UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

Gabriel Victor Alves Santana

Deteccédo de anomalias na qualidade do ar utilizando aprendizado de maquina

em microcontroladores

Sao Carlos
2025

Gabriel Victor Alves Santana

Deteccdo de anomalias na qualidade do ar utilizando aprendizado de maquina

em microcontroladores

Monografia apresentada ao Curso de
Engenharia Elétrica com énfase em Eletronica,
da Escola de Engenharia de Sdo Carlos da
Universidade de Sdo Paulo, como parte dos
requisitos para obtencdo do titulo de
Engenheiro Eletricista.

Orientador: Prof. Dr. Pedro de Oliveira

Conceicdo Junior

Sao Carlos
2025

Autorizo a reproducdo e divulgacao total ou parcial deste trabalho, por qualgquer meio
convencional ou eletrénico, para fins de estudo e pesquisa, desde que citada a fonte.

Ficha catalografica elaborada pela Biblioteca Prof. Sérgio Rodrigues Fontes
e pelo Servico de Comunicacédo e Marketing da EESC-USP,
com dados inseridos pelo(a) autor(a).

Alves Santana, Gakriel Victor
AZ31d
Detecgdo de anomalias na qualidade do ar utilizande

aprendizado de mAaquina em microcontroladores / Gabriel
Victor Alves Santana ; orientador Pedro de Olivelira

Conceigdo Junior. -- 83o Carlos, Z0I5.

70 p.

Monografia - Graduagdo em Engenharia Elétrica com
énfase em Eletrénica —-- Escola de Engenharia de S&o

Carleos da Universidade de 53c Paulo, Z0Z5.

1. Microcontroladores. 2. Aprendizado de maquina. 3.
tinyML. 4. Internet das Coisas (IoT). 5. Detecglo de
Anomalias. I. de Oliveira Conceigdo Junior, Pedro,

orient. II. Titulo.

Responsavels pela estrutura de catalogacdo da publicacdo sequndo a AACRZ: Bibliotecarios da EESC/USP,

FOLHA DE APROVACAO

Nome: Gabriel Victor Alves Santana

Titulo: “Deteccdao de anomalias na qualidade do ar utilizando
aprendizado de maquina em microcontroladores”

Trabalho de Concluséo/de Curso defendido e aprovado
em_()Y 1 /37035 ,

com NOTA_ 4,9 (wnt . it), pela Comiss&o
Julgadora:

Prof. Dr. Pedro de Oliveira Conceigdao Junior - Orientador -
SEL/EESC/USP

Prof. Dr. Ivan Nunes da Silva - Professor Titular SEL/EESC/USP

Prof. Dr. Marcos Rogério Fernandes - SEL/EESC/USP

Coordenador da CoC-Engenharia Elétrica - EESC/USP:
Professor Associado José Carlos de Melo Vieira Junior

AGRADECIMENTOS

Agradeco, antes de tudo, a Deus, por me guiar e permitir a concluséo deste trabalho.
Agradeco também aos meus pais e amigos, cujo apoio, incentivo e companhia foram
indispensaveis para superar os desafios desta trajetoria académica. Finalmente, registro meus
agradecimentos a Universidade de S&o Paulo e a Escola de Engenharia de Sdo Carlos, bem
como a todos os professores e funcionarios, pelo inestimavel auxilio, pelo suporte e ambiente

de exceléncia e por todo o aprendizado que me foi oferecido.

RESUMO

SANTANA, G. V. A. Deteccdo de anomalias na qualidade do ar utilizando aprendizado
de maquina em microcontroladores. 2025. 70p. Monografia (Trabalho de Conclusdo de
Curso) — Escola de Engenharia de Séo Carlos, Universidade de Séo Paulo, Sdo Carlos, 2025.

Modelos de aprendizado de maquina ndo supervisionados sdo Uteis para identificar padrdes
complexos em dados ndo classificados, mas seu alto custo computacional limita sua
portabilidade. Para superar essas limitacGes, este trabalho propde a aplicagcdo de um modelo de
aprendizado de maquina em um sistema embarcado para deteccdo de anomalias na qualidade
do ar por meio da utilizacdo de técnicas de tinyML. O objetivo é unir a capacidade de deteccédo
de padrdes do aprendizado de maquina ao baixo custo e portabilidade dos sistemas embarcados.
Para isso, foi desenvolvido um modelo autoencoder ndo supervisionado que, otimizado com
quantizacdo INT8, teve seu tamanho reduzido em 47,02% sem perdas significativas de
performance. Na validacao experimental, feita em comparacao a uma abordagem tradicional, o
sistema embarcado (TinyML) foi 1,3 vezes mais rapido na deteccao de anomalias (tempo médio
de 4,5s contra 5,8s). Conclui-se que o sistema TinyML é uma solucdo robusta e mais rapida,
reforcando a viabilidade do processamento na borda para aplicacdes de 10T que demandam

respostas imediatas.

Palavras-chave: microcontroladores. aprendizado de maquina. tinyML. internet das Coisas
(10T). deteccdo de anomalias.

ABSTRACT

SANTANA, G. V. A. Air quality anomaly detection using machine learning on
microcontrollers. 2025. 70p. Monograph (Conclusion Course Paper) — Escola de
Engenharia de Sdo Carlos, Universidade de So Paulo, Séo Carlos, 2025.

Unsupervised machine learning models are useful for identifying complex patterns in
unlabeled data, but their high computational cost limits their portability. To overcome these
limitations, this work proposes the application of a machine learning model on an embedded
system for air quality anomaly detection through the use of tinyML techniques. The objective
IS to unite the pattern detection capabilities of machine learning with the low cost and portability
of embedded systems. To this end, an unsupervised autoencoder model was developed which,
optimized with INT8 quantization, had its size reduced by 47.02% without significant
performance losses. In experimental validation, compared to a traditional approach, the
embedded system (TinyML) was 1.3 times faster at detecting anomalies (average time of 4.5s
versus 5.8s). It is concluded that the TinyML system is a robust and faster solution, reinforcing

the feasibility of edge processing for 10T applications that demand immediate responses.

Keywords: microcontrollers. machine learning. tinyML. internet of things (1oT). anomaly

detection.

LISTA DE ILUSTRACOES

Figura 1 — Representacdo grafica de uma anomalia pontualcccceeveveiieiicieieennn, 21
Figura 2 — Representacéo grafica de uma anomalia contextualcccooriniiiinnnnn 22
Figura 3 — Representacéo grafica de uma anomalia Coletivac.ccocevviriicicincninn 22
Figura 4 — Representacdo grafica de uma anomalia multidimensionalc.......... 23
Figura 5 — Exemplo de um hiStOgramacccciveieiieiieese e 25
Figura 6 — Representagéo visual do algoritmos SVM em duas dimensges 28

Figura 7 — Representagéo visual das camadas de uma rede neural do

Y [0 T L gTo T LU 0 =T g Voo o =T SRR 29
Figura 8 — Representacdo visual de um algoritmos de decomposicdo espectral 30
Figura 9 — Esquematico do prot6tipo desenVoIVIdoccccovveieiiiiiniiieicee e, 42
Figura 10 — Prot6tipo desenvolvido em protoboardcccoeeiiiieiiienenscseeeee, 42
Figura 11 — Grafico das leituras brutas dos sensores de CO, Oz e Fumaga 43
Figura 12 — Fluxograma da légica de inferéncia executada no microcontrolador 47
Figura 13 — Fluxograma da logica de inferéncia executada na NnUVEMc.ccocoeerenene 50

Figura 14 — Curvas de convergéncia das métricas de perda (Loss) e MAE durante o
treinamento dO AULOBNCOTETciiiiiieieieiee et nreas 52
Figura 15 — Distribuicdo do erro absoluto médio (MAE) de reconstrucdo no conjunto de
dados dE VAITHAGEDc..eiuiieiiiiee s 53
Figura 16 — Distribuicdo do erro absoluto médio (MAE) de reconstrucéo no conjunto de

(0P To [0S0 [N (=] (=SSR PRORRR 53

LISTA DE TABELAS

Tabela 1 — Estrutura do indice de qualidade dO arcccovveveiieiecie s 17
Tabela 2 — Qualidade do ar e efeitos @ SAUAEcccocveveeiicieiicce e 17
Tabela 3 — Resumo das caracteristicas do Arduinocccoeceveieiiiiiieieresese e 37
Tabela 4 — Resumo das caracteristicas d0S SENSOIESccveveverierierieriesesieseseeeeeeeens 38
Tabela 5 — Comparativo das métricas do modelo pré e pds-quantizacgaoccco.v..... 54

Tabela 6 — Comparacdo de recursos computacionais e tempo de inferéncia entre o
sistema embarcado (TinyML) e o sistema local (PC)ccoovveieeiiiieiiee e 55
Tabela 7 — Resultados dos testes de laténcia de detecgédo do sistema embarcado

Tabela 8 — Resultados dos testes de laténcia de deteccdo do sistema de processamento
TrAdICIONAL (PC) ..ot r bbbt 55

SUMARIO

L INTRODUGAD ..ottt naaneaneas 16
1.1 MOTIVAGED ...ttt bttt n bbb 16
1.2 ODJELIVOS ..ottt ettt e st et e et et e e nra e ae e e nraere s 19
1.3 Organizacao do trabalioccooiiiiiiei e 19
2 REFERENCIAL TEORICO ..ottt 20
2.1 DeteCGA0 de ANOMANIAScveveeiiiiiiiee e 20
2.1.1 TIp0S de ANOMALIIASccveivieieiie ettt et sae e ens 21
2.1.2 Etapas do processo de deteccao de anomaliascccocvevveevieiieieeieseese e 23
2.1.3 Classificacdo dos metodos de dEtECCEDoovverveririririerieise e 24
2.1.3.1 Métodos baseado em STALISLICAcocveerueririeieiie e 24
2.1.3.2 Métodos baseado €m agrupamentosccveveieerreeieeseese e sreeseseesreesee e ees 26
2.1.3.3 Métodos baseado em diSTANCIASeoerveriiiieiiieie e 26
2.1.3.4 Métodos baseado em ClasSifiCaGA0cvrererrirenir e 27
2.1.3.5 Métodos baseado em deep 18arniNgcccooeireirinieneieesee e 28
2.1.3.6 Métodos baseado em decomposiGao eSPECtralcccvevevievieiievieceece e 30
2.1.3.7 MEt0d0S NIDIIAOSeiviiiieiieieie et nre s 31
2.1.4 Detecgdo de anomalias 8m T0Tccvoieiiiiiiiieee e 31
2.2 TinyML: Otimizagdo de Modelos para Bordaccccoevriiinininicieienenc e 32
2.2.1 Otimizacdo de Modelos para Sistemas Embarcadosccccceevveveereeieciesieenenn, 33
2.2.2 FIUXO d€ TrabalNoooviiiiiiieieee e 35
3MATERIAIS E METODOSoouiviieiceeeeieeeeseeeeess st ses s sessesas s senesssssessssnssnennan 37
TR Y L 4 T U 37
TR0 I o =10 1T - ST 37
T80t I Y o 113 T TP SUPRRTRIN 37
3112 SEINSOTES ...ttt ekttt etttk e et e bt et e e ke e enn e e bt e n e nre e nnreenes 38
3.1.1.3 Fonte de aliMeNTAGADceeeruirieieieie ettt 38
TR 10) A1 (SRS 39
3.1.2.1 Ambientes de DeSenVOIVIMENTOccooiiiiiiriiiie e 39
3.1.2.2 Linguagens de ProgramagGaocccceieereereerieneesieeieseesiesiesieesaeseesieessesnnens 39

3.1.2.3 Bibliotecas Python PriNCIPAISccccuririiiiiiiieie e 40

B2 IMBEOTOS et ———— 41

3.2.1 Montagem do Proto6tipo e Coleta de Dadosccccvveeviveiieiieiice e 41
3.2.2 Desenvolvimento do MOTEIOccoiiiiiiiiiieee e 43
3.2.3 OtimizaGao € DEPIOY ..o 45
3.2.4 Procedimentos de Validaghoccooeriieiiiiiieiccee e 48
3.2.4.1 Avaliacao da OtIMIZAGCADccecveveiieriieieeiesee et e s reeae e ras 48
3.2.4.2 Validacdo Experimental em Tempo Realccccoveiiiiiiiciice e 48
4 RESULTADOS E DISCUSSAOQ ..ot ee e eee e 51
4.1 Resultados do Treinamento do MOGEIOccoeiiieiiiiiiiie e 51
4.2 Resultados da OtIMIZAGADc.eiveeiieeiiiiesie ettt ae e sne s 54
4.3 Resultados da Validacdo Experimentalcccooevieviiic i 54
5 CONCLUSOESooviiiiieieieie sttt 56

REFERENCIAS ..ottt sttt 58

APENDICE A —REPOSITORIO DO CODIGO FONTEooveveeeeeeeeeeeeeeeeee e 63

16

1 INTRODUCAO

A Internet das coisas (IoT) € uma area de pesquisa que possui uma ampla gama de
aplicacdes que vao desde a industria e automacao [1] a agricultura [2] e até a aplicacbes na
medicina [3]. Segundo [4], o nimero de dispositivos conectados em 2023 foi de 16 bilhdes e a
estimativa é que este numero chegue a 40 bilhGes até 2030. O baixo custo, a grande variedade
de sensores e a alta capacidade de processamento sdo alguns dos motivos desse crescimento
continuo.

Os dispositivos 10T geralmente sdo a primeira camada de processamento em uma rede
de comunicacgdo que comeca com a aquisicao de dados por meio de de sensores chegando até o
armazenamento em nuvem ou a integracdo com sistemas analiticos. Como esses dispositivos
estdo na borda de uma rede de comunicacdo eles sdo conhecidos como edge devices, e 0
processamento realizado por eles é chamado de edge computing. [5, p. 18]

Segundo [5], as principais vantagens na realizacdo de edge computing estdo
relacionadas a conectividade dos dispositivos com a nuvem. O envio de dados tem um custo
elevado e um alto consumo de energia. Dessa maneira, processando os dados na borda pode-se
limitar o nimero de conexdes e a quantidade de dados enviados. Além disso, conforme aponta
[6, p. 4], o envio e recebimento de dados para a nuvem ndo é instantaneo e pode afetar
aplicacdes que precisam de uma resposta em curto periodo de tempo.

A partir desse cenério, surge o conceito de tinyML. De acordo com [7], tinyML ¢é
definido como o paradigma que facilita a execucdo de algoritmos de machine learning em
dispositivos com requisitos minimos de processador e memdria, e com consumo de poténcia
inferior a alguns miliwatts. Apesar de suas limitagdes, esses dispositivos sdo baratos,

econdmicos e portateis, 0 que o0s tornam atraentes para diversas aplicacdes.
1.1 Motivagéo

Segundo [8], “qualidade do ar é uma medida do nivel de poluentes atmosféricos a qual
a populagdo estd exposta”. No estado de Sao Paulo, o monitoramento da qualidade do ar e a
definicdo de padrbes a serem seguidos sdo realizados pela Companhia Ambiental do Estado de
Séo Paulo (CETESB). Os poluentes considerados como parametros nas medidas sdo: particulas
inalaveis (MP10 e MP2,5), fumaca, 0zonio (Oz), monoxido de carbono (CO), didxido de
nitrogénio (NO.) e didxido de enxofre (SO-) [9]. Segundo a CETESB:

17

Considera-se poluente qualquer substancia presente no ar e que, pela sua
concentracao, possa torna-lo improprio, nocivo ou ofensivo a satde, causando
inconveniente ao bem estar publico, danos aos materiais, a fauna e a flora ou
prejudicial a seguranca, ao uso e gozo da propriedade e as atividades normais
da comunidade [10].

A tabela abaixo apresenta a classificacdo da qualidade do ar com base na concentracao

do poluente e o tempo de amostragem.

Tabela 1 — Estrutura do indice de qualidade do ar

MP10 MP2,5 O3 CcO NO2 SO
. i (g/m3) (g/m3) (Mg/m3) (Ppm) (Mg/m3) (Mg/m3)

Qualidade Indice 24h 24h 8h 8h 1h 24h
Boa 0-40 0-50 0-25 0-100 0-9 0-200 0-20
Moderada 41 -80 >50-100 >25-50 >100-130 >9-11 >200-240 >20-40
Ruim 81-120 >100-150 >50-75 >130-160 >11-13 >240-320 >40-365
Muito Ruim 121-200 >150-250 >75-125 >160-200 >13-15 >320-1130 >365-800
Péssima >200 >250 >125 >200 >15 >1130 >800

Fonte: [9].

Para cada poluente medido é atribuido um indice com base em sua concentragdo. Para

efeito de divulgacdo, a qualidade ar é considerada igual ao nivel mais alto entre todos 0s

poluentes. Essa classificacdo esta associada aos efeitos a saude humana [9]. A tabela abaixo

apresenta o significado de cada nivel.

Tabela 2 — Qualidade do ar e efeitos a saude

Qualidade

indice

Significado

Boa

Moderada

Ruim

Muito
Ruim

0-40

41-80

81-120

121 -200

Pessoas de grupos sensiveis (criancas, idosos e pessoas com doencas respiratérias
e cardiacas) podem apresentar sintomas como tosse seca e cansago. A populagéo,
em geral, ndo é afetada.

Toda a populagéo pode apresentar sintomas como tosse seca, cansaco, ardor nos
olhos, nariz e garganta. Pessoas de grupos sensiveis (criangas, idosos e pessoas
com doencas respiratérias e cardiacas) podem apresentar efeitos mais sérios na
saude.

Toda a populagdo pode apresentar sintomas como tosse seca, cansaco, ardor nos
olhos, nariz e garganta. Pessoas de grupos sensiveis (criangas, idosos e pessoas
com doencas respiratorias e cardiacas) podem apresentar efeitos mais sérios na
saude.

Toda a populacdo pode apresentar agravamento dos sintomas como tosse seca,
cansaco, ardor nos olhos, nariz e garganta e ainda falta de ar e respiracao
ofegante. Efeitos ainda mais graves a satde de grupos sensiveis (criangas, idosos
e pessoas com doengas respiratdrias e cardiacas).

18

Péssima >200 Toda a populacdo pode apresentar sérios riscos de manifestacdes de doencas
respiratorias e cardiovasculares. Aumento de mortes prematuras em pessoas de
grupos sensiveis.
Fonte: [9].

O alto indice de qualidade do ar esta associado a diversos problemas de salude e
ambientais. De acordo com [8], os impactos da poluicdo do ar estdo relacionados as mortes
prematuras, doencgas pulmonares e cardiovasculares, acidentes vasculares cerebrais, disposicao
ao cancer e ao diabetes, e problemas cognitivos de criancas e idosos. Além disso, [11] aponta
que a poluicdo do ar pode ser causador de risco para outros problemas como o baixo peso ao
nascer, anemia falciforme e partos prematuros. Da mesma forma a qualidade do ar tem um
impacto direto no meio ambiente, sdo exemplos disso, segundo [8], “a a¢do do o0zbénio na
reducdo da produtividade agricola, a ocorréncia de chuva acida e a acidificacdo de lagos e rios
pela deposi¢ao de sulfato e nitrato”.

Dados os riscos associados a qualidade do ar ruim, fica evidente a importancia do
monitoramento continuo e abrangente. Segundo relatorio do Instituto de Energia e Meio
Ambiente (IEMA) apenas 13 dos 26 estados brasileiros possuem redes de monitoramento [12].
Um dos efeitos da falta de monitoramento é a incapacidade de fiscalizar o cumprimento de
normas governamentais [8]. Enfatiza que a falta de dados € uma importante fragilidade que
inviabiliza a avaliacdo da implementacdo e os impactos das politicas publicas relativas a
qualidade do ar.

Nesse contexto, a aplicacdo da Internet das Coisas (1oT) oferece uma alternativa viavel
e eficiente para expandir a capacidade de monitoramento. Por meio do uso de dispositivos
embarcados juntamente com sensores especificos para monitorar a condi¢cdo do ar é possivel
implementar uma rede de monitoramento de baixo custo, com grande cobertura e conectividade.
No entanto, apenas a coleta de dados brutos ndo é suficiente para um monitoramento eficiente
e em larga escala. Em muitas regides, a conectividade com a nuvem € limitada ou intermitente.
Assim, para superar essa limitacdo as tecnicas de edge computing e tinyML séo de grande valor.
A aplicacdo de técnicas de tinyML permite que os préprios dispositivos sejam capazes de
interpretar os dados coletados, identificando padrdes e detectando anomalias de maneira local,

diminuindo a necessidade de comunicacao e envio de dados.

19

1.2 Objetivos

A proposta deste trabalho foi desenvolver um dispositivo portatil capaz de detectar
anomalias na qualidade do ar em tempo real. Além disso, o algoritmo de aprendizado de
maquina implementado deveria ser do tipo ndo supervisionado onde néo existe a necessidade
de dados rotulados [5, p. 225]. Este trabalho delimita sua anélise as séries temporais de sensores
de qualidade do ar, focando especificamente nas medicdes de Monoxido de Carbono (CO) e
Ozonio (0O3). Tal selecéo justifica-se pela disponibilidade comercial e pelo baixo custo dos
sensores. A andlise de outros poluentes, como particulas inalaveis (PM2.5), Dioxidos de
Nitrogénio (NO2) ou Didxido de Enxofre (SO.), foge ao escopo desta pesquisa.

1.3 Organizacao do Trabalho

O presente trabalho é constituido por 5 capitulos conforme a descrigdo que segue:

Capitulo 1: Contextualiza o desenvolvimento do trabalho e apresenta as motivacoes para
a sua realizacao.

Capitulo 2: Apresenta a fundamentacgdo tedrica usada como base no desenvolvimento
do projeto.

Capitulo 3: Descreve os materiais e métodos utilizados na implementacéo do dispositivo
e na avaliacdo da implementacao.

Capitulo 4: Discusséo do resultados obtidos

Capitulo 5: Apresenta as conclusdes do trabalho.

20

2 REFERENCIAL TEORICO

2.1 Deteccdo de anomalias

Anomalia é um conceito intuitivo, mas de dificil definicdo formal. Segundo Hawkins
[13], uma definicdo intuitiva de anomalia seria uma observacao que difere tanto das outras que
gera uma suspeita se ela foi gerada pelo mesmo processo. Dessa definicdo pode-se perceber
gue uma anomalia ndo pode ser identificada longe de um contexto, ou seja, um dado ndo pode
ser considerado anémalo isoladamente. Com isso, pode-se dizer que uma anomalia é um dado
ndo usual, incomum em relacdo a um conjunto de dados que o contém.

Déa-se 0 nome de deteccdo de anomalias ao processo ou algoritmo capaz de identificar
dados que fogem do esperado. Adari [14] define a detecgcdo de anomalias como o processo de
identificar dados ou padrdes de dados incomuns para um certo conjunto de dados. Além disso,
Kennedy [15] acrescenta que 0 que se entende por comuns ou normais pode mudar, entretanto,
a deteccdo de anomalias pressupde que a maioria dos dados em um conjunto pode ser
considerado normal. Esse desvio do padrdo é o que torna a identificacdo de anomalias tdo
valiosa, ja que a maioria dos sistemas é projetado para operar sob condi¢fes normais e a
deteccdo prematura da anormalidade tende a minimizar os riscos. Entretanto, nem todos 0s
dados que ndo seguem o comportamento esperado sdo relevantes para a deteccéo.

Erros na aquisi¢do de dados ou ruidos podem ser considerados anomalias dependendo
do processo de deteccdo, contudo, apesar de se enquadrarem como anomalias, ndo representam
dados de interesse ou valor para a analise. Boniol [16] destaca que dependendo da aplicacéo as
anomalias podem ser constituidas de ruidos e dados erréneos ou entdo de dados de interesse
real. No primeiro caso, os dados devem ser corrigidos ou removidos para ndo comprometer
nenhuma analise posterior, e no ultimo caso, as anomalias podem identificar eventos
significativos como falhas ou mudancas de comportamento e sdo a base para andlises
subsequentes. Cabe ao processo de deteccdo de anomalias diferenciar entre esses dois casos.
A falha em distinguir cada tipo de anomalia pode acarretar em um grande ndmero de falsos
positivos e falsos negativos, 0 que compromete a acuracia e a confiabilidade do processo de
deteccdo. A deteccdo precisa de anomalias permite que suas aplicacdes sejam confiaveis e
eficazes.

A deteccdo de anomalias possui aplicacdes em diversas areas conforme discutido por

diferentes autores citados em [17]. Entre elas, destacam-se a remocéao de ruidos em dados, a

21

prevencdo de ataques de envenenamento de dados e, na &rea médica, a deteccdo de condigdes
anormais a partir de sensores 10T e o monitoramento de idosos. Em ambientes domésticos
inteligentes, pode indicar aumentos atipicos de temperatura possivelmente relacionados a
invasbes, enquanto, no setor industrial, pode auxiliar no gerenciamento de recursos e na
identificacdo de variacbes ambientais como temperatura, umidade e fumaca. Apesar da
diversidade de contextos de aplicacdo, as anomalias podem ser classificadas em tipos comuns

a todos 0s contextos.

2.1.1 Tipos de anomalias

As anomalias podem ser categorizadas em relagdo a um conjunto global de dados, a um
subconjunto de dados ou a uma sequéncia de dados. Boniol [16] define trés tipos de anomalias:
pontual, contextual e coletiva. As anomalias pontuais s&o aquelas que divergem
significativamente de todo um conjunto de dados. A figura 1 apresenta um exemplo desse tipo
de anomalia. Observar-se que o ponto vermelho difere de todos os outros pontos e esta fora da

distribuicdo dos dados

Figura 1 — Representacdo grafica de uma anomalia pontual

Anomalia Pontual

151

1.0 1

0.5 1

sin(x)

0.0 1

—0.5

~1.0

X

Fonte: Elaborado pelo autor.

Segundo Boniol [16], as anomalias contextuais sdo aquelas que parecem compativeis
com a distribuicdo global, mas se tornam andmalas quando analisadas em um contexto
especifico, como em relagdo aos dados vizinhos. A figura 2 apresenta um exemplo de anomalia
contextual. Diferentemente do ponto vermelho da figura 1, que esta fora da distribuicdo, nesse
caso, o valor encontra-se dentro da distribui¢do. O que caracteriza esse ponto como anémalo é

a discrepancia em relagcdo aos pontos proximos.

22

Figura 2 — Representacdo grafica de uma anomalia contextual

Anomalia Contextual

1.0

0.51

0.04

sin(x)

-1.04

X

Fonte: Elaborado pelo autor.

As anomalias coletivas referem-se a sequéncias de pontos que ndo seguem o padrdo
tipico observado em uma distribuicdo. A figura 3 mostra um exemplo de uma anomalia
sequencial. Diferentemente dos exemplos anteriores, aqui ndo € um Unico ponto que se destaca,

mas sim um subconjunto de dados que, considerado em conjunto, forma um padrédo anémalo.

Figura 3 — Representacédo grafica de uma anomalia coletiva

Anomalia Coletiva

1.00

0.75

0.50

0.25

sin(x)

0.00

-0.25

—0.50

=0.75

—1.00

0 5 10 15 20 25 30
X

Fonte: Elaborado pelo autor.

Além desses tipos basicos, também existem as anomalias multidimensionais. Conforme
Kennedy [15] aponta, existem duas maneiras de identificar uma anomalia multidimensional:
Esse ponto é incomum em uma unica dimensdo ou entdo a combinagao de valores em maltiplas
dimensdes é atipica. A figura 4 apresenta um exemplo de uma combinagdo incomum de
valores. Observa-se que, ao analisar apenas o eixo X 0 valor da anomalia esta proximo ao centro
da distribuicdo em azul e, ao considerar apenas 0 eixo Yy, encontra-se proximo ao centro da
distribuicdo verde. Entretanto quando se analisa a combinacao dos dois eixos fica evidente que

o0 ponto vermelho é uma anomalia.

23

Figura 4 — Representacdo grafica de uma anomalia multidimensional

Distribuicdes 2D com Ponto Andmalo

8 - & {.!'.‘g. :
RIEER 2 X ST
- 0l
10 e ig"";'
A T,
k2

Fonte: Elaborado pelo autor.

2.1.2 Etapas do Processo de Deteccdo de Anomalias

Apesar da aplicacdo em diferentes dominios, os processos de deteccdo de anomalias
apresentam uma estrutura semelhante na maior parte das aplica¢Ges, conforme aponta Boniol
[16]. Segundo os autores, pode-se dividir o processo de deteccdo em quatro etapas: pré-
processamento de dados, aplicacdo do método de deteccdo, scoring e pos-processamento. O
pré-processamento € a etapa inicial e inclui todas as transformacdes necessarias para preparar
ou facilitar a aplicacdo dos métodos subsequentes. Em seguida, diferentes métodos de deteccao
podem ser empregados cada um com uma abordagem especifica. Esses métodos de deteccado e
suas respectivas abordagens serdo discutidos com maior detalhe na préxima secéo.

Na etapa de scoring, os resultados desses metodos sdo convertidos em valores
numéricos que representam o grau de anormalidade de um ponto ou subsequéncia. Por fim, na
ultima etapa, os pontos ou intervalos anémalos sdo extraidos, geralmente por meio da definigdo
de um limiar que separa valores normais de valores anémalos usando os valores do grau de

anormalidade de cada ponto dados pela etapa anterior.

24

2.1.3 Classificagdo dos métodos de deteccao

A classificacdo das diversas abordagens de deteccdo, depende em grande parte, do
contexto de aplicacdo. Cada contexto lida com tipos especificos de variaveis, como dados
tabulares, séries temporais, dados categoricos, textos e imagens, entre outros. Por sua vez, cada
tipo de variavel apresenta caracteristicas e desafios proprios, que demandam métodos
especificos de deteccdo. Considerando que o tema desta monografia € a deteccdo de anomalias
na qualidade do ar, representada por séries temporais obtidas por sensores conectados a
dispositivos 10T, adotou-se a classificacdo proposta por Samara et al [18]. Este trabalho foi
selecionado por sua abrangente revisao de técnicas de deteccdo de anomalias especificamente
no contexto da Internet das Coisas. De acordo com os autores, 0s métodos de deteccdo podem
ser classificados em 7 categorias: baseados em estatistica, baseados em agrupamentos, baseados
nos vizinhos mais proximos, baseados em classificacdo, baseados em inteligéncia artificial,
baseados em decomposicdo espectral e métodos hibridos.

Nesta monografia, a categoria de métodos baseados em vizinhos mais proximos sera
abordada dentro da secdo de métodos de distancia. Essa escolha se justifica pois a analise por
distancia é o principio fundamental desta abordagem, sendo a analise de vizinhanca sua forma
mais comum de implementacdo. Além disso, também foi alterada a categoria de inteligéncia
artificial para métodos baseados em deep learning, j& que 0 nome antigo é mais abrangente e
inclui algoritmos de outras categorias, enquanto o Gltimo é mais especifico e contempla apenas

os algoritmos da propria categoria.

2.1.3.1 Métodos baseados em estatistica

Os métodos baseados em estatistica sdo aqueles que assumem ou estimam um modelo
da distribuicdo de dados. Os dados que tém baixa probabilidade, de acordo com o modelo, séo
considerados anomalias [18]. Esses metodos podem ser divididos em duas subcategorias: 0s
métodos paramétricos, no qual se assume que os dados sdo gerados a partir de uma distribuicéo
conhecida, por exemplo, a distribuicdo normal; e os métodos ndo paramétricos em que a
distribuicdo néo é conhecida [18].

Uma abordagem ndo paramétrica comum citada por Samara et al. [18] é o histograma,
ilustrado na Figura 5. Nesse método ndo paramétrico divide-se um conjunto de dados em
intervalos regulares e entdo conta-se a quantidade de dados presentes em cada intervalo para

gerar uma taxa de ocorréncia. Conforme explicam os autores [18], intervalos com altas taxas

25

de ocorréncia séo considerados normais, enquanto intervalos com taxas nulas ou pequenas sao

considerados anomalias.

Figura 5 — Exemplo de um histograma

Histograma de Dados com Distribuigao Normal

250 +

200 A

=

5}

[=]
|

Frequéncia

100 ~

50 A

T T T T T T T
-3 —2 -1 0 1 2 3 4
Valores

Fonte: Elaborado pelo autor.

Uma outra abordagem muito usada e simples de se aplicar € o0 método z-score , descrito
por Kennedy [15]. O autor explica que nesse método paramétrico utiliza-se a média e o desvio
padrdo de uma distribuicdo para determinar as anomalias. Para encontrar o z-score de um valor
(x), subtrai-se a média (u) e divide-se o resultado da subtracéo pelo desvio padrédo (o). Segundo
Kennedy [15], em seguida € necessario definir um valor limite. Qualquer valor maior que esse

limite, ou entdo menor que o negativo desse valor é considerado uma anomalia.

z=2F (2.1)

Samara et al. [18] apontam que, os métodos estatisticos funcionam bem quando o
modelo é corretamente definido, nesse caso ndo € necessario manter os dados usados para criar
0 modelo. No entanto, os autores [18] alertam que para garantir que os métodos funcionem
corretamente € necessario ter um conhecimento prévio sobre a distribuicdo dos dados, o que
nem sempre € possivel, ou entdo obter esse conhecimento pela aquisi¢éo de dados, o que nem
sempre é facil de se realizar. Eles concluem [18] que os métodos paramétricos sdo muitas vezes

inadequados para o uso em loT e os métodos ndo paramétricos sdo computacionalmente

26

custosos para dados multivariados, o que pode potencialmente inviabilizar a sua aplicagéo na
deteccdo de anomalias na qualidade do ar.

2.1.3.2 Métodos baseados em agrupamentos

Os métodos de agrupamentos dividem os dados, como o préprio nome indica, em
agrupamentos utilizando a similaridade ou proximidade desses dados para tal. Pontos que ndo
pertencem a nenhum agrupamento ou agrupamentos com poucos dados sdo considerados
anomalias, enquanto agrupamentos muitos dados séo considerados normais [18].

Um algoritmo de agrupamento muito popular ¢ o DBSCAN, que Géron [19] define
como um método que define clusters como regides continuas de alta densidade. Além disso,
conforme Kennedy [15] aponta, esse algoritmo possui a propriedade de permitir que alguns
pontos ndo pertencam a nenhum agrupamento, o que o torna especialmente Gtil na deteccdo de
anomalias. O DBSCAN, conforme descrito por Géron [19], funciona da seguinte maneira: para
cada ponto ele conta quantos outros pontos estdo proéximos até uma distancia ¢ (epsilon). Se
esse ponto tiver pelo menos N pontos dentro dessa distancia, ele é considerado uma instancia
core, isto é, ele pertence a uma regido densa. Todos o0s vizinhos e todos as outras instancias
core, que estdo a uma distancia menor do que €, pertencem ao mesmo cluster. Finalmente,
Géron [19] explica que qualquer ponto que ndo € uma instancia core ou que ndo é parte de
algum cluster é considerado uma anomalia.

Kennedy [15] indica que uma grande vantagem dos métodos de agrupamento é que
independente do modo que o agrupamento é feito e da forma que as anomalias sao identificadas,
eles sdo aplicaveis para diversos formatos: dados tabulares, séries temporais, texto, imagens,
etc; desde de que uma métrica de distancia ou similaridade pode ser definida. Além disso, estes
métodos ndo exigem nenhum conhecimento prévio do conjunto de dados para a sua aplicacao.
No entanto, Samara et al. [18] alertam que, para dados multivariados o célculo das distancias

pode se tornar computacionalmente custosos.

2.1.3.3 Métodos baseados em distancias

Os métodos de distancia, conforme explica Kennedy [15], tentam determinar pontos
gue possuem poucos dados similares utilizando métricas de distancia. A ideia geral é identificar
pontos que ndo possuem muitos pontos proximos ou entdo cuja distancia até os vizinhos é

grande. Para isso é necessario escolher uma métrica de distancia adequada para o contexto da

27

aplicacdo. O autor [15] aponta que a principal métrica é a distancia euclidiana. Entretanto
outros estudos [16, 19] também citam métricas como Mahalanobis, Hamming e Minkowski.

Kennedy [15] aponta o K-nearest neighbour (KNN) como um dos principais algoritmos
dessa categoria. O autor descreve que, nesse método, para cada ponto, € medido sua distancia
até o seu k vizinho mais proximo. Essa distancia é considerada o “grau de anormalidade” do
ponto e é usada para categorizar as anomalias [15].

Uma vantagem destacada por Kennedy [15] é que os métodos baseados em distancia
ndo exigem nenhum conhecimento da distribuicdo de dados, além disso, podem ser aplicados
para diferentes tipos de dados. Entretanto, como aponta Samara et al. [18], os calculos das
distancias podem exigir muita capacidade de processamento o que pode inviabilizar a sua

aplicacdo em microcontroladores de menor capacidade.

2.1.3.4 Métodos baseados em classificacéo

Os métodos baseados em classificacdo treinam um modelo, utilizando uma amostra dos
dados, para classificar os pontos entre dados normais e anomalias. A criacdo desses modelos €
dividida em duas fases: treinamento, na qual o modelo é criado usando um conjunto dos dados;
e uma fase de validacdo onde um outro conjunto de dados é usado para avaliar a acurécia do
modelo [18].

Kennedy [15] apresenta o Algoritmo OCSVM (one class SVM) como um exemplo de
método baseado em classificacdo. O autor explica que este algoritmo utiliza o conceito de one-
class para treinar 0 modelo. Na prética isso significa que o algoritmo vai assumir que existe
apenas uma Unica classe na amostra e vai criar um modelo para representa-la tdo fielmente
guanto possivel. Depois que 0 modelo é criado ele pode ser usado para testar novos dados.
Qualquer dado que esteja em conformidade com o0 modelo é considerado normal e se ndo estiver
é considerado anomalia. Kennedy [15] nota, que por ser one-class, esse algoritmo € sensivel a
anomalias presentes no conjunto de dados de treinamento, uma vez que 0 modelo vai considera-
las como pertencentes a mesma classe de dados normais. Entretanto, o autor aponta que esse
algoritmo é especialmente eficaz na deteccdo de novidades, que € um subcategoria da deteccao
de anomalias onde n&o se tem nenhuma informac&o sobre as caracteristicas das anomalias.

Conforme descrito por Géron [19], o OCSVM é uma adaptacdo do algoritmo SVM
(support vector machine) para o caso de uma classe utilizado para permitir uma modelagem
ndo supervisionada. Ja o SVM, ilustrado na figura 6, é um classificador supervisionado usado

para distinguir dados em duas ou mais classes. O autor explica [19] que esse algoritmo tenta

28

criar um hiperplano entre duas classes de dados para maximizar a margem entre a instancia
mais proxima das duas classes, essa fronteira é chamada de limite de decisdo (decision
boundary). As duas instancias usadas como base para o calculo da distancia sdo chamadas de
vetores de suporte e ddo nome ao algoritmo. Além disso, Géron [19] também aponta que o
SVM faz o uso de funcbes de kernel, que permitem mapear os dados para um espaco de
dimensédo superior, possibilitando a criagdo de um limite de decisdo nédo-linear para separar

classes complexas.

Figura 6 — Representagéo visual do algoritmos SVM em duas dimensdes

Visualizagao do Algoritmo SVM

s L] L]

5 4 s * e o °

Eixo Y

Eixo X

Fonte: Elaborado pelo autor.

Segundo Samara et al. [18], os métodos de classificacdo possuem excelentes resultados
para a deteccdo de anomalias. Eles podem ser supervisionados ou ndo-supervisionados, sendo
0 Ultimo caso muito utilizado na detec¢do de novidades. Entretanto, os autores [18] alertam que
esses métodos consomem mais recursos computacionais do que os métodos baseados em
estatisticas e agrupamentos, o que pode representar um desafio para a sua aplicagdo em

microcontroladores.
2.1.3.5 Métodos baseados em Deep Learning
Segundo Kennedy [15], os métodos baseados em deep learning utilizam alguma forma

de rede neural detectar de anomalias. Conforme explica lodice [20], uma rede neural é formada

por varias camadas utilizadas para aprender padrdes de um conjunto de dados. Cada camada

29

por sua vez é formada por diversos neurénios. Um neurdnio recebe vérias entradas e produz
uma saida. Esse processo envolve primeiro uma transformacéo linear (a soma ponderada das
entradas mais um viés) e, em seguida, a aplicacdo de uma funcéo de ativacdo ndo-linear a este
resultado, o que permite a rede aprender padrdes complexos.

Kennedy [15] aponta o algoritmo autoencoder como um tipo de rede neural utilizado
para deteccdo de anomalias. O autor descreve sua arquitetura como sendo composta por duas
partes. A primeira € chamada de encoder, onde as camadas da rede neural diminuem
progressivamente a quantidade de neurénios até chegar na metade da rede. A partir desse ponto
comeca a segunda parte, chamada de decoder. Essa parte geralmente € simétrica a primeira e
tem como objetivo reconstruir a entrada inicial tdo fielmente quanto possivel. A figura 7 mostra
um exemplo de um autoencoder. O autor explica [15] que os erros de reconstrucdo podem ser
usados para detectar anomalias. Um ponto com um alto erro indica que ele ndo segue 0 mesmo
padrdo que permitiu a reconstrucao dos dados apds a compressao.

Kennedy [15] observa que os métodos baseados em deep learning exigem maior
quantidade de dados e tempo para serem treinados e um maior fine-tuning dos seus parametros.
O autor [15] também aponta que, esses métodos apresentam melhores resultados para dados

ndo estruturados como imagens, video e textos e dados de séries temporais.

Figura 7 — Representacéo visual das camadas de uma rede neural do algoritmo autoencoder

¢ e

e AR
AEAR R

0000
o006

Fonte: Elaborado pelo autor.

30

2.1.3.6 Métodos baseados em decomposicgdo espectral

Segundo Samara et al. [18], os métodos baseados em decomposicdo espectral se
baseiam em algoritmos de reducéo de dimensionalidade para simplificar um conjunto de dados
e preservar apenas 0s componentes com maior variancia. O principal algoritmo dessa categoria
é 0 PCA (Principal Component Analysis) ilustrado na figura 8.

Géron [19] explica que esse algoritmo identifica o hiperplano mais proximo aos dados
e entéo projeta os dados nele. Primeiro ele identifica o eixo que possui a maior variancia no
conjunto de dados, entdo ele identifica um segundo eixo, ortogonal ao primeiro, de maior
variancia. O algoritmo continua identificando eixos de maior variancia até que o nimero de
eixos seja igual ao nimero de dimensdes do conjunto de dados [19]. No contexto da detecgédo
de anomalias, Samara et al. [18] apontam que pontos com alto erro de reconstru¢do ou que
divergem muito da variabilidade apresentada pelos primeiros componentes sdo considerados
andmalos.

Samara et al. [18] concluem que esses métodos podem ser usados em uma grande
variedade de dados e dados com muitas dimens@es. Entretanto, o grande consumo de recursos

computacionais inviabiliza a sua aplicacdo em microcontroladores.

Figura 8 — Representacdo visual de um algoritmos de decomposicéo espectral

Visualizacao do Principal Component Analysis (PCA)

84 @ Dados Originais

Caracteristica 2 (Y)
o
1

ST
X ° o
] ™ ®
)
? &
_6 - §
@
L]
—]:'.5 —5‘.0 —2‘.5 O.IO 2.‘5 5.‘0 7.‘5 lDI;O 12‘.5

Caracteristica 1 (X)

Fonte: Elaborado pelo autor

31

2.1.3.7 Métodos hibridos

Os métodos hibridos sdo aqueles que combinam dois ou mais algoritmos de deteccdo a
fim de obter um resultado mais acurado. Kennedy [15] explica que esses métodos tém dois
objetivos: melhorar a confiabilidade do sistema diminuindo a taxa de falso positivos, isto &,
pontos normais que foram identificados como anomalias; e melhorar a identificacdo de
anomalias diminuindo a taxa de falsos negativos, isto é, anomalias que foram consideradas
normais. O autor [15] justifica essa abordagem pelo fato de que os detectores de anomalias, no
geral, identificam apenas algum tipo especifico de anomalias e deixam passar outros, por isso
combinar mais de um detector pode melhorar significativamente os resultados. Contudo,
Samara et al. [18] apontam que a combinacdo de dois ou mais algoritmos ou modelos pode
aumentar em muito o uso de recursos computacionais que dificulta sua aplicacdo em

dispositivos loT.

2.1.4 Deteccdo de anomalias em loT

Cook et al. [21] definem a Internet das Coisas (loT) como um paradigma de
programacéo onde dispositivos, compostos por sensores, atuadores e computadores, interagem
com o ambiente e se comunicam entre si sem a necessidade de intervencdo humana. Dentro
desse contexto, ss autores [21] apontam a existéncia de uma ampla gama de aplicacbes de
deteccdo de anomalias abrangendo desde o monitoramento de sistemas industriais, até a
identificacdo de falhas em redes de distribuicdo de energia. Entretanto, existem diversos
desafios que dificultam a aplicacdo de técnicas de detec¢do de anomalias.

Segundo Cook et al. [21] séries temporais sdo o principal formato de dados que 0s
dispositivos 10T capturam, e por isso demandam atencdo especial durante o processamento.
Eles explicam [21] que a natureza desses dados é frequentemente ndo estacionéria, podendo
apresentar fendbmenos como o concept drift (mudanca da distribuicdo estatistica dos dados no
decorrer do tempo) e sazonalidade. Nesses casos é necessario que o modelo seja capaz de
aprender os novos padrdes a fim de detectar corretamente as anomalias. Outra dificuldade
apontada pelos autores [21] esta relacionada a falta de conhecimento prévio de um contexto de
aplicagdo ou entdo a falta de dados histdricos o que torna inviavel a aplicagdo de algoritmos
supervisionados.

Todavia, Cook et al. [21] afirmam que, o maior desafio na deteccdo de anomalias em

0T € o custo computacional. Eles descrevem [21] que em um modelo tradicional de detec¢édo

32

os dispositivos 10T seriam usados apenas para registrar os dados. Esses dados entdo seriam
enviados para um servidor para serem processados. Esse modelo tradicional permite o uso de
um grande poder computacional, entretanto para aplica¢fes que exigem um ac¢do em tempo real
a laténcia da resposta pode tornar a aplicacdo inviavel. Nesses casos, concluem os autores [21],
n&o existe outra alternativa, sendo processar os dados na borda. Dessa forma, a implementacédo
de deteccdo de anomalias em loT requer o uso de técnicas de otimizacdo de recursos
computacionais [21]. Essas técnicas devem reduzir o consumo de memoria, CPU e poténcia;

enguanto se busca minimizar a perda de acuracia do modelo de detec¢édo [21]

2.2 TinyML: Otimizacao de Modelos para Borda

Warden e Situnayake [22] definem TinyML como um paradigma que possibilita a
aplicacdo de algoritmos de Aprendizado de Méaquina (ML) em dispositivos de borda com
recursos computacionais limitados e baixo consumo de energia, na ordem de alguns miliwatts.
Ja lodice [20] entende o conceito como um conjunto de tecnologias de ML e sistemas
embarcados que permite a criacdo de sistemas inteligentes capazes de perceber o ambiente por
meio de sensores, processar os dados aplicando modelos de ML e, entdo, agir com base nos
resultados desses modelos [20].

A utilizacdo de técnicas de TinyML apresenta vantagens em comparacao as abordagens
tradicionais, em que os dados sdo enviados para processamento em nuvem. A primeira
vantagem, apontada por lodice [20], é a laténcia. A transmissdo de dados para um servidor ndo
é instantanea e pode comprometer o desempenho de aplicagcBes que requerem uma resposta
rapida. Além disso, o autor [20] nota que a transmisséo e recepg¢do de dados é uma operacao de
grande consumo energético e mesmo com protocolos de baixa poténcia, como o Bluetooth,
consome mais energia que as computacdes realizadas pela CPU. Dessa forma, como conclui
lodice [20], para maximizar o tempo de autonomia de dispositivos alimentados por baterias é
necessario reduzir a quantidade de dados transmitidos para a nuvem. Por fim, Tsoukas et al.
[23] destacam que o processamento local evita a exposicdo de dados sensiveis a possiveis
ameacas de seguranga, como ataques man-in-the-middle e eavesdropping. Logo, garante-se
maior seguranca e privacidade ao usuario ao processar os dados na borda.

Outros fatores importantes para a viabilizacdo da aplicacdo de TinyML, apontados por
lodice [20], estdo relacionados as caracteristicas dos microcontroladores. Esses dispositivos sdo
baratos, de facil programacéo, e sdo facilmente integrados a uma ampla gama de sensores.

Apesar de suas limitaces sdo potentes suficientes para executar algoritmos complexos de deep

33

learning. Segundo lodice [20], essas caracteristicas justificam a sua popularidade e sua presenca
em varios dispositivos eletronicos do dia a dia e em outros setores como a indUstria e a area da
salde.

Entretanto, a aplicacdo de aprendizado de maquina na borda enfrenta diversos desafios,
principalmente relacionados a limitacdo de recursos computacionais. No geral os dispositivos
possuem apenas alguns kilobytes de memdria RAM e, em alguns casos, 0s processadores ndo
possuem aceleracdo de hardware para aritmeética de ponto flutuante [20]. Na revisdo de
literatura feita por Capogrosso [24], os autores constataram que 0s requisitos de hardware para
memdaria sdo menores do que 1MB, normalmente estdo entre 64 KB e 256 KB, e as unidades
de processamento operam na faixa de 40 a 400 MHz. Conforme ressaltado por Capogrosso et
al. [24], essas caracteristicas ressaltam a importancia de técnicas de otimizacao especificas para
viabilizar a aplicacdo do algoritmos de ML.

Outros desafios estdo relacionados a variedade de dispositivos e aos diferentes
ambientes de aplicacdo. Tsoukas et al. [23] explicam que a grande heterogeneidade de
microcontroladores inviabiliza a criacdo de um framework universal para treinamento,
otimizacdo e implantagdo de modelos. Um modelo construido para funcionar em uma
arquitetura especifica de MCU pode ndo funcionar em outra, mesmo que as especificacbes de
hardware sejam semelhantes. Tsoukas et al. [23] concluem, portanto, que um modelo é
aplicavel somente para o contexto e o hardware em que ele foi desenvolvido. Ademais, lodice
[20] nota que o ambiente de implantacdo pode ser fonte de adversidades. Condi¢Ges ambientais

como clima, calor e poeira podem interferir na execucao da aplicacao.

2.2.1 Otimizagédo de Modelos para Sistemas Embarcados

Os métodos de otimizacdo sdo utilizados para viabilizar a implementacdo de modelos
complexos de aprendizado de maquinas em dispositivos l0T. A aplicacdo dessas técnicas
geralmente produz uma menor utilizacdo de memdria e um menor consumo de energia, além
da diminuicdo do tempo de resposta [24]. As principais abordagens presentes na literatura, que
serdo detalhadas a seguir, incluem a Quantizacdo, a Poda, a Destilacdo de Conhecimento, a
Otimizagdo de hiperpardmetros, a Busca de arquitetura neural e as otimizagdes baseadas em
hardware.

e Quantizacdo: Conforme descrito por Capogrosso et al. [24], a quantizacao é o
processo de reduzir a quantidade de bits utilizados para representar pesos e as

ativacOes de uma rede neural. Ao invés de utilizar uma representagdo numérica

34

de ponto flutuante com 32 bits, utiliza-se representagdes com menos bits. Por
exemplo, uma representacdo do tipo float com 16 bits ou do tipo inteiro com 8
bits. Essa técnica produz modelos mais compactos, além de reduzir
significativamente os custos de computacdo, sem reduzir significativamente a
acuracia do modelo.

Poda: A poda, como definida por Capogrosso et al. [24], é o processo de
remover conexdes com pesos proximos de zero entre as camadas de um rede
neural. Ela serve para reduzir o tamanho total do modelo e melhorar o tempo de
inferéncia. A aplicacdo da poda pode ocorrer tanto durante o processo de
treinamento quanto em um modelo ja treinado. Durante o treinamento ela serve
para evitar o sobreajuste e apds ela ajuda a evitar redundancia, melhorando a
eficiéncia do modelo.

Destilacdo do conhecimento: Segundo os autores [24], nessa técnica um
modelo maior e mais complexo € utilizado para treinar um modelo menor e mais
simples. Esse processo reduz a demanda computacional de um modelo mantendo
uma precisdo aceitavel.

Otimizacdo de hiperparametros: Capogrosso et al. [24] indica que esse
conjunto de técnicas automatiza a busca de hiperparametros de um modelo para
maximizar a performance em um contexto especifico. Para esse fim, algoritmos
de buscas como o Grid Search e Random Search sdo utilizados para investigar
e identificar a melhor combinacédo de hiperparametros.

Busca de arquitetura neural: A busca de arquitetura neural, ou neural
architecture search (NAS), segundo os autores [24], € um método utilizado para
automatizar o processo de busca por arquiteturas ideais de redes neurais para um
fim especifico. Além disso, Tsoukas et al. [23] apontam que esse processo
seleciona o modelo de maior acurécia possivel dentro de um espaco pré definido
de NNs.

OtimizacgOes Baseadas em Hardware: Tsoukas et al. [23] explicam que, além
das otimizacGes de software, a performance de modelos de aprendizado de
maquina pode ser maximizada por meio de otimizagdes de hardware. Segundo
0s autores [23], a aceleragd@o por hardware serve para aumentar a velocidade de
processamento ou permitir o processamento paralelo. Os autores apontam que

[23] essas otimizagdes focam principalmente em melhorar a performance de

35

operacgdes matriciais, uma vez que essas operacdes formam a base para muitos
algoritmos de ML. A literatura, conforme descrito no estudo [23], detalha
diversas arquiteturas especializadas para este fim. Tsoukas et al. [23] citam como
exemplo o framework PRIME, que acelera aplicagdes de redes neurais ao utilizar
a memoria RAM para realizar multiplicacbes de matriz-vetor, alcancando
melhorias de performance de até 2.360 vezes e reduzindo o consumo de energia
em 895 vezes. Outra abordagem mencionada pelos autores [23] é o acelerador
SmartShuttle, que foca em otimizar o acesso a memoria externa (off-chip),
utilizando esquemas dindmicos de reuso de dados para se adaptar a diferentes
camadas de modelos de deep learning.

As abordagens apresentadas ndo sdo mutuamente exclusivas e podem se beneficiar de
uma aplicacdo em conjunto. Além disso vale ressaltar que as técnicas quantizacdo, poda e
destilacdo de conhecimento sdo aplicaveis durante ou ap6s o treinamento do modelo, enquanto
as técnicas de otimizacdo de hiperparametros e busca e arquitetura sdo aplicadas antes do

treinamento.

2.2.2 Fluxo de Trabalho

Capogrosso et al. [24] apontam que o fluxo de trabalho para o desenvolvimento de
solucdes em tinyML possui duas abordagens principais: a orientada a aprendizado de maquina
e a orientada ao desenvolvimento do hardware. Segundo os autores [24], na abordagem
orientada a aprendizado de maquina o foco é no design e na otimizacdo de um modelo a fim de
garantir a sua aplicacdo em um dispositivo especifico. O hardware € tratado como um
componente imutavel ou com pouca possibilidade de alteracdo. As etapas do fluxo de trabalho
nesse caso consistem no design do modelo, otimizagdo, implementacdo no dispositivo e
avaliacdo da performance do modelo [24]. Ja na abordagem orientada a hardware, o estudo
[24] aponta que o foco é o desenvolvimento de arquiteturas de hardware otimizadas para a
aplicacdo de algoritmos de aprendizado de maquina. Para essa abordagem as etapas do fluxo
de trabalho sdo: desenvolvimento do hardware, implementacdo do modelo e avaliacdo da
performance do modelo [24].

Os autores [24] mencionam também uma terceira abordagem € o co-design, que integra
as duas abordagens anteriores desde o inicio do projeto. Nesse caso especialistas de ambas as

areas colaboram desde a defini¢do de requisitos até a prototipagem, escolhendo componentes

36

de hardware e software com uma viséo global do sistema. Dessa forma, Capogrosso et al. [24]
concluem que, a otimizagdo de modelos e o design de hardware s&o processos interligados que
visam alcancar performance superiores e menor consumo de recursos do que as abordagens

tradicionais.

37

3 MATERIAIS E METODOS

3.1 Materiais

A seguir séo apresentados os materiais utilizados para o desenvolvimento do projeto.
Esse desenvolvimento pode ser dividido em duas partes: montagem do hardware para coleta de
dados e, posteriormente, deteccdo de anomalias e o desenvolvimento do modelo de aprendizado
de maquina para realizar a deteccdo. As partes séo mutuamente dependentes. Sem os dados,
ndo seria possivel treinar um modelo e sem 0 modelo ndo seria possivel realizar a deteccéo de

anomalias.
3.1.1 Hardware
3.1.1.1 Arduino

O microcontrolador utilizado no projeto foi 0 Arduino Nano 33 BLE Sense Rev2. Este
microcontrolador possui um processador Arm Cortex-M4F (FPU) que roda em 64 MHz, além
disso ele possui 1 MB de memodria flash e 256 kB de memdria RAM. Uma caracteristica
importante deste microcontrolador é que seus pinos de I/0 possuem um limite de tensdo de
3.3V e ndo podem receber sinais de 5V, caso contrario pode-se danificar o microcontrolador
[25]. Optou-se pela utilizacdo desse médulo devido ao seu baixo custo e boa capacidade
computacional, além de sua popularidade na literatura [21, 22, 24].

Tabela 3 — Resumo das caracteristicas do Arduino

Caracteristicas Detalhe
Mddulo Arduino Nano 33 BLE Sense Rev2
Processador Arm Cortex-M4F (FPU)
Clock do processador 64 MHz
Memodria Flash 1 MB
Memoéria RAM 256 kB
Comunicacéo sem fio Bluetooth 5 multiprotocol
Tensdo de 1/0 3.3v

Fonte: [25].

38

3.1.1.2 Sensores

Foram utilizados 3 sensores de gases diferentes para a coleta de dados da qualidade do
ar. O sensor MQ-7 foi usado para medir a concentracdo do gas Monoxido de carbono (CO), um
gés altamente tdxico. Esse sensor é capaz de medir concentragdes entre 100 a 10.000 ppm [26].
Outro sensor utilizado foi 0 MQ-131, capaz de detectar 0z6nio, um gas incolor e reativo, em
niveis baixos de concentracdo de 10 a 1000 ppb [27]. De modo complementar, o sensor MQ-2
foi empregado para determinar concentracdes de gases inflamaveis (como o GLP, Metano,
Butano, etc) e fumaca na faixa de 300 a 10.000 ppm [28]. Esses sensores possuem pinagens
iguais. Sdo alimentados por uma tensdo de 5V. Possuem 4 pinos sendo dois de alimentagéo
(GND e Vin), uma saida digital e uma saida analdgica. Para este trabalho, foi utilizada apenas
as saidas analogicas de cada sensor, pois elas fornecem os valores continuos necessarios para a

analise da série temporal.

Tabela 4 — resumo das caracteristicas dos sensores

Caracteristicas MQ-2 MQ-7 MQ-131
Gases detectados Gases inflaméaveis (GLP, Monoxido de Carbono (CO) Ozbnio (O3)
Metano, etc.) e fumaca
Faixa de operagdo 300 a 10.000 ppm 100 a 10.000 ppm 10 a 1000 ppb
Tenséo de entrada 5V 5V 5V
Sensibilidade Ajustéavel via potencidmetro Ajustével via potenciémetro Ajustével via

potencidmetro

Fonte: [27- 29].

3.1.1.3 Fonte de alimentacao

A Alimentacdo do sistema foi fornecida por um fonte ajustavel para protoboard, um
dispositivo que converte uma tensdo de entrada (que pode variar de 7,5 a 12 VDC ou ser
fornecida via cabo USB) em saidas reguladas de 3,3V e 5V [29]. A utilizacdo dessa fonte foi

imprescindivel devido a incompatibilidade das tensées do arduino (3.3V) e dos sensores (5V).

39

3.1.2 Software

3.1.2.1 Ambientes de Desenvolvimento

O Arduino IDE foi o ambiente de desenvolvimento utilizado para a escrita, compilagéo
e upload de software em C++ para o Arduino. O Arduino IDE é uma aplicagdo multiplataforma
que simplifica o processo de desenvolvimento de software embarcado. Essa IDE possui uma
interface amigavel e de facil utilizacdo, além disso € compativel com uma ampla gama de
microcontroladores, incluindo placas de outros fabricantes além da linha oficial do Arduino.
[30].

O Jupyter Notebook foi a ferramenta utilizada para desenvolver cddigos em Python
relacionados a machine learning. Sua interface baseada em células permite a execucédo
individual de blocos de cddigo, dessa forma possibilitando uma abordagem iterativa para o
desenvolvimento do pré-processamento de dados, criagdo do modelo de aprendizado de
maquina e avaliacdo dos resultados do treinamento [31].

O Visual Studio Code, um editor de cddigo leve e extensivel, serviu como ambiente de
desenvolvimento principal para codigos feitos em Python. Ele também foi utilizado para a
execucdo dos Jupyter Notebooks mediante uso de extensdes [32].

3.1.2.2 Linguagens de programacao

O C++ foi a linguagem utilizada para desenvolver o firmware executado no
microcontrolador arduino. Sua capacidade de controle de baixo nivel sobre o hardware foi
essencial para a leitura dos sensores e controle das saidas digitais. J4 o Python foi a linguagem
utilizada para o desenvolvimento do modelo de machine learning e para a transformacao desse
modelo em um formato compativel com microcontroladores. O Python possui uma sintaxe
simples e de facil aprendizado, entretanto, sua principal vantagem para este projeto reside no
vasto ecossistema de bibliotecas e ferramentas voltadas para a criacdo de projetos de

aprendizado de maquina [33].

40

3.1.2.3 Principais bibliotecas Python

O Para o desenvolvimento do projeto foram utilizadas varias bibliotecas em Python que

formaram a base para o processamento dos dados, construcdo do modelo, otimizagdo do modelo

e comunicacado via bluetooth com o microcontrolador:

TensorFlow: Esta plataforma de codigo aberto foi utilizada para o
desenvolvimento do modelo de aprendizado de maquina Autoencoder criado
neste projeto. Além disso, a utilizagdo da API de alto nivel Keras especializada
em deeep learning permitiu que a criacdo do modelo fosse rapida e eficiente [34,
35].

TensorFlow Lite: Framework do ecossistema do TensorFlow criado
especificamente para a aplicacdo em dispositivos de apenas alguns kilobytes de
memoria [36]. A aplicacdo desse framework na otimizacdo do modelo foi o que
permitiu realizar inferéncias no arduino em tempo de execucéo.

Pandas: Biblioteca utilizada para a leitura, manipulacdo e estruturacdo dos
dados de séries temporais coletadas pelos sensores de qualidade do ar [37].
NumPy: Biblioteca especializada na calculo numérico computacional. Essa
biblioteca é a base para as operacgdes eficientes em array multidimensionais [38].
Matplotlib: Biblioteca para a criacdo de visualizac6es, sendo fundamental para
a geracdo dos graficos apresentados na analise dos dados obtidos e na avaliacédo
dos resultados do modelo [39].

Pyserial: Biblioteca forneceu o acesso a porta serial durante a fase de coleta de
dados para estabelecer a comunicacdo (via USB) entre o microcontrolador
Arduino e o computador que armazenava as leituras dos sensores [40].

Bleak: Biblioteca para conectar com dispositivos Bluetooth Low Energy (BLE),
foi empregada no cenario de teste comparativo (“on cloud™) para implementar a
comunicagéo sem fio entre o microcontrolador e o computador que executava o

modelo ndo otimizado [41].

41

3.2 Métodos

3.2.1 Montagem do Prototipo e Coleta de Dados

O prototipo foi desenvolvido conforme o esquematico da figura 9. Uma vez que as
tensbes de alimentacdo dos sensores (5V) eram incompativeis com as tensées fornecidas pelo
Arduino Nano 33 BLE Sense Rev2 (3.3V) utilizou-se uma fonte de alimentacéao especifica para
protoboards, visivel no canto superior esquerdo da figura 10, para fornecer energia aos sensores.
O arduino foi alimentado via cabo USB-C conectado a um notebook. Além disso, para adequar
a saida analdgica dos sensores as entradas analdgicas do arduino criou-se trés divisores de
tensdo de forma que a tensdo maxima recebida pelo arduino fosse aproximadamente 3.22 V,
um pouco abaixo do seu limite de leitura (3.3 V). A Equacéo (3.1) descreve a relacdo de saida

do divisor de tensao:

R3
R1+R2+R3

Varauino = Vsensor X (3.1)
Onde:
e Varduino é a tensdo de saida do divisor conectada a entrada analdgica do
arduino;
e Vsensor € atensdo de saida do sensor;

e R1,R2 e R3 sao os resistores do circuito.

Para o projeto, foram selecionados os seguintes valores de resistores comerciais: R1 =
220 Q,R2 = 1000 Q e R3 = 2200 Q. Aplicando esses valores na Equacéo (3.1) para a tensao

maxima de saida do sensor, obtém-se a tensdo maxima na entrada do Arduino:

2200
Varduino = SV X 2707100072200~ 3.22V (3.2

42

Figura 9 — Esquemético do protétipo desenvolvido

+5v

+3.3V

|
o
o

A6 2200 MQ-131

A7

GND

&1 6Np voo 2

&
n 10f 2
s 2o S |uw
23 =) MQ-2
M+ o
RESET O —
RESET i ~
7 1220 10 8
— 9] > u2
-8 AREF &2 (LA Ma-7
o 1220 2
10 A0 R2
EE| o 2200 RS e ..
12 s RY4 1220
13 e 2200
SDA/A4 A0
14 SCL/AS R6 9 U3
45

GND
Al

Arduino_Nano_Every

.

GND

Fonte: Elaborado pelo autor.

Figura 10 — Prototipo desenvolvido em protoboard

Fonte: Elaborado pelo autor.

Antes de iniciar o processo de leitura dos sensores e coleta de dados, o circuito foi
alimentado e os sensores permaneceram ligados por 48 horas. Essa pratica € uma recomendacao
do fabricante para garantir que os sensores fornecam leituras estaveis [27-29]. Apds esse
periodo de aquecimento deu-se inicio a coleta de dados. Para ler as entradas analdgicas foi
desenvolvido um programa para o arduino capaz de realizar a leitura e envia-la via comunicacao
serial por um cabo USB-C. O programa utilizou uma taxa de transmissdo de 9600 bits por
segundo e a leitura dos sensores foi feita em intervalos de 1,5 segundos. No notebook, foi

43

desenvolvido um script Python para ler a porta serial e salvar os dados em um arquivo CSV.
Na Figura 11 sdo mostrados os dados dos trés sensores, com aplicacdo de uma média movel de
um minuto para suavizar as curvas. A coleta de dados foi realizada durante um periodo de
aproximadamente 45 horas no interior de um residéncia longe de ambientes que possuem
ocorréncia de gases ou fumacas que poderiam comprometer o desenvolvimento do projeto. A
lacuna, visivel na figura 11 , foi causada por um fator externo ao prot6tipo, uma falha de energia
elétrica no local. Para a etapa de treinamento do modelo, foram utilizados apenas os trechos de

dados continuos coletados antes e depois desta interrupcao.

Figura 11 — Grafico das leituras brutas dos sensores de CO, O3 e Fumaga
Média dos Sensores por Minuto

120 A —— Sensor 1

Sensor 2
—— Sensor 3
100

80 1
60 4

§
| T/R—

20 A

Leitura Média

04

T T T T T T T T T

10-26 18 10-27 00 10-27 06 10-27 12 10-27 18 10-28 00 10-28 06 10-28 12 10-28 18
Tempo

Fonte: Elaborado pelo autor.

3.2.2 Desenvolvimento do Modelo

Iniciou-se o0 desenvolvimento do modelo com a leitura dos dados armazenados nos
arquivos CSV. Para esse fim foi utilizado a biblioteca Pandas [33] que possui métodos nativos
para a leitura desse tipo de arquivo. Em seguida, os dados foram transformados do formato de
Dataframe, o formato padréo do Pandas, para o formato de Numpy array, o formato padrdo do
Numpy, com o objetivo de simplificar as opera¢Ges com arrays multidimensionais. Apos essa
transformacéo os dados foram normalizados para o intervalo de 0 a 1. Para isso dividiram-se
todos os dados por 1024 uma vez que o arduino possui uma escala de leitura analédgica de 0 até
1023.

Apos a normalizagdo, os dados foram divididos em subsequéncias de 30 pontos. Uma

subsequéncia € o input do modelo desenvolvido. Posteriormente, utilizou-se 0 método shuffle

44

do Numpy [38] para embaralhar a ordem dessas subsequéncias e dessa maneira evitar que o
modelo se sobreajuste a tendéncias temporais maiores que 45 segundos. A escolha por uma
janela curta se deve as limitacdes do hardware onde o modelo foi embarcado. Embora janelas
maiores pudessem capturar tendéncias mais complexas, elas também exigiriam redes neurais
mais complexas com mais neur6nios e conexdes, o0 que poderia comprometer a sua aplicacéo
no microcontrolador. Por fim, os dados foram divididos em trés conjuntos distintos - treino,
validacdo e teste - nas proporcdes de 60%, 20% e 20%, respectivamente. Dessa forma, a
distribuicéo final dos dados totalizou 1.979 amostras para o conjunto de treinamento, 659 para
a validacéo e 661 para o conjunto de teste.

Antes de comegar o treinamento do modelo foi necessario ‘achatar’ as dimensdes das
subsequéncias que possuiam dimensdo de 30x3, 30 pontos para cada um dos 3 sensores, para
dimensdo 90x1. Isto porque, durante a fase de implantagdo no arduino constatou-se que
autoencoders que possuiam camadas flatten e reshape falhavam durante a inferéncia no
microcontrolador. A fim de resolver esse problema a fase de ‘achatamento’ dos dados foi
transferida para o pré-processamento. Com essa abordagem foi possivel executar inferéncias
nos dispositivos com sucesso.

O modelo implementado foi um autoencoder empilhado com entrada e saida de 90
pontos. O encoder foi formado por camadas de 30, 12 e 5 neurdnios, respectivamente. Ja o
decoder foi formado por camadas de 12, 30 e 90 neur6nios, respectivamente. A definicdo desta
arquitetura especifica foi obtida empiricamente apés a realizacao de diversos testes, buscando-
se 0 equilibrio ideal entre a capacidade de generalizacéo e as restricdes de consumo de memoria
do microcontrolador. A funcdo de ativacdo Rectified Linear Unit (ReLU) foi utilizada em todas
as camadas com excecdo da ultima. Essa fungdo foi escolhida devido a sua capacidade de
modelar relacdes ndo lineares e sua alta velocidade de convergéncia [20, 24]. Além disso,
aplicou-se uma regularizacdo L1 de fator 0.01 em todas as camadas do encoder a fim de evitar
0 sobreajuste e reforgar a eliminacéo de caracteristicas menos importantes [19].

Para o treinamento do modelo foi utilizada a funcdo de perda Mean Squared Error
(MSE) utilizando o otimizador Gradiente Descendente Estocastico com taxa de aprendizado de
0.01. Além disso, optou-se por monitorar a performance do modelo utilizando a métrica Mean
Absolute Error (MAE). O modelo foi treinado por 200 épocas. Apos o treinamento do modelo
utilizou-se o conjunto de validacdo para determinar o limiar do erro de reconstrucéo a partir do
qual todo valor que seja maior sera considerado andémalo. Para isso optou-se por utilizar a
métrica Mean Absolute Error para calcular os erros de reconstrucao de cada subsequéncia. Essa

métrica foi escolhida por ser robusta a presenca de anomalias e por sua simplicidade de calculo.

45

Em seguida, calculou-se 0 MAE para todo conjunto de validacéo e determinou-se o valor do
percentil 99,5% como limiar, assim a taxa de anomalia esperada é de 0,5%. Por fim, o conjunto
de teste foi utilizado para avaliar o modelo e verificar a distribuicdo do MAE e a taxa de

anomalia resultante com base no limiar definido.

3.2.3 Otimizacéo e Deploy

Com o modelo devidamente treinado iniciou-se o processo de otimizacdo. Nesse
processo foi realizada a quantizagdo completa para inteiros de 8 bits (INT8) nas camadas
profundas do modelo. Entretanto, optou-se por manter as camadas de entrada e saida como
float, a fim de evitar a conversdo de tipos de dados em tempo de execucdo e assim simplificar
o firmware do arduino. Para realizar a quantizacdo foi necessario passar uma fungéo geradora
a um método da biblioteca Tensor Flow Lite. Essa funcdo retorna um valor do conjunto de
validacao por vez e é utilizado para calibrar a quantizacdo do modelo [22]. Foram convertidos
um modelo com quantizacdo e um modelo sem quantizacdo a fim de medir a reducdo do
consumo de memoria e medir a queda de performance na reconstrucdo. A biblioteca Tensor
Flow Lite salva os modelos no formato .tflite representado como Flatbuffer, esse formato é
utilizado para garantir um serializacdo eficiente e o permitir o carregamento direto na RAM
[22].

Apds a conversdo para o formato .tflite 0 modelo foi convertido em C usando o comando
xxd do linux. Esse comando € utilizado para converter arquivos binarios nas suas respectivas
representacdes hexadecimais, além disso utilizando a flag -i 0 comando salva a representacdo
hexadecimal em formato de cddigo C [42]. Dentro do cddigo C do modelo é necessario definir
a macro ‘DATA_ ALIGN ATTRIBUTE’ a fim de garantir que o modelo seja alinhado em
memodria e dessa forma garantir um bom desempenho [22].

Uma vez que o modelo foi convertido deu-se inicio ao desenvolvimento do codigo
responsavel por realizar a leitura dos sensores, invocar 0 modelo e fazer a deteccdo de
anomalias. A figura 12 abaixo apresenta um fluxograma com as principais etapas do programa.
A primeira etapa diz respeito a inicializagdo de variaveis. Nessa etapa instanciaram-se 0s
ponteiros que apontam para o interpretador, para 0 modelo e para os vetores de entrada e saida,
além das variaveis de controle que serviram para armazenar os valores das leituras dos sensores
e controlar o fluxo. Nessa etapa também definiu-se a memoria de trabalho usando a variavel

tensor_arena. Essa variavel é de grande importancia, uma vez que ela serve como memoria

46

RAM de trabalho e armazena a entrada, a saida e os valores dos tensores intermediarios. Sem
armazenar bytes suficientes é impossivel fazer inferéncias com o modelo [22].

A proxima etapa do fluxo é a execucdo da funcdo de setup. Dentro dessa funcao
instancia-se 0 modelo a partir do array de bytes gerados pelo comando xxd. Em seguida, foi
isntanciada a classe responsavel por fornecer as implementac6es das operacdes e a classe do
intérprete responsavel por realizar as inferéncias. Usando essa ultima classe executou-se o
método AllocateTensors para alocar o espaco de memaria necessario para os tensores dentro da
tensor_arena definida na primeira etapa [22]. Logo ap0s, obtiveram-se 0s ponteiros para a
entrada e saida do modelo. Por fim o pino digital 6 foi definido como OUTPUT e deu-se inicio
a comunicacdo serial com um taxa de 9600 bits por segundo.

Na etapa seguinte leram-se os valores dos sensores. Para cada sensor armazenou-se 0
valor das Gltimas 30 leituras em um array implementando uma l6gica de janela deslizante, onde
o dado mais recente era inserido no indice zero e o restante era ‘empurrado’ para direita. Dessa
forma se em um ciclo um valor esta no indice i, no ciclo seguinte ele estard no indice i+1, sendo
0 Ultimo valor descartado. Antes de prosseguir para a etapa de inferéncia o programa verificava
se ja haviam sido realizadas 30 leituras. Caso contrario o programa continua para a proxima
leitura dos sensores depois de um delay de 1,5 segundos. Depois de terem sido realizadas 30
leituras o programa escrevia os valores dos arrays com dados de sensores no input do modelo.
Diferente das APIs de alto nivel como Keras, onde os dados sdo passados como argumento para
uma funcéo, a biblioteca Tensor Flow Lite Micro exige que os dados sejam escritos diretamente
para buffers de memdria [22]. Além disso, é necessario copiar os valores passados para o input
do modelo em outro array para posterior comparagdo com o output, uma vez que o tensor flow
lite pode usar a buffer de entrada para célculos intermediarios [22]. Por fim, o modelo é
invocado.

Apbs a inferéncia do modelo, utilizou-se a copia do input juntamente com o vetor de
output para calcular o MAE da subsequéncia. Se o valor do MAE for maior do que o valor de
limiar determinado durante o treinamento, a subsequéncia é considerada uma anomalia e a saida
digital 6 recebe o valor 1 (HIGH). Caso contrario a subsequéncia € considerada normal e o valor
0 (LOW) ¢ passado para a saida digital 6. Por fim, os dados dos sensores e as medidas de

execucdo sdo enviados para o computador de monitoramento via conexdo USB-C.

Figura 12 — Fluxograma da légica de inferéncia executada no microcontrolador

:

Fonte: Elaborado pelo autor.

47

48

3.2.4 Procedimentos de Validacao

3.2.4.1 Avaliacdo da Otimizacao

A fim de avaliar o impacto da otimizagdo no desempenho do modelo, o modelo foi
convertido duas vezes para o formato padrdo do Tensor Flow Lite (.tflite). Na primeira
conversdo ndo foi aplicada nenhuma otimizacdo e na segunda aplicou-se uma quantizacdo
completa para inteiros de 8 bits (INT8) nas camadas profundas do modelo. Dessa forma evitou-
se que a diferenca do formato do modelo interfira na sua performance. Apds a conversdo mediu-
se 0 tamanho dos arquivos em kilobytes para verificar o efeito da quantizagdo no consumo de
memoria. Em seguida, foram instanciados os dois modelos usando o interpretador do Tensor
Flow Lite no ambiente Python e usou-se 0 conjunto de teste para realizar inferéncias e assim
avaliar o erro de reconstrucao. Utilizou-se esse erro para calcular o MAE e o MSE para os dois

Casos.

3.2.4.2 Validacdo Experimental em Tempo Real

Visando comparar a performance de um sistema que aplica o conceito de TinyML com
uma abordagem tradicional, isto é, onde a inferéncia do modelo é realizada em um computador
central, foi desenvolvido um segundo sistema que ndo realiza inferéncia dentro do
microcontrolador. Esse segundo sistema compartilha o circuito e 0 modelo de machine learning
com o primeiro, a Unica diferencga esta no firmware do Arduino e na utilizacdo de um outro
computador. A figura 13 apresenta o fluxo desse sistema de comparacdo. Nesse novo fluxo
ndo é necessario configurar a biblioteca do Tensor Flow Lite no arduino, entretanto requer-se
0 recurso de Bluetooth.

Para simular uma abordagem tradicional optou-se por utilizar uma comunicagdo sem fio
via Bluetooth entre o microcontrolador e um notebook que faz o papel de um computador
central. Para fins de replicabilidade, o notebook utilizado como computador central possui um
processador Intel(R) Core(TM) i3-6006U CPU 2.00GHz, 8 GB de memdria RAM e executava
0 sistema operacional Ubuntu 20.04.6 LTS. Nesse sistema de comparacdo, o arduino €
responsavel por fazer as leituras dos sensores, enviar os dados e alterar o estado do LED quando
necessario. Ja o computador é responsavel por armazenar o valor das ultimas 30 leituras,

invocar o modelo, calcular o MAE e enviar para o arduino um valor indicando se a subsequéncia

49

€ uma anomalia ou ndo. Para realizar a comunicacdo Bluetooth foi utilizado o médulo Arduino
BLE presente no Arduino IDE [31] e a biblioteca Bleak [41] do Python.

Para os dois sistemas mediu-se 0 consumo de memoria Flash e RAM no momento da
compilacdo e upload do programa para o arduino. Os dois sistemas foram executados
consecutivamente aplicando o mesmo procedimento para a introducdo de anomalias. Para
garantir uma comparacao robusta, a coleta de dados para analise foi padronizada: em ambos 0s
casos, 0s dados foram enviados ao computador via porta serial (USB) ap6s a conclusdo de cada
ciclo de deteccdo. Esses dados correspondem aos valores dos sensores, uma flag de valor 0 ou
1 que indica se a subsequéncia é uma anomalia e o timestamp em que a medida foi realizada.
Os sistemas possuem o mesmo delay entre cada ciclo de inferéncia: 1,5 segundos, que € o
mesmo valor utilizado no programa de coleta de dados.

Para a validacdo da deteccdo realizou-se a introducdo de anomalias reais para medir a
laténcia do sistema em identifica-las. Para cada um dos dois sistemas o0 seguinte experimento
foi realizado. Uma anomalia foi gerada manualmente no ambiente dos sensores. Para induzir
as anomalias, utilizou-se um isqueiro para liberar gas butano (acionando os sensores MQ-2 e
MQ-7) e, em seguida, acendeu-se a chama para gerar fumaca e CO. Este procedimento foi
repetido 10 vezes para cada sistema. A medida do tempo de execugdo foi calculada
posteriormente por meio da andlise dos dados coletados e dos videos de referéncia. Para cada
um dos eventos de anomalia induzidos foram identificados dois marcos: o tempo de inicio e
tempo de resposta. O tempo de inicio é definido como o timestamp em que os valores dos
sensores apresentaram a primeira alteracao significativa, indicando o inicio do evento e o tempo
de resposta é o tempo em que a flag de anomalia do sistema saiu de 0 para 1. A diferenca entre

esses dois marcos resulta no tempo de detecgéo.

Figura 13 — Fluxograma da logica de inferéncia executada na nuvem.

Fonte: Elaborado pelo autor.

50

51

4 RESULTADOS E DISCUSSAO

Este capitulo apresenta os resultados obtidos com o desenvolvimento do projeto. Essa
exposicdo foi dividida em trés etapas: treinamento do modelo, otimizacdo e validagéo
experimental. Na primeira etapa apresentam-se os resultados obtidos com o treinamento do
modelo de aprendizado de maquina e sua posterior avaliacdo. Em seguida, analisam-se 0s
resultados obtidos com a quantizacdo do modelo e como essa operagdo impactou a sua
performance. Por Gltimo, realizou-se uma analise comparativa entre o sistema tradicional e o

sistema que utiliza TinyML.
4.1 Resultados do Treinamento do Modelo

A figura 14 apresenta as curvas de convergéncia das métricas do modelo. Observa-se
que as curvas da funcédo de perda (MSE), linhas em vermelho, convergem rapidamente em cerca
de 75 épocas. Esse era um resultado esperado devido a utilizacdo da funcao de ativacdo ReLU
na maioria das camadas do autoencoder. Além disso, pode-se observar que as curvas de
treinamento e validagéo estdo praticamente sobrepostas, o que indica que o modelo ndo sofreu
overfitting. Ou seja, 0 modelo desenvolvido generaliza bem para dados que ndo foram usados
durante o treinamento. Por fim, nota-se que o0 modelo atingiu um plat6 na perda de reconstrucéo
entre 75 e 100 épocas. O valor baixo na perda de reconstrucdo indica que 0 modelo nao sofreu

underfitting e foi capaz de aprender os padrdes do conjunto de dados.

52

Figura 14 — Curvas de convergéncia das métricas de perda (Loss) e MAE durante o treinamento do
autoencoder.

Convergéncia do Autoencoder: MSE e MAE

—=- Treinamento MSE
—— Validag&o MSE
----- Treinamento MAE
—— Validagdo MAE

F0.025

r 0.020

r0.015

Perda de Reconstrugao (MSE)
Erro Absoluto Médio (MAE)

1.0 r0.010

0.5

r 0.005
0.0

Epocas

Fonte: Elaborado pelo autor.

Apds o treinamento do modelo calculou-se 0 MAE para todo o conjunto de dados de
validacdo. A figura 15 apresenta a distribuicdo desses erros. Pode-se observar que grande parte
dos erros se encontram no intervalo entre a média menos um desvio padréo e a média mais um
desvio padrdo. Além disso, nota-se claramente que a distribuicdo dos erros ndo segue uma
forma normal. Essa falta de normalidade inviabiliza o uso de métodos paramétricos, como por
exemplo o uso da média e do desvio padrdo, na escolha do limiar de deteccdo de anomalias.
Assim conclui-se que a escolha de usar um método ndo paramétrico para o célculo do limiar,
neste caso o percentil 99,5% do MAE, foi a escolha mais apropriada, uma vez que permite

maior robustez frente a distribuicdo dos dados. O limiar calculado foi de 0.022119.

53

Figura 15 — Distribuigdo do erro absoluto médio (MAE) de reconstrugdo no conjunto de dados de
validacao..
Distribuicao dos Erros de Previsao do Conjunto de Validagao

= = Média do Erro: 0.0041
Média +1 Desv. Padrao
Média -1 Desv. Padrdo
Média +1 Desv. Padrdo sem anom.
Média -1 Desv. Padrao sem anom.
== 99 5% percentil

Frequéncia

0 m -I o T m T I-
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Magnitude do Erro Absoluto

Fonte: Elaborado pelo autor.

Posteriormente ao célculo do limiar, calculou-se 0 MAE para todo o conjunto de dados
de teste. A distribuicdo dos erros de reconstrucdo deste conjunto pode ser vista na figura 16.
Utilizando os valores de MAE e o valor do limiar calculou-se a percentagem de anomalias no
conjunto. Obteve-se um resultado de 0.454% de anomalias. Esse valor é praticamente o valor
esperado de 0,5% definido pela escolha do percentil 99,5%. Esse fato reforca a indicagdo inicial

de que o0 modelo desenvolvido ndo sofreu overfitting.

Figura 16 — Distribuigdo do erro absoluto médio (MAE) de reconstrugdo no conjunto de dados de
teste.

Distribuigao dos Erros de Previsao do Conjunto de Teste

— — Média do Erro: 0.0042
Média +1 Deswv. Padrao
Média -1 Desv. Padrao
Média +1 Desv. Padrde sem anom.
Meédia -1 Desv. Padrdo sem anom.
= = 99,5% percentil

100 +

80

60

Frequéncia

40 4

20 A

T = T T -, T -
0.00 0.01 0.02 0.03 0.04 0.05
Magnitude do Erro Absoluto

Fonte: Elaborado pelo autor.

54

4.2 Resultados da Otimizagéo

A tabela abaixo contém o comparativo entre o desempenho do modelo desenvolvido
antes e depois da quantizagdo. Observa-se que o modelo quantizado apresentou uma redugéo
de 47,02% em seu tamanho. Além disso, ndo houve perda significativa em nenhuma das outras
métricas de desempenho. Esse resultado demonstra que a quantizagdo € uma operacao ideal
para reduzir o consumo de memoria. De fato, esse resultado expressivo coloca a quantizacdo
como uma técnica de interesse em todo o campo de aprendizado de maquina, para além do

escopo do TinyML.

Tabela 5 — Comparativo das métricas do modelo pré e pos-quantizacéo.

Medidas Modelo Sem Quantizacéo Modelo com Quantizacéo
Tamanho (kB) 28,07 14,82
Média MAE 0.004206 0.004207
Desvio Padrdo MAE 0.003594 0.003594
Média MSE 0.000052 0.000052
Desvio Padrdo MSE 0.000213 0.000213

Fonte: Elaborado pelo autor.

4.3 Resultados da Validagdo Experimental

A tabela 6 apresenta os resultados comparativos entre o sistema embarcado e o sistema
tradicional. Observa-se que a memoria de programa no sistema tradicional é 62% maior do que
no sistema embarcado, mesmo o programa desenvolvido no modelo embarcado sendo maior e
mais complexo. Esse fato indica que a biblioteca utilizada para a comunicacdo via bluetooth
consome mais memoria que a biblioteca do Tensor Flow Lite. J& para a memdria RAM estatica
0 sistema embarcado consome 20% de memdria a mais do que o sistema tradicional. Esse era
um resultado esperado, uma vez que no sistema embarcado é preciso inicializar algumas
variaveis globais como a tensor_arena, que € responsavel por armazenar resultados
intermediarios da inferéncia para rodar o modelo corretamente. Dessa forma, antes mesmo da
execucdo o sistema embarcado ja utiliza mais memoria RAM do que o sistema tradicional.

A tabelas 7 e 8 apresentam os resultados de cada evento de introducéo de
anomalias no sistema embarcado e sistema tradicional, respectivamente. Em rela¢do ao tempo
médio de deteccdo, verificou-se que o sistema embarcado foi 1,3 vezes mais rapido na deteccdo

de anomalias do que o sistema tradicional (PC). Esse resultado evidencia que, apesar do maior

55

consumo de memodria RAM, o sistema embarcado apresenta uma velocidade de deteccdo
superior, reforgando sua adequagéo para aplicacfes em tempo real.

Tabela 6 — Comparacédo de recursos computacionais e tempo de inferéncia entre o sistema embarcado
(TinyML) e o sistema local (PC).

Medidas Sistema Embarcado Sistema Tradicional (PC)
Memodria Flash 197 Kb 321 Kb
Memdria RAM Estética 82 Kb 68 kB
Tempo Médio de Deteccdo 45s 58s

Fonte: Elaborado pelo autor.

Tabela 7 — Resultados dos testes de laténcia de deteccdo do sistema embarcado (TinyML).

Evento Inicio do Evento Momento da deteccéo Laténcia de Detec¢do

(hh:mm:ss) (hh:mm:ss) (s)
1 17:37:56 17:38:02 6
2 17:39:46 17:39:49 3
3 17:41:25 17:41:30 5
4 17:42:46 17:42:48 2
5 17:44:38 17:44:41 3
6 17:46:17 17:46:19 2
7 17:47:51 17:48:06 15
8 17:49:32 17:49:35 3
9 17:52:10 17:52:13 3
10 17:53:59 17:54:02 3

Fonte: Elaborado pelo autor.

Tabela 8 — Resultados dos testes de laténcia de deteccdo do sistema de processamento tradicional

(PC).
Evento Inicio do Evento Momento da detecgéo Laténcia de Detec¢do

(hh:mm:ss) (hh:mm:ss) (s)
1 18:09:55 18:10:03 8
2 18:11:17 18:11:21 4
3 18:12:24 18:12:29 5
4 18:14:20 18:14:28 8
5 18:15:53 18:15:59 6
6 18:17:57 18:18:01 4
7 18:19:33 18:19:36 3
8 18:21:08 18:21:12 4
9 18:22:38 18:22:46 8
10 18:24:17 18:24:25 8

Fonte: Elaborado pelo autor.

56

5 CONCLUSAO

Este trabalho se propds a desenvolver um sistema capaz de detectar anomalias na
qualidade do ar em tempo real utilizando um microcontrolador. O objetivo foi superar o tempo
de laténcia e o custo computacional da comunicacdo sem fio que as abordagens tradicionais
com processamento em nuvem possuem. Para enfrentar o problema de detec¢cdo de anomalias
foi escolhido utilizar uma abordagem de reconstrucdo das séries temporais. Onde o erro de
reconstrucdo foi utilizado como um score de anomalias. A fim de realizar essa reconstrucao
utilizou-se uma arquitetura de redes neurais chamada de autoencoder.

A andlise dos resultados demonstrou a eficacia da abordagem. A técnica de quantizacao
completa para inteiros de 8 bits (INT8) foi fundamental para a aplicacéo do projeto, diminuindo
0 tamanho do modelo em 47,02% sem introduzir perdas significativas de performance nas
métricas de reconstrucdo (MAE e MSE). Na validacdo experimental comparativa, 0 sistema
embarcado apresentou um desempenho superior ao sistema tradicional, com um tempo médio
de deteccdo de 4,5 segundos, sendo 1,3 vezes mais rapido que a arquitetura tradicional (5,8
segundos). Essa diferenca comprova que a eliminacdo ou a reducdo da comunicacdo sem fio,
proporcionada pelo processamento local, € um fator decisivo para aplicacfes em tempo real.

Embora a implementacdo embarcada tenha exigido um consumo 20% maior de memoria
RAM estatica (82 Kb) para a alocacao das variaveis globais necessarias a inferéncia do modelo,
ela consumiu 62% menos meméria Flash (197 Kb) que o sistema tradicional (321 Kb), devido
ao alto custo da biblioteca de comunicacao Bluetooth.

E importante notar que a validagdo do sistema tradicional utilizou comunicacio
Bluetooth, uma escolha justificada pelas limitacbes do hardware disponivel (auséncia de
conectividade a internet no microcontrolador). Para trabalhos futuros, sugere-se uma analise
comparativa utilizando comunicagéo via internet (como Wi-Fi), o que aproximaria a validagédo
de um cenario de processamento em nuvem mais realista.

Além disso, embora o modelo autoencoder e a técnica de quantizacdo INT8 tenham se
provado eficazes para este projeto, o escopo ndo permitiu uma comparagdo exaustiva com
outras abordagens. Como investigacéo futura, seria de grande valia comparar o desempenho de
outros modelos e técnicas de otimizagdo (como os descritos no Capitulo 2) no mesmo contexto
de hardware, a fim de determinar a combinagcdo com a melhor relagéo entre performance e

eficiéncia de recursos

57

Conclui-se, portanto, que este trabalho atingiu seu objetivo ao desenvolver e validar um
dispositivo portatil, de baixo custo e alta eficiéncia. O sistema TinyML demonstrou ser uma
solucdo rapida e vidvel para o monitoramento de anomalias, reforcando as vantagens do
processamento na borda em aplicacdes que demandam respostas imediatas ou que devem

limitar a transmissdo de dados via rede sem fio.

58

REFERENCIAS

[1] B. Zhang and X. Li, "Optimal computation offloading for industrial 1oT," IEEE Access,
2025. Accessed: Apr. 18, 2025. [Online]. Available:
https://ieeexplore.ieee.org/document/10964287

[2] P. Gupta and R. S. Jadon, "PLANT Detect Net: 10T + Deep Learning for plant disease
detection,” Evolving Systems, 2025. Accessed: Apr. 18, 2025. [Online]. Available:
https://link.springer.com/article/10.1007/s12530-025-09685-x

[3] A. Ahmad and D. Choi, "A wireless power transfer system for loMT implantable devices
using inductive coupling and adaptive frequency control,” IEEE Internet of Things Journal,
2025. Accessed: Apr. 18, 2025. [Online]. Available:
https://ieeexplore.ieee.org/document/10964304

[4] 10T Analytics, "State of loT—Spring 2024: Number of connected IoT devices growing 16%
to 16.7 billion worldwide," 0T Analytics, 2024. Accessed: Apr. 18, 2025. [Online]. Available:
https://iot-analytics.com/number-connected-iot-devices/

[5] D. Situnayake and J. Plunkett, Al at the Edge: Solving Real-World Problems with
Embedded Machine Learning, 1st ed. Sebastopol: O’Reilly Media, 2023.

[6] G. M. lodice, TinyML: Combine Artificial Intelligence and Ultra-Low-Power Embedded
Devices to Make the World Smarter. Birmingham: Packt Publishing, 2022.

[7] L. Banz et al., "A machine learning-oriented survey on tiny machine learning,” 2023.
Accessed: Apr. 04, 2025. [Online]. Available: https://arxiv.org/abs/2306.09349

[8] W. de Simoni et al., O Estado da Qualidade do Ar no Brasil. Sdo Paulo: WRI Brasil, 2021.
Accessed: Apr. 24, 2025. [Online]. Available: https://www.wribrasil.org.br/publicacoes/o-

estado-da-qualidade-do-ar-no-brasil

59

[9] Companhia Ambiental do Estado de S&o Paulo (CETESB), "Padrdes de Qualidade do Ar,"
Sdo Paulo: CETESB, [2023?]. Accessed: Apr. 22, 2025. [Online]. Available:
https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/

[10] Companhia Ambiental do Estado de Séo Paulo (CETESB), "Qualidade do Ar," S&o Paulo:
CETESB, [20237]. Accessed: Apr. 22, 2025. [Online]. Available:
https://cetesb.sp.gov.br/ar/poluentes

[11] S. N. Dapper, C. Spohr, and R. R. Zanini, "Poluicéo do ar como fator de risco para a salde:
uma revisdo sistematica no estado de Sao Paulo," Estudos Avanc¢ados, Séo Paulo, vol. 30, no.
86, pp. 83-98, 2016. doi: 10.1590/S0103-40142016.00100006.

[12] Redagéo, "Estado do Rio lidera ranking nacional de monitoramento da qualidade do ar,
segundo estudo,” O Fluminense, Niteroi, Mar. 2, 2024. Accessed: Apr. 23, 2025. [Online].
Available: https://www.ofluminense.com.br/cidades/rio-de-janeiro/2024/03/1272213-estado-

do-rio-lidera-ranking-nacional-de-monitoramento-da-qualidade-do-ar-segundo-estudo.html

[13] D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Science+Business Media
B.V., 1980. (Monographs on Applied Probability and Statistics). doi: 10.1007/978-94-015-
3994-4.

[14] S. K. Adari and S. Alla, Beginning Anomaly Detection Using Python-Based Deep
Learning: Implement Anomaly Detection Applications with Keras and PyTorch, 2nd ed. [S.L.]:
Apress, 2024. doi: 10.1007/979-8-8688-0008-5.

[15] B. Kennedy, Outlier Detection in Python. Shelter Island: Manning Publications Co., 2025.

[16] P. Boniol, Q. Liu, M. Huang, T. Palpanas, and J. Paparrizos, "Dive into Time-Series
Anomaly Detection: A Decade Review," 2024.

[17] D. Colombo, L. Leonardi, A. Panarello, and M. Merlini, "Anomaly Detection for 10T
Time-Series Data: A Survey," Sensors, vol. 23, no. 8, p. 3871, 2023. doi: 10.3390/s23083871.

60

[18] M. A. Samara, |. Bennis, A. Abouaissa, and P. Lorenz, "A Survey of Outlier Detection
Techniques in 10T: Review and Classification,” Journal of Sensor and Actuator Networks, vol.
11, no. 1, p. 4, 2022. doi: 10.3390/jsan11010004.

[19] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed. Sebastopol: O’Reilly
Media, 2019.

[20] G. M. lodice, TinyML Cookbook: Combine Artificial Intelligence and Ultra-Low-Power
Embedded Devices to Make the World Smarter. Birmingham: Packt Publishing, 2022.

[21] A. A. Cook, G. Misirli, and Z. Fan, "Anomaly detection for loT time-series data: a survey,"
IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481-6494, Jul. 2020. doi:
10.1109/J10T.2019.2958185.

[22] P. Warden and D. Situnayake, TinyML: Machine Learning with TensorFlow Lite on
Arduino and Ultra-Low-Power Microcontrollers, 1st ed. Sebastopol, CA: O’Reilly Media,
2020.

[23] V. Tsoukas, A. Gkogkidis, E. Boumpa, and A. Kakarountas, "A review on the emerging
technology of TinyML," ACM Computing Surveys, vol. 56, no. 10, art. 259, pp. 1-37, Jun.
2024. doi: 10.1145/3661820.

[24] L. Capogrosso, F. Cunico, D. S. Cheng, F. Fummi, and M. Cristani, "A machine learning-
oriented survey on tiny machine learning," IEEE Access, vol. 12, pp. 23406-23440, 2024. doi:
10.1109/ACCESS.2024.3365349.

[25] Arduino, "Nano 33 BLE Sense Rev2," 2025. Accessed: Oct. 19, 2025. [Online]. Available:

https://docs.arduino.cc/hardware/nano-33-ble-sense-rev2/

[26] Hanwei Electronics, "MQ-7 Semiconductor Sensor for Carbon Monoxide,” Datasheet,
Zhengzhou, [n.d.]. Accessed: Nov. 1, 2025. [Online]. Available:
https://cdn.sparkfun.com/assets/b/b/b/3/4/MQ-7.pdf

61

[27] Winsen, "MQ-131 Semiconductor Sensor for Ozone," Datasheet, Zhengzhou, [20127].
Accessed: Nov. 1, 2025. [Online]. Available: https://cdn.sparkfun.com/assets/9/9/6/e/4/mq131-
datasheet-low.pdf

[28] Hanwei Electronics, "MQ-2 Semiconductor Sensor for Combustible Gas," Datasheet,

Zhengzhou, [n.d.]. Accessed: Nov. 1, 2025. [Online]. Available:
https://www.haoyuelectronics.com/Attachment/MQ-2/MQ-2.pdf

[29] Eletrogate, "Fonte Ajustavel Para Protoboard,” 2025. Accessed: Oct. 19, 2025. [Online].
Available: https://www.eletrogate.com/fonte-ajustavel-para-protoboard

[30] Arduino IDE. Accessed: Oct. 27, 2025. [Online]. Available:

https://www.arduino.cc/en/software

[31] "Jupyter Notebook.™ Accessed: Oct. 27, 2025. [Online]. Available: https://jupyter.org

[32] "Visual Studio Code." Accessed: Oct. 27, 2025. [Online]. Available:
https://code.visualstudio.com

[33] "Python." Accessed: Oct. 27, 2025. [Online]. Available: https://www.python.org/

[34] TensorFlow, "TensorFlow," 2025. Accessed: Oct. 27, 2025. [Online]. Available:

https://www.tensorflow.org/

[35] Keras, "Keras," 2025. Accessed: Oct. 27, 2025. [Online]. Available: https://keras.io/

[36] TensorFlow, "TensorFlow Lite," 2025. Accessed: Oct. 27, 2025. [Online]. Available:

https://www.tensorflow.org/lite

[37] Pandas Development Team, "pandas,” 2025. Accessed: Oct. 27, 2025. [Online]. Available:
https://pandas.pydata.org/

[38] NumPy Developers, "NumPy," 2025. Accessed: Oct. 27, 2025. [Online]. Available:
https://numpy.org/

62

[39] J. D. Hunter et al., "Matplotlib: A 2D Graphics Environment,” Computing in Science &
Engineering, vol. 9, no. 3, pp. 90-95, 2007. Accessed: Oct. 27, 2025. [Online]. Available:
https://matplotlib.org/

[40] C. Liechti et al., "pyserial,” GitHub repository, 2025. Accessed: Oct. 27, 2025. [Online].
Available: https://github.com/pyserial/pyserial

[41] Bleak Developers, "Bleak," GitHub repository, 2025. Accessed: Oct. 27, 2025. [Online].
Available: https://github.com/hbldh/bleak

[42] S. Sharma, "Using XXD Command in Linux," Linux Handbook, Mar. 17, 2023. Accessed:
Nov. 1, 2025. [Online]. Available: https://linuxhandbook.com/xxd-command/

Apéndice A — REPOSITORIO DO CODIGO FONTE

O codigo-fonte completo desenvolvido para este trabalho, incluindo os scripts de
aquisicao de dados do Arduino e o modelo de Machine Learning, esta disponivel
publicamente no seguinte repositério GitHub: https://github.com/gabriel-victor933/tcc.

63

