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Resumo

A área de termodinâmica quântica emergiu da necessidade de entender a conversão energética
em escalas nas quais efeitos quânticos tornam-se relevantes. Superposição, emaranhamento e
interferência são propriedades sem análogo clássico que levam a interessantes efeitos, como a
possibilidade de obter vantagens em performance. Máquinas térmicas baseadas em sistemas
quânticos correlacionados representam um exemplo intrigante e excitante para explorar tais
vantagens. O presente trabalho visa revisitar alguns resultados obtidos para máquinas térmicas
quânticas operando ciclos termodinâmicos em sistemas correlacionados a tempo finito. Além
disso, busca fazer um estudo aprofundado sobre os efeitos de correlações na eficiência e potência.
A compensação entre estas duas quantidades é um indicador da performance energética em
cenários realistas, que são intrinsecamente dependentes do tempo. Em um ciclo ideal, etapas
de extração/injeção de trabalho são executadas adiabaticamente, o que resulta em potência
nula. Por outro lado, processos a tempo finito resultam em flutuações e redução do trabalho
médio, impactando a eficiência final.Mais especificamente, vamos considerar sistemas de spin-
1/2 com interações primeiros vizinhos e campos externos locais, ambos controláveis no tempo.
Analisaremos eficiência, a potência e o emaranhamento em um ciclo de Otto não ideal, buscando
identificar regimes ótimos para o funcionamento da máquina como um motor, refrigerador,
aquecedor ou acelerador.

Palavras-chave: Termodinâmica quântica. Efeitos não-adiabáticos. Correlações quânti-
cas.

1 Introdução

O interesse em máquinas térmicas remonta ao início da termodinâmica. A necessidade de enten-
der como converter energia em trabalho útil foi a base da Revolução Industrial, culminando em
avanços com impacto direto no progresso da sociedade. Deste período até o presente, testemu-
nhamos diversos avanços científicos, muitos dos quais só foram possíveis graças ao advento da
Mecânica Quântica. Atualmente, vivemos a Segunda Revolução Quântica[6], impulsionada pela
demanda por novas tecnologias prometendo performance muito superior aos melhores sistemas
clássicos.

Nesse contexto, surge a intrigante questão da implementação de máquinas térmicas baseadas
em sistemas quânticos e a exploração de suas vantagens. Esse tópico se tornou um dos principais
focos da Termodinâmica Quântica [3], um campo que investiga como os princípios da mecânica
quântica podem ser aplicados à termodinâmica. A literatura apresenta diversos trabalhos que
exploram ciclos termodinâmicos em modelos que variam de sistemas simples de poucos qubits
a cadeias de spin em fases críticas, além de realizações experimentais [8, 3, 10] .

Os ingredientes quânticos, como emaranhamento e coerência, oferecem novas potencialida-
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des para a obtenção de vantagens quânticas em máquinas térmicas. O emaranhamento, que
descreve uma correlação entre partículas quânticas, pode ser explorado para aumentar a efi-
ciência dos ciclos termodinâmicos, permitindo a transferência de energia de forma mais eficaz
[12]. A coerência, por sua vez, é crucial para manter a superposição de estados quânticos,
possibilitando operações que seriam inviáveis em sistemas clássicos. A combinação dessas pro-
priedades pode levar a melhorias significativas na eficiências e potência das máquinas térmicas
quânticas[13].

Para levar as predições teóricas a implementações que levariam a aplicações reais é desafi-
ador, pois exige incorporar detalhes realistas nos modelos. Na prática, nem sempre é possível
operar etapas de ciclos de fato adiabaticamente, além de que o processo de termalização tam-
bém pode exigir escalas de tempo muito maiores do que os tempos de decoerência do sistema.
Assim, levar em conta efeitos não-adiabáticos é essencial para realmente avaliar a performance
energética em qualquer proposta de máquina térmica quântica com possível vantagem.

Esta é a motivação para este trabalho, em que reproduzimos alguns resultados do artigo e
realizamos análises complementares sobre performace e correlação. Estando baseado no artigo
[5], desenvolvido pelo grupo de termodinâmica quântica do Prof. Thiago Oliveira. O foco do
artigo são efeitos não-adiabáticos em um sistema de 2 qubits operando um ciclo de Otto a
tempo finito.

2 Primeira Lei da Termodinâmica Quântica

A termodinâmica quântica visa adaptar a linguagem de termodinâmica para sistemas quânticos,
adotamos o formalismo de sistemas quânticos abertos. Nessa abordagem, estamos interessados
em modelar processos dinâmicos de um sistema de interessa quando em contato com outros
sistemas, que chamamos de banho. Um banho é geralmente considerado um grande sistema
térmico a uma temperatura bem definida T , cujo estado não muda sob a interação com um
pequeno sistema quântico. O equilíbrio térmico entre o sistema e o banho depende da forma
como o sistema quântica está acoplado ao banho, se um sistema quântico está fracamente
acoplado a um banho térmico obedecendo a uma dinâmica Markoviana, então a evolução do
operador densidade do sistema ρ̂s segue a equação mestra de Lindblad-Gorini-Kossakowski-
Sudarshan (LGKS) [4]

d

dt
ρ̂s(t) = − i

ℏ
[Ĥs, ρ̂s] +

∑
k

γk

(
L̂kρ̂sL̂

†
k −

1

2
L̂†
kL̂k, ρ̂s − 1

2
ρ̂sL̂

†
kL̂k,

)
. (1)

onde os operadores L̂k são os operadores de Lindblad, que representam as variações induzidas
pelo banho no sistema e γk são taxas de transição devido ao acoplamento com com o banho.
Para um banho térmico, a solução da Eq.(1) corresponde ao sistema quântico em equilíbrio
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térmico, atingindo o estado térmico de Gibbs

ρ̂(t) = e−βĤ(t)/Zt (2)

onde ρ̂(t) é o operador densidade do sistema, Ĥ(t) o hamiltoniano da dinâmica do sistema,
Zt = Tr[e−βĤ(t)] é a função de partição, para a qual β = 1

kBT
é o inverso da temperatura T,

multiplicada pela constante de Boltzmann kB.
Partindo da energia interna média em um instante arbitrário dada por

U = ⟨Ĥ(t)⟩ = Tr[ρ̂(t)Ĥ(t)]. (3)

A variação temporal da energia interna fica da seguinte forma

U̇ = Tr[ ˙̂ρ(t)Ĥ(t)] + Tr[ρ̂(t)
˙̂
H(t)]. (4)

Atribui-se os dois termos do lado direito como quantidades termodinâmicas. O primeiro termo

⟨δW ⟩ = Tr[ρ̂(t)
˙̂
H(t)] (5)

(6) é devido a uma mudança associada à reconfiguração dos estados do sistema, em resposta
ao acoplamento do sistema com o banho térmico. Esta quantidade é identificada como o fluxo
de calor instantâneo médio.

O segundo termo
⟨δQ⟩ = Tr[ ˙̂ρ(t)Ĥ(t)] (6)

é devido a uma mudança controlável de energia, associada à variação do hamiltoniano,
dada por algum parâmetro externo. Esta quantidade é identificada como o fluxo de trabalho
instantâneo. Assim, integrando esses fluxos ao longo do tempo total τ do processo, obtêm-se o
calor e trabalho.

⟨Q⟩ =
∫ τ

0

dtTr[ ˙̂ρ(t)Ĥ(t)], (7)

⟨W ⟩ =
∫ τ

0

dtTr[ρ̂(t)
˙̂
H(t)]. (8)

Essas definições foram propostas originalmente por Robert Alicki [1]. Como suas análogas
clássicas, as integrais são feitas ao longo de uma trajetória de um dado processo termodinâmica,
que leva de um estado inicial ρ̂(0) e Ĥ(0) até um estado final ρ̂(τ) e Ĥ(τ), o que implica que
o caminho escolhido é importante para a quantificação do calor e do trabalho. Por outro lado,
a mudança na energia interna só depende dos estados inicial e final do sistema. Utilizando as
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equações anteriores, podemos escrever a primeira lei da termodinâmica como:

∆E =

∫ τ

0

dt
d

dt
Tr[ρ̂(t)Ĥ(t)] = ⟨Q⟩+ ⟨W ⟩. (9)

Onde o sinal positivo(negativo) de ⟨W ⟩ indica trabalho injetado na (extraído da) substância
e o sinal positivo(negativo) de ⟨Q⟩ indica calor absorvido (rejeitado). Nesse paradigma, calor e
trabalho são valores médios de variações ao longo de um processo.

2.1 Trabalho e Calor

As definições de calor e trabalho, portanto, são fundamentadas na decomposição da variação
da energia interna, Ė, em termos das variações do operador densidade ( ˙̂ρ) e do Hamiltoni-
ano ( ˙̂

H). Para expressar estas quantidades em termos dos níveis de energia e das popu-
lações, utilizamos a base de autoestados instantâneos |n(t)⟩ do Hamiltoniano Ĥ(t), tal que
Ĥ(t) |n(t)⟩ = En(t) |n(t)⟩. A população do n-ésimo nível é pn(t) = ⟨n(t)| ρ̂(t) |n(t)⟩, ou seja, as
populações são os elementos na diagonal principal de ρ̂, enquanto as chamadas coerências são
os elementos fora da diagonal principal (pnm(t) = ⟨m(t)| ρ̂(t) |n(t)⟩, com m ̸= n).

A energia interna, E, nessa base é

E(t) = Tr[ρ̂(t)Ĥ(t)] =
∑
n

⟨n(t)| ρ̂(t)Ĥ(t) |n(t)⟩ =
∑
n

En(t) ⟨n(t)| ρ̂(t) |n(t)⟩

E(t) =
∑
n

En(t)pn(t) (10)

A variação temporal da energia interna é obtida pela derivando a equação anterior.

Ė(t) =
d

dt
Tr[ρ̂(t)Ĥ(t)]

= Tr
[
˙̂ρ(t)Ĥ(t)

]
+ Tr

[
ρ̂(t)

˙̂
H(t)

]
Para o primeiro termo, o fluxo de calor nessa base é

⟨δQ⟩ = Tr[ ˙̂ρĤ] =
∑
n

ṗnEn −
∑
n̸=m

pnm ⟨m| ∂Ĥ
∂t

|n⟩ (11)

Enquanto para o segundo termo, correspondente ao fluxo de trabalho,

⟨δW ⟩ = Tr[ρ̂
˙̂
H] =

∑
n

pnĖn +
∑
n̸=m

pnm ⟨m| ∂Ĥ
∂t

|n⟩ (12)

O calor, portanto, está relacionado às variações nas populações enquanto o trabalho está
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relacionado com variações nas energias.
Nota-se que a mudança dos estados ao longo do tempo introduz nas expressões de calor e

trabalho termos proporcionais às coerências, na expressão do trabalho esse termo corresponde
ao trabalho não-adiabático, enquanto na expressão do calor esse termo é o calor não-adiabático.
O trabalho não adiabático corresponde à redução de trabalho ao longo de um processo devido
à variação temporal do hamiltoniano, que é convertido em calor não adiabático.

Utilizando a equação (9) nessa base, obtêm-se que a variação de energia interna ao longo
de um intervalo de tempo será

∆E =
∑
n

∫ τ

0

(ṗnEn)dt+
∑
n

∫ τ

0

(pnĖn)dt (13)

Ressalta-se que as definições de calor e trabalho apresentadas aqui não são únicas, a corres-
pondência entre calor e trabalho no regime quântico é um problema em aberto na literatura.

3 Máquinas Térmicas Quânticas

Máquinas térmicas quânticas (MTQs) consistem de processos cíclicos sobre uma substância
de trabalho cujas propriedades são descritas pela mecânica quântica, onde trabalho é injetado
ou realizado pela substância e ocorrem troca de calor com dois reservatórios de temperaturas
distintas. Esse conceito emergiu a partir do trabalho basilar de Scovil e Schulz-DuBois[7], no
qual se estabeleceu a correspondência entre um maser de três níveis e uma máquina de Carnot.

3.1 Processos Termodinâmicos Quânticos

3.2 Processo Isocórico Quântico

Nesse processo, o sistema é colocado em contato com um banho térmico e o parâmetro externo
do hamiltoniano é mantido fixo ( ˙̂

H = 0). A única troca energética se dá na forma de calor. A
população pn, e portanto, a entropia S, variam até que o sistema entre em equilíbrio térmico
com o banho. O calor trocado com o banho será

⟨Q⟩ =
∑
n

En∆pn (14)

3.3 Processo Adiabático Quântico

Os processos adiabáticos quânticos deixam as populações inalteradas (ṗn = 0), isto é, sob um
Hamiltoniano H(t) com autoestados instantâneos |n(t)⟩ e energias correspondentes En(t), um
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sistema quântico evolui do estado inicial

|ψ(0)⟩ =
∑
n

cn(0)|n(0)⟩

para o estado final
|ψ(t)⟩ =

∑
n

cn(t)|n(t)⟩,

com |cn(t)|2 = |cn(0)|2 e os coeficientes cn(t) = cn(0)e
iθn(t)eiγn(t) onde as chamadas fase dinâmica

e fase geométrica (ou de Berry[2]) são θm(t) = −1
ℏ

∫ t

0
Em(t

′)dt′ e γm(t) = i
∫ t

0
⟨m(t′)|ṁ(t′)⟩dt′,

respectivamente, de modo que se o sistema começa em um autoestado de H(0), ele permanece
no mesmo autoestado durante a evolução.

O estudo das condições suficientes para que a adiabaticidade seja satisfeita são dadas
pelo teorema adiabático. Pode-se demonstrar que uma variação suficientemente lenta do

Hamiltoniano, ou um gap de energia suficientemente grande (
ℏ |⟨m(t)| dHdt |n(t)|m(t)| dHdt |n(t)⟩|

|Em(t)−En(t)|2
≪

1 para todos m ̸= n e todo t ∈ [0, T ] ) garantem a adiabaticidade. A teoria de perturba-
ção adiabática analisa outras condições e cenários que garantem a adiabaticidade.

Nos processos adiabáticos então, com a invariância das populações, o calor trocado, será
nulo. O trabalho resultante, que corresponde a variação de energia interna, equação 13), resulta
em

⟨W ⟩ =
∑
n

pn∆En (15)

3.4 Ciclo de Otto Quântico

Classicamente o ciclo de Otto é composto por dois processos adiabáticos e dois isocóricos, o
sistema é descritos pelas variáveis de estado de pressão, volume e temperatura. Nas etapas
isocóricas o sistema interage com um de dois reservatórios térmicos, cada um à temperatura
Th e Tl (com Th > Tl ), após cada interação segue-se uma etapa adiabática clássica onde é
realizada a extração de trabalho. A eficiência depende da natureza da substância de trabalho
e as contribuições de calor e trabalho ocorrem em estágios separados.

De forma análoga, o Ciclo de Otto Quântico é composto por quatro etapas, operando entre
dois reservatórios térmicos, um na temperatura T2 e o outro na temperatura T1.

Consideramos uma substância de trabalho (ST) quântica descrita por um Hamiltoniano
Ĥ(h) que depende de um parâmetro externo h(t), variado entre h1 e h2 (h2 > h1), onde
Ĥi = Ĥ(hi). A operação do ciclo é ilustrada na Figura 1:
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Figura 1: Representação de um ciclo de Otto atuando como motor em um diagrama de
entropia de von Neumann (S) com relação ao parâmetro externo h

Etapa 1 Adiabática (A→ B):
O sistema é desacoplado do banho à temperatura T1 após ser preparado no estado de Gibbs

ρ̂1 = e−β1Ĥ1/Z1, onde β1 = 1
kBT1

e Z1 = Tr[e−β1Ĥ1 ]. O parâmetro externo é alterado de h1 para
h2, atingindo o estado ρ̂2. Em um processo adiabático quântico ideal, as populações Pn(A) dos
autoestados não mudam, não havendo variação de calor. O trabalho nessa etapa será igual a
variação de energia interna, W1→2 = E2 − E1, com E1 = Tr(ρ̂1Ĥ1) e E2 = Tr(ρ̂2Ĥ2). Como a
entropia de von Neumann, S = −

∑
n Pn lnPn, depende apenas das populações, este processo

é isentrópico (SA = SB).
Etapa 2 Termalização isocórica (B → C):
Com o parâmetro externo fixo em h2, a substância de trabalho é acoplado ao banho à

temperatura (T2) e relaxa com um hamiltoniano fixo Ĥ2 até atingir o estado térmico ρ̂3 =

e−β2Ĥ2/Z2 com Z2 = Tr(e−β2Ĥ2). Como o parâmetro externo do sistema permanece fixo, por
definição, apenas calor é trocado com o banho, dado pela variação na energia interna, Q2 =

E3 − E2, com E3 = Tr(ρ̂3Ĥ2).
Etapa 3 Adiabática (C → D):
O sistema é novamente isolado termicamente e o parâmetro externo h é alterado de h2 para

h1, atingindo o estado ρ̂4 . Assim como na etapa 1, as populações são conservadas, Pn(C) =

Pn(D), e o processo é isentrópico (SC = SD). O trabalho nessa etapa será W2→1 = E4 − E3,
com E4 = Tr(ρ̂4Ĥ1).

Etapa 4 Termalização isocórica (D → A):
Com o parâmetro fixo em h1, o sistema é acoplado ao banho (T1). O sistema termaliza sem

realizar trabalho e retorna ao seu estado térmico inicial ρ̂1 , encerrando o ciclo. O calor trocado
com o banho será Q1 = E1 − E4.

No fim do ciclo a variação da energia total será nula (∆E = 0), permitindo classificar o
regime de operação da máquina como motor, refrigerador, aquecedor ou acelerador, a depender
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do sinal do trabalho total

Wcyc = (W1→2 +W2→1) = −(Q1 +Q2) (16)

injetado substância ao longo do ciclo, do sinal do calor trocado com os reservatórios nas etapas
de termalização e das temperaturas dos reservatórios.

Na operação como motor, calor é absorvido do reservatório quente, o sistema realiza trabalho
líquido sobre o exterior e rejeita o calor residual no reservatório frio. No regime de refrigerador,
trabalho é injetado na máquina para extrair calor do reservatório frio e despejá-lo no reservatório
quente. O aquecedor, por sua vez, também requer trabalho injetado, mas seu objetivo é aquecer
ambos os reservatório. Por fim, no acelerador, trabalho é igualmente injetado para remover calor
da fonte quente e rejeitar uma quantidade maior de calor no reservatório frio, amplificando a
dissipação térmica total. Os regimes de operação estão esquematizados na Figura (2)

Figura 2: Regimes de operação de uma máquina térmica: motor, refrigerador, bomba de calor
e acelerador. O reservatório quente é mostrado em vermelho e o frio em laranja.

A eficiência de um motor é dada por η = −Wcyc

Qh
, onde Qh é o calor trocado com o reservatório

de maior temperatura, e a potência é dada por P = −Wcyc
τc

, onde τc é o tempo total das quatro
etapas do ciclo. A eficiência de um ciclo de Otto quântico depende da estrutura de níveis de
sua substância de trabalho e de como esses níveis se deslocam durante as etapas unitárias. Se
todos os intervalos de energia se deslocam proporcionalmente entre si, e a etapa é realizada
adiabaticamente, então η é igual à “eficiência padrão de Otto”[9]

ηOtto = 1− h2/h1 (17)

4 SISTEMA ANISOTRÓPICO DE DOIS QUBITS

A substância de trabalho analisada nesse trabalho é composta por duas partículas de spin 1/2
com interações em x e y e sujeitas a um campo externo transversal h(t) dependento do tempo.
O hamiltoniano desse sistema é

Ĥ(t) = Jxσ̂1xσ̂2x + Jyσ̂1yσ̂2y + h(t)[σ̂1z + σ̂2z] (18)
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onde σ̂ix, σ̂iy e σ̂iz sendo as matrizes de Pauli associadas à i-ésima partícula. Jx, Jy são
as constantes de acoplamento nas direções x e y, respectivamente. Adotaremos unidades tais
que as constantes ℏ, kB e o momento magnético µ de cada spin são iguais à 1. Nota-se que o
Hamiltoniano conserva o produto σ̂1zσ̂2z e possui simetria de troca de partículas (paridade).

Diagonalizando o Hamiltoniano na base computacional, obtêm-se as autoenergias

ϵ4(t) =
√
4h(t)2 + (Jx − Jy)2 (19)

ϵ3 = Jx + Jy (20)

ϵ2 = −(Jx + Jy) (21)

ϵ1(t) = −ϵ4(t) (22)

com os autoestados correspondentes

|ϵ4(t)⟩ = α+(t) |↑↑⟩+ α−(t) |↓↓⟩ (23)

|ϵ3⟩ =
|↑↓⟩+ |↓↑⟩√

2
(24)

|ϵ2⟩ =
|↑↓⟩ − |↓↑⟩√

2
(25)

|ϵ1(t)⟩ = α−(t) |↑↑⟩ − α+(t) |↓↓⟩ (26)

onde

α±(t) =

√√√√1

2

[
1± 2h(t)√

4h(t)2 + (Jx − Jy)2

]
(27)

.
Como o hamiltoniano não comuta consigo mesmo em diferentes instantes

[
Ĥ(t), Ĥ(t‘)

]
̸= 0

a evolução temporal unitária a tempo finito de um estado térmico levará o sistema para estados
de não-equilíbrio. Este regime induz transições entre os autoestados de energia durante as
etapas do ciclo, fenômeno denominado na literatura como "fricção quântica interna"[11]

4.1 Ciclo de Otto à tempo finito e coeficiente adiabático

O ciclo empregado será semelhante ao ciclo de Otto, no entanto, as etapas 1 e 3 não serão
adiabáticas, pois as etapas de injeção e extração de trabalho serão operadas a tempo finito.
O sistema evolue sob a correspondente transformação unitária Û(τ) = T e−i

∫ τ
0 dtĤ(t), sendo

T o operador de ordenamento temporal, durante o tempo τ terminando a etapa no estado
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ρ̂2 = Û(τ)ρ̂1Û
†(τ).

Na etapa 3 o campo externo h(t) é revertido de volta ao seu valor inicial, sob uma depen-
dência temporal h̃(t) durante a reversão, com h̃(t) = h(τ − t).O sistema evolue sob a seguinte
operação unitária reversa V̂ (τ) = T e−i

∫ τ
0 dtĤ′(t), com Ĥ ′(t) = Ĥ(τ − t), atingindo o estado

ρ̂4 = V̂ (τ)ρ̂3V̂
†(τ).

Nota-se que Û(τ) e V̂ (τ) não são independentes. Como Ĥ(t) é representado por uma matriz
real na base σ̂1z, σ̂2z, seja K̂ o operador de conjugação complexa, do fato que K̂Ĥ(t)K̂† = Ĥ(t)

para todo t, então
V̂ (τ) = K̂Û †(τ)K̂†. (28)

Por conta dessa simetria, a probabilidade de transição de dois autoestados de energia |ϵ(1)j ⟩ =
|ϵj(0)⟩ e |ϵ(2)i ⟩ = |ϵi(τ)⟩ ao longo da primeira etapa, |⟨ϵ(2)i |Û(τ)|ϵ(1)j ⟩|2, iguala-se à probabilidade
da transição reversa na terceira etapa, |⟨ϵ(1)j |V̂ (τ)|ϵ(2)i ⟩|2. Para demonstrar isso basta notar que
|ϵ(k)i ⟩ tem coeficientes reais na base σ̂1z, σ̂2z, de forma que K̂|ϵ(k)i ⟩ = |ϵ(k)i ⟩. Segue-se que

|⟨ϵ(1)j |V̂ (τ)|ϵ(2)i ⟩|2 = |(⟨ϵ(1)j |K̂†)V̂ (τ)(K̂|ϵ(2)i ⟩)|2

= |(⟨ϵ(1)j |K̂†)(K̂Û †(τ)K̂†)(K̂|ϵ(2)i ⟩)|2

= |⟨ϵ(1)j |(K̂†K̂Û †(τ)K̂†K̂)|ϵ(2)i ⟩∗|2

= |⟨ϵ(1)j |Û †(τ)|ϵ(2)i ⟩∗|2

= |⟨ϵ(2)i |Û(τ)|ϵ(1)j ⟩|2. (29)

onde utilizou-se (28) e o fato que, para operadores antiunitários, (⟨a|K̂)|b⟩ = [⟨a|(K̂|b⟩)]∗ e
K̂†K̂ = 1̂. É suficiente, portanto, calcular as probabilidades de transição apenas para a primeira
etapa.

Expandindo os estados evoluídos na base dos auto estados no tempo τ , Û(τ)|ϵm(0)⟩ =∑
n c

(m)
n (τ)eiθn(τ)|ϵn(τ)⟩, com θn(τ) := −

∫ τ

0
ϵn(t)dt sendo a fase dinâmica e com a condição

inicial c(m)
n (0) = δnm. Substituindo essa expansão na equação de Schrödinger dependente do

tempo, obtêm-se um conjunto de equações diferenciais ordinárias para as amplitudes de energia
c
(m)
n (t);

ċ
(m)
1 (t) = ḣ(t)

e−2iθ1(t)

ϵ21(t)
|Jx − Jy|c(m)

4 (t)

ċ
(m)
2 (t) = 0

ċ
(m)
3 (t) = 0

ċ
(m)
4 (t) = −ḣ(t)e

2iθ1(t)

ϵ21(t)
|Jx − Jy|c(m)

1 (t). (30)

Como esperado, c(m)
2 (t) e c

(m)
3 (t) são independentes do tempo, mas c(m)

1 (t) e c
(m)
4 (t) são
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acopladas, possiblitando transições entre os auto estados correspondentes. As amplitudes de-
pendem de Jx, Jy, do protocolo h(t) usado para alterar o campo externo e do tempo total
utilizado para executar esse protocolo, ressaltando a não adiabaticidade desse processo, como
apenas os níveis 1 e 4 são acoplados, a evolução adiabática é um sistema de dois-níveis. Em
uma evolução adiabática ideal, |c(k)k (τ)|2 ≡ 1 para todo k. Como o acoplamento não adiabático
da equação (30) gera coerências na base dos auto estados de energia, a igualdade é falsa para
os níveis k = 1, 4.

Desta forma, toda a dinâmica não adiabática do sistema pode ser capturada por um único
parâmetro, P(τ), que definimos como a probabilidade de permanência no autoestado (proba-
bilidade de sobrevivência) do nível |ϵ1⟩ durante a primeira etapa:

P(τ) ≡ |
〈
ϵ
(2)
1

∣∣∣ Û(τ) ∣∣∣ϵ(1)1

〉
|2 (31)

onde
∣∣∣ϵ(k)i

〉
≡ |ϵi(hk)⟩.

Devido à unitariedade, |c(4)1 (τ)|2 = |c(1)4 (τ)|2 = 1−P(τ), e |c(4)4 (τ)|2 = P(τ) Portanto, P(τ)

representa o grau de adiabaticidade da evolução. Quanto mais perto de 1, mais adiabática é a
evolução. Os limites assintóticos de P(τ) dependem somente da escolha dos valores extremos
de h(t) (h1 = h(t)eh2 = h(τ)). No limite de "quench"onde τ → 0, o hamiltoniano é alterado
de forma instantânea, e Û(τ) → 1̂, usando (??) obtêm-se

P(τ → 0) → P0 ≡ |⟨ϵ(2)1 |ϵ(1)1 ⟩|2 = 1

2

{
1 +

4h1h2 + (Jx − Jy)
2√

[4h21 + (Jx − Jy)2][4h22 + (Jx − Jy)2]

}

É importante notar que, para nosso sistema, não ocorrem cruzamentos de níveis entre os
estados acoplados (1 e 4), para os estados ϵ1 e ϵ2 (e, simultaneamente, entre ϵ3 e ϵ4), ocorrem
cruzamento de níveis quando h(t) =

√
JxJy, no entanto, a evolução temporal não acopla esses

estados (⟨ϵ2(t)|ϵ̇1(t)⟩ = ⟨ϵ3(t)|ϵ̇4(t)⟩ = 0). Assim, o limite adiabático P → 1 é sempre atingido
para τ suficientemente grande.

5 RESULTADOS

5.1 Coeficiente de adiabaticidade para um protocolo monotônico

Adotamos ao longo desse trabalho um protocolo monotônico (32) para variação de campo
externo da forma.

h(t) =

√
h22

(
t

τ

)
+ h21

(
1− t

τ

)
(32)
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Nesse trabalho o conjunto de equações de (30), bem como P(τ) serão resolvidos nume-
ricamente em Python usando numpy para escolhas arbitrárias de constantes de acoplamento
Jx, Jy, tempo τ de evolução e protocolo h(t). Como exemplo, tomemos Jx = 10.0, Jy = 2.0,
h1 = 4.0 e h2 = 1.0. A figura (3) mostra a dependência de P em função do intervalo τ ,
observa-se que P(τ) ≈ 1 para valores grandes de τ . Além disso, como esperado pela equação
(32), P(τ) ≈ 0.929 conforme τ → 0, nesse caso, mesmo para etapas rápidas observamos um alto
grau de adiabaticidade. Para protocolos monotônicos decrescentes de h(t) o valor do coeficiente
adiabático será sempre maior que o de (32).

Figura 3: Coeficiente de adiabaticidade P(τ) em função da duração τ da etapa, para a
evolução Û(τ) com parâmetros Jx = 10.0, Jy = 2.0, h1 = 4.0, h2 = 1.0 e campo h(t) variando
de acordo com o protocolo da equação (32)

5.2 Trabalho e Calor Não Adiabáticos

A energia interna da substância de trabalho ao final das etapas 1 e 3 será

E2 =
4∑

i,j=1

ϵ
(2)
i p

(1)
j |c(j)i (τ)|2

E4 =
4∑

i,j=1

ϵ
(1)
j p

(2)
i |c(j)i (τ)|2 (33)

onde ϵ
(k)
i denota as autoenergias em cada ponto extremo do Hamiltoniano Ĥk, p

(k)
j =

e−βkϵ
(k)
j /Zk são as populações térmicas à respectiva temperatura inversa βk e na segunda li-

nha usamos (W1→2 +W2→1) = −(Q1 + Q2). Por causa da termalização nas etapas 2 e 4 as
energias internas médias após cada etapa, E3 and E1, serão invariantes à não adiabaticidade.
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Decompondo o trabalho de cada etapa unitária em uma contribuição adiabática (W ad) e
uma contribuição não adiabática (W na), obtêm-se:

W ad
1→2 = f (1)[ϵ

(1)
4 − ϵ

(2)
4 ] (34)

W na
1→2 = 2(1− P )f (1)ϵ

(2)
4 (35)

W ad
2→1 = f (2)[ϵ

(2)
4 − ϵ

(1)
4 ] (36)

W na
2→1 = 2(1− P )f (2)ϵ

(1)
4 (37)

onde f (j) é uma "função de trabalho"definida como:

f (j) := p
(j)
1 − p

(j)
4 =

sinh
(
βjϵ

(j)
4

)
cosh(βjϵ3) + cosh

(
βjϵ

(j)
4

) (38)

A análise destas equações revela o impacto físico da não adiabaticidade, as contribuições
não adiabáticas, W na

1→2 e W na
2→1, são sempre positivas (≥ 0), pois P ≤ 1 e f (j) e ϵ(k)4 são positivos,

enquanto W ad
1→2 ≥ 0 e W ad

2→1 ≤ 0.
Além disso, para que W na

1→2 > |W ad
1→2|, seria necessário que

P <
1

2

1 +
√√√√ϵ

(2)
4

ϵ
(1)
4

 =
1

2

[
1 +

√
4h22 + (Jx − Jy)2

4h21 + (Jx − Jy)2

]
(39)

Comparando com a equação 32, vemos que P0 é maior que a expressão de 39, portanto
trabalho sempre será extraído mesmo durante etapas não adibáticas de curta duração.

Na compressão (1 → 2), W na adiciona um custo extra. A não adiabaticidade sempre
aumenta o trabalho necessário para a compressão. Na expansão (2 → 1), W na (positivo)
atua contra o ganho (negativo). A não adiabaticidade sempre diminui o trabalho extraído na
expansão.

O trabalho líquido injetado também pode ser separado em, Wcyc = W ad
cyc +W na

cyc, com

W ad
cyc = W ad

1→2 +W ad
2→1 = (f (1) − f (2))[ϵ

(1)
4 − ϵ

(2)
4 ], (40)

W na
cyc = W na

1→2 +W na
2→1 = 2(1− P )[ϵ

(2)
4 f (1) + ϵ

(1)
4 f (2)]. (41)

O termoW na
cyc é sempre positivo, representando a energia total dissipada como fricção interna

por ciclo.
As trocas de calor também são afetadas. A contribuição não adiabática para o calor vem
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exclusivamente da energia dissipada W na na etapa unitária anterior:

Qna
1 = −W na

2→1 ≤ 0 (42)

Qna
2 = −W na

1→2 ≤ 0 (43)

Ambas as contribuições são negativas. Fisicamente, isso significa que a fricção interna gera
um "excesso"de energia no sistema ao final de cada etapa unitária. Esse excesso de energia é,
então, inevitavelmente dissipado como calor em ambos os reservatórios durante as etapas de
termalização.

As contribuições adiabáticas serão

Qad
1 = (∆p3 −∆p2)ϵ3 + [f (2) − f (1)]ϵ

(1)
4 ,

Qad
2 = (∆p2 −∆p3)ϵ3 + [f (1) − f (2)]ϵ

(2)
4 , (44)

onde ∆pj := p
(1)
j −p(2)j . Cada uma das contribuições de calor adiabática pode ser tanto positiva

quanto negativa.

5.3 Análise dos Regimes de Operação

As condições de calor e trabalho para cada regime estão sintetizadas na Tabela 1.

Regime Condição de Temperatura Calor Q1 Calor Q2 Trabalho Wcyc

Regime regular : T1 > T2

Motor T1 > T2 > 0 < 0 < 0

Refrigerador T1 > T2 < 0 > 0 > 0

Acelerador T1 > T2 > 0 > 0 > 0

Aquecedor T1 > T2 < 0 < 0 > 0

Regime reverso: T1 < T2

Motor T1 < T2 < 0 > 0 < 0

Refrigerador T1 < T2 > 0 < 0 > 0

Acelerador T1 < T2 < 0 > 0 > 0

Aquecedor T1 < T2 < 0 < 0 > 0

Tabela 1: Classificação dos regimes de operação

O regime de operação dependende não só das temperaturas T1 e T2 dos banhos, mas também
do conjunto de parâmetros h1, h2, Jx, Jy do Hamiltoniano e também do grau de adiabaticidade
P do ciclo. A Figura 4. Em ambas as linhas a adiabaticidade reduz da esquerda para a direita,
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começando no limite adiabático (P = 1). Os diferentes regimes de operação são representa-
dos respectivamente pelas seguintes cores: refrigerador (azul) , motor (vermelho), aquecedor
(laranja) e acelerador (verde).

Figura 4: Intervalos de temperatura onde o ciclo opera como um refrigerador (azul), motor
(vermelho), aquecedor (laranja) ou acelerador (verde), para diferentes valores de
adiabaticidade P . Na linha superior: Jx = 0.01, Jy = 2.00, h1 = 4 e h2 = 1, com P = 1.0,
P = 0.97 e 0.93 da esquerda para a direita. Nesta faixa de parâmetros, apenas motores
regulares (onde T1 > T2) ocorrem. Na linha inferior Jx = 10.0, Jy = 2.6, h1 = 4 e h2 = 1, com
P = 1.0, P = 0.993 e P = 0.95 da esquerda para a direita.

A análise das zonas de operação do ciclo de Otto revela características qualitativas impor-
tantes em função do acoplamento e do grau de adiabaticidade. Na Figura 4(a), correspondente
ao regime de acoplamento fraco (JxJy < h21),observa-se uma única zona de motor na região
onde T1 > T2, incluindo o eixo T2 = 0 - o que indica que o ciclo sempre opera como motor
quando T2 → 0. Este comportamento, denominado motor regular, é representado por um ci-
clo anti-horário no diagrama S × h (entropia de von Neumann versus intensidade de campo),
conforme ilustrado na Figura 1.

No regime de acoplamento forte [Figura 4(d)],

JxJy > h21 (45)
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emergem características adicionais notáveis, incluindo duas zonas de motor separadas. A
nova zona de motor ocorre para T2 > T1 e inclui o eixo T1 = 0, sendo representada por um
ciclo horário no diagrama S × h, que denominaremos motor reverso. Esta dupla possibilidade
de operação significa que, dependendo das temperaturas dos banhos, o sistema pode funcionar
como motor térmico em ambos os sentidos de rotação no ciclo de Otto.

As duas zonas de motor são separadas por uma lacuna de temperatura para T1, dentro da
qual nenhum motor térmico é possível. Adicionalmente, mesmo para T1 fora desta lacuna, o
motor regular deixa de operar para T2 suficientemente baixo, enquanto o motor reverso cessa
sua operação para T2 excessivamente alto.

A condição estabelecida pela Equação (45) é suficiente para a existência de motores reversos
no limite adiabático. Fisicamente, esta condição implica que o autoestado |ϵ3⟩ corresponde ao
estado fundamental durante a equilibração com o banho frio em T1. Consequentemente, a
população do sistema concentra-se predominantemente neste estado. Por tratar-se de um nível
ocioso que não se desloca nem acopla a outros durante a etapa de compressão h1 → h2, sua
contribuição para o trabalho injetado W ad

1→2 é nula. Para T1 suficientemente baixo, W ad
1→2 tende

a zero, enquanto W2→1 mantém-se negativo no limite adiabático, resultando em W ad
cic < 0 -

condição necessária para a operação como motor térmico.
As Figuras 4(b) e 4(c) (acoplamento fraco) e 4(e) e 4(f) (acoplamento forte) ilustram os

efeitos da redução do parâmetro de adiabaticidade P . Em todos os casos analisados, onde
P ≥ P0, observa-se que:

As regiões de motor e refrigerador encolhem progressivamente . A zona de aquecedor
expande-se correspondentemente. As contribuições não adiabáticas reduzem o trabalho líquido
do ciclo e aumentam a dissipação nos banhos

Para acoplamento fraco, este efeito é mais pronunciado em baixas temperaturas, com a zona
de motor deslocando-se para valores mínimos de T1 cada vez mais elevados. No acoplamento
forte, a zona de motor regular também se desloca para cima, enquanto a zona de motor reverso
é comprimida para baixo, efetivamente ampliando a lacuna de temperatura.

Embora essas mudanças tornem-se mais pronunciadas com a diminuição de P , é notável
que todas as características qualitativas do limite adiabático permanecem presentes quando
0, 5 < P < 1.

5.4 Análise de Eficiência e potência

O principal objetivo desta análise é investigar como os efeitos de eficiência são impactados pela
falta de adiabaticidade perfeita. Como mencionado anteriormente, uma evolução não adiabática
afasta o sistema do equilíbrio térmico devido à introdução de coerência na base de energia.
Consequentemente, observa-se um aumento na energia dissipada durante a reequilibração com
os banhos térmicos, resultando na diminuição da eficiência do motor.
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Neste trabalho, demonstramos que a eficiência do motor η é uma função monotonicamente
crescente do parâmetro de adiabaticidade P . Suponha 0 < f(x) ≡ a(x)/b(x) < 1, onde
a(x), b(x) > 0, e a′(x) ≥ b′(x) > 0. Então f ′(x) > 0.

Para um motor regular operando no limite adiabático (0 < −W ad
cic < Qad

1 ), a eficiência é
dada por

η =
−W ad

cic −W na
1→2(P )−W na

2→1(P )

Qad
1 −W na

2→1(P )

Uma vez que W na
1→2(P ) e W na

2→1(P ) são funções positivas e monotonicamente decrescentes
de P , é claro que η(P ) satisfaz as condições delineadas acima e, portanto, η′(P ) > 0. O mesmo
argumento também é claramente aplicável a motores “reversos”, apenas substituindo Q1 por Q2.
Na verdade, isso deve valer para qualquer motor de Otto cuja adiabaticidade seja mensurável
por um único parâmetro.

A Figura 5 ilustra o comportamento da eficiência para um motor regular com acoplamento
fraco (Jx = 0, 01, Jy = 0, 8). Observa-se que:

η decresce monotonicamente com a redução de P . No limite adiabático, η pode superar
ηOtto = 0, 75. A faixa de temperaturas com η > ηOtto reduz-se rapidamente com a diminuição
de P .Para P ≤ 0, 9996, perde-se completamente a capacidade de exceder ηOtto

Figura 5: Eficiência de um motor regular em função de T1 para diferentes valores de P
(T2 = 0, 2). Parâmetros: h1 = 4, 0, h2 = 1, 0, Jx = 0, 01, Jy = 0, 8.

Notavelmente, η não aumenta monotonicamente com T1, apresentando um máximo mesmo
com o aumento da diferença de temperatura entre os banhos, comportamento atípico em com-
paração com ciclos tradicionais.

17



A Figura 6 apresenta resultados similares para um motor reverso com acoplamento forte
(Jx = 10, 0, Jy = 1, 6), onde:

A condição η > ηOtto persiste em uma faixa mais ampla (P ≥ 0, 976). Mesmo para P =

P (τ → 0) = 0, 932, o motor reverso mantém operação (embora ineficiente). η decresce para T2
elevados, mantendo o comportamento não monotônico

Figura 6: Eficiência de um motor reverso em função de T2 para diferentes valores de P
(T1 = 0, 05). Parâmetros: h1 = 4, 0, h2 = 1, 0, Jx = 10, 0, Jy = 1, 6.

A Figura 7 fornece uma visão abrangente das faixas de temperatura onde η > ηOtto para
ambos os tipos de motor. Destaca-se que: A redução de P diminui rapidamente as regiões
de alta eficiência.Motores regulares são mais sensíveis à não-adiabaticidade. Motores reversos
apresentam maior robustez em regimes não adiabáticos

Figura 7: Faixas de temperatura com η > ηOtto para diferentes valores de P . Esquerda: motor
regular (Jx = 0, 01, Jy = 0, 8). Direita: motor reverso (Jx = 10, 0, Jy = 1, 6).

Estes resultados demonstram que, embora a não-adiabaticidade degrade a eficiência, os
comportamentos qualitativos fundamentais do sistema mantêm-se preservados, com ambos os
tipos de motor mantendo operação mesmo em regimes significativamente não adiabáticos.
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6 Conclusão

Este trabalho dedicou-se a investigar o desempenho termodinâmico de uma máquina térmica
quântica de Otto, cuja substância de trabalho é um sistema anisotrópico de dois qubits, operando
em regimes de tempo finito. A análise centrou-se nos efeitos da não adiabaticidade, quantificada
pelo coeficiente P(τ), sobre o trabalho, o calor, os regimes de operação e, principalmente, a
eficiência e a robustez do ciclo.

A principal contribuição deste estudo reside na demonstração analítica e numérica de que a
dinâmica de não equilíbrio do sistema, induzida pela evolução unitária a tempo finito, pode ser
completamente caracterizada por um único parâmetro: a probabilidade de sobrevivência P(τ)

no autoestado fundamental durante a etapa de compressão. Esta simplificação, decorrente da
simetria do Hamiltoniano e do protocolo de reversão temporal, permitiu uma análise precisa e
abrangente da "fricção quântica interna"e de suas consequências.

Os resultados obtidos revelaram que a não adiabaticidade introduz contribuições positivas
e dissipativas ao trabalho em ambas as etapas unitárias (W na), as quais se refletem como calor
extra dissipado nos reservatórios durante as termalizações (Qna). Consequentemente, o trabalho
líquido do ciclo é reduzido e a eficiência do motor, η, mostrou-se uma função monotonicamente
crescente de P , diminuindo à medida que o processo se afasta da adiabaticidade perfeita.

A análise da eficiência demonstrou que, no limite adiabático (P = 1), ambos os motores
podem superar a eficiência padrão de Otto. No entanto, a faixa de temperaturas onde η > ηOtto

é altamente sensível à não adiabaticidade, encolhendo rapidamente com a diminuição de P .
Observou-se que o motor regular é significativamente mais vulnerável a esses efeitos, perdendo
a capacidade de superar ηOtto mesmo para valores de P ainda próximos de 1. Em contraste, o
motor reverso exibiu uma robustez notável, mantendo regiões de alta eficiência em regimes não
adiabáticos.
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