
KEVIN OURY

Aplicagao de Web Streaming
Hibrido CDN-P2P usando WebRTC

sao Paulo
2016

KEVIN OURY

Aplicagao de Web Streaming
Hibrido CDN-P2P usando WebRTC

Dissertagao apresentada a Escola
Polit6cnica da Universidade
de sao Paulo para obtengao da
graduagao

Area de concentragao: Engenharia
da Computagao

Orientador: Profa. Regina Melo
Silvei ra
Co-orientador: MSc. Samuel Kopp

sao Paulo
2016

KEVIN OURY 9239677 - S15

Aplicagao de Web Streaming
Hibrido CDN-P2P usando WebRTC

Dissertagao apresentada a Escola
Polit6cnica da Universidade
de sao Paulo para obtengao da
graduagao

Area de concentragao: Engenharia
da Computagao

Orientador: Profa. Regina Melo
Silveira
Co-orientador: MSc. Samuel Kopp

sao Paulo
2016

\ it

;}} EscoIa Polit6cnica _ EPEL

It111111 IIIUU JILIIIIII tIII\1
FICHA CATALOGRAFICA

h a2'OIG

Oury, Kevin
Aplicagao de Web Streaming Hibrido
WebRTC / Kevin Oury - sao Paulo, 2016

CDN-P2P usando

Trabalho de Conclusao de Curso - Escola Polit6cnica da
Universidade de sao Paulo, Departamento de Engenharia
E16trica, Sistemas Digitais e Computagao.

1. Engenharia 2, Engenharia da Computagao 3. Redes de
Computadores 4. Curso de Graduagao I. Universidade de sao
Paulo. Escola Polit6cnica. Departamento de Engenharia E16trica,
Sistemas Digitais e Computagao.

(aqa 23 daD

Agradecimentos

A professora Regina MeID Silveira e MSc. Samuel Kopp, pela orientagao e pelo
constante estimulo transrnitido durante todo o trabalho.

A todos que colaboraram direta ou indiretamente na execugao deste trabalho.

Resumo

0 que se desejou investigar 6 uma alternativa aos modelos clgssicos para entrega
de video no contexto de Web Streaming. Pretendeu-se descobrir um novo modelo que
permitisse ter uma melhor escalabilidade que sistemas cliente-servidor baseados
apenas em Content Delivery Networks. 0 presente trabalho visa propor uma arquitetura
de distribuigao de conteado hibrida usando Peer-to-Peer e demostrar sua viabilidade
com um prot6tipo.

Numa primeira fase, foram estudados os diferentes elementos t6cnicos envolvidos
em um Web Streaming, da parte de infraestrutura at6 a parte de aplicagao. Em seguida,
foi descrita a proposta de arquitetura hibrida. Enfim, foram apresentados os resultados
do prot6tipo e medidos os impactos possiveis.

Palavras-chave: Engenharia da computagao. Redes. Peer-to-Peer. WebRTC.

Abstract

The subject of the present work is to find an alternative to classic models for video
delivery in the context of Web Streaming, to achieve better scalability than client-server
architectures based on Content Delivery Networks. This work proposes a hYtlrid
architecture for media delivery using Peer-to-Peer, illustrated with a prototYpe.

First, this document presents an overview of the components of a Web Streaming
system, from infrastructure elements to application elements. Then, the formal proposal
for the hybrid infrastructure is explained. Finally, results obtained with the prototYpe
are analyzed.

Key words: Engineering. Networks, Peer-to-Peer. WebRTC.

Lista de llustrag6es

Fig. 1 - Evolugao do trafego Internet 2015-2020 [1] .__,„„_„„__„_„„„„______„____________6
Fig. 2 - visao geral do streaming de um fluxo HLS [10] ,.____„_____________„___._._,„_„„„.18
Fig. 3 - Hierarquia de playlists .m3u8 [10] .____„___„„„„__._________„___________.______„19
Fig. 4 – Exemplo de playlist de primeiro nivel [11]..,....,.................19
Fig. 5 – Exemplo de playlist de segundo nfvel [11].......................................,...............................,....2C)
Fig. 6 – Subscrig6es IPTV no mundo (Ql 2013) [14],..22
Fig. 7 - Top pafses para IPTV (Ql 2013) [14]..................................,...23
Fig. 8 - Crescimento de IPTV por pais (Ql 2013) [14] .„„„„„„„„„___„„_„_______„_____„___.24
Fig. 9 - Arquitetura tfpica de IPTV [13],„...,..............,............................25
Fig. 10 - Organizagao geral de uma CDN [23] „.„„„„„.„„„„„„„„„„_____._.„._„.__„„_____„,„_„31
Fig. 11 - M6tricas usadas na selegao do servidor de borda durante o roteamento de

request [30] ...„.„„„„_„„__„„„______._„___„„„..„„„„„.„„_„„_._.____„__,_._._„_„._„_„__.„„„„.„,34
Fig. 12 - Pilha de protocolos WebRTC..37
Fig. 13 - Troca de Offer/Answer entre os peers [3 1] ..39
Fig. 14 - Exemplo de c6digo para criagao de conexao WebRTC (JavaScript) ..„,.„_.„„„„._.40
Fig. 15 – Arquitetura geral sem P2P a esquerda (A) e com P2P a direita (B) .______._.„__44
Fig. 16 - Diagrama de blocos da estrutura geral do software...,..49
Fig. 17 – Diagrama de classes do m6dulo P2P ..50
Fig. 18 - Conexao com o tracker e download de um segmento de um outro peer .„_____.52
Fig. 19 - Estrutura simplificada da CDN da USP .____„„___„__„_..__.________..„..„_._.____._.56
Fig. 20 - Arquitetura da Demonstragao...„................ .58

10

Lista de abreviaturas e siglas

API

CDN

DDoS

DNS

HLS

HTTP

ICE

IPTV
NAT

P2P

SA

SDP

TCP
UDP

UHD

VOD
WebRTC

Application Programming Interface

Content Delivery Network
Distributed Denial of Service

Domain Name Service

HTTP Live Streaming

HyperText Transfer Protocol

Interactive Connectivity Establishment
internet Protocol Television

Network Address Translator

Peer To Peer

Sistema Aut6nomo

Session Description Protocol
Transmission Control Protocol

User Datagram Protocol

Ultra High Definition
Video On Demand

Web Real-Time Communication

11

Sumirio
1. Introdugao... 13

ll. Objetivo e Motivagao.. 1S

III. Conceitos e definig6es „„„„„.„„„„„„„„„„„„„„„„„_„____._________„„_.„.„.„„„. 16
Ill.I. Web Streaming.. .16

a) Introdugao „...„__„_„„„„„„.„„„_„„„„„„.„„„„„„„„„„„„„„„„„„„„„_____„„_„„_„__„____„_„„. 16
b) Formatos de streaming.........,......,...,..,......,.............................. 17

III.2. IPTV .„__„„„_„__„„„„„„„___„„_„___„___„„„„_„_„„„_„„„„__„„„_„„„____________22
a) Conceito __„__„__„.______„__„„„_„_____„_____„„_„„„„„„„„_„„„_„„_„„_„„_„„__„„___„„_. 22
b) Mercado „,„„„„_„„„„„„__„_„„„_„„.„„_„„_„„_„_„„„_,„____„„„„_„_„„_„„„„__„„„„__„„„„„„ 22
c) Exemplo de arquitetura „„„__„_„„„„„„_„__„__„„_„__„„„„„_„„„„„„„„„„„„_„„_„„„„___„„ 24

III.3. Web Player .___„„„„„„„____„„„„_„„_„„„„„„.„„„„„___„„„„__„„„_„„___„______„„.26
III.4. Peer-to-peer (P2P) .„„„„„„„„„„„„„„„„„,„„.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„.„27

a) Conceito .„_„„„„_„„„„_„_„„___„„„„„„„_.„„_„__._„„______„„„„„„„„„„„„_„„_„_„„„__„_„„„ 27
b) Atores do mercado.. 28
c) Projetos open-source _„„„„„_„„„_„_„„„„„„_„„„„„„„„_„„„„„„.„„„„„_„„„„„„„„„„„„_„„„. 28

III.5. CDN..29
a) Conceito ________„___„__„_„____„__„„__„„__„„„„„„„„„„„„„„„„„„„„_„„„„__„_„„„__„____. 29
b) Arquitetura de uma CDN .„..„_„„„„„„„„„„„„„„„„_._„___„__„„„„_„„„„„_„„_„_„„„„„„„_„„. 30
c) Tecnologias,........,... 3 1

111.6. WebRTC ...3 5
a) Introdugao _„.___„„___„„„__„___.__„____„_„_„__„_„„„„„„„„„„„„____„„„„_______„_„_. 35
b) Visio t6cnica geral ___„„„„„__„_„_„„__„„„„_„„„„_„„_„„„„„„„„„„„„„„_„„„__„__„__„_„_. 36
c) Criar uma conexao peer-to-peer „„„„„„„„„„„_„„„_„__„_„__„„„_„______„_„_„_„_„„„„„. 38
d) I)atachannel ...„.„„„„„„„_„„_„„„„_„„„„„„„„„„„„„„.„„„„____„_„_„„__„____„„„„„„„_„„„„_„„ 40
e) Limita96es ...,....,.. 41

IV. Arquitetura da proposta .. 43
IV.I. Requisitos „...„_„„___„„„___„„_„„__„„„„__„„___„„_„_____________„__„_„_____„43
IV.2. Arquitetura geral..44
IV.3. Escolhas t6cnicas ..45

a) Protocolo para P2P: WebRTC......,.....................,............................,... 46
b) Protocolo de streaming adaptativo: HLS... 46
c) Player: video.js ..„„„„„__„___„__„_„„.__„_.__„„„__„„„„„_„„_„„„__„_„„„„__„_„___„_„__ 47
d) Outros m6dulos open-source... 47

IV.4. Arquitetura do software .__„„„„___„„„„__„_„_„„„„„______„„_„„„„„_„_______„47
a) Parte de mfdia __.___„_„_„.„___„„_„__.___„„„„__„___„_„„„„„„„„„„__„„_„„_„_„_„.______. 47
b) Parte P2P,.....,..,.........,..,............................ 49

IV.5. 1)esenvolvirnento do projeto ..53

V. O projeto no cenario do IPTV da USP .. 56

VI. I)emonstragao „„.„„„„„„„„.„.„„„„„_„„„„„„„„„„„„„„__„„„___„___„_„„„„„„_„ 58
VII. Testes.. 60

VIII. Considerag6es Finais _„„„„„.„„„.„„„„.„„„„„„_„_„_____________._________. 62

IX. Bibliografia... 63
X. Ap6ndice A - Resultados detalhados dos testes __._„„„„„.„.„„„„„„„„„„„„„„. 67

12

I. Introdugao

Nos altimos anos o mercado de video na Web vem experimentando um
crescimento exponencial devido aos efeitos combinados da alta do consumo e da
qualidade dos videos. 0 trafego de vIdeo na Internet vai ser multiplicado por 4 entre
2015 e 2020 pois, de acordo com as previs6es da Cisco, o volume de fluxo de video
constituir£ 79% do trafego total em 2020, contra 63% em 2015 [1].

2815 Gi©b81 int@rn©t TraWlc by A#pii©© tian
13% ! :I ’ : : : - : - 3

24% HI’ - i . i „:If:. I

§MF -’ : Fri- ilp Ii if ={:t ' i/

2828 Gt©ba! Int@fa©t Tr&©© by App Ihadan
+% } \ t:/ :' ' :F - t -, k

} }% T;' , -' fr., , . : i
7#% ;’- - dr;{ ; }(t 'X 1::q. ;:}

V&d©© Gan&n t

+}% :'; ‘
$!% ='=
2% ’ :: { :

Fig. 1 - Evolugao do trafego Internet 2015-2020 [1]

Ao mesmo tempo, o tamanho dos arquivos de video esti aumentando tamb6m. Em
um mercado onde qualidade 6 fundamental, Ultra-High Definition (UHD)1 rapidamente
virou necessgria, Com usugrios esperando melhores qualidades, distribuidores de
videos precisarao de mais banda e de infraestruturas que possam receber arquivos
maiores em picos de trgfego para atender as expectativas dos usuarios finais. UHD
representara 15,7% do trafego total de video na Internet, contra 2,3% em 2015 [1].

Os modelos de entrega de video atuais usando protocolos unicast2 jg estao
mostrando os seus limites. Conforme escreveu Kurt Michel, da Akamai: “0 aumento da
penetragao da banda larga e os dispositivos mais rapidos fazem com que as experi6ncias
de visualizagao de alta qualidade sejam possfveis, mas problemas de lat6ncia de rede e

1 Formato de vIdeo digital de ultra-alta definigao.
2 Enderegamento de pacote IP para um trnico destino, ponto-a-ponto.

13

altas cargas de trgfego podem muitas vezes resultar em um desempenho de streaming
de vfdeo desapontador, com pausas frequentes para bufferizagao” [2].

Protocolos tradicionais baseados em relag6es um para um entre cliente e servidor
tdm provado serem insuficientes para atender a demanda atual, com sobrecarga e
congestionamento de rede frequentes. As CDN (Content Delivery Networks), que serao
detalhadas em sessao posterior, sao infraestruturas criadas com a intensao de melhorar
esta situagao, multiplicando o namero de servidores espalhados geograficamente.
Por6m, essa solugao nao 6 escalavel e pode acabar falhando em prover confiabilidade a
um custo aceitavel [3].

Uma outra questao relevante 6 o uso dos recursos disponiveis. Admitindo que as
infraestruturas de CDN possam aliviar as redes dos provedores e ajudar a entregar
conteado de forma mais rapida, essas infraestruturas sao compartilhadas entre varios
clientes. Se um cliente precisar transmitir um evento que gere um grande consumo de
recursos, sera que os outros clientes dessa mesma CDN serao prejudicados no
atendimento do servigo?

A questao da largura de banda utilizada 6 um dos maiores desafios para as CDN e
os ISP (Internet Service Provider - Fornecedor de Acesso a Internet). Desta maneira, os
servigos de transmissao estao sempre submetidos ao poder do provedor da
infraestrutura, como ja observamos conflitos entre Netflix e Verizon por exemplo [4],

De forma mais ampla, a questao da alocagao de banda entre diferentes servigos da
Internet foi amplamente discutida na esfera polftica, quer seja nos Estados Unidos com
as discuss6es sobre a Net Neutrality (ou Neutralidade da Internet) , ou no pr6prio Brasil
com o Marco Civil da Internet. Essas leis garantem a neutralidade da rede: “0 responsdvel
pela transmissao, comutagdo ou roteamento tem o clever de tratar de forma ison6mica
quaisquer pacotes de dados, sem distin9ao por conteado, origem e destino, sewigo,
terminal ou aplicagao” [5].

14

II. Objetivo e Motivagao

As quest6es mencionadas na introdugao estao na origem da proposta deste
Trabalho de Conclusao de Curso, que pretende oferecer pistas de pesquisa atrav6s da
presente monografia e do prot6tipo t6cnico acompanhando eIa. O objetivo a longo prazo
deste tipo de projeto 6 de cortar os custos de infraestrutura e conseguir responder a
uma demanda em crescimento exponencial, guardando em mente a ideia original da
Internet que era uma ideia de uma rede decentralizada e aberta a todos, de forma igual.

De maneira mais concreta , a proposta deste trabalho de conclusao de curso 6 de
desenvolver um prot6tipo de sistema de ajuda ao web streaming de video via peer-to-
peer (P2P), integrado a CDN como mecanismo complementar de entrega. O objetivo
deste sistema 6 duplo:

- economizar recursos de rede (banda e processamento de servidores),
- melhorar a Qualidade de Experi6ncia para o usuario final (maior qualidade de

video, menos rebufferizagao3, melhor desempenho a altas cargas em grandes
eventos, tolerancia a falha de um servidor)

De um ponto de vista mais pessoal, foi escolhido este assunto por afinidade do
autor pelos assuntos de video na Internet, peer-to-peer e, de forma mais geral, a
pesquisa sobre as novas organizag6es de rede que vao responder aos numerosos
desafios presentes e dos pr6ximos anos. Na mesma linha, o autor trabalhou no domfnio
de Web Streaming e peer-to-peer e desenvolveu uma base de conhecimento sobre esses
assuntos. Este estggio criou uma vontade de continuar a trabalhar com esse assunto e o
trabalho de conclusao de curso era uma 6tima oportunidade para aproveitar os recursos
tanto de conhecimento e experi6ncia que materiais do Laborat6rio de Arquitetura e
Redes de Computadores da USP (LARC-USP). O LARC participou do desenvolvimento da
infraestrutura do IPTV-USP, e demostrou um interesse em integrar as tecnologias de
peer-to-peer na sua arquitetura. Este assunto sera aprofundado na parte dedicada do
presente documento.

A escolha deste projeto como trabalho de conclusao de curso permitiu conduzir
pesquisas aprofundadas no assunto e melhorar habilidades em desenvolvimento
orientado para mfdia, nas atividades de escolha das tecnologias adaptadas, reuso de
blocos tecno16gicos existentes e desenvolvimento de blocos pr6prios. O projeto usa
tecnologias como Web Streaming e WebRTC, detalhadas na se9ao seguinte.

3 O fen6meno de “rebufferizagao” corresponde a uma pausa na reprodugao (“playback”)
por causa de falta de segmentos de video dentro do buffer (“buffer underflow”). Precisa parar a
reprodugao para esperar o carregamento de mais segmentos de video e poder voltar a leitura
normal. Este fen6meno 6 uma das principais reclamag6es de usuarios quando fizer streaming a
partir de um servidor carregado.

15

III. Conceitos e definig6es

Esta segao discorre sobre os conceitos tecno16gicos utilizados neste trabalho,
assim como as definig6es utilizadas para a elaboragao do mesmo

III.1. Web Streaming

a) Introdug50

Podemos dividir as tecnologias de Web Streaming de video (ou transmissao de
video via web) em duas categorias: a Internet Video, conhecida como Over The Top
(OTT), e Sewigos Aut6nomos como IPTV ou TV a cabo.

Os servigos como IPTV ou TV a cabo utilizam uma rede fechada (um “sistema
aut6nomo") para transmitir porque usam transporte multicast'+ e precisam atender
alguns requisitos de qualidade de servigo (QoS) [6].

Ao contrario, os servigos de 0TT transmitem via Internet pablica, com tecnologias
tradicionais como Microsoft Windows Media, Apple Quicktime, Adobe Flash, e as mais
atuais tecnologias de streaming adaptativo como Apple HTTP Live Streaming (HLS),
Microsoft Smooth Streaming (HSS) e Dynamic Adaptive Streaming over HTTP (DASH).
Essas tecnologias transmitem o conte6do para o usu£rio atrav6s de uma conexao unicast
(a partir de um servidor origem ou de uma CDN) ou de um protocolo proprietario em
cima dos protocolos de transporte TCP e as vezes UDP (mais voltado para streaming ao
vivo), ou de HTTP [7].

Tradicionalmente, a transmissao era feita por Progressive Download, que usa
HTTP, por causa da simplicidade. O video 6 transmitido por um servidor web HTTP
basico, armazenado no disco do usugrio, e reproduzido a partir do disco. A16m da
simplicidade, outra vantagem 6 que pode codificar o video com taxas maiores que a
banda efetivamente disponivel para o usugrio, porque o video sera reproduzido de
maneira regular e sem pausas, ja que 6 armazenado localmente.

Por6m, uma vez que o video esti armazenado no disco do usugrio, 6 muito mais
fgcil de ser copiado. Esse 6 um motivo pelo qual muitos produtores transmitem seus
conteados com Streaming.

No caso de Streaming, 6 necessario usar um servidor de streaming, que 6 um tipo
de servidor particular encarregado especialmente para fazer streaming de midia, ao
contrgrio de um servidor web bgsico. Mas neste caso, o video tem que ser codificado em
uma taxa bastante inferior a banda m6dia disponfvel para o usuario alvo. Se nao for, a
reprodugao vai ter paradas frequentes, diminuindo a qualidade de experi6ncia do
usugrio.

Enfim, uma terceira opgao que 6 mais usada hoje em dia 6 o Adapative Streaming,
que codifica fluxos sob demanda ou ao vivo em varias taxas, e troca de taxa (ou
qualidade) de maneira dinamica e adaptativa em fungao da banda disponfvel para o

4 Enderegamento que permite a entrega de uma mesma informagao para varios
destinatarios, usando apenas um link comum at6 ele se dividir para chegar nos pontos
desejados.

16

usuario e outras varigveis de estado da rede. Isso garante a melhor qualidade possfvel
para quem tiver banda suficiente, e uma reprodugao sem paradas com qualidade menor
para quem estiver usando uma rede celular por exemplo [8]. Descrevemos alguns
exemplos de protocolos de Adaptive SCreaming.

b) Formatos de streaming

A transmissao de conte fIdO entre n6s de uma rede pode ser feita de varias
maneiras, dependendo dos objetivos em termos de confiabilidade e atraso. Podemos
dividir essas maneiras entre protocolos push-based e protocolos pull-based.

Com protocolos push-based, uma vez que o servidor e o cliente estabeleceram uma
conexao, o servidor transmite um fluxo at6 o cliente at6 ele interromper a conexao,
atrav6s do controle de sessao. O protocolo Real-time Streaming Protocol (RTSP, RFC
2326) 6 bastante usado para o controle de sessao, enquanto a transmissao de dados
geralmente 6 feita com o Real-time Transport Protocol (RTP, RFC 3550), em cima do
protocolo UDP,

Os protocolos push-based sao adaptados para fazer multicast por exemplo.

Por outro lado, no caso dos protocolos pull-based, o cliente 6 a entidade ativa e 6
ele que pede o conteado para o servidor. Esses protocolos geralmente usam HTTP.

Os protocolos de Adaptive Streaming sao pull-based. 05 mais usados hoje em dia
sao o HTTP Live Streaming Protocol (HLS) da Apple, o Dynamic Adaptive Streaming over
HTTP (MPEG-DASH) e o Smooth Streaming da Microsoft. HLS e Smooth sao protocolos
proprietarios, enquanto DASH foi elaborado pelo MPEG e padronizado pela ISO [9].

i) HLS

HLS 6 o protocolo de streaming adaptativo para video sob demanda e ao vivo da
Apple, e 6 o anico compatfvel com as aplicag6es de streaming da plataforma iOS (iPhone,
iPad). De fato, ele deve ser obrigatoriamente considerado para quem quiser atingir
usugrios desta plataforma.

17

Media onc9der
MPEG-2

$tr8arn

Stream segmonter

Audio/video
inputs

h

t„} li:::,:l:.'.*ir.Jill Hrrp

CN9nt

Fig. 2 - visao geral do streaming de um fluxo HLS [10]

O seu funcionamento, descrito na figura Fig. 2, 6 similar aos outros formatos de
streaming adaptativo. i preciso codificar o conte6do em vgrias qualidades diferentes
(vgrias taxas) que ficarao em arquivos separados, entre as quais o player podera
alternar dinamicamente para otimizar a experi6ncia do lado cliente. Cada qualidade 6
dividida em segmentos que representam entre 5 e 10 segundos de video. A entrega 6
feita a partir de um servidor HTTP (e nao um servidor de streaming) que serve os
segmentos e os arquivos de texto que sao chamados “manifests” ou playlists. A primeira
playlist, a Master Playlist, (extensao .m3u8) contem a lista de todas as qualidades
disponfveis para aquele fluxo (Fig. 3). A playlist de segundo nfvel 6 dedicada para cada
qualidade diferente, e contem a lista de segmentos com os caminhos relativos onde eles
podem ser encontrados no formato MPEG-2 TS (.ts).

18

Alternate-A
index file

Alternate-B
index tHe

Alternate-C
index fIle

Fig. 3 - Hierarquia de playlists .m3u8 [10]

#EXTM3U

#axT_x_sTREAM-rNr , PnOGRAM-.iD=1 , BANDWIDTH=15000 a , RE$OLUTION=416x2 34, \

CODECS=" avc:L,42eOC>a,mp4a . 40 + 2 ''

http : //example . com/low/index .m3u8

#nxT_.X_STREAM_..iNr .,PNOGRAM-ID=1 , 8ANDWIDTn=24aao 0 , RSSOLUTroN=416x234 , \

CODECS= “ ave 1 + 42e00a , mp4a . 40 . 2 '‘

http : //example , com/lo mid/Index.m3u8

#EXT-.X-STREAN[-INF : PROGRAM-ID= 1 r BANDWIDTH=440000 r RESOLUTION=4 1 6x23 4 r \

CODECS= “ ave 1 .42eOC>a , mp4a + 40 . 2 '‘

http : //example , com/hi mid/index.n3u8

#EXT_X_..STREAM-INF : PROGRAM-.ID=1 , BANDWIDTH=64000 0 , RESOLUTION=640x3 60 , \

CODECS= '’ avc :L .42e00a , mp4a, 40 . 2 "

http : //example . com/high/index . m3u8

#EXT-x-sTREAM-iNr , PROGRAM-ID=1 , BANDWIDTH=64000 , CODECS= ''mp4a. 40 . 5 "

http : //example . com/ audIo/ index .m3u8

Fig. 4 – Exemplo de playlist de primeiro nfvel [11]

19

A figura Fig. 4 representa um exemplo de playlist de primeiro nivel. Cada linha
representa uma qualidade diferente do mesmo conte6do, com o link para a playlist de
segundo nivel correspondente,

A figura Fig. 5 representa uma playlist de segundo nivel. Cada linha representa um
segmento no formato MPEG-2 TS, com a sua duragao em segundos e o link para ser
baixado.

#EXTM3U

#EXT-X-PLAYLIS'T-TYPE :VOD

#EXT....X.-TARGETDURATI ON : 1 0

#EXT-X-VERSION : 3

#EXT-X-.MEDrA-.SgQURNC£ : a

#gxTrNr : 10 . a ,

http : //example . com/moviel/fileSequenceA . ts

#EXTINF : 10.0 ,

http : //example . com/movie1/fileSequenceB , ts

#EXTINF : 10.0 ,

http : //example . com/moviel/fileSequenceC . ts

#EXTINF : 9 . 0 ,

http : //example . com/movie1/fileSequenceD . ts

#EXT-X-ENDLIST

Fig. 5 - Exemplo de playlist de segundo nfvel III]

0 video 6 codificado com o codec H.264 e o audio com AAC. Os segmentos
individuais estao no formato MPEG-2 Transport Stream. Deve-se notar que video e
audio sao multiplexados, ao contrario do caso do MPEG-DASH por exemplo.

ii) DASH

MPEG-DASH 6 o padrao ISO (ISO/IEC 23009-1) de Streaming Adaptativo que tem
potencial para substituir padr6es proprietgrios como HLS ou Smooth Streaming, com o
suporte de empresas como Apple, Netflix, Microsoft, etc. A vantagem de ter um anico
padrao unificado seria que os publicadores poderiam gerar apenas um conjunto de
arquivos a serem distribufdos em todas as plataformas [12]. O primeiro obstgculo 6 o
fato que a Apple continua impondo HLS para iOS. O segundo problema 6 que, sendo
compativel com qualquer codec5, o formato DASH nao resolve os problemas de

5 Codificador/decodificador de sinaI.

20

compatibilidade de codec entre navegadores. Isso significa que os publicadores ainda
teriam que codificar os videos de vgrias formas para garantir uma compatibilidade com
a maior parte dos navegadores.

Do ponto de vista t6cnico, DASH 6 parecido com HLS. Ele 6 constitufdo por um
arquivo manifest “Media Presentation Description” (parecido com “Playlist”) em XML,
com as diferentes qualidades de video, e pelos arquivos por si mesmo. Ao contrario de
HLS, audio e video podem ser separados em arquivos diferentes (facilidade para trocar
de pista de lingua sem baixar de novo as imagens por exemplo). 0 video 6 dividido em
segmentos,

21

III.2. IPTV

a) Conceito

Internet Protocol Television (IPTV) 6 um sistema que fornece servigos de televisao
via Internet usando uma arquitetura e protocolos de redes do conjunto do Internet
Protocol (IP). Servigos de IPTV podem ser classificados em tr6s grupos principais:
televisao ao vivo, programada, e video sob demanda.

A ideia original com IPTV para os ISP era de fornecer os servigos de televisao,
video sob demanda (VOD), etc. usando Internet, em uma infraestrutura contida que
permitisse controlar a qualidade de servigo, gerando oportunidades de renda. Esses
servigos de IPTV costumam ser oferecidos pelos ISP em ofertas “Triple Play”, junto com
acesso a Internet e Voice Over IP (VoIP). A instalagao pode ser feita atrav6s de uma caixa
ou “Box” para utilizar os servigos em uma televisao, ou mais simplesmente os servigos
podem ser acessiveis via um computador [13].

b) Mercado

De acordo com a Point Topic [14], em Margo de 2013 tinham 79,3 milh6es de
subscrig6es de IPTV no mundo (Fig. 6). Pode-se observar na mesma figura que o
crescimento deste n6mero diminuiu a partir do fim de 2011 (7%), para chegar perto de
4% em 2013.

Global IPTV Trends

03 2011 Q42G ll Q 12012 02201: Q3ZOIZ Q420i2 Q12Q 13

an IPWSubwdbers +Growth

Fig. 6 - Subscrig6es IPTV no mundo (Ql 2013) [14]

Em termos de regi6es, os maiores pafses para IPTV sao China, Franga e EUA (F_k
Z). No caso da Franga, que foi um dos primeiros pafses a adotar a tecnologia em grande
escala, isso representa quase 25c70 da populagao.

22

Top 11) IPTV Countries
IPFV subscribers Q:1 2013

China (All Territories) 21.08

France 13.80

United States

South Korea

Japan

Russian Federation

Germany

Netherlands

Belgium

Taiwan, Province of China

0 5 10 15 20 25
Millions

Fig. 7 - Top paises para IPTV (Ql 2013) [14]

Quando olhar no detalhe das novas subscrig6es de janeiro at6 margo de 2013, sao
pafses asigticos nos primeiros lugares (China, Cor6ia, Jap50, Viet Nam).

23

Top :tO IPTV Countries
Net additions Q:L 20:13

China (All Territories) 2.14

South Korea 0,43

0.43

0.28

0,19

0.16

0.12

0,10

0.08

0.07

United States

France

Russian Federation

Japan

Nettlellands

Viet !Narn

Germany

Switzerland

a*o C.2 0.4 O*6 0.8 1.0 1.2
Minions

Fig. 8 – Crescimento de IPTV por pafs (Ql 2013) [14]

c) Exemplo de arquitetura

A arquitetura tipica de uma IPTV esti descrita na Fig. 9. A informagao broadcast
que chega por uma antena sat61ite no “Super Head-end" 6 distribufda principalmente em
MPEG-2 Multi-Program Transport Stream (MPTS) at6 o n6 de servigo de video. A
distribuigao do pr6prio conteado do canal 6 feita atrav6s de vgrios equipamentos na
rede de acesso, como Digital Subscriber Line Access Multiplexers (DSLAM) e outras
tecnologias como Fiber-to-the-Home (FTTH) que fazem a interface com a « Box» do
usugrio. Para IPTV, cada canal 6 distribuido usando um IP multicast.

24

SabBb
IWm

GDl##8
Pnpw8bar

B%
Super
bjg ed End

Vidgg Serving ONkg

n& BlIL B
H (g h :::==>ia

}P*i“’“A*\
Lwt
aBab

X8tnina

D§LAM
PVH+a69rvk8$

D$L'
agkal

,sub@abMMSewWW

BMW$©yk##

Law: end €Xfk;e
I:3D or RT a

VHw
+XudQ

bHoo

&

Viwer’8 Home

Fig. 9 – Arquitetura tfpica de IPTV [13]

25

III.3. Web Player

Em um site de midia com video, o web player 6 o elemento de software que mostra
o video para o usugrio. 0 player toma como entrada o arquivo de video (.mp':+ por
exemplo), decodifica este arquivo para transformg-lo em uma lista de quadros
(imagens) e faz a reprodugao desses quadros de maneira animada na pggina web
desejada.

Quando escolher um player, 6 muito importante levar em conta vgrios aspectos,
como formatos de video (progressive download, streaming adaptativo, etc.) e
plataformas compatfveis (OS, navegador, mobile, etc,). Existem muitos players
disponfveis no mercado, com modelos de licenga diferentes. Podemos citar Video.js da
Brightcove, JWPlayer, o player da Kaltura, o player da Ooyala, e o Primetime player da
Adobe [15]. Quando eles forem adaptados as suas necessidades, 6 recomendado usar um
desses players ja disponfveis. Foi o que foi feito neste projeto, usando o video.js.

Por6m, em certos casos pode ser interessante construir o seu pr6prio player para
satisfazer requisitos particulares.

Distinguimos 2 grandes tecnologias de players para Web: players baseados em
Flash e players baseados em HTML 5.

A tecnologia Flash 6 a mais madura das duas e o legado dos web players esti em
Flash. Com a aparigao do tag <video> no HTML 5, Flash esti sendo substituido por
players em HTML 5. Isso tamb6m 6 devido as varias falhas de seguranga descobertas a
cada semana no Flash, bem como a vontade da Apple de banir o suporte a Flash nos
aparelhos iOS.

Olhando para o requisitos da nossa aplicagao P2P, hoje em dia Google Chrome e
Mozilla Firefox implementaram Media Source ExtensIons (IVISE), que 6 a parte de HTML 5
que permite manipular os arquivos de video diretamente com JavaScript no navegador.
Deste ponto de vista tamb6m, isso significa que nao 6 mais necessario usar Flash para
aplicag6es P2P.

Por outro lado, o uso de HTMIL 5 nos players web esti sempre em crescimento.
Podemos citar por exemplo a Youtube que passou de um player em Flash a um player
em HTML 5 por padrao em 2015 [16]. Em termos de compatibilidade, HTML 5 tem uma
grande vantagem sobre Flash para os dispositivos m6veis. HTML 5 tamb6m oferece
grandes possibilidades de interatividade com o video, com elementos como o Canvas por
exemplo. Por6m, HTML 5 ainda 6 uma padrao em construgao, e todas as funcionalidades
nao estao ainda implementadas ou funcionais em todos os navegadores,

26

III.4. Peer-to-peer (P2P)

a) Conceito

Peer-to-Peer (P2P) 6 uma arquitetura de rede distribuida onde os participantes,
chamados de peers, t6m os mesmos privi16gios. Esta rede P2P se superp6e a uma
infraestrutura de comunicagao como a Internet por exemplo. Neste sistema, que pode
ser representado por grafos, cada peer forma um n6 do grafo P2P, e as conex6es entre os
peers sao as arestas entre eles.

Redes P2P sao usadas geralmente para aplicag6es de comunicagao ou de
distribuigao de conteado. O protocolo P2P utilizado deve ser capaz de rastrear o
conte6do atrav6s da rede, e escolher como conectar os peers entre si. 0 conte6do 6
transferido diretamente entre os peers, a qualidade do enlace entre eles determinando a
qualidade da transmissao. Podemos distinguir dois tipos de redes P2P:

Redes nao estruturadas: as conex6es estao feitas de maneira arbitraria, sem
restrig6es sobre a estrutura da rede. Geralmente essas redes nao sao muito
eficientes;
Redes estruturadas: os peers estao conectados e organizados de acordo com
polfticas implementadas em algoritmos (por exemplo favorecer a localidade na
descoberta de peers). As redes resultantes tdm propriedades que geralmente
oferecem um melhor efici6ncia e escalabilidade. A qualidade do enlace entre
dois peers determinarg o desempenho da rede, o que explica porque as
politicas de conexao entre os peers sao um ponto fundamental.

Como veremos em exemplos a seguir, uma rede P2P bem implementada pode ao
mesmo tempo melhorar a qualidade de experi6ncia do usuario, descongestionar a rede
Internet e reduzir os custos dos atores envolvidos. Isso depende muito de como 6 feita a
selegao dos peers, em fungao da distancia geografica entre eles por exemplo. Um outro
fator essencial na selegao dos peers 6 o ISP deles. Estudos mostram que o custo de troca
de sistema aut6nomo (a rede de um ISP 6 um sistema aut6nomo) 6 muito alto [17]. Por
exemplo, as vezes pode ser mais interessante para um usugrio em sao Paulo pedir um
conte fIdO para um outro peer em Mlanaus mas no mesmo sistema aut6nomo, do que
para um peer no Rio de Janeiro mas em um sistema aut6nomo diferente.

As optimizag6es de caminho do P2P e do ISP tamb6m podem trabalhar uma contra
a outra. 0 P2P vai tentar otimizar a entrega de conteado entre seus peers, procurando o
melhor caminho. Mas o aumento de trgfego nesta rota vai diminuir a banda disponfvel,
incentivando o ISP a redirecionar o trgfego desta aplicagao para um outro caminho.
Estas realocag6es sucessivas podem acabar nao realmente melhorando o desempenho
[18]

A16m disso, uma rede P2P 6 por defini9ao decentralizada. Isso significa que o
conteado nao fica em um servidor central ou na mao de uma organizagao. Ele 6 acessfvel
por todos os membros da rede P2P, de maneira livre e compartilhada. A disponibilidade

27

de um conte6do depende completamente do comportamento dos peers da rede. Em
casos de streaming com forte demanda, isso 6 uma grande vantagem. Em outros
cengrios, como download de um conte fIdO que perdeu popularidade, isso pode se tornar
uma desvantagem, pois aquele conte6do sera diffcil de se encontrar.

b) Atores do mercado

i interessante saber que empresas como a Spotify usaram uma rede P2P para
distribuir o conteado deles enquanto eles nao tinham servidores suficientes para
entregar as masicas para todos os clientes [19]. Essa estrat6gia permitiu fazer
economias nos servidores no infcio da empresa. 08 usuarios do aplicativo para desktop
armazenavam no seu disco uma versao cifrada das masicas ouvidas. Quando o usugrio
queria ouvir essa m6sica de novo, eIa estava acessfvel no disco dele. A16m disso, se era a
primeira vez que ele escutava essa masica, a aplicagao ia tentar baixg-la do disco de
outros usugrios do Spotify desktop (os peers da rede). Em 61timo caso, a masica estava
baixada do servidor.

Hoje em dia a Spotify tem servidores suficientes para atender a demanda, e manter
a rede P2P seria mais custoso.

Podemos tamb6m citar a BitTorrent Inc. [20], que foi a empresa que criou o
protocolo BitTorrent em 2001 e ainda comercializa produtos relacionados de
distribuigao de conteado. Este 6 o protocolo utilizados por clientes populares como
Popcorn Time e FTorrent.

c) Projetos open-source

Podemos citar alguns projetos open-source relacionados com Web Streaming e
que usam P2P,

Primeiro, o Popcorn Time que foi um projeto para oferecer uma plataforma
parecida com a da Netflix, mas baseada em torrents. A parte interessante deste projeto 6
que foi liberado de graga pelos seus desenvolvedores, com c6digo aberto.

Um outro projeto de c6digo aberto interessante 6 o WebTorrent [21]. Ele 6 uma
aplicagao web e para desktop escrita em JavaScript que permite fazer streaming de
torrents usando WebRTC.

28

III.5. CDN

a) Conceito

A Internet comegou com aplicag6es militares e acad6micas, e nessa 6poca ningu6m
imaginava que poderia um dia fornecer e suportar a tantas aplicag6es como acontece
hoje. As possibilidades da Internet sao virtualmente infinitas. Mas isso tamb6m quer
dizer que a estrutura e os protocolos de comunica9ao nao foram pensados para suportar
transmiss6es ao vivo em qualidade 41<6 para milh6es de usu£rios simultaneos por
exemplo.

A Web centralizada com arquitetura classica Cliente-Servidor reduz as
possibilidades de escalabilidade a duas opg6es: adicionar mais servidores sempre mais
poderosos, e/ou usar estrat6gias para melhorar o desempenho da Web. O problema de
lat6ncia percebida pelo usu£rio ao acessar uma pagina Web 6 um problema relevante
que precisa ser resolvido, embora melhorias significativas aconteceram desde os
primeiros tempos. A redugao dessa lat6ncia foi possibilitada pelo desenvolvimento das
redes cabeadas e sem fio, sempre com foco em acelerar a velocidade da Internet para os
usugrios.

Por6m, ainda hoje esse problema persiste, por dois motivos principais:
o cargter nao estruturado da Internet implica que nao 6 otimizada para entrega
de conteado;

- como jg foi mencionado na introdugao, o trafego Internet esti em constante
crescimento por causa do crescimento dos usugrios e do volume de dados
trocados pelas aplicag6es

Esses dois motivos fazem que a primeira solugao que consiste em apenas adicionar
servidores para responder a demanda nao pode bastar. Tamb6m 6 necessario ter uma
abordagem mais estrat6gica a respeito de distribuigao de conteado, especificamente
conteado Web. Esse 6 o desafio que as Content De avery Networks (CDN, Redes de
Distribuigao de Conteado) estao aqui para responder.

Uma CDN 6 uma rede de distribuigao de informagao que permite fornecer
conte fIdO Web de uma forma mais rapida a um grande n6mero de usugrios, distribuindo
o conteado por m61tiplos servidores (chamados de servidores “de borda”, posicionados
na borda da rede) de forma a efetuar a duplicagao do mesmo e direcionar o conteado ao
usuario com base na proximidade do servidor [22]. Ao contrario da tecnologia de
servidores de cache, as CDN adotam uma atitude proativa, e nao reativa. O conteado jg 6
distribuido para servidores pr6ximos aos usugrios antes deles requererem o conteado
pela primeira vez.

lsso permite otimizar a lat6ncia e o uso de banda. Primeiro, a lat6ncia sera
diminufda porque o usuario buscara o conteado de um servidor pr6ximo a ele, e nao de
um servidor central que pode ser longe dele, tanto geograficamente como
topologicamente. Em segundo lugar, o servidor central receberg apenas pedidos dos

6 Formato de imagem digital de 3840 pixels por 2160 [64]

29

servidores da CDN e nao de todos os clientes, o que ira diminuir drasticamente a sua
carga e seu uso de banda.

Este sistema tamb6m permite economias de escala, porque vgrios criadores de
conteado podem usar a mesma CDN, e aproveitar a sua infraestrutura de distribuigao.
CDN 6 um servigo utilizado por criadores de conteado de m6dio porte: eles nao precisam
se preocupar com os mecanismos de entrega.

Finalmente, o 61timo beneffcio das CDN 6 que conseguem ter intelig6ncia na
distribuigao do conte6do. Elas tdm alguns mecanismos para mudar as suas
configurag6es dinamicamente em fungao de picos de demanda, condig6es de rede e
muitos outros parametros, Para otimizar a entrega nesse sentido, os quatro assuntos
mais importantes que fazem a complexidade e a qualidade de uma CDN sao:

- polfticas de distribuigao do conte fIdO atrav6s da CDN
a escolha da localizagao dos servidores de borda
o roteamento dos pedidos (request routing)
os mecanismos de coleta de informag6es de rede e estatisticas de uso

Por outro lado, o uso de CDN tem algumas desvantagens. 0 custo deste tipo de
servigo 6 geralmente elevado, e o mercado se divide entre poucos atores. Tamb6m pode
gerar problemas de privacidade, porque o trgfego 6 roteado pelos servidores da CDN, e
isso pode gerar uma situa9ao onde as empresas de CDN teriam um poder sobre os
conteados da Internet, e portanto a Web de forma geral.

As CDN sao usadas para distribuir conteado de varios tipos de aplicag6es (web,
atualizag6es de software, etc.). Apesar de focarmos no caso de conte fIdO Web e
particularmente Streaming, o uso de CDN nao se restringe a esse caso de uso.

A tftu io de exemplo, o sistema IPTV USP usa uma CDN pr6pria, especificamente
para entregar conte6do entre os v3rios campi da USP de forma mais eficiente.

b) Arquitetura de uma CDN

A figura Fig. 10 apresenta a arquitetura gen6rica de uma CDN, com o fluxo de
informagao entre os elementos desde o servidor origem at6 o cliente, O funcionamento
da rede 6 descrito a seguir:

30

Fig. 10 - Organizagao geral de uma CDN [23]

1. O servidor origem do provedor de conteado delega o gerenciamento do
enderegamento do conteado pelo sistema de roteamento de requests da
CDN
O provedor de conteado transfere o conteado para o sistema de
distribuigao da CDN para ser distribufdo adequadamente com a suas
poiiticas de desempenho
O sistema de distribuigao manda o conteado para os servidores de borda e
da um feedback para o sistema de roteamento de requests sobre a
localiza9ao do conte fIdO na rede
Os clientes fazem os pedidos que chegam no sistema de roteamento de
requests, e nao mais no servidor origem
O sistema de roteamento de requests redireciona de alguma maneira o
pedido para o servidor de borda mais adequado a situagao, de acordo com
as politicas adotadas
O servidor de borda manda o conte fIdO para o cliente
O servidor de borda retorna estatisticas de uso para o sistema de
contabilidade, que por sua vez retorna essas estat{sticas para o sistema de
roteamento de requests e o servidor origem
Essas informag6es tamb6m estao usadas para contabilizar o uso da CDN
pelo provedor de conteado e cobra-lo.

2.

3.

4.

5.

6

7.

8.

c) Tecnologias

Ap6s ter uma visao geral do funcionamento de uma CDN, podemos entrar nos
detalhes das tecnologias usadas para executar as quatro fung6es fundamentais
identificadas acima. Serao estudadas distribuigao, localiza9ao dos servidores de borda
(no sentido de colocagao), roteamento dos requests e enfim coleta de estatfsticas de uso
e de rede,

i) Distribuigao

A distribuigao do conteado do servidor origem at6 os servidores de borda pode ser
feita principalmente de duas maneiras [23]. A primeira consiste em usar a pr6pria
Internet. Nesse caso, a CDN mant6m o controle da localizagao do conte fIdO com uma
arvore hierarquica ou uma rede overlay sobre a Internet. Essa abordagem tem a

31

vantagem da simplicidade, mas tamb6m sofre da baixa previsibilidade da Internet em
relagao a desempenho. Essa abordagem 6 usada por Akamai Technologies e Sandpiper
Networks.

A segunda opgao consiste em usar entrega via broadcast por sat61ite. E mais barata
e garante uma entrega com boa previsibilidade de alta qualidade. Esta tecnologia 6
usada por CyberStar e Edgix.

A questao da distribuigao tamb6m envolve o n6mero de c6pias do conte6do
propagadas, e para onde elas estao mandadas. Intuitivamente, o sistema de distribuigao
da CDN tentara colocar o conteado de maneira a equilibrar a carga em todos os
servidores de borda.

ii) Localizagao de servidores

E fgcil entender que a questao da localizagao dos servidores de borda 6 de alta
importancia para uma CDN. Intuitivamente, poderfamos pensar que deve ser o mais
pr6ximo possfvel dos usuarios. O objetivo aqui 6 no mesmo tempo minimizar a lat6ncia
de acesso ao conteado para o cliente, e minimizar a banda global usada na rede. Na
verdade, alguns crit6rios entram em consideragao.

Primeiro, a distancia fisica entre o servidor de borda e o cliente 6 importante. Um
servidor mais pr6ximo de um cliente nem sempre significa uma lat6ncia menor ou uma
melhor banda alocada, mas 6 uma boa indicagao, Como veremos na parte sobre
roteamento de requests, em alguns casos a CDN nao tem informag6es sobre o cliente,
mas infere essas informag6es da posigao do DNS resolver que mandou o request. Em
outros termos, a posi9ao estimada do cliente depende muito do fato dele estar pr6ximo
ao primeiro servidor de DNS que ele contata ou nao.

O segundo crit6rio a ser considerado 6 a topologia da rede, e particularmente a
organizagao dos Sistemas Aut6nomos (SA), O roteamento entre sistemas aut6nomos
pode ser mais custoso que roteamento de pacotes intra-SA, em termos de desempenho e
econ6micos. O roteamento inter-SA 6 feito com o algoritmo BGP, e essa mudanga de SA
pode virar um gargalo dependendo dos acordos entre sistemas aut6nomos.

Existem varios algoritmos te6ricos para otimizar esta colocagao dos servidores na
Internet [24] [25] [26]. Eles costumam ser relativamente caros computacionalmente e o
uso de heuristicas e mais comum [27] [28].

iii) Request Routing

O request routing, ou roteamento de pedidos (requests) , tem a fungao de
redirecionar o pedido de conteado do cliente para o servidor de borda mais adaptado a
situagao, considerando alguns parametros. 0 objetivo 6 maximizar a qualidade de
experi6ncia para o usugrio final e minimizar o custo da entrega. Consequentemente, os
crit6rios utilizados para escolher o melhor servidor de borda sao proximidade e carga
[23]. As maneiras de conseguir essas informag6es serao explicadas na segao a seguir
sobre coleta de estatisticas.

32

Tr6s m6todos principais sao utilizados para fazer request routing nas CDN [18]:
anycast, DNS redirect, e HTTP redirect. Vamos ver as vantagens e pontos fracos de cada
m6todo.

Anycast
Este m6todo utiliza anycast para escolher o melhor servidor de borda para achar o

conteado. varios servidores que possuem o mesmo conteado se cadastram no mesmo
enderego unicast. Quando um usugrio quer aquele conteado, ele manda um pedido para
o enderego unicast para que qualquer dos servidores cadastrados neste enderego
responda ao pedido. O processo de request routing 6 feito no nivel do roteamento de
pacotes IP neste m6todo e faz parte do roteamento da rede, Obviamente, a CDN perde o
controle do request routing neste processo porque 6 a pr6pria rede que escolha a melhor
rota para atingir um dos servidores de borda possiveis, de acordo com as suas m6tricas.
Isso significa que o roteamento 6 otimizado em relagao aos crit6rios do ISP e nao mais
da CDN

£ interessante mencionar que em [29], os autores prop6em uma alternativa de
anycast no nivel de aplica9ao. Esta alternativa daria mais flexibilidade, no sentido que
poderia considerar-se m6tricas sobre cada servidor do grupo anycast tamb6m.

DNS Redirect
A segunda opgao 6 o redirecionamento por mecanismo de DNS. Essa 6 uma t6cnica

simples, e 6 a t6cnica usada pela maioria das CDN comerciais hoje em dia. Na etapa de
delegagao do enderegarnento do conteado para a CDN, eIa modifica o URL do conte fIdO
para algo no seu pr6prio domfnio. Dessa maneira, quando o cliente pede o contet.do,
este pedido vai normalmente para o DNS resolver. Como o enderego esti no dominio da
CDN, o resolver vai pedir o enderego para o servidor autoritativo da CDN. Esse na sua
vez retornarg o melhor ou os melhores servidores de borda para se buscar o conteado.
O poder deste mecanismo se situa no servidor autoritativo e a maneira que ele tem de
procurar os melhores servidores. Sua escolha 6 baseada em distancia at6 o DNS resolver
(medida pelas m6tricas descritas na parte seguinte), disponibilidade e custo monetario.
E importante notar aqui que o servidor autoritativo nao tem informag6es sobre o
cliente, ele recebe o pedido do resolver. Entao ele deduz a distancia at6 o cliente,
supondo que ele esteja pr6ximo ao DNS resolver.

HTTP Redirect
Enfim, a fatima opgao apresentada aqui 6 proceder por rediregao HTTP. Ao inverso

dos casos anteriores, aqui o cliente pede o conte fIdO diretamente para o servidor origem
como se nao tivesse nenhuma CDN. Quando o pedido chegar, o pr6prio servidor
responde com um status code especifico para indicar ao cliente que o conteado esti
disponfvel em outro URL, que aponta para o servidor de borda que ele escolheu.

A vantagem deste m6todo 6 que o servidor conversa diretamente com o cliente e
nao precisa inferir as informag6es sobre ele e fazer suposig6es. Ele tamb6m sabe
exatamente qual objeto esti sendo pedido. Podemos pensar que isso ira melhorar a
qualidade da escolha do melhor servidor de borda. Por outro lado, este m6todo tem um

33

maior overhead. E necessgrio criar urna segunda conexao TCP com o servidor de borda,
o que envolve uma segunda resolugao por DNS, criagao de uma segunda conexao TCP
(com slow start), etc.

iv) Coleta de estatisticas

0 61timo ponto crftico de uma CDN 6 a coleta dos dados para fazer o request
routing ou a cobranga dos clientes. A figura a seguir (Fig. 11) lista alguns exemplos de
m6tricas ateis para inferir a estrutura e o desempenho da rede e dos servidores
particulares. As t6cnicas para obter essas m6tricas incluem active probing (o cliente
manda mensagens para o servidor periodicamente para conhecer a sua carga), server
push (o servidor manda seu estado de carga periodicamente), ping (tempo de resposta)
e traceroute (namero de hops em uma rota).

MetrIcs

money

Gaal8 Measurement T8cbniqu8$

$eFaatrepli@ with law8$td8Eay Ac:tivo Probing /Pasgv8 M8&$ur8rn8nt

P86k8t lags Select path with lowest error rate
WII for streaming batHe)

Activ8 Probing /Pa$8i\@ Mea$urerr©nt
{TOP header into}

Network praxirntty

Avg. BandwIdth
Startup TIme
Frame Rab

58188 the shortest path

Select the best path for $trewring baRb
Active Probing

G80g@phkial pradmity
Redirect r6quwt$ fru©l arogbn to the sarn8

POP IP header iafonnation, bind informatkn

*“8§}**““”“"”“*;*„*““”““ f$8dbaek agentdae$v8 probing

Fig. 11 - M6tricas usadas na selegao do servidor de borda durante o roteamento de
request [30]

34

III.6. WebRTC

a) Introdug50

Web Real-Time Communication (WebRTC) 6 uma colegao de padr6es, protocolos e
APIs JavaScript (Application Programmation Interfaces) de c6digo aberto, cuja
combinagao permite troca de audio, video e dados em P2P entre navegadores web (ou
browsers, os peers). Em vez de ficar dependendo de plug-ins de terceiros ou de
programas proprietgrios, WebRTC torna essas possibilidades de comunicagao em tempo
real em uma funcionalidade bgsica que qualquer aplicagao pode aproveitar via uma API
JavaScript simples [31].

Habilitar comunicag6es de tempo real dentro do navegador 6 um grande desafio,
provavelmente uma das maiores contribuig6es a plataforma web desde a sua aparigao.
WebRTC se afasta do modelo clgssico Cliente-Servidor, o que resulta na necessidade de
repensar a camada de rede no navegador, e tamb6m traz um novo conjunto de
ferramentas para um tratamento eficiente de audio e video, em tempo real,

Dois grupos de trabalho da W3C (World Wide Web Consortium) e da IETF
(Internet Engineering Task Force) sao responsgveis pela padronizagao do WebRTC:

•

•

Web Real-Time Communications (WEBRTC) W3C Working Group 6
responsgvel pela definigao das APIs web;
Real-Time Communication in Web-browsers (RTCWEB) 6 o grupo da
IETF responsavel pela definigao dos protocolos, formatos de dados,
seguranga e todos os outros aspectos necessarios para habilitar
comunicag6es peer-to-peer no navegador.

Enquanto o primeiro objetivo do WebRTC 6 habilitar peer-to-peer no navegador,
ele 6 tamb6m projetado para ser integrado com sistemas de comunica9ao preexistentes:
Voice Over IP (V01P), vgrios clientes SIP (Session Initiation Protocon, e at6 a rede de
telefonia clissica (PSTN), entre outros; mas nao especifica nenhurn requisito de
interoperabilidade. Isso significa que esti trazendo as possibilidades da Web at6 o
mundo das telecomunicag6es, o que explica por que tem sido muito considerado por
grandes empresas.

Em Setembro de 2016, WebRTC estava suportado pelos seguintes navegadores e
ambientes [32] :

•

•

•

•

•

Google Chrome
Mozilla Firefox
Opera
Android
iOS

Portanto, perto de 67% de usuarios de navegadores desktop podem usar WebRTC
[33] (devido em grande parte ao atraso de implementagao de partes importantes no
Internet Explorer e Edge).

35

A oportunidade do WebRTC 6 tao grande que vgrias aplicag6es famosas que
estavam baseadas em uma arquitetura cliente-servidor passaram a usar WebRTC para
adicionar peer-to-peer e ganhar em escalabilidade e efici6ncia, e acabar com a
necessidade de instalar um plugin (programa adicional ao navegador) para o usuario. 0
maior exemplo 6 o Google Hangouts (aplicagao de videoconfer6ncia), que passou a usar
WebRTC no Chrome desde 2014 [34].

Logo depois, a Mozilla anunciou o uso de WebRTC no seu novo programa de
videoconfer6ncia chamado Hello, nativamente integrado na versao seguinte do
navegador Firefox [35].

Para confirmar a tend6ncia forte no mercado a favor do WebRTC, Skype anunciou
em Julho de 2016 a versao alpha do seu cliente para Linux, usando WebRTC pela
primeira vez [36].

Um outro domfnio de aplicagao importante para o WebRTC, e o assunto deste
trabalho de conclusao de curso, 6 o streaming. Introduzir um componente de peer-to-
peer na entrega de video, que seja sob demanda ou ao vivo, tem o potencial de cortar os
custos de banda de mais de 50% de acordo com um caso de estudo da Streamroot [3], e
ao mesmo tempo melhorar a qualidade de experi6ncia do usu£rio final (reprodugao
mais fluida, menos rebuffering, melhor qualidade de video). Neste mesmo caso da
Streamroot, o servidor origem falhou e gragas ao peer-to-peer 50% dos usuarios nem
perceberam o problema.

Os tr6s maiores atores deste segmento sao a Streamroot (Franga/USA) [37], Peer5
(Israel/USA) [38] e Viblast (Bulgaria) [39]. Essas empresas ainda sao bastante jovens e
nao temos muita informagao sobre os seus clientes, mas elas tdm um grande potencial
dado o tamanho do mercado de web streaming.

Finalmente, podemos citar o caso da PeerCDN, uma startup criada por alumni da
Universidade de Stanford que desenvolveu uma “CDN de pr6xima geragao usando
WebRTC para entrega de conteado eficiente via peer-to-peer” [40]. Essa empresa foi
comprada pela Yahoo em Dezembro de 2013, depois de sete meses de exist6ncia [41].

b) Visio t6cnica geral

Criar aplicag6es RTC ricas e de boa qualidade, tais como teleconfer6ncia de audio e
video ou troca de dados peer-to-peer, necessita muitas novas funcionalidades dentro do
navegador como: capacidades de processamento de audio e video, novas APIs de
aplicag6es, e interagao com meia dizia de novos protocolos de rede. Para fornecer uma
interface mais simples, o navegadores abstrai a maior parte desta complexidade atrgs de
tr6s APIs primarias [42]:

• MediaStream: aquisi9ao de fluxos audio e video
• RTCPeerConnection: comunicagao de dados de audio e video
• RTCDataChannel: comunicagao de dados arbitrarios de aplicagao

Com apenas uma dazia de linhas de c6digo JavaScript, qualquer aplicagao web
pode permitir uma experi6ncia de teleconfer6ncia rica com troca de arquivos em peer-
to-peer. Por6m, essas tr6s APIs sao apenas a parte visfvel. varios componentes sao
necessgrios para juntar tudo: signaling, descoberta de peers, negociagao da conexao,
seguranga, e camadas inteiras de novos protocolos.

36

Como podia ser esperado, a arquitetura e os protocolos permitindo WebRTC
determinam as caracterfsticas do seu desempenho: lat6ncia de conexao e sobrecarga de
protocolos por exemplo, Ao assistir um video o c6rebro humano 6 muito mais sensfvel a
atraso que a partes faltantes; ele consegue preencher esses espagos em branco. Isso
implica que neste tipo de aplicagao, tempo e atraso sao mais crfticos do que perda de
pacotes. Este fato motivou a escolha de UDP, um protocolo nao confiavel na entrega de
pacotes com menos sobrecarga de desempenho que TCP, como protocolo da base para o
transporte de dados, Contudo, UDP 6 apenas o ponto de inicio. Precisa de muito mais do
que UDP bgsico para conseguir realizar comunicag6es de tempo real no navegador.
Precisamos de mecanismos para atravessar redes “Nateadas”, ou seja, redes que
utilizam Network Address Translators (NAT), firewalls, negociar as conex6es, prover
criptografia, implementar controle de congestao e de fluxo, etc. Isso resulta na seguinte
pilha de protocolos necessgrios ao funcionamento do WebRTC (Fig. 12).

DataChannelRTCPeerCcnnection

SRTP S(TP

Ses$wI (DTLS) - mandatory

ICE, STUN. TURN

Transport (UDP)

Network (IP)

Session (TLS) - optional

Transport (TCP)

Fig. 12 - Pilha de protocolos WebRTC

•

•

•

•

•

ICE: Interactive Connectivity Establishment (RFC 5245)
- STUN: Session Traversal Utilities for NAT (RFC 5389)
- TURN: Traversal Using Relays around NAT (RFC 5766)
SDP: Session Description Protocol (RFC 4566)
DTLS: Datagram Transport Layer Security (RFC 6347)
SCTP: Stream Control Transport Protocol (RFC 4960)
SRTP: Secure Real-Time Transport Protocol (RFC 3711)

ICE, STUN e TURN sao os protocolos necessgrios para iniciar e manter uma
conexao peer-to-peer em cima de UDP. DTLS garante a seguranga da transmissao de
dados entre os peers; criptografia 6 obrigat6ria em WebRTC. SCTP e SRTP servem para
multiplexar os fluxos, prover controle de congestao e fluxo, e garantir uma entrega
parcialmente configvel em cima de UDP. Enfim, SDP 6 o formato usado para negociar os
parametros das conex6es peer-to-peer.

No escopo deste projeto, vamos usar apenas duas das tr6s APIs citadas acima:
• RTCPeerConnection, para criar uma conexao entre os peers (papel de

controle),

37

• RTCDataChannel, para criar o canal de comunicagao que nos permitira
transmitir os segmentos de video na forma de pacotes de dados brutos.

A terceira API, MediaStream, 6 mais usada no contexto de aplicag6es de
videoconfer6ncia, onde precisa adquirir imagem da camera e som do microfone.

c) Criar uma conexao peer-to.peer

Para criar uma conexao WebRTC entre dois peers, 6 necessgrio cumprir tr6s
tarefas :

Notificar o outro peer que queremos abrir uma conexao com ele;
Identificar rotas potenciais para a conexao P2P e entregar essa informagao
para os dois lados;

- Trocar as diferentes informag6es sobre parametros dos fluxos de dados
(como protocolos, codecs, etc.)

A segunda tarefa jg esti sendo resolvida pelo WebRTC atrav6s do protocolo ICE. O
Signaling e a negociagao inicial de sessao ficam a carga do desenvolvedor,

i) Signaling e Session Description Protocol

Antes de comegar a negociar uma sessao, precisamos saber se 6 possfvel trocar
informagao com o outro peer de algum jeito. WebRTC nao especifica nenhum padrao
para realizar essa tarefa, e diferentes opg6es podem ser utilizadas para fazer o Signaling,
ou seja notificar o outro peer que queremos conversar com ele, e transmitir as
mensagens at6 ele. Opg6es incluem SessIon Initiation Protocol (SIP), jingle, e ISDN User
Part (ISUP). Uma outra solugao muito comum, e que foi usada no projeto descrito nesta
monografia, 6 criar um protocolo de signaling customizado. No caso, os clientes se
conectam com um servidor de signaling (o “Tracker") via um WebSocket, e assim eles
podem mandar mensagens para outros clientes via esse canal. Esta parecia ser a escolha
mais simples e adaptada ao projeto.

Assumindo que os dois lados compartilham um canal de comunicagao (o Signaling
ChanneD, podemos negociar os parametros da conexao P2P. Para isso, WebRTC usa o
protocolo Session DescrIption Protocol (SDP). SDP descreve o perfil de sessao, uma lista
de propriedades da conexao: tipo de midias a serem trocadas, protocolos de redes
usados, codecs, informag6es de banda, e outros metadados. A criagao e a troca dos
arquivos de SDP (a Description) jg 6 abstrafda em alguns m6todos da API, de forma que
os desenvolvedores nao precisam se preocupar com os detalhes.

O processo esti descrito na Fig. 13. Amy cria a sua Description com o m6todo
SetLocaIDescription e manda um Offer para o Bob via o Signaling Channel Do outro lado,
o Bob grava essa offer com o m6todo SetRemoteDesciption, cria a sua pr6pria descrigao, e
retorna eIa para a Amy na forma de uma Answer. Amy segue os mesmos passos por sua
vez

38

Depois disso, as duas partes tam negociado os tipos de fluxos de dados a serem
trocados. Apenas faltam testes de conectividade e mecanismos de travessa de NAT,
feitos com o ICE.

Fig. 13 - Troca de Offer /Answer entre os peers [3 1]

ii) Interactive Connectivity Establishment (ICE)

O protocolo ICE permite achar uma rota possfvel entre os dois peers para criar a
conexao P2P. Para fazer isso, cada objeto RTCPeerConnection possui um ICE Agent. Este
agente 6 responsgvel por coletar pares IP:Porta que sao bons candidatos para
estabelecer a conexao P2P (ICE Candidates) . Uma vez que cada cliente recebeu os
candidatos do outro, o agente vai executar testes de conectividade at6 encontrar dois
candidatos funcionando. Durante o tempo da conexao, o agente tamb6m 6 responsgvel
por mandar mensagens de ''keepalive" para manter a conexao ativa.

O primeiro processo 6 coletar os ICE CandIdates de cada lado. O ICE Agent pede
primeiro o IP local para o sistema operacional. Depois, para conhecer o seu par IP:Porta
pablico, ele pede para o servidor STUN configurado. Este servidor funciona da maneira
seguinte: ele recebe o request do cliente, o que faz aparecer para ele o enderego pablico
deste cliente. O STUN simplesmente retorna este enderego pablico para o cliente. Este
mecanismo 6 aHI em caso de sub-redes privadas atras de NAT. Em alguns desses casos o
cliente nao pode conhecer o seu pr6prio enderego p6blico e entao ele tem que perguntg-
lo pelo servidor STUN. Esta questao de NAT esti explicada em detalhes na segao
ii)Firewall / NAT.

Se estiver configurado, o agente coloca o servidor TURN em altima opgao, se nao
conseguir uma conexao P2P. Naquele caso, o TURN funciona simplesmente como
servidor de retransmissao entre os dois clientes.

A partir do momento que uma Session Description esti configurada, o ICE Agent
comega a coletar os candidatos e a troca 6 feita atrav6s do processo de Offer / Answer .
Depois deste processo, cada lado tem uma lista de candidatos para criar uma rota at6 o
outro cliente. O agente testa as possibilidades at6 encontrar um rota. Supondo que
algum desses candidatos seja bem sucedido, a conexao P2P entre os dois clientes esti
criada

39

iii) Implementagao

0 processo de criagao da conexao WebRTC nao 6 simples, mas algumas partes da
complexidade estao abstrafdas dentro da API. 0 trecho de c6digo seguinte representa as
etapas necessgrias para criar tal conexao (Fig. 14).

var ice = {"iceServers'’: [
{ " url " : "stun:stunserver.com: 12345 " } ,
{"url": "turn:user@turnserver.com" , "credential": "pass" }

]};
var signalingChannel = new SignalingChannelo;
var pc = new RTCPeerConnection(ice);

pc.createOffer(function(offer) {
pc .setLocaIDescription(offer);
signalingChannel .send(offer .sdp);

}

pc.onicecandidate = function(evt) {
if (evE.candidate) {

signalingChannel .send(evt .candidate) ;
}

}

signalingChannel.onmessage = function(msg) {
if (msg.candidate) {

pc.addIceCandidate(msg.candidate) ;
}

}

Fig. 14 - Exemplo de c6digo para criagao de conexao WebRTC (JavaScript)

Primeiro, configuramos o STUN com o servidor de STUN pablico da Google. Depois,
criamos o canal de comunicagao e o objeto PeerConnection. Mandamos uma oferta, e a
cada novo ICE Candidate, ele 6 mandado no canal de comunicagao. Na recepgao de ICE
Candidates, eles estao adicionados ao objeto PeerConnection para iniciar os testes de
conectividade e finalmente estabelecer a conexao.

d) Datachannel

0 DataChannel 6 uma outra API do conjunto WebRTC que esti sendo usada neste
projeto. Um DataChannel permite a troca bidirecional de dados arbitrarios entre dois
peers conectados via uma conexao Wet)RTC. De novo, parte da complexidade esti
abstraida dentro da API, e qualquer um dos peers pode abrir um DataChannel usando
alguns m6todos da PeerConnection,

Um fato importante sobre DataChannel para a nossa aplicagao 6 a limitagao de
tamanho de cada mensagem. Embora nao tenha um limite fixo na especificagao original,
parece que os navegadores implementam um limite da ordem de 200 bytes. Isso justifica

40

decis6es do projeto explicadas na se96es seguintes sobre a maneira de transmitir os
segmentos de video entre os peers.

Outras limitag6es do WebRTC estao explicadas na pr6xima segao, e) Limitag6es.

e) Limitag3es

WebRTC sendo ainda um padrao em desenvolvimento, 6 necessgrio levar em conta
alguns problemas e limitag6es inerentes a ele. Vamos citar tr6s desses.

i) Seguranga

Como qualquer aplicagao na Web, uma aplicagao usando a API WebRTC 6
vulneravel a vgrias ameagas, como o famoso ataque do “Homem no meio" por exemplo
(um exemplo de taI ataque neste artigo, por neglig6ncia na verificagao do certificado do
servidor de sinalizagao, porque cada cliente gera o seu certificado auto-assinado [43]).
Tamb6m podemos citar o fato que o WebRTC revela o seu enderego IP pelo pr6prio
funcionamento do protocolo ICE, que cria candidatos na forma de IP:porta atrav6s de
um servidor STUN [44].

Por6m, ha virios argumentos a favor do WebRTC sobre seguran9a, comparado
com varias outras tecnologias e aplicag6es, como:

niH nb n•r•:nb+nborvgrsfnt Hra n rt nswus nb nb ve nb +abn! nhl nb F\nh+nbnrv•ntvwt fPvprt vso uh rb vg+ 1 nIV r nb VIAs comunicag6es•

Security (DTLS, RFC 6347), que 6 similar ao Transport Layer Security (TLS, RFC
5246) mas adaptado para ser usado em cima de UDP (fora a autenticagao dos
clientes que as vezes deve ser feita pela pr6pria aplica9ao, esti questao sendo
discutida ainda [31]);
fl VI: +nus nb irb nth x ntl inrob nb X nb n rl nsl + fn fA ngos Jos a nb C> nI nb wwt nb vb nln vh nb what vr rb nr aHrb viI E nub nIna nb a nb

Pede permissao para adquirir o som do microfone e a imagem da camera para o

•

falha descoberta, um patch sera disponfvel automaticamente e rapidamente;
•

uso da API MediaStrearn.

ii) Firewall / NAT

Existem casos onde a conexao peer-to-peer nao pode ser estabelecida com
Wet)RTC. Os dois casos mais significativos sao os seguintes.

A conexao entre os peers 6 feita com o protocolo ICE, que cria varios candidatos
IP:porta, comegando com o enderego IP local. Se nao funcionar, ele vai tentar o enderego
privado, que funcionara se os dois clientes estiverem na mesma rede. Se ainda nao
funcionar, ele vai precisar conhecer o seu enderego IP pablico, com a ajuda do servidor
STUN. Este mecanismo 6 essencial para atravessar NATs (Network Address
Translators). Na maioria dos casos, o servidor STUN vai conseguir retornar para o
cliente seu enderego IP; mas no caso de um NAT Sim6trico (caso particular de NAT), isso
nao vai funcionar. Neste caso, o enderego pablico do cliente atras do NAT depende do
enderego do host que man(lou uma mensagem. Isso quer dizer que o enderego IP

41

pablico do cliente retornado pelo STUN sera particular a esse STUN, e sera inutilizgvel
para qualquer outro cliente externo a essa sub-rede [45].

Um outro caso bastante comum 6 o bloqueio de UDP por um Firewall. Como jg
visto anteriormente, os protocolos de comunicagao do WebRTC rodam em cima do
protocolo de transporte UDP, entao quando os datagramas UDP foram bloqueados por
um firewall, a conexao WebRTC nao pode ser estabelecida. Bloquear as conex6es UDP
nas regras de um firewall corporativo 6 uma pratica comum, por quest6es de seguranga
(planejar uma ataque de Distributed Denial of Service (DDoS) em UDP 6 facil,
executando um UDP flood por exemplo, e por isso UDP pode ser bloqueado mais
facilmente que TCP ja que poucas aplicag6es corporativas usam UDP).

iii) Perda de pacotes (UDP)

WebRTC usa protocolos de transporte que usam UDP, que nao 6 um protocolo com
entrega confiavel. A perda de pacotes em uma aplicagao de video chat ou streaming
pode resultar em uma queda da qualidade de experi6ncia para o usuario final. Nao
vamos entrar nos detalhes das propostas de t6cnicas de atenuagao deste efeito, mas
podemos citar o trabalho de uma equipe da Google que prop6e um m6todo hibrido com
Negative Acknowledgement, Forward Error Correction e Temporal Layers para balancear
os requisitos de qualidade do video, regularidade da reprodugao e atraso [46].

42

IV. Arquitetura da proposta

IV.1. Requisitos

Em relagao aos objetivos mencionados na se9ao “II-Objetivo e Motivagao”, a
finalidade do projeto sera atingida ao conseguir maximizar a proporgao de trgfego
atrav6s da rede P2P em relagao a rede CDN.

Este sistema 6 um prot6tipo preliminar a uma integragao futura com a IPTV da
USP, e o projeto foi desenvolvido com essa ideia de integragao em mente desde o infcio.

Os requisitos funcionais do sistema sao os seguintes:
Implementar mecanismo complementar de entrega de video com objetivo
de diminuir o uso de recursos. 0 cliente deve baixar segmentos de video a
partir de peers quando for possivel, e da CDN quando nao;
Implementar esse mecanismo de forma integrada com mecanismos de
entrega de conteado tradicionais, em que sera utilizado como estudo de
caso o IPTV da USP;
O sistema 6 aplicado a videos de tipo VOD (video sob demanda). O caso dos
fluxos ao vivo (live streaming) nao 6 atendido pelo sistema inicialmente;

1

2

3

4. O sistema deve permitir a reprodugao em uma pagina web via um player;
5. 0 sistema funciona com o formato de streaming adaptativo HLS

inicialmente, pois 6 o formato usado pela plataforma IPTV USP.

O desempenho do sistema foi avaliado durante as fases de testes e de
demonstragao. Esta avaliagao foi feita atrav6s de duas m6tricas principais, comparadas
no caso da arquitetura com P2P e sem P2P:

1. Porcentagem dos dados vindo da CDN / porcentagem dos dados vindo do
P2P (com objetivo de maximizar a proporgao de P2P);

2. Qualidade de experi6ncia medida em tempo de bufferiza9ao, namero m6dio
de pausas de rebufferizagao por minuto.

43

IV.2. Arquitetura geral

Trafego CON

Tr8fega P2P

Servldor
Origern

Servidor
Origem

Edge CDN
Tracker

Edge CDN
+ Tracker

2

Fig. 15 - Arquitetura geral sem P2P a esquerda (A) e com P2P a direita (B)

A arquitetura geral de um cengrio de streaming distribufdo com uma CDN 6
apresentada na figura Fig. 15. A esquerda (A), temos o caso classico de distribuigao
exclusivamente via CDN, sem P2P. O conte fIdO 6 inicialmente criado pelo servidor de
streaming. Depois, este conteado 6 mandado para a rede CDN para otimizar a sua
distribuigao. Finalmente, cada cliente requer os segmentos de video para o servidor de
borda da CDN que foi atribufdo a ele, O trgfego de dados entre o servidor de borda
(" Edge”) e o cliente 6 representado em vermelho.

Do lado direito, a rnesma arquitetura mas com P2P. O trgfego P2P entre os clientes
(peers) 6 representado em verde. Podemos perceber que com a ajuda do trgfego P2P, os
clientes irao depender muito menos do servidor de borda. A maioria dos segmentos
serao baixados a partir dos outros clientes, e o servidor de borda sera usado apenas no
evento da falta daquele segmento na rede P2P (swarm). De maneira evidente, a
quantidade de banda usada em safda de cada servidor de borda sera reduzida.

Os beneficios sao maltiplos:
Cortar custos de banda: o site transmissor paga uma taxa para a empresa de
CDN baseada na quantidade de banda que ele vai precisar. Diminuir o uso de
banda significa a diminuigao de uso de recursos para a CDN (banda,
processamento, n6mero de servidores de borda), e portanto uma diminuigao
de custo;

Aguentar um trifego extremo ou maior do que foi planejado ao contratar a
CDN: este tipo de situagao pode acontecer em eventos esportivos, safda de um
seriado em uma plataforma de VOD, confer6ncia. Se nao foram planejados
bastante recursos e o n6mero de conex6es de clientes for maior ao maximo
que a CDN pode aguentar, os servidores vao cair e/ou recusar conex6es. Se o

44

P2P estiver habilitado, isso nao acontecerg, pois maior o namero de peers,
melhor a rede funciona. Os servidores irao ficar relativamente menos
carregados que com um trgfego m6dio;

Tolerancia a falha do servidor de streaming: se, por qualquer motivo, o
servidor de streaming chegasse a falhar, a rede P2P poderia tomar conta da
distribuigao sem impacto para os usugrios. Os clientes irao pedir o conte fIdO
diretamente para outros peers, e a falta de servidor nao seria sensivel para
alguns clientes;

Qualidade de experi6ncia do usuario (melhor qualidade de video, reprodugao
mais fluida, etc.) : o fato de ter mais n6s distribuindo o conte fIdO em vez de um
servidor s6 pode ter um impacto sobre a qualidade de experi6ncia do usuario.
Por exemplo, a aus6ncia de limite de banda do lado de um servidor permite
que o fluxo seja distribuido em melhor qualidade para um usugrio se ele tiver
banda suficiente.

Pode-se observar na Fig. 15, do lado do P2P, a presenga nos servidores de borda da
CDN de “trackers”. Estes trackers sao responsgveis por conectar os peers entre si e pelo
bom funcionamento do P2P. De maneira clgssica e mais natural, poderfamos pensar
utilizar apenas um tracker central responsgvel por todos os peers. Todos os clientes se
conectariam a este mesmo tracker central, e todos poderiam se conectar potencialmente
entre si em P2P. Mas uma outra abordagem foi escolhida para este trabalho, e isso
constitui parte da sua originalidade.

Aqui, foi escolhido ter um tracker diferente para cada servidor de borda. Isso
significa que apenas os clientes redirecionados para aquele servidor de borda se
conectarao ao tracker hospedado na mesma mgquina que o servidor de borda.
Consequentemente, os clientes suscept(veis de se conectar em P2P serao clientes
“pr6ximos”, de acordo com os clientes da CDN. A ideia aqui 6 de aproveitar os
mecanismos da CDN (especificamente o request routing, como visto na se9ao III.5.c)iii)
Request Routing) para conectar apenas clientes que estao pr6ximos e que poderao
aproveitar no m£ximo do P2P, de forma a evitar fen6menos nao desejados mencionados
na segao III.4 Peer-to-peer (P2P) (como a travessa de varios sistemas aut6nomos por
exemplo) que poderiam aumentar o custo e diminuir as vantagens do sistema com P2P.

0 sistema proposto neste trabalho delega totalmente a CDN a etapa de escolha do
sub-conjunto de clientes para formar as redes P2P, que podemos chamar de processo de
formagao do swarm. O sistema aproveita, de maneira implfcita, das informag6es sobre a
rede que a CDN tem para aumentar a sua pr6pria efici6ncia. Tamb6m serao expostas as
consequ6ncias desta escolha no cenario do IPTV da USP na parte correspondente.

IV.3. Escolhas t6cnicas

No infcio e ao longo do projeto, algumas escolhas t6cnicas tiveram que ser feitas.
Uma vez a ideia definida, foi necessario escolher qual tecnologia de P2P ramos usac qual

45

protocolo de streaming e qual player para reproduzir o video. Depois disso, ao
desenvolver as diferentes partes, surgiram necessidades pontuais para juntar
tecnoIogias. Discutiremos isso tamb6m no altimo item.

a) Protocolo para P2P: WebRTC

A partir da ideia de adicionar o poder do peer-to-peer ao web streaming, foi
necessario elaborar como integrar as tecnologias. Poderia ter sido via um programa
externo (um plugin) no navegador. Neste caso, nao teria sido possfvel usar um player
HTML5 por motivos t6cnicos, e entao teria sido necessgrio usar um player Flash.

Por6m, quando apareceu a opgao do WebRTC, imediatamente foi claro que era a
melhor possibilidade. Reunia todas as vantagens, das quais podemos citar:

adicionar peer-to-peer sem precisar de um plugin, de maneira transparente,
facilidade de implementagao com API em JavaScript que 6 a linguagem da
Web
uso das funcionalidades nativas de video de HTIVIL5, sem precisar de Flash
Player, Desenvolver em Flash implicava a necessidade de usar ActionScript,
uma outra linguagem especifica, o que teria aumentado a complexidade de
desenvolvimento. Tamb6m olhando do lado do mercado, o futuro do setor de
videos na web esti com tecnologias HTML5 e nao Flash, que ja foi banido na
plataforma iOS desde 2010 [47]. Mais recentemente, novas falhas de
seguranga foram e ainda estao sendo descobertas [48],
tecnologia pela grande maioria dos projetos envolvendo web e peer-to-peer
hoje, o que da acesso a uma comunidade e a recursos atualizados e
detalhados. Isso foi uma grande ajuda durante o desenvolvimento, tanto pelos
documentos explicativos que pelos projetos open-source liberados para o uso
de todos.

Por outro lado, uma desvantagem do WebRTC 6 sua relativa novidade. WebRTC
nao 6 uma tecnologia madura, ainda nao esti totalmente implementada em todos os
navegadores principais, e implementag6es podem variar entre navegadores. Isso
diminui a sua abrang6ncia, e pode resultar em bugs.

Levando tudo isso em conta, usar WebRTC foi uma escolha natural e a mais
evidente de todas,

b) Protocolo de streaming adaptativo: HLS

Quando se fala de streaming hoje em dia, os protocolos dominantes sao os
protocolos adaptativos, por todos os motivos expostos na parte III.1. Dentro desta
famflia, os dois maiores no mercado sao HLS e MPEG-DASH [49]. Como ja explicamos na
parte III.1.b), de um ponto de vista t6cnico, o mais completo 6 o MPEG-DASH. Isso faz
sentido pois ele foi elaborado para ser um padrao, o que ele 6 desde 2011. Nao 6 o caso
do HLS, propriedade da Apple, que foi criado anos antes, o que pode justificar que ele
seja um pouco menos adaptado aos usos atuais em web streaming.

Para resumir, as diferengas t6cnicas maiores sao a multiplexagao de audio e video
na mesma trilha (perda de flexibilidade) e um arquivo de “manifest" ou playlist que 6
mais dificil de ser manipulado no caso de HLS.

46

Por6m, 6 necessgrio usar HLS para fazer streaming na plataforma iOS da Apple.
Considerada a popularidade dos aparelhos como o iPhone ou o iPad, muitas plataformas
adotaram o HLS. Essa popularidade se manifesta tamb6m no namero de projetos de
streaming e WebRTC que sao construfdos com iOS. Da mesma maneira que para
WebRTC, o tamanho da comunidade e a quantidade de recursos sobre HLS sao ind{cios
de confianga para o futuro do formato.

Na hora de escolher entre os dois, o principio de integragao com o IPTV da USP foi
a prioridade. Durante o desenvolvimento do projeto, o IPTV estava em transigao para
implementar o HLS, por motivos de suporte a aparelhos iOS. Consequentemente, foi
decidido optar por HLS para o projeto.

c) Player: video.js

Em relagao ao playback, o uso de um player nao 6 absolutamente necessario.
Por6m, como nos dois itens anteriores, os fatores determinantes na escolha final foram o
player usado pelo IPTV da USP e os recursos e projetos open-source disponfveis. 0 IPTV
da USP usa video.js, um player open-source, que 6 usado em muitos projetos (inclusive
projetos que poderiam se revelar ateis para o resto do projeto). De novo, a
interoperabilidade com o IPTV USP ficou como prioridade e foi decidido usar o video.js
como player.

d) Outros m6dulos open-source

Para juntar esses componentes, foi necessario usar alguns pequenos projetos de
compatibilidade. Nao 6 raro que as empresas do setor liberem estes m6dulos em open-
source para incentivar o uso da tecnologia. E o caso da Streamroot por exemplo, jg
mencionada anteriormente. 0 fato desses projetos serem de c6digo aberto permite criar
forks para adaptar esse c6digo a uma necessidade especffica do contexto do projeto.
Levando em conta a gratuidade, eles se tornam a op9ao ideal, como detalharemos na
segao de tratando da arquitetura do software.

IV.4. Arquitetura do software

a) Parte de mfdia

O diagrama seguinte representa a estrutura geral do software (Fig. 16). Cada bloco
representa um modulo com a sua fungao, como vamos detalhar em seguida. Para
atender as funcionalidades e os requisitos expostos na parte anterior, precisa-se de uma
arquitetura complexa, envolvendo varios blocos tecno16gicos de origens diversas. Os
blocos representados ern azul sao os m6dulos externos, de c6digo aberto e de uso livre.
Os blocos em verde sao forks de projetos abertos. Isso quer dizer que sao m6dulos de
c6digo aberto tamb6m, mas que tiveram que ser adaptados a nossa arquitetura para
funcionar com os outros componentes. Finalmente, os blocos em preto sao os m6dulos
desenvolvidos desde o inicio.

47

0 software foi desenvolvido em JavaScript para a parte cliente, que 6 a linguagem
feita para escrever programas executados dentro do navegador. JavaScript tamb6m
naturalmente 6 a linguagem da API WebRTC. Essa escolha foi natural.

Os m6dulos sao:
• index.html: a pagina web onde sera reproduzido o video, junto com as

m6tricas de desempenho.

• SourceHandler: m6dulo que permite atrelar a fonte de streaming ao
elemento html do player [50].

• video.js: m6dulo do player. 0 video.js 6 um player htm15 de c6digo aberto e
gratuito. Ele 6 um dos players mais usados na web hoje em dia, e empresas
como Twitter, Instagram, Microsoft, Dropbox e Github o utilizam [51].

hIs.js: biblioteca JavaScript que implementa um cliente HLS [52]. Se
apoia em video HTML5 e Media Source Extensions [53], que 6 o componente
HTML5 que permite manipular fluxos de video diretamente com JavaScript
no navegador. Essa parte 6 essencial no nosso caso, pois o fluxo precisa ser
processado e reconstitufdo pela nossa aplicagao em JavaScript. O hls.js
ger6ncia o buffer e transmite os pedidos de segmentos para o P2PModule.
TransmultipIexa MPEG-2 Transport Stream (formato dos segmentos HLS)
em segmentos ISO BMFF (NIP4). Essa etapa de transmultiplexagao pode ser
feita de maneira assfncrona usando Web Workers (jeito de paralelizar o
processamento no navegador), se for possivel.

• hlsjsP2PWrapper: atrela o m6dulo P2PIVlodule ao hIs.js [54]. Cria uma
instancia do hIs.js mudando a configuragao padrao para uma configuragao onde
o elemento de download de segmentos nao 6 mais aquele do hIs.js, mas passa a
ser o P2PModule. Isso permite adicionar as funcionalidades do m6dulo P2P
ao hIs.js. Principalmente, ele oferece a possibilidade do P2PModule fornecer
segmentos para o hIs.js, tanto do P2P como da CDN, de forma transparente.

• P2PModule: m6dulo P2P, adiciona a capacidade de baixar segmentos de
video de outros peers para complementar o modelo de carregamento da
CDN. Ele cont6m a 16gica de chaveamento entre P2P e CDN, e isso fica
abstraido para o hIs.js. O seu funcionamento sera detalhado com mais
profundidade na pr6xima segao.

48

modulo novo

modulo externo

modulo extemo
ad8ptado (fork)

SourceHandler

hlsjsP2PWrapper

Fig. 16 – Diagrama de blocos da estrutura geral do software

Para resumir, o hlsjsP2PWrapper, hIs.js e P2PModule formam um conjunto que
representa uma instancia de hIs.js acrescentada com capacidade de P2P.

A16m disso, o SourceHandler permite indicar para o video.js aquela instancia
modificada do hIs.js como sua fonte de mfdia.

Ao longo do desenvolvimento, outras possibilidades de arquitetura surgiram. Por
exemplo, teria sido possivel nao usar o hlsjsP2PWrapper e modificar a classe Loader do
hls.js para acrescentar a funcionalidade de P2P. Por6m, esta abordagem presentava
desafios estruturais ligados com o funcionamento do hIs.js que conduziram a decidir nao
mexer no hls.js e usar o Wrapper para fazer a interface com um m6dulo P2P externo.

b) Parte P2P

A estrutura do m6dulo P2P 6 apresentada no diagrama de classes a seguir (F&
17). Este diagrama representa as classes do software cliente e a maneira na qual elas
interagem. Vamos detalhar o papel especifico de cada classe e as fung6es que eIa tem
que assumir para o bom funcionamento do m6dulo como um todo.

• PeerAgentlVlodule: ponto de entrada do m6dulo P2P. Faz a interface entre o
m6dulo midia e o m6dulo P2P, Principalmente, ele passa os pedidos de
segmentos para o P2P e retorna os segmentos baixados e as estatisticas
para a midia.

49

• Main: ponto central do m6dulo P2P. Passa os pedidos de segmentos para o
ResourceRequester verificando se o segmento jg nao se encontra no cache
local, e ao receber o segmento da rede, ele atualiza as estatfsticas no
Playbacklnfo e armazena o segmento no Storage.

PlavbackInfo'. conserva e calcula as estatfsticas sobre origem dos downloads
e sobre os peers para passar para o front-end.

• Storage: classe de armazenamento dos segmentos de video. Os segmentos
nao sao armazenados em formato bingrio mas em string base 64.

P68rAgentModul8

Playbacklnfo

Main

Storage

R6sourcoRoqu8 stat

CDNR6quester P2PManager

Swarm Mess8ggHandler

I
I
I
I
t

I
I
I

Peer ChunkManager

Tracker

UplaodHandler

Fig. 17 – Diagrama de classes do m6dulo P2P

50

• ResourceRequester'. responsavel pelo roteamento dos downloads entre a
CDN e o P2P. Usa alguns crit6rios configurgveis para escolher, como por
exemplo o namero de segmentos a baixar da CDN para conseguir iniciar o
playback rapidamente enquanto nos conectamos ao tracker e aos demais
peers via WebRTC.

• CDNRequester'. chamado para fazer download do segmento da CDN. Faz um
XML HTTP Request para a rede na url de identificagao do segmento.

• P2PManager'. compargvel ao CDNRequester, mas para o P2P. O P2PManager
cuida do P2P como um todo. Ele 6 responsgvel por se conectar ao tracker
via websocket, criar as conex6es WebRTC com os outros peers, e repassar
os pedidos de segmento para o Swarm.

• MessageHandler'. recebe as mensagens do tracker (lista de peers, signaling
WebRTC, etc.) e toma as ag6es necessarias (responder a uma offer com uma
answer por exemplo no caso do signaling).

• Tracker: o tracker 6 um servidor com qual cada cliente se conecta ao iniciar
o playback e que rastreia os peers e o conte6do que eles tdm, Ele serve para
indicar com quais peers um cliente pode se conectar, e serve tamb6m como
servidor de signaling para iniciar as conex6es WebRTC.

• Swarm: representa o swarm, ou seja o conjunto de peers com quem
estamos conectados, Ele manda mensagens para peers para saber quem
tem o conteado desejado e depois seleciona o melhor peer para pedir o
segrnento.

• Peer'. representa um peer. Escuta e responde no DataChannel WebRTC
(dados, pedidos, etc.)

• UploadHandler'. responsgvel pelo upload, basicamente retorna se existem
slots de upload disponiveis para um peer dado no momento.

• ChunkManager'. esta classe trata o segmento no nfvel de chunk. Cada
segmento 6 cortado em vgrios chunks de tamanho menor antes de ser
enviado para outros peers. Ao receber os chunks, o ChunkManager tamb6m
reconstitui o segmento que sera mandado para a parte de mfdia.

Podemos visualizar a troca de mensagens na figura a seguir (Fig. 18 - Conexao com
o tracker e download de um segmento de um outro peer), tanto com o tracker como com
um outro peer. A parte de conexao WebRTC jg foi explicada na segao III.6.c) Criar uma
conexao peer-to-peer e nao 6 detalhada de novo aqui. Aparece resumidamente na
expressao “Signaling WebRTC”.

No infcio, o Peer A se conecta com o tracker que foi atribufdo a ele via websocket.
Esse tracker responde com a lista de peers com quem ele tem uma conexao aberta e que

51

tdm o mesmo conte fIdO que o Peer A esti assistindo. Esses sao os peers potenciais do
nosso Peer A. No caso do prot6tipo, temos apenas um conteado e todos os clientes
conectados ao tracker sao peers potenciais para A. Com essa lista, o Peer A cria uma
conexao WebRTC com cada um desses peers potenciais, usando o tracker como canal de
signaling. A partir daqui sera considerado um Peer B com quem o Peer A se conectou.

1 Isto do poors

WgbRTC

'lnt8r8stod-

“contain” / -busy" / -chakad'

-requ68t

-chunkSatlsfied-

Data Channel

Fig. 18 - Conexao com o tracker e download de um segmento de um outro peer

Ao abrir o DataChannel com o Peer B, a primeira coisa feita pelo A sera mandar
uma mensagem “ping" (diferente da nogao de ping na camada de rede) pelo
DataChannel para testg-lo. O B deve responder com um “pong”. Se ele nao responder, a
conexao nao funcionou e o processo acaba aqui. Caso contrgrio, a partir daqui todas as
comunicag6es entre peers A e B estao feitas atrav6s do DataChannel, par a par.

Ao longo do playback, o A ira pedindo os segmentos de video para o sistema
hfbrido. Para garantir uma lat6ncia inicial baixa, o sistema pede automaticamente os
dois primeiros segmentos da CDN, para dar tempo ao P2P para se iniciar, Depois disso
(alguns segundos), cada pedido de segmento entrara pelo PeerAgentModule at6 o
ResourceRequester. Aqui, o sistema decide se ele pede o segmento para o P2P ou para a
CDN. Os parametros que ele usa sao a presenga de peers (o B, no casa) e se o P2P esti
ativado pelo usuario ou nao. Se nao for, pede o segmento para a CDN. No caso contrario,
passa o pedido para a classe Swarm. Primeiro, precisa saber quem tem o conte fIdO
dentro do swarm, Esta classe manda uma mensagem de “interested” com os detalhes do
segmento que eIa quer para todos os peers do swarm.

52

Eles verificam no seu Storage se tiverem aquele segmento, e no UploadHandler
para saber se estao em condigao de mandar conte fIdO (slots de upload livres). Depois
desta verificag30, eles respondem com uma das tr6s mensagens seguintes:

“busy”: significa que aquele peer B ja esti no seu limite de upload, e nao pode
mais mandar conteado para outros peers no momento. Este limite de upload 6
configurgvel e 6 necessario para nao saturar o peer e diminuir o desempenho
da rede;
“choked": significa que o peer B nao possui aquele segmento no qual o A tem
interesse;
“contain”: significa que o B possui aquele segmento e esti com condigao de
manda-lo para o A.

Ao receber as respostas desses peers, o A constitui a lista de seeders potenciais
para este segmento com os peers que responderam com um “contain”.

A pr6xima etapa 6 escolher o melhor peer entre os seeders potenciais para fazer o
pedido do segmento. Para isso, a classe Swarm se baseia na pontuagao que ele atribuiu
para cada peer do seu swarm. Quando iniciar uma conexao P2P entre dois peers, cada
um cria uma pontuagao que 6 inicialmente igual para todos, e que serve para avaliar os
outros peers. Esta pontuagao evolui: eIa cresce quando o peer manda bons segmentos, e
diminui quando ele nao responde ou nao manda um segmento que ele prometeu mandar
por exemplo. Portanto, esta pontuagao 6 pessoal, no sentido que um peer X pode ser
avaliado com a pontuagao 50 por um peer Y e -100 por um outro peer Z. Usando esta
pontuagao, o A escolhe o melhor peer (B no nosso caso) e manda para ele a mensagem
de “request”, ou seja o pedido com os detalhes do segmento que ele quer.

Do ladD de B, ao receber a mensagem na instancia da classe Peer que representa o
peer A, ele recupera o segmento no seu Storage. Para mandar o segmento para A, ele
precisa usar o ChunkManager que vai cortar o segmento em v£rios chunks, ou seja
pedagos menores de video. Esta etapa 6 necessgria por causa do limite de tamanho das
mensagens no DataChannel, como foi visto na descrigao do WebRTC. B manda cada
chunk para A com um namero de sequ6ncia, nas mensagens de “chunkSatisfied”. Do seu
lado, A reconstitui o segmento com os chunks. Quando o segmento for completo, ele fica
satisfeito. O Main recupera o segmento, atualiza as estatfsticas (porcentagem total de
P2P, tamanho do swarm, upload e download de cada peer do swarm) e retorna o
segmento para o m6dulo de mfdia.

Quando B se desconecta, o A sera notificado pelo seu listener de fechamento do
DataChannel (e pelo tracker tamb6m), e a sua instancia do peer B sera descartada.

IV.5. Desenvolvimento do projeto

At6 entao, o texto focou muito na arquitetura e no funcionamento do sistema.
Tamb6m 6 interessante e faz parte do trabalho detalhar como foi o processo ao longo do
ano e os passos seguidos para chegar no prot6tipo final.

Na origem, eu queria trabalhar com streaming, CDN e P2P e fui procurar a
professora Regina Melo Silveira do LARC para me ajudar na escolha final do tema.

53

Tamb6m conversamos com o Samuel Kopp, especialista de CDN do LARC, e depois de
algumas reuni6es definimos o assunto do trabalho em abril de 2016. A primeira decisao
importante foi de organizar reuni6es frequentes com a professora e o Samuel para
agilizar o avango de projeto. A cada duas semanas, eu mostrava meus avangos e os novos
problemas que tinham aparecido, e nos tomgvamos as decis6es necessarias, juntos,
nessas reuni6es.

C) projeto se dividiu em quatro partes, nao necessariamente sucessivas:
pesquisa explorat6ria
desenvolvimento do prot6tipo
redagao da monografia
elaboragao da demonstragao e testes

A16m das reuni6es frequentes e de forma a ainda mais facilitar a comunicagao com
os meus orientadores, decidi trabalhar no LARC a maioria do tempo, Este laborat6rio me
ofereceu um ambiente ideal para realizar as minhas tarefas, sempre com a possibilidade
de procurar algu6m para me ajudar com qualquer problema ou pergunta. Com
experi6ncia, posso dizer que foi uma das decis6es mais importantes do trabalho.

A segunda ideia muito forte que sempre segui durante este projeto 6 a ideia de
dividir o trabalho em pequenas sub-tarefas com datas de entrega de produtos
intermediarios definidas com anteced6ncia. Isso ajudou de varias maneiras.
Primeiramente, fixou objetivos a atingir. Segundo, me permitiu dividir as dificuldades
em dificuIdades menores. Enfim, o fato de ter objetivos menores significa que voc6
atinge os seus objetivos mais frequentemente (tipicamente a cada uma ou duas
semanas), e isso gera uma satisfagao que ajuda a sempre guardar o foco e nao se
desmotivar ao olhar a quantidade de coisas para fazer ao longo do projeto.

Este conceito geral se aplicou muito bem neste projeto, com os objetivos
sucessivos seguintes:

arquitetura basica
pggina web com player video.js reproduzindo um video .mp4 armazenado no
disco
pagina web com video HLS hospedado por um servidor pablico reproduzindo
sem player, usando hls.js
uso do SourceHandler para reproduzir o fluxo HLS no player video.js
conexao com o Wrapper para ter uma interface viavel para um m6dulo P2P
conexao do modulo P2P vazio com o Wrapper
realizagao da conexao WebRTC com um peer via um tracker local
mensagens de teste entre peers via DataChannel
software de gestao do mfdia no m6dulo P2P
intercambio de segmentos via P2P, durante o playback
estatfsticas
possibilidade de ligar e desligar o P2P durante o playback

De um ponto de vista t6cnico, a quase totalidade de trabalho foi feita com
servidores locais. A migragao para servidores externos foi feita em 61timo lugar.

54

Durante o desenvolvimento, algumas davidas surgiram em relagao as tecnologias
necessarias. Um bom exemplo de escolha t6cnica dificil e determinante foi de decidir de
usar ou o Wrapper da Streamroot, ou desenvolver a partir do zero uma interface com o
P2P. Neste tipo de casos, a abordagem foi uma de teste de duragao determinada: decidi
tentar a primeira opgao durante duas semanas. Em caso de sucesso, ia pela frente, Em
caso contrario, tentava outra opgao, e assim por diante. Provou ser uma abordagem
eficiente

Como foi explicado na se9ao sobre arquitetura (IV.4.a), o projeto 6 uma integragao
de m6dulos open-source prontos (video.js, hIs.js), de m6dulos open-source modificados
(SourceHandler e Wrapper da Streamroot) e de c6digo original com algumas inspirag6es
de outros projetos open-source (m6dulo P2P). Logo no infcio do projeto foi decidido
deixar estes m6dulos separados. o controle de versao destes vgrios m6dulos foi feito
com a ferramenta Git, com um reposit6rio separado para cada m6dulo. Essa ferramenta
permite guardar um hist6rico do desenvolvimento, ter varias vers6es de um mesmo
c6digo simultaneamente, e retornar a uma versao anterior em caso de erro. Dessa
maneira, cada m6dulo ficou separado e simplificou a cadeia de depend6ncias.

Parte do c6digo foi escrita com sintaxe ES6 (norma ECMAScript 6 para sintaxe de
JavaScript), a mais recente, que ainda nao 6 suportada pela maioria dos navegadores
web. Portanto, 6 necessario compilar o c6digo ES6 em c6digo ES5. Da mesma maneira, 6
necessario transformar o c6digo JavaScript dos diferentes m6dulos em um 6nico
arquivo que contenha tudo o c6digo com as depend6ncias correspondentes. Esta
transformagao se chama de “Browserificagao”.

Na pratica, tudo isso foi feito com a ferramenta de automagao para JavaScript
chamada Grunt [55], usando os plugins Babel para compilagao ES6-ESS [56] e Browserify
para browserificagao do c6digo [57]. Esta ferramenta permite criar comandos de
terminal automatizando a compilagao, download de depend6ncias, etc. Estes comandos
sao locais para cada projeto e especificados no arquivo gruntfile.js de cada projeto. A
tarefa “Watchify” recompila em tempo real a cada alteragao do c6digo, o que permite
poupar muito tempo nos ciclos de teste no browser – corregao de erros de c6digo
teste

55

V. O projeto no cenirio do IPTV da USP

O presente projeto de formatura se inscreve na ideia de uma integragao com o
IPTV da USP. Todos os ganhos jg expostos se aplicam da mesma maneira no caso do
IPTV da USP: diminuigao de custos de banda e melhoria da qualidade de servigo
principalmente.

A16m disso, o caso particular do IPTV-USP apresenta caracterfsticas que deixam
pensar que ele poderia aproveitar ainda mais a integragao de um servigo de entrega
hibrida de video baseada em WebRTC.

A ideia principal 6 aproveitar a concentragao dos peers em algumas regi6es. 0
IPTV-USP retransmite principalmente palestras e aulas dadas na USP. Isso significa que
boa parte dos usugrios serao alunos e professores dos vgrios campi que a USP possui
dentro do estado de sao Paulo. Levando em conta o fato que proximidade entre peers
aumenta o desempenho de um sistema P2P (segao III.4), a arquitetura do presente
projeto foi pensada para aproveitar este fato no mg><imo.

Devemos tamb6m considerar a CDN que a USP possui e usa para distribuir o
conteado entre esses varios campi. Podemos representar uma estrutura simplificada da
CDN na Fig. 19. Cada campus possui o seu pr6prio servidor de borda da CDN para
distribuir o conteado naquela regiao.

: servidor d8 boa:la da CDNB

Fig. 19 - Estrutura simplificada da CDN da USP

Com estes dois parametros em mente (aumentar a proximidade entre peers e
aproveitar a arquitetura da CDN da USP), pensamos em criar um Tracker por servidor de

56

borda em vez de um Tracker central para tratar os pedidos de todos os peers. Isso seria
fgcil com aquela estrutura de CDN, jg que temos acesso aos servidores de borda. Basta
colocar um tracker em cada um das maquinas, e os usugrios daquele servidor de borda
serao diretamente direcionados para o Tracker correspondent a

Essa arquitetura com vgrios Trackers tamb6m tem a vantagem de garantir que os
clientes que vao se conectar estarao considerados como pr6ximos pela CDN. A
consequ6ncia 6 que dois clientes em cidades distintas nao se verao como peers
potenciais, dando prioridade para outros clientes da mesma cidade (usando o mesmo
servidor de borda), e portanto aumentando o desempenho potencial do P2P.

57

VI. Demonstragio

Nesta segao, vamos apresentar os objetivos e os detalhes t6cnicos da
demonstragao do projeto,

Com essa demonstra9ao, o nosso objetivo 6 demonstrar que:
0 Streaming esti funcionando (reprodugao de um video a partir de um
servidor origem) ;
Segmentos de video estao sendo trocados entre clientes;
O sistema 6 resistente a condig6es de rede diffceis entre clientes e servidor
orlgern.

Para tal, sera feito o streaming do video Big Buck Bunny [58] na pggina web do
prot6tipo, hospedada num servidor web Apache do laborat6rio. A banda entre o
servidor origem hospedando o video e o Access Point sera limitada por um limitador de
banda, em um valor inferior a banda necessaria para servir todos os clientes.

Num primeiro tempo, a fungao P2P sera desabilitada, e a reprodugao deveria
apresentar o fen6meno de rebufferizagao. Num segundo tempo, a funcionalidade P2P
sera habilitada e a reprodugao deveria voltar a ser fluida. Estatfsticas como a
porcentagem de P2P e o namero de peers conectados serao visiveis no quadro de
estatfsticas de cada cliente.

0 dispositivo (Fig. 20) 6 constituido por:
Uma mgquina hospedando tr6s servidores
Um limitador de banda
Um Access Point

- Algumas mgquinas clientes

MaRin
Media Server

elPlIBnn-r n=BIn

==n
Tracker

a
–(T)Limit8dor d8 banda

Fig. 20 - Arquitetura da Demonstragao

• O primeiro servidor 6 o Servidor Web, que hospede a pagina Web do
prot6tipo (servidor Apache, mgquina Linux).

58

• O segundo servidor 6 o Servidor de Mfdia, que hospede os segmentos de
video (servidor Apache, m£quina Linux).

• Fina]mente, o terceiro servidor 6 o Tracker P2P, apresentado na arquitetura
da proposta (servidor Node.js, mgquina Linux).

A mgquina com os servidores sera ligada a um Access Point sem fio na sala de
demonstragao via um link com banda limitada, varias mgquinas clientes se conectarao a
rede via este access Point para fazer a demonstragao e acessar o video.

Durante a demonstragao serao monitoradas as rebufferizag6es, assim como a
porcentagem de conteado obtido via P2P para cada cliente.

59

VII. Testes

Esta segao apresenta os resultados obtidos nos testes realizados. 0 objetivo desses
testes era de confirmar que os segmentos de video estao trocados via P2P, e mensurar
as taxas de P2P em fungao do namero de clientes simultaneos.

0 ambiente de teste foi o seguinte:
video Big Buck Bunny [58] carregado a partir de uma CDN pablica
navegador Google Chrome 54
computador MacBook Pro 2011, RAM 4 Go, Intel Core i7 2 GHz
servidor Tracker instalado na mgquina localmente
servidor web instalado na mgquina localmente

Parametros utilizados para os testes:
initSegmentsToSkip: namero de segmentos inicialmente baixados da CDN sem
tentar usar P2P para acelerar o inicio da reprodugao.
Valor usado: 2

maxStorageChunks: namero maximo de segmentos guardados no cache
JavaScript por um peer. Quando chegar no limite, o mais antigo 6 descartado.
Valor usado: 10

M6trica testada: porcentagem de P2P m6dia, a m6dia das porcentagens individuais.

P2Pi = (Bytes baixados em P2P)i / (Bytes totais baixados)i

Namero de
clientes

simultaneos
2
2
3
3

Duragao do
teste initSegmentsToSkip Porcentagem

m6dia de P2P

10 min
3 min
3 min
3 min

39%
40%
53%
64%

Tabela I – Resultados dos testes

0 detalhe de cada teste com as porcentagens individuais de cada peer se encontra
no Ap6ndice A - Resultados detalhados dos testes.

A tend6ncia nos testes 6 aumentar a porcentagem m6dia de P2P o quanto mais
clientes simultaneos tem (Tabela I). Isso faz sentido porque sempre tem um peer com
0% (o primeiro conectado), entao cada peer faz aumentar a m6dia.

Um outro parametro importante 6 o initSegnrentsToSkip . Em testes de duragao
curta, ele tem um grande impacto, como vemos nos resultados. Uma mudanga de valor
de 2 para 1 deu um ganho de porcentagem m6dia de P2P de 11% no caso de 3 clientes,
no nosso teste. Podemos deduzir que este parametro 6 muito importante para o

60

desempenho do sistema, e 6 necessgrio achar o valor ideal para ter uma experi6ncia do
usuario boa no inicio da reprodugao, e ao mesmo tempo um bom desempenho P2P.

Esses resultados sao interessantes do ponto de vista do uso de banda nos
servidores da CDN. Em comparagao, por definigao, um sistema sem P2P teria uma
porcentagem de P2P m6dia de 0%.

Antes de concluir sobre a viabilidade do sistema, 6 necessario conduzir testes de
mais grande escala para confirmar o desempenho do P2P, e tamb6m estudar outros
efeitos potencialmente omitidos no estudo que poderiam prejudicar de alguma forma o
usugrio ou o provedor de servigo.

61

VIII. Considerag6es Finais

A presente monografia apresentou o trabalho de formatura sobre um sistema de
Web Streaming Hibrido usando WebRTC. Os principais objetivos do projeto eram de
especificar e construir o prot6tipo do produto e demostrar a sua efici6ncia e os ganhos
potenciais que ele poderia trazer para um sistema como o IPTV-USP. Eles foram
atingidos, no sentido que um prot6tipo funcional foi desenvolvido, mostrando a
viabilidade da ideia do uso de Peer-to-Peer para entrega de video na Web. Tamb6m
conseguimos demonstrar os beneficios potenciais na forma de economia de custos de
banda proporcional a porcentagem de Peer-to-Peer atingido, e na forma de melhoria da
Qualidade de Experi6ncia medida em termos de rebufferizagao.

Poderia ter sido interessante dar mais um passo a frente, implantando Trackers em
varias cidades nos servidores de borda da CDN da USP, e testando com varios peers em
cada cidade. Isso teria testado a hip6tese de melhoria dos resultados do P2P com varios
Trackers locais em vez de um Tracker central s6. Esse tipo de trabalho necessitaria mais
recursos que os recursos de um aluno no seu projeto de formatura, e seria mais
adaptado a um projeto de mestrado por exemplo.

Como projeto de formatura, este projeto conseguiu provar um conceito, e uma
futura implementagao no servigo de IPTV da USP 6 uma possibilidade que sera estudada
no futuro pelo LARC.

62

IX. Bibliografia
[1]
[2]

CISCO, "Cisco 2016 Visual Networking Index," 2016.
Kurt Michel. (2013) akamai.com. [0nline] ,

https://blogs.akamai.com/2013/01/live-video-streaming-that-can-
handle-traffic-spikes-the-challenge.html

Streamroot, "Peer-assisted adaptive streaming: the key to managing
ever- growing online video traffic ," White Paper 2014.

Joel Hruska. (2014) extremetech.com. [0nline] .
http ://www.extremetech.com/computing/186576-verizon-caught-
throttling-netflix-traffic-even-after-its-pays-for-more-bandwidth

Presid6ncia da Repablica, "LEI NQ 12.965," vol. Art. 9', Abril 2014.
Y.-F.R,Chen G. Thompson, "IPTV: Reinventing Television in the

Internet Age," IEEE Internet ComputIng, vol. 13, no. 3, pp. 11-14, Maio
2009

[3]

[4]

[5]

[6]

[7] Tankut AkguI, Mark Baugher Ali C. Begen, "Watching videos over the
web. Part I: Streaming Protocols," IEEE Internet Computing, vol. 15, no. 2,
pp. 54-63, March/April 2011,

fan Ozer, Video Compression for Flash, Apple Devices and HTML5,
Doceo Publishing, Ed., 2011.

ISO/IEC, "Information technology – Dynamic adaptive streaming
over HTTP (DASH) ," 23009-1,.

Apple. developer.apple.com. [Online] .
https://developer.apple.com/library/content/documentation/Networkin
gInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.
html

[8]

[9]

[10]

[11] Apple. Example Playlist Files for use with HTTP Live Streaming.
[Online]
https://developer.apple.com/library/content/technotes/tn2288/ index.h
tml

[12] Jan Ozer. (2011, November) Streaming Media. [Online].
http://www.streamingmedia.com/Articles/Editorial/What-Is-./What-is-
MPEG-DASH-79041.aspx

Ann Malsha De Silva, Yongseng Diao Amal Punchihewa, "Internet
Protocol Television (IPTV) ," Multi-media Research Group, School of
Engineering and Advanced Technology, Massey University, New Zealand,
2010

[13]

[14]

[15]

Point Topic, "IPTV Statistics - Market Analysis - Ql 2013," London,
2013

Jeff Tapper. (2015, March) StreamingMedia. [Online] .
http://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=1
03101&PageNum=1

Natt Garun. (2015, January) The Next Web, [0nline].
http://thenextweb.com/google/2015/01/27/youtube-will-now-default-
htm15-players-better-support-devices/

[16]

63

[17]

[18]

Srinivasan Seshan, Anees Shaikh Aditya Akella, "An empirical
evaluation of wide-area internet bottlenecks," Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pp. 101-114, 2003.

Ingmar Poese, Georgios Smaragdakis, Anja Feldmann, Bruce M.
IVlaggs, Steve Uhlig, Vinay Aggarwal, and Fabian Schneider Benjamin
Frank, "Collaboration Opportunities for Content Delivery and Network
Infrastructures," Recent advances in Networking, pp. 305-377, July 2013.

[19]

[20]
[21]
[22]

[23]

[24]

Spotify. (2011) P2 P Music Streaming. [0nline].
http://www.slideshare.net/ricardovice/spotify-p2p-music-streaming

[Online] . http://www.bittorrent.com/
[Online] , https://webtorrent.io/
G., & Vakali, A. Pallis, "Insight and perspectives for content delivery

networks," Communications of the ACM, 49(1), 101-106., 2006.
Gang Peng, "CDN: Content Distribution Network," arXiv preprint

cs/0411069., February 2008.
Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia Zhang Sugih

Jamin, ''On the placement of internet instrumentation," in INFOCOM 2000.
Nineteenth Annual foint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE., vol. 1, Tel Aviv, 2000, pp.
295-304

[25] Venkata N. Padmanabhan, and Geoffrey M. Voelker Lili Qiu, '’0n the
placement of web server replicas," in Proceedings of IEEE INFOCOM 2001
Conference, Anchorage, 2001.

Yair Bartal, "Probabilistic approximation of metric space and its
algorithmic applications," in 37th Annual IEEE SymposIum on Foundations
of Computer Science, 1996.

[26]

[27]

[28]

Danny Raz, and Yuval Shavitt P. Krishnan, "The cache location
problem," in IEEE/ACM Transactions on Networking, vol. 8, 2000.

Cheng Jin, Anthony R.Kure, Danny Raz, and Yuval Shavitt Sugih
Jamin, '’Contrained mirror placement on the internet," in Proceedings of
IEEE INFOCOM 2001 Conference, Anchorage, 2001.

[29] M. Amman Z. Fei, and S. Bhattacharjee E. Zegura, "Application-layer
anycasting: a server selection architecture and use in a replicated web
service," in IEEE/ACM Transaction on Networking , vol. 8, 2004,

[30] N., Casalicchio, E., & Tucci, S. Bartolini, "A walk through content
delivery networks," in Performance Tools and Applications to Networked
Systems.: Springer Berlin Heidelberg, 2004, pp. 1-25.

[31]

[32]
[33]

[34]

Ilya Grigorik, High-Performance Browser Networking.: O’Reilly Media,
2013

webrtc. (2016, Setembro) webrtc.org. [Online] . https://webrtc.org/
(2016, October) NetMarketShare. [Online] .

https://www.netmarketshare.com/browser-market-
share.aspx?qprid=0&qpcustomd=0

Google. (2014, June) Google +. [Online] .

64

https://plus.google.com/u/0/103 171586947853434456/posts/39TCW3
PcLye

Mozilla. (2014, December) blog.mozilla.org, [Online] ,
https://blog.mozilla.org/press-fr/2014/12/05/hello-communiquer-plus-
simplement-grace-au-navigateur-firefox/

Skype. (2016, July) blogs.skype.com. [Online].
https://blogs.skype.com/2016/07/13/skype-for-linux-alpha-and-calling-
on-chrome-and-chromebooks/

https://www.streamroot.io/.
https://www.peer5.com/.
http://viblast.com/.
Feross Aboukhadijeh. http://feross.org/resume/.
Kylie Jue. (2014, January) stanforddaily.com. [Online] .

http://www.stanforddaily.com/2014/01/08/yahoo-purchases-alumni-
startup-peercdn/

Adam Bergkvist, Cullen Jennings, Anant Narayanan, Bernard Aboba
Daniel C. Burnett. (2016, June) Media Capture and Streams Specification,
W3C Editor's Draft, [0nline]. https://w3c.github.io/mediacapture-
main/#toc

Tsahi Levent-Levi. (2015, June) https://webrtchacks.com. [Online].
https://webrtchacks.com/webrtc-and-man-in-the-middle-attacks/

J. Rosenberg, "Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols," IETF, RFC5245 ISSN 2070-1721, 2010.

Yossi Zada. (2013, October) 10nline] .
http://fr.slideshare.net/Audiocod/nat-traversal-in-webrtc-context

Mikhal Shemer, Marco Paniconi Stefan Holmer, "Handling Packet
Loss in WebRTC," 2013.

[35]

[36]

[37]
[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Steve Jobs. (2010, April) http://www.apple.com/. [Online].
http://www.apple.com/hotnews/thoughts-on-flash/

CVE. cvedetails.com. [Onlinel
https://www.cvedetails.com/vulnerability-list/vendor id-53/product id-
6761/Adobe-Flash-Player.html

Nicolas Weil. (2016, March) Streaming Media Magazine. [0nline].
http://www.streamingmedia.com/Articles/Articles/Editorial/Featured-
Articles/The-State-of-MPEG-DASH-2016-110099.aspx

Streamroot. [Online] . https://github.com/streamroot/videojs5-
hlsjs-p2p-source-handler

Video.js. [Online] . http://videojs.com/
Mangui. [Online] . https://github.com/dailymotion/hls.js
W3C. (2016, August) 10nline]. http://w3c.github.to/media-source/
Streamroot. [Online]. https://github.com/streamroot/hlsjs-p2p-

wrapper
(2016, October) 10nline] . http://gruntjs.com/

[491

[50]

[51]
[52]
[53]
[54]

[55]

65

[56]
[57]
[58]
[59]

[0nline] . https://babeljs.to/
(2016, October) 10nline] , http://browserify.org/
Big Buck Bunny. [Online]. https://peach.blender.org/
J. K„ Meyn, A. J., Jalonen, E., Raivio, Y„ & GarcIa Marrero, R. Nurminen,

'’P2P media streaming with HTML5 and WebRTC„" Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference,
pp. 63-64, April 2013.

[60] DVB, "Digital Video Broadcasting (DVB); MPEG-DASH Profile for
Transport of ISO BMFF Based DVB Services over IP Based Networks,"
2016

[61]
[62]

[63]

Streamroot. Github. [0nline] . https://github.com/StreamRoot
P. Srisuresh G. Tsirtsis, "Network Address Translation - Protocol

Translation (NAT-PT)," RFC 2000.
Jan Ozer. (2011, October) Streaming Media Magazine. [0nline].

http://www.streamingmedia.com/Articles/Editorial/What-Is-./What-is-
HLS-(HTTP-Live-Streaming) - 78221.aspx

ITU. (2016, July) 1TU announces new standard for High Dynamic
Range TV. [0nline]. http://www.itu.int/en/mediacentre/Pages/2016-
PR2 7.aspx

[64]

66

X. Apendice A - Resultados detalhados dos testes

Teste I
2 peers
playback 10 minutos
initSegmentsToSkip = 2
maxStorageChunks = 10

Peer 1 Peer 2
%P2P

Digltal Pioneers fund
Blender Foundation

Fdr \ {=C = e in B1 VfA- Lula K);ILIe • ,1I'4t in tC : qJ c -\t\\ p.I dI J) \’;.< t-

Irlr k 14',•.r•t: \v , ip Bf 1 itPL -II ' I Li III: ':tejq-t\IllP== it \ t OII :=f I

;Her :.\. all F€ter F.'riF) p} ,A ';;h #+•,Tel 01121(1 ICttl Carlo TFeiFIg bl):

II: TIll
'I rl•In' F:TInsf-rIP' Ilt\7r!:-f lb.

(Dti: • JII \t II : IiI .it#b#: !’l'llijl} '

t::; it: illIiI lieI Ir I}gear.I ! I' Irle \,\l,lpbt \\• il : Pbr 'I h+ ft 191

Stats Stats

aP2P
P2P: 0%

a P2P

P2P: 78%

NumbIr of peers: I

Chunks &urn CDN: 57

Numb@of pma: I

Chunks from CDN: 10

Chunks &om P2P: 0 Chunks from P2P: 47

Fig. 21 - Print de tela do teste I

Teste 2
2 peers
playback 3 minutos
initSegmentsToSkip = 2
maxStorageChunks = 10

Peer 1 Peer 2
%P2P

Teste 3
3 peers
playback 3 minutos
initSegmentsToSkip = 2
maxStorageChunks = 10

Peer 1 Peer 2 Peer 3
%P2P

67

Teste 4
3 peers
playback 3 minutos
initSegmentsToSkip = 1
maxStorageChunks = 10

Peer 1
0%

Peer 2
97%

Peer 3
96%%P2P

68

