

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

Gabriel Victor Alves Santana

Detecção de anomalias na qualidade do ar utilizando aprendizado de máquina

em microcontroladores

São Carlos

2025

Gabriel Victor Alves Santana

Detecção de anomalias na qualidade do ar utilizando aprendizado de máquina

em microcontroladores

Monografia apresentada ao Curso de

Engenharia Elétrica com ênfase em Eletrônica,

da Escola de Engenharia de São Carlos da

Universidade de São Paulo, como parte dos

requisitos para obtenção do título de

Engenheiro Eletricista.

Orientador: Prof. Dr. Pedro de Oliveira

Conceição Junior

São Carlos

2025

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio

convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

A231d

Ficha catalográfica elaborada pela Biblioteca Prof. Sérgio Rodrigues Fontes

e pelo Serviço de Comunicação e Marketing da EESC-USP,

com dados inseridos pelo(a) autor(a).

Alves Santana, Gabriel Victor

Detecção de anomalias na qualidade do ar utilizando

aprendizado de máquina em microcontroladores / Gabriel

Victor Alves Santana ; orientador Pedro de Oliveira

Conceição Junior. -- São Carlos, 2025.

70 p.

Monografia - Graduação em Engenharia Elétrica com

ênfase em Eletrônica -- Escola de Engenharia de São

Carlos da Universidade de São Paulo, 2025.

1. Microcontroladores. 2. Aprendizado de máquina.

tinyML. 4. Internet das Coisas (IoT). 5. Detecção de

Anomalias. I. de Oliveira Conceição Junior, Pedro,

orient. II. Título.

3.

Responsáveis pela estrutura de catalogação da publicação segundo a AACR2: Bibliotecários da EESC/USP.

AGRADECIMENTOS

Agradeço, antes de tudo, a Deus, por me guiar e permitir a conclusão deste trabalho.

Agradeço também aos meus pais e amigos, cujo apoio, incentivo e companhia foram

indispensáveis para superar os desafios desta trajetória acadêmica. Finalmente, registro meus

agradecimentos à Universidade de São Paulo e à Escola de Engenharia de São Carlos, bem

como a todos os professores e funcionários, pelo inestimável auxílio, pelo suporte e ambiente

de excelência e por todo o aprendizado que me foi oferecido.

RESUMO

SANTANA, G. V. A. Detecção de anomalias na qualidade do ar utilizando aprendizado

de máquina em microcontroladores. 2025. 70p. Monografia (Trabalho de Conclusão de

Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

Modelos de aprendizado de máquina não supervisionados são úteis para identificar padrões

complexos em dados não classificados, mas seu alto custo computacional limita sua

portabilidade. Para superar essas limitações, este trabalho propõe a aplicação de um modelo de

aprendizado de máquina em um sistema embarcado para detecção de anomalias na qualidade

do ar por meio da utilização de técnicas de tinyML. O objetivo é unir a capacidade de detecção

de padrões do aprendizado de máquina ao baixo custo e portabilidade dos sistemas embarcados.

Para isso, foi desenvolvido um modelo autoencoder não supervisionado que, otimizado com

quantização INT8, teve seu tamanho reduzido em 47,02% sem perdas significativas de

performance. Na validação experimental, feita em comparação a uma abordagem tradicional, o

sistema embarcado (TinyML) foi 1,3 vezes mais rápido na detecção de anomalias (tempo médio

de 4,5s contra 5,8s). Conclui-se que o sistema TinyML é uma solução robusta e mais rápida,

reforçando a viabilidade do processamento na borda para aplicações de IoT que demandam

respostas imediatas.

Palavras-chave: microcontroladores. aprendizado de máquina. tinyML. internet das Coisas

(IoT). detecção de anomalias.

ABSTRACT

SANTANA, G. V. A. Air quality anomaly detection using machine learning on

microcontrollers. 2025. 70p. Monograph (Conclusion Course Paper) – Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2025.

 Unsupervised machine learning models are useful for identifying complex patterns in

unlabeled data, but their high computational cost limits their portability. To overcome these

limitations, this work proposes the application of a machine learning model on an embedded

system for air quality anomaly detection through the use of tinyML techniques. The objective

is to unite the pattern detection capabilities of machine learning with the low cost and portability

of embedded systems. To this end, an unsupervised autoencoder model was developed which,

optimized with INT8 quantization, had its size reduced by 47.02% without significant

performance losses. In experimental validation, compared to a traditional approach, the

embedded system (TinyML) was 1.3 times faster at detecting anomalies (average time of 4.5s

versus 5.8s). It is concluded that the TinyML system is a robust and faster solution, reinforcing

the feasibility of edge processing for IoT applications that demand immediate responses.

Keywords: microcontrollers. machine learning. tinyML. internet of things (IoT). anomaly

detection.

LISTA DE ILUSTRAÇÕES

Figura 1 – Representação gráfica de uma anomalia pontual .. 21

Figura 2 – Representação gráfica de uma anomalia contextual 22

Figura 3 – Representação gráfica de uma anomalia coletiva ... 22

Figura 4 – Representação gráfica de uma anomalia multidimensional 23

Figura 5 – Exemplo de um histograma ... 25

Figura 6 – Representação visual do algoritmos SVM em duas dimensões 28

Figura 7 – Representação visual das camadas de uma rede neural do

Algoritmo autoencoder ... 29

Figura 8 – Representação visual de um algoritmos de decomposição espectral 30

Figura 9 – Esquemático do protótipo desenvolvido ... 42

Figura 10 – Protótipo desenvolvido em protoboard ... 42

Figura 11 – Gráfico das leituras brutas dos sensores de CO, O3 e Fumaça 43

Figura 12 – Fluxograma da lógica de inferência executada no microcontrolador 47

Figura 13 – Fluxograma da lógica de inferência executada na nuvem 50

Figura 14 – Curvas de convergência das métricas de perda (Loss) e MAE durante o

treinamento do autoencoder .. 52

Figura 15 – Distribuição do erro absoluto médio (MAE) de reconstrução no conjunto de

dados de validação .. 53

Figura 16 – Distribuição do erro absoluto médio (MAE) de reconstrução no conjunto de

dados de teste .. 53

LISTA DE TABELAS

Tabela 1 – Estrutura do índice de qualidade do ar .. 17

Tabela 2 – Qualidade do ar e efeitos à saúde .. 17

Tabela 3 – Resumo das características do Arduino .. 37

Tabela 4 – Resumo das características dos sensores .. 38

Tabela 5 – Comparativo das métricas do modelo pré e pós-quantização 54

Tabela 6 – Comparação de recursos computacionais e tempo de inferência entre o

sistema embarcado (TinyML) e o sistema local (PC) .. 55

Tabela 7 – Resultados dos testes de latência de detecção do sistema embarcado

(TinyML) .. 55

Tabela 8 – Resultados dos testes de latência de detecção do sistema de processamento

tradicional (PC) ... 55

SUMÁRIO

1 INTRODUÇÃO ... 16

1.1 Motivação ... 16

1.2 Objetivos .. 19

1.3 Organização do trabalho ... 19

2 REFERENCIAL TEÓRICO ... 20

2.1 Detecção de anomalias ... 20

2.1.1 Tipos de anomalias ... 21

2.1.2 Etapas do processo de detecção de anomalias .. 23

2.1.3 Classificação dos métodos de detecção .. 24

2.1.3.1 Métodos baseado em estátistica ... 24

2.1.3.2 Métodos baseado em agrupamentos .. 26

2.1.3.3 Métodos baseado em distancias ... 26

2.1.3.4 Métodos baseado em classificação ... 27

2.1.3.5 Métodos baseado em deep learning .. 28

2.1.3.6 Métodos baseado em decomposição espectral ... 30

2.1.3.7 Métodos hibridos .. 31

2.1.4 Detecção de anomalias em IoT .. 31

2.2 TinyML: Otimização de Modelos para Borda ... 32

2.2.1 Otimização de Modelos para Sistemas Embarcados ... 33

2.2.2 Fluxo de Trabalho ... 35

3 MATERIAIS E MÉTODOS ... 37

3.1 Materiais .. 37

3.1.1 Hardware .. 37

3.1.1.1 Arduino .. 37

3.1.1.2 Sensores ... 38

3.1.1.3 Fonte de alimentação ... 38

3.1.2 Software ... 39

3.1.2.1 Ambientes de Desenvolvimento .. 39

3.1.2.2 Linguagens de Programação .. 39

3.1.2.3 Bibliotecas Python Principais .. 40

3.2 Métodos .. 41

3.2.1 Montagem do Protótipo e Coleta de Dados ... 41

3.2.2 Desenvolvimento do Modelo ... 43

3.2.3 Otimização e Deploy ... 45

3.2.4 Procedimentos de Validação .. 48

3.2.4.1 Avaliação da Otimização .. 48

3.2.4.2 Validação Experimental em Tempo Real ... 48

4 RESULTADOS E DISCUSSÃO .. 51

4.1 Resultados do Treinamento do Modelo .. 51

4.2 Resultados da Otimização .. 54

4.3 Resultados da Validação Experimental ... 54

5 CONCLUSÕES .. 56

 REFERÊNCIAS .. 58

 APÊNDICE A –REPOSITÓRIO DO CÓDIGO FONTE ... 63

16

1 INTRODUÇÃO

 A Internet das coisas (IoT) é uma área de pesquisa que possui uma ampla gama de

aplicações que vão desde a indústria e automação [1] à agricultura [2] e até à aplicações na

medicina [3]. Segundo [4], o número de dispositivos conectados em 2023 foi de 16 bilhões e a

estimativa é que este número chegue a 40 bilhões até 2030. O baixo custo, a grande variedade

de sensores e a alta capacidade de processamento são alguns dos motivos desse crescimento

contínuo.

Os dispositivos IoT geralmente são a primeira camada de processamento em uma rede

de comunicação que começa com a aquisição de dados por meio de de sensores chegando até o

armazenamento em nuvem ou à integração com sistemas analíticos. Como esses dispositivos

estão na borda de uma rede de comunicação eles são conhecidos como edge devices, e o

processamento realizado por eles é chamado de edge computing. [5, p. 18]

Segundo [5], as principais vantagens na realização de edge computing estão

relacionadas à conectividade dos dispositivos com a nuvem. O envio de dados tem um custo

elevado e um alto consumo de energia. Dessa maneira, processando os dados na borda pode-se

limitar o número de conexões e a quantidade de dados enviados. Além disso, conforme aponta

[6, p. 4], o envio e recebimento de dados para a nuvem não é instantâneo e pode afetar

aplicações que precisam de uma resposta em curto período de tempo.

A partir desse cenário, surge o conceito de tinyML. De acordo com [7], tinyML é

definido como o paradigma que facilita a execução de algoritmos de machine learning em

dispositivos com requisitos mínimos de processador e memória, e com consumo de potência

inferior a alguns miliwatts. Apesar de suas limitações, esses dispositivos são baratos,

econômicos e portáteis, o que os tornam atraentes para diversas aplicações.

1.1 Motivação

Segundo [8], “qualidade do ar é uma medida do nível de poluentes atmosféricos à qual

a população está exposta”. No estado de São Paulo, o monitoramento da qualidade do ar e a

definição de padrões a serem seguidos são realizados pela Companhia Ambiental do Estado de

São Paulo (CETESB). Os poluentes considerados como parâmetros nas medidas são: partículas

inaláveis (MP10 e MP2,5), fumaça, ozônio (O3), monóxido de carbono (CO), dióxido de

nitrogênio (NO₂) e dióxido de enxofre (SO₂) [9]. Segundo a CETESB:

17

Considera-se poluente qualquer substância presente no ar e que, pela sua

concentração, possa torná-lo impróprio, nocivo ou ofensivo à saúde, causando

inconveniente ao bem estar público, danos aos materiais, à fauna e à flora ou

prejudicial à segurança, ao uso e gozo da propriedade e às atividades normais

da comunidade [10].

A tabela abaixo apresenta a classificação da qualidade do ar com base na concentração

do poluente e o tempo de amostragem.

Tabela 1 – Estrutura do índice de qualidade do ar

Qualidade Índice

MP10

(µg/m3)

24h

MP2,5

(µg/m3)

24h

O3

(µg/m3)

8h

CO

(ppm)

8h

NO2

(µg/m3)

1h

SO2

(µg/m3)

24h

Boa 0 – 40 0 – 50 0 – 25 0 – 100 0 – 9 0 – 200 0 – 20

Moderada 41 – 80 >50 – 100 >25 – 50 >100 – 130 >9 – 11 >200 – 240 >20 – 40

Ruim 81 – 120 >100 – 150 >50 – 75 >130 – 160 >11 – 13 >240 – 320 >40 – 365

Muito Ruim 121 – 200 >150 – 250 >75 – 125 >160 – 200 >13 – 15 >320 – 1130 >365 – 800

Péssima >200 >250 >125 >200 >15 >1130 >800

Fonte: [9].

Para cada poluente medido é atribuído um índice com base em sua concentração. Para

efeito de divulgação, a qualidade ar é considerada igual ao nível mais alto entre todos os

poluentes. Essa classificação está associada aos efeitos à saúde humana [9]. A tabela abaixo

apresenta o significado de cada nível.

Tabela 2 – Qualidade do ar e efeitos à saúde

Qualidade Índice Significado

Boa 0 – 40 Pessoas de grupos sensíveis (crianças, idosos e pessoas com doenças respiratórias

e cardíacas) podem apresentar sintomas como tosse seca e cansaço. A população,

em geral, não é afetada.

Moderada 41 – 80 Toda a população pode apresentar sintomas como tosse seca, cansaço, ardor nos

olhos, nariz e garganta. Pessoas de grupos sensíveis (crianças, idosos e pessoas

com doenças respiratórias e cardíacas) podem apresentar efeitos mais sérios na

saúde.

Ruim 81 – 120 Toda a população pode apresentar sintomas como tosse seca, cansaço, ardor nos

olhos, nariz e garganta. Pessoas de grupos sensíveis (crianças, idosos e pessoas

com doenças respiratórias e cardíacas) podem apresentar efeitos mais sérios na

saúde.

Muito

Ruim

121 – 200 Toda a população pode apresentar agravamento dos sintomas como tosse seca,

cansaço, ardor nos olhos, nariz e garganta e ainda falta de ar e respiração

ofegante. Efeitos ainda mais graves à saúde de grupos sensíveis (crianças, idosos

e pessoas com doenças respiratórias e cardíacas).

18

Péssima >200 Toda a população pode apresentar sérios riscos de manifestações de doenças

respiratórias e cardiovasculares. Aumento de mortes prematuras em pessoas de

grupos sensíveis.

Fonte: [9].

O alto índice de qualidade do ar está associado a diversos problemas de saúde e

ambientais. De acordo com [8], os impactos da poluição do ar estão relacionados às mortes

prematuras, doenças pulmonares e cardiovasculares, acidentes vasculares cerebrais, disposição

ao câncer e ao diabetes, e problemas cognitivos de crianças e idosos. Além disso, [11] aponta

que a poluição do ar pode ser causador de risco para outros problemas como o baixo peso ao

nascer, anemia falciforme e partos prematuros. Da mesma forma a qualidade do ar tem um

impacto direto no meio ambiente, são exemplos disso, segundo [8], “a ação do ozônio na

redução da produtividade agrícola, a ocorrência de chuva ácida e a acidificação de lagos e rios

pela deposição de sulfato e nitrato”.

Dados os riscos associados à qualidade do ar ruim, fica evidente a importância do

monitoramento contínuo e abrangente. Segundo relatório do Instituto de Energia e Meio

Ambiente (IEMA) apenas 13 dos 26 estados brasileiros possuem redes de monitoramento [12].

Um dos efeitos da falta de monitoramento é a incapacidade de fiscalizar o cumprimento de

normas governamentais [8]. Enfatiza que a falta de dados é uma importante fragilidade que

inviabiliza a avaliação da implementação e os impactos das políticas públicas relativas à

qualidade do ar.

Nesse contexto, a aplicação da Internet das Coisas (IoT) oferece uma alternativa viável

e eficiente para expandir a capacidade de monitoramento. Por meio do uso de dispositivos

embarcados juntamente com sensores específicos para monitorar a condição do ar é possível

implementar uma rede de monitoramento de baixo custo, com grande cobertura e conectividade.

No entanto, apenas a coleta de dados brutos não é suficiente para um monitoramento eficiente

e em larga escala. Em muitas regiões, a conectividade com a nuvem é limitada ou intermitente.

Assim, para superar essa limitação as técnicas de edge computing e tinyML são de grande valor.

A aplicação de técnicas de tinyML permite que os próprios dispositivos sejam capazes de

interpretar os dados coletados, identificando padrões e detectando anomalias de maneira local,

diminuindo a necessidade de comunicação e envio de dados.

19

1.2 Objetivos

A proposta deste trabalho foi desenvolver um dispositivo portátil capaz de detectar

anomalias na qualidade do ar em tempo real. Além disso, o algoritmo de aprendizado de

máquina implementado deveria ser do tipo não supervisionado onde não existe a necessidade

de dados rotulados [5, p. 225]. Este trabalho delimita sua análise às séries temporais de sensores

de qualidade do ar, focando especificamente nas medições de Monóxido de Carbono (CO) e

Ozônio (O3). Tal seleção justifica-se pela disponibilidade comercial e pelo baixo custo dos

sensores. A análise de outros poluentes, como partículas inaláveis (PM2.5), Dióxidos de

Nitrogênio (NO2) ou Dióxido de Enxofre (SO2), foge ao escopo desta pesquisa.

1.3 Organização do Trabalho

O presente trabalho é constituído por 5 capítulos conforme a descrição que segue:

Capítulo 1: Contextualiza o desenvolvimento do trabalho e apresenta as motivações para

a sua realização.

Capítulo 2: Apresenta a fundamentação teórica usada como base no desenvolvimento

do projeto.

Capítulo 3: Descreve os materiais e métodos utilizados na implementação do dispositivo

e na avaliação da implementação.

Capítulo 4: Discussão do resultados obtidos

Capítulo 5: Apresenta as conclusões do trabalho.

20

2 REFERENCIAL TEÓRICO

2.1 Detecção de anomalias

Anomalia é um conceito intuitivo, mas de difícil definição formal. Segundo Hawkins

[13], uma definição intuitiva de anomalia seria uma observação que difere tanto das outras que

gera uma suspeita se ela foi gerada pelo mesmo processo. Dessa definição pode-se perceber

que uma anomalia não pode ser identificada longe de um contexto, ou seja, um dado não pode

ser considerado anômalo isoladamente. Com isso, pode-se dizer que uma anomalia é um dado

não usual, incomum em relação a um conjunto de dados que o contém.

Dá-se o nome de detecção de anomalias ao processo ou algoritmo capaz de identificar

dados que fogem do esperado. Adari [14] define a detecção de anomalias como o processo de

identificar dados ou padrões de dados incomuns para um certo conjunto de dados. Além disso,

Kennedy [15] acrescenta que o que se entende por comuns ou normais pode mudar, entretanto,

a detecção de anomalias pressupõe que a maioria dos dados em um conjunto pode ser

considerado normal. Esse desvio do padrão é o que torna a identificação de anomalias tão

valiosa, já que a maioria dos sistemas é projetado para operar sob condições normais e a

detecção prematura da anormalidade tende a minimizar os riscos. Entretanto, nem todos os

dados que não seguem o comportamento esperado são relevantes para a detecção.

Erros na aquisição de dados ou ruídos podem ser considerados anomalias dependendo

do processo de detecção, contudo, apesar de se enquadrarem como anomalias, não representam

dados de interesse ou valor para a análise. Boniol [16] destaca que dependendo da aplicação as

anomalias podem ser constituídas de ruídos e dados errôneos ou então de dados de interesse

real. No primeiro caso, os dados devem ser corrigidos ou removidos para não comprometer

nenhuma análise posterior, e no último caso, as anomalias podem identificar eventos

significativos como falhas ou mudanças de comportamento e são a base para análises

subsequentes. Cabe ao processo de detecção de anomalias diferenciar entre esses dois casos.

A falha em distinguir cada tipo de anomalia pode acarretar em um grande número de falsos

positivos e falsos negativos, o que compromete a acurácia e a confiabilidade do processo de

detecção. A detecção precisa de anomalias permite que suas aplicações sejam confiáveis e

eficazes.

A detecção de anomalias possui aplicações em diversas áreas conforme discutido por

diferentes autores citados em [17]. Entre elas, destacam-se a remoção de ruídos em dados, a

21

prevenção de ataques de envenenamento de dados e, na área médica, a detecção de condições

anormais a partir de sensores IoT e o monitoramento de idosos. Em ambientes domésticos

inteligentes, pode indicar aumentos atípicos de temperatura possivelmente relacionados a

invasões, enquanto, no setor industrial, pode auxiliar no gerenciamento de recursos e na

identificação de variações ambientais como temperatura, umidade e fumaça. Apesar da

diversidade de contextos de aplicação, as anomalias podem ser classificadas em tipos comuns

à todos os contextos.

2.1.1 Tipos de anomalias

As anomalias podem ser categorizadas em relação a um conjunto global de dados, à um

subconjunto de dados ou à uma sequência de dados. Boniol [16] define três tipos de anomalias:

pontual, contextual e coletiva. As anomalias pontuais são aquelas que divergem

significativamente de todo um conjunto de dados. A figura 1 apresenta um exemplo desse tipo

de anomalia. Observar-se que o ponto vermelho difere de todos os outros pontos e está fora da

distribuição dos dados

Figura 1 – Representação gráfica de uma anomalia pontual

Fonte: Elaborado pelo autor.

Segundo Boniol [16], as anomalias contextuais são aquelas que parecem compatíveis

com a distribuição global, mas se tornam anômalas quando analisadas em um contexto

específico, como em relação aos dados vizinhos. A figura 2 apresenta um exemplo de anomalia

contextual. Diferentemente do ponto vermelho da figura 1, que está fora da distribuição, nesse

caso, o valor encontra-se dentro da distribuição. O que caracteriza esse ponto como anômalo é

a discrepância em relação aos pontos próximos.

22

Figura 2 – Representação gráfica de uma anomalia contextual

Fonte: Elaborado pelo autor.

As anomalias coletivas referem-se a sequências de pontos que não seguem o padrão

típico observado em uma distribuição. A figura 3 mostra um exemplo de uma anomalia

sequencial. Diferentemente dos exemplos anteriores, aqui não é um único ponto que se destaca,

mas sim um subconjunto de dados que, considerado em conjunto, forma um padrão anômalo.

Figura 3 – Representação gráfica de uma anomalia coletiva

Fonte: Elaborado pelo autor.

Além desses tipos básicos, também existem as anomalias multidimensionais. Conforme

Kennedy [15] aponta, existem duas maneiras de identificar uma anomalia multidimensional:

Esse ponto é incomum em uma única dimensão ou então a combinação de valores em múltiplas

dimensões é atípica. A figura 4 apresenta um exemplo de uma combinação incomum de

valores. Observa-se que, ao analisar apenas o eixo x o valor da anomalia está próximo ao centro

da distribuição em azul e, ao considerar apenas o eixo y, encontra-se próximo ao centro da

distribuição verde. Entretanto quando se analisa a combinação dos dois eixos fica evidente que

o ponto vermelho é uma anomalia.

23

Figura 4 – Representação gráfica de uma anomalia multidimensional

Fonte: Elaborado pelo autor.

2.1.2 Etapas do Processo de Detecção de Anomalias

Apesar da aplicação em diferentes domínios, os processos de detecção de anomalias

apresentam uma estrutura semelhante na maior parte das aplicações, conforme aponta Boniol

[16]. Segundo os autores, pode-se dividir o processo de detecção em quatro etapas: pré-

processamento de dados, aplicação do método de detecção, scoring e pós-processamento. O

pré-processamento é a etapa inicial e inclui todas as transformações necessárias para preparar

ou facilitar a aplicação dos métodos subsequentes. Em seguida, diferentes métodos de detecção

podem ser empregados cada um com uma abordagem específica. Esses métodos de detecção e

suas respectivas abordagens serão discutidos com maior detalhe na próxima seção.

Na etapa de scoring, os resultados desses métodos são convertidos em valores

numéricos que representam o grau de anormalidade de um ponto ou subsequência. Por fim, na

última etapa, os pontos ou intervalos anômalos são extraídos, geralmente por meio da definição

de um limiar que separa valores normais de valores anômalos usando os valores do grau de

anormalidade de cada ponto dados pela etapa anterior.

24

2.1.3 Classificação dos métodos de detecção

A classificação das diversas abordagens de detecção, depende em grande parte, do

contexto de aplicação. Cada contexto lida com tipos específicos de variáveis, como dados

tabulares, séries temporais, dados categóricos, textos e imagens, entre outros. Por sua vez, cada

tipo de variável apresenta características e desafios próprios, que demandam métodos

específicos de detecção. Considerando que o tema desta monografia é a detecção de anomalias

na qualidade do ar, representada por séries temporais obtidas por sensores conectados à

dispositivos IoT, adotou-se a classificação proposta por Samara et al [18]. Este trabalho foi

selecionado por sua abrangente revisão de técnicas de detecção de anomalias especificamente

no contexto da Internet das Coisas. De acordo com os autores, os métodos de detecção podem

ser classificados em 7 categorias: baseados em estatística, baseados em agrupamentos, baseados

nos vizinhos mais próximos, baseados em classificação, baseados em inteligência artificial,

baseados em decomposição espectral e métodos híbridos.

Nesta monografia, a categoria de métodos baseados em vizinhos mais próximos será

abordada dentro da seção de métodos de distância. Essa escolha se justifica pois a análise por

distância é o princípio fundamental desta abordagem, sendo a análise de vizinhança sua forma

mais comum de implementação. Além disso, também foi alterada a categoria de inteligência

artificial para métodos baseados em deep learning, já que o nome antigo é mais abrangente e

inclui algoritmos de outras categorias, enquanto o último é mais específico e contempla apenas

os algoritmos da própria categoria.

2.1.3.1 Métodos baseados em estatística

Os métodos baseados em estatística são aqueles que assumem ou estimam um modelo

da distribuição de dados. Os dados que têm baixa probabilidade, de acordo com o modelo, são

considerados anomalias [18]. Esses métodos podem ser divididos em duas subcategorias: os

métodos paramétricos, no qual se assume que os dados são gerados a partir de uma distribuição

conhecida, por exemplo, a distribuição normal; e os métodos não paramétricos em que a

distribuição não é conhecida [18].

Uma abordagem não paramétrica comum citada por Samara et al. [18] é o histograma,

ilustrado na Figura 5. Nesse método não paramétrico divide-se um conjunto de dados em

intervalos regulares e então conta-se a quantidade de dados presentes em cada intervalo para

gerar uma taxa de ocorrência. Conforme explicam os autores [18], intervalos com altas taxas

25

de ocorrência são considerados normais, enquanto intervalos com taxas nulas ou pequenas são

considerados anomalias.

Figura 5 – Exemplo de um histograma

Fonte: Elaborado pelo autor.

Uma outra abordagem muito usada e simples de se aplicar é o método z-score , descrito

por Kennedy [15]. O autor explica que nesse método paramétrico utiliza-se a média e o desvio

padrão de uma distribuição para determinar as anomalias. Para encontrar o z-score de um valor

(x), subtrai-se a média (μ) e divide-se o resultado da subtração pelo desvio padrão (σ). Segundo

Kennedy [15], em seguida é necessário definir um valor limite. Qualquer valor maior que esse

limite, ou então menor que o negativo desse valor é considerado uma anomalia.

𝑧 =
𝑥−𝜇

𝜎
 (2.1)

Samara et al. [18] apontam que, os métodos estatísticos funcionam bem quando o

modelo é corretamente definido, nesse caso não é necessário manter os dados usados para criar

o modelo. No entanto, os autores [18] alertam que para garantir que os métodos funcionem

corretamente é necessário ter um conhecimento prévio sobre a distribuição dos dados, o que

nem sempre é possível, ou então obter esse conhecimento pela aquisição de dados, o que nem

sempre é fácil de se realizar. Eles concluem [18] que os métodos paramétricos são muitas vezes

inadequados para o uso em IoT e os métodos não paramétricos são computacionalmente

26

custosos para dados multivariados, o que pode potencialmente inviabilizar a sua aplicação na

detecção de anomalias na qualidade do ar.

2.1.3.2 Métodos baseados em agrupamentos

Os métodos de agrupamentos dividem os dados, como o próprio nome indica, em

agrupamentos utilizando a similaridade ou proximidade desses dados para tal. Pontos que não

pertencem a nenhum agrupamento ou agrupamentos com poucos dados são considerados

anomalias, enquanto agrupamentos muitos dados são considerados normais [18].

Um algoritmo de agrupamento muito popular é o DBSCAN, que Géron [19] define

como um método que define clusters como regiões contínuas de alta densidade. Além disso,

conforme Kennedy [15] aponta, esse algoritmo possui a propriedade de permitir que alguns

pontos não pertençam a nenhum agrupamento, o que o torna especialmente útil na detecção de

anomalias. O DBSCAN, conforme descrito por Géron [19], funciona da seguinte maneira: para

cada ponto ele conta quantos outros pontos estão próximos até uma distância ε (epsilon). Se

esse ponto tiver pelo menos N pontos dentro dessa distância, ele é considerado uma instância

core, isto é, ele pertence a uma região densa. Todos os vizinhos e todos as outras instâncias

core, que estão a uma distância menor do que ε, pertencem ao mesmo cluster. Finalmente,

Géron [19] explica que qualquer ponto que não é uma instância core ou que não é parte de

algum cluster é considerado uma anomalia.

Kennedy [15] indica que uma grande vantagem dos métodos de agrupamento é que

independente do modo que o agrupamento é feito e da forma que as anomalias são identificadas,

eles são aplicáveis para diversos formatos: dados tabulares, séries temporais, texto, imagens,

etc; desde de que uma métrica de distância ou similaridade pode ser definida. Além disso, estes

métodos não exigem nenhum conhecimento prévio do conjunto de dados para a sua aplicação.

No entanto, Samara et al. [18] alertam que, para dados multivariados o cálculo das distâncias

pode se tornar computacionalmente custosos.

2.1.3.3 Métodos baseados em distâncias

Os métodos de distância, conforme explica Kennedy [15], tentam determinar pontos

que possuem poucos dados similares utilizando métricas de distância. A ideia geral é identificar

pontos que não possuem muitos pontos próximos ou então cuja distância até os vizinhos é

grande. Para isso é necessário escolher uma métrica de distância adequada para o contexto da

27

aplicação. O autor [15] aponta que a principal métrica é a distância euclidiana. Entretanto

outros estudos [16, 19] também citam métricas como Mahalanobis, Hamming e Minkowski.

Kennedy [15] aponta o K-nearest neighbour (KNN) como um dos principais algoritmos

dessa categoria. O autor descreve que, nesse método, para cada ponto, é medido sua distância

até o seu k vizinho mais próximo. Essa distância é considerada o “grau de anormalidade” do

ponto e é usada para categorizar as anomalias [15].

Uma vantagem destacada por Kennedy [15] é que os métodos baseados em distância

não exigem nenhum conhecimento da distribuição de dados, além disso, podem ser aplicados

para diferentes tipos de dados. Entretanto, como aponta Samara et al. [18], os cálculos das

distâncias podem exigir muita capacidade de processamento o que pode inviabilizar a sua

aplicação em microcontroladores de menor capacidade.

2.1.3.4 Métodos baseados em classificação

Os métodos baseados em classificação treinam um modelo, utilizando uma amostra dos

dados, para classificar os pontos entre dados normais e anomalias. A criação desses modelos é

dividida em duas fases: treinamento, na qual o modelo é criado usando um conjunto dos dados;

e uma fase de validação onde um outro conjunto de dados é usado para avaliar a acurácia do

modelo [18].

Kennedy [15] apresenta o Algoritmo OCSVM (one class SVM) como um exemplo de

método baseado em classificação. O autor explica que este algoritmo utiliza o conceito de one-

class para treinar o modelo. Na prática isso significa que o algoritmo vai assumir que existe

apenas uma única classe na amostra e vai criar um modelo para representá-la tão fielmente

quanto possível. Depois que o modelo é criado ele pode ser usado para testar novos dados.

Qualquer dado que esteja em conformidade com o modelo é considerado normal e se não estiver

é considerado anomalia. Kennedy [15] nota, que por ser one-class, esse algoritmo é sensível a

anomalias presentes no conjunto de dados de treinamento, uma vez que o modelo vai considerá-

las como pertencentes à mesma classe de dados normais. Entretanto, o autor aponta que esse

algoritmo é especialmente eficaz na detecção de novidades, que é um subcategoria da detecção

de anomalias onde não se tem nenhuma informação sobre as características das anomalias.

Conforme descrito por Géron [19], o OCSVM é uma adaptação do algoritmo SVM

(support vector machine) para o caso de uma classe utilizado para permitir uma modelagem

não supervisionada. Já o SVM, ilustrado na figura 6, é um classificador supervisionado usado

para distinguir dados em duas ou mais classes. O autor explica [19] que esse algoritmo tenta

28

criar um hiperplano entre duas classes de dados para maximizar a margem entre a instância

mais próxima das duas classes, essa fronteira é chamada de limite de decisão (decision

boundary). As duas instâncias usadas como base para o cálculo da distância são chamadas de

vetores de suporte e dão nome ao algoritmo. Além disso, Géron [19] também aponta que o

SVM faz o uso de funções de kernel, que permitem mapear os dados para um espaço de

dimensão superior, possibilitando a criação de um limite de decisão não-linear para separar

classes complexas.

Figura 6 – Representação visual do algoritmos SVM em duas dimensões

Fonte: Elaborado pelo autor.

Segundo Samara et al. [18], os métodos de classificação possuem excelentes resultados

para a detecção de anomalias. Eles podem ser supervisionados ou não-supervisionados, sendo

o último caso muito utilizado na detecção de novidades. Entretanto, os autores [18] alertam que

esses métodos consomem mais recursos computacionais do que os métodos baseados em

estatísticas e agrupamentos, o que pode representar um desafio para a sua aplicação em

microcontroladores.

2.1.3.5 Métodos baseados em Deep Learning

Segundo Kennedy [15], os métodos baseados em deep learning utilizam alguma forma

de rede neural detectar de anomalias. Conforme explica Iodice [20], uma rede neural é formada

por várias camadas utilizadas para aprender padrões de um conjunto de dados. Cada camada

29

por sua vez é formada por diversos neurônios. Um neurônio recebe várias entradas e produz

uma saída. Esse processo envolve primeiro uma transformação linear (a soma ponderada das

entradas mais um viés) e, em seguida, a aplicação de uma função de ativação não-linear a este

resultado, o que permite à rede aprender padrões complexos.

Kennedy [15] aponta o algoritmo autoencoder como um tipo de rede neural utilizado

para detecção de anomalias. O autor descreve sua arquitetura como sendo composta por duas

partes. A primeira é chamada de encoder, onde as camadas da rede neural diminuem

progressivamente a quantidade de neurônios até chegar na metade da rede. A partir desse ponto

começa a segunda parte, chamada de decoder. Essa parte geralmente é simétrica a primeira e

tem como objetivo reconstruir a entrada inicial tão fielmente quanto possível. A figura 7 mostra

um exemplo de um autoencoder. O autor explica [15] que os erros de reconstrução podem ser

usados para detectar anomalias. Um ponto com um alto erro indica que ele não segue o mesmo

padrão que permitiu a reconstrução dos dados após a compressão.

Kennedy [15] observa que os métodos baseados em deep learning exigem maior

quantidade de dados e tempo para serem treinados e um maior fine-tuning dos seus parâmetros.

O autor [15] também aponta que, esses métodos apresentam melhores resultados para dados

não estruturados como imagens, vídeo e textos e dados de séries temporais.

Figura 7 – Representação visual das camadas de uma rede neural do algoritmo autoencoder

Fonte: Elaborado pelo autor.

30

2.1.3.6 Métodos baseados em decomposição espectral

Segundo Samara et al. [18], os métodos baseados em decomposição espectral se

baseiam em algoritmos de redução de dimensionalidade para simplificar um conjunto de dados

e preservar apenas os componentes com maior variância. O principal algoritmo dessa categoria

é o PCA (Principal Component Analysis) ilustrado na figura 8.

Géron [19] explica que esse algoritmo identifica o hiperplano mais próximo aos dados

e então projeta os dados nele. Primeiro ele identifica o eixo que possui a maior variância no

conjunto de dados, então ele identifica um segundo eixo, ortogonal ao primeiro, de maior

variância. O algoritmo continua identificando eixos de maior variância até que o número de

eixos seja igual ao número de dimensões do conjunto de dados [19]. No contexto da detecção

de anomalias, Samara et al. [18] apontam que pontos com alto erro de reconstrução ou que

divergem muito da variabilidade apresentada pelos primeiros componentes são considerados

anômalos.

Samara et al. [18] concluem que esses métodos podem ser usados em uma grande

variedade de dados e dados com muitas dimensões. Entretanto, o grande consumo de recursos

computacionais inviabiliza a sua aplicação em microcontroladores.

Figura 8 – Representação visual de um algoritmos de decomposição espectral

Fonte: Elaborado pelo autor

31

2.1.3.7 Métodos híbridos

Os métodos híbridos são aqueles que combinam dois ou mais algoritmos de detecção a

fim de obter um resultado mais acurado. Kennedy [15] explica que esses métodos têm dois

objetivos: melhorar a confiabilidade do sistema diminuindo a taxa de falso positivos, isto é,

pontos normais que foram identificados como anomalias; e melhorar a identificação de

anomalias diminuindo a taxa de falsos negativos, isto é, anomalias que foram consideradas

normais. O autor [15] justifica essa abordagem pelo fato de que os detectores de anomalias, no

geral, identificam apenas algum tipo específico de anomalias e deixam passar outros, por isso

combinar mais de um detector pode melhorar significativamente os resultados. Contudo,

Samara et al. [18] apontam que a combinação de dois ou mais algoritmos ou modelos pode

aumentar em muito o uso de recursos computacionais que dificulta sua aplicação em

dispositivos IoT.

2.1.4 Detecção de anomalias em IoT

Cook et al. [21] definem a Internet das Coisas (IoT) como um paradigma de

programação onde dispositivos, compostos por sensores, atuadores e computadores, interagem

com o ambiente e se comunicam entre si sem a necessidade de intervenção humana. Dentro

desse contexto, ss autores [21] apontam a existência de uma ampla gama de aplicações de

detecção de anomalias abrangendo desde o monitoramento de sistemas industriais, até a

identificação de falhas em redes de distribuição de energia. Entretanto, existem diversos

desafios que dificultam a aplicação de técnicas de detecção de anomalias.

Segundo Cook et al. [21] séries temporais são o principal formato de dados que os

dispositivos IoT capturam, e por isso demandam atenção especial durante o processamento.

Eles explicam [21] que a natureza desses dados é frequentemente não estacionária, podendo

apresentar fenômenos como o concept drift (mudança da distribuição estatística dos dados no

decorrer do tempo) e sazonalidade. Nesses casos é necessário que o modelo seja capaz de

aprender os novos padrões a fim de detectar corretamente as anomalias. Outra dificuldade

apontada pelos autores [21] está relacionada a falta de conhecimento prévio de um contexto de

aplicação ou então a falta de dados históricos o que torna inviável a aplicação de algoritmos

supervisionados.

Todavia, Cook et al. [21] afirmam que, o maior desafio na detecção de anomalias em

IoT é o custo computacional. Eles descrevem [21] que em um modelo tradicional de detecção

32

os dispositivos IoT seriam usados apenas para registrar os dados. Esses dados então seriam

enviados para um servidor para serem processados. Esse modelo tradicional permite o uso de

um grande poder computacional, entretanto para aplicações que exigem um ação em tempo real

a latência da resposta pode tornar a aplicação inviável. Nesses casos, concluem os autores [21],

não existe outra alternativa, senão processar os dados na borda. Dessa forma, a implementação

de detecção de anomalias em IoT requer o uso de técnicas de otimização de recursos

computacionais [21]. Essas técnicas devem reduzir o consumo de memória, CPU e potência;

enquanto se busca minimizar a perda de acurácia do modelo de detecção [21]

2.2 TinyML: Otimização de Modelos para Borda

Warden e Situnayake [22] definem TinyML como um paradigma que possibilita a

aplicação de algoritmos de Aprendizado de Máquina (ML) em dispositivos de borda com

recursos computacionais limitados e baixo consumo de energia, na ordem de alguns miliwatts.

Já Iodice [20] entende o conceito como um conjunto de tecnologias de ML e sistemas

embarcados que permite a criação de sistemas inteligentes capazes de perceber o ambiente por

meio de sensores, processar os dados aplicando modelos de ML e, então, agir com base nos

resultados desses modelos [20].

A utilização de técnicas de TinyML apresenta vantagens em comparação às abordagens

tradicionais, em que os dados são enviados para processamento em nuvem. A primeira

vantagem, apontada por Iodice [20], é a latência. A transmissão de dados para um servidor não

é instantânea e pode comprometer o desempenho de aplicações que requerem uma resposta

rápida. Além disso, o autor [20] nota que a transmissão e recepção de dados é uma operação de

grande consumo energético e mesmo com protocolos de baixa potência, como o Bluetooth,

consome mais energia que as computações realizadas pela CPU. Dessa forma, como conclui

Iodice [20], para maximizar o tempo de autonomia de dispositivos alimentados por baterias é

necessário reduzir a quantidade de dados transmitidos para a nuvem. Por fim, Tsoukas et al.

[23] destacam que o processamento local evita a exposição de dados sensíveis a possíveis

ameaças de segurança, como ataques man-in-the-middle e eavesdropping. Logo, garante-se

maior segurança e privacidade ao usuário ao processar os dados na borda.

Outros fatores importantes para a viabilização da aplicação de TinyML, apontados por

Iodice [20], estão relacionados às características dos microcontroladores. Esses dispositivos são

baratos, de fácil programação, e são facilmente integrados a uma ampla gama de sensores.

Apesar de suas limitações são potentes suficientes para executar algoritmos complexos de deep

33

learning. Segundo Iodice [20], essas características justificam a sua popularidade e sua presença

em vários dispositivos eletrônicos do dia a dia e em outros setores como a indústria e a área da

saúde.

Entretanto, a aplicação de aprendizado de máquina na borda enfrenta diversos desafios,

principalmente relacionados a limitação de recursos computacionais. No geral os dispositivos

possuem apenas alguns kilobytes de memória RAM e, em alguns casos, os processadores não

possuem aceleração de hardware para aritmética de ponto flutuante [20]. Na revisão de

literatura feita por Capogrosso [24], os autores constataram que os requisitos de hardware para

memória são menores do que 1MB, normalmente estão entre 64 KB e 256 KB, e as unidades

de processamento operam na faixa de 40 a 400 MHz. Conforme ressaltado por Capogrosso et

al. [24], essas características ressaltam a importância de técnicas de otimização específicas para

viabilizar a aplicação do algoritmos de ML.

Outros desafios estão relacionados à variedade de dispositivos e aos diferentes

ambientes de aplicação. Tsoukas et al. [23] explicam que a grande heterogeneidade de

microcontroladores inviabiliza a criação de um framework universal para treinamento,

otimização e implantação de modelos. Um modelo construído para funcionar em uma

arquitetura específica de MCU pode não funcionar em outra, mesmo que as especificações de

hardware sejam semelhantes. Tsoukas et al. [23] concluem, portanto, que um modelo é

aplicável somente para o contexto e o hardware em que ele foi desenvolvido. Ademais, Iodice

[20] nota que o ambiente de implantação pode ser fonte de adversidades. Condições ambientais

como clima, calor e poeira podem interferir na execução da aplicação.

2.2.1 Otimização de Modelos para Sistemas Embarcados

Os métodos de otimização são utilizados para viabilizar a implementação de modelos

complexos de aprendizado de máquinas em dispositivos IoT. A aplicação dessas técnicas

geralmente produz uma menor utilização de memória e um menor consumo de energia, além

da diminuição do tempo de resposta [24]. As principais abordagens presentes na literatura, que

serão detalhadas a seguir, incluem a Quantização, a Poda, a Destilação de Conhecimento, a

Otimização de hiperparâmetros, a Busca de arquitetura neural e as otimizações baseadas em

hardware.

• Quantização: Conforme descrito por Capogrosso et al. [24], a quantização é o

processo de reduzir a quantidade de bits utilizados para representar pesos e as

ativações de uma rede neural. Ao invés de utilizar uma representação numérica

34

de ponto flutuante com 32 bits, utiliza-se representações com menos bits. Por

exemplo, uma representação do tipo float com 16 bits ou do tipo inteiro com 8

bits. Essa técnica produz modelos mais compactos, além de reduzir

significativamente os custos de computação, sem reduzir significativamente a

acurácia do modelo.

• Poda: A poda, como definida por Capogrosso et al. [24], é o processo de

remover conexões com pesos próximos de zero entre as camadas de um rede

neural. Ela serve para reduzir o tamanho total do modelo e melhorar o tempo de

inferência. A aplicação da poda pode ocorrer tanto durante o processo de

treinamento quanto em um modelo já treinado. Durante o treinamento ela serve

para evitar o sobreajuste e após ela ajuda a evitar redundância, melhorando a

eficiência do modelo.

• Destilação do conhecimento: Segundo os autores [24], nessa técnica um

modelo maior e mais complexo é utilizado para treinar um modelo menor e mais

simples. Esse processo reduz a demanda computacional de um modelo mantendo

uma precisão aceitável.

• Otimização de hiperparâmetros: Capogrosso et al. [24] indica que esse

conjunto de técnicas automatiza a busca de hiperparâmetros de um modelo para

maximizar a performance em um contexto específico. Para esse fim, algoritmos

de buscas como o Grid Search e Random Search são utilizados para investigar

e identificar a melhor combinação de hiperparâmetros.

• Busca de arquitetura neural: A busca de arquitetura neural, ou neural

architecture search (NAS), segundo os autores [24], é um método utilizado para

automatizar o processo de busca por arquiteturas ideais de redes neurais para um

fim específico. Além disso, Tsoukas et al. [23] apontam que esse processo

seleciona o modelo de maior acurácia possível dentro de um espaço pré definido

de NNs.

• Otimizações Baseadas em Hardware: Tsoukas et al. [23] explicam que, além

das otimizações de software, a performance de modelos de aprendizado de

máquina pode ser maximizada por meio de otimizações de hardware. Segundo

os autores [23], a aceleração por hardware serve para aumentar a velocidade de

processamento ou permitir o processamento paralelo. Os autores apontam que

[23] essas otimizações focam principalmente em melhorar a performance de

35

operações matriciais, uma vez que essas operações formam a base para muitos

algoritmos de ML. A literatura, conforme descrito no estudo [23], detalha

diversas arquiteturas especializadas para este fim. Tsoukas et al. [23] citam como

exemplo o framework PRIME, que acelera aplicações de redes neurais ao utilizar

a memória RAM para realizar multiplicações de matriz-vetor, alcançando

melhorias de performance de até 2.360 vezes e reduzindo o consumo de energia

em 895 vezes. Outra abordagem mencionada pelos autores [23] é o acelerador

SmartShuttle, que foca em otimizar o acesso à memória externa (off-chip),

utilizando esquemas dinâmicos de reuso de dados para se adaptar a diferentes

camadas de modelos de deep learning.

As abordagens apresentadas não são mutuamente exclusivas e podem se beneficiar de

uma aplicação em conjunto. Além disso vale ressaltar que as técnicas quantização, poda e

destilação de conhecimento são aplicáveis durante ou após o treinamento do modelo, enquanto

as técnicas de otimização de hiperparâmetros e busca e arquitetura são aplicadas antes do

treinamento.

2.2.2 Fluxo de Trabalho

Capogrosso et al. [24] apontam que o fluxo de trabalho para o desenvolvimento de

soluções em tinyML possui duas abordagens principais: a orientada a aprendizado de máquina

e a orientada ao desenvolvimento do hardware. Segundo os autores [24], na abordagem

orientada a aprendizado de máquina o foco é no design e na otimização de um modelo a fim de

garantir a sua aplicação em um dispositivo específico. O hardware é tratado como um

componente imutável ou com pouca possibilidade de alteração. As etapas do fluxo de trabalho

nesse caso consistem no design do modelo, otimização, implementação no dispositivo e

avaliação da performance do modelo [24]. Já na abordagem orientada a hardware, o estudo

[24] aponta que o foco é o desenvolvimento de arquiteturas de hardware otimizadas para a

aplicação de algoritmos de aprendizado de máquina. Para essa abordagem as etapas do fluxo

de trabalho são: desenvolvimento do hardware, implementação do modelo e avaliação da

performance do modelo [24].

Os autores [24] mencionam também uma terceira abordagem é o co-design, que integra

as duas abordagens anteriores desde o início do projeto. Nesse caso especialistas de ambas as

áreas colaboram desde a definição de requisitos até a prototipagem, escolhendo componentes

36

de hardware e software com uma visão global do sistema. Dessa forma, Capogrosso et al. [24]

concluem que, a otimização de modelos e o design de hardware são processos interligados que

visam alcançar performance superiores e menor consumo de recursos do que as abordagens

tradicionais.

37

3 MATERIAIS E MÉTODOS

3.1 Materiais

A seguir são apresentados os materiais utilizados para o desenvolvimento do projeto.

Esse desenvolvimento pode ser dividido em duas partes: montagem do hardware para coleta de

dados e, posteriormente, detecção de anomalias e o desenvolvimento do modelo de aprendizado

de máquina para realizar a detecção. As partes são mutuamente dependentes. Sem os dados,

não seria possível treinar um modelo e sem o modelo não seria possível realizar a detecção de

anomalias.

3.1.1 Hardware

3.1.1.1 Arduino

O microcontrolador utilizado no projeto foi o Arduino Nano 33 BLE Sense Rev2. Este

microcontrolador possui um processador Arm Cortex-M4F (FPU) que roda em 64 MHz, além

disso ele possui 1 MB de memória flash e 256 kB de memória RAM. Uma característica

importante deste microcontrolador é que seus pinos de I/O possuem um limite de tensão de

3.3V e não podem receber sinais de 5V, caso contrário pode-se danificar o microcontrolador

[25]. Optou-se pela utilização desse módulo devido ao seu baixo custo e boa capacidade

computacional, além de sua popularidade na literatura [21, 22, 24].

Tabela 3 – Resumo das características do Arduino

Características Detalhe

Módulo Arduino Nano 33 BLE Sense Rev2

Processador Arm Cortex-M4F (FPU)

Clock do processador 64 MHz

Memória Flash 1 MB

Memória RAM 256 kB

Comunicação sem fio Bluetooth 5 multiprotocol

Tensão de I/O 3.3V

Fonte: [25].

38

3.1.1.2 Sensores

Foram utilizados 3 sensores de gases diferentes para a coleta de dados da qualidade do

ar. O sensor MQ-7 foi usado para medir a concentração do gás Monóxido de carbono (CO), um

gás altamente tóxico. Esse sensor é capaz de medir concentrações entre 100 a 10.000 ppm [26].

Outro sensor utilizado foi o MQ-131, capaz de detectar ozônio, um gás incolor e reativo, em

níveis baixos de concentração de 10 a 1000 ppb [27]. De modo complementar, o sensor MQ-2

foi empregado para determinar concentrações de gases inflamáveis (como o GLP, Metano,

Butano, etc) e fumaça na faixa de 300 a 10.000 ppm [28]. Esses sensores possuem pinagens

iguais. São alimentados por uma tensão de 5V. Possuem 4 pinos sendo dois de alimentação

(GND e Vin), uma saída digital e uma saída analógica. Para este trabalho, foi utilizada apenas

as saídas analógicas de cada sensor, pois elas fornecem os valores contínuos necessários para a

análise da série temporal.

Tabela 4 – resumo das características dos sensores

Características MQ-2 MQ-7 MQ-131

Gases detectados Gases inflamáveis (GLP,

Metano, etc.) e fumaça

Monóxido de Carbono (CO) Ozônio (O3)

Faixa de operação 300 a 10.000 ppm 100 a 10.000 ppm 10 a 1000 ppb

Tensão de entrada 5V 5V 5V

Sensibilidade Ajustável via potenciômetro Ajustável via potenciômetro Ajustável via

potenciômetro

Fonte: [27- 29].

3.1.1.3 Fonte de alimentação

A Alimentação do sistema foi fornecida por um fonte ajustável para protoboard, um

dispositivo que converte uma tensão de entrada (que pode variar de 7,5 a 12 VDC ou ser

fornecida via cabo USB) em saídas reguladas de 3,3V e 5V [29]. A utilização dessa fonte foi

imprescindível devido a incompatibilidade das tensões do arduino (3.3V) e dos sensores (5V).

39

3.1.2 Software

3.1.2.1 Ambientes de Desenvolvimento

O Arduino IDE foi o ambiente de desenvolvimento utilizado para a escrita, compilação

e upload de software em C++ para o Arduino. O Arduino IDE é uma aplicação multiplataforma

que simplifica o processo de desenvolvimento de software embarcado. Essa IDE possui uma

interface amigável e de fácil utilização, além disso é compatível com uma ampla gama de

microcontroladores, incluindo placas de outros fabricantes além da linha oficial do Arduino.

[30].

 O Jupyter Notebook foi a ferramenta utilizada para desenvolver códigos em Python

relacionados a machine learning. Sua interface baseada em células permite a execução

individual de blocos de código, dessa forma possibilitando uma abordagem iterativa para o

desenvolvimento do pré-processamento de dados, criação do modelo de aprendizado de

máquina e avaliação dos resultados do treinamento [31].

O Visual Studio Code, um editor de código leve e extensível, serviu como ambiente de

desenvolvimento principal para códigos feitos em Python. Ele também foi utilizado para a

execução dos Jupyter Notebooks mediante uso de extensões [32].

3.1.2.2 Linguagens de programação

O C++ foi a linguagem utilizada para desenvolver o firmware executado no

microcontrolador arduino. Sua capacidade de controle de baixo nível sobre o hardware foi

essencial para a leitura dos sensores e controle das saídas digitais. Já o Python foi a linguagem

utilizada para o desenvolvimento do modelo de machine learning e para a transformação desse

modelo em um formato compatível com microcontroladores. O Python possui uma sintaxe

simples e de fácil aprendizado, entretanto, sua principal vantagem para este projeto reside no

vasto ecossistema de bibliotecas e ferramentas voltadas para a criação de projetos de

aprendizado de máquina [33].

40

3.1.2.3 Principais bibliotecas Python

O Para o desenvolvimento do projeto foram utilizadas várias bibliotecas em Python que

formaram a base para o processamento dos dados, construção do modelo, otimização do modelo

e comunicação via bluetooth com o microcontrolador:

• TensorFlow: Esta plataforma de código aberto foi utilizada para o

desenvolvimento do modelo de aprendizado de máquina Autoencoder criado

neste projeto. Além disso, a utilização da API de alto nível Keras especializada

em deeep learning permitiu que a criação do modelo fosse rápida e eficiente [34,

35].

• TensorFlow Lite: Framework do ecossistema do TensorFlow criado

especificamente para a aplicação em dispositivos de apenas alguns kilobytes de

memória [36]. A aplicação desse framework na otimização do modelo foi o que

permitiu realizar inferências no arduino em tempo de execução.

• Pandas: Biblioteca utilizada para a leitura, manipulação e estruturação dos

dados de séries temporais coletadas pelos sensores de qualidade do ar [37].

• NumPy: Biblioteca especializada na cálculo numérico computacional. Essa

biblioteca é a base para as operações eficientes em array multidimensionais [38].

• Matplotlib: Biblioteca para a criação de visualizações, sendo fundamental para

a geração dos gráficos apresentados na análise dos dados obtidos e na avaliação

dos resultados do modelo [39].

• Pyserial: Biblioteca forneceu o acesso à porta serial durante a fase de coleta de

dados para estabelecer a comunicação (via USB) entre o microcontrolador

Arduino e o computador que armazenava as leituras dos sensores [40].

• Bleak: Biblioteca para conectar com dispositivos Bluetooth Low Energy (BLE),

foi empregada no cenário de teste comparativo ("on cloud") para implementar a

comunicação sem fio entre o microcontrolador e o computador que executava o

modelo não otimizado [41].

41

3.2 Métodos

3.2.1 Montagem do Protótipo e Coleta de Dados

O protótipo foi desenvolvido conforme o esquemático da figura 9. Uma vez que as

tensões de alimentação dos sensores (5V) eram incompatíveis com as tensões fornecidas pelo

Arduino Nano 33 BLE Sense Rev2 (3.3V) utilizou-se uma fonte de alimentação específica para

protoboards, visível no canto superior esquerdo da figura 10, para fornecer energia aos sensores.

O arduino foi alimentado via cabo USB-C conectado a um notebook. Além disso, para adequar

a saída analógica dos sensores às entradas analógicas do arduino criou-se três divisores de

tensão de forma que a tensão máxima recebida pelo arduino fosse aproximadamente 3.22 V,

um pouco abaixo do seu limite de leitura (3.3 V). A Equação (3.1) descreve a relação de saída

do divisor de tensão:

𝑉𝑎𝑟𝑑𝑢𝑖𝑛𝑜 = 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 ×
𝑅3

𝑅1+𝑅2+𝑅3
 (3.1)

Onde:

• 𝑉𝑎𝑟𝑑𝑢𝑖𝑛𝑜 é a tensão de saída do divisor conectada a entrada analógica do

arduino;

• 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 é a tensão de saida do sensor;

• 𝑅1, 𝑅2 𝑒 𝑅3 são os resistores do circuito.

Para o projeto, foram selecionados os seguintes valores de resistores comerciais: 𝑅1 =

220 Ω, 𝑅2 = 1000 Ω 𝑒 𝑅3 = 2200 Ω. Aplicando esses valores na Equação (3.1) para a tensão

máxima de saida do sensor, obtém-se a tensão máxima na entrada do Arduino:

𝑉𝑎𝑟𝑑𝑢𝑖𝑛𝑜 = 5𝑉 ×
2200

220+1000+2200
 ≈ 3.22 𝑉 (3.2)

42

Figura 9 – Esquemático do protótipo desenvolvido

Fonte: Elaborado pelo autor.

Figura 10 – Protótipo desenvolvido em protoboard

Fonte: Elaborado pelo autor.

Antes de iniciar o processo de leitura dos sensores e coleta de dados, o circuito foi

alimentado e os sensores permaneceram ligados por 48 horas. Essa prática é uma recomendação

do fabricante para garantir que os sensores forneçam leituras estáveis [27-29]. Após esse

período de aquecimento deu-se início a coleta de dados. Para ler as entradas analógicas foi

desenvolvido um programa para o arduino capaz de realizar a leitura e enviá-la via comunicação

serial por um cabo USB-C. O programa utilizou uma taxa de transmissão de 9600 bits por

segundo e a leitura dos sensores foi feita em intervalos de 1,5 segundos. No notebook, foi

43

desenvolvido um script Python para ler a porta serial e salvar os dados em um arquivo CSV.

Na Figura 11 são mostrados os dados dos três sensores, com aplicação de uma média móvel de

um minuto para suavizar as curvas. A coleta de dados foi realizada durante um período de

aproximadamente 45 horas no interior de um residência longe de ambientes que possuem

ocorrência de gases ou fumaças que poderiam comprometer o desenvolvimento do projeto. A

lacuna, visível na figura 11 , foi causada por um fator externo ao protótipo, uma falha de energia

elétrica no local. Para a etapa de treinamento do modelo, foram utilizados apenas os trechos de

dados contínuos coletados antes e depois desta interrupção.

Figura 11 – Gráfico das leituras brutas dos sensores de CO, O3 e Fumaça

Fonte: Elaborado pelo autor.

3.2.2 Desenvolvimento do Modelo

Iniciou-se o desenvolvimento do modelo com a leitura dos dados armazenados nos

arquivos CSV. Para esse fim foi utilizado a biblioteca Pandas [33] que possui métodos nativos

para a leitura desse tipo de arquivo. Em seguida, os dados foram transformados do formato de

Dataframe, o formato padrão do Pandas, para o formato de Numpy array, o formato padrão do

Numpy, com o objetivo de simplificar as operações com arrays multidimensionais. Após essa

transformação os dados foram normalizados para o intervalo de 0 a 1. Para isso dividiram-se

todos os dados por 1024 uma vez que o arduino possui uma escala de leitura analógica de 0 até

1023.

Após a normalização, os dados foram divididos em subsequências de 30 pontos. Uma

subsequência é o input do modelo desenvolvido. Posteriormente, utilizou-se o método shuffle

44

do Numpy [38] para embaralhar a ordem dessas subsequências e dessa maneira evitar que o

modelo se sobreajuste a tendências temporais maiores que 45 segundos. A escolha por uma

janela curta se deve às limitações do hardware onde o modelo foi embarcado. Embora janelas

maiores pudessem capturar tendências mais complexas, elas também exigiriam redes neurais

mais complexas com mais neurônios e conexões, o que poderia comprometer a sua aplicação

no microcontrolador. Por fim, os dados foram divididos em três conjuntos distintos - treino,

validação e teste - nas proporções de 60%, 20% e 20%, respectivamente. Dessa forma, a

distribuição final dos dados totalizou 1.979 amostras para o conjunto de treinamento, 659 para

a validação e 661 para o conjunto de teste.

Antes de começar o treinamento do modelo foi necessário ‘achatar’ as dimensões das

subsequências que possuíam dimensão de 30x3, 30 pontos para cada um dos 3 sensores, para

dimensão 90x1. Isto porque, durante a fase de implantação no arduino constatou-se que

autoencoders que possuíam camadas flatten e reshape falhavam durante a inferência no

microcontrolador. A fim de resolver esse problema a fase de ‘achatamento’ dos dados foi

transferida para o pré-processamento. Com essa abordagem foi possível executar inferências

nos dispositivos com sucesso.

O modelo implementado foi um autoencoder empilhado com entrada e saída de 90

pontos. O encoder foi formado por camadas de 30, 12 e 5 neurônios, respectivamente. Já o

decoder foi formado por camadas de 12, 30 e 90 neurônios, respectivamente. A definição desta

arquitetura específica foi obtida empiricamente após a realização de diversos testes, buscando-

se o equilíbrio ideal entre a capacidade de generalização e as restrições de consumo de memória

do microcontrolador. A função de ativação Rectified Linear Unit (ReLU) foi utilizada em todas

as camadas com exceção da última. Essa função foi escolhida devido a sua capacidade de

modelar relações não lineares e sua alta velocidade de convergência [20, 24]. Além disso,

aplicou-se uma regularização L1 de fator 0.01 em todas as camadas do encoder a fim de evitar

o sobreajuste e reforçar a eliminação de características menos importantes [19].

Para o treinamento do modelo foi utilizada a função de perda Mean Squared Error

(MSE) utilizando o otimizador Gradiente Descendente Estocástico com taxa de aprendizado de

0.01. Além disso, optou-se por monitorar a performance do modelo utilizando a métrica Mean

Absolute Error (MAE). O modelo foi treinado por 200 épocas. Após o treinamento do modelo

utilizou-se o conjunto de validação para determinar o limiar do erro de reconstrução a partir do

qual todo valor que seja maior será considerado anômalo. Para isso optou-se por utilizar a

métrica Mean Absolute Error para calcular os erros de reconstrução de cada subsequência. Essa

métrica foi escolhida por ser robusta a presença de anomalias e por sua simplicidade de cálculo.

45

Em seguida, calculou-se o MAE para todo conjunto de validação e determinou-se o valor do

percentil 99,5% como limiar, assim a taxa de anomalia esperada é de 0,5%. Por fim, o conjunto

de teste foi utilizado para avaliar o modelo e verificar a distribuição do MAE e a taxa de

anomalia resultante com base no limiar definido.

3.2.3 Otimização e Deploy

Com o modelo devidamente treinado iniciou-se o processo de otimização. Nesse

processo foi realizada a quantização completa para inteiros de 8 bits (INT8) nas camadas

profundas do modelo. Entretanto, optou-se por manter as camadas de entrada e saída como

float, a fim de evitar a conversão de tipos de dados em tempo de execução e assim simplificar

o firmware do arduino. Para realizar a quantização foi necessário passar uma função geradora

à um método da biblioteca Tensor Flow Lite. Essa função retorna um valor do conjunto de

validação por vez e é utilizado para calibrar a quantização do modelo [22]. Foram convertidos

um modelo com quantização e um modelo sem quantização a fim de medir a redução do

consumo de memória e medir a queda de performance na reconstrução. A biblioteca Tensor

Flow Lite salva os modelos no formato .tflite representado como Flatbuffer, esse formato é

utilizado para garantir um serialização eficiente e o permitir o carregamento direto na RAM

[22].

Após a conversão para o formato .tflite o modelo foi convertido em C usando o comando

xxd do linux. Esse comando é utilizado para converter arquivos binários nas suas respectivas

representações hexadecimais, além disso utilizando a flag -i o comando salva a representação

hexadecimal em formato de código C [42]. Dentro do código C do modelo é necessário definir

a macro ‘DATA_ALIGN_ATTRIBUTE’ a fim de garantir que o modelo seja alinhado em

memória e dessa forma garantir um bom desempenho [22].

Uma vez que o modelo foi convertido deu-se início ao desenvolvimento do código

responsável por realizar a leitura dos sensores, invocar o modelo e fazer a detecção de

anomalias. A figura 12 abaixo apresenta um fluxograma com as principais etapas do programa.

A primeira etapa diz respeito a inicialização de variáveis. Nessa etapa instanciaram-se os

ponteiros que apontam para o interpretador, para o modelo e para os vetores de entrada e saída,

além das variáveis de controle que serviram para armazenar os valores das leituras dos sensores

e controlar o fluxo. Nessa etapa também definiu-se a memória de trabalho usando a variável

tensor_arena. Essa variável é de grande importância, uma vez que ela serve como memória

46

RAM de trabalho e armazena a entrada, a saída e os valores dos tensores intermediários. Sem

armazenar bytes suficientes é impossível fazer inferências com o modelo [22].

A próxima etapa do fluxo é a execução da função de setup. Dentro dessa função

instancia-se o modelo a partir do array de bytes gerados pelo comando xxd. Em seguida, foi

isntanciada a classe responsável por fornecer as implementações das operações e a classe do

intérprete responsável por realizar as inferências. Usando essa última classe executou-se o

método AllocateTensors para alocar o espaço de memória necessário para os tensores dentro da

tensor_arena definida na primeira etapa [22]. Logo após, obtiveram-se os ponteiros para a

entrada e saída do modelo. Por fim o pino digital 6 foi definido como OUTPUT e deu-se início

a comunicação serial com um taxa de 9600 bits por segundo.

Na etapa seguinte leram-se os valores dos sensores. Para cada sensor armazenou-se o

valor das últimas 30 leituras em um array implementando uma lógica de janela deslizante, onde

o dado mais recente era inserido no índice zero e o restante era ‘empurrado’ para direita. Dessa

forma se em um ciclo um valor está no índice i, no ciclo seguinte ele estará no índice i+1, sendo

o último valor descartado. Antes de prosseguir para a etapa de inferência o programa verificava

se já haviam sido realizadas 30 leituras. Caso contrário o programa continua para a próxima

leitura dos sensores depois de um delay de 1,5 segundos. Depois de terem sido realizadas 30

leituras o programa escrevia os valores dos arrays com dados de sensores no input do modelo.

Diferente das APIs de alto nível como Keras, onde os dados são passados como argumento para

uma função, a biblioteca Tensor Flow Lite Micro exige que os dados sejam escritos diretamente

para buffers de memória [22]. Além disso, é necessário copiar os valores passados para o input

do modelo em outro array para posterior comparação com o output, uma vez que o tensor flow

lite pode usar a buffer de entrada para cálculos intermediários [22]. Por fim, o modelo é

invocado.

Após a inferência do modelo, utilizou-se a cópia do input juntamente com o vetor de

output para calcular o MAE da subsequência. Se o valor do MAE for maior do que o valor de

limiar determinado durante o treinamento, a subsequência é considerada uma anomalia e a saída

digital 6 recebe o valor 1 (HIGH). Caso contrário a subsequência é considerada normal e o valor

0 (LOW) é passado para a saída digital 6. Por fim, os dados dos sensores e as medidas de

execução são enviados para o computador de monitoramento via conexão USB-C.

47

Figura 12 – Fluxograma da lógica de inferência executada no microcontrolador

Fonte: Elaborado pelo autor.

48

3.2.4 Procedimentos de Validação

3.2.4.1 Avaliação da Otimização

A fim de avaliar o impacto da otimização no desempenho do modelo, o modelo foi

convertido duas vezes para o formato padrão do Tensor Flow Lite (.tflite). Na primeira

conversão não foi aplicada nenhuma otimização e na segunda aplicou-se uma quantização

completa para inteiros de 8 bits (INT8) nas camadas profundas do modelo. Dessa forma evitou-

se que a diferença do formato do modelo interfira na sua performance. Após a conversão mediu-

se o tamanho dos arquivos em kilobytes para verificar o efeito da quantização no consumo de

memória. Em seguida, foram instanciados os dois modelos usando o interpretador do Tensor

Flow Lite no ambiente Python e usou-se o conjunto de teste para realizar inferências e assim

avaliar o erro de reconstrução. Utilizou-se esse erro para calcular o MAE e o MSE para os dois

casos.

3.2.4.2 Validação Experimental em Tempo Real

 Visando comparar a performance de um sistema que aplica o conceito de TinyML com

uma abordagem tradicional, isto é, onde a inferência do modelo é realizada em um computador

central, foi desenvolvido um segundo sistema que não realiza inferência dentro do

microcontrolador. Esse segundo sistema compartilha o circuito e o modelo de machine learning

com o primeiro, a única diferença está no firmware do Arduino e na utilização de um outro

computador. A figura 13 apresenta o fluxo desse sistema de comparação. Nesse novo fluxo

não é necessário configurar a biblioteca do Tensor Flow Lite no arduino, entretanto requer-se

o recurso de Bluetooth.

Para simular uma abordagem tradicional optou-se por utilizar uma comunicação sem fio

via Bluetooth entre o microcontrolador e um notebook que faz o papel de um computador

central. Para fins de replicabilidade, o notebook utilizado como computador central possui um

processador Intel(R) Core(TM) i3-6006U CPU 2.00GHz, 8 GB de memória RAM e executava

o sistema operacional Ubuntu 20.04.6 LTS. Nesse sistema de comparação, o arduino é

responsável por fazer as leituras dos sensores, enviar os dados e alterar o estado do LED quando

necessário. Já o computador é responsável por armazenar o valor das últimas 30 leituras,

invocar o modelo, calcular o MAE e enviar para o arduino um valor indicando se a subsequência

49

é uma anomalia ou não. Para realizar a comunicação Bluetooth foi utilizado o módulo Arduino

BLE presente no Arduino IDE [31] e a biblioteca Bleak [41] do Python.

Para os dois sistemas mediu-se o consumo de memória Flash e RAM no momento da

compilação e upload do programa para o arduino. Os dois sistemas foram executados

consecutivamente aplicando o mesmo procedimento para a introdução de anomalias. Para

garantir uma comparação robusta, a coleta de dados para análise foi padronizada: em ambos os

casos, os dados foram enviados ao computador via porta serial (USB) após a conclusão de cada

ciclo de detecção. Esses dados correspondem aos valores dos sensores, uma flag de valor 0 ou

1 que indica se a subsequência é uma anomalia e o timestamp em que a medida foi realizada.

Os sistemas possuem o mesmo delay entre cada ciclo de inferência: 1,5 segundos, que é o

mesmo valor utilizado no programa de coleta de dados.

Para a validação da detecção realizou-se a introdução de anomalias reais para medir a

latência do sistema em identificá-las. Para cada um dos dois sistemas o seguinte experimento

foi realizado. Uma anomalia foi gerada manualmente no ambiente dos sensores. Para induzir

as anomalias, utilizou-se um isqueiro para liberar gás butano (acionando os sensores MQ-2 e

MQ-7) e, em seguida, acendeu-se a chama para gerar fumaça e CO. Este procedimento foi

repetido 10 vezes para cada sistema. A medida do tempo de execução foi calculada

posteriormente por meio da análise dos dados coletados e dos vídeos de referência. Para cada

um dos eventos de anomalia induzidos foram identificados dois marcos: o tempo de início e

tempo de resposta. O tempo de início é definido como o timestamp em que os valores dos

sensores apresentaram a primeira alteração significativa, indicando o início do evento e o tempo

de resposta é o tempo em que a flag de anomalia do sistema saiu de 0 para 1. A diferença entre

esses dois marcos resulta no tempo de detecção.

50

Figura 13 – Fluxograma da lógica de inferência executada na nuvem.

Fonte: Elaborado pelo autor.

51

4 RESULTADOS E DISCUSSÃO

Este capítulo apresenta os resultados obtidos com o desenvolvimento do projeto. Essa

exposição foi dividida em três etapas: treinamento do modelo, otimização e validação

experimental. Na primeira etapa apresentam-se os resultados obtidos com o treinamento do

modelo de aprendizado de máquina e sua posterior avaliação. Em seguida, analisam-se os

resultados obtidos com a quantização do modelo e como essa operação impactou a sua

performance. Por último, realizou-se uma análise comparativa entre o sistema tradicional e o

sistema que utiliza TinyML.

4.1 Resultados do Treinamento do Modelo

A figura 14 apresenta as curvas de convergência das métricas do modelo. Observa-se

que as curvas da função de perda (MSE), linhas em vermelho, convergem rapidamente em cerca

de 75 épocas. Esse era um resultado esperado devido a utilização da função de ativação ReLU

na maioria das camadas do autoencoder. Além disso, pode-se observar que as curvas de

treinamento e validação estão praticamente sobrepostas, o que indica que o modelo não sofreu

overfitting. Ou seja, o modelo desenvolvido generaliza bem para dados que não foram usados

durante o treinamento. Por fim, nota-se que o modelo atingiu um platô na perda de reconstrução

entre 75 e 100 épocas. O valor baixo na perda de reconstrução indica que o modelo não sofreu

underfitting e foi capaz de aprender os padrões do conjunto de dados.

52

Figura 14 – Curvas de convergência das métricas de perda (Loss) e MAE durante o treinamento do

autoencoder.

Fonte: Elaborado pelo autor.

Após o treinamento do modelo calculou-se o MAE para todo o conjunto de dados de

validação. A figura 15 apresenta a distribuição desses erros. Pode-se observar que grande parte

dos erros se encontram no intervalo entre a média menos um desvio padrão e a média mais um

desvio padrão. Além disso, nota-se claramente que a distribuição dos erros não segue uma

forma normal. Essa falta de normalidade inviabiliza o uso de métodos paramétricos, como por

exemplo o uso da média e do desvio padrão, na escolha do limiar de detecção de anomalias.

Assim conclui-se que a escolha de usar um método não paramétrico para o cálculo do limiar,

neste caso o percentil 99,5% do MAE, foi a escolha mais apropriada, uma vez que permite

maior robustez frente à distribuição dos dados. O limiar calculado foi de 0.022119.

53

Figura 15 – Distribuição do erro absoluto médio (MAE) de reconstrução no conjunto de dados de

validação..

Fonte: Elaborado pelo autor.

Posteriormente ao cálculo do limiar, calculou-se o MAE para todo o conjunto de dados

de teste. A distribuição dos erros de reconstrução deste conjunto pode ser vista na figura 16.

Utilizando os valores de MAE e o valor do limiar calculou-se a percentagem de anomalias no

conjunto. Obteve-se um resultado de 0.454% de anomalias. Esse valor é praticamente o valor

esperado de 0,5% definido pela escolha do percentil 99,5%. Esse fato reforça a indicação inicial

de que o modelo desenvolvido não sofreu overfitting.

Figura 16 – Distribuição do erro absoluto médio (MAE) de reconstrução no conjunto de dados de

teste.

Fonte: Elaborado pelo autor.

54

4.2 Resultados da Otimização

A tabela abaixo contém o comparativo entre o desempenho do modelo desenvolvido

antes e depois da quantização. Observa-se que o modelo quantizado apresentou uma redução

de 47,02% em seu tamanho. Além disso, não houve perda significativa em nenhuma das outras

métricas de desempenho. Esse resultado demonstra que a quantização é uma operação ideal

para reduzir o consumo de memória. De fato, esse resultado expressivo coloca a quantização

como uma técnica de interesse em todo o campo de aprendizado de máquina, para além do

escopo do TinyML.

Tabela 5 – Comparativo das métricas do modelo pré e pós-quantização.

Medidas Modelo Sem Quantização Modelo com Quantização

Tamanho (kB) 28,07 14,82

Média MAE 0.004206 0.004207

Desvio Padrão MAE 0.003594 0.003594

Média MSE 0.000052 0.000052

Desvio Padrão MSE 0.000213 0.000213

Fonte: Elaborado pelo autor.

4.3 Resultados da Validação Experimental

A tabela 6 apresenta os resultados comparativos entre o sistema embarcado e o sistema

tradicional. Observa-se que a memória de programa no sistema tradicional é 62% maior do que

no sistema embarcado, mesmo o programa desenvolvido no modelo embarcado sendo maior e

mais complexo. Esse fato indica que a biblioteca utilizada para a comunicação via bluetooth

consome mais memória que a biblioteca do Tensor Flow Lite. Já para a memória RAM estática

o sistema embarcado consome 20% de memória a mais do que o sistema tradicional. Esse era

um resultado esperado, uma vez que no sistema embarcado é preciso inicializar algumas

variáveis globais como a tensor_arena, que é responsável por armazenar resultados

intermediários da inferência para rodar o modelo corretamente. Dessa forma, antes mesmo da

execução o sistema embarcado já utiliza mais memória RAM do que o sistema tradicional.

 A tabelas 7 e 8 apresentam os resultados de cada evento de introdução de

anomalias no sistema embarcado e sistema tradicional, respectivamente. Em relação ao tempo

médio de detecção, verificou-se que o sistema embarcado foi 1,3 vezes mais rápido na detecção

de anomalias do que o sistema tradicional (PC). Esse resultado evidencia que, apesar do maior

55

consumo de memória RAM, o sistema embarcado apresenta uma velocidade de detecção

superior, reforçando sua adequação para aplicações em tempo real.

Tabela 6 – Comparação de recursos computacionais e tempo de inferência entre o sistema embarcado

(TinyML) e o sistema local (PC).

Medidas Sistema Embarcado Sistema Tradicional (PC)

Memória Flash 197 Kb 321 Kb

Memória RAM Estática 82 Kb 68 kB

Tempo Médio de Detecção 4,5 s 5,8 s

Fonte: Elaborado pelo autor.

Tabela 7 – Resultados dos testes de latência de detecção do sistema embarcado (TinyML).

Evento Início do Evento

(hh:mm:ss)

Momento da detecção

(hh:mm:ss)

Latência de Detecção

(s)

1 17:37:56 17:38:02 6

2 17:39:46 17:39:49 3

3 17:41:25 17:41:30 5

4 17:42:46 17:42:48 2

5 17:44:38 17:44:41 3

6 17:46:17 17:46:19 2

7 17:47:51 17:48:06 15

8 17:49:32 17:49:35 3

9 17:52:10 17:52:13 3

10 17:53:59 17:54:02 3

Fonte: Elaborado pelo autor.

Tabela 8 – Resultados dos testes de latência de detecção do sistema de processamento tradicional

(PC).

Evento Início do Evento

(hh:mm:ss)

Momento da detecção

(hh:mm:ss)

Latência de Detecção

(s)

1 18:09:55 18:10:03 8

2 18:11:17 18:11:21 4

3 18:12:24 18:12:29 5

4 18:14:20 18:14:28 8

5 18:15:53 18:15:59 6

6 18:17:57 18:18:01 4

7 18:19:33 18:19:36 3

8 18:21:08 18:21:12 4

9 18:22:38 18:22:46 8

10 18:24:17 18:24:25 8

Fonte: Elaborado pelo autor.

56

5 CONCLUSÃO

Este trabalho se propôs a desenvolver um sistema capaz de detectar anomalias na

qualidade do ar em tempo real utilizando um microcontrolador. O objetivo foi superar o tempo

de latência e o custo computacional da comunicação sem fio que as abordagens tradicionais

com processamento em nuvem possuem. Para enfrentar o problema de detecção de anomalias

foi escolhido utilizar uma abordagem de reconstrução das séries temporais. Onde o erro de

reconstrução foi utilizado como um score de anomalias. A fim de realizar essa reconstrução

utilizou-se uma arquitetura de redes neurais chamada de autoencoder.

A análise dos resultados demonstrou a eficácia da abordagem. A técnica de quantização

completa para inteiros de 8 bits (INT8) foi fundamental para a aplicação do projeto, diminuindo

o tamanho do modelo em 47,02% sem introduzir perdas significativas de performance nas

métricas de reconstrução (MAE e MSE). Na validação experimental comparativa, o sistema

embarcado apresentou um desempenho superior ao sistema tradicional, com um tempo médio

de detecção de 4,5 segundos, sendo 1,3 vezes mais rápido que a arquitetura tradicional (5,8

segundos). Essa diferença comprova que a eliminação ou a redução da comunicação sem fio,

proporcionada pelo processamento local, é um fator decisivo para aplicações em tempo real.

Embora a implementação embarcada tenha exigido um consumo 20% maior de memória

RAM estática (82 Kb) para a alocação das variáveis globais necessárias à inferência do modelo,

ela consumiu 62% menos memória Flash (197 Kb) que o sistema tradicional (321 Kb), devido

ao alto custo da biblioteca de comunicação Bluetooth.

É importante notar que a validação do sistema tradicional utilizou comunicação

Bluetooth, uma escolha justificada pelas limitações do hardware disponível (ausência de

conectividade à internet no microcontrolador). Para trabalhos futuros, sugere-se uma análise

comparativa utilizando comunicação via internet (como Wi-Fi), o que aproximaria a validação

de um cenário de processamento em nuvem mais realista.

Além disso, embora o modelo autoencoder e a técnica de quantização INT8 tenham se

provado eficazes para este projeto, o escopo não permitiu uma comparação exaustiva com

outras abordagens. Como investigação futura, seria de grande valia comparar o desempenho de

outros modelos e técnicas de otimização (como os descritos no Capítulo 2) no mesmo contexto

de hardware, a fim de determinar a combinação com a melhor relação entre performance e

eficiência de recursos

57

Conclui-se, portanto, que este trabalho atingiu seu objetivo ao desenvolver e validar um

dispositivo portátil, de baixo custo e alta eficiência. O sistema TinyML demonstrou ser uma

solução rápida e viável para o monitoramento de anomalias, reforçando as vantagens do

processamento na borda em aplicações que demandam respostas imediatas ou que devem

limitar a transmissão de dados via rede sem fio.

58

REFERÊNCIAS

[1] B. Zhang and X. Li, "Optimal computation offloading for industrial IoT," IEEE Access,

2025. Accessed: Apr. 18, 2025. [Online]. Available:

https://ieeexplore.ieee.org/document/10964287

[2] P. Gupta and R. S. Jadon, "PLANT Detect Net: IoT + Deep Learning for plant disease

detection," Evolving Systems, 2025. Accessed: Apr. 18, 2025. [Online]. Available:

https://link.springer.com/article/10.1007/s12530-025-09685-x

[3] A. Ahmad and D. Choi, "A wireless power transfer system for IoMT implantable devices

using inductive coupling and adaptive frequency control," IEEE Internet of Things Journal,

2025. Accessed: Apr. 18, 2025. [Online]. Available:

https://ieeexplore.ieee.org/document/10964304

[4] IoT Analytics, "State of IoT—Spring 2024: Number of connected IoT devices growing 16%

to 16.7 billion worldwide," IoT Analytics, 2024. Accessed: Apr. 18, 2025. [Online]. Available:

https://iot-analytics.com/number-connected-iot-devices/

[5] D. Situnayake and J. Plunkett, AI at the Edge: Solving Real-World Problems with

Embedded Machine Learning, 1st ed. Sebastopol: O’Reilly Media, 2023.

[6] G. M. Iodice, TinyML: Combine Artificial Intelligence and Ultra-Low-Power Embedded

Devices to Make the World Smarter. Birmingham: Packt Publishing, 2022.

[7] L. Banz et al., "A machine learning-oriented survey on tiny machine learning," 2023.

Accessed: Apr. 04, 2025. [Online]. Available: https://arxiv.org/abs/2306.09349

[8] W. de Simoni et al., O Estado da Qualidade do Ar no Brasil. São Paulo: WRI Brasil, 2021.

Accessed: Apr. 24, 2025. [Online]. Available: https://www.wribrasil.org.br/publicacoes/o-

estado-da-qualidade-do-ar-no-brasil

59

[9] Companhia Ambiental do Estado de São Paulo (CETESB), "Padrões de Qualidade do Ar,"

São Paulo: CETESB, [2023?]. Accessed: Apr. 22, 2025. [Online]. Available:

https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/

[10] Companhia Ambiental do Estado de São Paulo (CETESB), "Qualidade do Ar," São Paulo:

CETESB, [2023?]. Accessed: Apr. 22, 2025. [Online]. Available:

https://cetesb.sp.gov.br/ar/poluentes

[11] S. N. Dapper, C. Spohr, and R. R. Zanini, "Poluição do ar como fator de risco para a saúde:

uma revisão sistemática no estado de São Paulo," Estudos Avançados, São Paulo, vol. 30, no.

86, pp. 83–98, 2016. doi: 10.1590/S0103-40142016.00100006.

[12] Redação, "Estado do Rio lidera ranking nacional de monitoramento da qualidade do ar,

segundo estudo," O Fluminense, Niterói, Mar. 2, 2024. Accessed: Apr. 23, 2025. [Online].

Available: https://www.ofluminense.com.br/cidades/rio-de-janeiro/2024/03/1272213-estado-

do-rio-lidera-ranking-nacional-de-monitoramento-da-qualidade-do-ar-segundo-estudo.html

[13] D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Science+Business Media

B.V., 1980. (Monographs on Applied Probability and Statistics). doi: 10.1007/978-94-015-

3994-4.

[14] S. K. Adari and S. Alla, Beginning Anomaly Detection Using Python-Based Deep

Learning: Implement Anomaly Detection Applications with Keras and PyTorch, 2nd ed. [S.l.]:

Apress, 2024. doi: 10.1007/979-8-8688-0008-5.

[15] B. Kennedy, Outlier Detection in Python. Shelter Island: Manning Publications Co., 2025.

[16] P. Boniol, Q. Liu, M. Huang, T. Palpanas, and J. Paparrizos, "Dive into Time-Series

Anomaly Detection: A Decade Review," 2024.

[17] D. Colombo, L. Leonardi, A. Panarello, and M. Merlini, "Anomaly Detection for IoT

Time-Series Data: A Survey," Sensors, vol. 23, no. 8, p. 3871, 2023. doi: 10.3390/s23083871.

60

[18] M. A. Samara, I. Bennis, A. Abouaissa, and P. Lorenz, "A Survey of Outlier Detection

Techniques in IoT: Review and Classification," Journal of Sensor and Actuator Networks, vol.

11, no. 1, p. 4, 2022. doi: 10.3390/jsan11010004.

[19] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed. Sebastopol: O’Reilly

Media, 2019.

[20] G. M. Iodice, TinyML Cookbook: Combine Artificial Intelligence and Ultra-Low-Power

Embedded Devices to Make the World Smarter. Birmingham: Packt Publishing, 2022.

[21] A. A. Cook, G. Misirli, and Z. Fan, "Anomaly detection for IoT time-series data: a survey,"

IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481-6494, Jul. 2020. doi:

10.1109/JIOT.2019.2958185.

[22] P. Warden and D. Situnayake, TinyML: Machine Learning with TensorFlow Lite on

Arduino and Ultra-Low-Power Microcontrollers, 1st ed. Sebastopol, CA: O’Reilly Media,

2020.

[23] V. Tsoukas, A. Gkogkidis, E. Boumpa, and A. Kakarountas, "A review on the emerging

technology of TinyML," ACM Computing Surveys, vol. 56, no. 10, art. 259, pp. 1-37, Jun.

2024. doi: 10.1145/3661820.

[24] L. Capogrosso, F. Cunico, D. S. Cheng, F. Fummi, and M. Cristani, "A machine learning-

oriented survey on tiny machine learning," IEEE Access, vol. 12, pp. 23406-23440, 2024. doi:

10.1109/ACCESS.2024.3365349.

[25] Arduino, "Nano 33 BLE Sense Rev2," 2025. Accessed: Oct. 19, 2025. [Online]. Available:

https://docs.arduino.cc/hardware/nano-33-ble-sense-rev2/

[26] Hanwei Electronics, "MQ-7 Semiconductor Sensor for Carbon Monoxide," Datasheet,

Zhengzhou, [n.d.]. Accessed: Nov. 1, 2025. [Online]. Available:

https://cdn.sparkfun.com/assets/b/b/b/3/4/MQ-7.pdf

61

[27] Winsen, "MQ-131 Semiconductor Sensor for Ozone," Datasheet, Zhengzhou, [2012?].

Accessed: Nov. 1, 2025. [Online]. Available: https://cdn.sparkfun.com/assets/9/9/6/e/4/mq131-

datasheet-low.pdf

[28] Hanwei Electronics, "MQ-2 Semiconductor Sensor for Combustible Gas," Datasheet,

Zhengzhou, [n.d.]. Accessed: Nov. 1, 2025. [Online]. Available:

https://www.haoyuelectronics.com/Attachment/MQ-2/MQ-2.pdf

[29] Eletrogate, "Fonte Ajustável Para Protoboard," 2025. Accessed: Oct. 19, 2025. [Online].

Available: https://www.eletrogate.com/fonte-ajustavel-para-protoboard

[30] Arduino IDE. Accessed: Oct. 27, 2025. [Online]. Available:

https://www.arduino.cc/en/software

[31] "Jupyter Notebook." Accessed: Oct. 27, 2025. [Online]. Available: https://jupyter.org

[32] "Visual Studio Code." Accessed: Oct. 27, 2025. [Online]. Available:

https://code.visualstudio.com

[33] "Python." Accessed: Oct. 27, 2025. [Online]. Available: https://www.python.org/

[34] TensorFlow, "TensorFlow," 2025. Accessed: Oct. 27, 2025. [Online]. Available:

https://www.tensorflow.org/

[35] Keras, "Keras," 2025. Accessed: Oct. 27, 2025. [Online]. Available: https://keras.io/

[36] TensorFlow, "TensorFlow Lite," 2025. Accessed: Oct. 27, 2025. [Online]. Available:

https://www.tensorflow.org/lite

[37] Pandas Development Team, "pandas," 2025. Accessed: Oct. 27, 2025. [Online]. Available:

https://pandas.pydata.org/

[38] NumPy Developers, "NumPy," 2025. Accessed: Oct. 27, 2025. [Online]. Available:

https://numpy.org/

62

[39] J. D. Hunter et al., "Matplotlib: A 2D Graphics Environment," Computing in Science &

Engineering, vol. 9, no. 3, pp. 90-95, 2007. Accessed: Oct. 27, 2025. [Online]. Available:

https://matplotlib.org/

[40] C. Liechti et al., "pyserial," GitHub repository, 2025. Accessed: Oct. 27, 2025. [Online].

Available: https://github.com/pyserial/pyserial

[41] Bleak Developers, "Bleak," GitHub repository, 2025. Accessed: Oct. 27, 2025. [Online].

Available: https://github.com/hbldh/bleak

[42] S. Sharma, "Using XXD Command in Linux," Linux Handbook, Mar. 17, 2023. Accessed:

Nov. 1, 2025. [Online]. Available: https://linuxhandbook.com/xxd-command/

63

Apêndice A – REPOSITÓRIO DO CÓDIGO FONTE

O código-fonte completo desenvolvido para este trabalho, incluindo os scripts de

aquisição de dados do Arduino e o modelo de Machine Learning, está disponível

publicamente no seguinte repositório GitHub: https://github.com/gabriel-victor933/tcc.

