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RESUMO

Atualmente, equipamentos baseados em eletrnica de poténcia encontram-se com
maior frequéncia nos mais diversos tipos de consumidores, sejam estes industriais,
comerciais ou residenciais. Dado este incremento na utilizacdo destes equipamentos,
nota-se que tal emprego é devido a sua eficiéncia, entretanto, também pode ser
verificado que as distor¢ées harmbnicas tornam-se ainda maiores. Assim, 0 aumento do
nivel de distorcao harmonica esta fortemente atrelado a poténcia harménica consumida
pelos equipamentos baseados na eletrbnica de poténcia, equipamentos a arco e
equipamentos ferromagnéticos. Por este motivo, este trabalho tem como principal
objetivo a identificacdo/caracterizacdo de tais categorias de cargas. Além disso, é
importante comentar que em redes de distribuicdo de energia elétrica, as distor¢cbes
harmdnicas normalmente sdo medidas na subestacdo, no entanto, deve-se considerar,
em determinados casos, medidas realizadas no ponto de acoplamento comum.
Seguindo este contexto, para que tais medidas fossem adquiridas, optou-se por modelar
e simular uma rede de distribuicdo de 20 barras na ferramenta computacional ATP.
Desta forma, tanto o fluxo de poténcia harmdénico como as medidas no ponto de
acoplamento comum e na subestacdo puderam ser obtidas e entdo gerada uma base de
dados. Mediante esta base de dados, aplicou-se o sistema inteligente do tipo Neuro-
Fuzzy para que o mesmo viesse a identificar as classes de cargas presentes no sistema
de distribuicdo para uma determinada medida. Os resultados obtidos mostram que o
sistema Neuro-Fuzzy é plausivel de ser aplicado para a identificacdo de fontes

consumidoras de poténcias harménicas.

Palavras chave: Sistemas neuro-fuzzy, qualidade da energia elétrica, distor¢des

harmdnicas, sistemas de distribuicdo de energia elétrica.
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ABSTRACT

Nowadays, devices based on power electronics are more frequently found in
various types of consumers, whether industrial, commercial or residential. Given this
increase in use of such equipment, it is noted that such employment is due to its
efficiency, however, can also be verified that the harmonic distortions become even
greater. Thus, the increased level of harmonic distortion is strongly linked to the
harmonic power consumed by devices based on power electronics equipment, arc’s
equipment and ferromagnetic equipments. For this reason, this work has as main
objective the identification/characterization of such classes of loads. Moreover, it is
important to mention that in distribution networks of electricity the measured of harmonic
distortions are made at the substation, however, should be considered in certain cases,
measurements taken at the point of common coupling. Following this context, so that
such measures were acquired, we chose to model and simulate a distribution network of
20 bars on the ATP computer tool. Thus, the harmonic power flow and the measured at
the point of common coupling and the substation could be obtained and then generated
a database. Through this database, we applied the intelligent type Neuro-fuzzy so that it
would identify classes of loads present in the distribution system to a certain extent. The
results show that the neuro-fuzzy system is likely to be applied to identify consumer

sources of harmonic powers.

Keywords: Neuro-fuzzy systems, power quality, harmonic distortion, distribution

systems of electric power.
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Capitulo 1

Introducéo

Recentemente, houve uma crescente proliferacdo de cargas néo lineares sobre o
Sistema Elétrico de Poténcia (SEP). Desta forma, nota-se um aumento dos niveis das
correntes harménicas requeridas pelos consumidores que, ao interagirem com o
sistema, irdo distorcer a forma de onda da tensdo que esta sendo fornecida pela
concessionaria no Ponto de Acoplamento Comum (PAC), resultando em uma maior
degradacdo da Qualidade da Energia Elétrica (QEE). Normalmente, uma Unica carga
nao linear pode ndo representar muitos problemas com relacdo as distorces
harmdnicas, mas em grandes concentracbes essas cargas podem atingir niveis nao
aceitaveis de distorcdes harmébnicas tanto de corrente como de tensédo, isto,
dependendo da forma como uma determinada regulamentacdo avalia as distor¢des
harmdnicas (Fernandes, 2011). Desta forma, cabe comentar que no Brasil (pela ANEEL
- Agéncia Nacional de Energia Elétrica) as distorces harménicas sdo avaliadas em

termos de tensdes, como pode ser visto no PRODIST (Médulo 8, secédo 8.1.1.2).

Assim, constata-se que os distlrbios acarretados como consequéncia das
distorcdes harmonicas podem ser refletidos para as concessiondarias, consumidores
proximos a fonte consumidora de poténcias harménicas, bem como ao proprio
estabelecimento que detém tal fonte. Ressalta-se que na maior parte dos casos, 0s
consumidores com cargas mais sensiveis sdo os maiores prejudicados. Neste contexto,
caso nao haja meios especificos de controle, qualquer sistema com alta densidade de
cargas nao lineares estara vulneravel a problemas refletidos na QEE (Fernandes, 2011).
Desta situacéo, poder-se-ia evidenciar um mau funcionamento de equipamentos, baixo
fator de poténcia, distorcdo na forma de onda da tensdo e/ou corrente, aquecimento de

cabos, dentre outros (Dugan et al., 2004; Sankaran, 2002).

Com a mudancga no perfil das cargas empregadas no SEP, houve a necessidade
de se impor limites para que as distor¢cdes harmonicas fossem controladas. Seguindo
este contexto, o IEEE 519-1992 recomendou algumas diretrizes que podem ser
seguidas para o controle, tanto das correntes quanto das tensGes harmoénicas nos
SEPs de baixa, média, alta ou extra-alta tensdo. No Brasil, o PRODIST (Procedimentos
de Distribuicdo de Energia Elétrica no Sistema Elétrico Nacional) pode ser apresentado
como um conjunto de diretrizes a serem seguidas pelas concessionarias com o intuito

de melhorar a QEE em seu sistema de distribuicdo. O PRODIST encontra-se dividido



em modulos, sendo que aquele da QEE, bem como o controle e monitoracdo de

harmoénicas, é tratado no oitavo médulo.

Em suma, a grande quantidade de cargas ndo lineares encontradas em
ambientes industriais, assim como o desenvolvimento de recomendacdes e normas por
orgdos governamentais, fez com que as concessionarias despendessem mais atencao
aos distlrbios que podem degradar a qualidade da energia fornecida. Assim, devido a
alta complexidade em se analisar as distor¢des harmonicas, muitas pesquisas sao
desenvolvidas com o intuito de se identificar as fontes de harménicas causadoras dos
altos niveis de distorcao. Dentre os fatores que contribuem para a realizagédo deste tipo
de estudo estdo a melhoria na qualidade da energia fornecida e a garantia de que o

sistema elétrico ira operar sob condi¢ées controladas (Fernandes, 2011).

Por outro lado, os sistemas inteligentes, por intermédio de técnicas baseadas
principalmente em redes neurais artificiais e sistemas de inferéncia fuzzy, ttm mostrado
resultados bem promissores na identificacdo de fontes harménicas, tais como Varadan e
Makram (1994) em que foi utilizado uma rede neural para classificar 30 cargas
harmonicas de trés classes diferentes; Van Niekerk et al. (2002) que utilizaram RNAs do
tipo Perceptron de Mdltiplas Camadas para identificar as mesmas trés clases de cargas
do trabalho de Varadan e Makram (1994); Srinivasan et al. (2006) em que utilizaram um
método chamado “particle swarm optimization” para otimizar os pesos sinapticos da
rede neural e, assim, identificar distorcdes harménicas por meio da corrente; Ferrero et
al. (2007) que utilizaram um sistema de inferéncia fuzzy para idetificar cargas nao
lineares; e, finalmente, Fernandes et al. (2008) em que foi utilizado uma RNA para

classificar seis tipos de cargas néo lineares .

Tendo em vista todos esses trabalhos, foi escolhido desenvolver um sistema
Neuro-fuzzy para identificar cargas consumidoras de poténcia harménica, utilizando a
classificacdo de cargas encontrada no trabalho de Varandan e Makram (1994), e ainda
implementar o sistema para que seja possivel identificar combinacdes dessas classes.
O trabalho desses mesmos autores de 1996 mostra um método convencional aplicado
ao proposito de identificar as combinagBes de classes, inclusive, diferente do trabalho

de 1994, onde somente classes individuais eram selecionadas.

Assim, esse trabalho mostra as diferengcas entre os erros do algoritmo desses
autores e o sistema Neuro-Fuzzy aqui desenvolvido. O emprego dos sistemas
inteligentes, mais especificamente o sistema Neuro-Fuzzy é justificado devido a sua
habilidade em lidar com sistemas nao lineares e, como mencionado nos resultados dos

trabalhos acima, tem se mostrado eficiente, justamente por n&o necessitarem de



modelos matematicos precisos que representem o sistema, além de apresentarem uma
grande facilidade de integracdo computacional com técnicas convencionais. O proximo

capitulo trard algumas noc¢des sobre sistemas inteligentes.






Capitulo 2

Sistemas Inteligentes

2.1 SISTEMAS DE INFERENCIA FUZZY

Sistemas de inferéncia fuzzy sao técnicas computacionais que se baseiam na
I6gica fuzzy proposta por Zadeh (1965). Essa légica manipula dados qualitativos ao
invés de quantitativos e, portanto, aproxima-se do modo como funciona o raciocinio

humano, facilitando a compreenséo do sistema (Usida, 2007).

A logica fuzzy, derivada da teoria dos conjuntos fuzzy, permite a reducdo e
simplificacdo de projetos complexos, pois mesmo em um ambiente de incertezas e
imprecisdes é capaz de tomar decisbes racionais, tornando-se assim, uma alternativa

para a solucéo de problemas.

Pela légica fuzzy, um sistema pode ser representado por meio dos conceitos
imprecisos tais como “forte” e “fraco”, conforme o ser humano esta comumente
acostumado a tratar este tipo de informacéo. Essas propriedades facilitam a extragédo do
conhecimento de um sistema a partir de observagdes ou do conhecimento de um

especialista.

O raciocinio fuzzy inicializa com a fuzzificagdo, onde ocorre a transformacéo da
variavel de entrada em valores fuzzy. Em seguida, as regras do sistema fuzzy serao
executadas e uma regido fuzzy sera criada pelas regras ativadas. Esse processo é
conhecido como agregacao. Depois do processamento das regras de inferéncia ocorre

a defuzzificagédo, com a formacéo de um valor crisp (MatLab, 2007).
2.1.1 Conceitos Sobre Conjuntos e Légica Fuzzy

Na teoria classica dos conjuntos, um elemento ou pertence a uma classe ou nao.
Seja, por exemplo, um universo de discurso U e um elemento particular x € U, o grau de

pertinéncia pa(x) com relagéo a um conjunto A c U é dado pela equacao 2.1.

_ (1 sex € A (2.1)
pa(x) = {0, sex €A



A funcéo ua(x): U = {0, 1} é chamada de fungéo caracteristica na teoria classica

de conjuntos. E possivel notar que a funcéo apresentada pela equacéo 2.1 apenas pode

assumir valores discretos.

A ideia apresentada na equacéo 2.1 e ilustrada melhor na Figura 2.1(a) indica, por
exemplo, uma aplicagdo onde ocorre a manipulagdo de dados com erros limitados.
Todos os numeros pertencentes a um intervalo pré-definido terdo um grau de
pertinéncia 1, os nimeros que ndo pertencerem a este intervalo possuirdo um grau de
pertinéncia nulo. No caso da Figura 2.1(b), tem-se que o grau de pertinéncia é
exatamente um valor, sendo nulo aos demais, 0 que indica um caso preciso. A Figura
2.1(c) mostra uma funcdo de pertinéncia triangular onde ocorre a variacdo do grau de
pertinéncia entre os valores 0 e 1. O grau de pertinéncia pode assumir qualquer valor
nesse intervalo, sendo que o valor O indica uma completa exclusdo e um valor 1
representa completa inclusdo. Esta generalizacdo aumenta o poder de expressédo da
funcéo caracteristica, pois sugere que alguns elementos sdo mais pertencentes de um

conjunto do que outros.

Hat Had Had
(a) (b) (©)

Fonte: Usida, 2007.
Figura 2.1 — Funcdes de pertinéncia.

Ampliando os conceitos apresentados; seja U uma colecdo de objetos
denominados genericamente por {u}. O dominio U é chamado de universo de discurso,

podendo ser continuo ou discreto.

Um conjunto fuzzy A em um universo de discurso U é definido por uma funcéo de

pertinéncia s que assume valores em um intervalo [0, 1], ou seja, ua(x): U = [0, 1].

O conjunto suporte de um conjunto fuzzy A é o subconjunto dos pontos u de U tal

que wa(u) > 0. Um conjunto fuzzy cujo conjunto suporte € um Unico ponto de U com ua=1



€ chamado de um conjunto unitario fuzzy. A partir desta definicdo, os conjuntos
classicos passam a ser um caso especifico na teoria de conjuntos fuzzy. Na Figura
2.1(c), tem-se uma funcéo de pertinéncia do tipo triangular, no entanto, ressalta-se que
€ possivel utilizar qualquer funcéo f: ®R—[0,1] para a representacdo de um determinado

conjunto fuzzy.
2.1.2 Definigcdo de Operacgdes e Operadores da Logica Fuzzy

Sejam A e B dois conjuntos fuzzy definidos em um universo de discurso U com
funcdes de pertinéncia ua e ug, respectivamente. As operagdes envolvendo conjuntos
fuzzy, tais como a unido (AuB), a interseccdo (AnB) e o complemento (—A) séo

definidas respectivamente de maneira formal pelas expressoées (2.2), (2.3) e (2.4):

ﬂAuB(u)zﬂA(u)&ﬂB(u) (2.2)
Bans(U)=pa(U)Tug (u) (2.3)
Hoa(U)=1-p,(u) (2.4)

onde I" € uma norma triangular (t-norma) e & € uma co—norma triangular (s-norma).

Como exemplo de s-norma, tem-se a expressao (2.5) e como exemplo da t-norma

tem-se a expressao (2.6).
Haos = maX{:uA(u)’:uB(u)} (2.5)

Masg = Minfua(u)pg(u)} (2.6)

Os operadores 7ax e min utilizados acima sdo apenas alguns exemplos de s-

norma e t-norma. Vale ressaltar que inUmeras outras podem ser utilizadas.
2.1.3 Regras Fuzzy

Elementos linguisticos tipicos incluem expressées do tipo “mais ou menos”,

“muito”, “pouco”, “fraco”, “forte”, etc. Ou seja, sdo elementos qualitativos ao invés de
valores quantitativos. Por exemplo, uma variavel linguistica “Corrente Elétrica” podera

" ou "o

assumir um valor de um dos termos do conjunto {“muito baixa”, “baixa”, “média”, “alta”,



“muito alta”}. Assim, para que esses elementos linguisticos tenham significado é
necessario associar a cada um deles um conjunto fuzzy definido sobre o universo de
discurso comum, que nesse exemplo serd “Corrente Elétrica”. A Figura 2.2 ilustra o

exemplo comentado acima.

Corrente Vari4vel Lingiiistica

Conjunto de termos

Muito . - Muito
Termos Lingiiisticos Baixa | | Baixa | | Media Alta Alta
Regra Semantica
Muito Muito
Baixa Baixa Média Alta Alta

Universo de discurso

Fonte: Usida, 2007.
Figura 2.2 — Exemplo de variavel linguistica.

A forma mais comum de expressar 0 conhecimento € por meio de regras do tipo
condicdo-acdo. Tipicamente, uma condi¢cdo é uma proposic¢ao linguistica sobre o valor
de alguma variavel de entrada, como por exemplo, “a velocidade esta alta”. Assim, uma
acdo com relacdo a variavel de entrada poderia ser “acione levemente o freio”. A ideia
das regras fuzzy de representar o conhecimento por meio de um conjunto de termos
linguisticos associados as variaveis de saida e entrada do processo, o que facilitaria,
por exemplo, expressar o conhecimento de um especialista, € absorvido pelos sistemas
de inferéncia fuzzy. Regras do tipo “Se-Entdo” sdo frequentemente chamadas de
declaracbes condicionais fuzzy ou simplesmente regras fuzzy. Dependendo do
propdsito, controle ou modelagem, podem ser chamados ainda de regras de controle

fuzzy ou regras de modelagem fuzzy.

Utilizando a regra de inferéncia composicional de Zadeh, para uma relacéo do tipo
Rase , Onde A € U e B € V, e dado um conjunto fuzzy de U denotado por A e um

conjunto fuzzy B  de V, a inferéncia de A é dada pela seguinte funcéo de pertinéncia:



me (V) = maxmin(iy (u), e (U, V))} (2.7)

onde, ueU, veV

A acao de controle ou de estimacao consistird da unido de todas as funcdes fuzzy
ativadas. O valor final, ou seja, aquele que sera apresentado pelas saidas do sistema

fuzzy, sera determinado pelo processo de defuzzificagao.
2.1.4 Agregacgéo de Regras

Quando ha mais de uma regra e, ainda, mais de uma regra sédo acionadas, as

contribuicbes das diversas regras ap6s a inferéncia sdo combinadas pelo operador de
agregacdo. Por exemplo, supondo-se que Bj,.., B;, sdo todos os resultados derivados

das diversas regras acionadas, todos relacionados a uma mesma variavel linguistica, o

resultado da implicacdo de todas as regras B’ seré:

n (2.8)

B =JB

onde, U representa o operador de agregacdo. Um exemplo de funcéo para o operador

agregacao € o operador unidao.

A Figura 2.3 mostra o processo de inferéncia 9ax—min quando existem duas
regras, A—B; e A—Bj, onde A é a variavel de entrada, representado como um conjunto

fuzzy.



Agregacao

Fonte: Usida, 2007.
Figura 2.3 — Mecanismo de inferéncia fuzzy.

Assim, para obter o valor de B’, basta-se entdo verificar o grau de pertinéncia
ativado por A’ frente ao conjunto A. Em seguida, o resultado de B’ sera a respectiva
regido fuzzy obtida pelo corte no conjunto B frente aquele valor de pertinéncia obtido no
passo anterior, para o caso representado na Figura 2.3, como duas regras foram
ativadas, entdo a saida delas é a somas das duas regifes fuzzy atividas. A saida do
sistema € representada, mais usual, pelo método do centro de area, em que a regido
obtida na Figura 2.3, representard um unico valor, chamado de valor “crisp”. Esse

processo é chamado de defuzzificacao.

Todo o processo envolvido em um sistema fuzzy é mostrado resumidamente pela
Figura 2.4. Os valores numéricos provenientes da medicdo sao submetidos ao processo
de fuzzificacdo, onde passam a serem representados por valores linguisticos. A base de
conhecimento do Sistema Fuzzy encontra-se armazenado nas Regras Fuzzy do tipo
“Se-Entao”. O processo de inferéncia aplicado aos valores linguisticos entao resulta em
uma regido de saida, também em valores linguisticos. Para que estes possam
realmente ser utilizados é necessario o processo de defuzzificagdo, o qual encontra um
valor numérico para a regido de saida fuzzy, representada, também, em termos

linguisticos.
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Fonte: Usida, 2007.

Figura 2.4 — Resumo de um modelo de sistema fuzzy.

2.2 REDES NEURAIS ARTIFICIAS

Redes Neurais Artificiais (RNA) sao técnicas computacionais elaboradas
inicialmente ha mais de 50 anos, com destaque para o inicio dos anos 1990, onde
comecaram a ser fortemente pesquisados, por isso € normal que se diga que é uma
area relativamente nova (Silva, 2010). As aplicacdes destes sistemas considerados

inteligentes sdo as mais diversas possiveis, tais como:
< sistema de controle de aeronaves;
< reconhecimento de sistemas estelares;
% processos envolvidos com sistemas elétricos de poténcia;
< andlise de imagens de satélites;
< reconhecimento da escrita e da fala.

As RNAs apresentam um modelo matematico inspirado na estrutura neural de
organismos inteligentes e que adquirem conhecimento por meio da experiéncia. Elas
podem ser definidas como um conjunto de unidades de processamento, caracterizadas
por neurbnios artificiais, que séo interligados por um grande nimero de interconexdes

(sinapse artificiais), sendo representadas por vetores e matrizes de pesos sinapticos.

A seguir serdo vistos alguns conceitos sobre neurénios bioldgicos, visto que foram

a base para as RNAs e, em seguida, os neurdnios artificiais.
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2.2.1 Modelo do Neurdnio Biol6gico e do Neurdnio Artificial
2.2.1.1 Neurdnio Biolégico

O neurébnio biolégico € uma célula que pode ser dividida em trés partes: o corpo
da célula, os dendritos e o0 axbnio. O corpo do neurbnio mede alguns milésimos de
milimetros e os dendritos apresentam poucos milimetros de comprimento. O axdnio
pode ser mais longo. Os dendritos tém como fungdes, receber informacdes, ou impulsos
nervosos, provenientes de outros neurdnios, e conduzi-las até o corpo celular onde a
informacdo é processada e novos impulsos sdao gerados. Estes impulsos sao
transmitidos a outros neurbnios, passando pelo axénio, e atingindo os dendritos dos

neurdnios seguintes.

Esses neurdnios se comunicam por intermédio de sinapses. Sinapse € a regido
onde dois neurbnios entram em contato e através da qual 0s impulsos nervosos sao
transmitidos entre eles. Os impulsos recebidos por um neurénio “A”, em um determinado
momento, sdo processados, e atingindo um dado limiar de ac¢édo, o neurbnio dispara,
produzindo-se entdo uma substancia neurotransmissora que flui do corpo celular para o
axbnio, que pode estar conectado a um dendrito de outro neurbnio “B”. O
neurotransmissor pode diminuir ou aumentar a polaridade da membrana pds-sinaptica,
inibindo ou excitando a geracao dos pulsos no neurbnio “B”. Este processo depende de
varios fatores, como a geometria da sinapse e o tipo de neurotransmissor. A Figura 2.5

mostra uma representacdo de um neurénio biolégico.

Membrana celular

Nucleo celular

Citoplasma

Dendritos

Fonte: Silva, 2010.
Figura 2.5 — Representacao de um neurdnio biolégico.
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Em média, cada neurdnio forma entre mil e dez mil sinapses. O cérebro humano
possui cerca de 100 bilhGes de neurbnios, e o nimero de sinapses € de mais de 600
trilnGes, possibilitando a formacdo de redes muito complexas. A capacidade de
solucionar fungdes complexas surge com a operagdo em paralelo de todos estes

neurdnios e sinapses do cérebro.
2.2.1.2 Neuronio Artificial

Uma rede neural artificial € composta por varias unidades de processamento, cujo
funcionamento é bastante simples. As unidades fazem opera¢fes apenas sobre seus
dados locais, que sdo entradas recebidas pelas suas conexdes. O comportamento
inteligente de uma rede neural artificial vem das interagdes entre as unidades de

processamento da rede.

As operagOes realizadas em uma rede neural podem ser resumidas da seguinte

maneira:
< sinais sao apresentados a entrada;

< cada sinal é multiplicado por um nimero, ou peso, que indica a sua influéncia

na saida da unidade;
< é feita a soma ponderada dos sinais que produz um nivel de atividade;

< se este nivel de atividade exceder certo limite (threshold), a unidade produz

uma determinada resposta de saida.

A Figura 2.6 representa o0 modelo matematico de um neurénio artificial.

I.l
Iz'
¥
Zy o) —
Fungdo de
. ativagdo
10\
I, O »{1W0,
h_—

Pesos sindpticos
Fonte: Silva, 2010.

Figura 2.6 — Esquema do neurdénio artificial.
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O modelo matematico que descreve o comportamento do neurdnio artificial é

expresso pela seguinte equacao:

onde:

(2.9)

n
y =9(Q W .xj +b)
i1

n é o numero de entradas do neurénio;

w; € 0 peso associado com a i-ésima entrada;
b (bias) é o limiar associado ao neurdnio;

X; € a i-ésima entrada do neurbnio;

g(.) é afuncéo de ativacado do neurdnio;

y é a saida do neurdnio.

A funcdo de ativacdo é a responsavel pelo processamento do conjunto de

informacdes recebidas. E também a funcdo de ativacdo que é incumbida pela saida do

neurdnio, podendo assumir valores do tipo:

< binarios (0 ou 1);
% bipolares (-1 ou 1);
% reais.

Durante a etapa de treinamento das redes neurais artificiais, ao final de cada

treinamento, podem-se alterar os principais parametros da rede de modo a buscar uma

configuracao de rede eficiente. Um dos parametros que pode ser alterado € a funcédo de

ativagéo. As principais fun¢des de ativacdo utilizadas séo:

D3

» funcéo degrau (binaria);

D3

» funcéo degrau (bipolar);

RS

% funcdo rampa;

RS

% funcéo sigmoide;
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< funcao tangente hiperbdlica.
2.2.2 Topologias de Redes Neurais Artificiais

A topologia da rede escolhida tem reflexos diretos nas caracteristicas e
propriedades apresentadas pelo modelo. A topologia também esta intimamente ligada

ao algoritmo de treinamento.
Usualmente, as camadas sao classificadas em trés grupos:
< camada de entrada: onde os padrdes sao apresentados a rede;

< camadas intermediarias ou escondidas: onde é feita a maior parte do
processamento, através das conexfes ponderadas; podem ser consideradas

como extratoras de caracteristicas;
< camada de saida: onde o resultado final € concluido e apresentado.

A Figura 2.7 exemplifica as camadas de uma rede neural.

Camada

Camada de Intermediaria

Entrada

Camada de

Fonte: Silva, 2010.

Figura 2.7 — llustracdo das camadas de uma rede neural.
2.2.3 Treinamento de Redes Neurais Artificiais

A habilidade de aprender a partir de seu ambiente e com isso melhorar o seu
desempenho é obtida por meio do treinamento de uma rede neural, em que consiste da
aplicacdo de um conjunto de passos ordenados com o intuito de ajustar 0s pesos e 0s
limiares de seus neur6nios. Assim, os algoritmos de aprendizagem visam sintonizar a

rede para que as suas respostas estejam proximas dos valores desejados.

Os dois principais processos de aprendizagem sdo os seguintes:
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a) Aprendizado supervisionado

Neste caso, cada amostra de treinamento é composta pelos sinais de entrada e
suas correspondentes saidas. Os pesos sinapticos e limiares sao entdo continuamente
ajustados mediante a aplicacdo de acdes comparativas (executadas pelo préprio
algoritmo de aprendizagem), as quais supervisionam a defasagem entre as respostas
produzidas pela rede em relagdo aquelas desejadas, sendo esta diferenca usada no

procedimento de ajuste.
b) Aprendizado néo supervisionado

Neste aprendizado, ndo existe uma saida especifica relacionada ao estimulo de
entrada, e ndo existe também a presenca do agente externo ou “supervisor”. A rede se
organiza de forma a buscar caracteristicas similares nos subconjuntos que lhe séo
apresentados. Os pesos sinapticos da rede sao alterados pelo algoritmo de treinamento,
de forma que o sistema crie sua propria representacdo para os estimulos de entrada.
Portanto, quanto mais “evidente” forem as particularidades marcantes da populagéo de

entrada, mais “facil” sera a aprendizagem da rede, e vice-versa.
2.2.4 Redes Perceptrons Multicamadas

As redes Perceptrons multicamadas (PMC) s&o os tipos de redes mais usados em

problemas envolvendo sistemas de distribuicdo de energia elétrica (Silva, 2010).

Em redes Perceptrons multicamadas, as “tarefas” sédo distribuidas através das
camadas. Os estimulos ou sinais sao apresentados a rede na camada de entrada. A
camada intermediaria extrai as informacdes e as codificam através dos pesos sinapticos,
formando assim uma representacao propria do ambiente externo. Finalmente, a camada
de saida recebe os estimulos da camada intermediaria, mapeando o padrao de resposta

gue sera a saida da rede.
2.2.5 Validagéo Cruzada

Uma das técnicas estatisticas mais utilizadas para selecdo das melhores
topologias candidatas € a validacao cruzada, cujo propdsito é avaliar a aptidao de cada
uma quando aplicada a um conjunto de dados que seja diferente daquele usado no

ajuste de seus parametros internos.

O primeiro método é denominado de validacao cruzada por amostragem aleatoria,
em que o conjunto total de dados disponiveis é aleatoriamente dividido em duas partes,

7

isto é, subconjunto de treinamento e subconjunto de teste (validacdo). Em termos
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praticos, a partir do conjunto total de dados disponiveis, cerca de 60 a 90% sao
aleatoriamente escolhidos para o subconjunto de treinamento, enquanto que o restante

ficara alocado ao subconjunto de teste.

O segundo método de validacdo cruzada utilizada para o dimensionamento
estrutural de redes PMC é denominado de k-particdes. Realiza-se a divisdo do conjunto
total de amostras em k particbes, sendo que k-1 delas usadas para compor o
subconjunto de treinamento, ao passo que a particdo restante constituira o subconjunto

de teste.

Finalmente, o terceiro método é chamado de validagéo cruzada por unidade, que
consiste na utilizagdo de uma Unica amostra para o subconjunto de teste, sendo as
demais alocadas para o0 subconjunto de treinamento. Esse procedimento é mais

utilizado quando ha poucas amostras disponiveis.
2.2.6 Overfitting e Underfitting

O aumento indiscriminado de neurbnios, assim como o incremento de camadas
intermediarias, ndo assegura a generalizacdo apropriada de PMC em relagdo as

amostras pertencentes aos subconjuntos de teste.

Tais acdes tendem a levar a saida do PMC para a circunstancia de memorizacdo
excessiva (overfitting). Nessas ocorréncias, 0 erro quadratico durante a fase de
aprendizado tende a ser bem baixo; contudo, durante a fase de generalizagéo frente aos
subconjuntos de teste, o erro quadratico tende a assumir valores bem elevados, fato

este que denota a condi¢céo de overftting.

Em contrapartida, uma topologia PMC com numero reduzido de neurdnios pode
ser insuficiente para a extracdo e armazenamento de caracteristicas que permitam a
rede implementar as hip6teses a respeito do comportamento do processo, configurando-
se uma situacéo de debilidade neural denominada de underfitting. Nesse caso, tanto na

fase de aprendizado como na fase de teste o erro quadratico sera bem significativo.
2.2.7 Normalizacéo de Padrdes de Treinamento e Teste

Todas as variaveis de entrada e saida da rede precisam ser individualmente
normalizadas, em relagdo aos respectivos valores minimos e maximos, considerando
também todos os dados disponiveis, e assegurando-se ainda que tais valores estejam

contidos dentro do conjunto de treinamento. Caso contrario, os valores minimos e
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maximos estardo no conjunto de teste, implicando-se entdo na reducédo dos dominios

referentes as variaveis do conjunto de treinamento.
2.3 SISTEMAS NEURO-FUZZY

Atualmente, as abordagens neuro-fuzzy tém sido aplicadas com maior frequéncia,
pois traz os beneficios tanto de sistemas de redes neurais quanto de sistemas fuzzy,

removendo, assim, as desvantagens individuais.

Sistemas neuro-fuzzy s&o arquiteturas que utilizam sistemas fuzzy para
representar e processar o conhecimento de forma clara e de facil interpretacéo, e que
aproveitam a capacidade de aprendizado das redes neurais para ajustar as funcfes de

pertinéncia.
2.3.1 Arquitetura Neuro-Fuzzy

Um sistema neuro-fuzzy consiste de componentes convencionais de um sistema
fuzzy. A diferenca estd na computacdo de cada estagio, onde é realizada por uma
camada de neur6nios (Oliveira, 2011). A capacidade de aprendizagem da rede neural
possibilita o melhoramento do sistema de conhecimento. Ha algumas arquiteturas de
sistemas neuro-fuzzy disponiveis e uma de suas possiveis configuracées € mostrada na

Figura 2.8.

Dados de Dados de
entrada Camada de Camada de Camada de saida
Fuzzyficacio regra fuzzy *| Defuzzyficacio [

Fonte: Oliveira, 2011.
Figura 2.8 — Diagrama de um sistema neuro-fuzzy.

Um sistema neuro-fuzzy pode ser dividido basicamente em trés camadas: camada
de fuzzificacdo, camada de inferéncia e camada de defuzzificacdo. Na camada de
fuzzificacdo cada neurdnio representa uma funcdo de pertinéncia de entrada do
antecedente de uma regra fuzzy. Em seguida, na camada de inferéncia, as regras sao
ativadas e os valores, ao final de cada regra, representam o peso inicial da regra, e
serao ajustados ao seu proprio nivel ao final do treinamento. Na camada de
defuzzificacdo, cada neurbnio representa uma proposi¢do consequente e suas funcdes

de pertinéncia podem ser implementadas combinando uma ou duas funcdes “sigméide

e lineares. A Figura 2.9 ilustra o processo explicado acima.
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Fonte: Oliveira, 2011.

Figura 2.9 — Estrutura do sistema neuro-fuzzy.
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Capitulo 3

Métodos para a Identificacédo de Fontes Harmdénicas

Os métodos para identificacdo de fontes harménicas normalmente sdo voltados
para a identificacdo de uma carga propriamente dita ou de uma classe de cargas. As
primeiras pesquisas onde foi possivel observar a identificacdo de componentes
harmdnicas da carga foram desenvolvidas em meados da década de 90, com os
trabalhos de Cristaldi e Ferrero (1994), Varadan e Makram (1994, 1996).

No trabalho proposto por Cristaldi e Ferrero foi desenvolvido um sistema
embarcado em hardware para a identificacdo de fontes harménicas. Nele os autores
realizam testes em um sistema fechado pequeno que possuia uma fonte e duas cargas,
sendo uma delas linear e a outra ndo. Assim, o sistema era responsavel por adquirir as
tensBes e correntes e aplicar a Transformada Rapida de Fourier. Com esses dados em
maos, o sistema embarcado analisava os resultados e, com um sinal binario, indicava a

presenca ou nao de fontes harmdnicas.

O trabalho de Varadan e Makram (1994) utiliza sistemas inteligentes com o
objetivo de identificar fontes harmonicas. Os autores utilizaram redes neurais artificiais
(RNA) do tipo Perceptron de Mudltiplas Camadas. Essa rede foi responsavel por

classificar o tipo de carga conectada ao sistema, de acordo com trés tipos:
< tipo A — dispositivos baseados na eletrnica de poténcia;
% tipo B — dispositivos a arco;
< tipo C — dispositivos ferromagnéticos.

Cada uma dessas trés classes possui caracteristicas especificas de correntes
harmdnicas, encontradas no trabalho. Portanto, o objetivo da RNA era determinar a
classe da carga conectada no sistema, com base no treinamento da rede utilizando os
limites de corrente harmoénica. Os resultados obtidos foram excelentes, em um dos
casos o erro obtido foi de 0%. Vale ressaltar que o método foi desenvolvido e testado
para o PAC.

O trabalho de 1996, desses mesmos autores, apresenta uma nova proposta.
Diferente do trabalho de 1994 onde foi utilizado uma RNA para identificar as 3 classes
de cargas mencionada, a proposta conta com um algoritmo capaz de identificar ndo

somente as trés classes, como também a combinacado delas, apesar do trabalho ainda
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ser feito para o PAC. Para o uso desse algoritmo foram criados novos limites de de
correntes harménicas para a classificacdo das cargas.. Nesse trabalho foram feitas 210
simulacfes e, apesar de na média o erro obtido ser de 10% para a classe A e 10% para
a combinacéo das trés classes no PAC, e o restante 0%, em algumas simula¢gdes foram

obtidos erros superiores a 30%.

Depois desses trabalhos as pesquisas nessa area se intensificaram, sendo assim
diversos trabalhos foram publicados. Como por exemplo, tem-se o trabalho de Niekerk,
Rens e Hoffman (2002), que utilizaram RNAs do tipo Perceptron de Mdltiplas Camadas,
além de redes do tipo RBF (Radial Basis Function) para a identificacdo das mesmas
classes de cargas apresentadas em Varadan e Makram. Para a validacdo do sistema

foram empregados o0s seguintes dispositivos, um para cada classe:
< tipo A — retificador de seis pulsos trifasicos;
< tipo B —trés fornos a arco com diferentes poténcias;
% tipo C — transformador.

As redes neurais foram entdo treinadas e foi verificado que os erros de

identificac@o variaram entre 2% e 10%.

No trabalho desenvolvido por Alammari, Soliman e El-Hawary (2004), os autores
propuseram que as cargas fossem classificadas de acordo com as harmonicas

predominantes. Deste modo, foram definidas trés classes:

< classe A — cargas com predominancia das harménicas de 52, 72, 112 e 132

ordens;
< classe B — cargas com predominancia das harmoénicas de 32, 52 e 72 ordens, e
< classe C — cargas com predominancia das harménicas de 32 e 52 ordens.

Vale ressaltar que, apesar das trés classes de cargas definidas pelos autores
serem parecidas com as definidas pelo IEEE, as magnitudes das harmonicas (relativas

a componente fundamental), quando comparadas, séo diferentes.

Na pesquisa feita por Zhao, Li e Xia (2004), os autores trabalharam para identificar
fontes consumidoras de harménicas em sistemas de distribuicdo de energia elétrica.
Assim, torna-se possivel, através da Transformada de Fourier, estimar a composi¢céo

harmonica das barras que compde o sistema de distribuicédo.
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Além das pesquisas voltadas para identificacao de classes de cargas e estimacao
de composicdo harmbnica das cargas, ha trabalhos para estimar tanto a impedancia das
linhas quanto a admitancia das cargas, como por exemplo, o trabalho de Xu 23L 23L.
(2002).

Outra pesquisa utilizando sistemas inteligentes foi de Ferrero, Salicone e
Todeschini (2007) que empregaram Sistemas de Inferéncia Fuzzy para identificar fontes

consumidoras de poténcias harménicas em sistemas elétricos industriais.

Para finalizar, Gursoy e Niebur (2009) desenvolveram um método baseado na
Andlise de Componentes Independentes, onde sédo estimadas as partes reais e
imaginarias das componentes harmoénicas em cada uma das 14 barras de um sistema
de transmissdo fornecido pelo IEEE. Mas, o sistema proposto s6 pode ser
implementado com uma grande quantidade de medidores, podendo torna-se inviavel em

uma aplicacao pratica.

Nesse trabalho, foi escolhido utilizar a classificacdo de cargas encontradas em
Varadan e Makram (1996) e ainda, os limites de correntes harmbnicas para que
determinadas cargas possam se enquadrar nessas classes. Foi tomado esse trabalho
como referéncia, principalmente, por ele ter sido capaz de classificar ndo somente as
cargas isoladas como também a combinacéao entre elas. Além disso, nesse trabalho nao
foram utilizados sistemas inteligentes e, portanto, espera-se que o uso do sistema

Neuro-Fuzzy apresente melhores resultados.
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Capitulo 4

Modelagem de um Sistema de Distribuicdo de Energia Elétrica

4.1 SISTEMA DE 20 BARRAS

O software utilizado para a simulacdo de um sistema de distribuicdo de energia
elétrica, com o objetivo de uséa-lo para identificacdo de cargas consumidoras de

harmdnicas, foi o Alternative Transients Program (ATP).

O programa ATP permite a simulagcéo de transitorios eletromagnéticos em redes
polifasicas, com diferentes configuracdes, por um método que utiliza a matriz de
admitancia de barras. A formulagdo matematica é baseada no método das
caracteristicas (método de Bergeron) para elementos com parametros distribuidos e na
regra de integracéo trapezoidal para parametros concentrados. Durante a solucdo, sao
utilizadas técnicas de esparsidade e de fatoracao triangular de matrizes otimizada. Esse
software permite a representacdo de ndo linearidades, elementos com parametros
concentrados, elementos com parametros distribuidos, chaves, transformadores,

reatores, etc (Tavares, 2003).

O ATP foi utilizado para simular o sistema de distribuicdo de energia elétrica com

20 barras mostrado na Figura 4.1.
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Transformador

Fonte da Subestagdo Legenda
BBKY (Vinna) SMVA ABCT - Trés Fases + Terra I
36
R L
ﬂ - Yllrfl 1“
BBV (Minna) / 13,8k (Wrase)

200m 100m

ABCT < 100m

52

Fonte: Fernandes, 2011.

Figura 4.1 — Diagrama esquematico do sistema de 20 barras.

Os circulos destacados indicam a posicao dos medidores, ndo esquecendo que
existe um medidor alocado na subestagcdo. A posicdo do medidor 31 foi escolhida
meramente por acaso, enquanto a posicdo do medidor 53 foi escolhida de forma a se
pegar o ponto mais distante em relagéo a subestacdo, para garantir que houvesse uma
melhor cobertura da rede. Ambos o0s medidores s&o encontrados no PAC.

Com relacdo a configuragéo e parametrizacédo desta rede de distribuigdo, a Tabela
4.1 apresenta os dados referentes ao transformador da subestacédo, a fonte e ao banco

de capacitores.
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Tabela 4.1 — Parametros dos elementos que compdem a rede de distribuigdo do sistema de 20

barras.
Fonte
Tensdo de linha Nominal (kV) 88
Resisténcia de Sequéncia Zero Equivalente (2) 20,805
Resisténcia de Sequéncia Positiva Equivalente () 4,062
Indutancia de Sequéncia Zero Equivalente (mH) 203,721
Indutancia de Sequéncia Positiva Equivalente (mH) 52,5397
Frequéncia Nominal da Rede (Hz) 60

Transformador da Subestacéao

Tipo de Conexdo A-Y aterrado
Tensdo de linha no Primario (kV) 88
Tensdo de fase no Secundario (kV) 13,8
Resisténcia do Primario () 0,054695
Resisténcia do Secundario () 0,79376
Indutancia do Primario (mH) 1,628
Indutancia do Secundario (mH) 23,6258

Banco de Capacitores

Capacitancia (uF) 5,9652

Medidores de Tensao e Corrente

Amostras por Ciclo 256

Taxa de Amostragem (Hz) 15360
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Devido a grande quantidade de parametros desta rede, os dados das linhas de
distribuicdo e das cargas RL podem ser verificados no Apéndice A, onde tais dados sao

apresentados junto ao modelo do sistema de 20 barras desenvolvido via o software ATP.
4.2 BANCO DE DADOS

Com o sistema de distribuicdo de energia de 20 barras feito, pode-se, entéo,
simular cargas consumidoras de poténcia harménica inserindo fontes de corrente com
diferentes frequéncias, representando assim, as componentes harménicas de uma
carga. A classificacdo de carga utilizada foi a mesma que é encontrada no trabalho de
Varadan e Makram (1996), nele as trés classes de cargas séo divididas de acordo com

as caracteristicas das componentes harménicas, isto é:
< classe A — dispositivos baseados na eletrdnica de poténcia;
% classe B — dispositivos a arco;
< classe C — dispositivos ferromagnéticos.

A Tabela 4.2, Tabela 4.3 e Tabela 4.4 mostram os limites de correntes para que as
cargas consumidoras de corrente harménica se enquadrem em uma determinada classe.
Por exemplo, para que uma carga néo linear possa ser considerada uma carga classe A,
esta deve ter os limites de corrente harménica, para todas as harmdnicas apresentadas

na tabela, dentro dos valores indicados na Tabela 4.2.

Tabela 4.2 — Caracteristica da corrente harmonica para a carga classe A.

Orde[n _da 1 3 5 7 11 13
harmonica
Maﬁg%“de 100 4447 | 321765 | 16,2-62,1 | 65248 | 5,7-12,7

Tabela 4.3 — Caracteristica da corrente harménica para a carga classe B.

Ordem da 1 3 5 7 11 13
harmonica
Ma%;:;“de 100 54,8-65,8 | 36,7-43,6 | 18,3-203 | 04-06 | 2,6-4,0
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Tabela 4.4 — Caracteristica da corrente harménica para a carga classe C.

Ordem da 1 3 5 7 11 13
harmoénica
Ma%g/]c:;Ude 100 | 64-243 | 6214 | 0954 | 02:60 | 0323

E importante ressaltar que, em algum das harménicas apresentadas, como por
exemplo, a décima terceira harménica, ocorre a sobre posicdo de valores para as trés
classes, o que dificultaria a separacdo das cargas nao lineares utilizando métodos

convencionais, e por isso, a justificativa de se utilizar sistemas inteligentes.

Com base tabelas apresentadas acima, foi utilizado o software Excel para que se
pudesse criar diferentes cargas dentro dos limites apresentados. Por exemplo, uma
carga nao linear da classe C, utilizando somente os limites superiores da Tabela 4.4,

poderia ser representada conforme a Tabela 4.5.

Tabela 4.5 — Exemplo para uma carga classe C.

Ordem da harménica 1 3 5 7 11 13
Magnitude (%) 100 | 243 14 5.4 6,0 23

Assim, foram criadas, no Excel, 100 cargas classe A, em que os valores das
correntes harmonicas eram geradas aleatoriamente, utilizando uma funcao fornecida
pelo Excel, mas sempre dentro dos limites apresentados na Tabela 4.2. Ressalta-se que
nos primeiros 13 valores, cuja essa quantidade foi escolhida meramente por acaso, foi
forcado que as componentes harmonicas, parte delas ou todas elas, estariam nos
limites minimo e maximo, somente para garantir que tais valores estariam no conjunto
de treinamento do sistema Neuro-Fuzzy, explicado mais adiante. A Tabela 4.6 indica as

porcentagens utilizadas.
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Tabela 4.6 — Porcentagem de componentes harménicas para carga da classe A.

Carga 3? . 5? . 7? . llAa. l‘ria.
Harménica Harmonica Harmonica Harmonica Harmaonica Harmonica

(%) (%) (%) (%) (%)

12 4.4 32,1 16,2 6,5 57

22 4.7 76,5 62,1 24,8 12,7

32 4.4 72,6 47,6 18,2 6,2

4a 4.5 32,1 30,1 21,7 6,8

5a 4.6 43,4 16,2 22,3 9,2
1002 4.6 39,7 61,9 8,8 7,5

Para as cargas classe B e classe C foram feitas exatamente da mesma maneira e

com a mesma quantidade. Parte de seus valores encontra-se nas Tabela 4.7 e Tabela

4.8, respectivamente.

Tabela 4.7 — Porcentagem de componentes harménicas para carga da classe B.

Carga 3? . 5? . 7? . llAa. lsia.
Harménica Harmonica Harmonica Harmonica Harmonica Harmonica

(%) (%) (%) (%) (%)

12 54,8 36,7 18,3 0,5 2,6

22 65,8 43,6 20,3 0,6 4,0

32 54,8 42,4 20,1 0,6 3,9

4a 59,9 36,7 19,7 0,5 2,7

5a 63,0 42,7 18,3 0,5 3,7
1002 62,7 37,7 18,6 0,6 2,7
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Tabela 4.8 — Porcentagem de componentes harménicas para carga da classe C.

Carga 3? . 5? . 7? . llAa. l?ia.
Harménica Harmonica Harmonica Harmonica Harmonica Harmonica

(%) (%) (%) (%) (%)

12 6,4 6,2 0,9 0,2 0,3

22 24,3 14,0 54 6,0 2,3

32 06,4 13,0 2,5 5,6 2,1

42 10,8 6,2 1,0 45 1,6

52 16,3 9,5 0,9 6,0 0,5
1002 12,3 8,7 1,9 45 1,0

Como os valores apresentados na Tabela 4.6, Tabela 4.7 e Tabela 4.8 sdo valores
gue dependem da componente fundamental, entdo foi necessario simular o sistema de
20 barras, sem nenhuma alteracdo, para adquirir as correntes fundamentais. O valor da
componente fundamental de corrente do barramento 31 foi de 5,9851 A, enquanto para
0 barramento 53 foi de 4,799 A. Assim, para o barramento 31 os valores da Tabela 4.6,
Tabela 4.7 e Tabela 4.8 foram multiplicados por 5,9851 A, resultando em 300 valores.
Para o barramento 53 os valores das Tabela 4.6, Tabela 4.7 e Tabela 4.8 foram

multiplicados por 4,799 A, resultando em outros 300 valores.

Com todas as cargas harmoénicas calculadas e prontas para serem inseridas no
sistema de 20 barras, foi entdo inseridas 5 fontes de corrente no barramento 31. Cada
fonte de corrente representa uma componente harménica de corrente, por exemplo, a
terceira harménica é representada por uma fonte de corrente com frequéncia em 180 Hz,
a quinta harménica é representada por outra fonte de corrente com frequéncia de 300
Hz, a sétima harmbnica é representada por outra fonte de corrente com frequéncia de
420 Hz, a décima primeira harménica é representada por outra fonte de corrente com
frequéncia de 660 Hz e, por fim, a décima terceira harménica que é representada por
outra fonte de corrente com frequéncia de 780 Hz. A Figura 4.2 ilustra o processo

mencionado acima.
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Figura 4.2 — Representacao de uma carga harmdnica, ou seja, cinco fontes de correntes.

Em um primeiro momento somente o barramento 31 foi utilizado. Ou seja,
nenhuma alteracdo foi feita no barramento 53. Assim, no barramento 31 foram
simuladas 100 cargas da classe A, uma de cada vez, de acordo com os valores da
Tabela 4.6. A Tabela 4.9 mostra os resultados das cinco primeiras simulacdes do ATP
para uma carga pertencente a classe A. As medidas que foram obtidas pelo medidor de
corrente, que se encontra no PAC, e transformadas em porcentagem em relacdo a
fundamental, podendo assim comparar 0s resultados obtidos com o0s esperados,

indicado pela Tabela 4.2.

Tabela 4.9 — Resultado da simulagdo do ATP para a carga classe A do barramento
31 medida no PAC.

32 52 72 112 132
Carga Harmoénica | Harmdnica | Harménica | Harmbénica | Harmonica
Harmdénica (%) (%) (%) (%) (%)
12 4,4042 31,9921 15,9633 6,4360 5,6335
22 4,7172 76,2517 61,2041 24,5588 12,5396
32 4,4142 72,3302 46,9317 18,0538 6,0709
42 4,5066 31,9974 29,6358 21,5440 6,6797
52 4,5591 43,2576 15,9638 22,0946 9,0618
100 4,6466 39,5527 61,0070 8,7397 7,3675

Repare que as medidas obtidas pelo ATP, para a maioria das cargas
apresentadas na Tabela 4.9, ndo correspondem a uma carga classe A, ou seja, para
alguma harmoénica ou para todas elas, os limites obtidos encontram-se fora da Tabela
4.2, apesar de ter sido alocada uma carga classe A no local. Por exemplo, a quinta
harmbnica da primeira carga ndo estaria dentro dos limites encontrado na Tabela 4.2,
embora o valor seja proximo do limite inferior (32,1 %). Vale ressaltar ainda que a

proporgéo obtida na Tabela 4.9 de cargas que deveriam ser classe A, mas ndo pertence
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a ela, ndo se repete para o conjunto total de amostras, pelo contrario, no total apenas

12% n&o foram consideradas cargas classe A.

Em seguida, foram simuladas as cargas classe C, ou seja, somente a carga hao

linear do tipo classe C foi colocada no barramento 31. Assim como na classe A, foram

obtidas 100 medidas e algumas delas sdo mostradas na Tabela 4.10.

Tabela 4.10 — Resultado da simulagc&o do ATP para a carga classe B do barramento 31
medida no PAC.

32 5a 72 112 132
Carga Harmoénica | Harmobnica | Harmbnica | Harmodnica Harmonica

Harmonica (%) (%) (%) (%) (%)

12 54,7367 36,5661 18,0244 0,4839 2,5622

2a 65,7245 43,4412 19,9929 0,5817 3,9461

32 54,7380 42,2909 19,7557 0,5530 3,8215

42 59,8795 36,5655 19,3678 0,5262 2,6625

5a 62,9124 42,5920 18,0218 0,4912 3,6276

100 62,6178 37,5804 18,2702 0,5774 2,6838

O mesmo processo foi realizado para a carga C. A Tabela 4.11 mostra algumas

das medidas obtidas pelo ATP.

Tabela 4.11 — Resultado da simulagc&o do ATP para a carga classe C do barramento 31
medida no PAC.

Carga 3? . 5? . 7? . llAa. l?ia.
Harménica Harmobnica | Harmodnica | Harmonica Harmonica Harmonica
(%) (%) (%) (%) (%)
12 6,3953 6,1793 0,8865 0,1981 0,2969
22 24,2738 13,9494 5,3187 5,9419 2,2702
32 6,3970 12,9914 2,4175 5,5898 2,0707
42 10,8021 6,1790 0,9462 4,4364 1,5361
5a 16,3137 9,4561 0,8853 5,9266 0,5075
100 12,2975 8,7078 1,8988 4,4603 1,0063

Feito as simulacdo para as cargas isoladas no barramento 31, ou seja, somente

cargas classe A, ou somente cargas classe B, ou somente cargas classe C, foi entdo

simulado as combinacdes dessas cargas, por exemplo, uma carga classe A e uma
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carga classe B alocadas ao mesmo instante no PAC. Para isso, foi necessario incluir
mais um conjunto de 5 fontes de correntes, no barramento 31, para simular uma nova
fonte harmdnica. Cada simulacao foi feita utilizando a primeira linha da carga classe A,
representada na Tabela 4.6 (multiplicada pela corrente fundamental do barramento 31)
com a primeira linha da classe C Tabela 4.7 (também multiplicada pela corrente
fundamental do barramento 31), e assim por diante, resultando em uma quantidade de
100 medidas. A Tabela 4.12 indica os resultados para algumas simulacdes obtidas no

ATP para as duas cargas mencionadas.

Tabela 4.12 — Resultado da simulac&o do ATP para as cargas da classe A e B do

barramento 31 medida no PAC.

32 52 72 112 132
Carga Harmodnica | Harménica | Harménica | Harmbnica Harménica

Harmonica (%) (%) (%) (%) (%)

12 109,4756 73,1344 36,0495 0,9670 5,1241

22 131,4539 86,8863 39,9872 1,1626 7,8922

32 109,4786 84,5848 39,5125 1,1052 7,6429

42 119,7623 73,1335 38,7367 1,0517 5,3245

52 125,8291 85,1875 36,0446 0,9816 7,2551

1002 125,2394 75,1635 36,5414 1,1541 5,3672

O mesmo procedimento foi realizado para as cargas classe B e classe C. Em
seguida para as cargas classe A e classe C. Finalizando para todas as classes, ou seja,
para as cargas classe A, classe B e classe C, lembrando que para realizar esse
procedimento foi necessario acrescentar mais cinco fontes de correntes. O total de

medidas obtidas, ao final da simulagéo, para o barramento 31 foi de 700.

Terminado as simulagfes para o barramento 31, foram feitas, da mesma maneira,
as simulagfes para o barramento 53, ou seja, nenhuma fonte de corrente foi alocado no
barramento 31 e o mesmo procedimento feito para adquirir os dados no barramento 31
foi feito no barramento 53. Lembrando que, para o caso do barramento 53 o medidor
utilizado foi o que se encontra no mesmo local, ou seja, no PAC. Além disso, os valores
utilizados na simulacéo foram os apresentados nas Tabela 4.6, Tabela 4.7 e Tabela 4.8,
multiplicados por 4,799 A que é a componente fundamental do barramento 53, diferente
do valor barramento 31 (5,9851 A).
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Na Tabela 4.13 é apresentado os resultados obtidos na simulacdo do ATP para

uma carga classe A alocada no barramento 53.

Tabela 4.13 — Resultado da simulagc&o do ATP para a carga classe A do barramento
53 medida no PAC.

32 52 72 112 132
Carga Harmoénica | Harmébnica | Harménica | HarmdOnica | Harmodnica

Harmbnica (%) (%) (%) (%) (%)

12 4,3981 31,9294 15,8350 6,4135 5,6211

22 4,7096 76,1005 60,7134 24,4722 12,5147

32 4,4077 72,1864 46,5546 17,9887 6,0587

42 4,5001 31,9347 29,3981 21,4677 6,6667

52 4,5529 43,1728 15,8356 22,0153 9,0449

1002 4,6401 39,4741 60,5172 8,7094 7,3540

Como era esperado, os resultados obtidos na Tabela 4.13 foram préximos aos
obtidos na Tabela 4.9, pois a proporc¢éo foi mantida. Ou seja, apesar do barramento ter
mudado a amplitude da corrente fundamental também mudou e, portanto, uma vez que
isso foi levado em conta, ndo era esperado que os resultados obtidos deferissem muito

dos encontrados no barramento 31.

Finalizando todas as simulacdes, foram obtidas 700 medidas para o barramento
53. Tendo assim, um conjunto de medidas de 1400 amostras contando com o

barramento 31.

Todas as medidas feitas até esse momento foram realizadas utilizando os
medidores de tensdo/corrente no PAC, o que vale ressaltar que nem sempre
corresponde a um sistema real, onde nao é possivel encontrar medidores em todos os
barramentos. Portanto, tendo isso em vista, foram realizados outros conjuntos de testes,
utilizando os mesmo valores que foram utilizados para o barramento 31 e 0s mesmo
valores que foram utilizados para o barramento 53 s6 que obtendo as medidas na
subestagéo. Por exemplo, em um primeiro momento, foi colocado 100 cargas classe A,
uma de cada vez, no barramento 31 (sem nada estar alocado no barramento 53) e as
medidas foram obtidas na subestacdo. Em seguida foi colocado 100 cargas classe A no
barramento 53 (sem nada estar alocado no barramento 31), uma de cada vez, e as
medidas foram obtidas na subestacdo. Lembrando que a componente fundamental de

cada barramento é diferente. Com isso ja foram obtidos 200 medidas na subestacao
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somente para a carga classe A. A Tabela 4.14 e Tabela 4.15 mostram alguns resultados
para as medidas feitas na subestacéo para cargas classe A alocadas no barramento 31

e barramento 53, respectivamente.

Tabela 4.14 — Resultado da simulagéo do ATP para a carga classe A do barramento

31 medida na subestacéo.

32 52 72 112 132
Carga Harmodnica | Harmdnica | Harménica | Harmbnica | Harménica

Harmbnica (%) (%) (%) (%) (%)

12 0,2826 2,5434 2,2232 0,1749 0,0323

22 0,3007 6,0592 8,5246 0,6704 0,0716

32 0,2819 5,7484 6,5366 0,4923 0,0330

42 0,2886 2,5429 4,1277 0,5900 0,0380

52 0,2922 3,4387 2,2223 0,6058 0,0530

1002 0,2966 3,1422 8,4989 0,2355 0,0407

Tabela 4.15 — Resultado da simulagédo do ATP para a carga classe A do barramento

53 medida na subestacéo

32 52 72 112 132
Carga Harmoénica | Harmodnica | Harmdnica | Harménica | Harmonica

Harm®onica (%) (%) (%) (%) (%)

12 0,2363 2,3084 2,3210 0,3436 0,1593

22 0,2509 5,4990 8,8999 1,3138 0,3543

32 0,2354 5,2171 6,8243 0,9653 0,1704

42 0,2411 2,3077 4,3092 1,1542 0,1885

52 0,2443 3,1209 2,3199 1,1844 0,2568

1002 0,2477 2,8515 8,8731 0,4647 0,2073

Como pode ser notado, quando os valores ndo sédo adquiridos no PAC, no caso na

subestacéo, estes sdo bem diferentes do que se era esperado pela Tabela 4.2.

Repetindo esse processo, de forma andloga ao que foi feito para as cargas e
medidores localizados no PAC, para as cargas classe B, classe C e para a combinagdo

dessas classes, foram obtidas ao final do treinamento 1400 dados, 700 devido ao

36



barramento 31 e 700 devido ao barramento 53. Nenhum desses valores ficou dentro dos

limites apresentados pela Tabela 4.2, Tabela 4.3 e Tabela 4.4.

Resumidamente, foi possivel obter 1400 amostras utilizando os medidores no PAC
e 1400 amostras utilizando o medidor localizado na subestacdo para o treinamento e

validagéo do sistema inteligente, que sera explicado a sequir.
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Capitulo 5
Aplicacéo de Sistemas Neuro-Fuzzy para Identificacdo de Fontes

Harmonicas

5.1 SISTEMA NEURO-FUZZY

Para desenvolver o modelo, foi utilizado o sistema ANFIS (Adaptive-Network-
Based Fuzzy Inference System) que € uma classe de redes neurais adaptaveis
funcionalmente equivalentes a um sistema de inferéncia fuzzy, explicado na secéo 2.3.
Este aplica uma combinacdo do método de minimos quadrados e do método do
gradiente descendente (backpropagation) para treinar os parametros das funcdes de
pertinéncia de forma a minimizar um erro de medida determinado. O toolbox fornecido
pelo software MatLab foi utilizado para o treinamento e validagdo do sistema Neuro-

Fuzzy.

Para o treinamento e validacdo do sistema Neuro-Fuzzy € necessario associar
cada uma das simulagbes feitas na secdo 4.2 com sua respectiva saida, pois o
treinamento que sera realizado é supervisionado. A divisédo de classes foi feita conforme

mostrado na Tabela 5.1.
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Tabela 5.1 — Classificagédo de classe utilizada.

Classes A B C
Classe A 1 0 0
Classe B 0 1 0
Classe C 0 0 1
Classe AB 1 1 0
Classe BC 0 1 1
Classe AC 1 0 1
Classe ABC 1 1 1

Ou seja, para que haja alguma carga pertencente a classe A, basta que a segunda
coluna seja 1. Para a classe B, a terceira coluna seja 1 e, finalmente, para que seja da

classe C, a quarta coluna deve ser 1.

Além de associar com sua respectiva saida, todos os dados obtidos, foram
normalizados para valores entre 1 e -1 a fim de melhorar o desempenho da rede.
Lembrando que os valores extremos da normalizacdo deverdo estar contidos no
conjunto de treinamento, ou seja, as treze primeiras cargas harmonicas de cada classe
e combinacdo de classes, necessariamente, deverdo estar contidas no conjunto de
treinamento, pois foram nelas que se garantiram os valores extremos da Tabela 4.2,
Tabela 4.3 e Tabela 4.4.

Tomado esses devidos cuidados, foram realizados dois treinamentos distintos, um
para as cargas harménicas e os medidores localizados no PAC e outro para o medidor
localizado na subestagdo. Ou seja, 1400 dados para o PAC e 1400 dados para a
subestagédo. Para cada um deles, 70% dos dados foram utilizados no treinamento,

enquanto que o restante, 30%, foi utilizado para a validac&o do sistema Neuro-Fuzzy.
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5.1.1 Treinamento e validag&o para fontes harmonicas localizadas no PAC.

Para as 1400 medidas obtidas com os medidores no PAC, foram realizados 6
treinamentos diferentes para procurar o sistema cuja resposta seja computacionalmente
mais facil treinar e, principalmente, possuir a maior taxa de acerto. A Tabela 5.2 mostra
os 3 treinamentos utilizando a funcao de pertinéncia triangular e a Tabela 5.3 mostra os
3 treinamentos utilizando a funcéo de pertinéncia gaussiana. Em ambas as tabelas séao
indicadas o tempo de processamento, no qual foi medido utilizando um notebook com
processador Intel Core i5-2410M (2,40 GHz), com 4 GB de memoria RAM e HD de 7200
RPM.

Tabela 5.2 — Dados utilizados no treinamento do sistema Neuro-Fuzzy com funcéo de

pertinéncia triangular.

1° 2° 3°
Treinamento | Treinamento | Treinamento

NuUmero de fungdes de pertinéncia 2 2 3
Tipos de fungdo de pertinéncia de Triangular Triangular Triangular

entrada
Tipo de fungdo d,e pertinéncia de Triangular Triangular Triangular

saida
Epocas 100 200 100
Tempo para treinamento médio 2 min 5 min 7 horas

Tabela 5.3 — Dados utilizados no treinamento do sistema Neuro-Fuzzy com funcéo de

pertinéncia gaussiana.

42 52 62
Treinamento | Treinamento | Treinamento
NUmero de funcdes de pertinéncia 2 2 3
Tipos de funcéo de pertinéncia de Gauss Gauss Gauss
entrada
Tipo de funcéo dp pertinéncia de Gauss Gauss Gauss
saida
Epocas 100 200 100
Tempo para treinamento médio 2 min 5 min 7 horas

A Tabela 5.4 e Tabela 5.5 mostram os melhores erros obtidos na validacdo do
sistema Neuro-Fuzzy utilizando funcdo de pertinéncia triangular e gaussiano,

respectivamente.
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Tabela 5.4 — Erro obtido para o melhor treinamento utilizando fungéo de pertinéncia

triangular.
1° Treinamento
Classe A B C
NUmero de amostras | 420 | 420 | 420
Erros 14 0 2
Erro (%) 3,33 0 0,47

Tabela 5.5 — Erro obtido para o melhor treinamento utilizando funcéo de pertinéncia

gaussiana.
4° Treinamento
Classe A B C
NUmero de amostras | 420 | 420 | 420
Erros 15 0 4
Erro (%) 3,57 0 0,95

Apesar do erro obtido, tanto utilizando funcdo de pertinéncia triangular, como
utilizando funcédo de pertinéncia gaussiana serem préximos, o melhor resultado foi
obtido utilizando a funcdo de pertinéncia triangular. Outra vantagem seria que caso
fosse implementado em hardware, essa funcao de pertinéncia precisaria de apenas dois
pontes para serem armazenados, uma vez que essas funcdes de pertinéncia sao

simétricas, como pode ser visto a seguir.

Membership function plots
I

input variable "Terceira. Harmdnica™

Figura 5.1 — Funcéao de pertinéncia triangular para a terceira harmonica da classe A.
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Membership function plots
T T T T T T

N | 1 1
- 08 06 04 02 0 02 0.4

input variable "Terceira.Harménica”

Figura 5.2 - Funcéo de pertinéncia triangular para a terceira harmonica da classe B.

Membership function plots
I

input variable "Terceira.Harmdnica™

Figura 5.3 - Funcao de pertinéncia triangular para a terceira harmonica da classe C.

As funcbes de pertinéncia mostradas na Figura 5.1, Figura 5.2 e Figura 5.3 foram
retiradas apenas para a funcdo triangular, onde foi obtido o melhor resultado. Essas
funcbes ficaram iguais, pois 0 comportamento do sistema ndo se altera de harménica
para harmobnica, ou, em variaveis linguisticas, para todas as harmbnicas o
comportamento continua “baixa” quantidade de determinada harmonica ou “alta”

guantidade.

As figuras a seguir mostram as superficies de decisdo para o melhor dos

treinamentos, ou seja, para o treinamento com funcéo de pertinéncia triangular.
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output

Quirta Harmanica

Terceira Harménica

Décima.Terceira Harménica

Décima Primeira Harmanica

Figura 5.4 — Superficie de decisdo para funcéo de pertinéncia triangular da classe A.
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output

Quirta Harmanica

Terceira Harmanica

Décima.Terceira Harménica

Décima Primeira Harménica

Figura 5.5 — Superficie de decisao para fungéo de pertinéncia triangular da classe B.
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output

Guirta Harmdnica Terceira Harménica

output

Décima.Terceira Harmanica

Décima Primeira Harmanica
Figura 5.6 — Superficie de deciséo para funcao de pertinéncia triangular da classe C.
Observando as superficies de decisdo, pode-se perceber que quando os valores
na Tabela 4.2, Tabela 4.3 e Tabela 4.4 sdo mais dificeis de serem distinguidos, entdo a

superficie comeca a apresentar minimos locais, ou seja, deixa de ficar “suave”. Portanto,

uma superficie lisa indica um processo de identificacdo mais simples.

5.1.2 Treinamento e validacao para fontes harmdnicas utilizando medidores

localizados na subestacéo

Para as 1400 amostras obtidas com os medidores localizados na subestacéo

foram utilizados os mesmos dados para o treinamento do sistema Neuro-Fuzzy, que sdo
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apresentados na Tabela 5.2 e Tabela 5.3, para efeito de comparacdo. Ressalta-se que
0s tempos obtidos para o processamento do treinamento do sistema inteligente foram

proximos aos obtidos para o caso anterior.

A Tabela 5.6 e Tabela 5.7 mostram os melhores erros obtidos na validacdo do
sistema Neuro-Fuzzy utilizando funcdo de pertinéncia triangular e gaussiano,

respectivamente.

Tabela 5.6 - Erro obtido para o melhor treinamento utilizando funcéo de pertinéncia

triangular.
12 Treinamento
Classe A B C
NUmero de amostras | 420 420 | 420
Erros 60 60 8
Erro (%) 14,28 | 14,28 | 0,95

Tabela 5.7 - Erro obtido para o melhor treinamento utilizando funcéo de pertinéncia

gaussiana.
42 Treinamento
Classe A B C
NUmero de amostras | 420 420 | 420
Erros 60 60 0
Erro (%) 1428 114,28| O

Diferente para o caso anterior, agora o melhor resultado foi obtido com a funcdo
de pertinéncia gaussiana. Talvez, devido ao fato das amplitudes serem menores a
funcdo gaussiana consegue retirar mais informacfes do sistema. As figuras a seguir
mostram as func¢des de pertinéncia obtidas para o melhor dos casos, ou seja, para a

funcao de pertinéncia gaussiana.
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Membership function plots
T

Balxa

-1 -08 08 -04 -0z 0 02 04 06 03

input variable "Terceira. Harménica”

Figura 5.7 — Funcéo de pertinéncia gaussiana para a terceira harménica da classe A.

Membership function plots
T T T T T T T

'c \ | |
- 0.6 0 0.2 0 02 04 0.6 0.8 1

02 0 02 0.4 06
input variable "Terceira. Harménica™

Figura 5.8 - Funcao de pertinéncia gaussian para a terceira harménica da classe B.

Membership function plots
T T T T T T

c | | |
- - - - - .

1 0.8 08 0.4 0.2 0 0.2 0.4 06 0.8

input variable "Terceira.Harménica”™

Figura 5.9 - Funcao de pertinéncia gaussiana para a terceira harmonica da classe C.

As funcdes de pertinéncia mostradas na Figura 5.7, Figura 5.8 e Figura 5.9
ficaram iguais pelo mesmo motivo do caso anterior, ou seja, o0 comportamento do

sistema ndo se altera de harménica para harménica,
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As figuras a seguir mostram as superficies de decisdo para o melhor dos

treinamentos, ou seja, para o treinamento com fungéo de pertinéncia gaussiana.

output

Quinta Harmanica Terceira Harmonica

output

Décima.Terceirs Harmdnica

Décima Primeira Harménics

Figura 5.10 — Superficie de deciséo para funcdo de pertinéncia gaussiana da classe A.
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Terceira Harménica

Quirts . Harménica

Décima Primeirs Harménica

Décima.Terceira Harménica

de pertinéncia gaussiana da classe B.

ao

Figura 5.11 — Superficie de decisao para fung
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output

Quirta Harmdnica Terceira Harmanica

output

Décima. Terceira Harménica

Décima Primeira Harmanica

Figura 5.12 — Superficie de decisédo para fungéo de pertinéncia triangular da classe C.

Observando as superficies de decisao, pode-se perceber essas superficies sao
mais “onduladas” do que o caso anterior, isso deve-se principalmente pelo uso da

funcdo de pertinéncia gaussiana, mas ainda sim, o comportamento do sistema se
mantém, como explicado no item 5.1.1.

E importante comentar que tanto para a subestacdo quanto para o PAC foram
empregados trés sistemas Neuro-Fuzzy, sendo cada um deles responsavel por

identificar uma determinada classe de fontes consumidoras de poténcias harménicas.
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5.1.2 Comparagao com o trabalho de Varadan e Makram (1996)

No trabalho de Varadan e Makram (1996) foi desenvolvido um algoritmo para
classificar os mesmos tipos de classe de cargas que aqui foi utilizado, conforme ja
mencionado no Capitulo 3. O melhor resultado obtido por esses autores é mostrado na
Tabela 5.8.

Tabela 5.8 — Erro encontrado na classificacédo de fontes consumidoras de poténcia

harmdnica por Varadan e Makram (1996).

Classe A B C AB BC AC ABC

Erro(%) 10 0 0 0 0 0 10

Colocando os erros obtidos nesse trabalho, para as cargas alocadas no PAC, pois
foi para esse método que o trabalho de Varadan e Makran (1996) foi desenvolvido, e,
portanto, o qual se ira comparar nesse trabalho, da mesma maneira que foi mostrado

por esses autores, entdo os erros obidos séo indicados na Tabela 5.9.

Tabela 5.9 — Erro encontrado nesse trabalho para cargas alocadas no PAC.

Classe A B C AB BC AC ABC

Erro(%) 2 0 0 0 1 1 3

Deve ser ressaltado que os erros mostrados na Tabela 5.8, para o algoritmo
desenvolvido por Varadan e Makran (1996), sdo os melhores valores encontrados por
eles. Entretanto, em uma média de 210 simulac6es foi possivel encontrar erros maiores
de 30%. A vantagem desse algoritmo, segundo eles, é o baixo custo computacional. Ja
o sistema Neur-Fuzzy apresentado aqui, foi possivel obter erros menores obtidos do
gue mostrados na Tabela 5.8, que foi o melhor erro, e o custo computacional, apesar de
ser alto para o treinamento da rede, este é baixo quando a rede ja esta treinada.

Portanto, os resultados encontrados aqui foram excelentes.
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Capitulo 6

Conclusao

As redes neurais artificiais, assim como os sistemas de inferéncia fuzzy e os
sistemas Neuro-Fuzzy, podem ser aplicadas em diversos problemas relacionados as
engenharias e as ciéncias. As caracteristicas mais atrativas dessas ferramentas sao a
sua capacidade em mapear sistemas nédo-lineares, sendo, portanto, um instrumento

promissor na identificacdo de fontes harmdnicas.

Os sistemas de inferéncia fuzzy sdo sistemas mais faceis de compreender, uma
vez que a linguagem utilizada para sua programacao € a mesma utilizada no dia-a-dia,
ou seja, variaveis qualitativas. Entretanto, ndo ha uma regra fixa de como e quais
funcbes de pertinéncia devem ser utilizadas e, portanto, ha a necessidade de realizar
varios treinamentos, seja alterando as funcdes de pertinéncia, seja alterando sua

posicéo relativa, para atingir um resultado satisfatorio.

O mesmo acontece com as redes neurais, pois elas determinam a melhor
resposta pelo minimo da funcéo erro, seja ele global ou ndo. Portanto, € necessario
treina-la varias vezes para tentar alcancar o minimo global, fato este que, dependendo
do programa, pode néo ser alcangado, uma vez que o programador pode ndo conhecer
esse minimo. Assim, 0 programa € executado até obter uma resposta satisfatoria,

podendo ela ndo ser a melhor.

Os sistemas Neuro-Fuzzy permitem que o sistema de inferéncia fuzzy seja
utilizado mais facilmente, pois ele utiliza as redes neurais para ajustar as funcdes de
pertinéncia. Entretanto, € necessario um conjunto de varias amostras para que o

treinamento seja possivel.

O uso de sistemas inteligentes, mais precisamente do sistema Neuro-Fuzzy, para
determinar e classificar cargas consumidoras de poténcia harménica foi 6timo quando
os medidores estavam localizados préximos as fontes consumidoras de harmonicas.
Com um dos treinamentos foi possivel obter um erro de 3,33% para a classe A, 0% para

a classe B e 0,47% para a classe C.

Quando os medidores foram alocados na subestagéo os resultados ja ndo foram
tdo atrativos quando comparado com o caso anterior. As classes A e B de cargas foram
as que tiveram maiores dificuldades para serem identificadas, com erros, em geral,

proximos a 14%. Felizmente, os resultados obtidos para a classe C foram excelentes,
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com um dos treinamentos foi obtido erro zero. Esses resultados ja eram esperados uma
vez que as amplitudes obtidas pelos medidores da subestacéo estavam baixas. Durante
a aquisicao de dados foi dificil perceber qual carga estava alocada no sistema devido as
amplitudes obtidas serem semelhantes e, ainda assim, o0 sistema Neuro-Fuzzy
conseguiu identificar a maioria delas. Vale ressaltar que os erros estavam espalhados

por todo o treinamento e ndo concentrado para um caso especifico.

Observando atentamente as funcdes de pertinéncia obtidas, percebe-se que elas
sdo muito semelhantes tanto para os medidores proximos as fontes consumidoras de
poténcias harmonicas, como para medidores localizados na subestacao, isso porque o
comportamento das harmbnicas, em termo de variaveis linguisticas € 0 mesmo, mas as
superficies de decisdo foram diferentes, principalmente devido as amplitudes serem
menores. Além disso, os limites em porcentagem para classificar as cargas em trés
classes eram, em alguns casos sobrepostos. Como por exemplo, a décima terceira
harmonica das trés classes de cargas. Quando isso acontecia podia se perceber que as
superficies de decisbes apresentavam mais minimos locais, ou seja, menos suavidade

na curva, indicando a dificuldade de se analisar essa componente harménica.

O uso de sistema inteligente para identificar as cargas consumidoras de poténcia
harmonica é justificado, devido principalmente a néo linearidade do sistema. Além disso,
guando comparado com o trabalho de Varadan e Makram (1996), onde foi feita a
mesma classificacdo de fontes consumidoras de poténcia harmonica, viu-se que 0s

resultados obtidos nesse trabalho foram melhores.

Vale ressaltar ainda que o uso de mais épocas no treinamento do sistema
inteligente, ou mesmo o uso de mais fungbes de pertinéncia, ndo necessariamente
melhora os resultados. Como exemplo, foi realizada uma simulagdo para um sistema
com 3 funcdes de pertinéncia para cada harmonica e, além do treinamento ter requerido
muito processamento, os resultados obtidos foram piores dos que aqueles encontrados

guando se utiliza 2 fun¢des de pertinéncia.
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Apéndice A — Sistema de 20 barras

No apéndice A, serd mostrado o arquivo desenvolvido em ATP para modelar e
simular o sistema de 20 barras. Nesse arquivo, sdo configuradas as linhas de
distribuicdo, cargas RL, cargas ndo lineares, bancos de capacitores, transformadores,

dentre outros.

Configuragdes iniciais do modelo
BEGIN NEW DATA CASE
POWER FREQUENCY 60.
6.512E-5 1.06667
500 1 1 1 1 0 0 1 0

Impedancias das linhas de distribuigdo

/BRANCH

51BUS20ABUS23A .10172 1.55575032
52BUS20BBUS23B .05245 .28717716
53BUS20CBUS23C

51BUS50ABUSS51A .08018 1.22634968
52BUS50BBUS51B .04135 .22637284
53BUS50CBUSS51C

51BUS43ABUS44A .19687 3.01106683
52BUS43BBUS44B .10152 .555815165
53BUS43CBUS44C

51BUS40ABUS43A .19687 3.01106683
52BUS40BBUS43B .10152 .555815165
53BUS40CBUS43C

51BUS22ABUS20A .02427 .37113214
52BUS22BBUS20B .01289 .06850757
53BUS22CBUS20C

51BUS31ABUS32A .02427 .37113214
52BUS31BBUS32B .01289 .06850757
53BUS31CBUS32C

51BUS41ABUS42A .15789 2.4148628
52BUS41BBUS42B .08385 .4457614
53BUS41CBUS42C

51BUS42ABUS40A .1103 1.68706544
52BUS42BBUS40B .05688 .31141672
53BUS42CBUS40C

51BUS30ABUS33A .1103 1.68706544
52BUS30BBUS33B .05688 .31141672
53BUS30CBUS33C

51BU30YABUS40A

1.1065 16.92295788



52BU30YBBUS40B
53BU30YCBUS40C
51BUS33ABUS34A
52BUS33BBUS34B
53BUS33CBUS34C
51BUS32ABUS30A
52BUS32BBUS30B
53BUS32CBUS30C
51BUS21ABUS22A
52BUS21BBUS22B
53BUS21CBUS22C
51BUS51ABUS53A
52BUS51BBUS53B
53BUS51CBUS53C
51BUS51ABUS52A
52BUS51BBUS52B
53BUS51CBUS52C
51BUS23ABUS24A
52BUS23BBUS24B
53BUS23CBUS24C
51BUS10ABU10XA
52BUS10BBU10XB
53BUS10CBU10XC
51BU10XABUS20A
52BU10XBBUS20B
53BU10XCBUS20C
51BU40XABUS0XA
52BU40XBBUS0XB
53BU40XCBU50XC
51BUS40ABU40XA
52BUS40BBU40XB
53BUS40CBU40XC
51BUS20ABUS30A
52BUS20BBUS30B
53BUS20CBUS30C
51BUS30ABU30XA
52BUS30BBU30XB
53BUS30CBU30XC
51BU30XABU30YA
52BU30XBBU30YB
53BU30XCBU30YC

57057 3.12382194

42863 6.55574044
.22103 1.21012922

42863 6.55574044
.22103 1.21012922

.02427 .37113214
.01289 .06850757

.04849 .74170786
.02575 .13691243

.04849 .74170786
.02575 .13691243

.27592 2.03517312
21292 41281344

42863 6.55574044
.22103 1.21012922

42863 6.55574044
.22103 1.21012922

42863 6.55574044
.22103 1.21012922

42863 6.55574044
.22103 1.21012922

1.1065 16.92295788
57057 3.12382194

42863 6.55574044
.22103 1.21012922

42863 6.55574044
.22103 1.21012922

Bancos de capacitores

X0001A
X0001B
Xoo001C

5.9652
5.9652
5.9652
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Impedancia equivalente da fonte
51FONTEAT_PRIA 20.805 203.721
52FONTEBT_PRIB 4.062 52.5397
53FONTECT_PRIC

Transformador da subestacéo
TRANSFORMER X0002A 1.E6
9.65711453E-04 4.09340967E+04
2.99405817E-03 4.54823297E+04
1.89842730E-02 5.00305627E+04
1.17513038E-01 5.23046792E+04
3.46710248E-01 5.36691491E+04

9999
1T_SECA .0547 1.628 13.8
2T_PRIAT_PRIB .7937623.626 88.
TRANSFORMER X0002A X0002B
1T_SECB

2T _PRIBT PRIC

TRANSFORMER X0002A X0002C
1T _SECC

2T _PRICT_PRIA

Impedancias das cargas RL

BUS21ABUS21B 3272..0037
BUS21BBUS21C 3272..0037
BUS21CBUS21A 3272..0037
BUS23ABUS23B 3681..00416
BUS23BBUS23C 3681..00416
BUS23CBUS23A 3681..00416
BUS30ABUS30B 2454..00277
BUS30BBUS30C 2454..00277
BUS30CBUS30A 2454..00277
BUS33ABUS33B 4089.9.00462
BUS33BBUS33C 4089.9.00462
BUS33CBUS33A 4089.9.00462
BUS34ABUS34B 11326. .0128
BUS34BBUS34C 11326. .0128
BUS34CBUS34A 11326. .0128
BUS31ABUS31B 9815.9.01109
BUS31BBUS31C 9815.9.01109
BUS31CBUS31A 9815.9.01109
BUS40ABUS40B 8179.9.00924
BUS40BBUS40C 8179.9.00924
BUS40CBUS40A 8179.9.00924
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BUS52ABUS52B 22042..02491

BUS52BBUS52C 22042..02491
BUS52CBUS52A 22042..02491
BUS53ABUS53B 12270..01387
BUS53BBUS53C 12270..01387
BUS53CBUS53A 12270..01387
BUS41ABUS41B 4927.6.00557
BUS41BBUS41C 4927.6.00557
BUS41CBUS41A 4927.6.00557

Chaves dos bancos de capacitores e seccionadoras

/SWITCH
X0001ABUS42A -1 1E3
X0001BBUS42B -1 1E3
X0001CBUS42C -1, 1E3
T_SECACHAV1A -1. 1ES3
T_SECBCHAV1B -1. 1.ES3
T_SECCCHAV1C -1. 1.E3

Medidores de corrente

CHAV1ABUS10A MEASURING
CHAV1BBUS10B MEASURING
CHAvV1CBUS10C MEASURING
BUS0XABUS50A MEASURING
BU50XBBUS50B MEASURING
BU50XCBUS50C MEASURING

Parametros da fonte

/SOURCE

14FONTEA 0 71851.699 60. -1.
14FONTEB 0 71851.699 60. -120. -1.
14FONTEC 0 71851.699 60.  120. -1.

Medidores de tenséo

/OUTPUT
BUS10ABUS10BBUS10CBUS50ABUS50BBUS50C

BLANK BRANCH

BLANK SWITCH

BLANK SOURCE

BLANK OUTPUT

BLANK PLOT

BEGIN NEW DATA CASE

BLANK

oOOOoo
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[ N = T = T T

1.E3
1.E3
1.E3
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