KEVIN OURY

Aplicagao de Web Streaming
Hibrido CDN-P2P usando WebRTC

Séo Paulo
2016

KEVIN OURY

Aplicagao de Web Streaming
Hibrido CDN-P2P usando WebRTC

Dissertagao apresentada a Escola
Politécnica da Universidade

de Sao Paulo para obtenc¢ao da
graduacao

Area de concentragdo: Engenharia
da Computagao

Orientador: Profa. Regina Melo
Silveira
Co-orientador: MSc. Samuel Kopp

Sao Paulo
2016

KEVIN OURY 9239677 — §15

Aplicacdao de Web Streaming
Hibrido CDN-P2P usando WebRTC

Dissertacao apresentada a Escola
Politécnica da Universidade

de Séo Paulo para obtencgéo da
graduacgao

Area de concentragdo: Engenharia
da Computacao

Orientador: Profa. Regina Melo
Silveira
Co-orientador: MSc. Samuel Kopp

Sao Paulo

2016

-w o
} Escola Politécnica - EPEL

LT

FICHA CATALOGRAFICA

l

I 2.0\ ’ If-' 3

Oury, Kevin
Aplicacao de Web Streaming Hibrido CDN-P2P usando
WebRTC / Kevin Oury - Sao Paulo, 2016

Trabalho de Conclusdo de Curso — Escola Politécnica da
Universidade de Sao Paulo, Departamento de Engenharia
Elétrica, Sistemas Digitais e Computacao.

1. Engenharia 2. Engenharia da Computagdo 3. Redes de
Computadores 4. Curso de Graduagdo |. Universidade de Sé&o
Paulo. Escola Politécnica. Departamento de Engenharia Elétrica,
Sistemas Digitais e Computacao.

Agradecimentos

A professora Regina Melo Silveira e MSc. Samuel Kopp, pela orienta¢do e pelo
constante estimulo transmitido durante todo o trabalho.

A todos que colaboraram direta ou indiretamente na execugdo deste trabalho.

Resumo

0 que se desejou investigar é uma alternativa aos modelos cldssicos para entrega
de video no contexto de Web Streaming. Pretendeu-se descobrir um novo modelo que
permitisse ter uma melhor escalabilidade que sistemas cliente-servidor baseados
apenas em Content Delivery Networks. O presente trabalho visa propor uma arquitetura
de distribuigdo de contetido hibrida usando Peer-to-Peer e demostrar sua viabilidade
com um prototipo.

Numa primeira fase, foram estudados os diferentes elementos técnicos envolvidos
em um Web Streaming, da parte de infraestrutura até a parte de aplicagdo. Em seguida,
foi descrita a proposta de arquitetura hibrida. Enfim, foram apresentados os resultados
do protétipo e medidos os impactos possiveis.

Palavras-chave: Engenharia da computagdo. Redes. Peer-to-Peer. WebRTC.

Abstract

The subject of the present work is to find an alternative to classic models for video
delivery in the context of Web Streaming, to achieve better scalability than client-server
architectures based on Content Delivery Networks. This work proposes a hybrid
architecture for media delivery using Peer-to-Peer, illustrated with a prototype.

First, this document presents an overview of the components of a Web Streaming
system, from infrastructure elements to application elements. Then, the formal proposal
for the hybrid infrastructure is explained. Finally, results obtained with the prototype

are analyzed.

Key words: Engineering. Networks, Peer-to-Peer. WebRTC.

Lista de llustragdes

Fig. 1 - Evolugio do trafego Internet 2015-2020 [1] cocumemmmmmmmmmmmmmmmmmmmsmmsmssssmsssissssssssss 6
Fig. 2 - Visdo geral do streaming de um fluxo HLS [10].ceiveeesesnnne 18
Fig. 3 - Hierarquia de playlists .m3u8 [10] . mmmmsmsssssmessrsssssss 19
Fig. 4 - Exemplo de playlist de primeiro nivel [11] 19
Fig. 5 - Exemplo de playlist de segundo nivel [11] 20
Fig. 6 - Subscrigdes IPTV no mundo (Q1 2013) [14].......... 22
Fig. 7 - Top paises para IPTV (Q1 2013) [14] 23
Fig. 8 - Crescimento de IPTV por pais (Q1 2013) [14] 24
Fig. 9 - Arquitetura tipica de IPTV [13].mmissmmusssssanns 25
Fig. 10 - Organizagdo geral de uma CDN [23] cerersnsessnnne 31
Fig. 11 - Métricas usadas na sele¢do do servidor de borda durante o roteamento de

request [30] ... ; 34
Fig. 12 - Pilha de protocolos WebRTC 37
Fig. 13 - Troca de Offer/Answer entre os peers [31] , 39
Fig. 14 - Exemplo de cédigo para criagdo de conexdo WebRTC (JavaScript) v 40
Fig. 15 - Arquitetura geral sem P2P a esquerda (A) e com P2P a direita (B) wuueeeensusen 44
Fig. 16 - Diagrama de blocos da estrutura geral do software... i 49
Fig. 17 - Diagrama de classes do mOdulo P2P ... 50
Fig. 18 - Conexdo com o tracker e download de um segmento de um outro peer .. 52
Fig. 19 - Estrutura simplificada da CDN da USP ... 56
Fig. 20 - Arquitetura da DemONSIIaAGA0 st ssssssssssasses .58

10

Lista de abreviaturas e siglas

API
CDN
DDoS
DNS
HLS
HTTP
ICE
IPTV
NAT
P2P
SA
SDP
TCP
UDP
UHD
VOD
WebRTC

Application Programming Interface
Content Delivery Network
Distributed Denial of Service
Domain Name Service

HTTP Live Streaming

HyperText Transfer Protocol
Interactive Connectivity Establishment
Internet Protocol Television
Network Address Translator

Peer To Peer

Sistema Auténomo

Session Description Protocol
Transmission Control Protocol
User Datagram Protocol

Ultra High Definition

Video On Demand

Web Real-Time Communication

11

Sumario

R0 § 01 0 76 11 o (o DO — 13
L. OB LIV © IGEIVACRO cuovuuinisiucisusoniumsivninasinossnvessisias s nssvss aoisssidomssasionia s s osan 15
III. Conceitos e definigoes ..ummmmmmmsasarsirs 16
1IL.1. Web Streaming. 16

a) Introdugao 16

b) Formatos de streaming 17
1.2, IPTV 22

a) Conceito 22

b) Mercado 22

c) Exemplo de arquitetura 24
1IL.3. Web Player 26
1I1.4. Peer-to-peer (P2P) 27

a) Conceito 27

b) Atores do mercado 28

c) Projetos open-source 28
IIL.5. CDN 29

a) Conceito 29

b) Arquitetura de uma CDN 30

c) Tecnologias.. 31
III.6. WebRTC 35

a) Introducao 35

b) Visdo técnica geral 36

c) Criar uma conexdo peer-to-peer 38

d) Datachannel 40

e) Limitagdes 41

IV. Arquitetura da proposta 43
IV.1. Requisitos 43
IV.2. Arquitetura geral 44
IV.3. Escolhas técnicas 45

a) Protocolo para P2P: WebRTC 46

b) Protocolo de streaming adaptativo: HLS 46

c) Player: video.js 47

d) Outros médulos open-source 47
IV.4. Arquitetura do software 47

a) Parte de midia 47

b) Parte P2P 49
IV.5. Desenvolvimento do projeto 53
V. O projeto no cenario do IPTV da USP 56
VL DeIONSITACT0 cnsummmcsanimminiisssssmis s s e s S sests 58
VL, TESERS ceursucursrsrenssarsrsssssssrsnesessrsssssassnsssssassenssnsssnssssassrassaesssnssenssssssssst snsssassisasas 60
VIIIL. Considerag¢des Finais 62
IX. Bibliografia .mmsmmsmsssmsssssssssssssssssmsessmsnsasesnasns S .63
X. Apéndice A - Resultados detalhados dos testes ... 67

12

l. Introdugao

Nos ultimos anos o mercado de video na Web vem experimentando um
crescimento exponencial devido aos efeitos combinados da alta do consumo e da
qualidade dos videos. O trafego de video na Internet vai ser multiplicado por 4 entre
2015 e 2020 pois, de acordo com as previsoes da Cisco, o volume de fluxo de video
constituird 79% do trafego total em 2020, contra 63% em 2015 [1].

2015 Global Internet Traffic by Application

Video Content

2015

Fig. 1 - Evolucdo do trafego Internet 2015-2020 [1]

Ao mesmo tempo, o tamanho dos arquivos de video estd aumentando também. Em
um mercado onde qualidade é fundamental, Ultra-High Definition (UHD)! rapidamente
virou necessdria, Com usudrios esperando melhores qualidades, distribuidores de
videos precisardo de mais banda e de infraestruturas que possam receber arquivos
maiores em picos de trafego para atender as expectativas dos usudrios finais. UHD
representard 15,7% do trafego total de video na Internet, contra 2,3% em 2015 [1].

Os modelos de entrega de video atuais usando protocolos unicast? ja estdo
mostrando os seus limites. Conforme escreveu Kurt Michel, da Akamai: “O aumento da
penetragdo da banda larga e os dispositivos mais rapidos fazem com que as experiéncias
de visualizagdo de alta qualidade sejam possiveis, mas problemas de laténcia de rede e

1 Formato de video digital de ultra-alta definigio.
2 Enderecamento de pacote [P para um tnico destino, ponto-a-ponto.

13

altas cargas de trdfego podem muitas vezes resultar em um desempenho de streaming
de video desapontador, com pausas frequentes para bufferiza¢do” [2].

Protocolos tradicionais baseados em relagdes um para um entre cliente e servidor
tém provado serem insuficientes para atender a demanda atual, com sobrecarga e
congestionamento de rede frequentes. As CDN (Content Delivery Networks), que serdo
detalhadas em sessdo posterior, sdo infraestruturas criadas com a intensdo de melhorar
esta situagdo, multiplicando o nimero de servidores espalhados geograficamente.
Porém, essa solugdo ndo é escaldvel e pode acabar falhando em prover confiabilidade a
um custo aceitavel [3].

Uma outra questdo relevante é o uso dos recursos disponiveis. Admitindo que as
infraestruturas de CDN possam aliviar as redes dos provedores e ajudar a entregar
contetido de forma mais rdpida, essas infraestruturas sdo compartilhadas entre varios
clientes. Se um cliente precisar transmitir um evento que gere um grande consumo de
recursos, sera que os outros clientes dessa mesma CDN serdo prejudicados no
atendimento do servigo?

A questdo da largura de banda utilizada é um dos maiores desafios para as CDN e
os ISP (Internet Service Provider - Fornecedor de Acesso a Internet). Desta maneira, os
servicos de transmissdo estdo sempre submetidos ao poder do provedor da
infraestrutura, como ja observamos conflitos entre Netflix e Verizon por exemplo [4].

De forma mais ampla, a questdo da alocagdo de banda entre diferentes servigos da
Internet foi amplamente discutida na esfera politica, quer seja nos Estados Unidos com
as discussdes sobre a Net Neutrality (ou Neutralidade da Internet), ou no préprio Brasil
com o Marco Civil da Internet. Essas leis garantem a neutralidade da rede: “O responsdvel
pela transmissdo, comutagdo ou roteamento tem o dever de tratar de forma isonémica
quaisquer pacotes de dados, sem distingdo por conteiido, origem e destino, servigo,
terminal ou aplicagdo” [5].

14

Il. Objetivo e Motivagao

As questdes mencionadas na introdugdo estdo na origem da proposta deste
Trabalho de Conclusdo de Curso, que pretende oferecer pistas de pesquisa através da
presente monografia e do protétipo técnico acompanhando ela. O objetivo a longo prazo
deste tipo de projeto é de cortar os custos de infraestrutura e conseguir responder a
uma demanda em crescimento exponencial, guardando em mente a ideia original da
Internet que era uma ideia de uma rede decentralizada e aberta a todos, de forma igual.

De maneira mais concreta, a proposta deste trabalho de conclusdo de curso é de
desenvolver um protétipo de sistema de ajuda ao web streaming de video via peer-to-
peer (P2P), integrado a CDN como mecanismo complementar de entrega. O objetivo
deste sistema é duplo:

- economizar recursos de rede (banda e processamento de servidores),

- melhorar a Qualidade de Experiéncia para o usudrio final (maior qualidade de
video, menos rebufferizagdo®, melhor desempenho a altas cargas em grandes
eventos, tolerdncia a falha de um servidor)

De um ponto de vista mais pessoal, foi escolhido este assunto por afinidade do
autor pelos assuntos de video na Internet, peer-to-peer e, de forma mais geral, a
pesquisa sobre as novas organizagdes de rede que v@o responder aos numerosos
desafios presentes e dos préximos anos. Na mesma linha, o autor trabalhou no dominio
de Web Streaming e peer-to-peer e desenvolveu uma base de conhecimento sobre esses
assuntos. Este estagio criou uma vontade de continuar a trabalhar com esse assunto e o
trabalho de conclusdo de curso era uma 6tima oportunidade para aproveitar os recursos
tanto de conhecimento e experiéncia que materiais do Laboratério de Arquitetura e
Redes de Computadores da USP (LARC-USP). O LARC participou do desenvolvimento da
infraestrutura do IPTV-USP, e demostrou um interesse em integrar as tecnologias de
peer-to-peer na sua arquitetura. Este assunto serd aprofundado na parte dedicada do
presente documento.

A escolha deste projeto como trabalho de conclusdo de curso permitiu conduzir
pesquisas aprofundadas no assunto e melhorar habilidades em desenvolvimento
orientado para midia, nas atividades de escolha das tecnologias adaptadas, reuso de
blocos tecnoldgicos existentes e desenvolvimento de blocos préprios. O projeto usa
tecnologias como Web Streaming e WebRTC, detalhadas na se¢do seguinte.

30 fendmeno de “rebufferizagdo” corresponde a uma pausa na reprodugédo (“playback”)
por causa de falta de segmentos de video dentro do buffer (“buffer underflow”). Precisa parar a
reprodugdo para esperar o carregamento de mais segmentos de video e poder voltar a leitura
normal, Este fendmeno é uma das principais reclamagdes de usudrios quando fizer streaming a
partir de um servidor carregado.

15

lll. Conceitos e definigoes

Esta sec¢do discorre sobre os conceitos tecnolégicos utilizados neste trabalho,
assim como as defini¢des utilizadas para a elaboragdo do mesmo

I1.1. Web Streaming

a) Introdugdo

Podemos dividir as tecnologias de Web Streaming de video (ou transmissdo de
video via web) em duas categorias: a Internet Video, conhecida como Over The Top
(OTT), e Servigos Auténomos como IPTV ou TV a cabo.

Os servigos como IPTV ou TV a cabo utilizam uma rede fechada (um “sistema
autdbnomo”) para transmitir porque usam transporte multicast* e precisam atender
alguns requisitos de qualidade de servigo (QoS) [6].

Ao contrério, os servigos de OTT transmitem via Internet publica, com tecnologias
tradicionais como Microsoft Windows Media, Apple Quicktime, Adobe Flash, e as mais
atuais tecnologias de streaming adaptativo como Apple HTTP Live Streaming (HLS),
Microsoft Smooth Streaming (HSS) e Dynamic Adaptive Streaming over HTTP (DASH).
Essas tecnologias transmitem o contetido para o usudrio através de uma conexao unicast
(a partir de um servidor origem ou de uma CDN) ou de um protocolo proprietario em
cima dos protocolos de transporte TCP e as vezes UDP (mais voltado para streaming ao
vivo), ou de HTTP [7].

Tradicionalmente, a transmissdo era feita por Progressive Download, que usa
HTTP, por causa da simplicidade. O video é transmitido por um servidor web HTTP
bésico, armazenado no disco do usuério, e reproduzido a partir do disco. Além da
simplicidade, outra vantagem é que pode codificar o video com taxas maiores que a
banda efetivamente disponivel para o usudrio, porque o video serd reproduzido de
maneira regular e sem pausas, ja que é armazenado localmente.

Porém, uma vez que o video estd armazenado no disco do usudrio, € muito mais
facil de ser copiado. Esse é um motivo pelo qual muitos produtores transmitem seus
conteidos com Streaming.

No caso de Streaming, é necessario usar um servidor de streaming, que € um tipo
de servidor particular encarregado especialmente para fazer streaming de midia, ao
contrario de um servidor web bdsico. Mas neste caso, o video tem que ser codificado em
uma taxa bastante inferior a banda média disponivel para o usuario alvo. Se nao for, a
reprodugdo vai ter paradas frequentes, diminuindo a qualidade de experiéncia do
usudrio.

Enfim, uma terceira opc¢ao que é mais usada hoje em dia é o Adapative Streaming,
que codifica fluxos sob demanda ou ao vivo em vdrias taxas, e troca de taxa (ou
qualidade) de maneira dinimica e adaptativa em fung¢ao da banda disponivel para o

4 Enderegamento que permite a entrega de uma mesma informagdo para Vvéarios
destinatarios, usando apenas um link comum até ele se dividir para chegar nos pontos
desejados.

16

usudrio e outras varidveis de estado da rede. Isso garante a melhor qualidade possivel
para quem tiver banda suficiente, e uma reprodu¢do sem paradas com qualidade menor
para quem estiver usando uma rede celular por exemplo [8]. Descrevemos alguns
exemplos de protocolos de Adaptive Streaming.

b) Formatos de streaming

A transmissdo de conteido entre nés de uma rede pode ser feita de varias
maneiras, dependendo dos objetivos em termos de confiabilidade e atraso. Podemos
dividir essas maneiras entre protocolos push-based e protocolos pull-based.

Com protocolos push-based, uma vez que o servidor e o cliente estabeleceram uma
conexdo, o servidor transmite um fluxo até o cliente até ele interromper a conexao,
através do controle de sessdo. O protocolo Real-time Streaming Protocol (RTSP, RFC
2326) é bastante usado para o controle de sessdo, enquanto a transmissdao de dados
geralmente é feita com o Real-time Transport Protocol (RTP, RFC 3550), em cima do
protocolo UDP.

Os protocolos push-based sao adaptados para fazer multicast por exemplo.

Por outro lado, no caso dos protocolos pull-based, o cliente é a entidade ativa e é
ele que pede o contetido para o servidor. Esses protocolos geralmente usam HTTP.

Os protocolos de Adaptive Streaming sdo pull-based. Os mais usados hoje em dia
sdo o HTTP Live Streaming Protocol (HLS) da Apple, o Dynamic Adaptive Streaming over
HTTP (MPEG-DASH) e o Smooth Streaming da Microsoft. HLS e Smooth sdo protocolos
proprietarios, enquanto DASH foi elaborado pelo MPEG e padronizado pela ISO [9].

i) HLS

HLS é o protocolo de streaming adaptativo para video sob demanda e ao vivo da
Apple, e é o tinico compativel com as aplicagdes de streaming da plataforma iOS (iPhone,
iPad). De fato, ele deve ser obrigatoriamente considerado para quem quiser atingir
usudrios desta plataforma.

17

Fig. 2 - Visdo geral do streaming de um fluxo HLS [10]

0 seu funcionamento, descrito na figura Fig. 2, é similar aos outros formatos de
streaming adaptativo. E preciso codificar o contetido em varias qualidades diferentes
(virias taxas) que ficardo em arquivos separados, entre as quais o player podera
alternar dinamicamente para otimizar a experiéncia do lado cliente. Cada qualidade &
dividida em segmentos que representam entre 5 e 10 segundos de video. A entrega é
feita a partir de um servidor HTTP (e ndo um servidor de streaming) que serve os
segmentos e os arquivos de texto que sdo chamados “manifests” ou playlists. A primeira
playlist, a Master Playlist, (extensdo .m3u8) contem a lista de todas as qualidades
disponiveis para aquele fluxo (Fig. 3). A playlist de segundo nivel é dedicada para cada
qualidade diferente, e contem a lista de segmentos com os caminhos relativos onde eles
podem ser encontrados no formato MPEG-2 TS (.ts).

18

Index
file

F-ig .4 - Exemplo de p_;lalis_t d_err_ie_iro nivel [1]

19

A figura Fig. 4 representa um exemplo de playlist de primeiro nivel. Cada linha
representa uma qualidade diferente do mesmo contetido, com o link para a playlist de
segundo nivel correspondente.

A figura Fig. 5 representa uma playlist de segundo nivel. Cada linha representa um
segmento no formato MPEG-2 TS, com a sua duragdo em segundos e o link para ser
baixado.

#EXTM3U

#EXT~X-PLAYLIST-TYPE:VOD
#EXT-X-TARGETDURATION: 10

#EXT-X-VERSION: 3

#EXT-X-MEDIA~SEQUENCE: 0

#EXTINF:10.0,

http://example.com/moviel /fileSequenceA.ts
#EXTINF:10.0,

http://example.com/moviel /fileSequenceB.ts
#EXTINF:10.0,
http://example.com/moviel/fileSequenceC.ts
#EXTINF:9.0,
http://example.com/moviel/fileSequenceD.ts

#EXT-X-ENDLIST

Fig. 5 - Exemplo de playlist de segundo nivel [11]

0 video é codificado com o codec H.264 e o audio com AAC. Os segmentos
individuais estdo no formato MPEG-2 Transport Stream. Deve-se notar que video e
dudio sdo multiplexados, ao contrario do caso do MPEG-DASH por exemplo.

ii) DASH

MPEG-DASH é o padréo ISO (ISO/IEC 23009-1) de Streaming Adaptativo que tem
potencial para substituir padrdes proprietdrios como HLS ou Smooth Streaming, com o
suporte de empresas como Apple, Netflix, Microsoft, etc. A vantagem de ter um unico
padrdo unificado seria que os publicadores poderiam gerar apenas um conjunto de
arquivos a serem distribuidos em todas as plataformas [12]. O primeiro obstaculo € o
fato que a Apple continua impondo HLS para i0S. O segundo problema é que, sendo
compativel com qualquer codec5, o formato DASH ndo resolve os problemas de

5 Codificador/decodificador de sinal.

20

compatibilidade de codec entre navegadores. Isso significa que os publicadores ainda
teriam que codificar os videos de vérias formas para garantir uma compatibilidade com
a maior parte dos navegadores.

Do ponto de vista técnico, DASH é parecido com HLS. Ele é constituido por um
arquivo manifest “Media Presentation Description” (parecido com “Playlist”) em XML,
com as diferentes qualidades de video, e pelos arquivos por si mesmo. Ao contrario de
HLS, dudio e video podem ser separados em arquivos diferentes (facilidade para trocar
de pista de lingua sem baixar de novo as imagens por exemplo). O video é dividido em
segmentos.

21

n.2. IPTV

a) Conceito

Internet Protocol Television (IPTV) é um sistema que fornece servigos de televisao
via Internet usando uma arquitetura e protocolos de redes do conjunto do Internet
Protocol (IP). Servigos de IPTV podem ser classificados em trés grupos principais:
televisdo ao vivo, programada, e video sob demanda.

A ideia original com IPTV para os ISP era de fornecer os servigos de televisdo,
video sob demanda (VOD), etc. usando Internet, em uma infraestrutura contida que
permitisse controlar a qualidade de servigo, gerando oportunidades de renda. Esses
servicos de IPTV costumam ser oferecidos pelos ISP em ofertas “Triple Play”, junto com
acesso a Internet e Voice Over IP (VoIP). A instalagdo pode ser feita através de uma caixa
ou “Box” para utilizar os servigos em uma televisdo, ou mais simplesmente os servigos
podem ser acessiveis via um computador [13].

b) Mercado

De acordo com a Point Topic [14], em Margo de 2013 tinham 79.3 milhdes de
subscrigdes de IPTV no mundo (Fig. 6). Pode-se observar na mesma figura que o
crescimento deste niimero diminuiu a partir do fim de 2011 (7%), para chegar perto de
4% em 2013,

Global IPTV Trends

70 [— - _— = . B%
.
70
£ 60 -
50 -
40 -
E3D +
20

Q22011 Q32011 Q42011 Q12012 Q22012 Q32012 Q42012 Q12013
m— PTV Subscribers = Growth

Fig. 6 - Subscrigdes IPTV no mundo (Q1 2013) [14]

Em termos de regides, os maiores paises para IPTV sdo China, Franga e EUA (Fig.
7). No caso da Franga, que foi um dos primeiros pafses a adotar a tecnologia em grande
escala, isso representa quase 25% da populagao.

22

Top 10 IPTV Countries
IPTV subscribers Q1 2013

China (All Territories)
France

United States

South Korea

Japan

Russian Federation
Germany
Netherlands

Belgium

Taiwan, Province of China

T T T T T 1

0 5 10 15 20 25
Millions

Fig. 7 - Top paises para IPTV (Q1 2013) [14]

Quando olhar no detalhe das novas subscrigdes de janeiro até margo de 2013, s@o
paises asidticos nos primeiros lugares (China, Coréia, Japdo, Viet Nam).

23

Top 10 IPTV Countries
Net additions Q1 2013

China (All Territories) 1.14
South Korea
United States

France

Russian Federation

Japan
Netherlands
Viet Nam
Germany
Switzerland
1 1 I T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Millions

Fig. 8 - Crescimento de IPTV por pais (Q1 2013) [14]

c) Exemplo de arquitetura

A arquitetura tipica de uma IPTV estd descrita na Fig. 9. A informagdo broadcast
que chega por uma antena satélite no “Super Head-end" é distribuida principalmente em
MPEG-2 Multi-Program Transport Stream (MPTS) até o nd de servico de video. A
distribui¢do do préprio conteido do canal é feita através de varios equipamentos na
rede de acesso, como Digital Subscriber Line Access Multiplexers (DSLAM) e outras
tecnologias como Fiber-to-the-Home (FTTH) que fazem a interface com a « Box» do
usudrio, Para IPTV, cada canal é distribuido usando um IP multicast.

24

Super
Head End

Video Serving Office

[e

Router AIYOIISND copp
SEVETS pracessons
High Capacity
P NGMW\ ey
|

Fig. 9 - Arquitetura tipica de IPTV [13]

25

11.3. Web Player

Em um site de midia com video, o web player é o elemento de software que mostra
o video para o usudrio. O player toma como entrada o arquivo de video (.mp4 por
exemplo), decodifica este arquivo para transformd-lo em uma lista de quadros
(imagens) e faz a reprodugdo desses quadros de maneira animada na pagina web
desejada.

Quando escolher um player, é muito importante levar em conta varios aspectos,
como formatos de video (progressive download, streaming adaptativo, etc.) e
plataformas compativeis (0S, navegador, mobile, etc.). Existem muitos players
disponiveis no mercado, com modelos de licenga diferentes. Podemos citar Video.js da
Brightcove, JWPlayer, o player da Kaltura, o player da Ooyala, e o Primetime player da
Adobe [15]. Quando eles forem adaptados as suas necessidades, é recomendado usar um
desses players ja disponiveis. Foi o que foi feito neste projeto, usando o video.js.

Porém, em certos casos pode ser interessante construir o seu préoprio player para
satisfazer requisitos particulares.

Distinguimos 2 grandes tecnologias de players para Web: players baseados em
Flash e players baseados em HTML 5.

A tecnologia Flash é a mais madura das duas e o legado dos web players estd em
Flash. Com a aparicdo do tag <video> no HTML 5, Flash estd sendo substituido por
players em HTML 5. Isso também é devido as varias falhas de seguranga descobertas a
cada semana no Flash, bem como a vontade da Apple de banir o suporte a Flash nos

aparelhos i0S.
Olhando para o requisitos da nossa aplicagdo P2P, hoje em dia Google Chrome e

Mozilla Firefox implementaram Media Source Extensions (MSE), que é a parte de HTML 5
que permite manipular os arquivos de video diretamente com JavaScript no navegador.
Deste ponto de vista também, isso significa que ndo é mais necessario usar Flash para
aplicagdes P2P.

Por outro lado, o uso de HTML 5 nos players web estd sempre em crescimento.
Podemos citar por exemplo a Youtube que passou de um player em Flash a um player
em HTML 5 por padrdo em 2015 [16]. Em termos de compatibilidade, HTML 5 tem uma
grande vantagem sobre Flash para os dispositivos moveis. HTML 5 também oferece
grandes possibilidades de interatividade com o video, com elementos como o Canvas por
exemplo. Porém, HTML 5 ainda é uma padrio em construgio, e todas as funcionalidades
nio estdo ainda implementadas ou funcionais em todos os navegadores.

26

I11.4. Peer-to-peer (P2P)

a) Conceito

Peer-to-Peer (P2P) é uma arquitetura de rede distribuida onde os participantes,
chamados de peers, tém os mesmos privilégios. Esta rede P2P se superpde a uma
infraestrutura de comunicagdo como a Internet por exemplo. Neste sistema, que pode
ser representado por grafos, cada peer forma um né do grafo P2P, e as conexdes entre os
peers sdo as arestas entre eles.

Redes P2P sdo usadas geralmente para aplicagbes de comunicagdo ou de
distribuicdo de contetido. O protocolo P2P utilizado deve ser capaz de rastrear o
contetido através da rede, e escolher como conectar os peers entre si. O conteddo é
transferido diretamente entre os peers, a qualidade do enlace entre eles determinando a
qualidade da transmissdo. Podemos distinguir dois tipos de redes P2P:

- Redes ndo estruturadas: as conexdes estdo feitas de maneira arbitraria, sem
restricdes sobre a estrutura da rede. Geralmente essas redes ndo sao muito
eficientes;

- Redes estruturadas: os peers estdo conectados e organizados de acordo com
politicas implementadas em algoritmos (por exemplo favorecer a localidade na
descoberta de peers). As redes resultantes tém propriedades que geralmente
oferecem um melhor eficiéncia e escalabilidade. A qualidade do enlace entre
dois peers determinard o desempenho da rede, o que explica porque as
politicas de conexdo entre os peers sdo um ponto fundamental.

Como veremos em exemplos a seguir, uma rede P2P bem implementada pode ao
mesmo tempo melhorar a qualidade de experiéncia do usudrio, descongestionar a rede
Internet e reduzir os custos dos atores envolvidos. Isso depende muito de como é feita a
selegdo dos peers, em fungdo da distincia geografica entre eles por exemplo. Um outro
fator essencial na selecdo dos peers é o ISP deles. Estudos mostram que o custo de troca
de sistema autdénomo (a rede de um ISP é um sistema auténomo) é muito alto [17]. Por
exemplo, as vezes pode ser mais interessante para um usudario em Sdo Paulo pedir um
contetido para um outro peer em Manaus mas no mesmo sistema auténomo, do que
para um peer no Rio de Janeiro mas em um sistema auténomo diferente,

As optimizacdes de caminho do P2P e do ISP também podem trabalhar uma contra
a outra. O P2P vai tentar otimizar a entrega de contetido entre seus peers, procurando o
melhor caminho. Mas o aumento de trafego nesta rota vai diminuir a banda disponivel,
incentivando o ISP a redirecionar o trafego desta aplicagdo para um outro caminho.
Estas realocagdes sucessivas podem acabar nio realmente melhorando o desempenho
[18].

Além disso, uma rede P2P é por definigdo decentralizada. Isso significa que o

conteddo ndo fica em um servidor central ou na mdo de uma organizagao. Ele é acessivel
por todos os membros da rede P2P, de maneira livre e compartilhada. A disponibilidade

27

de um contetido depende completamente do comportamento dos peers da rede. Em
casos de streaming com forte demanda, isso é uma grande vantagem. Em outros
cendrios, como download de um contetido que perdeu popularidade, isso pode se tornar

uma desvantagem, pois aquele contetido serd dificil de se encontrar.

b) Atores do mercado

E interessante saber que empresas como a Spotify usaram uma rede P2P para
distribuir o conteido deles enquanto eles ndo tinham servidores suficientes para
entregar as miusicas para todos os clientes [19]. Essa estratégia permitiu fazer
economias nos servidores no inicio da empresa. Os usudrios do aplicativo para desktop
armazenavam no seu disco uma versio cifrada das misicas ouvidas. Quando o usuario
queria ouvir essa misica de novo, ela estava acessivel no disco dele. Além disso, se era a
primeira vez que ele escutava essa musica, a aplicagdo ia tentar baixd-la do disco de
outros usudrios do Spotify desktop (os peers da rede). Em ultimo caso, a musica estava
baixada do servidor.

Hoje em dia a Spotify tem servidores suficientes para atender a demanda, e manter
arede P2P seria mais custoso.

Podemos também citar a BitTorrent Inc. [20], que foi a empresa que criou o
protocolo BitTorrent em 2001 e ainda comercializa produtos relacionados de
distribuigdo de contetdo. Este é o protocolo utilizados por clientes populares como
Popcorn Time e pTorrent.

c) Projetos open-source

Podemos citar alguns projetos open-source relacionados com Web Streaming e
que usam P2P,

Primeiro, o Popcorn Time que foi um projeto para oferecer uma plataforma
parecida com a da Netflix, mas baseada em torrents. A parte interessante deste projeto é
que foi liberado de graga pelos seus desenvolvedores, com codigo aberto.

Um outro projeto de cddigo aberto interessante é o WebTorrent [21]. Ele é uma
aplicagdo web e para desktop escrita em JavaScript que permite fazer streaming de
torrents usando WebRTC.

28

l1l.5. CDN

a) Conceito

A Internet comegou com aplicagdes militares e académicas, e nessa época ninguém
imaginava que poderia um dia fornecer e suportar a tantas aplicacdes como acontece
hoje. As possibilidades da Internet sdo virtualmente infinitas. Mas isso também quer
dizer que a estrutura e os protocolos de comunicagdo nao foram pensados para suportar
transmissées ao vivo em qualidade 4K® para milhdes de usuarios simultdneos por
exemplo.

A Web centralizada com arquitetura cldssica Cliente-Servidor reduz as
possibilidades de escalabilidade a duas opgdes: adicionar mais servidores sempre mais
poderosos, e/ou usar estratégias para melhorar o desempenho da Web. O problema de
laténcia percebida pelo usudrio ao acessar uma péagina Web é um problema relevante
que precisa ser resolvido, embora melhorias significativas aconteceram desde os
primeiros tempos. A redugdo dessa laténcia foi possibilitada pelo desenvolvimento das
redes cabeadas e sem fio, sempre com foco em acelerar a velocidade da Internet para os
usuarios.

Porém, ainda hoje esse problema persiste, por dois motivos principais:

- o carater ndo estruturado da Internet implica que ndo é otimizada para entrega
de contetdo;

- como ja foi mencionado na introdugdo, o trafego Internet esta em constante
crescimento por causa do crescimento dos usudrios e do volume de dados
trocados pelas aplicagoes

Esses dois motivos fazem que a primeira solugdo que consiste em apenas adicionar
servidores para responder a demanda ndo pode bastar. Também € necessario ter uma
abordagem mais estratégica a respeito de distribui¢do de contetdo, especificamente
contetido Web. Esse é o desafio que as Content Delivery Networks (CDN, Redes de
Distribui¢ido de Contelido) estdo aqui para responder.

UmaCDN é uma rede de distribui¢do de informagdo que permite fornecer
contetido Web de uma forma mais rdpida a um grande ntimero de usuadrios, distribuindo
o contetido por multiplos servidores (chamados de servidores “de borda”, posicionados
na borda da rede) de forma a efetuar a duplicagdo do mesmo e direcionar o contetido ao
usudrio com base na proximidade do servidor [22]. Ao contrdrio da tecnologia de
servidores de cache, as CDN adotam uma atitude proativa, e ndo reativa. O conteudo ja é
distribuido para servidores préximos aos usudrios antes deles requererem o contetido
pela primeira vez.

Isso permite otimizar a laténcia e o uso de banda. Primeiro, a laténcia serda
diminuida porque o usuério buscard o contetido de um servidor préximo a ele, e ndo de
um servidor central que pode ser longe dele, tanto geograficamente como
topologicamente. Em segundo lugar, o servidor central receberd apenas pedidos dos

6 Formato de imagem digital de 3840 pixels por 2160 [64]

29

servidores da CDN e ndo de todos os clientes, o que ird diminuir drasticamente a sua
carga e seu uso de banda.

Este sistema também permite economias de escala, porque varios criadores de
contetido podem usar a mesma CDN, e aproveitar a sua infraestrutura de distribuigao.
CDN é um servico utilizado por criadores de contetido de médio porte: eles ndo precisam
se preocupar com os mecanismos de entrega.

Finalmente, o ultimo beneficio das CDN é que conseguem ter inteligéncia na
distribuicdo do conteido. Elas tém alguns mecanismos para mudar as suas
configuragdes dinamicamente em fungdo de picos de demanda, condigdes de rede e
muitos outros pardmetros. Para otimizar a entrega nesse sentido, os quatro assuntos
mais importantes que fazem a complexidade e a qualidade de uma CDN sao:

- politicas de distribui¢do do conteudo através da CDN

- aescolha da localizagdo dos servidores de borda

- oroteamento dos pedidos (request routing)

- os mecanismos de coleta de informagdes de rede e estatisticas de uso

Por outro lado, o uso de CDN tem algumas desvantagens. O custo deste tipo de
servico é geralmente elevado, e o mercado se divide entre poucos atores. Também pode
gerar problemas de privacidade, porque o trifego é roteado pelos servidores da CDN, e
isso pode gerar uma situagdo onde as empresas de CDN teriam um poder sobre os
contetidos da Internet, e portanto a Web de forma geral.

As CDN sdo usadas para distribuir conteddo de vérios tipos de aplicagdes (web,
atualizacoes de software, etc.). Apesar de focarmos no caso de conteido Web e
particularmente Streaming, o uso de CDN ndo se restringe a esse caso de uso.

A titulo de exemplo, o sistema IPTV USP usa uma CDN prépria, especificamente
para entregar contetido entre os varios campi da USP de forma mais eficiente.

b) Arquitetura de uma CDN
A figura Fig, 10 apresenta a arquitetura genérica de uma CDN, com o fluxo de

informacdo entre os elementos desde o servidor origem até o cliente. O funcionamento
darede é descrito a seguir:

30

> o

T

N, ‘..I
.| Accounting [/
Y System Is Billing Organization

Fig. 10 - Organizagdo geral de uma CDN [23]

0 servidor origem do provedor de conteido delega o gerenciamento do
enderecamento do conteddo pelo sistema de roteamento de requests da
CDN

0O provedor de contetido transfere o contetido para o sistema de
distribuicdo da CDN para ser distribuido adequadamente com a suas
politicas de desempenho

0 sistema de distribui¢io manda o contetido para os servidores de borda e
da um feedback para o sistema de roteamento de requests sobre a
localizagdo do contetido na rede

Os clientes fazem os pedidos que chegam no sistema de roteamento de
requests, e ndo mais no servidor origem

O sistema de roteamento de requests redireciona de alguma maneira o
pedido para o servidor de borda mais adequado a situago, de acordo com
as politicas adotadas

0 servidor de borda manda o contetido para o cliente

O servidor de borda retorna estatisticas de uso para o sistema de
contabilidade, que por sua vez retorna essas estatisticas para o sistema de
roteamento de requests e o servidor origem

Essas informagdes também estdo usadas para contabilizar o uso da CDN
pelo provedor de contetido e cobra-lo.

c) Tecnologias

Ap6s ter uma visdo geral do funcionamento de uma CDN, podemos entrar nos
detalhes das tecnologias usadas para executar as quatro fungbes fundamentais
identificadas acima. Serdo estudadas distribui¢io, localizagdo dos servidores de borda
(no sentido de colocagio), roteamento dos requests e enfim coleta de estatfsticas de uso
e de rede.

i) Distribui¢do

A distribui¢do do conteudo do servidor origem até os servidores de borda pode ser
feita principalmente de duas maneiras [23]. A primeira consiste em usar a propria
Internet. Nesse caso, a CDN mantém o controle da localizagdo do conteiido com uma
arvore hierarquica ou uma rede overlay sobre a Internet. Essa abordagem tem a

31

vantagem da simplicidade, mas também sofre da baixa previsibilidade da Internet em
relagdo a desempenho. Essa abordagem é usada por Akamai Technologies e Sandpiper
Networks.

A segunda opgio consiste em usar entrega via broadcast por satélite. E mais barata
e garante uma entrega com boa previsibilidade de alta qualidade. Esta tecnologia €
usada por CyberStar e Edgix.

A questio da distribuigio também envolve o numero de cépias do conteudo
propagadas, e para onde elas estdo mandadas. Intuitivamente, o sistema de distribuigdo
da CDN tentard colocar o conteiido de maneira a equilibrar a carga em todos os
servidores de borda.

ii) Localizagéio de servidores

E ficil entender que a questio da localizagdo dos servidores de borda é de alta
importancia para uma CDN. Intuitivamente, poderfamos pensar que deve ser o mais
préximo possivel dos usudrios. O objetivo aqui é no mesmo tempo minimizar a laténcia
de acesso ao contetido para o cliente, e minimizar a banda global usada na rede. Na
verdade, alguns critérios entram em consideracdo.

Primeiro, a disténcia fisica entre o servidor de borda e o cliente é importante. Um
servidor mais préximo de um cliente nem sempre significa uma laténcia menor ou uma
melhor banda alocada, mas é uma boa indicagdo. Como veremos na parte sobre
roteamento de requests, em alguns casos a CDN ndo tem informagdes sobre o cliente,
mas infere essas informacoes da posicao do DNS resolver que mandou o request. Em
outros termos, a posi¢do estimada do cliente depende muito do fato dele estar préximo
ao primeiro servidor de DNS que ele contata ou néo.

0 segundo critério a ser considerado é a topologia da rede, e particularmente a
organiza¢do dos Sistemas Auténomos (SA). O roteamento entre sistemas auténomos
pode ser mais custoso que roteamento de pacotes intra-SA, em termos de desempenho e
econdmicos. O roteamento inter-SA é feito com o algoritmo BGP, e essa mudanga de SA
pode virar um gargalo dependendo dos acordos entre sistemas auténomos.

Existem vdrios algoritmos tedricos para otimizar esta colocagdo dos servidores na
Internet [24] [25] [26]. Eles costumam ser relativamente caros computacionalmente e o
uso de heuristicas e mais comum [27] [28].

iii) Request Routing

0O request routing, ou roteamento de pedidos (requests), tem a fun¢do de
redirecionar o pedido de contetdo do cliente para o servidor de borda mais adaptado a
situacdo, considerando alguns pardmetros. O objetivo é maximizar a qualidade de
experiéncia para o usudrio final e minimizar o custo da entrega. Consequentemente, os
critérios utilizados para escolher o melhor servidor de borda sdo proximidade e carga
[23]. As maneiras de conseguir essas informagdes serdo explicadas na se¢do a seguir
sobre coleta de estatisticas.

32

Trés métodos principais sdo utilizados para fazer request routing nas CDN [18]:
anycast, DNS redirect, e HTTP redirect. Vamos ver as vantagens e pontos fracos de cada
método.

Anycast

Este método utiliza anycast para escolher o melhor servidor de borda para achar o
contetido. Varios servidores que possuem o mesmo contetido se cadastram no mesmo
endereco unicast. Quando um usudrio quer aquele contetido, ele manda um pedido para
o endereco unicast para que qualquer dos servidores cadastrados neste endere¢o
responda ao pedido. O processo de request routing é feito no nivel do roteamento de
pacotes IP neste método e faz parte do roteamento da rede. Obviamente, a CDN perde o
controle do request routing neste processo porque é a prépria rede que escolha a melhor
rota para atingir um dos servidores de borda possiveis, de acordo com as suas métricas.
Isso significa que o roteamento é otimizado em relagdo aos critérios do ISP e ndo mais
da CDN.

E interessante mencionar que em [29], os autores propdem uma alternativa de
anycast no nivel de aplicagdo. Esta alternativa daria mais flexibilidade, no sentido que
poderia considerar-se métricas sobre cada servidor do grupo anycast também.

DNS Redirect

A segunda opgdo é o redirecionamento por mecanismo de DNS. Essa é uma técnica
simples, e é a técnica usada pela maioria das CDN comerciais hoje em dia. Na etapa de
delegagio do enderegamento do contetido para a CDN, ela modifica o URL do conteudo
para algo no seu préprio dominio. Dessa maneira, quando o cliente pede o contetdo,
este pedido vai normalmente para o DNS resolver. Como o enderego estd no dominio da
CDN, o resolver vai pedir o enderego para o servidor autoritativo da CDN. Esse na sua
vez retornard o melhor ou os melhores servidores de borda para se buscar o contetdo.
0 poder deste mecanismo se situa no servidor autoritativo e a maneira que ele tem de
procurar os melhores servidores. Sua escolha é baseada em distdncia até o DNS resolver
(medida pelas métricas descritas na parte seguinte), disponibilidade e custo monetario.
E importante notar aqui que o servidor autoritativo ndo tem informagdes sobre o
cliente, ele recebe o pedido do resolver. Entdo ele deduz a distancia até o cliente,
supondo que ele esteja préximo ao DNS resolver.

HTTP Redirect

Enfim, a tltima op¢do apresentada aqui é proceder por redire¢dao HTTP. Ao inverso
dos casos anteriores, aqui o cliente pede o contetido diretamente para o servidor origem
como se nio tivesse nenhuma CDN. Quando o pedido chegar, o préprio servidor
responde com um status code especifico para indicar ao cliente que o conteldo esta
disponivel em outro URL, que aponta para o servidor de borda que ele escolheu.

A vantagem deste método é que o servidor conversa diretamente com o cliente e
nio precisa inferir as informagdes sobre ele e fazer suposi¢des. Ele também sabe
exatamente qual objeto estd sendo pedido. Podemos pensar que isso ird melhorar a
qualidade da escolha do melhor servidor de borda. Por outro lado, este método tem um

33

maior overhead. E necessario criar uma segunda conexdo TCP com o servidor de borda,
o que envolve uma segunda resolugdo por DNS, criagdo de uma segunda conexdo TCP

(com slow start), etc.

iv) Coleta de estatisticas

O ultimo ponto critico de uma CDN é a coleta dos dados para fazer o request
routing ou a cobranga dos clientes. A figura a seguir (Fig. 11) lista alguns exemplos de
métricas uUteis para inferir a estrutura e o desempenho da rede e dos servidores
particulares. As técnicas para obter essas métricas incluem active probing (o cliente
manda mensagens para o servidor periodicamente para conhecer a sua carga), server
push (o servidor manda seu estado de carga periodicamente), ping (tempo de resposta)
e traceroute (nimero de hops em uma rota).

Metrics Goals Measurement Techniques
Latency Select replica with lowest delay Active Probing / Passive Measurement
Packet ioss Select path with lowest error rate Active Probing / Passive Measurement
{useful for streaming traffic) (TCP header info}
Network proximity Select the shortest path
Avg. Bandwidth
Active Probing
Startup Time Select the bast path for streaming traffic
Frame Rate
Geographical proximity | Hedect requests ffm}:;;agioﬁ fothesame | 1o header information, bind information
CPU load, net. interface load, :
active connection, sforage Selactthe sewg;:{tgg;e aggregatad feedback agents/active probing
V0 load

Fig. 11 - Métricas usadas na seleg¢do do servidor de borda durante o roteamento de

34

request [30]

111.6. WebRTC

a) Introdugao

Web Real-Time Communication (WebRTC) é uma colegdo de padrdes, protocolos e
APIs JavaScript (Application Programmation Interfaces) de cddigo aberto, cuja
combinagdo permite troca de dudio, video e dados em P2P entre navegadores web (ou
browsers, os peers). Em vez de ficar dependendo de plug-ins de terceiros ou de
programas proprietarios, WebRTC torna essas possibilidades de comunica¢dao em tempo
real em uma funcionalidade basica que qualquer aplicagdo pode aproveitar via uma API
JavaScript simples [31].

Habilitar comunicagées de tempo real dentro do navegador é um grande desafio,
provavelmente uma das maiores contribui¢des a plataforma web desde a sua aparigao.
WebRTC se afasta do modelo classico Cliente-Servidor, o que resulta na necessidade de
repensar a camada de rede no navegador, e também traz um novo conjunto de
ferramentas para um tratamento eficiente de audio e video, em tempo real.

Dois grupos de trabalho da W3C (World Wide Web Consortium) e da IETF
(Internet Engineering Task Force) sdo responsaveis pela padronizagdo do WebRTC:

» Web Real-Time Communications (WEBRTC) W3C Working Group é
responsavel pela definigdo das APIs web;

e Real-Time Communication in Web-browsers (RTCWEB) é o grupo da
IETF responsédvel pela definicdo dos protocolos, formatos de dados,
seguranca e todos os outros aspectos necessdrios para habilitar
comunicac¢des peer-to-peer no navegador.

Enquanto o primeiro objetivo do WebRTC é habilitar peer-to-peer no navegador,
ele é também projetado para ser integrado com sistemas de comunicagdo preexistentes:
Voice Over IP (VOIP), vérios clientes SIP (Session Initiation Protocol), e até a rede de
telefonia classica (PSTN), entre outros; mas ndo especifica nenhum requisito de
interoperabilidade. Isso significa que estd trazendo as possibilidades da Web até o
mundo das telecomunicac¢des, o que explica por que tem sido muito considerado por
grandes empresas.

Em Setembro de 2016, WebRTC estava suportado pelos seguintes navegadores e
ambientes [32]:

* Google Chrome
* Mozilla Firefox

* Opera
¢ Android
* j0S

Portanto, perto de 67% de usudrios de navegadores desktop podem usar WebRTC
[33] (devido em grande parte ao atraso de implementacdo de partes importantes no
Internet Explorer e Edge).

35

A oportunidade do WebRTC é tdo grande que vdrias aplicagbes famosas que
estavam baseadas em uma arquitetura cliente-servidor passaram a usar WebRTC para
adicionar peer-to-peer e ganhar em escalabilidade e eficiéncia, e acabar com a
necessidade de instalar um plugin (programa adicional ao navegador) para o usuario. O
maior exemplo é o Google Hangouts (aplicagdo de videoconferéncia), que passou a usar
WebRTC no Chrome desde 2014 [34].

Logo depois, a Mozilla anunciou o uso de WebRTC no seu novo programa de
videoconferéncia chamado Hello, nativamente integrado na versdo seguinte do
navegador Firefox [35].

Para confirmar a tendéncia forte no mercado a favor do WebRTC, Skype anunciou
em Julho de 2016 a versdo alpha do seu cliente para Linux, usando WebRTC pela
primeira vez [36].

Um outro dominio de aplicagdo importante para o WebRTC, e o assunto deste
trabalho de conclusdo de curso, é o streaming. Introduzir um componente de peer-to-
peer na entrega de video, que seja sob demanda ou ao vivo, tem o potencial de cortar os
custos de banda de mais de 50% de acordo com um caso de estudo da Streamroot [3], e
ao mesmo tempo melhorar a qualidade de experiéncia do usudrio final (reprodugdo
mais fluida, menos rebuffering, melhor qualidade de video). Neste mesmo caso da
Streamroot, o servidor origem falhou e gragas ao peer-to-peer 50% dos usuarios nem
perceberam o problema.

Os trés maiores atores deste segmento sio a Streamroot (Franga/USA) [37], Peer5
(Israel/USA) [38] e Viblast (Bulgaria) [39]. Essas empresas ainda sdo bastante jovens e
nio temos muita informagio sobre os seus clientes, mas elas tém um grande potencial
dado o tamanho do mercado de web streaming.

Finalmente, podemos citar o caso da PeerCDN, uma startup criada por alumni da
Universidade de Stanford que desenvolveu uma “CDN de préxima geragdo usando
WebRTC para entrega de contetido eficiente via peer-to-peer” [40]. Essa empresa foi
comprada pela Yahoo em Dezembro de 2013, depois de sete meses de existéncia [41].

b) Visdo técnica geral

Criar aplicagdes RTC ricas e de boa qualidade, tais como teleconferéncia de dudio e
video ou troca de dados peer-to-peer, necessita muitas novas funcionalidades dentro do
navegador como: capacidades de processamento de dudio e video, novas APls de
aplicagdes, e interagdo com meia dizia de novos protocolos de rede. Para fornecer uma
interface mais simples, o navegadores abstrai a maior parte desta complexidade atras de
trés APIs primarias [42]:

* MediaStream: aquisi¢do de fluxos dudio e video

* RTCPeerConnection: comunica¢do de dados de audio e video

+ RTCDataChannel: comunicagdo de dados arbitrdrios de aplicagdo

Com apenas uma duzia de linhas de c6digo JavaScript, qualquer aplicagdo web
pode permitir uma experiéncia de teleconferéncia rica com troca de arquivos em peer-
to-peer. Porém, essas trés APIs sdo apenas a parte visivel. Varios componentes sao
necessarios para juntar tudo: signaling, descoberta de peers, negociagdo da conexao,
seguranca, e camadas inteiras de novos protocolos.

36

Como podia ser esperado, a arquitetura e os protocolos permitindo WebRTC
determinam as caracteristicas do seu desempenho: laténcia de conexdo e sobrecarga de
protocolos por exemplo. Ao assistir um video o cérebro humano é muito mais sensivel a
atraso que a partes faltantes; ele consegue preencher esses espagos em branco. Isso
implica que neste tipo de aplicagdo, tempo e atraso sdo mais criticos do que perda de
pacotes. Este fato motivou a escolha de UDP, um protocolo ndo confidvel na entrega de
pacotes com menos sobrecarga de desempenho que TCP, como protocolo da base para o
transporte de dados. Contudo, UDP é apenas o ponto de inicio. Precisa de muito mais do
que UDP bdsico para conseguir realizar comunicagdes de tempo real no navegador.
Precisamos de mecanismos para atravessar redes “Nateadas”, ou seja, redes que
utilizam Network Address Translators (NAT), firewalls, negociar as conexdes, prover
criptografia, implementar controle de congestdo e de fluxo, etc. Isso resulta na seguinte
pilha de protocolos necessarios ao funcionamento do WebRTC (Fig. 12).

Network (IP)

Fig. 12 - Pilha de protocolos WebRTC

o ICE: Interactive Connectivity Establishment (RFC 5245)
- STUN: Session Traversal Utilities for NAT (RFC 5389)
- TURN: Traversal Using Relays around NAT (RFC 5766)
e SDP: Session Description Protocol (RFC 4566)
e DTLS: Datagram Transport Layer Security (RFC 6347)
¢ SCTP: Stream Control Transport Protocol (RFC 4960)
e SRTP: Secure Real-Time Transport Protocol (RFC 3711)

ICE, STUN e TURN sdo os protocolos necessarios para iniciar e manter uma
conexdo peer-to-peer em cima de UDP. DTLS garante a seguranca da transmisséo de
dados entre os peers; criptografia é obrigatéria em WebRTC. SCTP e SRTP servem para
multiplexar os fluxos, prover controle de congestdo e fluxo, e garantir uma entrega
parcialmente confidvel em cima de UDP. Enfim, SDP é o formato usado para negociar os
pardmetros das conexdes peer-to-peer.

No escopo deste projeto, vamos usar apenas duas das trés API[s citadas acima:
» RTCPeerConnection, para criar uma conexdo entre os peers (papel de
controle),

37

e RTCDataChannel, para criar o canal de comunicagdo que nos permitira
transmitir os segmentos de video na forma de pacotes de dados brutos.

A terceira APl, MediaStream, é mais usada no contexto de aplicagdes de
videoconferéncia, onde precisa adquirir imagem da cimera e som do microfone.

c) Criar uma conexdo peer-to-peer

Para criar uma conexdo WebRTC entre dois peers, é necessario cumprir trés
tarefas:
- Notificar o outro peer que queremos abrir uma conexdo com ele;
- Identificar rotas potenciais para a conexdo P2P e entregar essa informagao
para os dois lados;
- Trocar as diferentes informagdes sobre pardmetros dos fluxos de dados
(como protocolos, codecs, etc.)

A segunda tarefa ja estd sendo resolvida pelo WebRTC através do protocolo ICE. O
Signaling e a negociagio inicial de sessdo ficam a carga do desenvolvedor.

i) Signaling e Session Description Protocol

Antes de comecar a negociar uma sessdo, precisamos saber se é possivel trocar
informagdo com o outro peer de algum jeito. WebRTC ndo especifica nenhum padrao
para realizar essa tarefa, e diferentes op¢des podem ser utilizadas para fazer o Signaling,
ou seja notificar o outro peer que queremos conversar com ele, e transmitir as
mensagens até ele. Op¢des incluem Session Initiation Protocol (SIP), Jingle, e ISDN User
Part (ISUP). Uma outra solugdo muito comum, e que foi usada no projeto descrito nesta
monografia, é criar um protocolo de signaling customizado. No caso, os clientes se
conectam com um servidor de signaling (o “Tracker”) via um WebSocket, e assim eles
podem mandar mensagens para outros clientes via esse canal. Esta parecia ser a escolha
mais simples e adaptada ao projeto.

Assumindo que os dois lados compartilham um canal de comunicagdo (o Signaling
Channel), podemos negociar os parametros da conexdo P2P. Para isso, WebRTC usa o
protocolo Session Description Protocol (SDP). SDP descreve o perfil de sessdo, uma lista
de propriedades da conexdo: tipo de midias a serem trocadas, protocolos de redes
usados, codecs, informacdes de banda, e outros metadados. A criagdo e a troca dos
arquivos de SDP (a Description) ja é abstraida em alguns métodos da API, de forma que
os desenvolvedores ndo precisam se preocupar com os detalhes.

0 processo esta descrito na Fig. 13. Amy cria a sua Description com o método
SetLocalDescription e manda um Offer para o Bob via o Signaling Channel. Do outro lado,
o Bob grava essa offer com o método SetRemoteDesciption, cria a sua prépria descrigdo, e
retorna ela para a Amy na forma de uma Answer. Amy segue 0s mesmos passos por sua
vez.

38

Depois disso, as duas partes tém negociado os tipos de fluxos de dados a serem
trocados. Apenas faltam testes de conectividade e mecanismos de travessa de NAT,
feitos com o ICE.

Fig. 13 - Troca de Offer/Answer entre os peers [31]

ii) Interactive Connectivity Establishment (ICE)

0 protocolo ICE permite achar uma rota possivel entre os dois peers para criar a
conexio P2P. Para fazer isso, cada objeto RTCPeerConnection possui um /CE Agent. Este
agente é responsdvel por coletar pares IP:Porta que sdo bons candidatos para
estabelecer a conexdo P2P (ICE Candidates). Uma vez que cada cliente recebeu os
candidatos do outro, o agente vai executar testes de conectividade até encontrar dois
candidatos funcionando. Durante o tempo da conexdo, o agente também é responsavel
por mandar mensagens de “keepalive” para manter a conexao ativa.

O primeiro processo é coletar os ICE Candidates de cada lado. O ICE Agent pede
primeiro o IP local para o sistema operacional. Depois, para conhecer o seu par IP:Porta
publico, ele pede para o servidor STUN configurado, Este servidor funciona da maneira
seguinte: ele recebe o request do cliente, o que faz aparecer para ele o enderego publico
deste cliente. 0 STUN simplesmente retorna este endereco publico para o cliente. Este
mecanismo é 1til em caso de sub-redes privadas atras de NAT. Em alguns desses casos o
cliente ndo pode conhecer o seu préprio endereco ptiblico e entdo ele tem que pergunté-
lo pelo servidor STUN. Esta questdo de NAT estd explicada em detalhes na segao
ii)Firewall / NAT.

Se estiver configurado, o agente coloca o servidor TURN em ultima op¢do, se ndo
conseguir uma conexdo P2P. Naquele caso, o TURN funciona simplesmente como
servidor de retransmissdo entre os dois clientes.

A partir do momento que uma Session Description esta configurada, o ICE Agent
comega a coletar os candidatos e a troca é feita através do processo de Offer/Answer.
Depois deste processo, cada lado tem uma lista de candidatos para criar uma rota até o
outro cliente. O agente testa as possibilidades até encontrar um rota. Supondo que
algum desses candidatos seja bem sucedido, a conexdo P2P entre os dois clientes esta
criada.

39

iii) Implementagéo

O processo de criagdo da conexdo WebRTC ndo é simples, mas algumas partes da
complexidade estdo abstraidas dentro da API. O trecho de cédigo seguinte representa as
etapas necessdarias para criar tal conexao (Fig. 14).

var ice = {"iceServers": |
"url": "stun:stunserver.com:12345"},

{"url": "turn:user@turnserver.com", "credential": "pass"}
1%
var signalingChannel = new SignalingChannel();
var pc = new RTCPeerConnection(ice);

pe.createOffer(function(offer) {
pe.setLocalDescription(offer);
signalingChannel .send(offer.sdp);

)

pc.onicecandidate = function(evt) {
if (evt.candidate) {
signalingChannel .send(evt.candidate);
}
¥

signalingChannel .onmessage = function(msg) {
if (msg.candidate) {
pc.addIceCandidate(msg.candidate);

¥
¥

Fig. 14 - Exemplo de c6digo para criagdo de conexdo WebRTC (JavaScript)

Primeiro, configuramos o STUN com o servidor de STUN ptblico da Google. Depois,
criamos o canal de comunicagdo e o objeto PeerConnection. Mandamos uma oferta, e a
cada novo ICE Candidate, ele ¢ mandado no canal de comunicagdo, Na recep¢do de ICE
Candidates, eles estdo adicionados ao objeto PeerConnection para iniciar os testes de
conectividade e finalmente estabelecer a conexao.

d) Datachannel

0 DataChannel é uma outra API do conjunto WebRTC que estd sendo usada neste
projeto. Um DataChannel permite a troca bidirecional de dados arbitrarios entre dois
peers conectados via uma conexdo WebRTC. De novo, parte da complexidade estd
abstraida dentro da API, e qualquer um dos peers pode abrir um DataChannel usando
alguns métodos da PeerConnection.

Um fato importante sobre DataChannel para a nossa aplicagdo é a limitagdo de

tamanho de cada mensagem. Embora nio tenha um limite fixo na especificagdo original,
parece que os navegadores implementam um limite da ordem de 200 bytes. Isso justifica

40

decisdes do projeto explicadas na segdes seguintes sobre a maneira de transmitir os
segmentos de video entre os peers.

Outras limitagdes do WebRTC estdo explicadas na prdéxima segdo, e) Limitac¢des.

e) Limitagoes

WebRTC sendo ainda um padriao em desenvolvimento, é necessario levar em conta
alguns problemas e limita¢des inerentes a ele. Vamos citar trés desses.

i) Seguranca

Como qualquer aplicagdo na Web, uma aplicagdo usando a APl WebRTC é
vulnerdvel a vdrias ameagas, como o famoso ataque do “Homem no meio” por exemplo
(um exemplo de tal ataque neste artigo, por negligéncia na verificagdo do certificado do
servidor de sinalizacdo, porque cada cliente gera o seu certificado auto-assinado [43]).
Também podemos citar o fato que o WebRTC revela o seu enderego IP pelo préprio
funcionamento do protocolo ICE, que cria candidatos na forma de IP:porta através de
um servidor STUN [44].

Porém, hd vérios argumentos a favor do WebRTC sobre seguranga, comparado
com varias outras tecnologias e aplicagdes, como:

¢ As comunicagdes sdo criptografadas com o protocolo Datagram Transport Layer
Security (DTLS, RFC 6347), que é similar ao Transport Layer Security (TLS, RFC
5246) mas adaptado para ser usado em cima de UDP (fora a autenticacdo dos
clientes que as vezes deve ser feita pela prépria aplicagdo, esta questdo sendo
discutida ainda [31]);

e O ritmo de atualizagdes é alto (a cada 6 a 8 semanas no navegador). Em caso de
falha descoberta, um patch sera disponivel automaticamente e rapidamente;

* Pede permissio para adquirir o som do microfone e a imagem da camera para o
uso da API MediaStream.

ii) Firewall / NAT

Existem casos onde a conexdo peer-to-peer ndao pode ser estabelecida com
WebRTC. Os dois casos mais significativos sdo os seguintes.

A conexao entre os peers é feita com o protocolo ICE, que cria varios candidatos
[P:porta, comegando com o enderego IP local. Se ndo funcionar, ele vai tentar o enderego
privado, que funcionard se os dois clientes estiverem na mesma rede. Se ainda nao
funcionar, ele vai precisar conhecer o seu enderego IP ptiblico, com a ajuda do servidor
STUN. Este mecanismo é essencial para atravessar NATs (Network Address
Translators). Na maioria dos casos, o servidor STUN vai conseguir retornar para o
cliente seu enderego IP; mas no caso de um NAT Simétrico (caso particular de NAT), isso
ndo vai funcionar. Neste caso, o enderego piblico do cliente atras do NAT depende do
endereco do host que mandou uma mensagem. Isso quer dizer que o enderego IP

41

publico do cliente retornado pelo STUN serd particular a esse STUN, e serd inutilizavel
para qualquer outro cliente externo a essa sub-rede [45].

Um outro caso bastante comum é o bloqueio de UDP por um Firewall. Como ja
visto anteriormente, os protocolos de comunicagdo do WebRTC rodam em cima do
protocolo de transporte UDP, entdo quando os datagramas UDP foram bloqueados por
um firewall, a conexdo WebRTC ndo pode ser estabelecida. Bloquear as conexdes UDP
nas regras de um firewall corporativo é uma pratica comum, por questdes de seguranga
(planejar uma ataque de Distributed Denial of Service (DDoS) em UDP é facil,
executando um UDP flood por exemplo, e por isso UDP pode ser bloqueado mais
facilmente que TCP ja que poucas aplicagdes corporativas usam UDP).

iii) Perda de pacotes (UDP)

WebRTC usa protocolos de transporte que usam UDP, que ndo € um protocolo com
entrega confidvel. A perda de pacotes em uma aplicagdo de video chat ou streaming
pode resultar em uma queda da qualidade de experiéncia para o usuario final. Nao
vamos entrar nos detalhes das propostas de técnicas de atenuac¢do deste efeito, mas
podemos citar o trabalho de uma equipe da Google que propde um método hibrido com
Negative Acknowledgement, Forward Error Correction e Temporal Layers para balancear
os requisitos de qualidade do video, regularidade da reprodugao e atraso [46].

42

IV. Arquitetura da proposta

IV.1. Requisitos

Em relagdo aos objetivos mencionados na segdo “II-Objetivo e Motivagdo”, a
finalidade do projeto serd atingida ao conseguir maximizar a proporg¢io de trafego
através da rede P2P em relacio a rede CDN.

Este sistema é um protétipo preliminar a uma integra¢do futura com a IPTV da
USP, e o projeto foi desenvolvido com essa ideia de integracdo em mente desde o inicio.

Os requisitos funcionais do sistema sdo os seguintes:

1.

w

Implementar mecanismo complementar de entrega de video com objetivo
de diminuir o uso de recursos. O cliente deve baixar segmentos de video a
partir de peers quando for possivel, e da CDN quando nao;

Implementar esse mecanismo de forma integrada com mecanismos de
entrega de contetdo tradicionais, em que sera utilizado como estudo de
caso o IPTV da USP;

O sistema é aplicado a videos de tipo VOD (video sob demanda). O caso dos
fluxos ao vivo (live streaming) ndo é atendido pelo sistema inicialmente;

O sistema deve permitir a reprodugdo em uma pagina web via um player;

O sistema funciona com o formato de streaming adaptativo HLS
inicialmente, pois é o formato usado pela plataforma IPTV USP.

0O desempenho do sistema foi avaliado durante as fases de testes e de
demonstracgdo. Esta avaliagdo foi feita através de duas métricas principais, comparadas
no caso da arquitetura com P2P e sem P2P:

2 18

2.

Porcentagem dos dados vindo da CDN / porcentagem dos dados vindo do
P2P (com objetivo de maximizar a proporgdo de P2P);

Qualidade de experiéncia medida em tempo de bufferiza¢do, nimero médio
de pausas de rebufferizacdo por minuto.

43

IV.2. Arquitetura geral

Servidor Servidor
s Trafego CDN Oikaar i o
- Trafego P2P
Servidor Sarvidor
CDN CDN
Edge CON Edge CDN
EdQﬁCDN EdgechN + Tracker + Tracker
1 2

A
=/ s m 2

Fig. 15 - Arquitetura geral sem P2P a esquerda (A) e com P2P a direita (B)

A arquitetura geral de um cendrio de streaming distribuido com uma CDN é
apresentada na figura Fig. 15. A esquerda (A), temos o caso cldssico de distribuicdo
exclusivamente via CDN, sem P2P. O contetdo ¢é inicialmente criado pelo servidor de
streaming. Depois, este contetido é mandado para a rede CDN para otimizar a sua
distribuicdo. Finalmente, cada cliente requer os segmentos de video para o servidor de
borda da CDN que foi atribuido a ele. O trafego de dados entre o servidor de borda
(“Edge”) e o cliente é representado em vermelho.

Do lado direito, a mesma arquitetura mas com P2P. O trafego P2P entre os clientes
(peers) é representado em verde. Podemos perceber que com a ajuda do trafego P2P, os
clientes irdo depender muito menos do servidor de borda. A maioria dos segmentos
serdo baixados a partir dos outros clientes, e o servidor de borda sera usado apenas no
evento da falta daquele segmento na rede P2P (swarm). De maneira evidente, a
quantidade de banda usada em saida de cada servidor de borda serd reduzida.

Os beneficios sdo miltiplos:

- Cortar custos de banda: o site transmissor paga uma taxa para a empresa de
CDN baseada na quantidade de banda que ele vai precisar. Diminuir o uso de
banda significa a diminuicdo de uso de recursos para a CDN (banda,
processamento, niimero de servidores de borda), e portanto uma diminuig¢ao
de custo;

- Aguentar um trafego extremo ou maior do que foi planejado ao contratar a
CDN: este tipo de situagdo pode acontecer em eventos esportivos, saida de um
seriado em uma plataforma de VOD, conferéncia. Se ndo foram planejados
bastante recursos e o niimero de conexdes de clientes for maior ao maximo
que a CDN pode aguentar, os servidores vdo cair e/ou recusar conexdes. Se o

44

P2P estiver habilitado, isso ndo acontecerd, pois maior o niimero de peers,
melhor a rede funciona. Os servidores irdo ficar relativamente menos
carregados que com um trafego médio;

- Tolerancia a falha do servidor de streaming: se, por qualquer motivo, 0
servidor de streaming chegasse a falhar, a rede P2P poderia tomar conta da
distribuicdo sem impacto para os usudrios. Os clientes irdo pedir o conteddo
diretamente para outros peers, e a falta de servidor ndo seria sensivel para
alguns clientes;

- Qualidade de experiéncia do usudrio (melhor qualidade de video, reprodugédo
mais fluida, etc.): o fato de ter mais nés distribuindo o contetido em vez de um
servidor s6 pode ter um impacto sobre a qualidade de experiéncia do usudrio.
Por exemplo, a auséncia de limite de banda do lado de um servidor permite
que o fluxo seja distribuido em melhor qualidade para um usudrio se ele tiver
banda suficiente.

Pode-se observar na Fig. 15, do lado do P2P, a presenga nos servidores de borda da
CDN de “trackers”. Estes trackers sdo responsaveis por conectar os peers entre si e pelo
bom funcionamento do P2P. De maneira cldssica e mais natural, poderiamos pensar
utilizar apenas um tracker central responsavel por todos os peers. Todos os clientes se
conectariam a este mesmo tracker central, e todos poderiam se conectar potencialmente
entre si em P2P. Mas uma outra abordagem foi escolhida para este trabalho, e isso
constitui parte da sua originalidade.

Aqui, foi escolhido ter um tracker diferente para cada servidor de borda. Isso
significa que apenas os clientes redirecionados para aquele servidor de borda se
conectardo ao tracker hospedado na mesma mdaquina que o servidor de borda.
Consequentemente, os clientes susceptiveis de se conectar em P2P serdo clientes
“préximos”, de acordo com os clientes da CDN. A ideia aqui é de aproveitar os
mecanismos da CDN (especificamente o request routing, como visto na segdo IIL.5.c)iii)
Request Routing) para conectar apenas clientes que estio proximos e que poderdo
aproveitar no maximo do P2P, de forma a evitar fendmenos ndo desejados mencionados
na sec¢do II1.4 Peer-to-peer (P2P) (como a travessa de varios sistemas autbnomos por
exemplo) que poderiam aumentar o custo e diminuir as vantagens do sistema com P2P.

O sistema proposto neste trabalho delega totalmente a CDN a etapa de escolha do
sub-conjunto de clientes para formar as redes P2P, que podemos chamar de processo de
formagdo do swarm. O sistema aproveita, de maneira implicita, das informagdes sobre a
rede que a CDN tem para aumentar a sua propria eficiéncia. Também serdo expostas as
consequéncias desta escolha no cendrio do IPTV da USP na parte correspondente.

IV.3. Escolhas técnicas

No inicio e ao longo do projeto, algumas escolhas técnicas tiveram que ser feitas.
Uma vez a ideia definida, foi necessério escolher qual tecnologia de P2P famos usar, qual

45

protocolo de streaming e qual player para reproduzir o video. Depois disso, ao
desenvolver as diferentes partes, surgiram necessidades pontuais para juntar
tecnologias. Discutiremos isso também no ultimo item.

a) Protocolo para P2P: WebRTC

A partir da ideia de adicionar o poder do peer-to-peer ao web streaming, foi
necessario elaborar como integrar as tecnologias. Poderia ter sido via um programa
externo (um plugin) no navegador. Neste caso, ndo teria sido possivel usar um player
HTMLS5 por motivos técnicos, e entdo teria sido necessario usar um player Flash.

Porém, quando apareceu a op¢do do WebRTC, imediatamente foi claro que era a
melhor possibilidade. Reunia todas as vantagens, das quais podemos citar:

- adicionar peer-to-peer sem precisar de um plugin, de maneira transparente,

- facilidade de implementagio com API em JavaScript que é a linguagem da
Web,

- uso das funcionalidades nativas de video de HTMLS5, sem precisar de Flash
Player. Desenvolver em Flash implicava a necessidade de usar ActionScript,
uma outra linguagem especifica, o que teria aumentado a complexidade de
desenvolvimento. Também olhando do lado do mercado, o futuro do setor de
videos na web estd com tecnologias HTML5 e ndo Flash, que ja foi banido na
plataforma i0S desde 2010 [47]. Mais recentemente, novas falhas de
seguranca foram e ainda estdo sendo descobertas [48],

- tecnologia pela grande maioria dos projetos envolvendo web e peer-to-peer
hoje, o que da acesso a uma comunidade e a recursos atualizados e
detalhados. Isso foi uma grande ajuda durante o desenvolvimento, tanto pelos
documentos explicativos que pelos projetos open-source liberados para o uso
de todos.

Por outro lado, uma desvantagem do WebRTC é sua relativa novidade. WebRTC
nio é uma tecnologia madura, ainda niio estd totalmente implementada em todos os
navegadores principais, e implementagdes podem variar entre navegadores. Isso
diminui a sua abrangéncia, e pode resultar em bugs.

Levando tudo isso em conta, usar WebRTC foi uma escolha natural e a mais
evidente de todas.

b) Protocolo de streaming adaptativo: HLS

Quando se fala de streaming hoje em dia, os protocolos dominantes sdo os
protocolos adaptativos, por todos os motivos expostos na parte IIL1. Dentro desta
familia, os dois maiores no mercado sdo HLS e MPEG-DASH [49]. Como ja explicamos na
parte 111.1.b), de um ponto de vista técnico, o0 mais completo é o MPEG-DASH. Isso faz
sentido pois ele foi elaborado para ser um padrdo, o que ele é desde 2011. Ndo € o caso
do HLS, propriedade da Apple, que foi criado anos antes, o que pode justificar que ele
seja um pouco menos adaptado aos usos atuais em web streaming.

Para resumir, as diferencas técnicas maiores sdo a multiplexagdo de dudio e video
na mesma trilha (perda de flexibilidade) e um arquivo de “manifest” ou playlist que é
mais dificil de ser manipulado no caso de HLS.

46

Porém, é necessario usar HLS para fazer streaming na plataforma iOS da Apple.
Considerada a popularidade dos aparelhos como o iPhone ou o iPad, muitas plataformas
adotaram o HLS. Essa popularidade se manifesta também no nimero de projetos de
streaming e WebRTC que sdo construidos com i0S. Da mesma maneira que para
WebRTC, o tamanho da comunidade e a quantidade de recursos sobre HLS sdo indicios
de confianga para o futuro do formato.

Na hora de escolher entre os dois, o principio de integra¢dao com o IPTV da USP foi
a prioridade. Durante o desenvolvimento do projeto, o IPTV estava em transi¢ao para
implementar o HLS, por motivos de suporte a aparelhos i0S. Consequentemente, foi
decidido optar por HLS para o projeto.

c) Player: video.js

Em relagdo ao playback, o uso de um player ndo é absolutamente necessario.
Porém, como nos dois itens anteriores, os fatores determinantes na escolha final foram o
player usado pelo IPTV da USP e os recursos e projetos open-source disponiveis, O IPTV
da USP usa video.js, um player open-source, que é usado em muitos projetos (inclusive
projetos que poderiam se revelar (teis para o resto do projeto). De nove, a
interoperabilidade com o IPTV USP ficou como prioridade e foi decidido usar o video.js
como player.

d) Outros médulos open-source

Para juntar esses componentes, foi necessario usar alguns pequenos projetos de
compatibilidade. N3o é raro que as empresas do setor liberem estes médulos em open-
source para incentivar o uso da tecnologia. E o caso da Streamroot por exemplo, ja
mencionada anteriormente. O fato desses projetos serem de cédigo aberto permite criar
forks para adaptar esse cédigo a uma necessidade especifica do contexto do projeto.
Levando em conta a gratuidade, eles se tornam a opg¢do ideal, como detalharemos na
sec¢do de tratando da arquitetura do software.

IV.4. Arquitetura do software

a) Parte de midia

O diagrama seguinte representa a estrutura geral do software (Fig. 16). Cada bloco
representa um modulo com a sua fun¢do, como vamos detalhar em seguida. Para
atender as funcionalidades e os requisitos expostos na parte anterior, precisa-se de uma
arquitetura complexa, envolvendo varios blocos tecnoldgicos de origens diversas. Os
blocos representados em azul s3o os mdédulos externos, de codigo aberto e de uso livre.
Os blocos em verde sdo forks de projetos abertos. Isso quer dizer que sdao médulos de
codigo aberto também, mas que tiveram que ser adaptados a nossa arquitetura para
funcionar com os outros componentes. Finalmente, os blocos em preto sdo os médulos
desenvolvidos desde o inicio.

47

0 software foi desenvolvido em JavaScript para a parte cliente, que € a linguagem
feita para escrever programas executados dentro do navegador. JavaScript também
naturalmente é a linguagem da API WebRTC. Essa escolha foi natural.

0s modulos sao:

48

index.html: a pagina web onde sera reproduzido o video, junto com as

métricas de desempenho.

SourceHandler: médulo que permite atrelar a fonte de streaming ao

elemento html do player [50].

video js: médulo do player. O video.js é um player html5 de cédigo aberto e
gratuito. Ele é um dos players mais usados na web hoje em dia, e empresas
como Twitter, Instagram, Microsoft, Dropbox e Github o utilizam [S1].

hlsjs: biblioteca JavaScript que implementa um cliente HLS [52]. Se
apoia em video HTML5 e Media Source Extensions [53], que é o componente
HTML5 que permite manipular fluxos de video diretamente com JavaScript
no navegador. Essa parte é essencial no nosso caso, pois o fluxo precisa ser
processado e reconstituido pela nossa aplicagdo em JavaScript. O hls.js
geréncia o buffer e transmite os pedidos de segmentos para o P2ZPModule.
Transmultiplexa MPEG-2 Transport Stream (formato dos segmentos HLS)
em segmentos 1SO BMFF (MP4). Essa etapa de transmultiplexagdo pode ser
feita de maneira assincrona usando Web Workers (jeito de paralelizar o
processamento no navegador), se for possivel.

hlsjsP2PWrapper: atrela o médulo P2PModule ao hlsjs [54]. Cria uma

instancia do hls.js mudando a configuragdo padrdo para uma configuragdo onde
o elemento de download de segmentos ndo € mais aquele do hls.js, mas passa a
ser o P2PModule. Isso permite adicionar as funcionalidades do médulo P2P
ao hls.js. Principalmente, ele oferece a possibilidade do P2ZPModule fornecer
segmentos para o hls.js, tanto do P2P como da CDN, de forma transparente.

P2PModule: médulo P2P, adiciona a capacidade de baixar segmentos de

video de outros peers para complementar o modelo de carregamento da
CDN. Ele contém a légica de chaveamento entre P2P e CDN, e isso fica
abstraido para o hls.js. O seu funcionamento serd detalhado com mais
profundidade na préxima segao.

—— modulo novo index.html

—— modulo externo
modulo extemo
adaptado (fork)
SourceHandler
video.js hisjsP2PWrapper
P2PModule his.js

Fig. 16 - Diagrama de blocos da estrutura geral do software

Para resumir, o hlsjsP2PWrapper, hls.js e P2ZPModule formam um conjunto que
representa uma instancia de hls.js acrescentada com capacidade de P2P.

Além disso, o SourceHandler permite indicar para o video.js aquela instincia
modificada do hls.js como sua fonte de midia.

Ao longo do desenvolvimento, outras possibilidades de arquitetura surgiram. Por
exemplo, teria sido possivel ndo usar o hlsjsP2PWrapper e modificar a classe Loader do
hls.js para acrescentar a funcionalidade de P2P. Porém, esta abordagem presentava
desafios estruturais ligados com o funcionamento do hls.js que conduziram a decidir ndo
mexer no hls.js e usar o Wrapper para fazer a interface com um médulo P2P externo.

b) Parte P2P

A estrutura do médulo P2P é apresentada no diagrama de classes a seguir (Fig.
17). Este diagrama representa as classes do software cliente e a maneira na qual elas
interagem. Vamos detalhar o papel especifico de cada classe e as fung¢bes que ela tem
que assumir para o bom funcionamento do médulo como um todo.

« PeerAgentModule: ponto de entrada do médulo P2P. Faz a interface entre o
modulo midia e 0 mddulo P2P. Principalmente, ele passa os pedidos de
segmentos para o P2P e retorna os segmentos baixados e as estatisticas
para a midia.

49

Main: ponto central do médulo P2P, Passa os pedidos de segmentos para o
ResourceRequester verificando se o segmento jd ndo se encontra no cache
local, e ao receber o segmento da rede, ele atualiza as estatisticas no
Playbackinfo e armazena o segmento no Storage.

Playbackinfo: conserva e calcula as estatisticas sobre origem dos downloads
e sobre os peers para passar para o front-end.

Storage: classe de armazenamento dos segmentos de video. Os segmentos
ndo sdo armazenados em formato bindrio mas em string base 64.

PeerAgentModule
Playbackinfo
Main
Storage
ResourceRequester
CDNRequester P2PManager
Swarm MessageHandler

L)
1
1
]
1
]
]
:

Peer ChunkManager

Tracker

UplaodHandler

Fig. 17 - Diagrama de classes do moédulo P2P

ResourceRequester: responsavel pelo roteamento dos downloads entre a
CDN e o P2P. Usa alguns critérios configuraveis para escolher, como por
exemplo o niimero de segmentos a baixar da CDN para conseguir iniciar o
playback rapidamente enquanto nos conectamos ao tracker e aos demais
peers via WebRTC.

CDNRequester: chamado para fazer download do segmento da CDN. Faz um
XML HTTP Request para a rede na url de identificagdo do segmento.

P2PManager: comparavel ao CDNRequester, mas para o P2P. 0 P2ZPManager
cuida do P2P como um todo. Ele é responsavel por se conectar ao tracker
via websocket, criar as conexdes WebRTC com os outros peers, e repassar
os pedidos de segmento para o Swarm.

MessageHandler: recebe as mensagens do tracker (lista de peers, signaling
WebRTC, etc.) e toma as ag0es necessarias (responder a uma offer com uma
answer por exemplo no caso do signaling).

Tracker: o tracker é um servidor com qual cada cliente se conecta ao iniciar
o playback e que rastreia os peers e o contetido que eles tém. Ele serve para
indicar com quais peers um cliente pode se conectar, e serve também como
servidor de signaling para iniciar as conexdes WebRTC.

Swarm: representa o swarm, ou seja o conjunto de peers com quem
estamos conectados. Ele manda mensagens para peers para saber quem
tem o contetido desejado e depois seleciona o melhor peer para pedir o
segmento.

Peer: representa um peer. Escuta e responde no DataChannel WebRTC
(dados, pedidos, etc.)

UploadHandler: responsavel pelo upload, basicamente retorna se existem
slots de upload disponiveis para um peer dado no momento.

ChunkManager: esta classe trata o segmento no nivel de chunk. Cada
segmento é cortado em vérios chunks de tamanho menor antes de ser
enviado para outros peers. Ao receber os chunks, o ChunkManager também
reconstitui o segmento que serd mandado para a parte de midia.

Podemos visualizar a troca de mensagens na figura a seguir (Fig. 18 - Conexdo com
o tracker e download de um segmento de um outro peer), tanto com o tracker como com
um outro peer. A parte de conexdo WebRTC ja foi explicada na se¢do III.6.c) Criar uma
conexdo peer-to-peer e ndo é detalhada de novo aqui. Aparece resumidamente na
expressdo “Signaling WebRTC".

No inicio, o Peer A se conecta com o tracker que foi atribuido a ele via websocket.
Esse tracker responde com a lista de peers com quem ele tem uma conexao aberta e que

51

tém o mesmo contetido que o Peer A estd assistindo. Esses sdo os peers potenciais do
nosso Peer A. No caso do protétipo, temos apenas um contetido e todos os clientes
conectados ao tracker sio peers potenciais para A. Com essa lista, o Peer A cria uma
conexio WebRTC com cada um desses peers potenciais, usando o tracker como canal de
signaling. A partir daqui serd considerado um Peer B com quem o Peer A se conectou.

Peer A Tracker Peer B
con. Iniclal ws
lista de peers
signaling WebRTC signaling WebRTC
"“ ping
pong
“Interested"”

“contain” / “busy” / “choked”

Data Channel -<
“request’

“chunkSatisfied”

“satisfied"

—

Fig. 18 - Conex3o com o tracker e download de um segmento de um outro peer

Ao abrir o DataChannel com o Peer B, a primeira coisa feita pelo A serd mandar
uma mensagem “ping” (diferente da nogdo de ping na camada de rede) pelo
DataChannel para testa-lo. O B deve responder com um “pong”. Se ele ndo responder, a
conexdo nio funcionou e o processo acaba aqui. Caso contrario, a partir daqui todas as
comunicag¢des entre peers A e B estdo feitas através do DataChannel, par a par.

Ao longo do playback, o A ird pedindo os segmentos de video para o sistema
hibrido. Para garantir uma laténcia inicial baixa, o sistema pede automaticamente os
dois primeiros segmentos da CDN, para dar tempo ao P2P para se iniciar. Depois disso
(alguns segundos), cada pedido de segmento entrarad pelo PeerAgentModule até o
ResourceRequester. Aqui, o sistema decide se ele pede o segmento para o P2ZP ou para a
CDN. Os parametros que ele usa sdo a presenga de peers (o0 B, no caso) e se o P2P estd
ativado pelo usudrio ou ndo. Se ndo for, pede o segmento para a CDN. No caso contrario,
passa o pedido para a classe Swarm. Primeiro, precisa saber quem tem o contetido
dentro do swarm. Esta classe manda uma mensagem de “interested” com os detalhes do
segmento que ela quer para todos os peers do swarm.

52

Eles verificam no seu Storage se tiverem aquele segmento, e no UploadHandler
para saber se estdo em condigdo de mandar contetdo (slots de upload livres). Depois
desta verificagdo, eles respondem com uma das trés mensagens seguintes:

“busy”: significa que aquele peer B ja esta no seu limite de upload, e ndo pode
mais mandar contetido para outros peers no momento. Este limite de upload é
configuravel e é necessério para ndo saturar o peer e diminuir o desempenho
da rede;

- “choked”: significa que o peer B ndo possui aquele segmento no qual o A tem
interesse;

- “contain”: significa que o B possui aquele segmento e estd com condi¢do de
manda-lo para o A.

Ao receber as respostas desses peers, o A constitui a lista de seeders potenciais
para este segmento com 0s peers que responderam com um “contain”.

A préxima etapa é escolher o melhor peer entre os seeders potenciais para fazer o
pedido do segmento. Para isso, a classe Swarm se baseia na pontuagdo que ele atribuiu
para cada peer do seu swarm. Quando iniciar uma conexdo P2P entre dois peers, cada
um cria uma pontuacdo que € inicialmente igual para todos, e que serve para avaliar os
outros peers. Esta pontuagao evolui: ela cresce quando o peer manda bons segmentos, e
diminui quando ele ndo responde ou ndo manda um segmento que ele prometeu mandar
por exemplo. Portanto, esta pontuagdo é pessoal, no sentido que um peer X pode ser
avaliado com a pontuagdo 50 por um peer Y e -100 por um outro peer Z. Usando esta
pontuacdo, o A escolhe o melhor peer (B no nosso caso) e manda para ele a mensagem
de “request”, ou seja o pedido com os detalhes do segmento que ele quer.

Do lado de B, ao receber a mensagem na instancia da classe Peer que representa o
peer A, ele recupera o segmento no seu Storage. Para mandar o segmento para A, ele
precisa usar o ChunkManager que vai cortar o segmento em vdrios chunks, ou seja
pedacos menores de video. Esta etapa é necessdria por causa do limite de tamanho das
mensagens no DataChannel, como foi visto na descricio do WebRTC. B manda cada
chunk para A com um numero de sequéncia, nas mensagens de “chunkSatisfied”. Do seu
lado, A reconstitui o segmento com os chunks. Quando o segmento for completo, ele fica
satisfeito. O Main recupera o segmento, atualiza as estatisticas (porcentagem total de
P2P, tamanho do swarm, upload e download de cada peer do swarm) e retorna o
segmento para o mddulo de midia.

Quando B se desconecta, o A sera notificado pelo seu listener de fechamento do
DataChannel (e pelo tracker também), e a sua instincia do peer B sera descartada.
IV.5. Desenvolvimento do projeto

Até entdo, o texto focou muito na arquitetura e no funcionamento do sistema.
Também é interessante e faz parte do trabalho detalhar como foi o processo ao longo do
ano e os passos seguidos para chegar no protétipo final.

Na origem, eu queria trabalhar com streaming, CDN e P2P e fui procurar a
professora Regina Melo Silveira do LARC para me ajudar na escolha final do tema.

53

Também conversamos com o Samuel Kopp, especialista de CDN do LARC, e depois de
algumas reunides definimos o assunto do trabalho em abril de 2016. A primeira decisdo
importante foi de organizar reunies frequentes com a professora e o Samuel para
agilizar o avango de projeto. A cada duas semanas, eu mostrava meus avangos € 0s novos
problemas que tinham aparecido, e nos tomavamos as decisdes necessdrias, juntos,
nessas reunioes.
0 projeto se dividiu em quatro partes, ndo necessariamente sucessivas:

- pesquisa exploratéria

- desenvolvimento do protétipo

- redagdo da monografia

- elaboragdo da demonstracdo e testes

Além das reunides frequentes e de forma a ainda mais facilitar a comunicag¢do com
os meus orientadores, decidi trabalhar no LARC a maioria do tempo. Este laboratério me
ofereceu um ambiente ideal para realizar as minhas tarefas, sempre com a possibilidade
de procurar alguém para me ajudar com qualquer problema ou pergunta. Com
experiéncia, posso dizer que foi uma das decisdes mais importantes do trabalho.

A segunda ideia muito forte que sempre segui durante este projeto é a ideia de
dividir o trabalho em pequenas sub-tarefas com datas de entrega de produtos
intermedidrios definidas com antecedéncia. Isso ajudou de vdrias maneiras.
Primeiramente, fixou objetivos a atingir. Segundo, me permitiu dividir as dificuldades
em dificuldades menores. Enfim, o fato de ter objetivos menores significa que vocé
atinge os seus objetivos mais frequentemente (tipicamente a cada uma ou duas
semanas), e isso gera uma satisfagio que ajuda a sempre guardar o foco e ndo se
desmotivar ao olhar a quantidade de coisas para fazer ao longo do projeto.

Este conceito geral se aplicou muito bem neste projeto, com os objetivos
sucessivos seguintes:

- arquitetura basica

- pégina web com player video.js reproduzindo um video .mp4 armazenado no
disco

- pégina web com video HLS hospedado por um servidor ptiblico reproduzindo
sem player, usando hls.js

- uso do SourceHandler para reproduzir o fluxo HLS no player video.js

- conexdo com o Wrapper para ter uma interface viavel para um médulo P2P

- conexdo do modulo P2P vazio com o Wrapper

- realizagdo da conexdo WebRTC com um peer via um tracker local

- mensagens de teste entre peers via DataChannel

- software de gestdo do midia no modulo PZP

- intercambio de segmentos via P2P, durante o playback

- estatisticas

- possibilidade de ligar e desligar o P2P durante o playback

De um ponto de vista técnico, a quase totalidade de trabalho foi feita com
servidores locais. A migracio para servidores externos foi feita em ultimo lugar.

54

Durante o desenvolvimento, algumas duvidas surgiram em relagdo as tecnologias
necessarias. Um bom exemplo de escolha técnica dificil e determinante foi de decidir de
usar ou o Wrapper da Streamroot, ou desenvolver a partir do zero uma interface com o
P2P. Neste tipo de casos, a abordagem foi uma de teste de duragdo determinada: decidi
tentar a primeira opgdo durante duas semanas. Em caso de sucesso, ia pela frente. Em
caso contrario, tentava outra opgdo, e assim por diante. Provou ser uma abordagem
eficiente.

Como foi explicado na secdo sobre arquitetura (IV.4.a), o projeto é uma integragdo
de médulos open-source prontos (video.js, hls.js), de mddulos open-source modificados
(SourceHandler e Wrapper da Streamroot) e de c6digo original com algumas inspiragdes
de outros projetos open-source (médulo P2P). Logo no inicio do projeto foi decidido
deixar estes modulos separados. O controle de versao destes varios moédulos foi feito
com a ferramenta Git, com um repositdrio separado para cada mddulo. Essa ferramenta
permite guardar um histérico do desenvolvimento, ter vdrias versdes de um mesmo
cédigo simultaneamente, e retornar a uma versdo anterior em caso de erro. Dessa
maneira, cada médulo ficou separado e simplificou a cadeia de dependéncias.

Parte do c6digo foi escrita com sintaxe ES6 (norma ECMAScript 6 para sintaxe de
JavaScript), a mais recente, que ainda n3o é suportada pela maioria dos navegadores
web. Portanto, é necessdrio compilar o c6digo ES6 em cédigo ES5. Da mesma maneira, é
necessario transformar o cédigo JavaScript dos diferentes médulos em um tnico
arquivo que contenha tudo o cédigo com as dependéncias correspondentes. Esta
transformagdo se chama de “Browserificagdo”.

Na prética, tudo isso foi feito com a ferramenta de automagao para JavaScript
chamada Grunt [55], usando os plugins Babel para compilagao ES6-ES5 [56] e Browserify
para browserificagdo do cddigo [57]. Esta ferramenta permite criar comandos de
terminal automatizando a compilagdo, download de dependéncias, etc. Estes comandos
sdo locais para cada projeto e especificados no arquivo gruntfile.js de cada projeto. A
tarefa “Watchify” recompila em tempo real a cada alteracdo do cédigo, o que permite
poupar muito tempo nos ciclos de teste no browser - corregao de erros de cdédigo -
teste.

55

V. O projeto no cendrio do IPTV da USP

0 presente projeto de formatura se inscreve na ideia de uma integragdo com o
IPTV da USP. Todos os ganhos ja expostos se aplicam da mesma maneira no caso do
IPTV da USP: diminuicio de custos de banda e melhoria da qualidade de servigo
principalmente.

Além disso, o caso particular do IPTV-USP apresenta caracteristicas que deixam
pensar que ele poderia aproveitar ainda mais a integragdo de um servi¢o de entrega
hibrida de video baseada em WebRTC.

A ideia principal é aproveitar a concentragdo dos peers em algumas regides. O
[PTV-USP retransmite principalmente palestras e aulas dadas na USP. Isso significa que
boa parte dos usuarios serdo alunos e professores dos vérios campi que a USP possui
dentro do estado de Sdo Paulo. Levando em conta o fato que proximidade entre peers
aumenta o desempenho de um sistema P2P (se¢do II1.4), a arquitetura do presente
projeto foi pensada para aproveitar este fato no maximo.

Devemos também considerar a CDN que a USP possui e usa para distribuir o
contetido entre esses varios campi. Podemos representar uma estrutura simplificada da
CDN na Fig. 19. Cada campus possui o seu proprio servidor de borda da CDN para
distribuir o contetido naquela regiao.

E : servidor de borda da CDN
Séo Paulo

Mecanismo de
distribuigdo da
CDN

S&o Carlos

Fig. 19 - Estrutura simplificada da CDN da USP

Ribeiréo Preto

Com estes dois parAmetros em mente (aumentar a proximidade entre peers e
aproveitar a arquitetura da CDN da USP), pensamos em criar um Tracker por servidor de

56

borda em vez de um Tracker central para tratar os pedidos de todos os peers. Isso seria
facil com aquela estrutura de CDN, j& que temos acesso aos servidores de borda. Basta
colocar um tracker em cada um das méquinas, e os usudrios daquele servidor de borda
serdo diretamente direcionados para o Tracker correspondente.

Essa arquitetura com vérios Trackers também tem a vantagem de garantir que os
clientes que vdo se conectar estardo considerados como préoximos pela CDN. A
consequéncia é que dois clientes em cidades distintas ndao se verao como peers
potenciais, dando prioridade para outros clientes da mesma cidade (usando o mesmo
servidor de borda), e portanto aumentando o desempenho potencial do P2P.

57

VI. Demonstragao

Nesta se¢do, vamos apresentar os objetivos e os detalhes técnicos da
demonstragdo do projeto.

Com essa demonstragdo, o nosso objetivo é demonstrar que:
- O Streaming estid funcionando (reprodu¢do de um video a partir de um
servidor origem);
- Segmentos de video estdo sendo trocados entre clientes;
- 0 sistema é resistente a condigdes de rede dificeis entre clientes e servidor
origem.

Para tal, serd feito o streaming do video Big Buck Bunny [58] na pagina web do
protétipo, hospedada num servidor web Apache do laboratério. A banda entre o
servidor origem hospedando o video e o Access Point sera limitada por um limitador de
banda, em um valor inferior a banda necesséria para servir todos os clientes.

Num primeiro tempo, a fungdo P2P sera desabilitada, e a reprodugdo deveria
apresentar o fendmeno de rebufferizagdo. Num segundo tempo, a funcionalidade P2P
serd habilitada e a reprodugio deveria voltar a ser fluida. Estatisticas como a
porcentagem de P2P e o numero de peers conectados serdo visiveis no quadro de
estatisticas de cada cliente.

O dispositivo (Fig. 20) é constituido por:
- Uma maquina hospedando trés servidores
- Um limitador de banda

- Um Access Point
- Algumas mdquinas clientes

B

.|

Web Server
——y ——

Fig. 20 - Arquitetura da Demonstra¢do

e 0O primeiro servidor é o Servidor Web, que hospede a pagina Web do
protétipo (servidor Apache, maquina Linux).

58

* 0 segundo servidor é o Servidor de Midia, que hospede os segmentos de
video (servidor Apache, maquina Linux).

* Finalmente, o terceiro servidor é o Tracker P2P, apresentado na arquitetura
da proposta (servidor Node.js, mdquina Linux).

A mdquina com os servidores sera ligada a um Access Point sem fio na sala de
demonstragdo via um link com banda limitada. Varias mdquinas clientes se conectardo a

rede via este Access Point para fazer a demonstragdo e acessar o video.

Durante a demonstragdo serao monitoradas as rebufferiza¢des, assim como a
porcentagem de contetdo obtido via P2P para cada cliente.

59

VII. Testes

Esta se¢do apresenta os resultados obtidos nos testes realizados. O objetivo desses
testes era de confirmar que os segmentos de video estdo trocados via P2P, e mensurar
as taxas de P2P em fung¢ao do nimero de clientes simultaneos.

0 ambiente de teste foi o seguinte:
- video Big Buck Bunny [58] carregado a partir de uma CDN publica
- navegador Google Chrome 54
- computador MacBook Pro 2011, RAM 4 Go, Intel Core i7 2 GHz
- servidor Tracker instalado na maquina localmente
- servidor web instalado na maquina localmente

Parametros utilizados para os testes:
- initSegmentsToSkip: nimero de segmentos inicialmente baixados da CDN sem

tentar usar P2P para acelerar o inicio da reprodugao.
Valor usado: 2

- maxStorageChunks: nimero maximo de segmentos guardados no cache
JavaScript por um peer. Quando chegar no limite, o mais antigo é descartado.
Valor usado: 10

Métrica testada: porcentagem de P2P média, a média das porcentagens individuais.

P2P; = (Bytes baixados em P2P); / (Bytes totais baixados);

Nﬁrpero e Duragdodo |. . . Porcentagem
- Cllel{tes rosne initSegmentsToSkip média de P2P
simultineos
2 10 min 2 39%
2 3 min 2 40%
3 3 min 2 53%
3 3 min 1 64%

Tabela 1 - Resultados dos testes

O detalhe de cada teste com as porcentagens individuais de cada peer se encontra
no Apéndice A - Resultados detalhados dos testes.

A tendéncia nos testes é aumentar a porcentagem média de P2P o quanto mais
clientes simultdneos tem (Tabela 1). Isso faz sentido porque sempre tem um peer com
0% (o primeiro conectado), entdo cada peer faz aumentar a média.

Um outro pardmetro importante é o initSegmentsToSkip. Em testes de duracdo
curta, ele tem um grande impacto, como vemos nos resultados. Uma mudanca de valor
de 2 para 1 deu um ganho de porcentagem média de P2ZP de 11% no caso de 3 clientes,
no nosso teste, Podemos deduzir que este pardmetro é muito importante para o

60

desempenho do sistema, e é necessario achar o valor ideal para ter uma experiéncia do
usuério boa no inicio da reprodugdo, e a0 mesmo tempo um bom desempenho P2P.

Esses resultados sdo interessantes do ponto de vista do uso de banda nos
servidores da CDN. Em comparagdo, por definicdo, um sistema sem PZP teria uma
porcentagem de P2P média de 0%.

Antes de concluir sobre a viabilidade do sistema, é necessario conduzir testes de
mais grande escala para confirmar o desempenho do PZP, e também estudar outros
efeitos potencialmente omitidos no estudo que poderiam prejudicar de alguma forma o
usudrio ou o provedor de servigo.

61

VIIl. Consideragoes Finais

A presente monografia apresentou o trabalho de formatura sobre um sistema de
Web Streaming Hibrido usando WebRTC. Os principais objetivos do projeto eram de
especificar e construir o protétipo do produto e demostrar a sua eficiéncia e os ganhos
potenciais que ele poderia trazer para um sistema como o IPTV-USP. Eles foram
atingidos, no sentido que um protétipo funcional foi desenvolvido, mostrando a
viabilidade da ideia do uso de Peer-to-Peer para entrega de video na Web. Também
conseguimos demonstrar os beneficios potenciais na forma de economia de custos de
banda proporcional & porcentagem de Peer-to-Peer atingido, e na forma de melhoria da
Qualidade de Experiéncia medida em termos de rebufferizacao.

Poderia ter sido interessante dar mais um passo a frente, implantando Trackers em
varias cidades nos servidores de borda da CDN da USP, e testando com varios peers em
cada cidade. Isso teria testado a hipdtese de melhoria dos resultados do P2P com vérios
Trackers locais em vez de um Tracker central sé. Esse tipo de trabalho necessitaria mais
recursos que os recursos de um aluno no seu projeto de formatura, e seria mais
adaptado a um projeto de mestrado por exemplo.

Como projeto de formatura, este projeto conseguiu provar um conceito, e uma

futura implementagéo no servigo de [PTV da USP é uma possibilidade que sera estudada
no futuro pelo LARC,

62

IX. Bibliografia

[1]
[2]

[3]
[4]

[5]
[6]

[7]

[8]

[12]

[13]

[14]

[15]

[16]

CISCO, "Cisco 2016 Visual Networking Index," 2016.

Kurt Michel. (2013) akamai.com. [Online].
https://blogs.akamai.com/2013/01/live-video-streaming-that-can-
handle-traffic-spikes-the-challenge.html

Streamroot, "Peer-assisted adaptive streaming: the key to managing
ever- growing online video traffic," White Paper 2014.

Joel Hruska. (2014) extremetech.com. [Online].

http: //www.extremetech.com/computing/186576-verizon-caught-
throttling-netflix-traffic-even-after-its-pays-for-more-bandwidth

Presidéncia da Reptblica, "LEI N2 12.965," vol. Art. 9°, Abril 2014.

Y.-F.R.Chen G. Thompson, "IPTV: Reinventing Television in the
Internet Age," IEEE Internet Computing, vol. 13, no. 3, pp. 11-14, Maio
2009.

Tankut Akgul, Mark Baugher Ali C. Begen, "Watching videos over the
web. Part I: Streaming Protocols," IEEE Internet Computing, vol. 15, no. 2,
pp. 54-63, March/April 2011.

Jan Ozer, Video Compression for Flash, Apple Devices and HTMLS,
Doceo Publishing, Ed., 2011.

ISO/IEC, "Information technology — Dynamic adaptive streaming
over HTTP (DASH) ," 23009-1..

Apple. developer.apple.com. [Online].
https://developer.apple.com/library/content/documentation/Networkin
ginternet/Conceptual /StreamingMediaGuide/Introduction/Introduction.
html

Apple. Example Playlist Files for use with HTTP Live Streaming.
[Online].
https://developer.apple.com/library/content/technotes/tn2288/ index.h
tml

Jan Ozer. (2011, November) Streaming Media. [Online].
http://www.streamingmedia.com /Articles/Editorial/What-Is-./What-is-
MPEG-DASH-79041.aspx

Ann Malsha De Silva, Yongseng Diao Amal Punchihewa, "Internet
Protocol Television (IPTV) ," Multi-media Research Group, School of
Engineering and Advanced Technology, Massey University, New Zealand,
2010.

Point Topic, "IPTV Statistics - Market Analysis - Q1 2013," London,
2013.

Jeff ~ Tapper. (2015, March) StreamingMedia. [Online].
http://www.streamingmedia.com/Articles/ReadArticle.aspx?Article[D=1

03101&PageNum=1

Natt Garun. (2015, January) The Next Web. [Online].
http://thenextweb.com/google/2015/01/27 /youtube-will-now-default-

html5-players-better-support-devices/

63

[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Srinivasan Seshan, Anees Shaikh Aditya Akella, "An empirical
evaluation of wide-area internet bottlenecks," Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pp. 101-114, 2003.

Ingmar Poese, Georgios Smaragdakis, Anja Feldmann, Bruce M.
Maggs, Steve Uhlig, Vinay Aggarwal, and Fabian Schneider Benjamin
Frank, "Collaboration Opportunities for Content Delivery and Network
Infrastructures," Recent Advances in Networking, pp. 305-377, July 2013.

Spotify. (2011) P2P Music Streaming. [Online].
http://www.slideshare.net/ricardovice/spotify-p2p-music-streaming

[Online]. http://www.bittorrent.com/

[Online]. https://webtorrent.io/

G., & Vakali, A. Pallis, "Insight and perspectives for content delivery
networks," Communications of the ACM, 49(1), 101-106., 2006.

Gang Peng, "CDN: Content Distribution Network," arXiv preprint
¢cs/0411069., February 2008.

Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia Zhang Sugih
Jamin, "On the placement of internet instrumentation," in INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE., vol. 1, Tel Aviv, 2000, pp.
295-304.

Venkata N. Padmanabhan, and Geoffrey M. Voelker Lili Qiu, "On the
placement of web server replicas,”" in Proceedings of IEEE INFOCOM 2001
Conference, Anchorage, 2001.

Yair Bartal, "Probabilistic approximation of metric space and its
algorithmic applications,” in 37th Annual IEEE Symposium on Foundations
of Computer Science, 1996.

Danny Raz, and Yuval Shavitt P. Krishnan, "The cache location
problem," in IEEE/ACM Transactions on Networking, vol. 8, 2000.

Cheng Jin, Anthony RKure, Danny Raz, and Yuval Shavitt Sugih
Jamin, "Contrained mirror placement on the internet," in Proceedings of
IEEE INFOCOM 2001 Conference, Anchorage, 2001,

M. Ammar, Z. Fei, and S. Bhattacharjee E. Zegura, "Application-layer
anycasting: a server selection architecture and use in a replicated web
service," in IEEE/ACM Transaction on Networking, vol. 8, 2004,

N., Casalicchio, E., & Tucci, S. Bartolini, "A walk through content
delivery networks," in Performance Tools and Applications to Networked
Systems.: Springer Berlin Heidelberg, 2004, pp. 1-25.

llya Grigorik, High-Performance Browser Networking.: O'Reilly Media,
2013,

webrtc. (2016, Setembro) webrtc.org. [Online]. https://webrtc.org/

(2016, October) NetMarketShare. [Online].
https://www.netmarketshare.com/browser-market-
share.aspx?qprid=0&gpcustomd=0

Google. (2014, June) Google +. [Online].

[35]

[36]

[37]
(38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]

[51]
[52]
[53]
[54]

[55]

https://plus.google.com/u/0/103171586947853434456/posts/39TCW3
Pclye

Mozilla. (2014, December) blog.mozilla.org. [Online].
https://blog.mozilla,org/press-fr/2014/12/05 /hello-communiquer-plus-
simplement-grace-au-navigateur-firefox/

Skype. (2016, July) blogs.skype.com. [Online].
https://blogs.skype.com/2016/07 /13 /skype-for-linux-alpha-and-calling-
on-chrome-and-chromebooks/

https://www.streamroot.io/.

https://www.peer5.com/.

http://viblast.com/.

Feross Aboukhadijeh. http://feross.org/resume/.

Kylie Jue. (2014, January) stanforddaily.com. [Online].
http: //www.stanforddaily.com/2014/01/08/yahoo-purchases-alumni-
startup-peercdn/

Adam Bergkvist, Cullen Jennings, Anant Narayanan, Bernard Aboba
Daniel C. Burnett. (2016, June) Media Capture and Streams Specification,
W3C Editor's Draft. [Online]. https://w3c.github.io/mediacapture-
main/#toc

Tsahi Levent-Levi. (2015, June) https://webrtchacks.com. [Online].
https://webrtchacks.com/webrtc-and-man-in-the-middle-attacks/

J. Rosenberg, "Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols,” IETF, RFC5245 ISSN 2070-1721, 2010.

Yossi Zada. (2013, October) [Online].
http://fr.slideshare.net/Audiocod /nat-traversal-in-webrtc-context

Mikhal Shemer, Marco Paniconi Stefan Holmer, "Handling Packet
Loss in WebRTC," 2013.

Steve Jobs. (2010, April) http://www.apple.com/. [Online].
http://www.apple.com/hotnews/thoughts-on-flash

CVE. cvedetails.com. [Online].
https://www.cvedetails.com /vulnerability-list/vendor id-53/product id-
6761 /Adobe-Flash-Player.html

Nicolas Weil. (2016, March) Streaming Media Magazine. [Online].

http://www.streamingmedia.com /Articles/Articles /Editorial /Featured-

Articles/The-State-of-MPEG-DASH-2016-110099.aspx

Streamroot. [Online]. https://github.com/streamroot/videojs5-
hlsjs-p2p-source-handler

Video.js. [Online]. http://videojs.com/
Mangui. [Online]. https://github.com/dailymotion/hls.js
W3C. (2016, August) [Online]. http://w3c.github.io/media-source/

Streamroot. [Online]. https://github.com/streamroot/hlsjs-p2p-
wrapper

(2016, October) [Online]. http://gruntjs.com/

65

[56]
[57]
[58]
[59]

[60]
[61]
[62]

[63]

[64]

66

[Online]. https://babeljs.io/

(2016, October) [Online]. http://browserify.org/

Big Buck Bunny. [Online]. https://peach.blender.org/

J. K, Meyn, A.], Jalonen, E,, Raivio, Y., & Garcia Marrero, R, Nurminen,
"P2P media streaming with HTML5 and WebRTC.," Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference,
pp. 63-64, April 2013.

DVB, "Digital Video Broadcasting (DVB); MPEG-DASH Profile for
Transport of ISO BMFF Based DVB Services over IP Based Networks,"
2016.

Streamroot. Github. [Online]. https://github.com/StreamRoot

P. Srisuresh G. Tsirtsis, "Network Address Translation - Protocol
Translation (NAT-PT)," RFC 2000.

Jan Ozer. (2011, October) Streaming Media Magazine. [Online].
http://www.streamingmedia.com/Articles/Editorial/What-Is-./What-is-
HLS-(HTTP-Live-Streaming)-78221.aspx

ITU. (2016, July) ITU announces new standard for High Dynamic
Range TV. [Online]. http://www.itu.int/en/mediacentre/Pages/2016-

PR27.aspx

X. Apéndice A — Resultados detalhados dos testes

Teste 1
- 2 peers
- playback 10 minutos
- initSegmentsToSkip =2
- maxStorageChunks = 10
Peer 1 Peer 2
%P2P 0% 78%

Digital Pioneers fund

Blender Foundation

Stats Stats

F2p P2pP

P2P: 0% P2P: 78%

Number of peers: 1 Number of peers: 1
Chunks from CDN: 57 Chunks from CDN: 10
Chunks from P2P: 0 Chunks from P2P: 47

Fig. 21 - Print de tela do teste 1

Teste 2
- 2 peers
- playback 3 minutos
- initSegmentsToSkip =2
- maxStorageChunks = 10

Peer 1 Peer 2
%P2P 0% 80%

Teste 3
- 3 peers
- playback 3 minutos
- initSegmentsToSkip = 2
- maxStorageChunks = 10

Peer 1 Peer 2 Peer 3
%P2P 0% 86% 73%

Teste 4

3 peers

playback 3 minutos
initSegmentsToSkip = 1
maxStorageChunks = 10

Peer 1 Peer 2

Peer 3

%P2P

0% 97%

96%

68

