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RESUMO 

SANTANA, G. V. A.  Detecção de anomalias na qualidade do ar utilizando aprendizado 

de máquina em microcontroladores.   2025.  70p.  Monografia (Trabalho de Conclusão de 

Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025. 

 

Modelos de aprendizado de máquina não supervisionados são úteis para identificar padrões 

complexos em dados não classificados, mas seu alto custo computacional limita sua 

portabilidade. Para superar essas limitações, este trabalho propõe a aplicação de um modelo de 

aprendizado de máquina em um sistema embarcado para detecção de anomalias na qualidade 

do ar por meio da utilização de técnicas de tinyML. O objetivo é unir a capacidade de detecção 

de padrões do aprendizado de máquina ao baixo custo e portabilidade dos sistemas embarcados. 

Para isso, foi desenvolvido um modelo autoencoder não supervisionado que, otimizado com 

quantização INT8, teve seu tamanho reduzido em 47,02% sem perdas significativas de 

performance. Na validação experimental, feita em comparação a uma abordagem tradicional, o 

sistema embarcado (TinyML) foi 1,3 vezes mais rápido na detecção de anomalias (tempo médio 

de 4,5s contra 5,8s). Conclui-se que o sistema TinyML é uma solução robusta e mais rápida, 

reforçando a viabilidade do processamento na borda para aplicações de IoT que demandam 

respostas imediatas. 

 

Palavras-chave: microcontroladores. aprendizado de máquina. tinyML. internet das Coisas 

(IoT). detecção de anomalias. 

  



 
 

  



 
 

 

ABSTRACT 

SANTANA, G. V. A.  Air quality anomaly detection using machine learning on 

microcontrollers.   2025.  70p.  Monograph (Conclusion Course Paper) – Escola de 

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025. 

 

 Unsupervised machine learning models are useful for identifying complex patterns in 

unlabeled data, but their high computational cost limits their portability. To overcome these 

limitations, this work proposes the application of a machine learning model on an embedded 

system for air quality anomaly detection through the use of tinyML techniques. The objective 

is to unite the pattern detection capabilities of machine learning with the low cost and portability 

of embedded systems. To this end, an unsupervised autoencoder model was developed which, 

optimized with INT8 quantization, had its size reduced by 47.02% without significant 

performance losses. In experimental validation, compared to a traditional approach, the 

embedded system (TinyML) was 1.3 times faster at detecting anomalies (average time of 4.5s 

versus 5.8s). It is concluded that the TinyML system is a robust and faster solution, reinforcing 

the feasibility of edge processing for IoT applications that demand immediate responses. 

 

 

Keywords: microcontrollers. machine learning. tinyML. internet of things (IoT). anomaly 

detection.  
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1 INTRODUÇÃO 

 

 A Internet das coisas (IoT) é uma área de pesquisa que possui uma ampla gama de 

aplicações que vão desde a indústria e automação [1] à agricultura [2] e até à aplicações na 

medicina [3]. Segundo [4], o número de dispositivos conectados em 2023 foi de 16 bilhões e a 

estimativa é que este número chegue a 40 bilhões até 2030. O baixo custo, a grande variedade 

de sensores e a alta capacidade de processamento são alguns dos motivos desse crescimento 

contínuo. 

Os dispositivos IoT geralmente são a primeira camada de processamento em uma rede 

de comunicação que começa com a aquisição de dados por meio de de sensores chegando até o 

armazenamento em nuvem ou à integração com sistemas analíticos. Como esses dispositivos 

estão na borda de uma rede de comunicação eles são conhecidos como edge devices, e o 

processamento realizado por eles é chamado de edge computing. [5, p. 18] 

Segundo [5], as principais vantagens na realização de edge computing estão 

relacionadas à conectividade dos dispositivos com a nuvem. O envio de dados tem um custo 

elevado e um alto consumo de energia. Dessa maneira, processando os dados na borda pode-se 

limitar o número de conexões e a quantidade de dados enviados. Além disso, conforme aponta 

[6, p. 4], o envio e recebimento de dados para a nuvem não é instantâneo e pode afetar 

aplicações que precisam de uma resposta em curto período de tempo.   

A partir desse cenário, surge o conceito de tinyML. De acordo com [7], tinyML é 

definido como o paradigma que facilita a execução de algoritmos de machine learning em 

dispositivos com requisitos mínimos de processador e memória, e com consumo de potência 

inferior a alguns miliwatts.  Apesar de suas limitações, esses dispositivos são baratos, 

econômicos e portáteis, o que os tornam atraentes para diversas aplicações. 

 

1.1 Motivação 

 

Segundo [8], “qualidade do ar é uma medida do nível de poluentes atmosféricos à qual 

a população está exposta”. No estado de São Paulo, o monitoramento da qualidade do ar e a 

definição de padrões a serem seguidos são realizados pela Companhia Ambiental do Estado de 

São Paulo (CETESB). Os poluentes considerados como parâmetros nas medidas são: partículas 

inaláveis (MP10 e MP2,5), fumaça, ozônio (O3), monóxido de carbono (CO), dióxido de 

nitrogênio (NO₂) e dióxido de enxofre (SO₂) [9]. Segundo a CETESB: 
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Considera-se poluente qualquer substância presente no ar e que, pela sua 

concentração, possa torná-lo impróprio, nocivo ou ofensivo à saúde, causando 

inconveniente ao bem estar público, danos aos materiais, à fauna e à flora ou 

prejudicial à segurança, ao uso e gozo da propriedade e às atividades normais 

da comunidade [10]. 

 

A tabela abaixo apresenta a classificação da qualidade do ar com base na concentração 

do poluente e o tempo de amostragem. 

 

Tabela 1 – Estrutura do índice de qualidade do ar 

Qualidade Índice 

MP10 

(µg/m3) 

24h 

 

MP2,5 

(µg/m3) 

24h 

 

O3 

(µg/m3) 

8h 

 

CO 

(ppm) 

8h 

 

NO2 

(µg/m3) 

1h 

 

SO2 

(µg/m3) 

24h 

 

Boa 0 – 40 0 – 50 0 – 25 0 – 100 0 – 9 0 – 200 0 – 20 

Moderada 41 – 80 >50 – 100 >25 – 50 >100 – 130 >9 – 11 >200 – 240 >20 – 40 

Ruim 81 – 120 >100 – 150 >50 – 75 >130 – 160 >11 – 13 >240 – 320 >40 – 365 

Muito Ruim 121 – 200 >150 – 250 >75 – 125 >160 – 200 >13 – 15 >320 – 1130 >365 – 800 

Péssima >200 >250 >125 >200 >15 >1130 >800 

Fonte: [9]. 

 

Para cada poluente medido é atribuído um índice com base em sua concentração. Para 

efeito de divulgação, a qualidade ar é considerada igual ao nível mais alto entre todos os 

poluentes. Essa classificação está associada aos efeitos à saúde humana [9]. A tabela abaixo 

apresenta o significado de cada nível. 

 

Tabela 2 – Qualidade do ar e efeitos à saúde 

Qualidade Índice Significado 

Boa 0 – 40 Pessoas de grupos sensíveis (crianças, idosos e pessoas com doenças respiratórias 

e cardíacas) podem apresentar sintomas como tosse seca e cansaço. A população, 

em geral, não é afetada. 

Moderada 41 – 80 Toda a população pode apresentar sintomas como tosse seca, cansaço, ardor nos 

olhos, nariz e garganta. Pessoas de grupos sensíveis (crianças, idosos e pessoas 

com doenças respiratórias e cardíacas) podem apresentar efeitos mais sérios na 

saúde. 

Ruim 81 – 120 Toda a população pode apresentar sintomas como tosse seca, cansaço, ardor nos 

olhos, nariz e garganta. Pessoas de grupos sensíveis (crianças, idosos e pessoas 

com doenças respiratórias e cardíacas) podem apresentar efeitos mais sérios na 

saúde. 

Muito 

Ruim 

121 – 200 Toda a população pode apresentar agravamento dos sintomas como tosse seca, 

cansaço, ardor nos olhos, nariz e garganta e ainda falta de ar e respiração 

ofegante. Efeitos ainda mais graves à saúde de grupos sensíveis (crianças, idosos 

e pessoas com doenças respiratórias e cardíacas). 
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Péssima >200 Toda a população pode apresentar sérios riscos de manifestações de doenças 

respiratórias e cardiovasculares. Aumento de mortes prematuras em pessoas de 

grupos sensíveis. 

Fonte: [9]. 

 

O alto índice de qualidade do ar está associado a diversos problemas de saúde e 

ambientais. De acordo com [8], os impactos da poluição do ar estão relacionados às mortes 

prematuras, doenças pulmonares e cardiovasculares, acidentes vasculares cerebrais, disposição 

ao câncer e ao diabetes, e problemas cognitivos de crianças e idosos. Além disso, [11] aponta 

que a poluição do ar pode ser causador de risco para outros problemas como o baixo peso ao 

nascer, anemia falciforme e partos prematuros. Da mesma forma a qualidade do ar tem um 

impacto direto no meio ambiente, são exemplos disso, segundo [8], “a ação do ozônio na 

redução da produtividade agrícola, a ocorrência de chuva ácida e a acidificação de lagos e rios 

pela deposição de sulfato e nitrato”. 

Dados os riscos associados à qualidade do ar ruim,  fica evidente a importância do 

monitoramento contínuo e abrangente. Segundo relatório do Instituto de Energia e Meio 

Ambiente (IEMA) apenas 13 dos 26 estados brasileiros possuem redes de monitoramento [12]. 

Um dos efeitos da falta de monitoramento é a incapacidade de fiscalizar o cumprimento de 

normas governamentais [8]. Enfatiza que a falta de dados é uma importante fragilidade que 

inviabiliza a avaliação da implementação e os impactos das políticas públicas relativas à 

qualidade do ar. 

Nesse contexto, a aplicação da Internet das Coisas (IoT) oferece uma alternativa viável 

e eficiente para expandir a capacidade de monitoramento. Por meio do uso de dispositivos 

embarcados juntamente com sensores específicos para monitorar a condição do ar  é possível 

implementar uma rede de monitoramento de baixo custo, com grande cobertura e conectividade. 

No entanto, apenas a coleta de dados brutos não é suficiente para um monitoramento eficiente 

e em larga escala. Em muitas regiões, a conectividade com a nuvem é limitada ou intermitente. 

Assim, para superar essa limitação as técnicas de edge computing e tinyML são de grande valor. 

A aplicação de técnicas de tinyML permite que os próprios dispositivos sejam capazes de 

interpretar os dados coletados, identificando padrões e detectando anomalias de maneira local, 

diminuindo a necessidade de comunicação e envio de dados. 
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1.2 Objetivos 

 

A proposta deste trabalho foi desenvolver um dispositivo portátil capaz de detectar 

anomalias na qualidade do ar em tempo real. Além disso, o algoritmo de aprendizado de 

máquina implementado deveria ser do tipo não supervisionado onde não existe a necessidade 

de dados rotulados [5, p. 225]. Este trabalho delimita sua análise às séries temporais de sensores 

de qualidade do ar, focando especificamente nas medições de Monóxido de Carbono (CO) e 

Ozônio (O3). Tal seleção justifica-se pela disponibilidade comercial e pelo baixo custo dos 

sensores. A análise de outros poluentes, como partículas inaláveis (PM2.5), Dióxidos de 

Nitrogênio (NO2) ou Dióxido de Enxofre (SO2), foge ao escopo desta pesquisa. 

 

1.3 Organização do Trabalho 

 

O presente trabalho é constituído por 5 capítulos conforme a descrição que segue: 

Capítulo 1: Contextualiza o desenvolvimento do trabalho e apresenta as motivações para 

a sua realização. 

Capítulo 2: Apresenta a fundamentação teórica usada como base no desenvolvimento 

do projeto.  

Capítulo 3: Descreve os materiais e métodos utilizados na implementação do dispositivo 

e na avaliação da implementação. 

Capítulo 4: Discussão do resultados obtidos  

Capítulo 5: Apresenta as conclusões do trabalho. 
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2 REFERENCIAL TEÓRICO 

 

2.1 Detecção de anomalias 

 

Anomalia é um conceito intuitivo, mas de difícil definição formal. Segundo Hawkins 

[13], uma definição intuitiva de anomalia seria uma observação que difere tanto das outras que 

gera uma suspeita se ela foi gerada pelo mesmo processo. Dessa definição pode-se perceber 

que uma anomalia não pode ser identificada longe de um contexto, ou seja, um dado não pode 

ser considerado anômalo isoladamente. Com isso, pode-se dizer que uma anomalia é um dado 

não usual, incomum em relação a um conjunto de dados que o contém.  

Dá-se o nome de detecção de anomalias ao processo ou algoritmo capaz de identificar 

dados que fogem do esperado. Adari [14] define a detecção de anomalias como o processo de 

identificar dados ou padrões de dados incomuns para um certo conjunto de dados. Além disso, 

Kennedy [15] acrescenta que o que se entende por comuns ou normais pode mudar, entretanto, 

a detecção de anomalias pressupõe que a maioria dos dados em um conjunto pode ser 

considerado normal. Esse desvio do padrão é o que torna a identificação de anomalias tão 

valiosa, já que a maioria dos sistemas é projetado para operar sob condições normais e a 

detecção prematura da anormalidade tende a minimizar os riscos. Entretanto, nem todos os 

dados que não seguem o comportamento esperado são relevantes para a detecção.  

Erros na aquisição de dados ou ruídos podem ser considerados anomalias dependendo 

do processo de detecção, contudo, apesar de se enquadrarem como anomalias, não representam 

dados de interesse ou valor para a análise. Boniol [16] destaca que dependendo da aplicação as 

anomalias podem ser constituídas de ruídos e dados errôneos ou então de dados de interesse 

real. No primeiro caso, os dados devem ser corrigidos ou removidos para não comprometer 

nenhuma análise posterior, e no último caso, as anomalias podem identificar eventos 

significativos como falhas ou mudanças de comportamento e são a base para análises 

subsequentes.  Cabe ao processo de detecção de anomalias diferenciar entre esses dois casos. 

A falha em distinguir cada tipo de anomalia pode acarretar em um grande número de falsos 

positivos e  falsos negativos, o que compromete a acurácia e a confiabilidade do processo de 

detecção. A detecção precisa de anomalias permite que suas aplicações sejam confiáveis e 

eficazes.  

A detecção de anomalias possui aplicações em diversas áreas conforme discutido por 

diferentes autores citados em [17]. Entre elas, destacam-se a remoção de ruídos em dados, a 
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prevenção de ataques de envenenamento de dados e, na área médica, a detecção de condições 

anormais a partir de sensores IoT e o monitoramento de idosos. Em ambientes domésticos 

inteligentes, pode indicar aumentos atípicos de temperatura possivelmente relacionados a 

invasões, enquanto, no setor industrial, pode auxiliar no gerenciamento de recursos e na 

identificação de variações ambientais como temperatura, umidade e fumaça. Apesar da 

diversidade de contextos de aplicação, as anomalias podem ser classificadas em tipos comuns 

à todos os contextos. 

 

2.1.1 Tipos de anomalias 

 

As anomalias podem ser categorizadas em relação a um conjunto global de dados, à um 

subconjunto de dados ou à uma sequência de dados. Boniol [16] define três tipos de anomalias: 

pontual, contextual e coletiva. As anomalias pontuais são aquelas que divergem 

significativamente de todo um conjunto de dados. A figura 1 apresenta um exemplo desse tipo 

de anomalia. Observar-se que o ponto vermelho difere de todos os outros pontos e está fora da 

distribuição dos dados 

 

Figura 1 – Representação gráfica de uma anomalia pontual 

 

Fonte: Elaborado pelo autor. 

  

Segundo Boniol [16], as anomalias contextuais são aquelas que parecem compatíveis 

com a distribuição global, mas se tornam anômalas quando analisadas em um contexto 

específico, como em relação aos dados vizinhos. A figura 2 apresenta um exemplo de anomalia 

contextual. Diferentemente do ponto vermelho da figura 1, que está fora da distribuição, nesse 

caso, o valor encontra-se dentro da distribuição. O que caracteriza esse ponto como anômalo é 

a discrepância em relação aos pontos próximos. 
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Figura 2 – Representação gráfica de uma anomalia contextual 

 

Fonte: Elaborado pelo autor. 

 

As anomalias coletivas referem-se a sequências de pontos que não seguem o padrão 

típico observado em uma distribuição. A figura 3 mostra um exemplo de uma anomalia 

sequencial. Diferentemente dos exemplos anteriores, aqui não é um único ponto que se destaca, 

mas sim um subconjunto de dados que, considerado em conjunto, forma um padrão anômalo. 

 

Figura 3 – Representação gráfica de uma anomalia coletiva 

 

Fonte: Elaborado pelo autor. 

 

Além desses tipos básicos, também existem as anomalias multidimensionais. Conforme 

Kennedy [15] aponta, existem duas maneiras de identificar uma anomalia multidimensional: 

Esse ponto é incomum em uma única dimensão ou então a combinação de valores em múltiplas 

dimensões é atípica.  A figura 4 apresenta um exemplo de uma combinação incomum de 

valores. Observa-se que, ao analisar apenas o eixo x o valor da anomalia está próximo ao centro 

da distribuição em azul e, ao considerar apenas o eixo y, encontra-se próximo ao centro da 

distribuição verde. Entretanto quando se analisa a combinação dos dois eixos fica evidente que 

o ponto vermelho é uma anomalia. 
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Figura 4 – Representação gráfica de uma anomalia multidimensional 

 

Fonte: Elaborado pelo autor. 

 

2.1.2 Etapas do Processo de Detecção de Anomalias 

 

Apesar da aplicação em diferentes domínios, os processos de detecção de anomalias 

apresentam uma estrutura semelhante na maior parte das aplicações, conforme aponta Boniol 

[16]. Segundo os autores, pode-se dividir o processo de detecção em quatro etapas: pré-

processamento de dados, aplicação do método de detecção, scoring e pós-processamento. O 

pré-processamento é a etapa inicial e inclui todas as transformações necessárias para preparar 

ou facilitar a aplicação dos métodos subsequentes. Em seguida, diferentes métodos de detecção 

podem ser empregados cada um com uma abordagem específica. Esses métodos de detecção e 

suas respectivas abordagens serão discutidos com maior detalhe na próxima seção.  

Na etapa de scoring, os resultados desses métodos são convertidos em valores 

numéricos que representam o grau de anormalidade de um ponto ou subsequência. Por fim, na 

última etapa, os pontos ou intervalos anômalos são extraídos, geralmente por meio da definição 

de um limiar que separa valores normais de valores anômalos usando os valores do grau de 

anormalidade de cada ponto dados pela etapa anterior. 
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2.1.3 Classificação dos métodos de detecção 

 

A classificação das diversas abordagens de detecção, depende em grande parte, do 

contexto de aplicação. Cada contexto lida com tipos específicos de variáveis, como dados 

tabulares, séries temporais, dados categóricos, textos e imagens, entre outros. Por sua vez, cada 

tipo de variável apresenta características e desafios próprios, que demandam métodos 

específicos de detecção. Considerando que o tema desta monografia é a detecção de anomalias 

na qualidade do ar, representada por séries temporais obtidas por sensores conectados à 

dispositivos IoT, adotou-se a classificação proposta por Samara et al [18]. Este trabalho foi 

selecionado por sua abrangente revisão de técnicas de detecção de anomalias especificamente 

no contexto da Internet das Coisas. De acordo com os autores, os métodos de detecção podem 

ser classificados em 7 categorias: baseados em estatística, baseados em agrupamentos, baseados 

nos vizinhos mais próximos, baseados em classificação, baseados em inteligência artificial, 

baseados em decomposição espectral e métodos híbridos.  

Nesta monografia, a categoria de métodos baseados em vizinhos mais próximos será 

abordada dentro da seção de métodos de distância. Essa escolha se justifica pois a análise por 

distância é o princípio fundamental desta abordagem, sendo a análise de vizinhança sua forma 

mais comum de implementação. Além disso, também foi alterada a categoria de inteligência 

artificial para métodos baseados em deep learning, já que o nome antigo é mais abrangente e 

inclui algoritmos de outras categorias, enquanto o último é mais específico e contempla apenas 

os algoritmos da própria categoria. 

 

2.1.3.1  Métodos baseados em estatística 

 

Os métodos baseados em estatística são aqueles que assumem ou estimam um modelo 

da distribuição de dados. Os dados que têm baixa probabilidade, de acordo com o modelo, são 

considerados anomalias [18]. Esses métodos podem ser divididos em duas subcategorias: os 

métodos paramétricos, no qual se assume que os dados são gerados a partir de uma distribuição 

conhecida, por exemplo, a distribuição normal; e os métodos não paramétricos em que a 

distribuição não é conhecida [18]. 

Uma abordagem não paramétrica comum citada por Samara et al. [18] é o histograma, 

ilustrado na Figura 5. Nesse método não paramétrico divide-se um conjunto de dados em 

intervalos regulares e então conta-se a quantidade de dados presentes em cada intervalo para 

gerar uma taxa de ocorrência. Conforme explicam os autores [18], intervalos com altas taxas 
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de ocorrência são considerados normais, enquanto intervalos com taxas nulas ou pequenas são 

considerados anomalias. 

 

Figura 5 – Exemplo de um histograma 

 
Fonte: Elaborado pelo autor. 

 

Uma outra abordagem muito usada e simples de se aplicar é o método z-score , descrito 

por Kennedy [15]. O autor explica que nesse método paramétrico utiliza-se a média e o desvio 

padrão de uma distribuição para determinar as anomalias. Para encontrar o z-score de um valor 

(x), subtrai-se a média (μ) e divide-se o resultado da subtração pelo desvio padrão (σ). Segundo 

Kennedy [15], em seguida é necessário definir um valor limite. Qualquer valor maior que esse 

limite, ou então menor que o negativo desse valor é considerado uma anomalia. 

  

𝑧 =  
𝑥−𝜇

𝜎
                                       (2.1) 

 

Samara et al. [18] apontam que, os métodos estatísticos funcionam bem quando o 

modelo é corretamente definido, nesse caso não é necessário manter os dados usados para criar 

o modelo. No entanto, os autores [18] alertam que para garantir que os métodos funcionem 

corretamente é necessário ter um conhecimento prévio sobre a distribuição dos dados, o que 

nem sempre é possível, ou então obter esse conhecimento pela aquisição de dados, o que nem 

sempre é fácil de se realizar. Eles concluem [18] que os métodos paramétricos são muitas vezes 

inadequados para o uso em IoT e os métodos não paramétricos são computacionalmente 
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custosos para dados multivariados, o que pode potencialmente inviabilizar a sua aplicação na 

detecção de anomalias na qualidade do ar. 

 

2.1.3.2  Métodos baseados em agrupamentos 

 

Os métodos de agrupamentos dividem os dados, como o próprio nome indica, em 

agrupamentos utilizando a similaridade ou proximidade desses dados para tal. Pontos que não 

pertencem a nenhum agrupamento ou agrupamentos com poucos dados são considerados 

anomalias, enquanto agrupamentos muitos dados são considerados normais [18]. 

Um algoritmo de agrupamento muito popular é o DBSCAN, que Géron [19] define 

como um método que define clusters como regiões contínuas de alta densidade. Além disso, 

conforme Kennedy [15] aponta, esse algoritmo possui a propriedade de permitir que alguns 

pontos não pertençam a nenhum agrupamento, o que o torna especialmente útil na detecção de 

anomalias. O DBSCAN, conforme descrito por Géron [19],  funciona da seguinte maneira: para 

cada ponto ele conta quantos outros pontos estão próximos até uma distância ε (epsilon). Se 

esse ponto tiver pelo menos N pontos dentro dessa distância, ele é considerado uma instância 

core, isto é, ele pertence a uma região densa. Todos os vizinhos e todos as outras instâncias 

core, que estão a uma distância menor do que ε, pertencem ao mesmo cluster. Finalmente, 

Géron [19] explica que qualquer ponto que não é uma instância core ou que não é parte de 

algum cluster é considerado uma anomalia. 

Kennedy [15] indica que uma grande vantagem dos métodos de agrupamento é que 

independente do modo que o agrupamento é feito e da forma que as anomalias são identificadas, 

eles são aplicáveis para diversos formatos: dados tabulares, séries temporais, texto, imagens, 

etc; desde de que uma métrica de distância ou similaridade pode ser definida. Além disso, estes 

métodos não exigem nenhum conhecimento prévio do conjunto de dados para a sua aplicação. 

No entanto, Samara et al. [18] alertam que, para dados multivariados o cálculo das distâncias 

pode se tornar computacionalmente custosos.    

 

2.1.3.3  Métodos baseados em distâncias 

 

Os métodos de distância, conforme explica Kennedy [15],  tentam determinar pontos 

que possuem poucos dados similares utilizando métricas de distância. A ideia geral é identificar 

pontos que não possuem muitos pontos próximos ou então cuja distância até os vizinhos é 

grande. Para isso é necessário escolher uma métrica de distância adequada para o contexto da 
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aplicação. O autor [15] aponta que a principal métrica é a  distância euclidiana.  Entretanto 

outros estudos [16, 19] também citam métricas como Mahalanobis, Hamming e Minkowski. 

Kennedy [15] aponta o K-nearest neighbour (KNN) como um dos principais algoritmos 

dessa categoria. O autor descreve que, nesse método, para cada ponto, é medido sua distância 

até o seu k vizinho mais próximo. Essa distância é considerada o “grau de anormalidade” do 

ponto e é usada para categorizar as anomalias [15].  

Uma vantagem destacada por Kennedy [15] é que os métodos baseados em distância 

não exigem nenhum conhecimento da distribuição de dados, além disso, podem ser aplicados 

para diferentes tipos de dados. Entretanto, como aponta Samara et al. [18], os cálculos das 

distâncias podem exigir muita capacidade de processamento o que pode inviabilizar a sua 

aplicação em microcontroladores de menor capacidade. 

 

2.1.3.4  Métodos baseados em classificação 

 

Os métodos baseados em classificação treinam um modelo, utilizando uma amostra dos 

dados, para classificar os pontos entre dados normais e anomalias. A criação desses modelos é 

dividida em duas fases: treinamento, na qual o modelo é criado usando um conjunto dos dados; 

e uma fase de validação onde um outro conjunto de dados é usado para avaliar a acurácia do 

modelo [18]. 

Kennedy [15] apresenta o Algoritmo OCSVM (one class SVM) como um exemplo de 

método baseado em classificação. O autor explica que este algoritmo utiliza o conceito de one-

class para treinar o modelo. Na prática isso significa que o algoritmo vai assumir que existe 

apenas uma única classe na amostra e vai criar um modelo para representá-la tão fielmente 

quanto possível. Depois que o modelo é criado ele pode ser usado para testar novos dados. 

Qualquer dado que esteja em conformidade com o modelo é considerado normal e se não estiver 

é considerado anomalia. Kennedy [15] nota, que por ser one-class, esse algoritmo é sensível a 

anomalias presentes no conjunto de dados de treinamento, uma vez que o modelo vai considerá-

las como pertencentes à mesma classe de dados normais. Entretanto, o autor aponta que esse 

algoritmo é especialmente eficaz na detecção de novidades, que é um subcategoria da detecção 

de anomalias onde não se tem nenhuma informação sobre as características das anomalias.  

Conforme descrito por Géron [19], o OCSVM é uma adaptação do algoritmo SVM 

(support vector machine) para o caso de uma classe utilizado para permitir uma modelagem 

não supervisionada. Já o SVM, ilustrado na figura 6, é um classificador supervisionado usado 

para distinguir dados em duas ou mais classes. O autor explica [19] que esse algoritmo tenta 
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criar um hiperplano entre duas classes de dados para maximizar a margem entre a instância 

mais próxima das duas classes, essa fronteira é chamada de limite de decisão (decision 

boundary). As duas instâncias usadas como base para o cálculo da distância são chamadas de 

vetores de suporte e dão nome ao algoritmo. Além disso, Géron [19] também aponta que o 

SVM faz o uso de funções de kernel, que permitem mapear os dados para um espaço de 

dimensão superior, possibilitando a criação de um limite de decisão não-linear para separar 

classes complexas. 

 

Figura 6 –  Representação visual do algoritmos SVM em duas dimensões

 
Fonte: Elaborado pelo autor. 

 

Segundo Samara et al. [18], os métodos de classificação possuem excelentes resultados 

para a detecção de anomalias. Eles podem ser supervisionados ou não-supervisionados, sendo 

o último caso muito utilizado na detecção de novidades. Entretanto, os autores [18] alertam que 

esses métodos consomem mais recursos computacionais do que os métodos baseados em 

estatísticas e agrupamentos, o que pode representar um desafio para a sua aplicação em 

microcontroladores. 

 

2.1.3.5  Métodos baseados em Deep Learning 

 

Segundo Kennedy [15], os métodos baseados em deep learning utilizam alguma forma 

de rede neural detectar de anomalias. Conforme explica Iodice [20], uma rede neural é formada 

por várias camadas utilizadas para aprender padrões de um conjunto de dados. Cada camada 
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por sua vez é formada por diversos neurônios. Um neurônio recebe várias entradas e produz 

uma saída. Esse processo envolve primeiro uma transformação linear (a soma ponderada das 

entradas mais um viés) e, em seguida, a aplicação de uma função de ativação não-linear a este 

resultado, o que permite à rede aprender padrões complexos.   

Kennedy [15] aponta o algoritmo autoencoder como um tipo de rede neural utilizado 

para detecção de anomalias. O autor descreve sua arquitetura como sendo composta por duas 

partes. A primeira é chamada de encoder, onde as camadas da rede neural diminuem 

progressivamente a quantidade de neurônios até chegar na metade da rede. A partir desse ponto 

começa a segunda parte, chamada de decoder. Essa parte geralmente é simétrica a primeira e 

tem como objetivo reconstruir a entrada inicial tão fielmente quanto possível. A figura 7 mostra 

um exemplo de um autoencoder. O autor explica [15] que os erros de reconstrução podem ser 

usados para detectar anomalias. Um ponto com um alto erro indica que ele não segue o mesmo 

padrão que permitiu a reconstrução dos dados após a compressão. 

Kennedy [15] observa que os métodos baseados em deep learning exigem maior 

quantidade de dados e tempo para serem treinados e um maior fine-tuning dos seus parâmetros. 

O autor [15] também aponta que, esses métodos apresentam melhores resultados para dados 

não estruturados como imagens, vídeo e textos e dados de séries temporais.  

 

Figura 7 – Representação visual das camadas de uma rede neural do algoritmo autoencoder

 
Fonte: Elaborado pelo autor. 
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2.1.3.6  Métodos baseados em decomposição espectral 

 

Segundo Samara et al. [18], os métodos baseados em decomposição espectral se 

baseiam em algoritmos de redução de dimensionalidade para simplificar um conjunto de dados 

e preservar apenas os componentes com maior variância. O principal algoritmo dessa categoria 

é o PCA (Principal Component Analysis) ilustrado na figura 8.  

Géron [19] explica que esse algoritmo identifica o hiperplano mais próximo aos dados 

e então projeta os dados nele. Primeiro ele identifica o eixo que possui a maior variância no 

conjunto de dados, então ele identifica um segundo eixo, ortogonal ao primeiro, de maior 

variância.  O algoritmo continua identificando eixos de maior variância até que o número de 

eixos seja igual ao número de dimensões do conjunto de dados [19]. No contexto da detecção 

de anomalias, Samara et al. [18] apontam que pontos com alto erro de reconstrução ou que 

divergem muito da variabilidade apresentada pelos primeiros componentes são considerados 

anômalos.   

Samara et al. [18] concluem que esses métodos podem ser usados em uma grande 

variedade de dados e dados com muitas dimensões. Entretanto, o grande consumo de recursos 

computacionais inviabiliza a sua aplicação em microcontroladores. 

 

Figura 8 –  Representação visual de um algoritmos de decomposição espectral

 
Fonte: Elaborado pelo autor 
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2.1.3.7  Métodos híbridos 

 

Os métodos híbridos são aqueles que combinam dois ou mais algoritmos de detecção a 

fim de obter um resultado mais acurado. Kennedy [15] explica que esses métodos têm dois 

objetivos: melhorar a confiabilidade do sistema diminuindo a taxa de falso positivos, isto é, 

pontos normais que foram identificados como anomalias; e melhorar a identificação de 

anomalias diminuindo a taxa de falsos negativos, isto é, anomalias que foram consideradas 

normais.  O autor [15] justifica essa abordagem pelo fato de que os detectores de anomalias, no 

geral, identificam apenas algum tipo específico de anomalias e deixam passar outros, por isso 

combinar mais de um detector pode melhorar significativamente os resultados. Contudo, 

Samara et al. [18] apontam que a combinação de dois ou mais algoritmos ou modelos pode 

aumentar em muito o uso de recursos computacionais que dificulta sua aplicação em 

dispositivos IoT. 

 

2.1.4 Detecção  de anomalias em IoT 

 

Cook et al. [21] definem a Internet das Coisas (IoT) como um paradigma de 

programação onde dispositivos, compostos por sensores, atuadores e computadores, interagem 

com o ambiente e se comunicam entre si sem a necessidade de intervenção humana. Dentro 

desse contexto, ss autores [21] apontam a existência de uma ampla gama de aplicações de 

detecção de anomalias abrangendo desde o monitoramento de sistemas industriais, até a 

identificação de falhas em redes de distribuição de energia. Entretanto, existem diversos 

desafios que dificultam a aplicação de técnicas de detecção de anomalias. 

Segundo Cook et al. [21] séries temporais são o principal formato de dados que os 

dispositivos IoT capturam, e por isso demandam atenção especial durante o processamento. 

Eles explicam [21] que a natureza desses dados é frequentemente não estacionária, podendo 

apresentar fenômenos como o concept drift (mudança da distribuição estatística dos dados no 

decorrer do tempo) e sazonalidade. Nesses casos é necessário que o modelo seja capaz de 

aprender os novos padrões a fim de detectar corretamente as anomalias. Outra dificuldade 

apontada pelos autores [21] está relacionada a falta  de conhecimento prévio de um contexto de 

aplicação ou então a falta de dados históricos o que torna inviável a aplicação de algoritmos 

supervisionados.   

Todavia, Cook et al. [21] afirmam que, o maior desafio na detecção de anomalias em 

IoT é o custo computacional. Eles descrevem [21] que em um modelo tradicional de detecção 
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os dispositivos IoT seriam usados apenas para registrar os dados. Esses dados então seriam 

enviados para um servidor para serem processados. Esse modelo tradicional permite o uso de 

um grande poder computacional, entretanto para aplicações que exigem um ação em tempo real 

a latência da resposta pode tornar a aplicação inviável.  Nesses casos, concluem os autores [21], 

não existe outra alternativa, senão processar os dados na borda. Dessa forma, a implementação 

de detecção de anomalias em IoT requer o uso de técnicas de otimização de recursos 

computacionais [21].  Essas técnicas devem reduzir o consumo de memória, CPU e potência; 

enquanto se busca minimizar a perda de acurácia do modelo de detecção [21] 

 

2.2 TinyML: Otimização de Modelos para Borda 

 

Warden e Situnayake [22] definem TinyML como um paradigma que possibilita a 

aplicação de algoritmos de Aprendizado de Máquina (ML) em dispositivos de borda com 

recursos computacionais limitados e baixo consumo de energia, na ordem de alguns miliwatts. 

Já Iodice [20] entende o conceito como um conjunto de tecnologias de ML e sistemas 

embarcados que permite a criação de sistemas inteligentes capazes de perceber o ambiente por 

meio de sensores, processar os dados aplicando modelos de ML e, então, agir com base nos 

resultados desses modelos [20].   

A utilização de técnicas de TinyML apresenta vantagens em comparação às abordagens 

tradicionais, em que os dados são enviados para processamento em nuvem. A primeira 

vantagem, apontada por Iodice [20],  é a latência. A transmissão de dados para um servidor não 

é instantânea e pode comprometer o desempenho de aplicações que requerem uma resposta 

rápida. Além disso, o autor [20] nota que a transmissão e recepção de dados é uma operação de 

grande consumo energético e mesmo com protocolos de baixa potência, como o Bluetooth, 

consome mais energia que as computações realizadas pela CPU. Dessa forma, como conclui 

Iodice [20], para maximizar o tempo de autonomia de dispositivos alimentados por baterias é 

necessário reduzir a quantidade de dados transmitidos para a nuvem. Por fim, Tsoukas et al. 

[23] destacam que o processamento local evita a exposição de dados sensíveis a possíveis 

ameaças de segurança, como ataques man-in-the-middle e eavesdropping. Logo, garante-se 

maior segurança e privacidade ao usuário ao processar os dados na borda.  

Outros fatores importantes para a viabilização da aplicação de TinyML, apontados por 

Iodice [20], estão relacionados às características dos microcontroladores. Esses dispositivos são 

baratos, de fácil programação, e são facilmente integrados a uma ampla gama de sensores. 

Apesar de suas limitações são potentes suficientes para executar algoritmos complexos de deep 
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learning. Segundo Iodice [20], essas características justificam a sua popularidade e sua presença 

em vários dispositivos eletrônicos do dia a dia e em outros setores como a indústria e a área da 

saúde.   

Entretanto, a aplicação de aprendizado de máquina na borda enfrenta diversos desafios, 

principalmente relacionados a limitação de recursos computacionais. No geral os dispositivos 

possuem apenas alguns kilobytes de memória RAM e, em alguns casos, os processadores não 

possuem aceleração de hardware para aritmética de ponto flutuante [20]. Na revisão de 

literatura feita por Capogrosso [24], os autores constataram que os requisitos de hardware para 

memória são menores do que 1MB, normalmente estão entre 64 KB e 256 KB, e as unidades 

de processamento operam na faixa de 40 a 400 MHz. Conforme ressaltado por Capogrosso et 

al. [24], essas características ressaltam a importância de técnicas de otimização específicas para 

viabilizar a aplicação do algoritmos de ML.  

Outros desafios estão relacionados à variedade de dispositivos e aos diferentes 

ambientes de aplicação. Tsoukas et al. [23] explicam que a grande heterogeneidade de 

microcontroladores inviabiliza a criação de um framework universal para treinamento, 

otimização e implantação de modelos. Um modelo construído para funcionar em uma 

arquitetura específica de MCU pode não funcionar em outra, mesmo que as especificações de 

hardware sejam semelhantes. Tsoukas et al. [23] concluem, portanto, que um modelo é 

aplicável somente para o contexto e o hardware em que ele foi desenvolvido. Ademais, Iodice 

[20] nota que o ambiente de implantação pode ser fonte de adversidades. Condições ambientais 

como clima, calor e poeira podem interferir na execução da aplicação. 

 

2.2.1 Otimização de Modelos para Sistemas Embarcados 

 

Os métodos de otimização são utilizados para viabilizar a implementação de modelos 

complexos de aprendizado de máquinas em dispositivos IoT.  A aplicação dessas técnicas 

geralmente produz uma menor utilização de memória e um menor consumo de energia, além 

da diminuição do tempo de resposta [24]. As principais abordagens presentes na literatura, que 

serão detalhadas a seguir, incluem a Quantização, a Poda, a Destilação de Conhecimento, a 

Otimização de hiperparâmetros, a Busca de arquitetura neural e as otimizações baseadas em 

hardware. 

• Quantização: Conforme descrito por Capogrosso et al. [24], a quantização é o 

processo de reduzir a quantidade de bits utilizados para representar pesos e as 

ativações de uma rede neural. Ao invés de utilizar uma representação numérica 
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de ponto flutuante com 32 bits, utiliza-se representações com menos bits. Por 

exemplo, uma representação do tipo float com 16 bits ou do tipo inteiro com 8 

bits. Essa técnica produz modelos mais compactos, além de reduzir 

significativamente os custos de computação, sem reduzir significativamente a 

acurácia do modelo. 

• Poda: A poda, como definida por Capogrosso et al. [24],  é o processo de 

remover conexões com pesos próximos de zero entre as camadas de um rede 

neural. Ela serve para reduzir o tamanho total do modelo e melhorar o tempo de 

inferência. A aplicação da poda pode ocorrer tanto durante o processo de 

treinamento quanto em um modelo já treinado. Durante o treinamento ela serve 

para evitar o sobreajuste e após ela ajuda a evitar redundância, melhorando a 

eficiência do modelo. 

• Destilação do conhecimento: Segundo os autores [24], nessa técnica um 

modelo maior e mais complexo é utilizado para treinar um modelo menor e mais 

simples. Esse processo reduz a demanda computacional de um modelo mantendo 

uma precisão aceitável.  

• Otimização de hiperparâmetros: Capogrosso et al. [24] indica que esse 

conjunto de técnicas automatiza a busca de hiperparâmetros de um modelo para 

maximizar a performance em um contexto específico. Para esse fim, algoritmos 

de buscas como o Grid Search e Random Search são utilizados para investigar 

e identificar a melhor combinação de hiperparâmetros.   

• Busca de arquitetura neural: A busca de arquitetura neural, ou neural 

architecture search (NAS), segundo os autores [24], é um método utilizado para 

automatizar o processo de busca por arquiteturas ideais de redes neurais para um 

fim específico. Além disso, Tsoukas et al. [23] apontam que esse processo 

seleciona o modelo de maior acurácia possível dentro de um espaço pré definido 

de NNs.  

• Otimizações Baseadas em Hardware: Tsoukas et al. [23] explicam que, além 

das otimizações de software, a performance de modelos de aprendizado de 

máquina pode ser maximizada por meio de otimizações de hardware. Segundo 

os autores [23], a aceleração por hardware serve para aumentar a velocidade de 

processamento ou permitir o processamento paralelo. Os autores apontam que 

[23] essas otimizações focam principalmente em melhorar a performance de 
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operações matriciais, uma vez que essas operações formam a base para muitos 

algoritmos de ML. A literatura, conforme descrito no estudo [23], detalha 

diversas arquiteturas especializadas para este fim. Tsoukas et al. [23] citam como 

exemplo o framework PRIME, que acelera aplicações de redes neurais ao utilizar 

a memória RAM para realizar multiplicações de matriz-vetor, alcançando 

melhorias de performance de até 2.360 vezes e reduzindo o consumo de energia 

em 895 vezes. Outra abordagem mencionada pelos autores [23] é o acelerador 

SmartShuttle, que foca em otimizar o acesso à memória externa (off-chip), 

utilizando esquemas dinâmicos de reuso de dados para se adaptar a diferentes 

camadas de modelos de deep learning. 

 

As abordagens apresentadas não são mutuamente exclusivas e podem se beneficiar de 

uma aplicação em conjunto. Além disso vale ressaltar que as técnicas quantização, poda e 

destilação de conhecimento são aplicáveis durante ou após o treinamento do modelo, enquanto 

as técnicas de otimização de hiperparâmetros e busca e arquitetura são aplicadas antes do 

treinamento. 

 

2.2.2 Fluxo de Trabalho 

 

Capogrosso et al. [24] apontam que o fluxo de trabalho para o desenvolvimento de 

soluções em tinyML possui duas abordagens principais: a orientada a aprendizado de máquina 

e a orientada ao desenvolvimento do hardware. Segundo os autores [24], na abordagem 

orientada a aprendizado de máquina o foco é no design e na otimização de um modelo a fim de 

garantir a sua aplicação em um dispositivo específico. O hardware é tratado como um 

componente imutável ou com pouca possibilidade de alteração. As etapas do fluxo de trabalho 

nesse caso consistem no design do modelo, otimização, implementação no dispositivo e 

avaliação da performance do modelo [24].  Já na abordagem orientada a hardware, o estudo 

[24] aponta que o foco é o desenvolvimento de arquiteturas de hardware otimizadas para a 

aplicação de algoritmos de aprendizado de máquina. Para essa abordagem as etapas do fluxo 

de trabalho são: desenvolvimento do hardware, implementação do modelo e avaliação da 

performance do modelo [24].   

Os autores [24] mencionam também uma terceira abordagem é o co-design, que integra 

as duas abordagens anteriores desde o início do projeto. Nesse caso especialistas de ambas as 

áreas colaboram desde a definição de requisitos até a prototipagem, escolhendo componentes 
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de hardware e software com uma visão global do sistema. Dessa forma, Capogrosso et al. [24] 

concluem que, a otimização de modelos e o design de hardware são processos interligados que 

visam alcançar performance superiores e menor consumo de recursos do que as abordagens 

tradicionais. 
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3 MATERIAIS E MÉTODOS 

3.1 Materiais 

 

A seguir são apresentados os materiais utilizados para o desenvolvimento do projeto. 

Esse desenvolvimento pode ser dividido em duas partes: montagem do hardware para coleta de 

dados e, posteriormente, detecção de anomalias e o desenvolvimento do modelo de aprendizado 

de máquina para realizar a detecção. As partes são mutuamente dependentes. Sem os dados, 

não seria possível treinar um modelo e sem o modelo não seria possível realizar a detecção de 

anomalias.  

 

3.1.1 Hardware 

 

3.1.1.1 Arduino 

 

O microcontrolador utilizado no projeto foi o Arduino Nano 33 BLE Sense Rev2. Este 

microcontrolador possui um processador Arm Cortex-M4F (FPU) que roda em 64 MHz, além 

disso ele possui 1 MB de memória flash e 256 kB de memória RAM.  Uma característica 

importante deste microcontrolador é que seus pinos de I/O possuem um limite de tensão de 

3.3V e não podem receber sinais de 5V, caso contrário pode-se danificar o microcontrolador 

[25]. Optou-se pela utilização desse módulo devido ao seu baixo custo e boa capacidade 

computacional, além de sua popularidade na literatura [21, 22, 24]. 

 

Tabela 3 – Resumo das características do Arduino 

Características Detalhe 

Módulo Arduino Nano 33 BLE Sense Rev2 

Processador Arm Cortex-M4F (FPU) 

Clock do processador 64 MHz 

Memória Flash 1 MB 

Memória RAM 256 kB 

Comunicação sem fio Bluetooth 5 multiprotocol 

Tensão de I/O 3.3V 

Fonte: [25]. 
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3.1.1.2 Sensores 

 

Foram utilizados 3 sensores de gases diferentes para a coleta de dados da qualidade do 

ar. O sensor MQ-7 foi usado para medir a concentração do gás Monóxido de carbono (CO), um 

gás altamente tóxico. Esse sensor é capaz de medir concentrações entre 100 a 10.000 ppm [26].  

Outro sensor utilizado foi o MQ-131, capaz de detectar ozônio, um gás incolor e reativo,  em 

níveis baixos de concentração de 10 a 1000 ppb [27]. De modo complementar, o sensor MQ-2 

foi empregado para determinar concentrações de gases inflamáveis (como o GLP, Metano, 

Butano, etc) e fumaça na faixa de 300 a 10.000 ppm [28]. Esses sensores possuem pinagens 

iguais. São alimentados por uma tensão de 5V. Possuem 4 pinos sendo dois de alimentação 

(GND e Vin), uma saída digital e uma saída analógica. Para este trabalho, foi utilizada apenas 

as saídas analógicas de cada sensor, pois elas fornecem os valores contínuos necessários para a 

análise da série temporal.  

 

Tabela 4 –  resumo das características dos sensores 

Características MQ-2 MQ-7 MQ-131 

Gases detectados Gases inflamáveis (GLP, 

Metano, etc.) e fumaça 

Monóxido de Carbono (CO) Ozônio (O3) 

Faixa de operação 300 a 10.000 ppm 100 a 10.000 ppm 10 a 1000 ppb 

Tensão de entrada 5V 5V 5V 

Sensibilidade Ajustável via potenciômetro Ajustável via potenciômetro Ajustável via 

potenciômetro 

Fonte: [27- 29]. 

 

3.1.1.3 Fonte de alimentação 

 

A Alimentação do sistema foi fornecida por um fonte ajustável para protoboard, um 

dispositivo que converte uma tensão de entrada (que pode variar de 7,5 a 12 VDC ou ser 

fornecida via cabo USB) em saídas reguladas de 3,3V e 5V [29]. A utilização dessa fonte foi 

imprescindível devido a incompatibilidade das tensões do arduino (3.3V) e dos sensores (5V). 

 

 

 

 

 

 



39 
 

3.1.2 Software 

 

3.1.2.1 Ambientes de Desenvolvimento 

 

O Arduino IDE foi o ambiente de desenvolvimento utilizado para a escrita, compilação 

e upload de software em C++ para o Arduino. O Arduino IDE é uma aplicação multiplataforma 

que simplifica o processo de desenvolvimento de software embarcado. Essa IDE possui uma 

interface amigável e de fácil utilização, além disso é compatível com uma ampla gama de 

microcontroladores, incluindo placas de outros fabricantes além da linha oficial do Arduino. 

[30]. 

 O Jupyter Notebook foi a ferramenta utilizada para desenvolver códigos em Python 

relacionados a machine learning. Sua interface baseada em células permite a execução 

individual de blocos de código, dessa forma possibilitando uma abordagem iterativa para o 

desenvolvimento do pré-processamento de dados, criação do modelo de aprendizado de 

máquina e avaliação dos resultados do treinamento [31].      

O Visual Studio Code, um editor de código leve e extensível, serviu como ambiente de 

desenvolvimento principal para códigos feitos em Python. Ele também foi utilizado para a 

execução dos Jupyter Notebooks mediante uso de extensões [32]. 

 

3.1.2.2 Linguagens de programação 

 

O C++ foi a linguagem utilizada para desenvolver o firmware executado no 

microcontrolador arduino. Sua capacidade de controle de baixo nível sobre o hardware foi 

essencial para a leitura dos sensores e controle das saídas digitais. Já o Python foi a linguagem 

utilizada para o desenvolvimento do modelo de machine learning e para a transformação desse 

modelo em um formato compatível com microcontroladores. O Python possui uma sintaxe 

simples e de fácil aprendizado, entretanto, sua principal vantagem para este projeto reside no 

vasto ecossistema de bibliotecas e ferramentas voltadas para a criação de projetos de 

aprendizado de máquina [33]. 
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3.1.2.3 Principais  bibliotecas Python  

 

O Para o desenvolvimento do projeto foram utilizadas várias bibliotecas em Python que 

formaram a base para o processamento dos dados, construção do modelo, otimização do modelo 

e comunicação via bluetooth com o microcontrolador: 

• TensorFlow: Esta plataforma de código aberto foi utilizada para o 

desenvolvimento do modelo de aprendizado de máquina Autoencoder criado 

neste projeto. Além disso, a utilização da API de alto nível Keras especializada 

em deeep learning permitiu que a criação do modelo fosse rápida e eficiente [34, 

35]. 

• TensorFlow Lite: Framework do ecossistema do TensorFlow criado 

especificamente para a aplicação em dispositivos de apenas alguns kilobytes de 

memória [36]. A aplicação desse framework na otimização do modelo foi o que 

permitiu realizar inferências no arduino em tempo de execução.  

• Pandas: Biblioteca utilizada para a leitura, manipulação e estruturação dos 

dados de séries temporais coletadas pelos sensores de qualidade do ar [37].  

• NumPy: Biblioteca especializada na cálculo numérico computacional. Essa 

biblioteca é a base para as operações eficientes em array multidimensionais [38].  

• Matplotlib: Biblioteca para a criação de visualizações, sendo fundamental para 

a geração dos gráficos apresentados na análise dos dados obtidos e na avaliação 

dos resultados do modelo [39].  

• Pyserial: Biblioteca forneceu o acesso à porta serial durante a fase de coleta de 

dados para estabelecer a comunicação (via USB) entre o microcontrolador 

Arduino e o computador que armazenava as leituras dos sensores [40]. 

• Bleak: Biblioteca para conectar com dispositivos Bluetooth Low Energy (BLE), 

foi empregada no cenário de teste comparativo ("on cloud") para implementar a 

comunicação sem fio entre o microcontrolador e o computador que executava o 

modelo não otimizado [41]. 
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3.2 Métodos 

 

3.2.1 Montagem do Protótipo e Coleta de Dados 

 

O protótipo foi desenvolvido conforme o esquemático da figura 9. Uma vez que as 

tensões de alimentação dos sensores (5V) eram incompatíveis com as tensões fornecidas pelo 

Arduino Nano 33 BLE Sense Rev2 (3.3V)  utilizou-se uma fonte de alimentação específica para 

protoboards, visível no canto superior esquerdo da figura 10, para fornecer energia aos sensores. 

O arduino foi alimentado via cabo USB-C conectado a um notebook. Além disso, para adequar 

a saída analógica dos sensores às entradas analógicas do arduino criou-se três divisores de 

tensão de forma que a tensão máxima recebida pelo arduino fosse aproximadamente 3.22 V, 

um pouco abaixo do seu limite de leitura (3.3 V). A Equação (3.1) descreve a relação de saída 

do divisor de tensão: 

 

𝑉𝑎𝑟𝑑𝑢𝑖𝑛𝑜 = 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 ×
𝑅3

𝑅1+𝑅2+𝑅3
     (3.1) 

 

Onde: 

• 𝑉𝑎𝑟𝑑𝑢𝑖𝑛𝑜 é a tensão de saída do divisor conectada a entrada analógica do 

arduino; 

• 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 é a tensão de saida do sensor; 

•  𝑅1, 𝑅2 𝑒 𝑅3 são os resistores do circuito. 

 

Para o projeto, foram selecionados os seguintes valores de resistores comerciais: 𝑅1 =

220 Ω, 𝑅2 = 1000 Ω 𝑒 𝑅3 = 2200 Ω. Aplicando esses valores na Equação (3.1) para a tensão 

máxima de saida do sensor, obtém-se a tensão máxima na entrada do Arduino: 

 

𝑉𝑎𝑟𝑑𝑢𝑖𝑛𝑜 = 5𝑉 ×
2200

220+1000+2200
 ≈ 3.22 𝑉   (3.2) 
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Figura 9 –  Esquemático do protótipo desenvolvido

 
Fonte: Elaborado pelo autor. 

 

 

Figura 10 –  Protótipo desenvolvido em protoboard 

  
Fonte: Elaborado pelo autor. 

 

Antes de iniciar o processo de leitura dos sensores e coleta de dados, o circuito foi 

alimentado e os sensores permaneceram ligados por 48 horas. Essa prática é uma recomendação 

do fabricante para garantir que os sensores forneçam leituras estáveis [27-29]. Após esse 

período de aquecimento deu-se início a coleta de dados. Para ler as entradas analógicas foi 

desenvolvido um programa para o arduino capaz de realizar a leitura e enviá-la via comunicação 

serial por um cabo USB-C. O programa utilizou uma taxa de transmissão de 9600 bits por 

segundo e a leitura dos sensores foi feita em intervalos de 1,5 segundos. No notebook, foi 
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desenvolvido um script Python para ler a porta serial e salvar os dados em um arquivo CSV. 

Na Figura 11 são mostrados os dados dos três sensores, com aplicação de uma média móvel de 

um minuto para suavizar as curvas. A coleta de dados foi realizada durante um período de 

aproximadamente 45 horas no interior de um residência longe de ambientes que possuem 

ocorrência de gases ou fumaças que poderiam comprometer o desenvolvimento do projeto. A 

lacuna, visível na figura 11 , foi causada por um fator externo ao protótipo, uma falha de energia 

elétrica no local. Para a etapa de treinamento do modelo, foram utilizados apenas os trechos de 

dados contínuos coletados antes e depois desta interrupção. 

 

Figura 11 –  Gráfico das leituras brutas dos sensores de CO, O3 e Fumaça 

 
Fonte: Elaborado pelo autor. 

 

 

3.2.2 Desenvolvimento do Modelo 

 

Iniciou-se o desenvolvimento do modelo com a leitura dos dados armazenados nos 

arquivos CSV. Para esse fim foi utilizado a biblioteca Pandas [33] que possui métodos nativos 

para a leitura desse tipo de arquivo. Em seguida, os dados foram transformados do formato de 

Dataframe, o formato padrão do Pandas, para o formato de Numpy array, o formato padrão do 

Numpy, com o objetivo de simplificar as operações com arrays multidimensionais. Após essa 

transformação os dados foram normalizados para o intervalo de 0 a 1. Para isso dividiram-se 

todos os dados por 1024 uma vez que o arduino possui uma escala de leitura analógica de 0 até 

1023.  

Após a normalização, os dados foram divididos em subsequências de 30 pontos. Uma 

subsequência é o input do modelo desenvolvido. Posteriormente, utilizou-se o método shuffle 
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do Numpy [38] para embaralhar a ordem dessas subsequências e dessa maneira evitar que o 

modelo se sobreajuste a tendências temporais maiores que 45 segundos. A escolha por uma 

janela curta se deve às limitações do hardware onde o modelo foi embarcado. Embora janelas 

maiores pudessem capturar tendências mais complexas, elas também exigiriam redes neurais 

mais complexas com mais neurônios e conexões, o que poderia comprometer a sua aplicação 

no microcontrolador. Por fim, os dados foram divididos em três conjuntos distintos - treino, 

validação e teste - nas proporções de 60%, 20% e 20%, respectivamente. Dessa forma, a 

distribuição final dos dados totalizou 1.979 amostras para o conjunto de treinamento, 659 para 

a validação e 661 para o conjunto de teste. 

Antes de começar o treinamento do modelo foi necessário ‘achatar’ as dimensões das 

subsequências que possuíam dimensão de 30x3, 30 pontos para cada um dos 3 sensores, para 

dimensão 90x1. Isto porque, durante a fase de implantação no arduino constatou-se que 

autoencoders que possuíam camadas flatten e reshape falhavam durante a inferência no 

microcontrolador.  A fim de resolver esse problema a fase de ‘achatamento’ dos dados foi 

transferida para o pré-processamento. Com essa abordagem foi possível executar inferências 

nos dispositivos com sucesso. 

O modelo implementado foi um autoencoder empilhado com entrada e saída de 90 

pontos. O encoder foi formado por camadas de 30, 12 e 5 neurônios, respectivamente. Já o 

decoder foi formado por camadas de 12, 30 e 90 neurônios, respectivamente. A definição desta 

arquitetura específica foi obtida empiricamente após a realização de diversos testes, buscando-

se o equilíbrio ideal entre a capacidade de generalização e as restrições de consumo de memória 

do microcontrolador. A função de ativação Rectified Linear Unit (ReLU) foi utilizada em todas 

as camadas com exceção da última.  Essa função foi escolhida devido a sua capacidade de 

modelar relações não lineares e sua alta velocidade de convergência [20, 24]. Além disso, 

aplicou-se uma regularização L1 de fator 0.01 em todas as camadas do encoder a fim de evitar 

o sobreajuste e reforçar a eliminação de características menos importantes [19]. 

Para o treinamento do modelo foi utilizada a função de perda Mean Squared Error 

(MSE) utilizando o otimizador Gradiente Descendente Estocástico com taxa de aprendizado de 

0.01. Além disso, optou-se por monitorar a performance do modelo utilizando a métrica Mean 

Absolute Error (MAE).  O modelo foi treinado por 200 épocas. Após o treinamento do modelo 

utilizou-se o conjunto de validação para determinar o limiar do erro de reconstrução a partir do 

qual todo valor que seja maior será considerado anômalo. Para isso optou-se por utilizar a 

métrica Mean Absolute Error para calcular os erros de reconstrução de cada subsequência.  Essa 

métrica foi escolhida por ser robusta a presença de anomalias e por sua simplicidade de cálculo. 
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Em seguida, calculou-se o MAE para todo conjunto de validação e determinou-se o valor do 

percentil 99,5% como limiar, assim a taxa de anomalia esperada é de 0,5%. Por fim, o conjunto 

de teste foi utilizado para avaliar o modelo e verificar a distribuição do MAE e a taxa de 

anomalia resultante com base no limiar definido. 

 

 

3.2.3 Otimização e Deploy 

 

Com o modelo devidamente treinado iniciou-se o processo de otimização. Nesse 

processo foi realizada a quantização completa para inteiros de 8 bits (INT8) nas camadas 

profundas do modelo. Entretanto, optou-se por manter as camadas de entrada e saída como 

float, a fim de evitar a conversão de tipos de dados em tempo de execução e assim simplificar 

o firmware do arduino. Para realizar a quantização foi necessário passar uma função geradora 

à um método da biblioteca Tensor Flow Lite. Essa função retorna um valor do conjunto de 

validação por vez e é utilizado para calibrar a quantização do modelo [22]. Foram convertidos 

um modelo com quantização e um modelo sem quantização a fim de medir a redução do 

consumo de memória e medir a queda de performance na reconstrução. A biblioteca Tensor 

Flow Lite salva os modelos no formato .tflite representado como Flatbuffer, esse formato é 

utilizado para garantir um serialização eficiente e o permitir o carregamento direto na RAM 

[22]. 

Após a conversão para o formato .tflite o modelo foi convertido em C usando o comando 

xxd do linux. Esse comando é utilizado para converter arquivos binários nas suas respectivas 

representações hexadecimais, além disso utilizando a flag -i o comando salva a representação 

hexadecimal em formato de código C  [42]. Dentro do código C do modelo é necessário definir 

a macro ‘DATA_ALIGN_ATTRIBUTE’ a fim de garantir que  o modelo seja alinhado em 

memória e dessa forma garantir um bom desempenho [22].  

Uma vez que o modelo foi convertido deu-se início ao desenvolvimento do código 

responsável por realizar a leitura dos sensores, invocar o modelo e fazer a detecção de 

anomalias. A figura 12 abaixo apresenta um fluxograma com as principais etapas do programa. 

A primeira etapa diz respeito a inicialização de variáveis. Nessa etapa instanciaram-se os 

ponteiros que apontam para o interpretador, para o modelo e para os vetores de entrada e saída, 

além das variáveis de controle que serviram para armazenar os valores das leituras dos sensores 

e controlar o fluxo. Nessa etapa também definiu-se a memória de trabalho usando a variável 

tensor_arena.  Essa variável é de grande importância, uma vez que ela serve como memória 
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RAM de trabalho e armazena a entrada, a saída e os valores dos tensores intermediários. Sem 

armazenar bytes suficientes é impossível fazer inferências com o modelo [22].  

A próxima etapa do fluxo é a execução da função de setup. Dentro dessa função 

instancia-se o modelo a partir do array de bytes gerados pelo comando xxd. Em seguida, foi 

isntanciada a classe responsável por fornecer as implementações das operações e a classe do 

intérprete responsável por realizar as inferências. Usando essa última classe executou-se o 

método AllocateTensors para alocar o espaço de memória necessário para os tensores dentro da 

tensor_arena definida na primeira etapa [22]. Logo após, obtiveram-se os ponteiros para a 

entrada e saída do modelo. Por fim o pino digital 6 foi definido como OUTPUT e deu-se início 

a comunicação serial com um taxa de 9600 bits por segundo.  

Na etapa seguinte leram-se os valores dos sensores. Para cada sensor armazenou-se o 

valor das últimas 30 leituras em um array implementando uma lógica de janela deslizante, onde 

o dado mais recente era inserido no índice zero e o restante era ‘empurrado’ para direita. Dessa 

forma se em um ciclo um valor está no índice i, no ciclo seguinte ele estará no índice i+1, sendo 

o último valor descartado. Antes de prosseguir para a etapa de inferência o programa verificava 

se já haviam sido realizadas 30 leituras. Caso contrário o programa continua para a próxima 

leitura dos sensores depois de um delay de 1,5 segundos.  Depois de terem sido realizadas 30 

leituras o programa escrevia os valores dos arrays com dados de sensores no input do modelo. 

Diferente das APIs de alto nível como Keras, onde os dados são passados como argumento para 

uma função, a biblioteca Tensor Flow Lite Micro exige que os dados sejam escritos diretamente 

para buffers de memória [22].  Além disso, é necessário copiar os valores passados para o input 

do modelo em outro array para posterior comparação com o output, uma vez que o tensor flow 

lite pode usar a buffer de entrada para cálculos intermediários [22]. Por fim, o modelo é 

invocado.  

Após a inferência do modelo, utilizou-se a cópia do input juntamente com o vetor de 

output para calcular o MAE da subsequência. Se o valor do MAE for maior do que o valor de 

limiar determinado durante o treinamento, a subsequência é considerada uma anomalia e a saída 

digital 6 recebe o valor 1 (HIGH). Caso contrário a subsequência é considerada normal e o valor 

0 (LOW) é passado para a saída digital 6. Por fim, os dados dos sensores e as medidas de 

execução são enviados para o computador de monitoramento via conexão USB-C.  
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Figura 12 –  Fluxograma da lógica de inferência executada no microcontrolador

 
Fonte: Elaborado pelo autor. 
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3.2.4 Procedimentos de Validação 

 

3.2.4.1 Avaliação da Otimização 

 

A fim de avaliar o impacto da otimização no desempenho do modelo, o modelo foi 

convertido duas vezes para o formato padrão do Tensor Flow Lite (.tflite). Na primeira 

conversão não foi aplicada nenhuma otimização e na segunda aplicou-se uma quantização 

completa para inteiros de 8 bits (INT8) nas camadas profundas do modelo. Dessa forma evitou-

se que a diferença do formato do modelo interfira na sua performance. Após a conversão mediu-

se o tamanho dos arquivos em kilobytes para verificar o efeito da quantização no consumo de 

memória. Em seguida, foram instanciados os dois modelos usando o interpretador do Tensor 

Flow Lite no ambiente Python e usou-se o conjunto de teste para realizar inferências e assim 

avaliar o erro de reconstrução. Utilizou-se esse erro para calcular o MAE e o MSE para os dois 

casos.  

 

3.2.4.2 Validação Experimental em Tempo Real 

 

 Visando comparar a performance de um sistema que aplica o conceito de TinyML com 

uma abordagem tradicional, isto é, onde a inferência do modelo é realizada em um computador 

central, foi desenvolvido um segundo sistema que não realiza inferência dentro do 

microcontrolador. Esse segundo sistema compartilha o circuito e o modelo de machine learning 

com o primeiro, a única diferença está no firmware do Arduino e na utilização de um outro 

computador.  A figura 13 apresenta o fluxo desse sistema de comparação. Nesse novo fluxo 

não é necessário configurar a biblioteca do Tensor Flow Lite no arduino,  entretanto requer-se 

o recurso de Bluetooth.   

Para simular uma abordagem tradicional optou-se por utilizar uma comunicação sem fio 

via Bluetooth entre o microcontrolador e um notebook que faz o papel de um computador 

central. Para fins de replicabilidade, o notebook utilizado como computador central possui um 

processador Intel(R) Core(TM) i3-6006U CPU 2.00GHz, 8 GB de memória RAM e executava 

o sistema operacional Ubuntu 20.04.6 LTS. Nesse sistema de comparação, o arduino é 

responsável por fazer as leituras dos sensores, enviar os dados e alterar o estado do LED quando 

necessário. Já o computador é responsável por armazenar o valor das últimas 30 leituras, 

invocar o modelo, calcular o MAE e enviar para o arduino um valor indicando se a subsequência 
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é uma anomalia ou não. Para realizar a comunicação Bluetooth foi utilizado o módulo Arduino 

BLE presente no Arduino IDE [31] e a biblioteca Bleak [41] do Python.  

Para os dois sistemas mediu-se o consumo de memória Flash e RAM no momento da 

compilação e upload do programa para o arduino. Os dois sistemas foram executados 

consecutivamente aplicando o mesmo procedimento para a introdução de anomalias. Para 

garantir uma comparação robusta, a coleta de dados para análise foi padronizada: em ambos os 

casos, os dados foram enviados ao computador via porta serial (USB) após a conclusão de cada 

ciclo de detecção. Esses dados correspondem aos valores dos sensores, uma flag de valor 0 ou 

1 que indica se a subsequência é uma anomalia e o timestamp em que a medida foi realizada. 

Os sistemas possuem o mesmo delay entre cada ciclo de inferência: 1,5 segundos, que é o 

mesmo valor utilizado no programa de coleta de dados.  

Para a validação da detecção realizou-se a introdução de anomalias reais para medir a 

latência do sistema em identificá-las. Para cada um dos dois sistemas o seguinte experimento 

foi realizado. Uma anomalia foi gerada manualmente no ambiente dos sensores. Para induzir 

as anomalias, utilizou-se um isqueiro para liberar gás butano (acionando os sensores MQ-2 e 

MQ-7) e, em seguida, acendeu-se a chama para gerar fumaça e CO. Este procedimento foi 

repetido 10 vezes para cada sistema. A medida do tempo de execução foi calculada 

posteriormente por meio da análise dos dados coletados e dos vídeos de referência. Para cada 

um dos eventos de anomalia induzidos foram identificados dois marcos: o tempo de início e 

tempo de resposta. O tempo de início é definido como o timestamp em que os valores dos 

sensores apresentaram a primeira alteração significativa, indicando o início do evento e o tempo 

de resposta é o tempo em que a flag de anomalia do sistema saiu de 0 para 1. A diferença entre 

esses dois marcos resulta no tempo de detecção. 
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Figura 13 –   Fluxograma da lógica de inferência executada na nuvem. 

 
Fonte: Elaborado pelo autor. 
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4 RESULTADOS E DISCUSSÃO 

 

Este capítulo apresenta os resultados obtidos com o desenvolvimento do projeto. Essa 

exposição foi dividida em três etapas: treinamento do modelo, otimização e validação 

experimental. Na primeira etapa apresentam-se os resultados obtidos com o treinamento do 

modelo de aprendizado de máquina e sua posterior avaliação. Em seguida, analisam-se os 

resultados obtidos com a quantização do modelo e como essa operação impactou a sua 

performance. Por último, realizou-se uma análise comparativa entre o sistema tradicional e o 

sistema que utiliza TinyML. 

 

4.1 Resultados do Treinamento do Modelo 

 

A figura 14 apresenta as curvas de convergência das métricas do modelo. Observa-se 

que as curvas da função de perda (MSE), linhas em vermelho, convergem rapidamente em cerca 

de 75 épocas.  Esse era um resultado esperado devido a utilização da função de ativação ReLU 

na maioria das camadas do autoencoder. Além disso, pode-se observar que as curvas de 

treinamento e validação estão praticamente sobrepostas, o que indica que o modelo não sofreu 

overfitting. Ou seja, o modelo desenvolvido generaliza bem para dados que não foram usados 

durante o treinamento. Por fim, nota-se que o modelo atingiu um platô na perda de reconstrução 

entre 75 e 100 épocas. O valor baixo na perda de reconstrução indica que o modelo não sofreu 

underfitting e foi capaz de aprender os padrões do conjunto de dados. 
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Figura 14 –  Curvas de convergência das métricas de perda (Loss) e MAE durante o treinamento do  

autoencoder. 

 
 

Fonte: Elaborado pelo autor. 

 

 

Após o treinamento do modelo calculou-se o MAE para todo o conjunto de dados de 

validação. A figura 15 apresenta a distribuição desses erros. Pode-se observar que grande parte 

dos erros se encontram no intervalo entre a média menos um desvio padrão e a média mais um 

desvio padrão. Além disso, nota-se claramente que a distribuição dos erros não segue uma 

forma normal. Essa falta de normalidade inviabiliza o uso de métodos paramétricos, como por 

exemplo o uso da média e do desvio padrão, na escolha do limiar de detecção de anomalias. 

Assim conclui-se que a escolha de usar um método não paramétrico para o cálculo do limiar, 

neste caso o percentil 99,5% do MAE, foi a escolha mais apropriada, uma vez que permite 

maior robustez frente à distribuição dos dados. O limiar calculado foi de 0.022119. 
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Figura 15 –  Distribuição do erro absoluto médio (MAE) de reconstrução no conjunto de dados de 

validação.. 

 
 

Fonte: Elaborado pelo autor. 

 

Posteriormente ao cálculo do limiar, calculou-se o MAE para todo o conjunto de dados 

de teste. A distribuição dos erros de reconstrução deste conjunto pode ser vista na figura 16. 

Utilizando os valores de MAE e o valor do limiar calculou-se a percentagem de anomalias no 

conjunto. Obteve-se um resultado de 0.454% de anomalias. Esse valor é praticamente o valor 

esperado de 0,5% definido pela escolha do percentil 99,5%.  Esse fato reforça a indicação inicial 

de que o modelo desenvolvido não sofreu overfitting. 

 
Figura 16 –  Distribuição do erro absoluto médio (MAE) de reconstrução no conjunto de dados de 

teste.

 
 

Fonte: Elaborado pelo autor. 
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4.2 Resultados da Otimização 

 

A tabela abaixo contém o comparativo entre o desempenho do modelo desenvolvido 

antes e depois da quantização. Observa-se que o modelo quantizado apresentou uma redução 

de 47,02% em seu tamanho. Além disso, não houve perda significativa em nenhuma das outras 

métricas de desempenho. Esse resultado demonstra que a quantização é uma operação ideal 

para reduzir o consumo de memória. De fato, esse resultado expressivo coloca a quantização 

como uma técnica de interesse em todo o campo de aprendizado de máquina, para além do 

escopo do TinyML. 

 
Tabela 5 –  Comparativo das métricas do modelo pré e pós-quantização. 

Medidas Modelo Sem Quantização Modelo com Quantização 

Tamanho (kB) 28,07 14,82 

Média MAE 0.004206 0.004207 

Desvio Padrão MAE 0.003594 0.003594 

Média MSE 0.000052 0.000052 

Desvio Padrão MSE 0.000213 0.000213 

Fonte: Elaborado pelo autor. 

 

4.3 Resultados da Validação Experimental 

 

A tabela 6 apresenta os resultados comparativos entre o sistema embarcado e o sistema 

tradicional. Observa-se que a memória de programa no sistema tradicional é 62% maior do que 

no sistema embarcado, mesmo o programa desenvolvido no modelo embarcado sendo maior e 

mais complexo. Esse fato indica que a biblioteca utilizada para a comunicação via bluetooth 

consome mais memória que a biblioteca do Tensor Flow Lite. Já para a memória RAM estática 

o sistema embarcado consome 20% de memória a mais do que o sistema tradicional. Esse era 

um resultado esperado, uma vez que no sistema embarcado é preciso inicializar algumas 

variáveis globais como a tensor_arena, que é responsável por armazenar resultados 

intermediários da inferência para rodar o modelo corretamente. Dessa forma, antes mesmo da 

execução o sistema embarcado já utiliza mais memória RAM do que o sistema tradicional.  

 A tabelas 7 e 8 apresentam os resultados de cada evento de introdução de 

anomalias no sistema embarcado e sistema tradicional, respectivamente. Em relação ao tempo 

médio de detecção, verificou-se que o sistema embarcado foi 1,3 vezes mais rápido na detecção 

de anomalias do que o sistema tradicional (PC). Esse resultado evidencia que, apesar do maior 
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consumo de memória RAM, o sistema embarcado apresenta uma velocidade de detecção 

superior, reforçando sua adequação para aplicações em tempo real. 

 
Tabela 6 –  Comparação de recursos computacionais e tempo de inferência entre o sistema embarcado 

(TinyML) e o sistema local (PC). 

Medidas Sistema Embarcado Sistema Tradicional (PC) 

Memória Flash 197 Kb 321 Kb 

Memória RAM Estática 82 Kb 68 kB 

Tempo Médio de Detecção 4,5 s 5,8 s 

Fonte: Elaborado pelo autor. 

 

Tabela 7 –  Resultados dos testes de latência de detecção do sistema embarcado (TinyML). 

Evento  Início do Evento 

(hh:mm:ss) 

Momento da detecção 

(hh:mm:ss) 

Latência de Detecção 

(s) 

1 17:37:56 17:38:02 6 

2 17:39:46 17:39:49 3 

3 17:41:25 17:41:30 5 

4 17:42:46 17:42:48 2 

5 17:44:38 17:44:41 3 

6 17:46:17 17:46:19 2 

7 17:47:51 17:48:06 15 

8 17:49:32 17:49:35 3 

9 17:52:10 17:52:13 3 

10 17:53:59 17:54:02 3 

Fonte: Elaborado pelo autor. 

 
Tabela 8 –  Resultados dos testes de latência de detecção do sistema de processamento tradicional 

(PC). 

Evento  Início do Evento 

(hh:mm:ss) 

Momento da detecção 

(hh:mm:ss) 

Latência de Detecção 

(s) 

1 18:09:55 18:10:03 8 

2 18:11:17 18:11:21 4 

3 18:12:24 18:12:29 5 

4 18:14:20 18:14:28 8 

5 18:15:53 18:15:59 6 

6 18:17:57 18:18:01 4 

7 18:19:33 18:19:36 3 

8 18:21:08 18:21:12 4 

9 18:22:38 18:22:46 8 

10 18:24:17 18:24:25 8 

Fonte: Elaborado pelo autor. 
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5 CONCLUSÃO 

 

Este trabalho se propôs a desenvolver um sistema capaz de detectar anomalias na 

qualidade do ar em tempo real utilizando um microcontrolador. O objetivo foi superar o tempo 

de latência e o custo computacional da comunicação sem fio que as abordagens tradicionais 

com processamento em nuvem possuem. Para enfrentar o problema de detecção de anomalias 

foi escolhido utilizar uma abordagem de reconstrução das séries temporais. Onde o erro de 

reconstrução foi utilizado como um score de anomalias. A fim de realizar essa reconstrução 

utilizou-se uma arquitetura de redes neurais chamada de autoencoder.  

A análise dos resultados demonstrou a eficácia da abordagem. A técnica de quantização 

completa para inteiros de 8 bits (INT8) foi fundamental para a aplicação do projeto, diminuindo 

o tamanho do modelo em 47,02% sem introduzir perdas significativas de performance nas 

métricas de reconstrução (MAE e MSE). Na validação experimental comparativa, o sistema 

embarcado apresentou um desempenho superior ao sistema tradicional, com um tempo médio 

de detecção de 4,5 segundos, sendo 1,3 vezes mais rápido que a arquitetura tradicional (5,8 

segundos). Essa diferença comprova que a eliminação ou a redução da comunicação sem fio, 

proporcionada pelo processamento local, é um fator decisivo para aplicações em tempo real. 

Embora a implementação embarcada tenha exigido um consumo 20% maior de memória 

RAM estática (82 Kb) para a alocação das variáveis globais necessárias à inferência do modelo, 

ela consumiu 62% menos memória Flash (197 Kb) que o sistema tradicional (321 Kb), devido 

ao alto custo da biblioteca de comunicação Bluetooth.  

É importante notar que a validação do sistema tradicional utilizou comunicação 

Bluetooth, uma escolha justificada pelas limitações do hardware disponível (ausência de 

conectividade à internet no microcontrolador). Para trabalhos futuros, sugere-se uma análise 

comparativa utilizando comunicação via internet (como Wi-Fi), o que aproximaria a validação 

de um cenário de processamento em nuvem mais realista. 

Além disso, embora o modelo autoencoder e a técnica de quantização INT8 tenham se 

provado eficazes para este projeto, o escopo não permitiu uma comparação exaustiva com 

outras abordagens. Como investigação futura, seria de grande valia comparar o desempenho de 

outros modelos e técnicas de otimização (como os descritos no Capítulo 2) no mesmo contexto 

de hardware, a fim de determinar a combinação com a melhor relação entre performance e 

eficiência de recursos 
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Conclui-se, portanto, que este trabalho atingiu seu objetivo ao desenvolver e validar um 

dispositivo portátil, de baixo custo e alta eficiência. O sistema TinyML demonstrou ser uma 

solução rápida e viável para o monitoramento de anomalias, reforçando as vantagens do 

processamento na borda em aplicações que demandam respostas imediatas ou que devem 

limitar a transmissão de dados via rede sem fio. 

  



58 
 

REFERÊNCIAS 

[1] B. Zhang and X. Li, "Optimal computation offloading for industrial IoT," IEEE Access, 

2025. Accessed: Apr. 18, 2025. [Online]. Available: 

https://ieeexplore.ieee.org/document/10964287 

 

[2] P. Gupta and R. S. Jadon, "PLANT Detect Net: IoT + Deep Learning for plant disease 

detection," Evolving Systems, 2025. Accessed: Apr. 18, 2025. [Online]. Available: 

https://link.springer.com/article/10.1007/s12530-025-09685-x 

 

[3] A. Ahmad and D. Choi, "A wireless power transfer system for IoMT implantable devices 

using inductive coupling and adaptive frequency control," IEEE Internet of Things Journal, 

2025. Accessed: Apr. 18, 2025. [Online]. Available: 

https://ieeexplore.ieee.org/document/10964304 

 

[4] IoT Analytics, "State of IoT—Spring 2024: Number of connected IoT devices growing 16% 

to 16.7 billion worldwide," IoT Analytics, 2024. Accessed: Apr. 18, 2025. [Online]. Available: 

https://iot-analytics.com/number-connected-iot-devices/ 

 

[5] D. Situnayake and J. Plunkett, AI at the Edge: Solving Real-World Problems with 

Embedded Machine Learning, 1st ed. Sebastopol: O’Reilly Media, 2023. 

 

[6] G. M. Iodice, TinyML: Combine Artificial Intelligence and Ultra-Low-Power Embedded 

Devices to Make the World Smarter. Birmingham: Packt Publishing, 2022. 

 

[7] L. Banz et al., "A machine learning-oriented survey on tiny machine learning," 2023. 

Accessed: Apr. 04, 2025. [Online]. Available: https://arxiv.org/abs/2306.09349 

 

[8] W. de Simoni et al., O Estado da Qualidade do Ar no Brasil. São Paulo: WRI Brasil, 2021. 

Accessed: Apr. 24, 2025. [Online]. Available: https://www.wribrasil.org.br/publicacoes/o-

estado-da-qualidade-do-ar-no-brasil 

 

 



59 
 

[9] Companhia Ambiental do Estado de São Paulo (CETESB), "Padrões de Qualidade do Ar," 

São Paulo: CETESB, [2023?]. Accessed: Apr. 22, 2025. [Online]. Available: 

https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/ 

 

[10] Companhia Ambiental do Estado de São Paulo (CETESB), "Qualidade do Ar," São Paulo: 

CETESB, [2023?]. Accessed: Apr. 22, 2025. [Online]. Available: 

https://cetesb.sp.gov.br/ar/poluentes 

 

[11] S. N. Dapper, C. Spohr, and R. R. Zanini, "Poluição do ar como fator de risco para a saúde: 

uma revisão sistemática no estado de São Paulo," Estudos Avançados, São Paulo, vol. 30, no. 

86, pp. 83–98, 2016. doi: 10.1590/S0103-40142016.00100006. 

 

[12] Redação, "Estado do Rio lidera ranking nacional de monitoramento da qualidade do ar, 

segundo estudo," O Fluminense, Niterói, Mar. 2, 2024. Accessed: Apr. 23, 2025. [Online]. 

Available: https://www.ofluminense.com.br/cidades/rio-de-janeiro/2024/03/1272213-estado-

do-rio-lidera-ranking-nacional-de-monitoramento-da-qualidade-do-ar-segundo-estudo.html 

 

[13] D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Science+Business Media 

B.V., 1980. (Monographs on Applied Probability and Statistics). doi: 10.1007/978-94-015-

3994-4. 

 

[14] S. K. Adari and S. Alla, Beginning Anomaly Detection Using Python-Based Deep 

Learning: Implement Anomaly Detection Applications with Keras and PyTorch, 2nd ed. [S.l.]: 

Apress, 2024. doi: 10.1007/979-8-8688-0008-5. 

 

[15] B. Kennedy, Outlier Detection in Python. Shelter Island: Manning Publications Co., 2025. 

 

[16] P. Boniol, Q. Liu, M. Huang, T. Palpanas, and J. Paparrizos, "Dive into Time-Series 

Anomaly Detection: A Decade Review," 2024. 

 

[17] D. Colombo, L. Leonardi, A. Panarello, and M. Merlini, "Anomaly Detection for IoT 

Time-Series Data: A Survey," Sensors, vol. 23, no. 8, p. 3871, 2023. doi: 10.3390/s23083871. 

 



60 
 

[18] M. A. Samara, I. Bennis, A. Abouaissa, and P. Lorenz, "A Survey of Outlier Detection 

Techniques in IoT: Review and Classification," Journal of Sensor and Actuator Networks, vol. 

11, no. 1, p. 4, 2022. doi: 10.3390/jsan11010004. 

 

[19] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed. Sebastopol: O’Reilly 

Media, 2019. 

 

[20] G. M. Iodice, TinyML Cookbook: Combine Artificial Intelligence and Ultra-Low-Power 

Embedded Devices to Make the World Smarter. Birmingham: Packt Publishing, 2022. 

 

[21] A. A. Cook, G. Misirli, and Z. Fan, "Anomaly detection for IoT time-series data: a survey," 

IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481-6494, Jul. 2020. doi: 

10.1109/JIOT.2019.2958185. 

 

[22] P. Warden and D. Situnayake, TinyML: Machine Learning with TensorFlow Lite on 

Arduino and Ultra-Low-Power Microcontrollers, 1st ed. Sebastopol, CA: O’Reilly Media, 

2020. 

 

[23] V. Tsoukas, A. Gkogkidis, E. Boumpa, and A. Kakarountas, "A review on the emerging 

technology of TinyML," ACM Computing Surveys, vol. 56, no. 10, art. 259, pp. 1-37, Jun. 

2024. doi: 10.1145/3661820. 

 

[24] L. Capogrosso, F. Cunico, D. S. Cheng, F. Fummi, and M. Cristani, "A machine learning-

oriented survey on tiny machine learning," IEEE Access, vol. 12, pp. 23406-23440, 2024. doi: 

10.1109/ACCESS.2024.3365349. 

 

[25] Arduino, "Nano 33 BLE Sense Rev2," 2025. Accessed: Oct. 19, 2025. [Online]. Available: 

https://docs.arduino.cc/hardware/nano-33-ble-sense-rev2/ 

 

[26] Hanwei Electronics, "MQ-7 Semiconductor Sensor for Carbon Monoxide," Datasheet, 

Zhengzhou, [n.d.]. Accessed: Nov. 1, 2025. [Online]. Available: 

https://cdn.sparkfun.com/assets/b/b/b/3/4/MQ-7.pdf 

 



61 
 

[27] Winsen, "MQ-131 Semiconductor Sensor for Ozone," Datasheet, Zhengzhou, [2012?]. 

Accessed: Nov. 1, 2025. [Online]. Available: https://cdn.sparkfun.com/assets/9/9/6/e/4/mq131-

datasheet-low.pdf 

 

[28] Hanwei Electronics, "MQ-2 Semiconductor Sensor for Combustible Gas," Datasheet, 

Zhengzhou, [n.d.]. Accessed: Nov. 1, 2025. [Online]. Available: 

https://www.haoyuelectronics.com/Attachment/MQ-2/MQ-2.pdf 

 

[29] Eletrogate, "Fonte Ajustável Para Protoboard," 2025. Accessed: Oct. 19, 2025. [Online]. 

Available: https://www.eletrogate.com/fonte-ajustavel-para-protoboard 

 

[30] Arduino IDE. Accessed: Oct. 27, 2025. [Online]. Available: 

https://www.arduino.cc/en/software 

 

[31] "Jupyter Notebook." Accessed: Oct. 27, 2025. [Online]. Available: https://jupyter.org 

 

[32] "Visual Studio Code." Accessed: Oct. 27, 2025. [Online]. Available: 

https://code.visualstudio.com 

 

[33] "Python." Accessed: Oct. 27, 2025. [Online]. Available: https://www.python.org/ 

 

[34] TensorFlow, "TensorFlow," 2025. Accessed: Oct. 27, 2025. [Online]. Available: 

https://www.tensorflow.org/ 

 

[35] Keras, "Keras," 2025. Accessed: Oct. 27, 2025. [Online]. Available: https://keras.io/ 

 

[36] TensorFlow, "TensorFlow Lite," 2025. Accessed: Oct. 27, 2025. [Online]. Available: 

https://www.tensorflow.org/lite 

 

[37] Pandas Development Team, "pandas," 2025. Accessed: Oct. 27, 2025. [Online]. Available: 

https://pandas.pydata.org/ 

 

[38] NumPy Developers, "NumPy," 2025. Accessed: Oct. 27, 2025. [Online]. Available: 

https://numpy.org/ 



62 
 

 

[39] J. D. Hunter et al., "Matplotlib: A 2D Graphics Environment," Computing in Science & 

Engineering, vol. 9, no. 3, pp. 90-95, 2007. Accessed: Oct. 27, 2025. [Online]. Available: 

https://matplotlib.org/ 

 

[40] C. Liechti et al., "pyserial," GitHub repository, 2025. Accessed: Oct. 27, 2025. [Online]. 

Available: https://github.com/pyserial/pyserial 

 

[41] Bleak Developers, "Bleak," GitHub repository, 2025. Accessed: Oct. 27, 2025. [Online]. 

Available: https://github.com/hbldh/bleak 

 

[42] S. Sharma, "Using XXD Command in Linux," Linux Handbook, Mar. 17, 2023. Accessed: 

Nov. 1, 2025. [Online]. Available: https://linuxhandbook.com/xxd-command/  



63 
 

Apêndice A – REPOSITÓRIO DO CÓDIGO FONTE 

 

O código-fonte completo desenvolvido para este trabalho, incluindo os scripts de 

aquisição de dados do Arduino e o modelo de Machine Learning, está disponível 

publicamente no seguinte repositório GitHub: https://github.com/gabriel-victor933/tcc.   

 

 


