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Resumo

A area de termodinamica quéantica emergiu da necessidade de entender a conversao energética
em escalas nas quais efeitos quanticos tornam-se relevantes. Superposicao, emaranhamento e
interferéncia sao propriedades sem anélogo classico que levam a interessantes efeitos, como a
possibilidade de obter vantagens em performance. Maquinas térmicas baseadas em sistemas
quanticos correlacionados representam um exemplo intrigante e excitante para explorar tais
vantagens. O presente trabalho visa revisitar alguns resultados obtidos para maquinas térmicas
quénticas operando ciclos termodindmicos em sistemas correlacionados a tempo finito. Além
disso, busca fazer um estudo aprofundado sobre os efeitos de correlacoes na eficiéncia e poténcia.
A compensacao entre estas duas quantidades é um indicador da performance energética em
cenérios realistas, que sao intrinsecamente dependentes do tempo. Em um ciclo ideal, etapas
de extracdo/injecao de trabalho sdo executadas adiabaticamente, o que resulta em poténcia
nula. Por outro lado, processos a tempo finito resultam em flutuagoes e redugao do trabalho
médio, impactando a eficiéncia final. Mais especificamente, vamos considerar sistemas de spin-
1/2 com interagoes primeiros vizinhos e campos externos locais, ambos controlaveis no tempo.
Analisaremos eficiéncia, a poténcia e o emaranhamento em um ciclo de Otto nao ideal, buscando
identificar regimes 6timos para o funcionamento da méquina como um motor, refrigerador,
aquecedor ou acelerador.

Palavras-chave: Termodinamica quantica. Efeitos nao-adiabéticos. Correlagoes quanti-

cas.

1 Introducao

O interesse em méquinas térmicas remonta ao inicio da termodinamica. A necessidade de enten-
der como converter energia em trabalho ttil foi a base da Revolugao Industrial, culminando em
avangos com impacto direto no progresso da sociedade. Deste periodo até o presente, testemu-
nhamos diversos avancos cientificos, muitos dos quais s6 foram possiveis gragas ao advento da
Mecanica Quantica. Atualmente, vivemos a Segunda Revolu¢ao Quéantica|6], impulsionada pela
demanda por novas tecnologias prometendo performance muito superior aos melhores sistemas
classicos.

Nesse contexto, surge a intrigante questao da implementacao de méquinas térmicas baseadas
em sistemas quanticos e a exploracao de suas vantagens. Esse topico se tornou um dos principais
focos da Termodinamica Quéantica [3], um campo que investiga como os principios da mecanica
quantica podem ser aplicados a termodinamica. A literatura apresenta diversos trabalhos que
exploram ciclos termodinamicos em modelos que variam de sistemas simples de poucos qubits
a cadeias de spin em fases criticas, além de realizagoes experimentais (8, 3, 10] .

Os ingredientes quanticos, como emaranhamento e coeréncia, oferecem novas potencialida-



des para a obtencao de vantagens quéanticas em méaquinas térmicas. O emaranhamento, que
descreve uma correlagao entre particulas quanticas, pode ser explorado para aumentar a efi-
ciéncia dos ciclos termodinamicos, permitindo a transferéncia de energia de forma mais eficaz
[12]. A coeréncia, por sua vez, ¢ crucial para manter a superposigao de estados quanticos,
possibilitando operagoes que seriam invidveis em sistemas classicos. A combinagao dessas pro-
priedades pode levar a melhorias significativas na eficiéncias e poténcia das maquinas térmicas
quénticas|13].

Para levar as predicoes tedricas a implementacoes que levariam a aplicacoes reais é desafi-
ador, pois exige incorporar detalhes realistas nos modelos. Na prética, nem sempre é possivel
operar etapas de ciclos de fato adiabaticamente, além de que o processo de termalizacao tam-
bém pode exigir escalas de tempo muito maiores do que os tempos de decoeréncia do sistema.
Assim, levar em conta efeitos nao-adiabaticos é essencial para realmente avaliar a performance
energética em qualquer proposta de maquina térmica quantica com possivel vantagem.

Esta é a motivagao para este trabalho, em que reproduzimos alguns resultados do artigo e
realizamos analises complementares sobre performace e correlagao. Estando baseado no artigo
[5], desenvolvido pelo grupo de termodindmica quantica do Prof. Thiago Oliveira. O foco do
artigo sao efeitos nao-adiabaticos em um sistema de 2 qubits operando um ciclo de Otto a

tempo finito.

2 Primeira Lei da Termodinamica Quéantica

A termodindmica quantica visa adaptar a linguagem de termodinamica para sistemas quénticos,
adotamos o formalismo de sistemas quanticos abertos. Nessa abordagem, estamos interessados
em modelar processos dinamicos de um sistema de interessa quando em contato com outros
sistemas, que chamamos de banho. Um banho é geralmente considerado um grande sistema
térmico a uma temperatura bem definida 7', cujo estado nao muda sob a interacao com um
pequeno sistema quantico. O equilibrio térmico entre o sistema e o banho depende da forma
como o sistema quéntica estd acoplado ao banho, se um sistema quantico estd fracamente
acoplado a um banho térmico obedecendo a uma dinamica Markoviana, entao a evolugao do

operador densidade do sistema ps segue a equagao mestra de Lindblad-Gorini-Kossakowski-

Sudarshan (LGKS) [4]

d . (AP A s 1.y 1. e
—ps(t) = =2 [Ha, pa) + > | LipsLl = SLELk, po — 5psLiLy, | . (1)
dt h - 2 2
onde os operadores Ly, sao os operadores de Lindblad, que representam as variacoes induzidas
pelo banho no sistema e v, sao taxas de transicao devido ao acoplamento com com o banho.

Para um banho térmico, a solugdo da Eq.(1) corresponde ao sistema quantico em equilibrio



térmico, atingindo o estado térmico de Gibbs
pt) =102, (2)

onde j(t) é o operador densidade do sistema, H() o hamiltoniano da dinamica do sistema,

1

Zy = Tr[efﬂg(t)] ¢ a funcao de particao, para a qual f = =

¢é o inverso da temperatura T,
multiplicada pela constante de Boltzmann kp.

Partindo da energia interna média em um instante arbitrario dada por
U= (H(t) =Trlp(t)H(t)). (3)

A variagao temporal da energia interna fica da seguinte forma

~

U = Trp(t) A W) + Tript) B (1)) (4)
Atribui-se os dois termos do lado direito como quantidades termodinamicas. O primeiro termo

(W) = Trlp(t) H (1)) (5)

(6) é devido a uma mudanga associada a reconfiguragao dos estados do sistema, em resposta
ao acoplamento do sistema com o banho térmico. Esta quantidade é identificada como o fluxo
de calor instantaneo médio.

O segundo termo
(6Q) = Tr[p(t)H(t)] (6)

¢ devido a uma mudanca controlavel de energia, associada a variacao do hamiltoniano,
dada por algum parametro externo. Esta quantidade é identificada como o fluxo de trabalho
instantaneo. Assim, integrando esses fluxos ao longo do tempo total 7 do processo, obtém-se o

calor e trabalho.
@ = [ ardio i), @

o) = [ arripone) )

Essas definigoes foram propostas originalmente por Robert Alicki [1]. Como suas anélogas
classicas, as integrais sao feitas ao longo de uma trajetoéria de um dado processo termodinamica,
que leva de um estado inicial H(0) e H(0) até um estado final p(7) e H(7), o que implica que
o caminho escolhido é importante para a quantificacao do calor e do trabalho. Por outro lado,

a mudanca na energia interna s6 depende dos estados inicial e final do sistema. Utilizando as



equagoes anteriores, podemos escrever a primeira lei da termodinadmica como:

A= [ a0 A0] = (Q)+ (W) )

Onde o sinal positivo(negativo) de (W) indica trabalho injetado na (extraido da) substancia
e o sinal positivo(negativo) de (@) indica calor absorvido (rejeitado). Nesse paradigma, calor e

trabalho sao valores médios de variagoes ao longo de um processo.

2.1 Trabalho e Calor

As defini¢oes de calor e trabalho, portanto, sao fundamentadas na decomposi¢cao da variacao
da energia interna, ]E, em termos das variagoes do operador densidade (/3) e do Hamiltoni-
ano (ﬁ ). Para expressar estas quantidades em termos dos niveis de energia e das popu-
lacGes, utilizamos a base de autoestados instantaneos |n(t)) do Hamiltoniano H(t), tal que
H(t)|n(t)) = E,(t)|n(t)). A populacdo do n-ésimo nivel é p,(t) = (n(t)| p(t) |n(t)), ou seja, as
populacoes sao os elementos na diagonal principal de p, enquanto as chamadas coeréncias sao
os elementos fora da diagonal principal (p,m,(t) = (m(t)| p(t) |n(t)), com m # n).

A energia interna, [E, nessa base é

E(t) = Te[p()H ()] = ) _ (n()| p(6)H (1) [n()) = Y Ea(t) (n(t)] p(1) In(t))

n

=3 B (tpa(t) (10)

A variacao temporal da energia interna é obtida pela derivando a equacao anterior.

d

E(t) = — Trlp(t) H ()]

_ [ﬁ(t)mt)} +Tr [ﬁ(t)ﬁf(tﬂ
Para o primeiro termo, o fluxo de calor nessa base é
(6Q) = Tr[pH] = anE > Pum m| In) (11)
n#m
Enquanto para o segundo termo, correspondente ao fluxo de trabalho,
(OW) = Tr| pH anE + Z Prm m] In) (12)
n#m

O calor, portanto, esta relacionado as variagoes nas populagoes enquanto o trabalho esta



relacionado com variagoes nas energias.

Nota-se que a mudanca dos estados ao longo do tempo introduz nas expressoes de calor e
trabalho termos proporcionais as coeréncias, na expressao do trabalho esse termo corresponde
ao trabalho nao-adiabatico, enquanto na expressao do calor esse termo é o calor nao-adiabatico.
O trabalho nao adiabatico corresponde a redugao de trabalho ao longo de um processo devido
a variacao temporal do hamiltoniano, que é convertido em calor nao adiabatico.

Utilizando a equag@o (9) nessa base, obtém-se que a variagao de energia interna ao longo

de um intervalo de tempo sera

AE =" /0 T(ann)dt +) /0 T(ann)dt (13)

Ressalta-se que as defini¢goes de calor e trabalho apresentadas aqui nao sao tnicas, a corres-

pondéncia entre calor e trabalho no regime quantico ¢ um problema em aberto na literatura.

3 Maquinas Térmicas Quanticas

Maquinas térmicas quéanticas (MTQs) consistem de processos ciclicos sobre uma substancia
de trabalho cujas propriedades sao descritas pela mecanica quantica, onde trabalho ¢ injetado
ou realizado pela substancia e ocorrem troca de calor com dois reservatérios de temperaturas
distintas. Esse conceito emergiu a partir do trabalho basilar de Scovil e Schulz-DuBois|7], no

qual se estabeleceu a correspondéncia entre um maser de trés niveis e uma méquina de Carnot.

3.1 Processos Termodinamicos Quanticos

3.2 Processo Isocorico Quantico

Nesse processo, o sistema é colocado em contato com um banho térmico e o parametro externo
do hamiltoniano é mantido fixo (H = 0). A tnica troca energética se da na forma de calor. A
populacao p,, e portanto, a entropia S, variam até que o sistema entre em equilibrio térmico

com o banho. O calor trocado com o banho sera
(@) =D E.Ap, (14)

3.3 Processo Adiabatico Quantico

Os processos adiabaticos quanticos deixam as populagdes inalteradas (p, = 0), isto é, sob um

Hamiltoniano H(t) com autoestados instantaneos |n(t)) e energias correspondentes E,(t), um



sistema quantico evolui do estado inicial

[£(0)) =Y n(0)[n(0))

n

para o estado final

() =) ealt)In(t)),

n

com |c, (t)]? = |c,(0)]? e os coeficientes cn(t) = cn(O) W) e onde as chamadas fase dinamica
e fase geométrica (ou de Berry[2]) sdo 0,,(t) = —1 [ E,(t)dt' e v, (t) = i [ (m(t)|mm(t'))dt,
respectivamente, de modo que se o sistema comeca em um autoestado de H(0), ele permanece
no mesmo autoestado durante a evolugao.

O estudo das condigoes suficientes para que a adiabaticidade seja satisfeita sao dadas

pelo teorema adiabatico. Pode-se demonstrar que uma variacao suficientemente lenta do
(Lo oo |4 o)]

| Em (t)—En (t )I2
1 paratodosm # netodot € [0,7] ) garantem a adiabaticidade. A teoria de perturba-

Hamiltoniano, ou um gap de energia suficientemente grande

¢ao adiabatica analisa outras condigoes e cenarios que garantem a adiabaticidade.
Nos processos adiabaticos entao, com a invariancia das populagoes, o calor trocado, sera
nulo. O trabalho resultante, que corresponde a variagao de energia interna, equagao 13), resulta

€1
=> pAE, (15)

3.4 Ciclo de Otto Quantico

Classicamente o ciclo de Otto é composto por dois processos adiabéticos e dois isocoricos, o
sistema ¢é descritos pelas variaveis de estado de pressao, volume e temperatura. Nas etapas
isocoricas o sistema interage com um de dois reservatorios térmicos, cada um a temperatura
Ty e T; (com T, > T; ), apos cada interacdo segue-se uma etapa adiabatica classica onde é
realizada a extracao de trabalho. A eficiéncia depende da natureza da substancia de trabalho
e as contribuigoes de calor e trabalho ocorrem em estagios separados.

De forma analoga, o Ciclo de Otto Quéntico é composto por quatro etapas, operando entre
dois reservatorios térmicos, um na temperatura 75 e o outro na temperatura 77.

Consideramos uma substancia de trabalho (ST) quéntica descrita por um Hamiltoniano
H(h) que depende de um pardmetro externo h(t), variado entre hy e hy (hy > hy), onde
H; = H(h;). A operacio do ciclo é ilustrada na Figura 1:
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Figura 1: Representagao de um ciclo de Otto atuando como motor em um diagrama de
entropia de von Neumann (S) com relagdo ao parametro externo h

Etapa 1 Adiabatica (A — B):

O sistema é desacoplado do banho a temperatura 77 apos ser preparado no estado de Gibbs
p1 = e~ B /7y, onde f; = kBLTI e | = Tr[e‘ﬁlﬁl]. O parametro externo ¢é alterado de h; para
hso, atingindo o estado po. Em um processo adiabatico quantico ideal, as populagoes P, (A) dos
autoestados nao mudam, nao havendo variagao de calor. O trabalho nessa etapa sera igual a
variagao de energia interna, Wi_,, = Ey — E;, com E; = Tr(ﬁlﬁl) e Ey = Tr([)zﬁg). Como a
entropia de von Neumann, S = — )" P, In P,, depende apenas das populacoes, este processo
¢ isentropico (Sa = Sp).

Etapa 2 Termalizacao isocorica (B — C):

Com o parametro externo fixo em hsy, a substancia de trabalho é acoplado ao banho a
temperatura (75) e relaxa com um hamiltoniano fixo H, até atingir o estado térmico ps =
e=P2H /Zy com Zy = Tr(e_BQHQ). Como o parametro externo do sistema permanece fixo, por
definicao, apenas calor é trocado com o banho, dado pela variacao na energia interna, (Jo =
Es — Ey, com Eg = Tr(psH>).

Etapa 3 Adiabatica (C' — D):

O sistema é novamente isolado termicamente e o parametro externo h é alterado de h, para
hy, atingindo o estado ps . Assim como na etapa 1, as populagdes sdo conservadas, P,(C) =
P,(D), e o processo é isentropico (Sc = Sp). O trabalho nessa etapa serd W ,; = E; — Es,
com E; = Tr(ﬁ4[:[1).

Etapa 4 Termalizacao isocérica (D — A):

Com o parametro fixo em hq, o sistema é acoplado ao banho (77). O sistema termaliza sem
realizar trabalho e retorna ao seu estado térmico inicial p; , encerrando o ciclo. O calor trocado
com o banho serd @1 = E; — Ey.

No fim do ciclo a variacao da energia total serd nula (AE = 0), permitindo classificar o

regime de operacao da maquina como motor, refrigerador, aquecedor ou acelerador, a depender



do sinal do trabalho total

chc - (Wl—>2 + W2—>1> - _<Q1 + Q2> (16)

injetado substancia ao longo do ciclo, do sinal do calor trocado com os reservatorios nas etapas
de termalizacao e das temperaturas dos reservatorios.

Na operagao como motor, calor é absorvido do reservatorio quente, o sistema realiza trabalho
liquido sobre o exterior e rejeita o calor residual no reservatorio frio. No regime de refrigerador,
trabalho é injetado na maquina para extrair calor do reservatorio frio e despeja-lo no reservatorio
quente. O aquecedor, por sua vez, também requer trabalho injetado, mas seu objetivo é aquecer
ambos os reservatoério. Por fim, no acelerador, trabalho é igualmente injetado para remover calor
da fonte quente e rejeitar uma quantidade maior de calor no reservatorio frio, amplificando a

dissipacao térmica total. Os regimes de operacao estao esquematizados na Figura (2)

Motor Refrigerador Aquecedor Acelerador
Reservatirio Reservatdrio Reservatirio Rescrvatdrio
quente frio quente quente
o [y Q 22
j{ — W i& — W T4— W ¥ w
J Ch J v

\ E )\ e/ \“”‘:‘:““'/ \ e

Figura 2: Regimes de operacao de uma méquina térmica: motor, refrigerador, bomba de calor
e acelerador. O reservatorio quente é mostrado em vermelho e o frio em laranja.

A eficiéncia de um motor é dada por n = %, onde (), é o calor trocado com o reservatorio
de maior temperatura, e a poténcia é dada por P = #jyc, onde 7. é o tempo total das quatro
etapas do ciclo. A eficiéncia de um ciclo de Otto quantico depende da estrutura de niveis de
sua substancia de trabalho e de como esses niveis se deslocam durante as etapas unitarias. Se
todos os intervalos de energia se deslocam proporcionalmente entre si, e a etapa é realizada

adiabaticamente, entdo 7 é igual a “eficiéncia padrao de Otto”[9]

Notto = 1 — ha/hy (17)

4 SISTEMA ANISOTROPICO DE DOIS QUBITS

A substancia de trabalho analisada nesse trabalho é composta por duas particulas de spin 1/2
com interagbes em X e y e sujeitas a um campo externo transversal h(t) dependento do tempo.

O hamiltoniano desse sistema ¢é

~

H(t) = Jy01402, + Jy01y09y + h(t)[01. + 02.] (18)



onde 0,04y € 04, sendo as matrizes de Pauli associadas a i-ésima particula. J,,J, sao
as constantes de acoplamento nas direcoes x e y, respectivamente. Adotaremos unidades tais
que as constantes h, kg e o momento magnético u de cada spin sao iguais a 1. Nota-se que o
Hamiltoniano conserva o produto 61,9, e possui simetria de troca de particulas (paridade).

Diagonalizando o Hamiltoniano na base computacional, obtém-se as autoenergias

a(t) = \J4h(t)2 + (J, = J,)? (19)

€3 = Jx + Jy (20)

€2 = _(Jx + Jy) (21)

e1(t) = —ey(t) (22)

com os autoestados correspondentes

lea(t)) = ax(t) [11) + a—(t) 1) (23)
_ D

le5) = 7% (24)
_ =l

|€2) = 7 (25)

ler(t)) = a—(t) [11) — e (2) [1L) (26)

onde

4 (t) =

1 2h(t)
§1i¢M@M%L—%J 0

Como o hamiltoniano ndo comuta consigo mesmo em diferentes instantes [ﬁ (t),H (t‘)] #0
a evolucao temporal unitaria a tempo finito de um estado térmico levaré o sistema para estados
de nao-equilibrio. Este regime induz transi¢oes entre os autoestados de energia durante as

etapas do ciclo, fendmeno denominado na literatura como "fric¢ao quantica interna"|[11]

4.1 Ciclo de Otto a tempo finito e coeficiente adiabatico

O ciclo empregado sera semelhante ao ciclo de Otto, no entanto, as etapas 1 e 3 nao serao
adiabaticas, pois as etapas de injecao e extracao de trabalho serao operadas a tempo finito.
O sistema evolue sob a correspondente transformagao unitaria U (1) = Te™ Jo dtH®) - sendo

T o operador de ordenamento temporal, durante o tempo 7 terminando a etapa no estado



p2 = U(T)ﬁlfﬂ(T)-

Na etapa 3 o campo externo h(t) é revertido de volta ao seu valor inicial, sob uma depen-
déencia temporal h(t) durante a reversao, com h(t) = h(r — t).0 sistema evolue sob a seguinte
operagio unitéria reversa V(1) = Te o #H'®) com H'(t) = H(r — t), atingindo o estado
pu = V(r)psV71(r).

Nota-se que U(7) e V(7) néo sdo independentes. Como H (%) é representado por uma matriz
real na base 61, 6, seja K o operador de conjugacio complexa, do fato que K H (t)R' t=H (1)
para todo t, entao

V(r) = KU'(r)K". (28)
Por conta dessa simetria, a probabilidade de transicao de dois autoestados de energia |e§1)> =
l€;(0)) e |<—:Z(»2)> = |e;(7)) ao longo da primeira etapa, |<6§2)|ﬁ(7)|e§1))|2, iguala-se a probabilidade
da transigao reversa na terceira etapa, \(egl)\f/(r)kz@))ﬁ Para demonstrar isso basta notar que

|el(-k)) tem coeficientes reais na base 71,, ds., de forma que K’|e§k)> = |e§k)>. Segue-se que

e!KU(X\EWP

VKN (KU (1) KT (K[e))?
EV(KTRUN () KR 2

e[ (7)]e?)

e |U (7)) (29)

[PV ()]

{
(€}

(
(
{
{
{

onde utilizou-se (28) e o fato que, para operadores antiunitarios, ({(a|K)[b) = [(a|(K|b))]* e
KiK=1.E suficiente, portanto, calcular as probabilidades de transicao apenas para a primeira
etapa.

Expandindo os estados evoluidos na base dos auto estados no tempo 7, U(7)|en(0)) =
S M (7)e? e, (7)), com 6, ( — Jo €n(t)dt sendo a fase dinamica e com a condigao
inicial CSZ”)(O) = Opm. Substltumdo essa expansao na equacao de Schrodinger dependente do

tempo, obtém-se um conjunto de equagoes diferenciais ordinéarias para as amplitudes de energia
(m)
cn (b);

e = Jy e (8)

(1)
SM(t) =0
&Mt =0
" 62i91( ) m
() = —h(t) =]y — Jy | (). (30)

Como esperado, cém) (t) e cém)(t) sao independentes do tempo, mas cgm)(t) e cflm) (t) sao

10



acopladas, possiblitando transicoes entre os auto estados correspondentes. As amplitudes de-
pendem de J,, J,, do protocolo h(t) usado para alterar o campo externo e do tempo total
utilizado para executar esse protocolo, ressaltando a nao adiabaticidade desse processo, como
apenas os niveis 1 e 4 sao acoplados, a evolucao adiabatica é um sistema de dois-niveis. Em
uma evolugao adiabéatica ideal, |c,(€k) (7)|> = 1 para todo k. Como o acoplamento nao adiabético
da equacgao (30) gera coeréncias na base dos auto estados de energia, a igualdade é falsa para
os niveis k = 1,4.

Desta forma, toda a dindmica nao adiabatica do sistema pode ser capturada por um tnico
parametro, P(7), que definimos como a probabilidade de permanéncia no autoestado (proba-

bilidade de sobrevivéncia) do nivel |e;) durante a primeira etapa:
P(r) = (2| 0(7)|) (31)

onde

egk)> = |e;(hg)).

Devido a unitariedade, | (7)2 = |c{”(7)[2 =1 = P(7), e | (7)|2 = P(7) Portanto, P(7)
representa o grau de adiabaticidade da evolugao. Quanto mais perto de 1, mais adiabatica é a
evolucdo. Os limites assintoticos de P(7) dependem somente da escolha dos valores extremos
de h(t) (hy = h(t)ehy = h(7)). No limite de "quench"onde 7 — 0, o hamiltoniano ¢é alterado

de forma instantanea, e U(7) — 1, usando (??) obtém-se

P(r—0) > Py = [P = {1+ Ahahy + (Lo = Jy)*
TR VR (= LA+ (L — )

E importante notar que, para nosso sistema, niao ocorrem cruzamentos de niveis entre os
estados acoplados (1 e 4), para os estados €; e € (e, simultaneamente, entre €3 e €4), ocorrem
cruzamento de niveis quando h(t) = \/T‘]y , no entanto, a evolucao temporal ndo acopla esses
estados ((ea(t)|€1(t)) = (e3(t)|és(t)) = 0). Assim, o limite adiabatico P — 1 é sempre atingido

para 7 suficientemente grande.

5 RESULTADOS

5.1 Coeficiente de adiabaticidade para um protocolo monoténico

Adotamos ao longo desse trabalho um protocolo monoténico (32) para variacdo de campo

h(t) = \/h§ (;) + h3 (1 - ;) (32)
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Nesse trabalho o conjunto de equagoes de (30), bem como P(7) serdo resolvidos nume-
ricamente em Python usando numpy para escolhas arbitrarias de constantes de acoplamento
Jz, Jy, tempo 7 de evolugao e protocolo h(t). Como exemplo, tomemos J, = 10.0, J, = 2.0,
hy = 4.0 e hy = 1.0. A figura (3) mostra a dependéncia de P em fungao do intervalo T,
observa-se que P(7) & 1 para valores grandes de 7. Além disso, como esperado pela equacao
(32), P(1) ~ 0.929 conforme 7 — 0, nesse caso, mesmo para etapas rapidas observamos um alto
grau de adiabaticidade. Para protocolos monotonicos decrescentes de h(t) o valor do coeficiente

adiabatico sera sempre maior que o de (32).

1.00—5
0.99 —
0.98 —
= 0.97 —
[l 0.96 —
0.95 —
0.94—5
0.93 —

00 01 02 03 04 05 06 07 08 09 10
T

Figura 3: Coeficiente de adiabaticidade P(7) em fungdo da duragao 7 da etapa, para a
evolugdo U(7) com parametros .J, = 10.0, J, = 2.0, hy = 4.0, hy = 1.0 e campo h(t) variando
de acordo com o protocolo da equagao (32)

5.2 Trabalho e Calor Nao Adiabaticos

A energia interna da substancia de trabalho ao final das etapas 1 e 3 seréd

e ()P

(2

S
S
Il

-

&
Il
M-

Ei=D> ¢ 0l ()P (33)

~.
Il
—

I
™-

2]

onde e,gk) denota as autoenergias em cada ponto extremo do Hamiltoniano I:[k, py“) =

(k) - - . . . .
e P /Zy sdo as populagoes térmicas a respectiva temperatura inversa [ e na segunda li-
nha usamos (Wi + Woyy) = —(Q1 + Q2). Por causa da termalizagdo nas etapas 2 e 4 as

energias internas médias apos cada etapa, E3 and [E,, serao invariantes a nao adiabaticidade.
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Decompondo o trabalho de cada etapa unitaria em uma contribuigao adiabatica (W) e

uma contribui¢do nao adiabatica (W"*), obtém-se:

Wid, = fFOLe — )] (34)
e, =2(1— P)f‘”ef) (35)
Wed, = f@Le? — )] (36)

Wae, =2(1— P)f@el) (37)

onde fU) é uma "funcao de trabalho"definida como:

sinh (Bjeflj))
1=y =i = 5 (38)
cosh(/3;e3) + cosh <5je4 >

A analise destas equagoes revela o impacto fisico da nao adiabaticidade, as contribui¢oes
nao adiabaticas, W', e WJ%,, sio sempre positivas (> 0), pois P < 1 e fU) e ¢} ") sd0 positivos,
enquanto Wi, > 0e Wgd, <0.

ad : 4.3
Além disso, para que W%, > |V, |, seria necessario que

(2)

1 N B2+ (], — J,)?
Sl FYFION S e 39
P<a|tt Tt \/4}@ + (Jo— ) (39)

Comparando com a equacao 32, vemos que Py é maior que a expressao de 39, portanto
trabalho sempre sera extraido mesmo durante etapas nao adibaticas de curta duracao.

Na compressao (1 — 2), W™ adiciona um custo extra. A nado adiabaticidade sempre
aumenta o trabalho necessario para a compressao. Na expansao (2 — 1), W™ (positivo)
atua contra o ganho (negativo). A ndo adiabaticidade sempre diminui o trabalho extraido na
expansao.

O trabalho liquido injetado também pode ser separado em, W, = W24 4 1yna

cyc cyc?

Wad = wed, + Wed | = (FO — @)l — ), (40)
Wre = W, + Wyt =2(1 — P)[el) fO + V). (41)

O termo W2 & sempre positivo, representando a energia total dissipada como friccdo interna
cyc )
por ciclo.

As trocas de calor também sao afetadas. A contribuicao nao adiabéatica para o calor vem
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exclusivamente da energia dissipada W"* na etapa unitaria anterior:

Qe =~ W3, <0 (42)

Q' =W, <0 (43)
Ambas as contribuigdes sao negativas. Fisicamente, isso significa que a fricgdo interna gera
um "excesso"de energia no sistema ao final de cada etapa unitaria. Esse excesso de energia é,
entao, inevitavelmente dissipado como calor em ambos os reservatérios durante as etapas de
termalizagao.

As contribuicoes adiabaticas serao

Q1 = (Aps — Apa)es + [f@ — fDlelV,
2 = (Apy — Aps)es + [fD — @], (44)

onde Ap; := p(.l) — p§-2). Cada uma das contribuigoes de calor adiabatica pode ser tanto positiva

J
quanto negativa.

5.3 Analise dos Regimes de Operacao

As condigoes de calor e trabalho para cada regime estao sintetizadas na Tabela 1.

Regime Condicao de Temperatura | Calor (); | Calor (), | Trabalho W,,.

Regime regqular: Ty > T,

Motor T > T, >0 <0 <0
Refrigerador Ty > Ty <0 >0 >0
Acelerador T > T >0 >0 >0
Aquecedor T > 1T <0 <0 >0

Regime reverso: T, <1,

Motor T <Ts <0 >0 <0
Refrigerador T < Ty >0 <0 >0
Acelerador T < Ty <0 >0 >0
Aquecedor T < Ty <0 <0 >0

Tabela 1: Classificacao dos regimes de operacao

O regime de operacao dependende nao s6 das temperaturas 7} e 75 dos banhos, mas também
do conjunto de parametros hy, hg, J;, J, do Hamiltoniano e também do grau de adiabaticidade

P do ciclo. A Figura 4. Em ambas as linhas a adiabaticidade reduz da esquerda para a direita,
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comegando no limite adiabatico (P = 1). Os diferentes regimes de operagao sao representa-

dos respectivamente pelas seguintes cores: refrigerador (azul) , motor (vermelho), aquecedor

(laranja) e acelerador (verde).

(a) (P=1.0) (b) (P=0.97)

20.0 (c) (P=0.93)

17.5

12.5

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200
T2 Tz Tz

(d) (P=1.0) (e) (P=0.993) (f) (P=0.95)

75 10.0 125 15.0 B B X 75 10.0 125 15.0 75 10.0 125 15.0
T2 T2 T2

Figura 4: Intervalos de temperatura onde o ciclo opera como um refrigerador (azul), motor
(vermelho), aquecedor (laranja) ou acelerador (verde), para diferentes valores de
adiabaticidade P. Na linha superior: J, = 0.01, J, = 2.00, hy =4 e hy = 1, com P = 1.0,

P = 0.97 e 0.93 da esquerda para a direita. Nesta faixa de parametros, apenas motores
regulares (onde 77 > T5) ocorrem. Na linha inferior J, = 10.0, J, = 2.6, hy =4 e hy = 1, com
P =1.0,P =0.993 e P =0.95 da esquerda para a direita.

A analise das zonas de operagao do ciclo de Otto revela caracteristicas qualitativas impor-
tantes em fungao do acoplamento e do grau de adiabaticidade. Na Figura 4(a), correspondente
ao regime de acoplamento fraco (J,J, < h?),observa-se uma tnica zona de motor na regiao
onde T} > T5, incluindo o eixo T, = 0 - o que indica que o ciclo sempre opera como motor
quando 75 — 0. Este comportamento, denominado motor regular, é representado por um ci-
clo anti-horario no diagrama S X h (entropia de von Neumann versus intensidade de campo),
conforme ilustrado na Figura 1.

No regime de acoplamento forte [Figura 4(d)],

Jody > N3 (45)
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emergem caracteristicas adicionais notaveis, incluindo duas zonas de motor separadas. A
nova zona de motor ocorre para T, > T} e inclui o eixo 77 = 0, sendo representada por um
ciclo horéario no diagrama S x h, que denominaremos motor reverso. Esta dupla possibilidade
de operacao significa que, dependendo das temperaturas dos banhos, o sistema pode funcionar
como motor térmico em ambos os sentidos de rotagao no ciclo de Otto.

As duas zonas de motor sao separadas por uma lacuna de temperatura para 77, dentro da
qual nenhum motor térmico é possivel. Adicionalmente, mesmo para 717 fora desta lacuna, o
motor regular deixa de operar para 75 suficientemente baixo, enquanto o motor reverso cessa
sua operacao para Th excessivamente alto.

A condicao estabelecida pela Equacao (45) é suficiente para a existéncia de motores reversos
no limite adiabatico. Fisicamente, esta condi¢ao implica que o autoestado |e3) corresponde ao
estado fundamental durante a equilibracao com o banho frio em 7;. Consequentemente, a
populacao do sistema concentra-se predominantemente neste estado. Por tratar-se de um nivel
ocioso que nao se desloca nem acopla a outros durante a etapa de compressao hy — ho, sua
contribuicdo para o trabalho injetado W4, ¢ nula. Para T; suficientemente baixo, W4, tende
a zero, enquanto W, ,; mantém-se negativo no limite adiabético, resultando em W2 < 0 -
condicao necessaria para a operagao como motor térmico.

As Figuras 4(b) e 4(c) (acoplamento fraco) e 4(e) e 4(f) (acoplamento forte) ilustram os
efeitos da reducao do parametro de adiabaticidade P. Em todos os casos analisados, onde
P > P, observa-se que:

As regices de motor e refrigerador encolhem progressivamente . A zona de aquecedor
expande-se correspondentemente. As contribui¢oes nao adiabaticas reduzem o trabalho liquido
do ciclo e aumentam a dissipa¢ao nos banhos

Para acoplamento fraco, este efeito é mais pronunciado em baixas temperaturas, com a zona
de motor deslocando-se para valores minimos de 77 cada vez mais elevados. No acoplamento
forte, a zona de motor regular também se desloca para cima, enquanto a zona de motor reverso
é comprimida para baixo, efetivamente ampliando a lacuna de temperatura.

Embora essas mudancas tornem-se mais pronunciadas com a diminui¢ao de P, é notavel
que todas as caracteristicas qualitativas do limite adiabatico permanecem presentes quando
0,5 <P <1

5.4 Analise de Eficiéncia e poténcia

O principal objetivo desta analise é investigar como os efeitos de eficiéncia sao impactados pela
falta de adiabaticidade perfeita. Como mencionado anteriormente, uma evolucao nao adiabética
afasta o sistema do equilibrio térmico devido & introdugao de coeréncia na base de energia.
Consequentemente, observa-se um aumento na energia dissipada durante a reequilibragao com

os banhos térmicos, resultando na diminuicao da eficiéncia do motor.
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Neste trabalho, demonstramos que a eficiéncia do motor 1 é uma fungao monotonicamente
crescente do parametro de adiabaticidade P. Suponha 0 < f(z) = a(z)/b(z) < 1, onde
a(z),b(x) >0, ed(x)>b(x) >0. Entao f'(z) > 0.

Para um motor regular operando no limite adiabatico (0 < —W2 < Q%) a eficiéncia &
dada por

_ WL - W, (P) — Wi, (P)

n= cic - —
Qld - W2—>1 (P)

Uma vez que W, (P) e WJ“,(P) sao fungoes positivas e monotonicamente decrescentes
de P, é claro que n(P) satisfaz as condigoes delineadas acima e, portanto, n'(P) > 0. O mesmo
argumento também é claramente aplicavel a motores “reversos”, apenas substituindo )1 por ()s.
Na verdade, isso deve valer para qualquer motor de Otto cuja adiabaticidade seja mensuravel
por um tunico parametro.

A Figura 5 ilustra o comportamento da eficiéncia para um motor regular com acoplamento
fraco (J, = 0,01, J, = 0,8). Observa-se que:

1 decresce monotonicamente com a redugao de P. No limite adiabatico, n pode superar
Nowo = 0,75. A faixa de temperaturas com 1 > 1oy, reduz-se rapidamente com a diminuig¢ao

de P.Para P < 0,9996, perde-se completamente a capacidade de exceder noo

0.770
— P=1.0
P=0.9999
—— P=0.9998
— P=0.9996
=== Notta =075

0.765 A

0.760 A

0.755 1

Eficiéncia

o
~
v
(=]

0.745 1

0.740 4

0.735 T T T T T
10 15 2.0 2.5 3.0 3.5 4.0

Ty
Figura 5: Eficiéncia de um motor regular em fungao de 7; para diferentes valores de P

(T, = 0,2). Pardmetros: hy = 4,0, hy = 1,0, J, = 0,01, J, =0,8.

Notavelmente, n nao aumenta monotonicamente com 77, apresentando um méaximo mesmo
com o aumento da diferenca de temperatura entre os banhos, comportamento atipico em com-

paracao com ciclos tradicionais.
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A Figura 6 apresenta resultados similares para um motor reverso com acoplamento forte
(J. = 10,0, J, = 1,6), onde:

A condigao 1 > nou, persiste em uma faixa mais ampla (P > 0,976). Mesmo para P =
P(r — 0) = 0,932, o motor reverso mantém operagao (embora ineficiente). n decresce para Ty

elevados, mantendo o comportamento nao monotonico

1.0

0.8

Eficiéncia
=]
o
i

=]
S
L

0.2

0.0

2 3 a 5 6 7 8
Tz

Figura 6: Eficiéncia de um motor reverso em funcao de 7, para diferentes valores de P
(T; = 0,05). Parametros: h; = 4,0, hy = 1,0, J, = 10,0, J, = 1,6.

A Figura 7 fornece uma visao abrangente das faixas de temperatura onde 1 > 7oy, para
ambos os tipos de motor. Destaca-se que: A reducao de P diminui rapidamente as regioes
de alta eficiéncia.Motores regulares sao mais sensiveis a nao-adiabaticidade. Motores reversos

apresentam maior robustez em regimes nao adiabaticos

0.15F

0.05 i, . J
0.05 0.10 0.15 0.20 0.25 0.30

T

Figura 7: Faixas de temperatura com 1 > 1o, para diferentes valores de P. Esquerda: motor
regular (J, = 0,01, J, = 0,8). Direita: motor reverso (J, = 10,0, J, = 1,6).

Estes resultados demonstram que, embora a nao-adiabaticidade degrade a eficiéncia, os
comportamentos qualitativos fundamentais do sistema mantém-se preservados, com ambos os

tipos de motor mantendo operacao mesmo em regimes significativamente nao adiabaticos.
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6 Conclusao

Este trabalho dedicou-se a investigar o desempenho termodinadmico de uma méquina térmica
quantica de Otto, cuja substancia de trabalho é um sistema anisotrépico de dois qubits, operando
em regimes de tempo finito. A anélise centrou-se nos efeitos da nao adiabaticidade, quantificada
pelo coeficiente P(7), sobre o trabalho, o calor, os regimes de operagao e, principalmente, a
eficiéncia e a robustez do ciclo.

A principal contribuicao deste estudo reside na demonstracao analitica e numérica de que a
dindmica de nao equilibrio do sistema, induzida pela evolu¢ao unitaria a tempo finito, pode ser
completamente caracterizada por um tnico parametro: a probabilidade de sobrevivéncia P(7)
no autoestado fundamental durante a etapa de compressao. Esta simplificagao, decorrente da
simetria do Hamiltoniano e do protocolo de reversao temporal, permitiu uma analise precisa e
abrangente da "friccao quantica interna"e de suas consequéncias.

Os resultados obtidos revelaram que a nao adiabaticidade introduz contribuigoes positivas
e dissipativas ao trabalho em ambas as etapas unitarias (W"%), as quais se refletem como calor
extra dissipado nos reservatorios durante as termalizagoes (Q™*). Consequentemente, o trabalho
liquido do ciclo é reduzido e a eficiéncia do motor, 1, mostrou-se uma fun¢gao monotonicamente
crescente de P, diminuindo a medida que o processo se afasta da adiabaticidade perfeita.

A anélise da eficiéncia demonstrou que, no limite adiabatico (P = 1), ambos os motores
podem superar a eficiéncia padrao de Otto. No entanto, a faixa de temperaturas onde 1 > 1o,
¢ altamente sensivel & nao adiabaticidade, encolhendo rapidamente com a diminuicao de P.
Observou-se que o motor regular é significativamente mais vulneravel a esses efeitos, perdendo
a capacidade de superar 7o, mesmo para valores de P ainda préoximos de 1. Em contraste, o
motor reverso exibiu uma robustez notavel, mantendo regioes de alta eficiéncia em regimes nao

adiabéaticos.
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