, os 

consumidores com cargas mais sensíveis são os maiores prejudicados. Neste contexto, 

caso não haja meios específicos de controle, qualquer sistema com alta densidade de 

cargas não lineares estará vulnerável a problemas refletidos na QEE (Fernandes, 2011). 

Desta situação, poder-se-ia evidenciar um mau funcionamento de equipamentos, baixo 

fator de potência, distorção na forma de onda da tensão e/ou corrente, aquecimento de 

cabos, dentre outros (Dugan et al., 2004; Sankaran, 2002). 

Com a mudança no perfil das cargas empregadas no SEP, houve a necessidade 

de se impor limites para que as distorções harmônicas fossem controladas. Seguindo 

este contexto, o IEEE 519-1992 recomendou algumas diretrizes que podem ser 

seguidas para o controle, tanto das correntes quanto das tensões harmônicas nos 

SEPs de baixa, média, alta ou extra-alta tensão. No Brasil, o PRODIST (Procedimentos 

de Distribuição de Energia Elétrica no Sistema Elétrico Nacional) pode ser apresentado 

como um conjunto de diretrizes a serem seguidas pelas concessionárias com o intuito 

de melhorar a QEE em seu sistema de distribuição. O PRODIST encontra-se dividido 
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em módulos, sendo que aquele da QEE, bem como o controle e monitoração de 

harmônicas, é tratado no oitavo módulo.  

Em suma, a grande quantidade de cargas não lineares encontradas em 

ambientes industriais, assim como o desenvolvimento de recomendações e normas por 

órgãos governamentais, fez com que as concessionárias despendessem mais atenção 

aos distúrbios que podem degradar a qualidade da energia fornecida. Assim, devido à 

alta complexidade em se analisar as distorções harmônicas, muitas pesquisas são 

desenvolvidas com o intuito de se identificar as fontes de harmônicas causadoras dos 

altos níveis de distorção. Dentre os fatores que contribuem para a realização deste tipo 

de estudo estão a melhoria na qualidade da energia fornecida e a garantia de que o 

sistema elétrico irá operar sob condições controladas (Fernandes, 2011). 

Por outro lado, os sistemas inteligentes, por intermédio de técnicas baseadas 

principalmente em redes neurais artificiais e sistemas de inferência fuzzy, têm mostrado 

resultados bem promissores na identificação de fontes harmônicas, tais como Varadan e 

Makram (1994) em que foi utilizado uma rede neural para classificar 30 cargas 

harmônicas de três classes diferentes; Van Niekerk et al. (2002) que utilizaram RNAs do 

tipo Perceptron de Múltiplas Camadas para identificar as mesmas três clases de cargas 

do trabalho de Varadan e Makram (1994); Srinivasan et al. (2006) em que utilizaram um 

método chamado “particle swarm optimization” para otimizar os pesos sinápticos da 

rede neural e, assim, identificar distorções harmônicas por meio da corrente; Ferrero et 

al. (2007) que utilizaram um sistema de inferência fuzzy para idetificar cargas não 

lineares; e, finalmente, Fernandes et al. (2008) em que foi utilizado uma RNA para 

classificar seis tipos de cargas não lineares . 

Tendo em vista todos esses trabalhos, foi escolhido desenvolver um sistema 

Neuro-fuzzy para identificar cargas consumidoras de potência harmônica, utilizando a 

classificação de cargas encontrada no trabalho de Varandan e Makram (1994), e ainda 

implementar o sistema para que seja possível identificar combinações dessas classes. 

O trabalho desses mesmos autores de 1996 mostra um método convencional aplicado  

ao propósito de identificar as combinações de classes, inclusive, diferente do trabalho 

de 1994, onde somente classes individuais eram selecionadas.  

Assim, esse trabalho mostra as diferenças entre os erros do algoritmo desses 

autores e o sistema Neuro-Fuzzy aqui desenvolvido. O emprego dos sistemas 

inteligentes, mais especificamente o sistema Neuro-Fuzzy é justificado devido à sua 

habilidade em lidar com sistemas não lineares e, como mencionado nos resultados dos 

trabalhos acima, tem se mostrado eficiente, justamente por não necessitarem de 
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modelos matemáticos precisos que representem o sistema, além de apresentarem uma 

grande facilidade de integração computacional com técnicas convencionais. O próximo 

capítulo trará algumas noções sobre sistemas inteligentes. 
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Capítulo 2  
Sistemas Inteligentes 

2.1 SISTEMAS DE INFERÊNCIA FUZZY 

Sistemas de inferência fuzzy são técnicas computacionais que se baseiam na 

lógica fuzzy proposta por Zadeh (1965). Essa lógica manipula dados qualitativos ao 

invés de quantitativos e, portanto, aproxima-se do modo como funciona o raciocínio 

humano, facilitando a compreensão do sistema (Usida, 2007). 

A lógica fuzzy, derivada da teoria dos conjuntos fuzzy, permite a redução e 

simplificação de projetos complexos, pois mesmo em um ambiente de incertezas e 

imprecisões é capaz de tomar decisões racionais, tornando-se assim, uma alternativa 

para a solução de problemas. 

Pela lógica fuzzy, um sistema pode ser representado por meio dos conceitos 

imprecisos tais como “forte” e “fraco”, conforme o ser humano está comumente 

acostumado a tratar este tipo de informação. Essas propriedades facilitam a extração do 

conhecimento de um sistema a partir de observações ou do conhecimento de um 

especialista. 

O raciocínio fuzzy inicializa com a fuzzificação, onde ocorre a transformação da 

variável de entrada em valores fuzzy. Em seguida, as regras do sistema fuzzy serão 

executadas e uma região fuzzy será criada pelas regras ativadas. Esse processo é 

conhecido como agregação. Depois do processamento das regras de inferência ocorre 

a defuzzificação, com a formação de um valor crisp (MatLab, 2007). 

2.1.1 Conceitos Sobre Conjuntos e Lógica Fuzzy 

Na teoria clássica dos conjuntos, um elemento ou pertence a uma classe ou não. 

Seja, por exemplo, um universo de discurso U e um elemento particular x  U, o grau de 

pertinência μA(x) com relação a um conjunto A  U é dado pela equação 2.1. 

(ݔ)஺ߤ = 	 ቄ1, 	ݔ	݁ݏ ∈ 	A
0, 	ݔ	݁ݏ ∉ Α 	 

(2.1) 
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A função A(x): U  {0, 1} é chamada de função característica na teoria clássica 

de conjuntos. É possível notar que a função apresentada pela equação 2.1 apenas pode 

assumir valores discretos. 

A ideia apresentada na equação 2.1 e ilustrada melhor na Figura 2.1(a) indica, por 

exemplo, uma aplicação onde ocorre a manipulação de dados com erros limitados. 

Todos os números pertencentes a um intervalo pré-definido terão um grau de 

pertinência 1, os números que não pertencerem a este intervalo possuirão um grau de 

pertinência nulo. No caso da Figura 2.1(b), tem-se que o grau de pertinência é 

exatamente um valor, sendo nulo aos demais, o que indica um caso preciso. A Figura 

2.1(c) mostra uma função de pertinência triangular onde ocorre a variação do grau de 

pertinência entre os valores 0 e 1. O grau de pertinência pode assumir qualquer valor 

nesse intervalo, sendo que o valor 0 indica uma completa exclusão e um valor 1 

representa completa inclusão. Esta generalização aumenta o poder de expressão da 

função característica, pois sugere que alguns elementos são mais pertencentes de um 

conjunto do que outros. 

 

Fonte:  Usida, 2007. 

Figura 2.1 – Funções de pertinência. 

Ampliando os conceitos apresentados; seja U uma coleção de objetos 

denominados genericamente por {u}. O domínio U é chamado de universo de discurso, 

podendo ser contínuo ou discreto. 

Um conjunto fuzzy A em um universo de discurso U é definido por uma função de 

pertinência A que assume valores em um intervalo [0, 1], ou seja, A(x): U  [0, 1]. 

O conjunto suporte de um conjunto fuzzy A é o subconjunto dos pontos u de U tal 

que A(u) > 0. Um conjunto fuzzy cujo conjunto suporte é um único ponto de U com A=1 

 

U
 

A  

0 

1 

x 

(b) 

U
 

A  

0 

1 

x 

(c) 

U
 

A  

0 

1 

(a) 

x 
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é chamado de um conjunto unitário fuzzy. A partir desta definição, os conjuntos 

clássicos passam a ser um caso específico na teoria de conjuntos fuzzy. Na Figura 

2.1(c), tem-se uma função de pertinência do tipo triangular, no entanto, ressalta-se que 

é possível utilizar qualquer função f: [0,1] para a representação de um determinado 

conjunto fuzzy. 

2.1.2 Definição de Operações e Operadores da Lógica Fuzzy 

Sejam A e B dois conjuntos fuzzy definidos em um universo de discurso U com 

funções de pertinência A e B, respectivamente. As operações envolvendo conjuntos 

fuzzy, tais como a união (AB), a intersecção (AB) e o complemento (A) são 

definidas respectivamente de maneira formal pelas expressões (2.2), (2.3) e (2.4): 

     uuu BABA  &  (2.2) 

     uuu BABA     (2.3) 

   uu AA  1  (2.4) 

onde  é uma norma triangular (t-norma) e & é uma co–norma triangular (s-norma). 

Como exemplo de s-norma, tem-se a expressão (2.5) e como exemplo da t-norma 

tem-se a expressão (2.6). 

    uu BABA  ,max  (2.5) 

    uu BABA   ,min  (2.6) 

Os operadores 7ax e min utilizados acima são apenas alguns exemplos de s-

norma e t-norma. Vale ressaltar que inúmeras outras podem ser utilizadas. 

2.1.3 Regras Fuzzy 

Elementos linguísticos típicos incluem expressões do tipo “mais ou menos”, 

“muito”, “pouco”, “fraco”, “forte”, etc. Ou seja, são elementos qualitativos ao invés de 

valores quantitativos. Por exemplo, uma variável linguística “Corrente Elétrica” poderá 

assumir um valor de um dos termos do conjunto {“muito baixa”, “baixa”, “média”, “alta”, 
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“muito alta”}. Assim, para que esses elementos linguísticos tenham significado é 

necessário associar a cada um deles um conjunto fuzzy definido sobre o universo de 

discurso comum, que nesse exemplo será “Corrente Elétrica”. A Figura 2.2 ilustra o 

exemplo comentado acima. 

 

Fonte:  Usida, 2007. 

Figura 2.2 – Exemplo de variável linguística. 

A forma mais comum de expressar o conhecimento é por meio de regras do tipo 

condição-ação. Tipicamente, uma condição é uma proposição linguística sobre o valor 

de alguma variável de entrada, como por exemplo, “a velocidade está alta”. Assim, uma 

ação com relação à variável de entrada poderia ser “acione levemente o freio”. A ideia 

das regras fuzzy de representar o conhecimento por meio de um conjunto de termos 

linguísticos associados às variáveis de saída e entrada do processo, o que facilitaria, 

por exemplo, expressar o conhecimento de um especialista, é absorvido pelos sistemas 

de inferência fuzzy. Regras do tipo “Se–Então” são frequentemente chamadas de 

declarações condicionais fuzzy ou simplesmente regras fuzzy. Dependendo do 

propósito, controle ou modelagem, podem ser chamados ainda de regras de controle 

fuzzy ou regras de modelagem fuzzy. 

Utilizando a regra de inferência composicional de Zadeh, para uma relação do tipo 

RAB , onde A  U e B  V, e dado um conjunto fuzzy de U denotado por A’ e um 

conjunto fuzzy B’ de V, a inferência de A’ é dada pela seguinte função de pertinência: 
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))},( , )({min(max)( vuuv RA
u

B    (2.7) 

onde, Uu , Vv . 

A ação de controle ou de estimação consistirá da união de todas as funções fuzzy 

ativadas. O valor final, ou seja, aquele que será apresentado pelas saídas do sistema 

fuzzy, será determinado pelo processo de defuzzificação. 

2.1.4 Agregação de Regras 

Quando há mais de uma regra e, ainda, mais de uma regra são acionadas, as 

contribuições das diversas regras após a inferência são combinadas pelo operador de 

agregação. Por exemplo, supondo-se que 1B ,.., nB  são todos os resultados derivados 

das diversas regras acionadas, todos relacionados a uma mesma variável linguística, o 

resultado da implicação de todas as regras B’ será: 

''
i

n

i

BB 
 

(2.8) 

onde,   representa o operador de agregação. Um exemplo de função para o operador 

agregação é o operador união. 

A Figura 2.3 mostra o processo de inferência 9ax–min quando existem duas 

regras, AiBi e AjBj, onde A’ é a variável de entrada, representado como um conjunto 

fuzzy. 
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Fonte:  Usida, 2007. 

Figura 2.3 – Mecanismo de inferência fuzzy. 

Assim, para obter o valor de B’, basta-se então verificar o grau de pertinência 

ativado por A’ frente ao conjunto A. Em seguida, o resultado de B’ será a respectiva 

região fuzzy obtida pelo corte no conjunto B frente àquele valor de pertinência obtido no 

passo anterior, para o caso representado na Figura 2.3, como duas regras foram 

ativadas, então a saída delas é a somas das duas regiões fuzzy atividas. A saída do 

sistema é representada, mais usual, pelo método do centro de área, em que a região 

obtida na Figura 2.3, representará um único valor, chamado de valor “crisp”. Esse 

processo é chamado de defuzzificação.  

Todo o processo envolvido em um sistema fuzzy é mostrado resumidamente pela 

Figura 2.4. Os valores numéricos provenientes da medição são submetidos ao processo 

de fuzzificação, onde passam a serem representados por valores linguísticos. A base de 

conhecimento do Sistema Fuzzy encontra-se armazenado nas Regras Fuzzy do tipo 

“Se-Então”. O processo de inferência aplicado aos valores linguísticos então resulta em 

uma região de saída, também em valores linguísticos. Para que estes possam 

realmente ser utilizados é necessário o processo de defuzzificação, o qual encontra um 

valor numérico para a região de saída fuzzy, representada, também, em termos 

linguísticos. 

 
iA  'A  

jA  'A  

iB  

'
iB  

jB  

'
jB  

'B  

V  

V  

V  

U  

U  

Agregação 
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Fonte:  Usida, 2007. 

Figura 2.4 – Resumo de um modelo de sistema fuzzy. 

2.2 REDES NEURAIS ARTIFICIAS 

Redes Neurais Artificiais (RNA) são técnicas computacionais elaboradas 

inicialmente há mais de 50 anos, com destaque para o início dos anos 1990, onde 

começaram a ser fortemente pesquisados, por isso é normal que se diga que é uma 

área relativamente nova (Silva, 2010). As aplicações destes sistemas considerados 

inteligentes são as mais diversas possíveis, tais como: 

 sistema de controle de aeronaves; 

 reconhecimento de sistemas estelares; 

 processos envolvidos com sistemas elétricos de potência; 

 análise de imagens de satélites; 

 reconhecimento da escrita e da fala. 

As RNAs apresentam um modelo matemático inspirado na estrutura neural de 

organismos inteligentes e que adquirem conhecimento por meio da experiência. Elas 

podem ser definidas como um conjunto de unidades de processamento, caracterizadas 

por neurônios artificiais, que são interligados por um grande número de interconexões 

(sinapse artificiais), sendo representadas por vetores e matrizes de pesos sinápticos. 

A seguir serão vistos alguns conceitos sobre neurônios biológicos, visto que foram 

a base para as RNAs e, em seguida, os neurônios artificiais. 



12 
 

2.2.1 Modelo do Neurônio Biológico e do Neurônio Artificial 

2.2.1.1 Neurônio Biológico 

O neurônio biológico é uma célula que pode ser dividida em três partes: o corpo 

da célula, os dendritos e o axônio. O corpo do neurônio mede alguns milésimos de 

milímetros e os dendritos apresentam poucos milímetros de comprimento. O axônio 

pode ser mais longo. Os dendritos têm como funções, receber informações, ou impulsos 

nervosos, provenientes de outros neurônios, e conduzi-las até o corpo celular onde a 

informação é processada e novos impulsos são gerados. Estes impulsos são 

transmitidos a outros neurônios, passando pelo axônio, e atingindo os dendritos dos 

neurônios seguintes. 

Esses neurônios se comunicam por intermédio de sinapses. Sinapse é a região 

onde dois neurônios entram em contato e através da qual os impulsos nervosos são 

transmitidos entre eles. Os impulsos recebidos por um neurônio “A”, em um determinado 

momento, são processados, e atingindo um dado limiar de ação, o neurônio dispara, 

produzindo-se então uma substância neurotransmissora que flui do corpo celular para o 

axônio, que pode estar conectado a um dendrito de outro neurônio “B”. O 

neurotransmissor pode diminuir ou aumentar a polaridade da membrana pós-sináptica, 

inibindo ou excitando a geração dos pulsos no neurônio “B”. Este processo depende de 

vários fatores, como a geometria da sinapse e o tipo de neurotransmissor. A Figura 2.5 

mostra uma representação de um neurônio biológico. 

 

Fonte:  Silva, 2010. 

Figura 2.5 – Representação de um neurônio biológico. 

Dendritos

Soma

Axônio

Núcleo celular

Membrana celular
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Em média, cada neurônio forma entre mil e dez mil sinapses. O cérebro humano 

possui cerca de 100 bilhões de neurônios, e o número de sinapses é de mais de 600 

trilhões, possibilitando a formação de redes muito complexas. A capacidade de 

solucionar funções complexas surge com a operação em paralelo de todos estes 

neurônios e sinapses do cérebro. 

2.2.1.2 Neurônio Artificial 

Uma rede neural artificial é composta por várias unidades de processamento, cujo 

funcionamento é bastante simples. As unidades fazem operações apenas sobre seus 

dados locais, que são entradas recebidas pelas suas conexões. O comportamento 

inteligente de uma rede neural artificial vem das interações entre as unidades de 

processamento da rede. 

As operações realizadas em uma rede neural podem ser resumidas da seguinte 

maneira: 

 sinais são apresentados à entrada; 

 cada sinal é multiplicado por um número, ou peso, que indica a sua influência 

na saída da unidade; 

 é feita a soma ponderada dos sinais que produz um nível de atividade; 

 se este nível de atividade exceder certo limite (threshold), a unidade produz 

uma determinada resposta de saída. 

A Figura 2.6 representa o modelo matemático de um neurônio artificial. 

 

Fonte:  Silva, 2010. 

Figura 2.6 – Esquema do neurônio artificial. 
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O modelo matemático que descreve o comportamento do neurônio artificial é 

expresso pela seguinte equação: 





n

i
ii bxwgy

1
).(  

(2.9) 

onde:  

n é o número de entradas do neurônio; 

wi é o peso associado com a i-ésima entrada; 

b (bias) é o limiar associado ao neurônio; 

xi é a i-ésima entrada do neurônio; 

g(.) é a função de ativação do neurônio; 

y é a saída do neurônio. 

A função de ativação é a responsável pelo processamento do conjunto de 

informações recebidas. É também a função de ativação que é incumbida pela saída do 

neurônio, podendo assumir valores do tipo:  

 binários (0 ou 1); 

 bipolares (-1 ou 1); 

 reais. 

Durante a etapa de treinamento das redes neurais artificiais, ao final de cada 

treinamento, podem-se alterar os principais parâmetros da rede de modo a buscar uma 

configuração de rede eficiente. Um dos parâmetros que pode ser alterado é a função de 

ativação. As principais funções de ativação utilizadas são: 

 função degrau (binária); 

 função degrau (bipolar); 

 função rampa; 

 função sigmoide; 
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 função tangente hiperbólica. 

2.2.2 Topologias de Redes Neurais Artificiais 

A topologia da rede escolhida tem reflexos diretos nas características e 

propriedades apresentadas pelo modelo. A topologia também está intimamente ligada 

ao algoritmo de treinamento.  

Usualmente, as camadas são classificadas em três grupos: 

 camada de entrada: onde os padrões são apresentados à rede; 

 camadas intermediárias ou escondidas: onde é feita a maior parte do 

processamento, através das conexões ponderadas; podem ser consideradas 

como extratoras de características; 

 camada de saída: onde o resultado final é concluído e apresentado. 

A Figura 2.7 exemplifica as camadas de uma rede neural. 

 

Fonte:  Silva, 2010. 

Figura 2.7 – Ilustração das camadas de uma rede neural. 

2.2.3 Treinamento de Redes Neurais Artificiais 

A habilidade de aprender a partir de seu ambiente e com isso melhorar o seu 

desempenho é obtida por meio do treinamento de uma rede neural, em que consiste da 

aplicação de um conjunto de passos ordenados com o intuito de ajustar os pesos e os 

limiares de seus neurônios. Assim, os algoritmos de aprendizagem visam sintonizar a 

rede para que as suas respostas estejam próximas dos valores desejados. 

Os dois principais processos de aprendizagem são os seguintes: 

Camada de 
Entrada

Camada
Intermediária

Camada de
Saída
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a) Aprendizado supervisionado 

Neste caso, cada amostra de treinamento é composta pelos sinais de entrada e 

suas correspondentes saídas. Os pesos sinápticos e limiares são então continuamente 

ajustados mediante a aplicação de ações comparativas (executadas pelo próprio 

algoritmo de aprendizagem), as quais supervisionam a defasagem entre as respostas 

produzidas pela rede em relação àquelas desejadas, sendo esta diferença usada no 

procedimento de ajuste. 

b) Aprendizado não supervisionado 

Neste aprendizado, não existe uma saída específica relacionada ao estímulo de 

entrada, e não existe também a presença do agente externo ou “supervisor”. A rede se 

organiza de forma a buscar características similares nos subconjuntos que lhe são 

apresentados. Os pesos sinápticos da rede são alterados pelo algoritmo de treinamento, 

de forma que o sistema crie sua própria representação para os estímulos de entrada. 

Portanto, quanto mais “evidente” forem as particularidades marcantes da população de 

entrada, mais “fácil” será a aprendizagem da rede, e vice-versa. 

2.2.4 Redes Perceptrons Multicamadas 

As redes Perceptrons multicamadas (PMC) são os tipos de redes mais usados em 

problemas envolvendo sistemas de distribuição de energia elétrica (Silva, 2010). 

Em redes Perceptrons multicamadas, as “tarefas” são distribuídas através das 

camadas. Os estímulos ou sinais são apresentados à rede na camada de entrada. A 

camada intermediária extrai as informações e as codificam através dos pesos sinápticos, 

formando assim uma representação própria do ambiente externo. Finalmente, a camada 

de saída recebe os estímulos da camada intermediária, mapeando o padrão de resposta 

que será a saída da rede. 

2.2.5 Validação Cruzada 

Uma das técnicas estatísticas mais utilizadas para seleção das melhores 

topologias candidatas é a validação cruzada, cujo propósito é avaliar a aptidão de cada 

uma quando aplicada a um conjunto de dados que seja diferente daquele usado no 

ajuste de seus parâmetros internos. 

O primeiro método é denominado de validação cruzada por amostragem aleatória, 

em que o conjunto total de dados disponíveis é aleatoriamente dividido em duas partes, 

isto é, subconjunto de treinamento e subconjunto de teste (validação). Em termos 
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práticos, a partir do conjunto total de dados disponíveis, cerca de 60 a 90% são 

aleatoriamente escolhidos para o subconjunto de treinamento, enquanto que o restante 

ficará alocado ao subconjunto de teste. 

O segundo método de validação cruzada utilizada para o dimensionamento 

estrutural de redes PMC é denominado de k-partições. Realiza-se a divisão do conjunto 

total de amostras em k partições, sendo que k–1 delas usadas para compor o 

subconjunto de treinamento, ao passo que a partição restante constituirá o subconjunto 

de teste. 

Finalmente, o terceiro método é chamado de validação cruzada por unidade, que 

consiste na utilização de uma única amostra para o subconjunto de teste, sendo as 

demais alocadas para o subconjunto de treinamento. Esse procedimento é mais 

utilizado quando há poucas amostras disponíveis. 

2.2.6 Overfitting e Underfitting 

O aumento indiscriminado de neurônios, assim como o incremento de camadas 

intermediárias, não assegura a generalização apropriada de PMC em relação às 

amostras pertencentes aos subconjuntos de teste. 

Tais ações tendem a levar a saída do PMC para a circunstância de memorização 

excessiva (overfitting). Nessas ocorrências, o erro quadrático durante a fase de 

aprendizado tende a ser bem baixo; contudo, durante a fase de generalização frente aos 

subconjuntos de teste, o erro quadrático tende a assumir valores bem elevados, fato 

este que denota a condição de overftting. 

Em contrapartida, uma topologia PMC com número reduzido de neurônios pode 

ser insuficiente para a extração e armazenamento de características que permitam à 

rede implementar as hipóteses a respeito do comportamento do processo, configurando-

se uma situação de debilidade neural denominada de underfitting. Nesse caso, tanto na 

fase de aprendizado como na fase de teste o erro quadrático será bem significativo. 

2.2.7 Normalização de Padrões de Treinamento e Teste 

Todas as variáveis de entrada e saída da rede precisam ser individualmente 

normalizadas, em relação aos respectivos valores mínimos e máximos, considerando 

também todos os dados disponíveis, e assegurando-se ainda que tais valores estejam 

contidos dentro do conjunto de treinamento. Caso contrário, os valores mínimos e 



18 

máximos estarão no conjunto de teste, implicando-se então na redução dos domínios 

referentes às variáveis do conjunto de treinamento. 

2.3 SISTEMAS NEURO-FUZZY 

Atualmente, as abordagens neuro-fuzzy têm sido aplicadas com maior frequência, 

pois traz os benefícios tanto de sistemas de redes neurais quanto de sistemas fuzzy, 

removendo, assim, as desvantagens individuais. 

Sistemas neuro-fuzzy são arquiteturas que utilizam sistemas fuzzy para 

representar e processar o conhecimento de forma clara e de fácil interpretação, e que 

aproveitam a capacidade de aprendizado das redes neurais para ajustar as funções de 

pertinência. 

2.3.1 Arquitetura Neuro-Fuzzy 

Um sistema neuro-fuzzy consiste de componentes convencionais de um sistema 

fuzzy. A diferença está na computação de cada estágio, onde é realizada por uma 

camada de neurônios (Oliveira, 2011). A capacidade de aprendizagem da rede neural 

possibilita o melhoramento do sistema de conhecimento. Há algumas arquiteturas de 

sistemas neuro-fuzzy disponíveis e uma de suas possíveis configurações é mostrada na 

Figura 2.8.  

 

Fonte:  Oliveira, 2011. 

Figura 2.8 – Diagrama de um sistema neuro-fuzzy. 

Um sistema neuro-fuzzy pode ser dividido basicamente em três camadas: camada 

de fuzzificação, camada de inferência e camada de defuzzificação. Na camada de 

fuzzificação cada neurônio representa uma função de pertinência de entrada do 

antecedente de uma regra fuzzy. Em seguida, na camada de inferência, as regras são 

ativadas e os valores, ao final de cada regra, representam o peso inicial da regra, e 

serão ajustados ao seu próprio nível ao final do treinamento. Na camada de 

defuzzificação, cada neurônio representa uma proposição consequente e suas funções 

de pertinência podem ser implementadas combinando uma ou duas funções “sigmóide” 

e lineares. A Figura 2.9 ilustra o processo explicado acima. 
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Fonte:  Oliveira, 2011. 

Figura 2.9 – Estrutura do sistema neuro-fuzzy. 
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Capítulo 3  

Métodos para a Identificação de Fontes Harmônicas 

Os métodos para identificação de fontes harmônicas normalmente são voltados 

para a identificação de uma carga propriamente dita ou de uma classe de cargas. As 

primeiras pesquisas onde foi possível observar a identificação de componentes 

harmônicas da carga foram desenvolvidas em meados da década de 90, com os 

trabalhos de Cristaldi e Ferrero (1994), Varadan e Makram (1994, 1996). 

No trabalho proposto por Cristaldi e Ferrero foi desenvolvido um sistema 

embarcado em hardware para a identificação de fontes harmônicas. Nele os autores 

realizam testes em um sistema fechado pequeno que possuía uma fonte e duas cargas, 

sendo uma delas linear e a outra não. Assim, o sistema era responsável por adquirir as 

tensões e correntes e aplicar a Transformada Rápida de Fourier. Com esses dados em 

mãos, o sistema embarcado analisava os resultados e, com um sinal binário, indicava a 

presença ou não de fontes harmônicas. 

O trabalho de Varadan e Makram (1994) utiliza sistemas inteligentes com o 

objetivo de identificar fontes harmônicas. Os autores utilizaram redes neurais artificiais 

(RNA) do tipo Perceptron de Múltiplas Camadas. Essa rede foi responsável por 

classificar o tipo de carga conectada ao sistema, de acordo com três tipos: 

 tipo A – dispositivos baseados na eletrônica de potência; 

 tipo B – dispositivos a arco; 

 tipo C – dispositivos ferromagnéticos. 

Cada uma dessas três classes possui características específicas de correntes 

harmônicas, encontradas no trabalho. Portanto, o objetivo da RNA era determinar a 

classe da carga conectada no sistema, com base no treinamento da rede utilizando os 

limites de corrente harmônica. Os resultados obtidos foram excelentes, em um dos 

casos o erro obtido foi de 0%. Vale ressaltar que o método foi desenvolvido e testado 

para o PAC. 

O trabalho de 1996, desses mesmos autores, apresenta uma nova proposta. 

Diferente do trabalho de 1994 onde foi utilizado uma RNA para identificar as 3 classes 

de cargas mencionada, a proposta conta com um algoritmo capaz de identificar não 

somente as três classes, como também a combinação delas, apesar do trabalho ainda 
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ser feito para o PAC. Para o uso desse algoritmo foram criados novos limites de de 

correntes harmônicas para a classificação das cargas.. Nesse trabalho foram feitas 210 

simulações e, apesar de na média o erro obtido ser de 10% para a classe A e 10% para 

a combinação das três classes no PAC, e o restante 0%, em algumas simulações foram 

obtidos erros superiores a 30%. 

Depois desses trabalhos as pesquisas nessa área se intensificaram, sendo assim 

diversos trabalhos foram publicados. Como por exemplo, tem-se o trabalho de Niekerk, 

Rens e Hoffman (2002), que utilizaram RNAs do tipo Perceptron de Múltiplas Camadas, 

além de redes do tipo RBF (Radial Basis Function) para a identificação das mesmas 

classes de cargas apresentadas em Varadan e Makram. Para a validação do sistema 

foram empregados os seguintes dispositivos, um para cada classe: 

 tipo A – retificador de seis pulsos trifásicos; 

 tipo B – três fornos a arco com diferentes potências; 

 tipo C – transformador. 

As redes neurais foram então treinadas e foi verificado que os erros de 

identificação variaram entre 2% e 10%. 

No trabalho desenvolvido por Alammari, Soliman e El-Hawary (2004), os autores 

propuseram que as cargas fossem classificadas de acordo com as harmônicas 

predominantes. Deste modo, foram definidas três classes: 

 classe A – cargas com predominância das harmônicas de 5ª, 7ª, 11ª e 13ª 

ordens; 

 classe B – cargas com predominância das harmônicas de 3ª, 5ª e 7ª ordens, e 

 classe C – cargas com predominância das harmônicas de 3ª e 5ª ordens. 

Vale ressaltar que, apesar das três classes de cargas definidas pelos autores 

serem parecidas com as definidas pelo IEEE, as magnitudes das harmônicas (relativas 

à componente fundamental), quando comparadas, são diferentes. 

Na pesquisa feita por Zhao, Li e Xia (2004), os autores trabalharam para identificar 

fontes consumidoras de harmônicas em sistemas de distribuição de energia elétrica. 

Assim, torna-se possível, através da Transformada de Fourier, estimar a composição 

harmônica das barras que compõe o sistema de distribuição. 
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Além das pesquisas voltadas para identificação de classes de cargas e estimação 

de composição harmônica das cargas, há trabalhos para estimar tanto a impedância das 

linhas quanto a admitância das cargas, como por exemplo, o trabalho de Xu 23L 23L. 

(2002). 

Outra pesquisa utilizando sistemas inteligentes foi de Ferrero, Salicone e 

Todeschini (2007) que empregaram Sistemas de Inferência Fuzzy para identificar fontes 

consumidoras de potências harmônicas em sistemas elétricos industriais. 

Para finalizar, Gursoy e Niebur (2009) desenvolveram um método baseado na 

Análise de Componentes Independentes, onde são estimadas as partes reais e 

imaginárias das componentes harmônicas em cada uma das 14 barras de um sistema 

de transmissão fornecido pelo IEEE. Mas, o sistema proposto só pode ser 

implementado com uma grande quantidade de medidores, podendo torna-se inviável em 

uma aplicação prática. 

Nesse trabalho, foi escolhido utilizar a classificação de cargas encontradas em 

Varadan e Makram (1996) e ainda, os limites de correntes harmônicas para que 

determinadas cargas possam se enquadrar nessas classes. Foi tomado esse trabalho 

como referência, principalmente, por ele ter sido capaz de classificar não somente as 

cargas isoladas como também a combinação entre elas. Além disso, nesse trabalho não 

foram utilizados sistemas inteligentes e, portanto, espera-se que o uso do sistema 

Neuro-Fuzzy apresente melhores resultados. 
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Capítulo 4  
Modelagem de um Sistema de Distribuição de Energia Elétrica 

4.1 SISTEMA DE 20 BARRAS 

O software utilizado para a simulação de um sistema de distribuição de energia 

elétrica, com o objetivo de usá-lo para identificação de cargas consumidoras de 

harmônicas, foi o Alternative Transients Program (ATP). 

O programa ATP permite a simulação de transitórios eletromagnéticos em redes 

polifásicas, com diferentes configurações, por um método que utiliza a matriz de 

admitância de barras. A formulação matemática é baseada no método das 

características (método de Bergeron) para elementos com parâmetros distribuídos e na 

regra de integração trapezoidal para parâmetros concentrados. Durante a solução, são 

utilizadas técnicas de esparsidade e de fatoração triangular de matrizes otimizada. Esse 

software permite a representação de não linearidades, elementos com parâmetros 

concentrados, elementos com parâmetros distribuídos, chaves, transformadores, 

reatores, etc (Tavares, 2003). 

O ATP foi utilizado para simular o sistema de distribuição de energia elétrica com 

20 barras mostrado na Figura 4.1. 
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Fonte:  Fernandes, 2011. 

Figura 4.1 – Diagrama esquemático do sistema de 20 barras. 

Os círculos destacados indicam a posição dos medidores, não esquecendo que 

existe um medidor alocado na subestação. A posição do medidor 31 foi escolhida 

meramente por acaso, enquanto a posição do medidor 53 foi escolhida de forma a se 

pegar o ponto mais distante em relação a subestação, para garantir que houvesse uma 

melhor cobertura da rede. Ambos os medidores são encontrados no PAC. 

Com relação à configuração e parametrização desta rede de distribuição, a Tabela 

4.1 apresenta os dados referentes ao transformador da subestação, a fonte e ao banco 

de capacitores. 
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Tabela 4.1 – Parâmetros dos elementos que compõem a rede de distribuição do sistema de 20 

barras. 

Fonte 

Tensão de linha Nominal (kV) 88 

Resistência de Sequência Zero Equivalente (Ω) 20,805 

Resistência de Sequência Positiva Equivalente (Ω) 4,062 

Indutância de Sequência Zero Equivalente (mH) 203,721 

Indutância de Sequência Positiva Equivalente (mH) 52,5397 

Frequência Nominal da Rede (Hz) 60 

 

Transformador da Subestação 

Tipo de Conexão Δ-Y aterrado 

Tensão de linha no Primário (kV) 88 

Tensão de fase no Secundário (kV) 13,8 

Resistência do Primário (Ω) 0,054695 

Resistência do Secundário (Ω) 0,79376 

Indutância do Primário (mH) 1,628 

Indutância do Secundário (mH) 23,6258 

 

Banco de Capacitores 

Capacitância (uF) 5,9652 

 

Medidores de Tensão e Corrente 

Amostras por Ciclo 256 

Taxa de Amostragem (Hz) 15360 
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Devido à grande quantidade de parâmetros desta rede, os dados das linhas de 

distribuição e das cargas RL podem ser verificados no Apêndice A, onde tais dados são 

apresentados junto ao modelo do sistema de 20 barras desenvolvido via o software ATP. 

4.2 BANCO DE DADOS 

Com o sistema de distribuição de energia de 20 barras feito, pode-se, então, 

simular cargas consumidoras de potência harmônica inserindo fontes de corrente com 

diferentes frequências, representando assim, as componentes harmônicas de uma 

carga. A classificação de carga utilizada foi à mesma que é encontrada no trabalho de 

Varadan e Makram (1996), nele as três classes de cargas são divididas de acordo com 

as características das componentes harmônicas, isto é: 

 classe A – dispositivos baseados na eletrônica de potência; 

 classe B – dispositivos a arco; 

 classe C – dispositivos ferromagnéticos. 

A Tabela 4.2, Tabela 4.3 e Tabela 4.4 mostram os limites de correntes para que as 

cargas consumidoras de corrente harmônica se enquadrem em uma determinada classe. 

Por exemplo, para que uma carga não linear possa ser considerada uma carga classe A, 

esta deve ter os limites de corrente harmônica, para todas as harmônicas apresentadas 

na tabela, dentro dos valores indicados na Tabela 4.2. 

Tabela 4.2 – Característica da corrente harmônica para a carga classe A. 

Ordem da 
harmônica 

1 3 5 7 11 13 

Magnitude 
(%) 100 4,4-4,7 32,1-76,5 16,2-62,1 6,5-24,8 5,7-12,7 

 

 

Tabela 4.3 – Característica da corrente harmônica para a carga classe B. 

Ordem da 
harmônica 

1 3 5 7 11 13 

Magnitude 
(%) 100 54,8-65,8 36,7-43,6 18,3-20,3 0,4-0,6 2,6-4,0 
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Tabela 4.4 – Característica da corrente harmônica para a carga classe C. 

Ordem da 
harmônica 

1 3 5 7 11 13 

Magnitude 
(%) 100 6,4-24,3 6,2-14 0,9-5,4 0,2-6,0 0,3-2,3 

 

È importante ressaltar que, em algum das harmônicas apresentadas, como por 

exemplo, a décima terceira harmônica, ocorre a sobre posição de valores para as três 

classes, o que dificultaria a separação das cargas não lineares utilizando métodos 

convencionais, e por isso, a justificativa de se utilizar sistemas inteligentes. 

Com base tabelas apresentadas acima, foi utilizado o software Excel para que se 

pudesse criar diferentes cargas dentro dos limites apresentados. Por exemplo, uma 

carga não linear da classe C, utilizando somente os limites superiores da Tabela 4.4, 

poderia ser representada conforme a Tabela 4.5. 

Tabela 4.5 – Exemplo para uma carga classe C. 

Ordem da harmônica 1 3 5 7 11 13 

Magnitude (%) 100 24,3 14 5,4 6,0 2,3 
 

Assim, foram criadas, no Excel, 100 cargas classe A, em que os valores das 

correntes harmônicas eram geradas aleatoriamente, utilizando uma função fornecida 

pelo Excel, mas sempre dentro dos limites apresentados na Tabela 4.2. Ressalta-se que 

nos primeiros 13 valores, cuja essa quantidade foi escolhida meramente por acaso, foi 

forçado que as componentes harmônicas, parte delas ou todas elas, estariam nos 

limites mínimo e máximo, somente para garantir que tais valores estariam no conjunto 

de treinamento do sistema Neuro-Fuzzy, explicado mais adiante. A Tabela 4.6 indica as 

porcentagens utilizadas. 
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Tabela 4.6 – Porcentagem de componentes harmônicas para carga da classe A. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 4,4 32,1 16,2 6,5 5,7 
2ª 4,7 76,5 62,1 24,8 12,7 
3ª 4,4 72,6 47,6 18,2 6,2 
4ª 4,5 32,1 30,1 21,7 6,8 
5ª 4,6 43,4 16,2 22,3 9,2 
. 
. 
. 

     

100ª 4,6 39,7 61,9 8,8 7,5 
 

Para as cargas classe B e classe C foram feitas exatamente da mesma maneira e 

com a mesma quantidade. Parte de seus valores encontra-se nas Tabela 4.7 e Tabela 

4.8, respectivamente. 

Tabela 4.7 – Porcentagem de componentes harmônicas para carga da classe B. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 54,8 36,7 18,3 0,5 2,6 
2ª 65,8 43,6 20,3 0,6 4,0 
3ª 54,8 42,4 20,1 0,6 3,9 
4ª 59,9 36,7 19,7 0,5 2,7 
5ª 63,0 42,7 18,3 0,5 3,7 
. 
. 
. 

     

100ª 62,7 37,7 18,6 0,6 2,7 
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Tabela 4.8 – Porcentagem de componentes harmônicas para carga da classe C. 

Carga 
Harmônica 

3ª   
Harmônica 

(%) 

5ª   
Harmônica 

(%) 

7ª   
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 6,4 6,2 0,9 0,2 0,3 
2ª 24,3 14,0 5,4 6,0 2,3 
3ª 06,4 13,0 2,5 5,6 2,1 
4ª 10,8 6,2 1,0 4,5 1,6 
5ª 16,3 9,5 0,9 6,0 0,5 
. 
. 
. 

     

100ª 12,3 8,7 1,9 4,5 1,0 
 

Como os valores apresentados na Tabela 4.6, Tabela 4.7 e Tabela 4.8 são valores 

que dependem da componente fundamental, então foi necessário simular o sistema de 

20 barras, sem nenhuma alteração, para adquirir as correntes fundamentais. O valor da 

componente fundamental de corrente do barramento 31 foi de 5,9851 A, enquanto para 

o barramento 53 foi de 4,799 A. Assim, para o barramento 31 os valores da Tabela 4.6, 

Tabela 4.7 e Tabela 4.8 foram multiplicados por 5,9851 A, resultando em 300 valores. 

Para o barramento 53 os valores das Tabela 4.6, Tabela 4.7 e Tabela 4.8 foram 

multiplicados por 4,799 A, resultando em outros 300 valores. 

Com todas as cargas harmônicas calculadas e prontas para serem inseridas no 

sistema de 20 barras, foi então inseridas 5 fontes de corrente no barramento 31. Cada 

fonte de corrente representa uma componente harmônica de corrente, por exemplo, a 

terceira harmônica é representada por uma fonte de corrente com frequência em 180 Hz, 

a quinta harmônica é representada por outra fonte de corrente com frequência de 300 

Hz, a sétima harmônica é representada por outra fonte de corrente com frequência de 

420 Hz, a décima primeira harmônica é representada por outra fonte de corrente com 

frequência de 660 Hz e, por fim, a décima terceira harmônica que é representada por 

outra fonte de corrente com frequência de 780 Hz. A Figura 4.2 ilustra o processo 

mencionado acima. 
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Figura 4.2 – Representação de uma carga harmônica, ou seja, cinco fontes de correntes. 

Em um primeiro momento somente o barramento 31 foi utilizado. Ou seja, 

nenhuma alteração foi feita no barramento 53. Assim, no barramento 31 foram 

simuladas 100 cargas da classe A, uma de cada vez, de acordo com os valores da 

Tabela 4.6. A Tabela 4.9 mostra os resultados das cinco primeiras simulações do ATP 

para uma carga pertencente à classe A. As medidas que foram obtidas pelo medidor de 

corrente, que se encontra no PAC, e transformadas em porcentagem em relação a 

fundamental, podendo assim comparar os resultados obtidos com os esperados, 

indicado pela Tabela 4.2. 

Tabela 4.9 – Resultado da simulação do ATP para a carga classe A do barramento 

31 medida no PAC. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 4,4042 31,9921 15,9633 6,4360 5,6335 
2ª 4,7172 76,2517 61,2041 24,5588 12,5396 
3ª 4,4142 72,3302 46,9317 18,0538 6,0709 
4ª 4,5066 31,9974 29,6358 21,5440 6,6797 
5ª 4,5591 43,2576 15,9638 22,0946 9,0618 
. 
. 
. 

     

100 4,6466 39,5527 61,0070 8,7397 7,3675 
 

Repare que as medidas obtidas pelo ATP, para a maioria das cargas 

apresentadas na Tabela 4.9, não correspondem a uma carga classe A, ou seja, para 

alguma harmônica ou para todas elas, os limites obtidos encontram-se fora da Tabela 

4.2, apesar de ter sido alocada uma carga classe A no local. Por exemplo, a quinta 

harmônica da primeira carga não estaria dentro dos limites encontrado na Tabela 4.2, 

embora o valor seja próximo do limite inferior (32,1 %). Vale ressaltar ainda que a 

proporção obtida na Tabela 4.9 de cargas que deveriam ser classe A, mas não pertence 
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a ela, não se repete para o conjunto total de amostras, pelo contrário, no total apenas 

12% não foram consideradas cargas classe A. 

Em seguida, foram simuladas as cargas classe C, ou seja, somente a carga não 

linear do tipo classe C foi colocada no barramento 31. Assim como na classe A, foram 

obtidas 100 medidas e algumas delas são mostradas na Tabela 4.10. 

Tabela 4.10 – Resultado da simulação do ATP para a carga classe B do barramento 31 

medida no PAC. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 54,7367 36,5661 18,0244 0,4839 2,5622 
2ª 65,7245 43,4412 19,9929 0,5817 3,9461 
3ª 54,7380 42,2909 19,7557 0,5530 3,8215 
4ª 59,8795 36,5655 19,3678 0,5262 2,6625 
5ª 62,9124 42,5920 18,0218 0,4912 3,6276 
. 
. 
. 

     

100 62,6178 37,5804 18,2702 0,5774 2,6838 
 

O mesmo processo foi realizado para a carga C. A Tabela 4.11 mostra algumas 

das medidas obtidas pelo ATP. 

Tabela 4.11 – Resultado da simulação do ATP para a carga classe C do barramento 31 

medida no PAC. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 6,3953 6,1793 0,8865 0,1981 0,2969 
2ª 24,2738 13,9494 5,3187 5,9419 2,2702 
3ª 6,3970 12,9914 2,4175 5,5898 2,0707 
4ª 10,8021 6,1790 0,9462 4,4364 1,5361 
5ª 16,3137 9,4561 0,8853 5,9266 0,5075 
. 
. 
. 

     

100 12,2975 8,7078 1,8988 4,4603 1,0063 
 

Feito as simulação para as cargas isoladas no barramento 31, ou seja, somente 

cargas classe A, ou somente cargas classe B, ou somente cargas classe C, foi então 

simulado as combinações dessas cargas, por exemplo, uma carga classe A e uma 



34 
 

carga classe B alocadas ao mesmo instante no PAC. Para isso, foi necessário incluir 

mais um conjunto de 5 fontes de correntes, no barramento 31, para simular uma nova 

fonte harmônica. Cada simulação foi feita utilizando a primeira linha da carga classe A, 

representada na Tabela 4.6 (multiplicada pela corrente fundamental do barramento 31) 

com a primeira linha da classe C Tabela 4.7 (também multiplicada pela corrente 

fundamental do barramento 31), e assim por diante, resultando em uma quantidade de 

100 medidas. A Tabela 4.12 indica os resultados para algumas simulações obtidas no 

ATP para as duas cargas mencionadas. 

Tabela 4.12 – Resultado da simulação do ATP para as cargas da classe A e B do 

barramento 31 medida no PAC. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 109,4756 73,1344 36,0495 0,9670 5,1241 
2ª 131,4539 86,8863 39,9872 1,1626 7,8922 
3ª 109,4786 84,5848 39,5125 1,1052 7,6429 
4ª 119,7623 73,1335 38,7367 1,0517 5,3245 
5ª 125,8291 85,1875 36,0446 0,9816 7,2551 
. 
. 
. 

     

100ª 125,2394 75,1635 36,5414 1,1541 5,3672 
 

O mesmo procedimento foi realizado para as cargas classe B e classe C. Em 

seguida para as cargas classe A e classe C. Finalizando para todas as classes, ou seja, 

para as cargas classe A, classe B e classe C, lembrando que para realizar esse 

procedimento foi necessário acrescentar mais cinco fontes de correntes. O total de 

medidas obtidas, ao final da simulação, para o barramento 31 foi de 700. 

Terminado as simulações para o barramento 31, foram feitas, da mesma maneira, 

as simulações para o barramento 53, ou seja, nenhuma fonte de corrente foi alocado no 

barramento 31 e o mesmo procedimento feito para adquirir os dados no barramento 31 

foi feito no barramento 53. Lembrando que, para o caso do barramento 53 o medidor 

utilizado foi o que se encontra no mesmo local, ou seja, no PAC. Além disso, os valores 

utilizados na simulação foram os apresentados nas Tabela 4.6, Tabela 4.7 e Tabela 4.8, 

multiplicados por 4,799 A que é a componente fundamental do barramento 53, diferente 

do  valor barramento 31 (5,9851 A). 
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Na Tabela 4.13 é apresentado os resultados obtidos na simulação do ATP para 

uma carga classe A alocada no barramento 53.  

Tabela 4.13 – Resultado da simulação do ATP para a carga classe A do barramento 

53 medida no PAC. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 4,3981 31,9294 15,8350 6,4135 5,6211 
2ª 4,7096 76,1005 60,7134 24,4722 12,5147 
3ª 4,4077 72,1864 46,5546 17,9887 6,0587 
4ª 4,5001 31,9347 29,3981 21,4677 6,6667 
5ª 4,5529 43,1728 15,8356 22,0153 9,0449 
. 
. 
. 

     

100ª 4,6401 39,4741 60,5172 8,7094 7,3540 
 

Como era esperado, os resultados obtidos na Tabela 4.13 foram próximos aos 

obtidos na Tabela 4.9, pois a proporção foi mantida. Ou seja, apesar do barramento ter 

mudado a amplitude da corrente fundamental também mudou e, portanto, uma vez que 

isso foi levado em conta, não era esperado que os resultados obtidos deferissem muito 

dos encontrados no barramento 31. 

Finalizando todas as simulações, foram obtidas 700 medidas para o barramento 

53. Tendo assim, um conjunto de medidas de 1400 amostras contando com o 

barramento 31. 

Todas as medidas feitas até esse momento foram realizadas utilizando os 

medidores de tensão/corrente no PAC, o que vale ressaltar que nem sempre 

corresponde a um sistema real, onde não é possível encontrar medidores em todos os 

barramentos. Portanto, tendo isso em vista, foram realizados outros conjuntos de testes, 

utilizando os mesmo valores que foram utilizados para o barramento 31 e os mesmo 

valores que foram utilizados para o barramento 53 só que obtendo as medidas na 

subestação. Por exemplo, em um primeiro momento, foi colocado 100 cargas classe A, 

uma de cada vez, no barramento 31 (sem nada estar alocado no barramento 53) e as 

medidas foram obtidas na subestação. Em seguida foi colocado 100 cargas classe A no 

barramento 53 (sem nada estar alocado no barramento 31), uma de cada vez, e as 

medidas foram obtidas na subestação. Lembrando que a componente fundamental de 

cada barramento é diferente. Com isso já foram obtidos 200 medidas na subestação 
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somente para a carga classe A. A Tabela 4.14 e Tabela 4.15 mostram alguns resultados 

para as medidas feitas na subestação para cargas classe A alocadas no barramento 31 

e barramento 53, respectivamente. 

Tabela 4.14 – Resultado da simulação do ATP para a carga classe A do barramento 

31 medida na subestação. 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 0,2826 2,5434 2,2232 0,1749 0,0323 
2ª 0,3007 6,0592 8,5246 0,6704 0,0716 
3ª 0,2819 5,7484 6,5366 0,4923 0,0330 
4ª 0,2886 2,5429 4,1277 0,5900 0,0380 
5ª 0,2922 3,4387 2,2223 0,6058 0,0530 
. 
. 
. 

     

100ª 0,2966 3,1422 8,4989 0,2355 0,0407 
 

 

Tabela 4.15 – Resultado da simulação do ATP para a carga classe A do barramento 

53 medida na subestação 

Carga 
Harmônica 

3ª 
Harmônica 

(%) 

5ª 
Harmônica 

(%) 

7ª 
Harmônica 

(%) 

11ª 
Harmônica 

(%) 

13ª 
Harmônica 

(%) 
1ª 0,2363 2,3084 2,3210 0,3436 0,1593 
2ª 0,2509 5,4990 8,8999 1,3138 0,3543 
3ª 0,2354 5,2171 6,8243 0,9653 0,1704 
4ª 0,2411 2,3077 4,3092 1,1542 0,1885 
5ª 0,2443 3,1209 2,3199 1,1844 0,2568 
. 
. 
. 

     

100ª 0,2477 2,8515 8,8731 0,4647  0,2073 
 

Como pode ser notado, quando os valores não são adquiridos no PAC, no caso na 

subestação, estes são bem diferentes do que se era esperado pela Tabela 4.2. 

Repetindo esse processo, de forma análoga ao que foi feito para as cargas e 

medidores localizados no PAC, para as cargas classe B, classe C e para a combinação 

dessas classes, foram obtidas ao final do treinamento 1400 dados, 700 devido ao 
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barramento 31 e 700 devido ao barramento 53. Nenhum desses valores ficou dentro dos 

limites apresentados pela Tabela 4.2, Tabela 4.3 e Tabela 4.4. 

Resumidamente, foi possível obter 1400 amostras utilizando os medidores no PAC 

e 1400 amostras utilizando o medidor localizado na subestação para o treinamento e 

validação do sistema inteligente, que será explicado a seguir. 
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Capítulo 5  
Aplicação de Sistemas Neuro-Fuzzy para Identificação de Fontes 
Harmônicas 

5.1 SISTEMA NEURO-FUZZY 

Para desenvolver o modelo, foi utilizado o sistema ANFIS (Adaptive-Network-

Based Fuzzy Inference System) que é uma classe de redes neurais adaptáveis 

funcionalmente equivalentes a um sistema de inferência fuzzy, explicado na seção 2.3. 

Este aplica uma combinação do método de mínimos quadrados e do método do 

gradiente descendente (backpropagation) para treinar os parâmetros das funções de 

pertinência de forma a minimizar um erro de medida determinado. O toolbox fornecido 

pelo software MatLab foi utilizado para o treinamento e validação do sistema Neuro-

Fuzzy. 

Para o treinamento e validação do sistema Neuro-Fuzzy é necessário associar 

cada uma das simulações feitas na seção 4.2 com sua respectiva saída, pois o 

treinamento que será realizado é supervisionado. A divisão de classes foi feita conforme 

mostrado na Tabela 5.1. 
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Tabela 5.1 – Classificação de classe utilizada. 

Classes A B C 

Classe A 1 0 0 

Classe B 0 1 0 

Classe C 0 0 1 

Classe AB 1 1 0 

Classe BC 0 1 1 

Classe AC 1 0 1 

Classe ABC 1 1 1 

 

Ou seja, para que haja alguma carga pertencente a classe A, basta que a segunda 

coluna seja 1. Para a classe B, a terceira coluna seja 1 e, finalmente, para que seja da 

classe C, a quarta coluna deve ser 1. 

Além de associar com sua respectiva saída, todos os dados obtidos, foram 

normalizados para valores entre 1 e -1 a fim de melhorar o desempenho da rede. 

Lembrando que os valores extremos da normalização deverão estar contidos no 

conjunto de treinamento, ou seja, as treze primeiras cargas harmônicas de cada classe 

e combinação de classes, necessariamente, deverão estar contidas no conjunto de 

treinamento, pois foram nelas que se garantiram os valores extremos da Tabela 4.2, 

Tabela 4.3 e Tabela 4.4. 

Tomado esses devidos cuidados, foram realizados dois treinamentos distintos, um 

para as cargas harmônicas e os medidores localizados no PAC e outro para o medidor 

localizado na subestação. Ou seja, 1400 dados para o PAC e 1400 dados para a 

subestação. Para cada um deles, 70% dos dados foram utilizados no treinamento, 

enquanto que o restante, 30%, foi utilizado para a validação do sistema Neuro-Fuzzy. 
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5.1.1 Treinamento e validação para fontes harmônicas localizadas no PAC. 

Para as 1400 medidas obtidas com os medidores no PAC, foram realizados 6 

treinamentos diferentes para procurar o sistema cuja resposta seja computacionalmente 

mais fácil treinar e, principalmente, possuir a maior taxa de acerto. A Tabela 5.2 mostra 

os 3 treinamentos utilizando a função de pertinência triangular e a Tabela 5.3 mostra os 

3 treinamentos utilizando a função de pertinência gaussiana. Em ambas as tabelas são 

indicadas o tempo de processamento, no qual foi medido utilizando um notebook com 

processador Intel Core i5-2410M (2,40 GHz), com 4 GB de memória RAM e HD de 7200 

RPM. 

Tabela 5.2 – Dados utilizados no treinamento do sistema Neuro-Fuzzy com função de 

pertinência triangular. 

 
1o 

Treinamento 
2o 

Treinamento 
3o 

Treinamento 
Número de funções de pertinência 2 2 3 
Tipos de função de pertinência de 

entrada Triangular Triangular Triangular 

Tipo de função de pertinência de 
saída Triangular Triangular Triangular 

Épocas 100 200 100 
Tempo para treinamento médio 2 min 5 min 7 horas 

 

 

Tabela 5.3 – Dados utilizados no treinamento do sistema Neuro-Fuzzy com função de 

pertinência gaussiana. 

 
4o 

Treinamento 
5o 

Treinamento 
6o 

Treinamento 
Número de funções de pertinência 2 2 3 
Tipos de função de pertinência de 

entrada Gauss Gauss Gauss 

Tipo de função de pertinência de 
saída Gauss Gauss Gauss 

Épocas 100 200 100 
Tempo para treinamento médio 2 min 5 min 7 horas 

 

A Tabela 5.4 e Tabela 5.5 mostram os melhores erros obtidos na validação do 

sistema Neuro-Fuzzy utilizando função de pertinência triangular e gaussiano, 

respectivamente. 
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Tabela 5.4 – Erro obtido para o melhor treinamento utilizando função de pertinência 

triangular. 

 1o Treinamento 

Classe A B C 
Número de amostras 420 420 420 

Erros 14 0 2 
Erro (%) 3,33 0 0,47 

 

 

Tabela 5.5 – Erro obtido para o melhor treinamento utilizando função de pertinência 

gaussiana. 

 4o Treinamento 

Classe A B C 
Número de amostras 420 420 420 

Erros 15 0 4 
Erro (%) 3,57 0 0,95 

 

Apesar do erro obtido, tanto utilizando função de pertinência triangular, como 

utilizando função de pertinência gaussiana serem próximos, o melhor resultado foi 

obtido utilizando a função de pertinência triangular. Outra vantagem seria que caso 

fosse implementado em hardware, essa função de pertinência precisaria de apenas dois 

pontes para serem armazenados, uma vez que essas funções de pertinência são 

simétricas, como pode ser visto a seguir. 

 

Figura 5.1 – Função de pertinência triangular para a terceira harmônica da classe A. 
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Figura 5.2 - Função de pertinência triangular para a terceira harmônica da classe B. 

 

Figura 5.3 - Função de pertinência triangular para a terceira harmônica da classe C. 

As funções de pertinência mostradas na Figura 5.1, Figura 5.2 e Figura 5.3 foram 

retiradas apenas para a função triangular, onde foi obtido o melhor resultado. Essas 

funções ficaram iguais, pois o comportamento do sistema não se altera de harmônica 

para harmônica, ou, em variáveis linguísticas, para todas as harmônicas o 

comportamento continua “baixa” quantidade de determinada harmônica ou “alta” 

quantidade. 

As figuras a seguir mostram as superfícies de decisão para o melhor dos 

treinamentos, ou seja, para o treinamento com função de pertinência triangular. 
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Figura 5.4 – Superfície de decisão para função de pertinência triangular da classe A. 
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Figura 5.5 – Superfície de decisão para função de pertinência triangular da classe B. 
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Figura 5.6 – Superfície de decisão para função de pertinência triangular da classe C. 

Observando as superfícies de decisão, pode-se perceber que quando os valores 

na Tabela 4.2, Tabela 4.3 e Tabela 4.4 são mais difíceis de serem distinguidos, então a 

superfície começa a apresentar mínimos locais, ou seja, deixa de ficar “suave”. Portanto, 

uma superfície lisa indica um processo de identificação mais simples. 

5.1.2 Treinamento e validação para fontes harmônicas utilizando medidores 
localizados na subestação 

Para as 1400 amostras obtidas com os medidores localizados na subestação 

foram utilizados os mesmos dados para o treinamento do sistema Neuro-Fuzzy, que são 
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apresentados na Tabela 5.2 e Tabela 5.3, para efeito de comparação. Ressalta-se que 

os tempos obtidos para o processamento do treinamento do sistema inteligente foram 

próximos aos obtidos para o caso anterior. 

A Tabela 5.6 e Tabela 5.7 mostram os melhores erros obtidos na validação do 

sistema Neuro-Fuzzy utilizando função de pertinência triangular e gaussiano, 

respectivamente. 

Tabela 5.6 - Erro obtido para o melhor treinamento utilizando função de pertinência 

triangular. 

 1o Treinamento 

Classe A B C 
Número de amostras 420 420 420 

Erros 60 60 8 
Erro (%) 14,28 14,28 0,95 

 

 

Tabela 5.7 - Erro obtido para o melhor treinamento utilizando função de pertinência 

gaussiana. 

 4o Treinamento 

Classe A B C 
Número de amostras 420 420 420 

Erros 60 60 0 
Erro (%) 14,28 14,28 0 

 

Diferente para o caso anterior, agora o melhor resultado foi obtido com a função 

de pertinência gaussiana. Talvez, devido ao fato das amplitudes serem menores a 

função gaussiana consegue retirar mais informações do sistema. As figuras a seguir 

mostram as funções de pertinência obtidas para o melhor dos casos, ou seja, para a 

função de pertinência gaussiana. 
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Figura 5.7 – Função de pertinência gaussiana para a terceira harmônica da classe A. 

 

 

Figura 5.8 - Função de pertinência gaussian para a terceira harmônica da classe B. 

 

Figura 5.9 - Função de pertinência gaussiana para a terceira harmônica da classe C. 

As funções de pertinência mostradas na Figura 5.7, Figura 5.8 e Figura 5.9 

ficaram iguais pelo mesmo motivo do caso anterior, ou seja, o comportamento do 

sistema não se altera de harmônica para harmônica, 
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As figuras a seguir mostram as superfícies de decisão para o melhor dos 

treinamentos, ou seja, para o treinamento com função de pertinência gaussiana. 

 

 

Figura 5.10 – Superfície de decisão para função de pertinência gaussiana da classe A. 
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Figura 5.11 – Superfície de decisão para função de pertinência gaussiana da classe B. 
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Figura 5.12 – Superfície de decisão para função de pertinência triangular da classe C. 

Observando as superfícies de decisão, pode-se perceber essas superfícies são 

mais “onduladas” do que o caso anterior, isso deve-se principalmente pelo uso da 

função de pertinência gaussiana, mas ainda sim, o comportamento do sistema se 

mantêm, como explicado no item 5.1.1. 

É importante comentar que tanto para a subestação quanto para o PAC foram 

empregados três sistemas Neuro-Fuzzy, sendo cada um deles responsável por 

identificar uma determinada classe de fontes consumidoras de potências harmônicas. 
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5.1.2 Comparação com o trabalho de Varadan e Makram (1996) 

No trabalho de Varadan e Makram (1996) foi desenvolvido um algoritmo para 

classificar os mesmos tipos de classe de cargas que aqui foi utilizado, conforme já 

mencionado no Capítulo 3. O melhor resultado obtido por esses autores é mostrado na 

Tabela 5.8. 

 

Tabela 5.8 – Erro encontrado na classificação de fontes consumidoras de potência 

harmônica por Varadan e Makram (1996). 

Classe A B C AB BC AC ABC 

Erro(%) 10 0 0 0 0 0 10 

 

Colocando os erros obtidos nesse trabalho, para as cargas alocadas no PAC, pois 

foi para esse método que o trabalho de Varadan e Makran (1996) foi desenvolvido, e, 

portanto, o qual se irá comparar nesse trabalho, da mesma maneira que foi mostrado 

por esses autores, então os erros obidos são indicados na Tabela 5.9. 

Tabela 5.9 – Erro encontrado nesse trabalho para cargas alocadas no PAC. 

Classe A B C AB BC AC ABC 

Erro(%) 2 0 0 0 1 1 3 

 

Deve ser ressaltado que os erros mostrados na Tabela 5.8, para o algoritmo 

desenvolvido por Varadan e Makran (1996), são os melhores valores encontrados por 

eles. Entretanto, em uma média de 210 simulações foi possível encontrar erros maiores 

de 30%. A vantagem desse algoritmo, segundo eles, é o baixo custo computacional. Já 

o sistema Neur-Fuzzy apresentado aqui, foi possível obter erros menores obtidos do 

que mostrados na Tabela 5.8, que foi o melhor erro, e o custo computacional, apesar de 

ser alto para o treinamento da rede, este é baixo quando a rede já está treinada. 

Portanto, os resultados encontrados aqui foram excelentes. 
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Capítulo 6  
Conclusão 

As redes neurais artificiais, assim como os sistemas de inferência fuzzy e os 

sistemas Neuro-Fuzzy, podem ser aplicadas em diversos problemas relacionados às 

engenharias e às ciências. As características mais atrativas dessas ferramentas são a 

sua capacidade em mapear sistemas não-lineares, sendo, portanto, um instrumento 

promissor na identificação de fontes harmônicas. 

Os sistemas de inferência fuzzy são sistemas mais fáceis de compreender, uma 

vez que a linguagem utilizada para sua programação é a mesma utilizada no dia-a-dia, 

ou seja, variáveis qualitativas. Entretanto, não há uma regra fixa de como e quais 

funções de pertinência devem ser utilizadas e, portanto, há a necessidade de realizar 

vários treinamentos, seja alterando as funções de pertinência, seja alterando sua 

posição relativa, para atingir um resultado satisfatório. 

O mesmo acontece com as redes neurais, pois elas determinam a melhor 

resposta pelo mínimo da função erro, seja ele global ou não. Portanto, é necessário 

treiná-la várias vezes para tentar alcançar o mínimo global, fato este que, dependendo 

do programa, pode não ser alcançado, uma vez que o programador pode não conhecer 

esse mínimo. Assim, o programa é executado até obter uma resposta satisfatória, 

podendo ela não ser a melhor. 

Os sistemas Neuro-Fuzzy permitem que o sistema de inferência fuzzy seja 

utilizado mais facilmente, pois ele utiliza as redes neurais para ajustar as funções de 

pertinência. Entretanto, é necessário um conjunto de várias amostras para que o 

treinamento seja possível. 

O uso de sistemas inteligentes, mais precisamente do sistema Neuro-Fuzzy, para 

determinar e classificar cargas consumidoras de potência harmônica foi ótimo quando 

os medidores estavam localizados próximos às fontes consumidoras de harmônicas. 

Com um dos treinamentos foi possível obter um erro de 3,33% para a classe A, 0% para 

a classe B e 0,47% para a classe C. 

Quando os medidores foram alocados na subestação os resultados já não foram 

tão atrativos quando comparado com o caso anterior. As classes A e B de cargas foram 

as que tiveram maiores dificuldades para serem identificadas, com erros, em geral, 

próximos a 14%. Felizmente, os resultados obtidos para a classe C foram excelentes, 
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com um dos treinamentos foi obtido erro zero. Esses resultados já eram esperados uma 

vez que as amplitudes obtidas pelos medidores da subestação estavam baixas. Durante 

a aquisição de dados foi difícil perceber qual carga estava alocada no sistema devido às 

amplitudes obtidas serem semelhantes e, ainda assim, o sistema Neuro-Fuzzy 

conseguiu identificar a maioria delas. Vale ressaltar que os erros estavam espalhados 

por todo o treinamento e não concentrado para um caso específico. 

Observando atentamente as funções de pertinência obtidas, percebe-se que elas 

são muito semelhantes tanto para os medidores próximos às fontes consumidoras de 

potências harmônicas, como para medidores localizados na subestação, isso porque o 

comportamento das harmônicas, em termo de variáveis linguísticas é o mesmo, mas as 

superfícies de decisão foram diferentes, principalmente devido às amplitudes serem 

menores. Além disso, os limites em porcentagem para classificar as cargas em três 

classes eram, em alguns casos sobrepostos. Como por exemplo, a décima terceira 

harmônica das três classes de cargas. Quando isso acontecia podia se perceber que as 

superfícies de decisões apresentavam mais mínimos locais, ou seja, menos suavidade 

na curva, indicando a dificuldade de se analisar essa componente harmônica. 

O uso de sistema inteligente para identificar as cargas consumidoras de potência 

harmônica é justificado, devido principalmente a não linearidade do sistema. Além disso, 

quando comparado com o trabalho de Varadan e Makram (1996), onde foi feita a 

mesma classificação de fontes consumidoras de potência harmônica, viu-se que os 

resultados obtidos nesse trabalho foram melhores. 

Vale ressaltar ainda que o uso de mais épocas no treinamento do sistema 

inteligente, ou mesmo o uso de mais funções de pertinência, não necessariamente 

melhora os resultados. Como exemplo, foi realizada uma simulação para um sistema 

com 3 funções de pertinência para cada harmônica e, além do treinamento ter requerido 

muito processamento, os resultados obtidos foram piores dos que aqueles encontrados 

quando se utiliza 2 funções de pertinência. 
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Apêndice A – Sistema de 20 barras 

No apêndice A, será mostrado o arquivo desenvolvido em ATP para modelar e 

simular o sistema de 20 barras. Nesse arquivo, são configuradas as linhas de 

distribuição, cargas RL, cargas não lineares, bancos de capacitores, transformadores, 

dentre outros. 

Configurações iniciais do modelo 
BEGIN NEW DATA CASE 

POWER FREQUENCY                      60. 

6.512E-5 1.06667                 

     500       1       1       1       1       0       0       1       0 

 
Impedâncias das linhas de distribuição 
/BRANCH 

51BUS20ABUS23A            .10172  1.55575032 

52BUS20BBUS23B            .05245   .28717716 

53BUS20CBUS23C 

51BUS50ABUS51A            .08018  1.22634968 

52BUS50BBUS51B            .04135   .22637284 

53BUS50CBUS51C 

51BUS43ABUS44A            .19687  3.01106683 

52BUS43BBUS44B            .10152  .555815165 

53BUS43CBUS44C 

51BUS40ABUS43A            .19687  3.01106683 

52BUS40BBUS43B            .10152  .555815165 

53BUS40CBUS43C 

51BUS22ABUS20A            .02427   .37113214 

52BUS22BBUS20B            .01289   .06850757 

53BUS22CBUS20C 

51BUS31ABUS32A            .02427   .37113214 

52BUS31BBUS32B            .01289   .06850757 

53BUS31CBUS32C 

51BUS41ABUS42A            .15789   2.4148628 

52BUS41BBUS42B            .08385    .4457614 

53BUS41CBUS42C 

51BUS42ABUS40A             .1103  1.68706544 

52BUS42BBUS40B            .05688   .31141672 

53BUS42CBUS40C 

51BUS30ABUS33A             .1103  1.68706544 

52BUS30BBUS33B            .05688   .31141672 

53BUS30CBUS33C 

51BU30YABUS40A            1.1065 16.92295788 
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52BU30YBBUS40B            .57057  3.12382194 

53BU30YCBUS40C 

51BUS33ABUS34A            .42863  6.55574044 

52BUS33BBUS34B            .22103  1.21012922 

53BUS33CBUS34C 

51BUS32ABUS30A            .42863  6.55574044 

52BUS32BBUS30B            .22103  1.21012922 

53BUS32CBUS30C 

51BUS21ABUS22A            .02427   .37113214 

52BUS21BBUS22B            .01289   .06850757 

53BUS21CBUS22C 

51BUS51ABUS53A            .04849   .74170786 

52BUS51BBUS53B            .02575   .13691243 

53BUS51CBUS53C 

51BUS51ABUS52A            .04849   .74170786 

52BUS51BBUS52B            .02575   .13691243 

53BUS51CBUS52C 

51BUS23ABUS24A            .27592  2.03517312 

52BUS23BBUS24B            .21292   .41281344 

53BUS23CBUS24C 

51BUS10ABU10XA            .42863  6.55574044 

52BUS10BBU10XB            .22103  1.21012922 

53BUS10CBU10XC 

51BU10XABUS20A            .42863  6.55574044 

52BU10XBBUS20B            .22103  1.21012922 

53BU10XCBUS20C 

51BU40XABU50XA            .42863  6.55574044 

52BU40XBBU50XB            .22103  1.21012922 

53BU40XCBU50XC 

51BUS40ABU40XA            .42863  6.55574044 

52BUS40BBU40XB            .22103  1.21012922 

53BUS40CBU40XC 

51BUS20ABUS30A            1.1065 16.92295788 

52BUS20BBUS30B            .57057  3.12382194 

53BUS20CBUS30C 

51BUS30ABU30XA            .42863  6.55574044 

52BUS30BBU30XB            .22103  1.21012922 

53BUS30CBU30XC 

51BU30XABU30YA            .42863  6.55574044 

52BU30XBBU30YB            .22103  1.21012922 

53BU30XCBU30YC 

 
Bancos de capacitores 
  X0001A                              5.9652                                   0 

  X0001B                              5.9652                                   0 

  X0001C                              5.9652                                   0 
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Impedância equivalente da fonte 
51FONTEAT_PRIA            20.805     203.721 

52FONTEBT_PRIB             4.062     52.5397 

53FONTECT_PRIC 

 
Transformador da subestação 
  TRANSFORMER                         X0002A  1.E6                             0 

  9.65711453E-04  4.09340967E+04 

  2.99405817E-03  4.54823297E+04 

  1.89842730E-02  5.00305627E+04 

  1.17513038E-01  5.23046792E+04 

  3.46710248E-01  5.36691491E+04 

            9999 

 1T_SECA                   .0547 1.628  13.8 

 2T_PRIAT_PRIB            .7937623.626   88. 

  TRANSFORMER X0002A                  X0002B 

 1T_SECB       

 2T_PRIBT_PRIC 

  TRANSFORMER X0002A                  X0002C 

 1T_SECC       

 2T_PRICT_PRIA 

 
Impedâncias das cargas RL 
  BUS21ABUS21B             3272. .0037                                         0 

  BUS21BBUS21C             3272. .0037                                         0 

  BUS21CBUS21A             3272. .0037                                         0 

  BUS23ABUS23B             3681..00416                                         0 

  BUS23BBUS23C             3681..00416                                         0 

  BUS23CBUS23A             3681..00416                                         0 

  BUS30ABUS30B             2454..00277                                         0 

  BUS30BBUS30C             2454..00277                                         0 

  BUS30CBUS30A             2454..00277                                         0 

  BUS33ABUS33B            4089.9.00462                                        0 

  BUS33BBUS33C            4089.9.00462                                        0 

  BUS33CBUS33A            4089.9.00462                                        0 

  BUS34ABUS34B            11326. .0128                                         0 

  BUS34BBUS34C            11326. .0128                                         0 

  BUS34CBUS34A            11326. .0128                                         0 

  BUS31ABUS31B            9815.9.01109                                         0 

  BUS31BBUS31C            9815.9.01109                                         0 

  BUS31CBUS31A            9815.9.01109                                         0 

  BUS40ABUS40B            8179.9.00924                                         0 

  BUS40BBUS40C            8179.9.00924                                         0 

  BUS40CBUS40A            8179.9.00924                                         0 
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  BUS52ABUS52B            22042..02491                                         0 

  BUS52BBUS52C            22042..02491                                         0 

  BUS52CBUS52A            22042..02491                                         0 

  BUS53ABUS53B            12270..01387                                         0 

  BUS53BBUS53C            12270..01387                                         0 

  BUS53CBUS53A            12270..01387                                         0 

  BUS41ABUS41B            4927.6.00557                                         0 

  BUS41BBUS41C            4927.6.00557                                         0 

  BUS41CBUS41A            4927.6.00557                                         0 

 
Chaves dos bancos de capacitores e seccionadoras 
/SWITCH 

  X0001ABUS42A       -1.      1.E3                                            0 

  X0001BBUS42B       -1.      1.E3                                            0 

  X0001CBUS42C       -1.     1.E3                                             0 

  T_SECACHAV1A      -1.     1.E3                                             0 

  T_SECBCHAV1B      -1.     1.E3                                             0 

  T_SECCCHAV1C     -1.      1.E3                                             0 

 
Medidores de corrente 
  CHAV1ABUS10A                                       MEASURING                1 

  CHAV1BBUS10B                                       MEASURING                1 

  CHAV1CBUS10C                                       MEASURING                1 

  BU50XABUS50A                                        MEASURING                1 

  BU50XBBUS50B                                        MEASURING                1 

  BU50XCBUS50C                                        MEASURING                1 

 
Parâmetros da fonte 
/SOURCE 

14FONTEA 0 71851.699       60.                                        -1.      1.E3 

14FONTEB 0 71851.699       60.     -120.                           -1.      1.E3 

14FONTEC 0 71851.699       60.      120.                           -1.      1.E3 

 
Medidores de tensão 
/OUTPUT 

  BUS10ABUS10BBUS10CBUS50ABUS50BBUS50C 

BLANK BRANCH 

BLANK SWITCH 

BLANK SOURCE 

BLANK OUTPUT 

BLANK PLOT 

BEGIN NEW DATA CASE 

BLANK 

 


