

Fernando Pereira Martines

Trabalho de Conclusão de Curso
MBA em Inteligência Artificial e Big Data

ChatGPT na geração de artefatos de software: Um
experimento envolvendo a aplicação de IA Generativa e as

técnicas de engenharia de prompt no contexto do
desenvolvimento de firmware.

UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação

USP – São Carlos

2024

ChatGPT na geração de artefatos de

software: Um experimento
envolvendo a aplicação de IA
Generativa e as técnicas de

engenharia de prompt no contexto
do desenvolvimento de firmware.

Fernando Pereira Martines

Fernando Pereira Martines

ChatGPT para a geração de artefatos de software: Um

experimento envolvendo a aplicação de IA Generativa e as

técnicas de engenharia de prompt no contexto do

desenvolvimento de firmware.

Trabalho de conclusão de curso apresentado ao

Departamento de Ciências de Computação do

Instituto de Ciências Matemáticas e de

Computação, Universidade de São Paulo -

ICMC/USP, como parte dos requisitos para

obtenção do título de Especialista em Inteligência

Artificial e Big Data.

Área de concentração: Inteligência Artificial.

 Orientador: Prof. Dr. Ricardo Cerri.

USP – São Carlos

2024

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

M385c
Martines, Fernando Pereira

 ChatGPT para a geração de artefatos de software:
Um experimento envolvendo a aplicação de IA

Generativa e as técnicas de engenharia de prompt no

contexto do desenvolvimento de firmware. / Fernando

Pereira Martines; orientador Ricardo Cerri. -- São

Carlos, 2024.
 76 p.

 Trabalho de conclusão de curso (MBA em
Inteligência Artificial e Big Data) -- Instituto de

Ciências Matemáticas e de Computação, Universidade

de São Paulo, 2024.

 1. IA generativa. 2. ChatGPT. 3. Desenvolvimento

de Firmware. 4. Geração de código. I. Cerri, Ricardo,

orient. II. Título.

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:

 Gláucia Maria Saia Cristianini - CRB - 8/4938

 Juliana de Souza Moraes - CRB - 8/6176

DEDICATÓRIA

À minha eterna esposa Sandra por

todo amor, carinho, compreensão e

apoio incansável nessa jornada.

AGRADECIMENTOS

Ao Instituto de Pesquisas Eldorado, pelo apoio e constante incentivo aos colaboradores

pela busca por novos conhecimentos e pelo inspirador ambiente de inovação tecnológica.

À Profa. Dra. Solange Rezende, pelas incontáveis palavras de motivação em suas aulas

e palestras, o que sempre nos trouxe confiança e vontade de aprender mais e mais.

Ao Prof. Dr. Ricardo Cerri, por todo apoio e orientação no processo de pesquisa e

elaboração deste trabalho.

EPÍGRAFE

"Inteligência artificial não é a inimiga da

humanidade; é uma ferramenta para ampliar

as capacidades humanas."

 John McCarthy (2007)

RESUMO

MARTINES, F. P. ChatGPT para a geração de artefatos de software: Um experimento

envolvendo a aplicação de IA Generativa e as técnicas de engenharia de prompt no

contexto do desenvolvimento de firmware. 2024. 74 f. Trabalho de conclusão de curso

(MBA em Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de

Computação, Universidade de São Paulo, São Carlos, 2024.

O presente trabalho explora o uso de IA generativa, com foco na ferramenta ChatGPT, no

processo de geração de artefatos de software, tais como código-fonte, diagramas e casos de

teste. A motivação principal é avaliar se essa tecnologia pode ser útil no desenvolvimento de

firmware, um tipo de software fortemente acoplado ao hardware. O trabalho considera o

potencial da IA generativa para automatizar tarefas repetitivas, aumentando a eficiência dos

desenvolvedores, especialmente na criação de lógicas bem definidas e de uso recorrente. O

experimento principal envolveu a geração de código em linguagem C para controlar um

dispositivo eletrônico de monitoramento de temperatura. Para conduzir o experimento, foram

utilizados conceitos da Engenharia de Prompt, que guiam a interação do usuário com o

ChatGPT para otimizar a assertividade e a qualidade dos resultados gerados. O experimento foi

estruturado em várias etapas, começando pela criação de estórias de usuário e especificações

técnicas para orientar a IA na geração do código-fonte e de outros artefatos relacionados. Essas

instruções foram enviadas ao ChatGPT através de prompts detalhados. Ao longo do processo,

o código gerado foi analisado e diversas interações adicionais foram realizadas para corrigir

pequenos erros apresentados. O código final foi considerado funcional e compatível com as

especificações fornecidas, destacando a utilidade prática da ferramenta de IA. Os resultados

demonstraram que, embora o ChatGPT seja eficaz na geração de código e outros artefatos, a

intervenção humana continua sendo necessária para ajustes finos e refinamentos. Assim, a

ferramenta não substitui completamente o papel do desenvolvedor, mas serve como um auxílio

que pode aumentar a produtividade ao automatizar certas partes do processo de

desenvolvimento. Conclui-se que ferramentas de IA generativa, como o ChatGPT, têm grande

potencial para serem incorporadas ao desenvolvimento de firmware, acelerando a prototipação

e o desenvolvimento da solução final através do apoio na geração automática dos principais

artefatos de software envolvidos no processo.

Palavras-chave: IA generativa; ChatGPT; Desenvolvimento de Firmware; Geração de código.

ABSTRACT

MARTINES, F. P. ChatGPT for the generation of software artifacts: An experiment

involving the application of Generative AI and prompt engineering techniques in the

context of firmware development. 2024. 74 f. Trabalho de conclusão de curso (MBA em

Inteligência Artificial e Big Data) – Instituto de Ciências Matemáticas e de Computação,

Universidade de São Paulo, São Carlos, 2024.

The present work explores the use of generative AI, with a focus on the ChatGPT tool, in the

process of generating software artifacts, such as source code, diagrams, and test cases. The main

motivation is to assess whether this technology can be useful in firmware development, a type

of software that is closely integrated with hardware. The work considers the potential of

generative AI to automate repetitive tasks, increasing developers' efficiency, especially in

creating well-defined and frequently used logic. The main experiment involved generating code

in C language to control an electronic temperature monitoring device. To conduct the

experiment, concepts from Prompt Engineering were used, guiding user interaction with

ChatGPT to optimize the accuracy and quality of the generated results. The experiment was

structured in several stages, starting with the creation of user stories and technical specifications

to guide the AI in generating source code and related artifacts. These instructions were sent to

ChatGPT through detailed prompts. Throughout the process, the generated code was analyzed,

and various additional interactions were made to correct small errors that appeared. The final

code was deemed functional and compliant with the provided specifications, highlighting the

practical usefulness of the AI tool. The results demonstrated that, although ChatGPT is effective

in generating code and other artifacts, human intervention remains necessary for fine-tuning

and refinements. Thus, the tool does not fully replace the role of the developer but serves as an

aid that can increase productivity by automating certain parts of the development process. It is

concluded that generative AI tools, such as ChatGPT, have great potential to be incorporated

into firmware development, accelerating prototyping and the final solution's development by

assisting in the automatic generation of key software artifacts involved in the process.

Keywords: Generative AI; ChatGPT; Firmware development; Code generation.

LISTA DE ILUSTRAÇÕES

Figura 1 – Relação da IA e Aprendizado de Máquina. .. 12

Figura 2 – Firmware entre Hardware e Software. .. 17

Figura 3 – Placa de Desenvolvimento (devkit) utilizada nos experimentos............................. 28

Figura 4 – Tela do Ambiente Integrado de Programação STM32CubeIDE. 28

Figura 5 – Tela principal do ChatGPT 4o. ... 29

Figura 6 – As etapas e o fluxo básico para realização dos experimentos. 30

Figura 7 – Diagrama de blocos simplificado da solução pretendida .. 31

Figura 8 – Diagrama de classes da UML gerado pelo ChatGPT.. 44

Figura 9 – Diagrama de sequência da UML gerado pelo ChatGPT ... 46

LISTA DE TABELAS

Tabela 1 – Comparativo das versões do ChatGPT ... 22

Tabela 2 – Estórias de usuário utilizadas no experimento. .. 32

Tabela 3 – Especificações gerais para operação na placa de desenvolvimento. 32

Tabela 4 – Demonstrações fornecidas ao ChatGPT com base em prompts few-shot............... 33

Tabela 5 – Preparação da interação com o ChatGPT com base dos artefatos da concepção. .. 34

Tabela 6 – Interação com ChatGPT para a entrada das estórias de usuário. 34

Tabela 7 – Interação com ChatGPT para a entrada das especificações gerais. 34

Tabela 8 – Interação com ChatGPT para a entrada das orientações e exemplos (few-shot). ... 35

Tabela 9 – Solicitação e resposta para geração de código-fonte em linguagem C. 36

Tabela 10 – Descritivo da geração de código-fonte conforme a solicitação. 36

Tabela 11 – 1ª solicitação para resolução de defeito em código-fonte gerado pelo ChatGPT. 37

Tabela 12 – 2ª solicitação para resolução de defeito em código-fonte gerado pelo ChatGPT. 38

Tabela 13 – Solicitação para melhoria no código-fonte gerado pelo ChatGPT. 40

Tabela 14 – Atualização das especificações gerais para melhoria da geração de código. 41

Tabela 15 – Solicitação para geração de código-fonte com a especificação atualizada. 41

Tabela 16 – Descritivo da geração de código-fonte atualizada conforme a solicitação. 42

Tabela 17 – Solicitação e resposta para geração de diagrama de classes feita ao ChatGPT. ... 43

Tabela 18 – Solicitação e resposta para geração de diagrama de sequência feita ao ChatGPT45

Tabela 19 – Solicitação e resposta para geração de casos de teste feita ao ChatGPT. 47

LISTA DE ABREVIATURAS E SIGLAS

ADC Analog-Digital Conversion/Converter

AIGC Artificial Intelligence Generated Content

BDD Behavior Driven Development

BERT Bidirectional Encoder Representations from Transformers

CoT Chain of Thoughts

DER Diagrama Entidade-Relacionamento

DFD Diagrama de Fluxo de Dados

FW Firmware

GPT Generative Pre-trained

GPU Graphical Processing Unit

GCC GNU Compiler Collection

GDB GNU Debugger

GNU GNU is Not Unix

HW Hardware

IA Inteligência Artificial

IAG Inteligência Artificial Generativa

IDE Integrated Development Environment

HAL Hardware Abstraction Layer

HCI Human-Computer Interface

LED Light-Emitting Diode

LLM Large Language Model

LSTM Long Short-Term Memory

NLP Natural Language Processing

PCB Printed Circuit Board

PLN Processamento de Linguagem Natural

RNN Recurrent Neural Networks

ROM Read Only Memory

SysML System Modeling Language

SW Software

TTCN-3 Testing and Test Control Notation

UML Unified Modeling Language

USE UML-based Specification Environment

SUMÁRIO

1 INTRODUÇÃO ... 12

1.1 Contextualização .. 12

1.2 Objetivos ... 14

1.3 Justificativa ... 15

1.4 Organização do texto .. 15

2 REVISÃO BIBLIOGRÁFICA ... 16

2.1 Conceitos Fundamentais ... 16

2.1.1 Firmware .. 16

2.1.2 PNL e os Modelos de Linguagem de Grande Escala .. 17

2.1.3 Transformers e o Surgimento dos Modelos de Atenção ... 18

2.1.4 Engenharia de Prompt e suas técnicas ... 20

2.2 Trabalhos relacionados ... 22

2.2.1 ChatGPT na tarefa de geração de artefatos de software .. 23

3 METODOLOGIA .. 27

3.1 Escopo e Definições Gerais .. 27

3.2 Etapas do Desenvolvimento ... 29

3.3 Projeto do Dispositivo Eletrônico .. 31

3.4 Estórias de Usuário e Especificações Gerais .. 32

4 RESULTADOS .. 34

4.1 Resultados da Geração de Código-fonte .. 35

4.2 Resultados da Geração de Diagramas .. 43

4.3 Resultados da Geração de Casos de Teste .. 47

5 CONCLUSÃO .. 50

REFERÊNCIAS ... 52

ANEXO A – Interação inicial com o ChatGPT ... 55

ANEXO B – Código-fonte gerado inicialmente pelo ChatGPT ... 57

ANEXO C – Código-fonte aprimorado pelo ChatGPT .. 62

ANEXO D – Código-fonte corrigido pelo ChatGPT ... 63

ANEXO E – Código-fonte refeito pelo ChatGPT .. 66

ANEXO F – Código-fonte gerado pelo ChatGPT (especificação atualizada) 70

12

1 INTRODUÇÃO

1.1 Contextualização

Nos últimos anos tem se presenciado uma verdadeira explosão de soluções tecnológicas

baseadas na aplicação de Inteligência Artificial (IA) nas mais diversas áreas. A aplicação da IA

no contexto das inovações tecnológicas não é atual e tais esforços remontam meados do século

XX, momento em que as pesquisas sobre o tema produziram modelos matemáticos e

computacionais cuja aplicação produziram resultados práticos satisfatórios para a época.

O salto tecnológico das soluções atuais em relação às antigas se dá pelo fato da evolução

das técnicas da IA, mais especificamente no âmbito do aprendizado de máquina e suas áreas

mais especializadas, dentre elas, as técnicas de aprendizado profundo a partir da segunda década

do século XXI. A Figura 1 mostra a relação os domínios desses conceitos indicando a

especialização e localidade dentro dos temas da área de conhecimento da IA.

Figura 1 – Relação da IA e Aprendizado de Máquina.

Fonte: Adaptado de COPELAND (2016).

Associada à evolução das técnicas de aprendizado profundo, nota-se também a evolução

das plataformas computacionais especializadas para determinados tipos de aplicação. Mais

especificamente, as unidades de processamento gráfico (GPU’s) tiveram um crescimento

exponencial em performance e otimização, permitindo que modelos computacionais e

algoritmos mais complexos operando sobre um maior volume de dados pudessem computados

em tempo aceitável para a viabilização prática das soluções comerciais envolvendo IA.

13

Com o avanço dos estudos dos modelos de linguagens de grande escala (LLM’s) – uma

área de pesquisas e tecnologias do processamento de linguagem natural (NLP) – e a sua

viabilização comercial a partir do uso dessas plataformas computacionais modernas, como

GPU’s e serviços em nuvem, a sociedade atual se vê imersa em uma nova onda de inovações e

soluções apoiadas por IA, que agora se destaca pela sua notável capacidade de geração de

conteúdo multimídia a partir de interações conversacionais feitas pelo usuário.

Essa nova categoria de técnicas de IA – denominada IA Generativa (IAG) – tem

provocado na sociedade como um todo, vislumbres, ceticismos, discussões e até

regulamentações por ter atingido considerável destaque a partir do seu inegável potencial de

revolucionar as aplicações tecnológicas em qualquer área que se queira imaginar. A capacidade

de geração de conteúdo das aplicações baseadas em IA Generativa pode potencializar e

aumentar a capacidade dos seres humanos nas mais diversas atividades.

Dentro do contexto da geração de textos, especialidade primária das IA’s Generativas,

há a possibilidade explorá-las para a criação de conteúdos próprios para as mais diversas

categorias textuais, tais como produção de resumos, roteirização, textos analíticos, geração de

insights, análises explicativas, obras literárias etc. enfim, uma infinidade de possiblidades.

A interface humano-computador (HCI) mais comum para uso das IA’s Generativas em

computadores por usuários em geral são baseadas em prompts, que são interfaces baseadas em

entrada de texto digitado pelo usuário da aplicação visando interagir com o sistema para seus

propósitos. A partir dessa interação do usuário com o computador, ocorre o processamento dos

algoritmos sobre os dados textuais codificados e a produção dos resultados normalmente na

forma de conteúdo multimídia baseados na solicitação do usuário.

Dado o conhecimento que se tem sobre o funcionamento interno dos LLM’s, a interação

do usuário com tais sistemas pode ser melhorada no intuito de tornarem mais assertivos os

resultados obtidos a partir do prompt informado a esses sistemas. Este uso mais sistemático do

mecanismo de prompts convencionou-se chamar de Engenharia de Prompt, que oferece

técnicas para a elaboração e estruturação de textos de entrada a fim de, digamos, instruir e

induzir a operação dos LLM’s a direcionarem melhor os resultados conforme o esperado.

Uma categoria particular de textos produzidos para propósitos específicos são as

linguagens de programação de computadores, cujo conteúdo é fortemente regulado pela

gramática e combinação de símbolos dispostos em uma sintaxe formal e bem definida para

manipulação por máquinas. Tais linguagens de programação são utilizadas por desenvolvedores

de software para criar programas com instruções (código-fonte) que serão executadas por

14

computadores após um processo de transformação desse código-fonte em um programa descrito

em linguagem de máquina.

O uso da IA Generativa com o objetivo de apoiar a geração de código-fonte tem sido

explorado recentemente devido às características propícias desse tipo de conteúdo textual. As

linguagens de programação, por serem compostas por palavras-chaves bem definidas, podem

também vir a ser de conhecimento dos modelos de linguagem de grande escala.

Este trabalho visa explorar, através de um experimento com prompts direcionados à uma

aplicação IA Generativa bastante conhecida – o ChatGPT –, quais são os resultados da geração

de código-fonte em linguagem de programação C para a implementação de um firmware, um

tipo especializado de software bastante acoplado ao sistema de hardware.

1.2 Objetivos

1.2.1 Objetivo Geral

O objetivo geral deste trabalho é realizar um experimento utilizando as técnicas de

engenharia de prompt que permita se ter uma avaliação sobre a utilidade e potenciais aplicações

das ferramentas de IA Generativa para o apoio na geração de código-fonte e outros artefatos de

software auxiliares no contexto do desenvolvimento de firmware para dispositivos eletrônicos.

1.2.2 Objetivos específicos

Dentre os objetivos específicos desse trabalho estão:

• Determinar o problema-alvo a ser explorado no experimento;

• Conseguir descrever os requisitos do problema-alvo na forma de estórias de usuário;

• Criar prompts a partir de técnicas para guiar o processo de geração de artefatos;

• Conseguir obter uma proposta de solução factível a partir dos prompts processados;

• Gerar os artefatos da solução proposta por meio de uma ferramenta de IA Generativa;

• Analisar a assertividade das respostas refinando o contexto e solicitações fornecidos;

• Avaliar os resultados com base na aplicabilidade e completude dos artefatos gerados;

• Levantar os eventuais problemas e limitações observadas durante o experimento;

• Levantar os aspectos mais importantes a serem considerados para a realização de novos

experimentos com base na atualização dos modelos e outras ferramentas.

15

1.3 Justificativa

A principal motivação para a realização desse trabalho é a de se verificar a possibilidade

das ferramentas de IA Generativa passarem a ser empregadas no processo de desenvolvimento

de software, mais especificamente no desenvolvimento de firmware, como um mecanismo

automático para geração de código-fonte de lógicas comuns, ou seja, aquelas as quais já se tem

um conhecimento estabelecido mas cuja implementação em microcontroladores ainda varia

devido à variedade de fornecedores de chip e ao forte acoplamento deste tipo de software ao

hardware subjacente ao qual irá operar. Adicionalmente, serão verificados os resultados da

geração de outros artefatos, tais como diagramas para documentação da especificação e design

do firmware e casos de teste para apoio às atividades de verificação e validação de software.

1.4 Organização do texto

No capítulo 2 é apresentada a fundamentação teórica sobre Firmware, IA Generativa e

engenharia de prompt, apresentando os conceitos fundamentais, a revisão das principais

técnicas, modelos e trabalhos atuais e mais relevantes na literatura.

No capítulo 3 é descrita a metodologia a ser aplicada, detalhando os passos a serem

considerados para o desenvolvimento do experimento e a discussão sobre quais das principais

técnicas de engenharia de prompt podem ser aplicadas dado o contexto do problema.

No capítulo 4 são apresentados os resultados obtidos na interação com uma ferramenta

da IA Generativa. Tais resultados são decorrentes do processamento dos prompts elaborados e

são avaliados conforme a sua aplicabilidade imediata em projetos, ou seja, o grau de prontidão

dos resultados serem diretamente empregados da construção da solução ou se eventualmente

são necessárias modificações para que se obtenha a solução completa.

Por fim, no capítulo 5 são apresentadas as considerações finais e a conclusão sobre os

experimentos trazendo uma percepção sobre a efetividade de aplicar tais ferramentas como

apoio à geração de artefatos de software em relação à uma abordagem manual de construção

feita por desenvolvedores especializados, destacando seus potenciais e suas limitações, além de

possíveis indicações de trabalhos futuros.

16

2 REVISÃO BIBLIOGRÁFICA

2.1 Conceitos Fundamentais

2.1.1 Firmware

Firmware é uma combinação de hardware e software que reside em um chip ou em um

conjunto de chips dentro de um dispositivo (PRESSMAN, 2011). Ele é responsável por

controlar funções essenciais e específicas do dispositivo, atuando como o software operacional

que interage diretamente com o hardware.

Na literatura, há alguns autores que deixam explícita a relação simbiótica do firmware

com o hardware classificando-o como uma categoria distinta de software. Outros consideram o

firmware como um tipo especializado de software.

Tanenbaum (2009) descreve como sendo uma ponte entre o hardware e o software de

alto nível, facilitando a comunicação e operação eficiente do dispositivo. Stallings (2013)

afirma que firmware é o software especializado embutido em dispositivos de hardware para

controlar suas funções básicas e permitir sua operação correta. Morimoto (2017) diz que

firmware é aquele geralmente armazenado em memória não volátil, como ROM ou flash, para

garantir que o software permaneça no dispositivo mesmo quando ele é desligado. A Figura 2

mostra a localização do firmware estando diretamente acoplado ao hardware e fazendo a

interface entre este e o software de alto nível.

Pode-se afirmar que firmware é, portanto, um tipo de software especializado que está

embutido em dispositivos de hardware para controlar suas funções básicas e operá-los

corretamente. Ele é projetado e construído para interagir diretamente com o hardware, servindo

como uma ponte entre o software de mais alto nível (como o sistema operacional) e os

componentes físicos do dispositivo.

Por essas características, a geração de código-fonte para desenvolvimento do firmware

deve levar em conta não apenas o conhecimento sobre a linguagem de programação utilizada e

a estrutura e organização de computadores de propósito geral, mas também sobre os detalhes

(definições e características do circuito eletrônico, temporizações e interfaces de periféricos e

outros chips do circuito eletrônico) do hardware ao qual o firmware irá operar.

17

Figura 2 – Firmware entre Hardware e Software.

Fonte: Adaptado de HEKLER (2020).

2.1.2 PNL e os Modelos de Linguagem de Grande Escala

A evolução dos modelos de linguagem natural culminou na criação dos modelos de

linguagem de grande escala que revolucionaram diversas aplicações computacionais. Esses

modelos são baseados em arquiteturas de aprendizado profundo, como redes neurais, e

treinados com enormes quantidades de dados textuais.

O PNL começou a ganhar relevância na década de 1950 com a pesquisa em tradução

automática e a ideia de usar computadores para compreender e comunicar em linguagem

humana. A criação do "Test Turing" na década de 50 (TURING, 1950) foi um marco que

destacou a possibilidade de uma máquina exibir comportamento considerado inteligente, capaz

de se comunicar em linguagem natural tão bem que a ponto de não se tornar distinguível de

outro ser humano fluente na língua.

Nos anos seguintes, pesquisadores desenvolveram métodos baseados em regras e

gramáticas formais, como os sistemas baseados em regras de produção, que eram

essencialmente conjuntos de regras predefinidas para manipular strings de texto, tais como o

sistema DENDRAL (FEIGENBAUM; BUCHANAN; LEDERBERG, 1971) e o MYCIN

(SHORTLIFFE, 1976). No entanto, esses sistemas tinham limitações severas ao lidar com a

variabilidade e ambiguidade da linguagem humana.

18

A solução veio com o avanço do aprendizado de máquina na década de 1990 e 2000,

com o uso mais amplo de modelos estatísticos e o advento das redes neurais artificiais.

Nos anos 90, a transição para abordagens estatísticas marcou um ponto de virada. Os

modelos baseados em aprendizado supervisionado começaram a ser usados para tarefas de

classificação de texto e análise de sentimentos. Técnicas de Machine Learning (ML) permitiram

que os modelos fossem ajustados com base em grandes volumes de dados anotados, o que

aumentou significativamente a precisão dos sistemas de PNL (JURAFSKY; MARTIN, 2009).

Em paralelo, o desenvolvimento das redes neurais e o advento do aprendizado profundo

– Deep Learning – a partir da década de 2010 elevaram o PNL a um novo patamar. Arquiteturas

como as redes neurais recorrentes (RNN’s) e, posteriormente, as redes de memória de longo

prazo (LSTM) foram usadas para lidar com a sequência e a dependência contextual nas tarefas

de linguagem (GRAVES, 2012).

Os LLM’s continuaram a evoluir rapidamente e modelos como o GPT-4 e outros

competidores, como o PaLM da Google e o LLaMA da Meta, aumentaram ainda mais o número

de parâmetros, melhoraram a eficiência do treinamento e reduziram o viés. A exploração de

modelos multimodais, que integram dados de texto, imagem e áudio, é um campo emergente

que promete ampliar ainda mais as capacidades desses sistemas para uso de propósito geral.

No entanto, o avanço dos LLM’s levantou também desafios éticos e práticos, como o

consumo elevado de recursos computacionais e as implicações do viés nos dados de

treinamento. O futuro dos LLM’s provavelmente envolverá uma maior regulamentação e a

busca por modelos mais eficientes e sustentáveis (BENDER et al., 2021).

2.1.3 Transformers e o Surgimento dos Modelos de Atenção

A verdadeira revolução do uso dos LLM’s veio com a introdução do mecanismo de

atenção e, mais significativamente, com o modelo Transformer, apresentado por Vaswani et al.

em 2017. O Transformer permitiu que o processamento da linguagem natural fosse escalado de

maneira sem precedentes devido à sua capacidade de paralelizar o processamento e capturar

relações contextuais em grandes sequências de texto (VASWANI et al., 2017).

Ao contrário das RNN’s e LSTM’s, que processam a informação sequencialmente, o

Transformer utiliza um mecanismo de auto-atenção para considerar todas as palavras de uma

frase simultaneamente, permitindo que o modelo construa uma compreensão mais rica e

profunda do contexto. Essa inovação possibilitou posteriormente a criação de modelos muito

19

maiores e mais poderosos, como o BERT (Bidirectional Encoder Representations from

Transformers) e o GPT (Generative Pretrained Transformer).

O BERT, desenvolvido pelo Google em 2018, trouxe um novo paradigma para o NLP,

introduzindo o conceito de pré-treinamento bidirecional, em que o modelo aprende

representações contextuais a partir de todas as palavras de uma sequência em vez de processar

o texto de forma unidirecional. Isso permitiu que o BERT alcançasse um desempenho sem

precedentes em várias tarefas de NLP, como classificação de textos e resposta a perguntas

(DEVLIN et al., 2018).

Simultaneamente, o GPT, desenvolvido pela OpenAI, se destacou pelo uso de grandes

quantidades de dados e pela sua abordagem de pré-treinamento não supervisionado. A segunda

versão, GPT-2, e a subsequente GPT-3, lançada em 2020, foram treinadas em bases de dados

massivas, contendo centenas de bilhões de parâmetros, e mostraram uma capacidade

impressionante de gerar texto coeso e realista. O GPT-3, em particular, alcançou notoriedade

por sua habilidade de realizar uma ampla gama de tarefas linguísticas sem a necessidade de

treinamento adicional (BROWN et al., 2020).

Na base da operação de ambos os modelos estão os Transformers. Eles, portanto,

revolucionaram o processamento de linguagem natural ao introduzir essa nova abordagem para

modelar sequências de texto utilizando um mecanismo de atenção que permite ao modelo

considerar todas as palavras de uma sequência ao mesmo tempo, capturando melhor as relações

de longo alcance no texto, em vez de processar as entradas de maneira sequencial.

A base do Transformer é o mecanismo de auto-atenção, que permite que o modelo dê

"atenção" a diferentes partes de uma sequência de entrada ao calcular suas representações. O

Transformer é composto por duas partes principais: o codificador (encoder) e o decodificador

(decoder), embora em muitos casos de NLP (como no BERT), apenas o codificador seja

utilizado.

O codificador do Transformer é responsável por transformar a sequência de entrada em

uma série de representações internas (conhecidos como vetores de embeddings). Ele é composto

por múltiplas camadas idênticas que consistem em duas subcamadas principais:

1. Mecanismo de Auto-atenção: O componente-chave que permite ao modelo considerar

todas as palavras da sequência de entrada de maneira simultânea. Esse mecanismo calcula uma

pontuação de importância entre cada par de palavras na sequência, identificando quais palavras

são mais relevantes umas para as outras.

20

2. Feed-Forward Neural Network: Após passar pelo mecanismo de auto-atenção, a saída

passa por uma rede neural simples para transformar as representações contextuais em vetores

de dimensão fixa.

Cada uma dessas subcamadas é acompanhada por uma conexão residual, que ajuda a

mitigar problemas de gradientes durante o treinamento.

O decodificador, semelhante ao codificador, é composto de três camadas que incluem:

1. Mecanismo de auto-atenção: Focado na saída parcial gerada até o momento,

determinando quais palavras pré-geradas são mais relevantes.

2. Atenção Cruzada (Cross-Attention): Este mecanismo observa as representações

produzidas pelo codificador para integrar informações sobre a entrada na geração de saída.

3. Feed-Forward Neural Network: Assim como no codificador, esta etapa transforma

as representações intermediárias em vetores de dimensão fixa.

O núcleo do Transformer é o mecanismo de atenção, em especial, a atenção escalada

por produto interno (Scaled Dot-Product Attention). Em uma visão simplificada, cada palavra

da sequência de entrada é associada a três vetores: Query (Q), que representa a palavra que está

sendo considerada; Key (K), que captura as características das palavras que servem como

possíveis "chaves" relevantes; e Value (V), que contém a informação real a ser propagada para

as representações finais.

A atenção é calculada como o produto interno entre o vetor consulta (Q) de uma palavra

e o vetor chave (K) de outra palavra, escalado por uma constante para evitar que os valores

explodam. O resultado é passado por uma função Softmax, que normaliza os pesos de atenção.

Finalmente, os pesos de atenção são usados para ponderar os valores (V) correspondentes e

gerar a saída ponderada (VASWANI et al., 2017).

Os Transformers mudaram drasticamente o campo do PNL ao introduzir um método

paralelo e altamente eficiente de processar texto, baseado em auto-atenção. Ao permitir que o

modelo considere simultaneamente todas as palavras de uma sequência, ele consegue capturar

melhor as nuances da língua e suas dependências de longo alcance durante o processamento.

Essa abordagem se provou eficaz em uma ampla variedade de tarefas de PNL, desde tradução

automática até a geração automática de texto.

2.1.4 Engenharia de Prompt e suas técnicas

Engenharia de Prompt é o conjunto de técnicas utilizadas em LLM’s na qual as entradas

ou comandos fornecidos ao modelo são cuidadosamente formulados para direcionar suas

21

respostas de maneira mais eficiente e específica. Essa prática envolve a criação de instruções

detalhadas e bem estruturadas, frequentemente utilizando exemplos e padrões, a fim de otimizar

a precisão e a coerência das saídas geradas pelos modelos.

Segundo Liu et al. (2023), a Engenharia de Prompt é o processo de projetar e refinar

comandos ou perguntas apresentados a um modelo de linguagem com o objetivo de obter

respostas mais relevantes, precisas ou úteis, explorando as capacidades implícitas do modelo.

Essa técnica tem se mostrado especialmente valiosa na adaptação de modelos de linguagem

para tarefas específicas, permitindo que os LLM’s executem funções complexas sem

necessidade de retreinamento extensivo.

Existem diversas técnicas de engenharia de prompt sendo estudadas e relatadas na

literatura atualmente. Dentre aquelas de maior destaque e de uso mais amplo, estão as seguintes:

1. Zero-Shot Prompting (zero disparos): Nesta técnica, os LLM’s são guiados por

prompts sem que sejam fornecidos exemplos específicos de input-output, utilizando-se do

conhecimento pré-existente do modelo para completar tarefas sem treinamento adicional (WEI

et al., 2021). Essa técnica permite que os modelos realizem novas tarefas sem a necessidade de

grandes volumes de dados rotulados.

2. Few-Shot Prompting (poucos disparos): Ao contrário do zero-shot, a técnica few-shot

fornece ao modelo alguns exemplos, o que o ajuda a entender a tarefa. Essa abordagem tem se

mostrado eficaz em tarefas mais complexas, melhorando o desempenho dos modelos de

linguagem com base em poucos exemplos de alta qualidade (BROWN et al., 2020).

3. Chain-of-Thought (CoT) Prompting: CoT é uma técnica que orienta os LLM’s a

seguir cadeias lógicas de raciocínio, estruturando melhor o processo de tomada de decisão. WEI

et al. (2022) demonstraram que essa abordagem é eficaz em problemas de raciocínio complexo,

melhorando o desempenho dos modelos em benchmarks de raciocínio lógico e matemático.

4. Auto-CoT Prompting: Desenvolvida por Zhang et al. (2022), essa técnica automatiza

a criação de cadeias de raciocínio, substituindo a construção manual por prompts como "vamos

pensar passo a passo". Através da amostragem diversificada, o Auto-CoT melhora a robustez e

reduz os erros, melhorando o aprendizado com poucos exemplos.

5. Self-Consistency: Wang et al. (2022) introduziram a auto-consistência como uma

estratégia de decodificação que aumenta o desempenho do raciocínio em CoT. Essa técnica

gera múltiplas cadeias de raciocínio diversificadas e escolhe a resposta final mais consistente,

resultando em melhorias significativas de precisão em vários benchmarks.

6. MathPrompter: Desenvolvida para tarefas de resolução de problemas matemáticos,

essa técnica estrutura a solução de problemas em etapas verificáveis, aumentando a precisão

22

dos resultados, especialmente em problemas que exigem validação de passos intermediários

(IMANI et al., 2023).

Essas técnicas, ao guiarem os LLM’s em tarefas complexas, mostram como a

engenharia de prompts pode moldar e melhorar a interação com modelos de linguagem de

maneira adaptada ao contexto da tarefa. Para a realização do experimento desse trabalho, em

linha com as características do uso de LLM’s para geração de texto especializado (linguagem

de programação ou linguagens específicas de domínio), será explorada a técnica de few-shot

prompting, considerada mais adequada para entradas de texto e contexto complexo

representado na forma de estórias de usuário e requisitos.

2.2 Trabalhos relacionados

Devido ao fato do lançamento das principais ferramentas de IA Generativa terem

ocorrido há aproximadamente dois ou três anos, os trabalhos relacionados à aplicação dessas

ferramentas no contexto da geração de código-fonte são bastante recentes.

Esse trabalho é baseado exclusivamente no ChatGPT, a solução da IA Generativa da

OpenAI, lançado como solução comercial ao público geral em 2022. Portanto, os trabalhos

oriundos da revisão bibliográfica levam em conta apenas essa ferramenta.

Wu et al (2023) trouxeram em seu artigo os dados comparativos das diversas versões

disponíveis do GPT, como pode ser visto na Tabela 1. A OpenAI transformou em solução

comercial as versões 3 e 4 no formato de chat.

Tabela 1 – Comparativo das versões do ChatGPT

 GPT-1 GPT-2 GPT-3 GPT-4

Data da liberação Junho/2018 Fevereiro/2019 Maio/2020 Março/2023

Parâmetros do

modelo

117 milhões,

12 camadas,

768 dimensões

1,5 bilhão,

48 camadas,

1.600 dimensões

175 bilhões,

96 camadas,

12.888 dimensões

Não publicado

Janela de contexto 512 tokens 1024 tokens 2048 tokens 8195 tokens

Tamanho dos dados

pré-treinados
~ 5 GB ~ 40 GB ~ 45 TB Não publicado

Origem dos dados
BooksCorpus,

Wikipedia

WebText Common

Crawl etc.

Não publicado

Técnica de

aprendizado

Não

Supervisionado

Aprendizado

Multitarefa

Aprendizado

em Contexto

Aprendizado

Multimodal

Fonte: Wu et al. (2023)

23

Os dados mostram que o crescimento da capacidade do modelo GPT entre as versões

teve um aumento exponencial, o que o tornou atualmente uma das maiores aplicações de IA

Generativa em uso.

Wu et al. (2023) também listaram pontos positivos e negativos do ChatGPT baseados

em experiências de uso e em informações públicas divulgadas pela OpenAI. Como pontos fortes

e vantagens, o ChatGPT apresenta: (1) capacidade de geração de textos e entendimento

multimodal, (2) forte habilidade de raciocínio e criatividade rica, e (3) planejamento e

modelagem do conhecimento. Como pontos fracos e desvantagens: (1) erros factuais e

alucinações, (2) modelagem insuficiente do conhecimento explícito, e (3) os custos da pesquisa

e desenvolvimento são altos (WU et al., 2023). Embora a percepção a partir do uso do ChatGPT

possa trazer a ideia de um sistema, de fato, inteligente, ele ainda não deixa de ser um tipo de

ferramenta de IA para geração de conteúdo (AIGC).

2.2.1 ChatGPT na tarefa de geração de artefatos de software

Nesses últimos anos, após o lançamento das soluções de IA Generativa por grandes

corporações e acessíveis ao público em geral por meio de serviços em nuvem, vários trabalhos

surgiram relatando as análises provenientes das suas experiências na tarefa de usar a IA

Generativa e os LLM’s especificamente para a geração de artefatos de software de alto nível, o

tipo de software que é escrito usualmente em linguagens de programação de alto nível e são

executadas ou em máquina virtual ou em computadores contendo processadores de propósito

geral, como, por exemplo, as linguagens Java e Python, majoritariamente.

Previamente ao lançamento oficial do ChatGPT pela OpenAI como uma ferramenta de

software acessível ao público, a iniciativa mais relevante de treinar LLM’s e aplicar IA

Generativa para a finalidade de geração de código foi o CodeBERT (FENG et al., 2020), um

modelo pré-treinado e construído com base em conjuntos de dados de busca por código, tais

como CodeSearchNet (HUSAIN et al., 2019), que visou aprender representações textuais de

propósito geral baseado em uma abordagem bimodal, oriundas de linguagens de programação

e linguagem natural. O CodeBERT foi construído com base na arquitetura de rede neural

profunda dos Transformers (VASWANI et al., 2017) e treinado com códigos de vários

repositórios de código do Github. Ele suporta a geração de documentação a partir do código e

transcrição de código em até seis linguagens de programação (FENG et al., 2020).

No contexto do uso do ChatGPT, Guo (2024) realizou um experimento que explorou o

potencial de geração de código do ChatGPT na tentativa de se criar uma aplicação Web em

24

linguagem Java a partir de requisitos descritos em linguagem natural. Seus resultados

demonstraram que o ChatGPT conseguiu produzir uma aplicação web para o login (acesso a

um portal com base em credenciais de usuário e senha informados em uma página web) a partir

da interação de prompts direcionados. Além da completa funcionalidade do código gerado, que

foi posto em execução em um servidor de aplicações real, tal código foi avaliado como de alta

legibilidade e qualidade, podendo ser aplicado, portanto, diretamente em projetos (GUO, 2024).

Esse resultado reforça o fato da possibilidade de uso do ChatGPT, ou mais amplamente até das

ferramentas de IA Generativa disponíveis, como assistentes efetivos dos desenvolvedores de

software.

Diversos outros trabalhos abordaram quantitativamente as habilidades da IA

Generativa, e mais especificamente do ChatGPT, na geração de código-fonte de programas de

computador. A maioria deles buscaram analisar a consistência e a qualidade do código gerado.

Clark et al. (2024), por exemplo, avaliaram 625 códigos em linguagem Python gerados a partir

de prompts indicando que o ChatGPT é capaz de gerar bons códigos, embora contenham

defeitos – como são também aqueles feitos por humanos – necessitando de revisões e correções

manuais.

Os trabalhos de Yan et al. (2023) e Moratis et al. (2024) trouxeram análises sobre a

consistência e qualidade do código gerado a partir de prompts. O segundo acrescentou ainda a

análise sobre a aderência a padrões, estilo de codificação e melhoras práticas. Em ambos os

trabalhos foram feitas ressalvas sobre a importância da qualidade do prompt dirigido ao

ChatGPT, que pode ter impacto direto na efetividade do código gerado como resultado. Foi

nessa linha da qualidade dos prompts que Lui et al. (2024) elaboraram um construtor de prompts

que teve como objetivo melhorar a performance da geração de código e demonstraram, com

uma série de experimentos, que a efetividade do código realmente aumenta com prompts de

alta qualidade baseado em técnicas de engenharia de prompt.

Rahmaniar et al. (2024) confirmaram também o potencial do ChatGPT destacando que

a relação simbiótica entre IA Generativa e desenvolvimento de software será mais robusta,

complexa e transformativa. No entanto, trouxeram à tona a necessidade de reflexão na

comunidade de software sobre implicações éticas do uso massivo dos modelos da IA

Generativa, uma vez que consideram que o desenvolvimento de software por si só não trata

apenas da geração de código em si – tarefa pela qual máquinas treinadas com volume gigantesco

de dados são notoriamente capazes de fazer –, mas da cognição aplicada a solução de problemas

reais por meio da concepção, construção e uso efetivo de sistemas computacionais.

25

Não apenas na geração de código-fonte as ferramentas de IA Generativa podem auxiliar

no processo de desenvolvimento de software, elas podem também ser aplicadas na geração de

outros artefatos auxiliares provenientes das etapas de análise, projeto e verificação de software.

No âmbito da análise e projeto, a IA Generativa pode ser usada para elaboração de

diagramas visuais gerados a partir de notação textual.

A UML (OMG, 2017) é uma linguagem padrão utilizada para especificar, elaborar,

visualizar e documentar artefatos de sistemas de software. Ela fornece uma especificação para

se criar diagramas que representam a estrutura e o comportamento de um sistema de software,

permitindo que desenvolvedores e engenheiros de software comuniquem ideias e conceitos de

maneira clara e consistente. A UML é amplamente utilizada na indústria de software como

padrão de facto para a criação de diagramas. Assim como as linguagens de programação, ela

possui especificações formais e bem definidas que permitem a manipulação e interpretação por

máquinas para a geração de diagramas a partir de texto.

Os trabalhos de Combemale et al. (2023) e Camara et al. (2023) exploraram as

capacidades do ChatGPT no contexto da modelagem de software. Camara et al. (2023) fizeram

experimentos para testar na prática a geração de diagramas da UML pelo ChatGPT. Vale

destacar que a versão 3.5 do ChatGPT não possui a capacidade de geração de conteúdo

imagético, tais como ilustrações, figuras ou diagramas. Isso é possível apenas na versão 4 (paga)

da ferramenta. Portanto, a geração de diagramas pode ser feita em notação textual usando

composição de caracteres simples ou em formato legível para outras ferramentas, tais como

PlantUML, USE, Yuml, Markdown UML, Mermaid e UMLet (Camara et al., 2023).

Essa capacidade de geração de diagramas UML a partir de notação textual permite que

o ChatGPT seja também explorado para a elaboração desse tipo de artefato durante as etapas

de projeto e elaboração da solução de software, em apoio aos arquitetos, projetistas e

programadores de software. Esse trabalho explora a geração de diagramas para o problema

proposto no intuito de verificar os resultados da sua aplicação para o design do firmware.

Por fim, referindo-se a etapa inicial de levantamento de requisitos de qualquer sistema

ou produto – em que as necessidades e expectativas dos usuários são capturadas e registradas

para darem origem à propostas de solução em artefatos de engenharia ou sistemas

computacionais –, tem-se que a IA Generativa pode também apresentar a capacidade de

interpretar texto contigo em estórias de usuário e casos de uso para determinadas finalidades,

sejam essas de transformação para outras categorias de conteúdo textual, de análise de aspectos

específicos ou mesmo de revisão e geração de insights.

26

Nesse contexto, Aamana et al. (2024) demonstraram em experimentos o potencial de

avaliação da qualidade da escrita de estórias de usuário pelo ChatGPT com base nas técnicas

de engenharia de prompt. Como estórias de usuário, no geral, são textos descritos em linguagem

natural usualmente baseado em convenções bem estabelecidas acerca de capacidades e

restrições desejadas para a solução, a técnica de engenharia de prompt few-shot mostrou-se a

mais promissora na tarefa de avaliar a qual categoria de requisitos de qualidade determinadas

estórias de usuário pertencem, indicam ou implicam (Aamana et al., 2024).

Os experimentos que serão descritos no Capítulo 5 desse trabalho também exploram

estórias de usuário em entradas de texto para a IA Generativa. Porém, diferentemente de

Aamana et al. (2024), ele não visa extrair requisitos e aspectos de qualidade das estórias de

usuário, mas de usá-las como contexto para solicitações de geração de código-fonte que

atendam a requisitos presentes nessas estórias, assim como a geração de outros artefatos no

âmbito do desenvolvimento direcionado a firmware que, como dito, é uma categoria

especializada de software fortemente acoplada ao hardware.

Portanto, esse trabalho explora o potencial de geração de conteúdo textual da IA

Generativa, mais especificamente do ChatGPT, na transformação de estórias de usuários e

requisitos dados como entrada em outros artefatos de software baseados em texto, tais como

diagramas em notação textual, código-fonte de programas descritos em linguagem de

programação no domínio do firmware e roteiros de testes para verificação de software usando

a técnica de engenharia de prompt few-shot para avaliação de seus potenciais e limitações no

apoio ao desenvolvimento de firmware.

27

3 METODOLOGIA

3.1 Escopo e Definições Gerais

O desenvolvimento dos experimentos desse trabalho baseou-se em um cenário

hipotético de projeto de um dispositivo eletrônico considerando os artefatos de software

minimamente previstos para as etapas de concepção, elaboração, construção e testes. Tal

cenário é descrito em detalhes na seção 3.3.

A proposição em analisar o potencial de utilidade de ferramentas de IA Generativa se

apoiou na ideia de que os analistas de requisitos, donos de produtos (Product Owners) ou

mesmo desenvolvedores possam fornecer ao ChatGPT os textos elaborados relacionados à

atividade de levantamento e especificação de requisitos da solução a ser desenvolvida.

Devido à natureza intrínseca de tais requisitos serem usualmente descritos em

linguagem natural, viu-se a oportunidade imediata de aplicar ferramentas baseadas em LLM’s

na transformação desses textos de origem em textos produzidos em outras linguagens, tais como

a linguagem de notação gráfica para diagramas, linguagem de programação para geração de

código-fonte e novamente linguagem natural para descrição de casos de teste.

A versão do ChatGPT utilizada nos experimentos foi a versão 4o, a mais recente

disponibilizada comercialmente pela OpenAI ao público. Pelo que pode ser observado através

dos dados da Tabela 1, essa versão apresenta performance e capacidade bem superiores em

relação às versões anteriores. O que se esperou obter, portanto, de partida e como consequência,

foi o aumento do potencial e da assertividade dos resultados devido ao maior número de tokens

processados e ao maior número de parâmetros disponíveis.

Para a avaliação dos resultados dos artefatos produzidos nos experimentos foi utilizada

uma placa de desenvolvimento (devkit) disponível para aquisição através da internet. Tal placa

de desenvolvimento foi projetada e disponibilizada ao público pelo próprio fabricante do chip

microcontrolador, podendo esta ser utilizada para acelerar o processo de desenvolvimento e

verificações prévias do firmware enquanto a placa de circuito impresso (PCB) do sistema

eletrônico da solução final pretendida é projetada, fabricada e testada em paralelo, conforme

previsto em um ciclo convencional de desenvolvimento de um produto baseado em sistemas

microcontrolados.

A Figura 3 mostra a foto de uma das faces da placa de desenvolvimento cujo Part

Number é o NUCLEO-G071RB, da fabricante ST Microelectronics. Ela possui um

28

microcontrolador baseado na microarquitetura da família ARM® Cortex-MTM com núcleo de

processamento de propósito geral e diversos periféricos integrados em seu próprio chip.

Figura 3 – Placa de Desenvolvimento (devkit) utilizada nos experimentos.

Fonte: Site da ST Microelectronics.1

Como ambiente de desenvolvimento integrado (IDE) para a compilação do código-fonte e

execução do firmware na placa de desenvolvimento foi utilizado o STM32CubeIDE, que

permite a criação de projetos de firmware por desenvolvedores integrando o compilador de

código aberto GNU GCC e G++, para código em linguagem C e C++, respectivamente, além

de suporte à depuração com o GNU GDB e várias outras atividades previstas na programação

de microcontroladores deste fabricante. A Figura 4 mostra a tela principal desta IDE.

Figura 4 – Tela do Ambiente Integrado de Programação STM32CubeIDE.

Fonte: Elaborado pelo autor.

1 Disponível em: < https://www.st.com/en/evaluation-tools/nucleo-g071rb.html>. Acessível em: 07 set. 2024

29

3.2 Etapas do Desenvolvimento

As etapas do desenvolvimento dos experimentos foram baseadas na dinâmica de

interação de usuários e da interface humano-computador com as ferramentas de IA Generativa

disponíveis. Todas elas são baseadas em aplicações online realizadas por páginas Web em estilo

conversacional apresentando um prompt ao usuário que permite fornecer ao sistema as entradas

com o conteúdo da solicitação desejada. No caso do uso do ChatGPT e para os propósitos desse

trabalho, as entradas foram feitas através de textos informados na interface padrão da aplicação.

A Figura 5 mostra a tela do ChatGPT com a caixa de texto associada ao prompt de entrada.

Figura 5 – Tela principal do ChatGPT 4o.

Fonte: Página do ChatGPT 4o2.

A Figura 6 mostra as etapas realizadas para a produção dos resultados dos experimentos.

O processo geral foi dividido basicamente em três etapas, cada qual com um propósito orientado

à interação do usuário com a ferramenta de IA Generativa:

1. Concepção: Nesta etapa foram elaborados: (a) os textos das estórias de usuário que

definiram os requisitos do produto; (b) os textos das especificações gerais, que consistiu no

descritivo das características e restrições da solução a ser projetada e construída; e (c) os textos

2 Disponível em: < https://chatgpt.com>. Acesso em: 07 set. 2024.

30

das instruções e exemplos, quando aplicáveis, para melhorar a assertividade dos resultados

gerados a partir das solicitações.

2. Entrada de dados na ferramenta de IA Generativa: Nesta etapa foi utilizado o

mecanismo padrão de interação com o ChatGPT – a caixa de texto referente ao prompt da

aplicação – para introduzir os textos elaborados na etapa 1 na ferramenta com o propósito de

servirem como contexto para as solicitações posteriores. Importante destacar que, para

aumentar a assertividade dos resultados e diminuir os ciclos de refinamento, as instruções e

exemplos da etapa 1c foram baseados na técnica de engenharia de prompt few-shot.

3. Geração dos Artefatos de Software: Nesta etapa foram realizadas as solicitações

para o ChatGPT gerar o conteúdo pretendido conforme o tipo de artefato de interesse: (a)

geração de código-fonte na linguagem de programação desejada, (b) geração de diagramas

UML para visualização da estrutura dos elementos e fluxos do código-fonte, e (c) geração de

casos de teste para verificação do código-fonte gerado quando colocado em operação. Após a

solicitações serem inseridas para processamento pelo ChatGPT, os resultados produzidos por

ele foram avaliados quanto ao seu grau de corretude (compilar e funcionar corretamente) e

completude (atender a todas as funcionalidades especificadas).

Figura 6 – As etapas e o fluxo básico para realização dos experimentos.

Fonte: Elaborado pelo autor.

31

3.3 Projeto do Dispositivo Eletrônico

O projeto hipotético proposto para avaliação dos resultados dos artefatos gerados pelo

ChatGPT nesse trabalho foi um dispositivo eletrônico que monitora a temperatura de interesse

e dispara um alarme caso o valor da temperatura exceda um valor previamente definido.

A leitura do valor da temperatura é feita por um pino de entrada analógico associado a

um conversor analógico-digital (ADC) interno ao microcontrolador com resolução de 12 bits.

Isso significa que os valores lidos em um intervalo de tensão de 0 a 3,3 volts são representados

por valores inteiros no intervalo de 0 a 212 – 1, o que representa valores inteiros de 0 a 4095.

O disparo do alarme consiste na sinalização luminosa por um LED piscando em

frequência fixa de 4 Hertz e o acionamento de uma saída digital cujo nível lógico 0 (zero) refere-

se a tensão de 0 volts (ausência de tensão) e o nível lógico 1 (um) refere-se a tensão de 3,3 volts

presente na saída digital. Esse sinal pode ser utilizado para acionamento de outro sistema

eletrônico acoplado ao dispositivo em desenvolvimento. A Figura 7 mostra o diagrama de

blocos contendo os elementos do dispositivo eletrônico de projeto hipotético do experimento.

Para fins de simplificação, não foram tratados nos experimentos a conversão da escala

de temperatura do sensor ao intervalo de tensão do ADC para determinação da temperatura

efetiva a ser monitorada. Ao invés disso, optou-se por uma especificação de controle baseada

no valor de tensão lido diretamente pelo ADC do microcontrolador. Assumiu-se que o escopo

do experimento trata exclusivamente do potencial de geração de código para da lógica de

controle necessária para o acionamento do LED e da saída de alarme.

Figura 7 – Diagrama de blocos simplificado da solução pretendida

Fonte: Elaborado pelo autor.

32

3.4 Estórias de Usuário e Especificações Gerais

Para a especificação dos requisitos da solução pretendida foram criadas estórias de

usuário e especificações gerais com o objetivo de se determinar o funcionamento da lógica de

controle do monitoramento de temperatura a ser realizado pelo dispositivo eletrônico. Tais

artefatos, conforme o processo, foram elaborados nas etapas 1a e 1b para serem posteriormente

informados ao ChatGPT como contexto para as solicitações de geração de código. A Tabela 2

mostra as estórias de usuário elaboradas e a Tabela 3 traz as especificações gerais para apoio à

geração de código direcionado à placa de desenvolvimento utilizada.

Tabela 2 – Estórias de usuário utilizadas no experimento.

Identificação Descritivo

EU1 Como um usuário do dispositivo, eu quero definir um [valor limite de

temperatura] que deve ser armazenado no dispositivo para a realização do

[monitoramento de temperatura].

EU2 Como um usuário do dispositivo, eu quero poder ligar o dispositivo e este

iniciar o [monitoramento da temperatura] realizando a leitura do [valor atual

da temperatura] de modo contínuo e sem interrupção até que seja desligado.

EU3 Como um usuário do dispositivo, eu quero que o dispositivo mantenha a

[saída digital de alarme] no nível lógico zero caso o [valor limite de

temperatura] não tenha sido excedido.

EU4 Como um usuário do dispositivo, eu quero que o dispositivo mantenha a

[saída digital de alarme] no nível lógico um caso o [valor limite de

temperatura] tenha sido excedido.

EU5 Como um usuário do dispositivo, eu quero também que o dispositivo realize

uma sinalização luminosa através da piscagem [LED de alarme] quando o

[valor limite da temperatura] exceder o [valor atual da temperatura].

Fonte: Elaborado pelo autor.

Tabela 3 – Especificações gerais para operação na placa de desenvolvimento.

Identificação Descritivo

EG1 O [valor limite de temperatura] deve ser um valor entre 0 e 250 graus Celsius.

EG2 O [valor atual da temperatura] deve ser lido através da conversão analógico

digital utilizando o ADC0 canal 0 definido no pino PA0.

EG3 O [LED de alarme] deve ser implementado através do pino PA5.

EG4 A [saída digital de alarme] deve ser implementado no pino PA6.

EG5 A piscagem do [LED de alarme] deve ocorrer a uma frequência de 4 Hertz.

Fonte: Elaborado pelo autor.

33

A técnica de engenharia de prompt de poucos disparos (few-shot) sugere que sejam

fornecidas demonstrações no prompt para direcionar o modelo a ter um melhor desempenho e,

portanto, conseguir trazer resultados mais assertivos. Isso porque, embora os modelos de

linguagem de grande escala demonstrem resultados notáveis quando usando zero disparo (zero-

shot), eles ainda ficam aquém em tarefas mais complexas.

As demonstrações providas para o ChatGPT considerando os objetivos desse

experimento foram determinações sobre como realizar a geração de código que é solicitada nas

interações. Tais demonstrações visaram fornecer exemplos de como codificar variáveis,

funções e realizar a separação de código para facilitar a avaliação, além de melhorar a qualidade

dos resultados de um modo geral. A Tabela 4 mostra as demonstrações, orientações e exemplos

fornecidos ao ChatGPT para os experimentos realizados.

Tabela 4 – Demonstrações fornecidas ao ChatGPT com base em prompts few-shot.

Identificação Descritivo

DE1 Nomes de variáveis globais de escopo de arquivo devem seguir o padrão

PascalCase prefixadas com letra ‘m’ e precedidas com o operador ‘static’.

Exemplo de nomes de variáveis globais de escopo de arquivo:

- float mCurrentTemperature = 0;

- uint32_t mLedBlinkInterval = 125;

DE2 Nomes de variáveis locais devem seguir o padrão camelCase.

Exemplo de nomes de variáveis locais:

- float currentTemperature = 50;

- uint32_t counter = 0;

DE3 Nomes de funções de escopo de arquivo devem seguir o padrão camelCase

e precedidas com o operador ‘static’.

Exemplo de nomes de funções de escopo de arquivo:

- static float readTemperature(void);

- static void checkAlarmCondition(void);

DE4 Nomes de funções de escopo global devem seguir o padrão PascalCase e

precedidas pelo substantivo separada por sublinhado pela ação com a ação

seguindo o padrão camelCase.

Exemplo de nomes de funções de escopo global:

- void Led_turnOn(void);

- void Alarm_trigger(void);

DE5 Os nomes dos arquivos gerados devem seguir o padrão snake_case.

Exemplos de nomes de arquivos no padrão snake_case:

- led.h e led.c

- alarm_monitor.h e alarm_monitor.c

Fonte: Elaborado pelo autor.

34

4 RESULTADOS

Após elaborados os artefatos previstos nas etapas 1a, 1b e 1c, todo esse conteúdo textual

foi submetido ao prompt do ChatGPT no formato de texto simples derivado das tabelas 2, 3 e

4 da seção anterior. Esse conteúdo textual prévio permitiu que o modelo do ChatGPT

entendesse o contexto da interação. Tal fato pôde ser observado nas respostas que foram

geradas, nas Tabelas 5, 6, 7 e 8, a partir da entrada desses textos sem solicitação de ação

explícita. O resultado na íntegra dessas interações iniciais pode ser consultado no Anexo A.

Tabela 5 – Preparação da interação com o ChatGPT com base dos artefatos da concepção.

Interação Conteúdo

Solicitação Vamos elaborar uma solução de um dispositivo eletrônico para controle de

temperatura e disparo de alarmes. Os requisitos serão dados a seguir.

Resposta do

ChatGPT

Ótimo! Vamos detalhar a solução com base nos requisitos. Quais são os

requisitos para o dispositivo de controle de temperatura? Se já tiver alguns

em mente, podemos começar a partir daí.

Fonte: Elaborado pelo autor.

Tabela 6 – Interação com ChatGPT para a entrada das estórias de usuário.

Interação Conteúdo

Solicitação Estes são os requisitos:

(copiado o texto da Tabela 2 no prompt).

Aguarde que irei informá-lo sobre algumas especificações adicionais a

seguir.

Resposta do

ChatGPT

Entendido! Temos os requisitos básicos para o controle de temperatura e

alarmes, incluindo o armazenamento de um valor limite de temperatura, a

leitura contínua do valor atual da temperatura, controle de uma saída digital

de alarme e sinalização por LED. Fico no aguardo das especificações

adicionais para que possamos elaborar a solução completa.

Fonte: Elaborado pelo autor.

Tabela 7 – Interação com ChatGPT para a entrada das especificações gerais.

Interação Conteúdo

Solicitação Estas são as especificações adicionais:

(copiado o texto da Tabela 3 no prompt).

35

Aguarde que irei informá-lo sobre algumas orientações e exemplos de como

iremos gerar código-fonte para esta solução.

Resposta do

ChatGPT

Perfeito! Com essas especificações, já podemos visualizar boa parte do

design do sistema. Ficarei aguardando as orientações e exemplos sobre o

código-fonte para implementar essa solução.

Fonte: Elaborado pelo autor.

Tabela 8 – Interação com ChatGPT para a entrada das orientações e exemplos (few-shot).

Interação Conteúdo

Solicitação Estas são as orientações e exemplos sobre o código-fonte:

(copiado o texto da Tabela 4 no prompt).

Depois de entender essas orientações, irei realizar uma solicitação a seguir

para geração de código-fonte em uma linguagem específica.

Resposta do

ChatGPT

Ótimo! As orientações e exemplos sobre os padrões de nomenclatura e

estrutura de código estão bem claras. Estou pronto para a próxima

solicitação de geração de código-fonte na linguagem específica que você

escolher.

Fonte: Elaborado pelo autor.

A partir daí, na mesma janela de chat cujo conteúdo textual das estórias de usuário, das

especificações gerais e das demonstrações e exemplos previamente informados ao ChatGPT,

foram geradas solicitações de ação no prompt para a geração dos conteúdos gerais de interesse.

4.1 Resultados da Geração de Código-fonte

A primeira solicitação de interesse, mostrada na Tabela 9, foi a geração de código-fonte

em linguagem C baseado na utilização da biblioteca HAL fornecida pelo fabricante do

microcontrolador aos desenvolvedores. A utilização dessa biblioteca é recomendada porque

abstrai dos desenvolvedores o controle e operação dos registradores internos do

microcontrolador e permite que a lógica de firmware a ser desenvolvida seja totalmente focada

na aplicação final da solução. O amplo e profundo conhecimento dessa biblioteca é um desafio

para desenvolvedores menos experientes quando expostos a terem que interagir com todos os

detalhes dos sistemas internos, dos periféricos e das interfaces de comunicação do

microcontrolador. Aqui já se esperou o apoio da IA Generativa no conhecimento sobre essas

bibliotecas especializadas visando aumentar a produtividade da produção de código.

36

Tabela 9 – Solicitação e resposta para geração de código-fonte em linguagem C.

Interação Conteúdo

Solicitação Gere o código-fonte baseado em boas práticas de engenharia de software

para implementar os requisitos, funcionalidades e especificações adicionais

informados na linguagem de programação C utilizando a biblioteca HAL da

ST e considerando o microcontrolador STM32G071.

Resposta do

ChatGPT

Aqui está a implementação do código-fonte em C para o controle de

temperatura e alarme, usando a biblioteca HAL da ST para o

microcontrolador STM32G071, considerando as boas práticas de

engenharia de software e os requisitos fornecidos:

(código-fonte completo pode ser consultado no Anexo B).

Explicação:

• Leitura da temperatura: A função readTemperature() lê o valor da

temperatura do sensor conectado ao ADC (PA0). A conversão de

ADC para temperatura é simplificada para 0-250°C.

• Verificação de alarme: A função checkAlarmCondition() compara o

valor atual da temperatura com o limite e aciona o alarme e o LED

se necessário.

• Controle do LED e alarme: Funções específicas para ligar, desligar

e piscar o LED (PA5) e ativar ou resetar o alarme na saída digital

(PA6).

• Estrutura e organização: O código está modularizado, com

responsabilidades claras para cada função e arquivo.

Caso precise de ajustes ou mais detalhes, estou à disposição!

Fonte: Elaborado pelo autor.

A Tabela 10 mostra a lista dos arquivos de código-fonte gerados com base na solicitação

realizada da Tabela 9. Foi possível notar que a orientação DE5 da Tabela 4 foi devidamente

observada para a geração dos nomes de arquivos.

Tabela 10 – Descritivo da geração de código-fonte conforme a solicitação.

Arquivos Conteúdo

led.h

led.c
Arquivos contendo as definições e implementações das funções do LED

documentadas no padrão Doxygen.

void Led_turnOn(void);

void Led_turnOff(void);

void Led_blink(uint32_t interval);

37

alarm_monitor.h

alarm_monitor.c
Arquivos contendo as definições e implementações das funções do

monitoramento do alarme documentadas no padrão Doxygen.

void Alarm_trigger(void);

void Alarm_reset(void);

main.h

main.c
Arquivos contendo as definições e implementações das funções gerais

de inicialização e operação do laço principal (super loop) do firmware.

void SystemClock_Config(void);

void MX_GPIO_Init(void);

void MX_ADC1_Init(void);

Fonte: Elaborado pelo autor.

Analisando-se o resultado produzido sob a perspectiva do atendimento às orientações e

restrições informadas previamente, foi possível observar que o ChatGPT gerou os artefatos com

plena compatibilidade, atentando-se aos detalhes do padrão e estilo de codificação variados que

estavam associados aos nomes de arquivos, funções e variáveis a serem gerados.

Analisando-se o resultado produzido sob a perspectiva do funcionamento do código

quando executado na placa de desenvolvimento, foi possível observar que atendeu quase que

na sua totalidade as estórias de usuário especificadas, só deixando de considerar o requisito

particular referente à piscagem do LED (EG5). A primeira implementação resultante da

primeira interação, portanto, conteve um defeito no controle do período de piscagem do LED.

Para resolver esse defeito foi realizada uma nova solicitação ao ChatGPT conforme a

Tabela 11 informando-o do problema detectado para verificar a sua capacidade de resolução.

Tabela 11 – 1ª solicitação para resolução de defeito em código-fonte gerado pelo ChatGPT.

Interação Conteúdo

Solicitação Aprimore a função Led_blink para contemplar a verificação do intervalo de

piscagem que foi definido pela variável mLedBlinkInterval. Da forma como

foi gerado, a função não observa o intervalo de tempo e a implementação da

solução está piscando a cada 100 ms, que é tempo da pequena espera que foi

inserido para suavizar. Não é este tempo que deve ser observado. O tempo

que deve ser atendido é o da variável mLedBlinkInterval.

Resposta do

ChatGPT

Para aprimorar a função Led_blink para que observe corretamente o

intervalo de tempo definido pela variável mLedBlinkInterval, precisamos

garantir que a função leve em consideração o tempo que se passou desde a

última alteração do estado do LED e somente execute a mudança de estado

quando o tempo apropriado tiver transcorrido.

A abordagem é usar uma variável estática para armazenar o "timestamp"

da última vez que o LED foi alternado. O HAL_GetTick() da HAL pode ser

38

utilizado para obter o tempo decorrido desde o início do programa, em

milissegundos, o que permite controlar o intervalo corretamente.

Aqui está o código aprimorado para a função Led_blink:

(código-fonte completo pode ser consultado no Anexo C).

Com essa alteração, o LED piscará corretamente conforme o intervalo

definido por mLedBlinkInterval, independentemente do tempo de execução

do loop principal, que possui um delay de 100 ms.

Essa implementação garante que o LED pisque exatamente a cada 125 ms

(ou 4 Hz) quando necessário.

Caso tenha mais alguma solicitação, fico à disposição!

Fonte: Elaborado pelo autor.

Analisando-se o resultado elaborado após a solicitação de correção, notou-se que código

produzido agora continha a verificação do intervalo de tempo da piscagem do LED na lógica

da função de piscagem, mas ainda não fazia com que o LED piscasse na frequência desejada,

mesmo com a afirmação do ChatGPT (no trecho final do diálogo) dizendo que a implementação

garantia a piscagem do LED no intervalo de tempo especificado.

O defeito foi o tempo de espera que ele gerou e incluiu no laço principal, não observando

o fato que esse tempo de espera define um ciclo de 100 milissegundos para execução da lógica

de verificação da condição de alarme. O LED deve perfazer um ciclo completo de intervalo de

250 milissegundos (4 Hertz), sendo um tempo de 125 milissegundos para cada inversão do

estado do LED entre ligado e desligado. Esses intervalos de tempo não são múltiplos de 100

milissegundos do laço principal, o que faz com que a ação de inversão do estado do LED não

seja realizada de modo a cumprir a frequência de 4 Hertz conforme era esperado.

Novamente o ChatGPT foi informado sobre o defeito e uma nova solicitação de correção

do defeito foi feita, conforme mostra a Tabela 12.

Tabela 12 – 2ª solicitação para resolução de defeito em código-fonte gerado pelo ChatGPT.

Interação Conteúdo

Solicitação Ainda não é possível ter o LED piscando corretamente porque o delay de

100 ms no loop principal não é divisor do intervalo de piscagem do LED.

Por favor, corrija.

Resposta do

ChatGPT

Entendi! O problema ocorre porque o delay de 100 ms no loop principal

interfere no tempo de piscagem do LED, pois o valor de mLedBlinkInterval

(125 ms) não é um divisor exato de 100 ms. Para corrigir isso, precisamos

39

evitar que o delay do loop principal controle o tempo de piscagem do LED.

A solução é separar o controle do LED da lógica do loop principal.

Uma maneira eficaz de resolver esse problema é refinar a lógica para que a

função de piscagem do LED não dependa de nenhum delay explícito no loop

principal. Em vez disso, podemos verificar constantemente o tempo usando

HAL_GetTick() para que a função de piscagem atue de maneira

independente.

Aqui está a solução corrigida:

(código-fonte completo pode ser consultado no Anexo D).

Com isso, a função Led_blink() agora garante que o LED piscará

exatamente a cada 125 ms, respeitando o intervalo de mLedBlinkInterval,

mesmo sem delays adicionais no loop principal.

Essa abordagem é mais precisa e evita qualquer interferência entre o

controle da piscagem do LED e o tempo de execução do loop principal. Caso

tenha mais alguma dúvida ou ajuste, estou à disposição!

Fonte: Elaborado pelo autor.

Dessa vez o código produzido atendeu o requisito faltante preservando o funcionamento

da implementação que atendia aos demais requisitos. A resolução foi anular o tempo de espera

do laço principal e manter a lógica de contagem do intervalo de tempo na função de piscagem

do LED, que agora passou a contabilizar o tempo corretamente dado que a chamada a essa

função ocorre bem mais frequentemente (frequência de operação baseada no clock do

processador) que o tempo de intervalo definido para atender ao requisito dos 4 Hertz.

Essa abordagem, porém, poderia ser melhorada com uso de temporizadores internos

(timers) disponíveis no microcontrolador em questão, que operam de modo independente da

lógica principal executada pelo núcleo do processador presente no microcontrolador. O uso de

temporizadores internos não estava previsto nos requisitos e, portanto, não foi considerada essa

possibilidade pelo ChatGPT.

Essa extrapolação de conhecimentos para sugerir melhoria de tal natureza não ocorreu

no ChatGPT e usualmente corrobora a ideia de que a IA Generativa, no geral, é mais uma

ferramenta para geração de conteúdo e manipulação de símbolos de linguagens a ser realmente

uma superinteligência capaz de gerar insights não baseados exclusivamente em textos.

Dessa forma, para que o código-fonte final agora pudesse contemplar tal melhoria, foi

feita uma nova solicitação tendo o requisito explícito para o uso de temporizador presente no

microcontrolador. Essa interação pode ser vista na Tabela 13.

40

Tabela 13 – Solicitação para melhoria no código-fonte gerado pelo ChatGPT.

Interação Conteúdo

Solicitação Vamos refatorar o código gerado anteriormente para que o controle de

piscagem do LED seja feito por um timer interno do microcontrolador que é

ativado quando o alarme é disparado e desativado caso contrário. Podemos

usar o TIM1 para este propósito. No laço principal insira uma nova variável

para definir o tempo de espera o ciclo de verificação da condição de alarme

como sendo de 50 ms. Este tempo poderá ser redefinido posteriormente.

Resposta do

ChatGPT

Aqui está a refatoração do código para utilizar o TIM1 para controlar a

piscagem do LED e a nova variável que define o tempo de espera do ciclo

de verificação da condição de alarme:

(código-fonte completo pode ser consultado no Anexo E).

Com essa solução, o LED de alarme pisca a cada 125 ms (4 Hz) enquanto o

alarme está ativo, controlado pelo TIM1, de forma independente do loop

principal. Caso precise de mais ajustes ou esclarecimentos, estou à

disposição!

Fonte: Elaborado pelo autor.

O código-fonte resultado da implementação da melhoria com a inclusão de

temporizadores deu origem a dois novos arquivos de código-fonte: tim.h e tim.c, referentes

às funções dos temporizadores. Consultando tais arquivos, notou-se que observaram o

atendimento às orientações e demonstrações previstas na Tabela 4.

Como pode ser visto, as etapas previstas no fluxo da Figura 6 preveem ciclos iterativos

de solicitação e avaliação dos resultados de modo a serem aplicados refinamentos até que o

resultado desejado seja produzido. Para o caso desse experimento de geração de código, foram

necessárias três iterações adicionais posteriores à solicitação inicial, sendo duas delas para

correção de defeitos e uma para implementação de melhoria.

Como experimento final na geração de código-fonte, considerou-se a possibilidade de

se refinar os requisitos adicionando uma nova especificação (EG6) para indicar que a piscagem

do LED devia ser construída usando temporizador. O objetivo foi apurar se o código-fonte

gerado apresentava os mesmos defeitos ou eventualmente outros defeitos similares. A Tabela

14 mostra a atualização da Tabela 3 adicionando-se a nova especificação para geração de código

considerando o temporizador interno.

41

Tabela 14 – Atualização das especificações gerais para melhoria da geração de código.

Identificação Descritivo

EG1 O [valor limite de temperatura] deve ser um valor entre 0 e 250 graus Celsius.

EG2 O [valor atual da temperatura] deve ser lido através da conversão analógico

digital utilizando o ADC0 canal 0 definido no pino PA0.

EG3 O [LED de alarme] deve ser implementado através do pino PA5.

EG4 A [saída digital de alarme] deve ser implementado no pino PA6.

EG5 A piscagem do [LED de alarme] deve ocorrer a uma frequência de 4 Hertz.

EG6 A piscagem do [LED de alarme] deve ocorrer por meio do timer TIM1.

Fonte: Elaborado pelo autor.

Para a condução do experimento agora considerando EG6, foi iniciado um novo chat

no ChatGPT e refeitas as mesmas interações descritas nas Tabelas de 5 a 9, visando garantir

que as interações prévias não tivessem influência nos resultados dessa nova rodada.

Dessa vez, o ChatGPT produziu um código-fonte funcional (verificado na placa de

desenvolvimento), livre de defeitos e que atendeu a todos os requisitos da especificação e as

funcionalidades previstas nas estórias de usuário. A Tabela 15 e a Tabela 16 mostram o

resultado da interação e a estrutura do novo código-fonte resultante, respectivamente.

Tabela 15 – Solicitação para geração de código-fonte com a especificação atualizada.

Interação Conteúdo

Solicitação Gere o código-fonte baseado em boas práticas de engenharia de software

para implementar os requisitos, funcionalidades e especificações adicionais

informados na linguagem de programação C utilizando a biblioteca HAL da

ST e considerando o microcontrolador STM32G071.

Resposta do

ChatGPT

Aqui está a implementação em C usando a biblioteca HAL para o

microcontrolador STM32G071, baseada nos requisitos e especificações

fornecidas. Para organização, os arquivos seguem o padrão snake_case,

conforme suas orientações.

(código-fonte completo pode ser consultado no Anexo F).

Resumo

• Pinos utilizados:

o ADC para leitura de temperatura no PA0.

o LED no PA5.

o Saída de alarme no PA6.

• Funcionamento:

42

o O dispositivo lê continuamente a temperatura.

o Se a temperatura ultrapassar o limite, o alarme é ativado e o

LED pisca a 4 Hz.

o A piscagem do LED é controlada por um timer interno

(TIM1).

Este código foi desenvolvido com boas práticas de engenharia de software,

organizando as funcionalidades em módulos e seguindo as convenções

estabelecidas.

Fonte: Elaborado pelo autor.

Tabela 16 – Descritivo da geração de código-fonte atualizada conforme a solicitação.

Arquivos Conteúdo

led.h

led.c
Arquivos contendo as definições e implementações das funções

do LED documentadas no padrão Doxygen.

void Led_init(void);

void Led_startBlink(void);

void Led_stopBlink(void);

temperature_sensor.h

temperature_sensor.c

Arquivos contendo as definições e implementações das funções

do sensor de temperatura documentadas no padrão Doxygen.

void TemperatureSensor_init(void);

float TemperatureSensor_read(void);

alarm_monitor.h

alarm_monitor.c
Arquivos contendo as definições e implementações das funções

do monitoramento do alarme documentadas no padrão Doxygen.

void Alarm_init(void);

void Alarm_checkCondition(float currentTemperature,

 float temperatureLimit);

main.c Arquivos contendo a implementação das funções gerais de

inicialização e operação do laço principal (super loop) do

firmware.

void SystemClock_Config(void);

int main(void);

Fonte: Elaborado pelo autor.

A partir desses resultados, não houve mais necessidade de refinamentos e a avaliação

foi a de que o código-fonte gerado atendeu aos requisitos e produziu a solução pretendida. É

importante salientar que os arquivos gerados foram necessários, mas não suficientes para se

produzir a solução completa. Para a compilação e execução desse código na placa de

desenvolvimento foi necessário criar um projeto na ferramenta STM32CubeIDE e informar o

número (Part Number) da placa de desenvolvimento. A partir daí a ferramenta criou uma

estrutura de projeto com código-fonte padrão e, então, o código gerado pelo ChatGPT foi

inserido para compor o firmware final que é executado na placa de desenvolvimento.

43

4.2 Resultados da Geração de Diagramas

 Com a solução pretendida disponível em código-fonte gerado pelo ChatGPT, o próximo

experimento foi ter uma documentação adicional do firmware na forma de diagramas em

notação de linguagem visual, seja para se ter uma visualização gráfica da sua estrutura – o que

pode vir a implicar novos refinamentos para favorecer algum estilo arquitetural que se deseje –

, seja para fins de arquivamento junto ao código-fonte do projeto para posterior manutenção por

outros desenvolvedores.

 Esse experimento teve como objetivo verificar as capacidades do ChatGPT em gerar

diagramas a partir do código-fonte gerado anteriormente. Para viabilizar o controle de versão

em projetos também do diagrama além do próprio código-fonte, foi solicitado que o ChatGPT

gerasse a representação gráfica do código em um diagrama UML usando a notação textual

definida pela ferramenta PlantUML.

 Como os LLM’s são especializadas em geração de conteúdo textual, a tarefa em questão

nesse experimento foi a transformação do código-fonte escrito em linguagem de programação

C para a linguagem de notação textual da ferramenta PlantUML. O que se observou foi que o

ChatGPT foi capaz de gerar o conteúdo de texto na notação solicitada. Este conteúdo pôde ser

usado para elaboração e visualização do diagrama diretamente no site da ferramenta online

PlantUML.

 A Tabela 17 mostra a solicitação feita ao ChatGPT para geração do diagrama em

notação textual e a Figura 8 mostra o resultado da visualização gráfica do diagrama de classes

obtido através do processamento do resultado na ferramenta online PlantUML.

Tabela 17 – Solicitação e resposta para geração de diagrama de classes feita ao ChatGPT.

Interação Conteúdo

Solicitação Vamos gerar uma representação gráfica através de um diagrama de classes

da UML usando a notação para uso na ferramenta PlantUML.

Resposta do

ChatGPT

Aqui está a notação do diagrama de classes em PlantUML para que você

possa usá-la em qualquer ferramenta compatível com o PlantUML:

@startuml

class main {

 - TEMPERATURE_LIMIT: float

 + main(): void

 - SystemClock_Config(): void

44

}

class AlarmMonitor {

 + Alarm_init(): void

 + Alarm_checkCondition(currentTemperature: float,

 temperatureLimit: float): void

 - alarmTrigger(): void

 - alarmReset(): void

}

class Led {

 + Led_init(): void

 + Led_startBlink(): void

 + Led_stopBlink(): void

 - ledBlinkConfig(): void

}

class TemperatureSensor {

 + TemperatureSensor_init(): void

 + TemperatureSensor_read(): float

}

main --> AlarmMonitor : uses

main --> Led : uses

main --> TemperatureSensor : uses

@enduml

Basta copiar esse código e colá-lo em um ambiente PlantUML para gerar o

diagrama.

Fonte: Elaborado pelo autor.

Figura 8 – Diagrama de classes da UML gerado pelo ChatGPT

Fonte: Elaborado pelo autor3.

3 Elaborado com uso da ferramenta online PlantUML.

 Disponível em < https://www.plantuml.com/>. Acesso em 07 set. 2024.

45

Assim como a estrutura do programa pôde ser visualizada através de um diagrama, seu

fluxo de operação também pôde ser representado graficamente. A UML define alguns

diagramas para visualização de fluxos, tais como o diagrama de atividades e o diagrama de

sequência. Como se pretendeu visualizar a operação interna do código, o diagrama de sequência

foi escolhido. A Tabela 18 mostra a solicitação feita ao ChatGPT para geração do diagrama em

notação textual e a Figura 9 mostra o resultado da visualização gráfica do diagrama obtido

através do processamento do resultado na ferramenta online PlantUML.

Tabela 18 – Solicitação e resposta para geração de diagrama de sequência feita ao ChatGPT

Interação Conteúdo

Solicitação Vamos gerar agora um diagrama de sequência da UML a partir do código-

fonte gerado anteriormente para que seja possível se visualizar o fluxo de

operação do programa.

Resposta do

ChatGPT

Aqui está a notação em PlantUML para o diagrama de sequência,

representando o fluxo de operação do programa com base no código-fonte

gerado:

@startuml

@startuml

actor User

participant "main" as Main

participant "AlarmMonitor" as AlarmMonitor

participant "Led" as Led

participant "TemperatureSensor" as TemperatureSensor

User -> Main: Ligar o dispositivo

Main -> Led: Led_init()

Main -> AlarmMonitor: Alarm_init()

Main -> TemperatureSensor: TemperatureSensor_init()

loop [Contínuo]

 Main -> TemperatureSensor: TemperatureSensor_read()

 TemperatureSensor --> Main: currentTemperature

 Main -> AlarmMonitor: Alarm_checkCondition(

 currentTemperature, TEMPERATURE_LIMIT)

 alt [Se temperatura excede o limite]

 AlarmMonitor -> Led: Led_startBlink()

 AlarmMonitor -> Main: Aciona alarme

 else [Se temperatura não excede o limite]

 AlarmMonitor -> Led: Led_stopBlink()

 AlarmMonitor -> Main: Reseta alarme

 end

46

 Main -> Main: HAL_Delay(50)

end

@enduml

Explicação:

1. User: O usuário inicia o dispositivo.

2. Main: Inicializa o LED, alarme e sensor de temperatura.

3. TemperatureSensor: Lê a temperatura atual continuamente.

4. AlarmMonitor: Verifica se a temperatura excede o limite e aciona

ou reseta o alarme.

5. Led: Pisca o LED de alarme quando a temperatura excede o limite.

Copie esse código para um ambiente compatível com PlantUML para gerar

o diagrama de sequência.

Fonte: Elaborado pelo autor.

Figura 9 – Diagrama de sequência da UML gerado pelo ChatGPT

Fonte: Elaborado pelo autor4.

As visualizações gráficas através de diagramas gerados foram satisfatórias. A vantagem

nessa abordagem é que a geração pode ser sempre realizada de forma automática pela fermenta

não havendo trabalho adicional para se manter a documentação atualizada. A desatualização da

documentação é um aspecto de ocorrência frequente em projetos de software.

4 Elaborado com uso da ferramenta online PlantUML.

 Disponível em < https://www.plantuml.com/>. Acesso em 07 set. 2024.

47

4.3 Resultados da Geração de Casos de Teste

Da mesma forma que a geração de diagramas a partir de código-fonte, foi possível

explorar as capacidades do ChatGPT relacionadas à transformação do código-fonte gerado em

outra categoria de conteúdo textual bastante utilizada em projetos de desenvolvimento de

software, que são os casos de teste.

Uma nova solicitação em sequência ao contexto corrente do chat utilizado para geração

dos artefatos anteriores foi feita ao ChatGPT, agora para gerar cenários de teste possíveis para

a solução que foi previamente desenvolvida. O resultado pode ser na Tabela 19.

Tabela 19 – Solicitação e resposta para geração de casos de teste feita ao ChatGPT.

Interação Conteúdo

Solicitação Agora vamos explorar a geração de casos de teste para a solução que foi

desenvolvida. Gere os casos de teste em linguagem natural para execução

manual por usuários interagindo com o dispositivo.

Resposta do

ChatGPT

A Aqui estão alguns casos de teste em linguagem natural para execução

manual por usuários interagindo com o dispositivo de controle de

temperatura. Esses testes visam verificar se o dispositivo está funcionando

corretamente de acordo com os requisitos e especificações definidos.

Caso de Teste 1: Configuração do valor limite de temperatura

Objetivo: Verificar se o usuário consegue definir corretamente o valor limite

de temperatura no dispositivo.

• Pré-condições: O dispositivo está desligado.

• Passos:

1. Ligue o dispositivo.

2. Defina o valor limite de temperatura para 100°C (por

exemplo).

3. Observe se o dispositivo salva e armazena corretamente o

valor configurado.

• Resultado Esperado: O dispositivo aceita o valor limite de

temperatura, que fica armazenado até ser redefinido ou até que o

dispositivo seja desligado.

Caso de Teste 2: Monitoramento contínuo da temperatura

Objetivo: Verificar se o dispositivo realiza o monitoramento contínuo da

temperatura.

• Pré-condições: O dispositivo está ligado com um valor limite de

temperatura configurado.

• Passos:

1. Verifique se o dispositivo está ligado.

48

2. Monitore o valor atual da temperatura exibido ou lido

através do canal ADC no pino PA0.

3. Aumente e diminua a temperatura ambiente ao redor do

sensor para verificar se ele está registrando as mudanças de

temperatura.

• Resultado Esperado: O dispositivo lê continuamente a temperatura

sem interrupção.

Caso de Teste 3: Comportamento do alarme (temperatura abaixo do limite)

Objetivo: Verificar o comportamento do alarme quando a temperatura está

abaixo do limite configurado.

• Pré-condições: O dispositivo está ligado com o valor limite de 100°C

e a temperatura ambiente está abaixo desse valor.

• Passos:

1. Mantenha a temperatura do sensor abaixo de 100°C.

2. Observe a saída digital de alarme no pino PA6.

• Resultado Esperado: A saída digital de alarme permanece em nível

lógico zero e o LED no pino PA5 permanece apagado.

Caso de Teste 4: Disparo do alarme (temperatura acima do limite)

Objetivo: Verificar o comportamento do alarme quando a temperatura

excede o limite configurado.

• Pré-condições: O dispositivo está ligado com o valor limite de 100°C

e a temperatura ambiente está abaixo desse valor.

• Passos:

1. Aumente a temperatura ao redor do sensor para exceder

100°C.

2. Observe a saída digital de alarme no pino PA6 e o

comportamento do LED no pino PA5.

• Resultado Esperado: A saída digital de alarme vai para nível lógico

um, e o LED de alarme pisca a uma frequência de 4 Hz.

Caso de Teste 5: Comportamento do alarme ao retornar para temperatura

abaixo do limite

Objetivo: Verificar o comportamento do alarme quando a temperatura

retorna para um valor abaixo do limite após ter sido excedida.

• Pré-condições: O alarme foi disparado porque a temperatura

ultrapassou o limite.

• Passos:

1. Reduza a temperatura do sensor para um valor abaixo de

100°C.

2. Observe o comportamento do alarme e do LED.

• Resultado Esperado: A saída digital de alarme retorna para nível

lógico zero e o LED para de piscar.

49

Caso de Teste 6: Frequência de piscagem do LED

Objetivo: Verificar se o LED de alarme pisca na frequência correta quando

o alarme é acionado.

• Pré-condições: O dispositivo está ligado e a temperatura excede o

limite configurado.

• Passos:

1. Acione o alarme aumentando a temperatura acima de 100°C.

2. Cronometre o tempo entre as piscadas do LED de alarme.

• Resultado Esperado: O LED de alarme deve piscar com uma

frequência de 4 Hz (um ciclo de piscada a cada 250 ms).

Caso de Teste 7: Estabilidade do sistema ao longo do tempo

Objetivo: Verificar a estabilidade do dispositivo e do alarme após longos

períodos de operação.

• Pré-condições: O dispositivo está ligado com um valor limite de

temperatura configurado.

• Passos:

1. Deixe o dispositivo ligado por 12 horas.

2. Durante esse tempo, monitore o comportamento do alarme e

do LED à medida que a temperatura varia ao longo do tempo.

• Resultado Esperado: O dispositivo deve funcionar de forma estável,

sem travamentos ou falhas, e deve acionar o alarme corretamente

quando necessário.

Esses casos de teste permitem ao usuário verificar se o dispositivo está

cumprindo todos os requisitos funcionais e técnicos especificados, além de

assegurar que o comportamento do dispositivo seja consistente em

diferentes cenários de operação.

Fonte: Elaborado pelo autor.

Foram gerados sete casos de teste no total sem fornecer nenhuma obrigatoriedade de

cobertura e nem critérios de teste específicos a serem atendidos. Seis deles visaram a verificação

das funcionalidades diretamente especificadas nos requisitos e nas estórias de usuário. Um deles

especificamente referiu-se a um teste não-funcional de longa duração, sugerindo deixar o

dispositivo ligado por doze horas em funcionamento para verificar o seu comportamento.

Certamente a disciplina de teste pode ser bem mais vastamente explorada no ChatGPT

devido a sua característica fundamental diretamente associada à especialidade das ferramentas

baseadas em LLM’s, que é a geração de conteúdo textual, e sendo os roteiros de casos de teste

um tipo desse conteúdo. Os resultados com um único prompt ao ChatGPT foram satisfatórios.

50

5 CONCLUSÃO

Esse trabalho abordou a aplicação da IA Generativa, especificamente o ChatGPT, na

geração de artefatos de software no contexto do desenvolvimento de firmware, com o objetivo

principal de avaliar a eficácia dessas ferramentas no auxílio à criação de código-fonte e outros

artefatos de software. O principal propósito foi verificar se a IA Generativa poderia ser utilizada

como uma ferramenta prática e produtiva no processo de desenvolvimento de firmware,

reduzindo a carga de trabalho e aumentando a eficiência dos desenvolvedores. Para atingir esse

objetivo, foi realizado um experimento utilizando técnicas de engenharia de prompt, que

guiaram a interação com o ChatGPT para a geração mais assertiva de código estruturado e

compatível com as necessidades específicas do firmware.

A metodologia adotada consistiu em estruturar o problema em requisitos de software,

descritos por meio de estórias de usuário, especificações técnicas e orientações sobre boas

práticas de desenvolvimento. Esses artefatos foram inseridos no ChatGPT por meio de prompts

detalhados, que incluíram exemplos e demonstrações para guiar a IA na produção de código de

alta qualidade. O experimento utilizou um cenário realista de desenvolvimento de firmware

para um dispositivo eletrônico de monitoramento de temperatura, com o objetivo de gerar

código que controlasse um alarme e um LED de sinalização quando determinados limites de

temperatura fossem excedidos.

Os resultados obtidos demonstraram que o ChatGPT foi capaz de produzir código-fonte

funcional, organizado e apresentando aspectos de qualidade, atendendo a todos os requisitos

estabelecidos nos experimentos. Em várias interações, o código gerado necessitou de ajustes

para corrigir pequenos defeitos e adequar-se aos padrões de qualidade esperados, como foi o

caso da frequência de piscagem do LED, que não foi inicialmente configurada corretamente.

Ao longo do processo, foram feitas solicitações para correção e refinamento da solução, e o

ChatGPT respondeu de forma eficaz, ajustando o código conforme o necessário. No entanto,

ficou evidente que a IA Generativa, embora eficiente em várias tarefas, não prescinde

completamente da intervenção humana, especialmente quando se trata de ajustes finos e

otimizações mais complexas.

A conclusão geral é que o ChatGPT, e provavelmente outras ferramentas de IA

Generativa que estão disponíveis, tem um grande potencial para auxiliar no desenvolvimento

de firmware e outras áreas de software, aumentando a produtividade e automatizando tarefas

repetitivas. No entanto, ainda há limitações no que diz respeito à sua capacidade de prever

51

problemas e sugerir melhorias que não sejam explicitamente solicitadas. Isso reforça a

importância da colaboração entre desenvolvedores e a IA, onde a expertise humana permanece

essencial para garantir a assertividade, robustez e a precisão dos sistemas desenvolvidos.

Como sugestões de trabalhos futuros, podem ser realizadas novas investigações e

aprimoramentos na integração de ferramentas de IA generativa no ciclo de desenvolvimento de

software explorando e incorporando mais técnicas de engenharia de prompt. No âmbito da etapa

de concepção, podem ser realizados novos trabalhos que tragam experimentos baseados em

outras técnicas de captura e especificação de requisitos, tais como casos de uso, texto livre, e

até mesmo especificação formal. Na perspectiva da geração de código-fonte, além da linguagem

C, pode ser explorada a geração ou a transformação de código para a linguagem C++, que

possui suporte a orientação a objetos, um importante paradigma de programação e sendo agora

tendência atual para o desenvolvimento de firmware. No âmbito da geração de diagramas, pode

ser explorada a geração de outros diagramas também úteis a depender do tipo de sistema a ser

desenvolvido ou mesmo outras notações visuais, tais como SysML, DFD, DER etc. No âmbito

da geração de casos de teste, podem ser exploradas outras técnicas de roteirização e estruturação

de casos de teste assim como notações e linguagens específicas para automação, tais como

BDD, XUnit e TTCN-3. Além disso, seria possível especificar critérios de teste, tais como

análise de valores limites, cobertura do fluxo de controle do programa para abordagens de teste

de caixa branca ou cinza etc. Por fim, esses mesmos experimentos podem ser explorados em

outras ferramentas de IA Generativa disponíveis ao público, tais como o Gemini do Google,

Llama do Facebook e o Claude do Anthropic, para fins de comparação.

Enfim, os resultados obtidos com a aplicação da IA Generativa nas mais diversas áreas

tem sido notáveis. Percebe-se um relativo consenso na comunidade, com base nos trabalhos

consultados, de que esse tipo de sistema não apresenta ainda as capacidades de

superinteligência, mas pode, sim, ser usado para expandir as capacidades humanas em tarefas

de criação dos mais diversos de tipos conteúdo. Embora a inteligência artificial amplie as

fronteiras do desenvolvimento de software, é na colaboração entre a criatividade humana e o

poder da IA que poderá residir o verdadeiro potencial para transformar o futuro da tecnologia.

52

REFERÊNCIAS

AAMANA; AIN, Q. U.; NISA, S. U. Beyond Agile: NLP-Driven Quality Attributes Retrieval

Using ChatGPT in Software Development Strategies. 2024. In: International Conference on

Engineering & Computing Technologies (ICECT), p. 1-6, 2024.

BENDER, E. M.; GEBRU; T.; MCMILLAN-MAJOR, A.; SHMITCHELL, S. "On the Dangers

of Stochastic Parrots: Can Language Models Be Too Big?". In: Proceedings of the 2021 ACM

Conference on Fairness, Accountability, and Transparency. New York, NY, USA:

Association for Computing Machinery, 2021.

BROWN, T. et al. Language Models are Few-Shot Learners. In: Advances in Neural

Information Processing Systems, v. 33, p. 1877–1901, 2020.

CÁMARA, J.; TROYA, J.; BURGUEÑO, L.; VALLECILLO, A. On the assessment of

generative AI in modeling tasks: an experience report with ChatGPT and UML. Software and

Systems Modeling, v. 22, n. 3, p. 781–793, 2023.

CLARK, A.; IGBOKWE, D.; ROSS, S.; ZIBRAN, M. F. A Quantitative Analysis of Quality

and Consistency in AI-generated Code. In: International Conference on Software and

System Engineering (ICoSSE), 7., 2024, Los Alamitos, CA, USA. IEEE Computer Society,

2024. p. 37-41.

COMBEMALE, B.; GRAY, J.; RUMPE, B. ChatGPT in software modeling. Software and

Systems Modeling, v. 22, p. 777-779, 2023.

COPELAND, Michael. What’s the Difference Between Artificial Intelligence, Machine

Learning, and Deep Learning? NVIDIA Blog, 29 de julho de 2016. Disponível em:

<https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-

deep-learning-ai/>. Acesso em: 10 ago. 2024.

DEVLIN, J.; CHANG, M-W.; LEE, K.; TOUTANOVA, K. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In: Proceedings of NAACL-HLT,

2019, p. 4171-4186.

FENG, Z.; GUO, D.; TANG, D.; DUAN, N.; FENG, X.; GONG, M.; SHOU, L.; QIN, B.; LIU,

T.; JIANG, D.; ZHOU, M. CodeBERT: A Pre-Trained Model for Programming and Natural

Languages. In: COHN, Trevor; HE, Yulan; LIU, Yang (ed.). Findings of the Association for

Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 2020.

p. 1536-1547. Disponível em: https://aclanthology.org/2020.findings-emnlp.139. DOI:

10.18653/v1/2020.findings-emnlp.139. Acesso em: 10 ago. 2024.

FEIGENBAUM, E. A.; BUCHANAN, B. G.; LEDERBERG, J. On generality and problem

solving: A case study using the DENDRAL program. In: Machine Intelligence, Vol. 6, p. 165-

190, 1971.

GRAVES, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Studies in

Computational Intelligence, v. 385, Springer, 2012.

53

GUO, M. Java Web Programming with ChatGPT. In: 2024 5th International Conference on

Mechatronics Technology and Intelligent Manufacturing (ICMTIM). 2024. p. 834-838.

DOI: 10.1109/ICMTIM62047.2024.10629560.

HEKLER, Eric. Understanding the systems we exist in: computing machines as an analogy.

Medium, 5 de agosto de 2020. Disponível em: https://erichekler.medium.com/understanding-

the-systems-we-exist-in-computing-machines-as-an-analogy-4480788f2674. Acesso em: 10

ago. 2024.

HUSAIN, H.; WU, H.; GAZIT, T.; ALLAMANIS, M.; BROCKSCHMIDT, M.

CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. 2020.

Disponível em: <https://arxiv.org/abs/1909.09436>. Acesso em: 10 ago. 2024.

IMANI, S.; DU, L.; SHRIVASTAVA, H. MathPrompter: Mathematical Reasoning using Large

Language Models. In: Proceedings of the 2023 Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2023.

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition. 2nd. ed.

Upper Saddle River, NJ: Prentice-Hall, 2009.

LI, Y.; SHI, J.; ZHANG, Z. An Approach for Rapid Source Code Development Based on

ChatGPT and Prompt Engineering. IEEE Access, v. 12, p. 53074-53087, 2024.

LIU, C.; BAO, X.; ZHANG, H.; ZHANG, N.; HU, H.; ZHANG, X.; YAN, M. Guiding

ChatGPT for Better Code Generation: An Empirical Study. IEEE International Conference

on Software Analysis, Evolution and Reengineering (SANER), 2024. p. 102-113.

LIU, P., YU, X., & WANG, C. Prompt Engineering: An Overview. Journal of Artificial

Intelligence Research, v. 58, p. 56-70, 2023.

OMG (Object Management Group). Unified Modeling Language (UML) Version 2.5.1.

Needham, MA, USA: Object Management Group, 2017. Disponível em:

<https://www.omg.org/spec/UML/>. Acesso em: 26 ago. 2024.

MORATIS, K.; DIAMANTOPOULOS, T.; NASTOS, D-N.; SYMEONIDIS, A. Write me this

Code: An Analysis of ChatGPT Quality for Producing Source Code. In: International

Conference on Mining Software Repositories, 21., 2024, Lisboa, Portugal. Association for

Computing Machinery, 2024.

MORIMOTO, C. Guia Foca Linux. 8. ed. São Paulo: Novatec, 2017.

RABBI, M. F.; CHAMPA, A. I.; ZIBRAN, M. F.; ISLAM, M. R. AI Writes, We Analyze: The

ChatGPT Python Code Saga. In: International Conference on Mining Software

Repositories, 21., 2024, Lisboa, Portugal. Association for Computing Machinery, 2024. p.

177–181.

RAHMANIAR, W. ChatGPT for Software Development: Opportunities and Challenges.

IT Professional, v. 26, n. 3, p. 80-86, 2024.

54

SHORTLIFFE, E. H. Computer-Based Medical Consultations: MYCIN. New York:

Elsevier, 1976.

STALLINGS, W. Arquitetura e organização de computadores. 8. ed. São Paulo. Pearson

Prentice Hall, 2013.

TANENBAUM, A. S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson, 2009.

TURING, A. M. "Computing Machinery and Intelligence". Mind, 1950.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.;

KAISER, Ł.; POLOSUKHIN, I. Attention Is All You Need. In: Advances in Neural

Information Processing Systems 30 (NeurIPS 2017). 2017, p. 6000-6008.

WANG, X. et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models.

In: Proceedings of the 11th International Conference on Learning Representations, 2023.

WEI, J. et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In:

Proceedings of the 36th International Conference on Neural Information Processing

System, 2024. p. 24824-24837.

WEI, J.; BOSMA, M.; ZHAO, V. Y.; GUU, K.; YU, A. W.; LESTER, B.; DU, N.; DAI, A. M.;

LE, Q. V. Zero-shot learning with large pre-trained language models. In: Proceedings of the

2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

p. 133-145.

WU, T.; HE, S.; LIU, J.; SUN, S.; LIU, K.; HAN, Q.; TANG, Y. A Brief Overview of ChatGPT:

The History, Status Quo and Potential Future Development. IEEE/CAA Journal of

Automatica Sinica, v. 10, n. 5, p. 1122-1136, 2023. DOI: 10.1109/JAS.2023.123618.

YAN, D.; GAO, Z.; LIU, Z. A Closer Look at Different Difficulty Levels Code Generation

Abilities of ChatGPT. In: IEEE/ACM International Conference on Automated Software

Engineering (ASE), 38., 2023, Los Alamitos, CA, USA. IEEE Computer Society, 2023. p.

1887-1898.

ZHANG, Y.; ZHANG, A.; LI, M. SMOLA, A. Automatic Chain of Thought Prompting in

Large Language Models. In: The 11h International Conference on Learning

Representations, 2023.

55

ANEXO A – Interação inicial com o ChatGPT

Você disse:

Vamos elaborar uma solução de um dispositivo eletrônico para controle de

temperatura e disparo de alarmes. Os requisitos serão dados a seguir.

O ChatGPT disse:

Ótimo! Vamos detalhar a solução com base nos requisitos. Quais são os requisitos

para o dispositivo de controle de temperatura? Se já tiver alguns em mente,

podemos começar a partir daí.

Você disse:

Estes são os requisitos:

1. Como um usuário do dispositivo, eu quero definir um [valor limite de temperatura] que

deve ser armazenado no dispositivo para a realização do [monitoramento de temperatura].

2. Como um usuário do dispositivo, eu quero poder ligar o dispositivo e este iniciar o

[monitoramento da temperatura] realizando a leitura do [valor atual da temperatura] de modo

contínuo e sem interrupção até que seja desligado.

3. Como um usuário do dispositivo, eu quero que o dispositivo mantenha a [saída digital de

alarme] no nível lógico zero caso o [valor limite de temperatura] não tenha sido excedido.

4. Como um usuário do dispositivo, eu quero que o dispositivo mantenha a [saída digital de

alarme] no nível lógico um caso o [valor limite de temperatura] tenha sido excedido.

5. Como um usuário do dispositivo, eu quero também que o dispositivo realize uma

sinalização luminosa através da piscagem [LED de alarme] quando o [valor limite da

temperatura] exceder o [valor atual da temperatura]. Aguarde que irei informá-lo sobre

algumas especificações adicionais a seguir.

O ChatGPT disse:

Entendido! Temos os requisitos básicos para o controle de temperatura e alarmes,

incluindo o armazenamento de um valor limite de temperatura, a leitura contínua do

valor atual da temperatura, controle de uma saída digital de alarme e sinalização por

LED. Fico no aguardo das especificações adicionais para que possamos elaborar a

solução completa.

Você disse:

Estas são as especificações adicionais:

1. O [valor limite de temperatura] deve ser um valor entre 0 e 250 graus Celsius.

2. O [valor atual da temperatura] deve ser lido através da conversão analógico digital

utilizando o ADC0 canal 0 definido no pino PA0.

3. O [LED de alarme] deve ser implementado através do pino PA5.

4. A [saída digital de alarme] deve ser implementado no pino PA6.

5. A piscagem do [LED de alarme] deve ocorrer a uma frequência de 4 Hertz.

56

Aguarde que irei informá-lo sobre algumas orientações e exemplos de como iremos

gerar código-fonte para esta solução.

O ChatGPT disse:

Perfeito! Com essas especificações, já podemos visualizar boa parte do design do

sistema. Ficarei aguardando as orientações e exemplos sobre o código-fonte para

implementar essa solução.

Você disse:

Estas são as orientações e exemplos sobre o código-fonte:

1. Nomes de variáveis globais de escopo de arquivo devem seguir o padrão PascalCase

prefixadas com letra ‘m’ e precedidas com o operador ‘static’.

Exemplo de nomes de variáveis globais de escopo de arquivo:

- float mCurrentTemperature = 0;

- uint32_t mLedBlinkInterval = 125;

2. Nomes de variáveis locais devem seguir o padrão camelCase. Exemplo de nomes de

variáveis locais:

- float currentTemperature = 50;

- uint32_t counter = 0;

3. Nomes de funções de escopo de arquivo devem seguir o padrão camelCase e precedidas

com o operador ‘static’. Exemplo de nomes de funções de escopo de arquivo:

- static float readTemperature(void);

- static void checkAlarmCondition(void);

4. Nomes de funções de escopo global devem seguir o padrão PascalCase e precedidas

pelo substantivo separada por sublinhado pela ação com a ação seguindo o padrão

camelCase. Exemplo de nomes de funções de escopo global:

- void Led_turnOn(void);

- void Alarm_trigger(void);

5. Os nomes dos arquivos gerados devem seguir o padrão snake_case. Exemplos de

nomes de arquivos no padrão snake_case:

- led.h e led.c

- alarm_monitor.h e alarm_monitor.c

Depois de entender essas orientações, irei realizar uma solicitação a seguir para

geração de código-fonte em uma linguagem específica.

O ChatGPT disse:

Ótimo! As orientações e exemplos sobre os padrões de nomenclatura e estrutura de

código estão bem claras. Estou pronto para a próxima solicitação de geração de

código-fonte na linguagem específica que você escolher.

57

ANEXO B – Código-fonte gerado inicialmente pelo ChatGPT

Arquivo: main.h

#ifndef MAIN_H

#define MAIN_H

#include "stm32g0xx_hal.h"

void SystemClock_Config(void);

void MX_GPIO_Init(void);

void MX_ADC1_Init(void);

#endif /* MAIN_H */

Arquivo: main.c

#include "main.h"

#include "led.h"

#include "alarm_monitor.h"

/* Variáveis globais de escopo de arquivo */

static float mCurrentTemperature = 0.0;

static float mTemperatureLimit = 100.0; // Padrão inicial, pode ser

configurado pelo usuário

static uint32_t mLedBlinkInterval = 125; // Intervalo de tempo para 4 Hz (125

ms)

static uint8_t mAlarmTriggered = 0; // Indicador de alarme

/* Funções de escopo de arquivo */

static float readTemperature(void);

static void checkAlarmCondition(void);

int main(void) {

 HAL_Init();

 SystemClock_Config();

 // Inicializações de GPIO e ADC

 MX_GPIO_Init();

 MX_ADC1_Init();

 // Loop principal

 while (1) {

 mCurrentTemperature = readTemperature(); // Leitura da temperatura

 checkAlarmCondition(); // Checa condições de alarme

 HAL_Delay(100); // Pequena espera para

suavizar a leitura

58

 }

}

/**

 * @brief Função para ler a temperatura do sensor no canal ADC0 (PA0)

 * @return float Valor atual da temperatura

 */

static float readTemperature(void) {

 uint32_t adcValue = 0;

 float temperature = 0.0;

 // Start ADC conversion

 HAL_ADC_Start(&hadc1);

 if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK) {

 adcValue = HAL_ADC_GetValue(&hadc1); // Lê valor ADC

 }

 HAL_ADC_Stop(&hadc1);

 // Conversão do valor ADC para temperatura (simplificado)

 temperature = ((float)adcValue / 4095.0) * 250.0; // Faixa de 0 a 250 °C

 return temperature;

}

/**

 * @brief Função para verificar se o limite de temperatura foi excedido

 * Aciona o LED e a saída de alarme se necessário.

 */

static void checkAlarmCondition(void) {

 if (mCurrentTemperature > mTemperatureLimit) {

 if (!mAlarmTriggered) {

 mAlarmTriggered = 1;

 Alarm_trigger(); // Aciona a saída de alarme

 }

 Led_blink(mLedBlinkInterval); // Piscagem do LED a 4 Hz

 } else {

 if (mAlarmTriggered) {

 mAlarmTriggered = 0;

 Alarm_reset(); // Reseta a saída de alarme

 }

 Led_turnOff();

 }

}

// Configuração do sistema de clock (omitir detalhes aqui para brevidade)

void SystemClock_Config(void) {

 // Configuração típica de clock para STM32

}

59

// Inicialização do GPIO

void MX_GPIO_Init(void) {

 __HAL_RCC_GPIOA_CLK_ENABLE();

 GPIO_InitTypeDef GPIO_InitStruct = {0};

 // Configurações do LED (PA5) e saída de alarme (PA6)

 GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_6;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

// Inicialização do ADC (PA0 - Canal 0)

void MX_ADC1_Init(void) {

 ADC_ChannelConfTypeDef sConfig = {0};

 __HAL_RCC_ADC_CLK_ENABLE();

 hadc1.Instance = ADC1;

 hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;

 hadc1.Init.Resolution = ADC_RESOLUTION_12B;

 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

 hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

 hadc1.Init.ContinuousConvMode = DISABLE;

 hadc1.Init.NbrOfConversion = 1;

 hadc1.Init.DiscontinuousConvMode = DISABLE;

 hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;

 HAL_ADC_Init(&hadc1);

 sConfig.Channel = ADC_CHANNEL_0;

 sConfig.Rank = ADC_REGULAR_RANK_1;

 sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;

 HAL_ADC_ConfigChannel(&hadc1, &sConfig);

}

Arquivo: led.h

#ifndef LED_H

#define LED_H

#include "main.h"

void Led_turnOn(void);

void Led_turnOff(void);

void Led_blink(uint32_t interval);

#endif /* LED_H */

60

Arquivo: led.c

#include "led.h"

/**

 * @brief Liga o LED de alarme (PA5).

 */

void Led_turnOn(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);

}

/**

 * @brief Desliga o LED de alarme (PA5).

 */

void Led_turnOff(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);

}

/**

 * @brief Pisca o LED de alarme (PA5) com o intervalo especificado.

 * @param interval Intervalo em milissegundos.

 */

void Led_blink(uint32_t interval) {

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // Inverte o estado do pino

 HAL_Delay(interval);

}

Arquivo: alarm_monitor.h

#ifndef ALARM_MONITOR_H

#define ALARM_MONITOR_H

#include "main.h"

void Alarm_trigger(void);

void Alarm_reset(void);

#endif /* ALARM_MONITOR_H */

Arquivo: alarm_monitor.c

#include "alarm_monitor.h"

/**

 * @brief Ativa a saída de alarme digital (PA6).

 */

void Alarm_trigger(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_SET); // Nível lógico alto

61

}

/**

 * @brief Reseta a saída de alarme digital (PA6).

 */

void Alarm_reset(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_RESET); // Nível lógico

baixo

}

62

ANEXO C – Código-fonte aprimorado pelo ChatGPT

Arquivo aprimorado: led.c

#include "led.h"

static uint32_t mLastBlinkTime = 0; // Armazena o último momento em que o LED

piscou

/**

 * @brief Liga o LED de alarme (PA5).

 */

void Led_turnOn(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);

}

/**

 * @brief Desliga o LED de alarme (PA5).

 */

void Led_turnOff(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);

}

/**

 * @brief Pisca o LED de alarme (PA5) de acordo com o intervalo especificado.

 * @param interval Intervalo em milissegundos.

 */

void Led_blink(uint32_t interval) {

 uint32_t currentTime = HAL_GetTick(); // Obtém o tempo atual em

milissegundos

 // Verifica se o tempo decorrido desde a última piscada é maior que o

intervalo

 if ((currentTime - mLastBlinkTime) >= interval) {

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // Inverte o estado do LED

 mLastBlinkTime = currentTime; // Atualiza o tempo da última piscada

 }

}

63

ANEXO D – Código-fonte corrigido pelo ChatGPT

Arquivo corrigido: main.c

#include "main.h"

#include "led.h"

#include "alarm_monitor.h"

/* Variáveis globais de escopo de arquivo */

static float mCurrentTemperature = 0.0;

static float mTemperatureLimit = 100.0; // Padrão inicial, pode ser

configurado pelo usuário

static uint32_t mLedBlinkInterval = 125; // Intervalo de tempo para 4 Hz (125

ms)

static uint8_t mAlarmTriggered = 0; // Indicador de alarme

/* Funções de escopo de arquivo */

static float readTemperature(void);

static void checkAlarmCondition(void);

int main(void) {

 HAL_Init();

 SystemClock_Config();

 // Inicializações de GPIO e ADC

 MX_GPIO_Init();

 MX_ADC1_Init();

 // Loop principal

 while (1) {

 mCurrentTemperature = readTemperature(); // Leitura da temperatura

 checkAlarmCondition(); // Checa condições de alarme

 // Não há delay fixo aqui, garantindo que o tempo de piscagem seja

controlado pela função Led_blink

 }

}

/**

 * @brief Função para ler a temperatura do sensor no canal ADC0 (PA0)

 * @return float Valor atual da temperatura

 */

static float readTemperature(void) {

 uint32_t adcValue = 0;

 float temperature = 0.0;

 // Start ADC conversion

64

 HAL_ADC_Start(&hadc1);

 if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK) {

 adcValue = HAL_ADC_GetValue(&hadc1); // Lê valor ADC

 }

 HAL_ADC_Stop(&hadc1);

 // Conversão do valor ADC para temperatura (simplificado)

 temperature = ((float)adcValue / 4095.0) * 250.0; // Faixa de 0 a 250 °C

 return temperature;

}

/**

 * @brief Função para verificar se o limite de temperatura foi excedido

 * Aciona o LED e a saída de alarme se necessário.

 */

static void checkAlarmCondition(void) {

 if (mCurrentTemperature > mTemperatureLimit) {

 if (!mAlarmTriggered) {

 mAlarmTriggered = 1;

 Alarm_trigger(); // Aciona a saída de alarme

 }

 Led_blink(mLedBlinkInterval); // Piscagem do LED a 4 Hz, controlada

pela função

 } else {

 if (mAlarmTriggered) {

 mAlarmTriggered = 0;

 Alarm_reset(); // Reseta a saída de alarme

 }

 Led_turnOff();

 }

}

Arquivo aprimorado: led.c

#include "led.h"

static uint32_t mLastBlinkTime = 0; // Armazena o último momento em que o LED

piscou

/**

 * @brief Liga o LED de alarme (PA5).

 */

void Led_turnOn(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);

}

/**

 * @brief Desliga o LED de alarme (PA5).

65

 */

void Led_turnOff(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);

}

/**

 * @brief Pisca o LED de alarme (PA5) de acordo com o intervalo especificado.

 * @param interval Intervalo em milissegundos.

 */

void Led_blink(uint32_t interval) {

 uint32_t currentTime = HAL_GetTick(); // Obtém o tempo atual em

milissegundos

 // Verifica se o tempo decorrido desde a última piscada é maior que o

intervalo

 if ((currentTime - mLastBlinkTime) >= interval) {

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // Inverte o estado do LED

 mLastBlinkTime = currentTime; // Atualiza o tempo da última piscada

 }

}

66

ANEXO E – Código-fonte refeito pelo ChatGPT

Arquivo refatorado: main.c

#include "main.h"

#include "led.h"

#include "alarm_monitor.h"

/* Variáveis globais de escopo de arquivo */

static float mCurrentTemperature = 0.0;

static float mTemperatureLimit = 100.0; // Padrão inicial, pode ser

configurado pelo usuário

static uint32_t mAlarmCheckInterval = 50; // Tempo de espera para verificação

de alarme (em ms)

static uint8_t mAlarmTriggered = 0; // Indicador de alarme

/* Funções de escopo de arquivo */

static float readTemperature(void);

static void checkAlarmCondition(void);

int main(void) {

 HAL_Init();

 SystemClock_Config();

 // Inicializações de GPIO, ADC e TIM

 MX_GPIO_Init();

 MX_ADC1_Init();

 MX_TIM1_Init(); // Inicialização do Timer 1

 // Loop principal

 while (1) {

 mCurrentTemperature = readTemperature(); // Leitura da temperatura

 checkAlarmCondition(); // Checa condições de alarme

 HAL_Delay(mAlarmCheckInterval); // Espera configurável para ciclo de

verificação

 }

}

/**

 * @brief Função para ler a temperatura do sensor no canal ADC0 (PA0)

 * @return float Valor atual da temperatura

 */

static float readTemperature(void) {

 uint32_t adcValue = 0;

 float temperature = 0.0;

67

 // Start ADC conversion

 HAL_ADC_Start(&hadc1);

 if (HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK) {

 adcValue = HAL_ADC_GetValue(&hadc1); // Lê valor ADC

 }

 HAL_ADC_Stop(&hadc1);

 // Conversão do valor ADC para temperatura (simplificado)

 temperature = ((float)adcValue / 4095.0) * 250.0; // Faixa de 0 a 250 °C

 return temperature;

}

/**

 * @brief Função para verificar se o limite de temperatura foi excedido

 * Aciona o LED e a saída de alarme se necessário.

 */

static void checkAlarmCondition(void) {

 if (mCurrentTemperature > mTemperatureLimit) {

 if (!mAlarmTriggered) {

 mAlarmTriggered = 1;

 Alarm_trigger(); // Aciona a saída de alarme

 HAL_TIM_Base_Start_IT(&htim1); // Inicia o timer para controlar o

LED

 }

 } else {

 if (mAlarmTriggered) {

 mAlarmTriggered = 0;

 Alarm_reset(); // Reseta a saída de alarme

 HAL_TIM_Base_Stop_IT(&htim1); // Para o timer de controle do LED

 Led_turnOff(); // Certifica que o LED está desligado

 }

 }

}

Arquivo refatorado: led.h

#ifndef LED_H

#define LED_H

#include "main.h"

void Led_turnOn(void);

void Led_turnOff(void);

void Led_toggle(void);

#endif /* LED_H */

68

Arquivo refatorado: led.c

#include "led.h"

/**

 * @brief Liga o LED de alarme (PA5).

 */

void Led_turnOn(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);

}

/**

 * @brief Desliga o LED de alarme (PA5).

 */

void Led_turnOff(void) {

 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);

}

/**

 * @brief Alterna o estado do LED de alarme (PA5).

 */

void Led_toggle(void) {

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

}

Arquivo refatorado: tim.h

#ifndef TIM_H

#define TIM_H

#include "main.h"

extern TIM_HandleTypeDef htim1;

void MX_TIM1_Init(void);

#endif /* TIM_H */

Arquivo refatorado: tim.c

#include "tim.h"

TIM_HandleTypeDef htim1;

/**

 * @brief Inicialização do Timer 1 para controle do LED de alarme.

 */

69

void MX_TIM1_Init(void) {

 __HAL_RCC_TIM1_CLK_ENABLE();

 htim1.Instance = TIM1;

 htim1.Init.Prescaler = 64000 - 1; // Prescaler para 1 ms por tick (64

MHz/64000 = 1 kHz)

 htim1.Init.CounterMode = TIM_COUNTERMODE_UP;

 htim1.Init.Period = 125 - 1; // Período para 125 ms (4 Hz)

 htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

 htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

 HAL_TIM_Base_Init(&htim1);

 // Ativar interrupção do TIM1

 HAL_NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);

}

/**

 * @brief Interrupção de Timer 1. Piscagem do LED ocorre aqui.

 */

void TIM1_BRK_UP_TRG_COM_IRQHandler(void) {

 HAL_TIM_IRQHandler(&htim1);

}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {

 if (htim->Instance == TIM1) {

 Led_toggle(); // Alterna o estado do LED quando o timer atinge o

período

 }

}

70

ANEXO F – Código-fonte gerado pelo ChatGPT (especificação

atualizada)

Arquivo refatorado: main.c

#include "stm32g0xx_hal.h"

#include "temperature_sensor.h"

#include "led.h"

#include "alarm_monitor.h"

// Definição do valor limite de temperatura

#define TEMPERATURE_LIMIT 100.0f

static void SystemClock_Config(void);

int main(void)

{

 HAL_Init();

 SystemClock_Config();

 // Inicializa o LED e o sistema de alarme

 Led_init();

 Alarm_init();

 TemperatureSensor_init();

 while (1)

 {

 // Lê a temperatura atual

 float currentTemperature = TemperatureSensor_read();

 // Verifica a condição de alarme

 Alarm_checkCondition(currentTemperature, TEMPERATURE_LIMIT);

 // Aguarda um pequeno intervalo de tempo

 HAL_Delay(50); // Espera de 50ms

 }

}

// Configuração do clock do sistema

static void SystemClock_Config(void)

{

 // Implementar conforme as especificações do clock desejado

}

Arquivo refatorado: alarm_monitor.h

71

#ifndef ALARM_MONITOR_H

#define ALARM_MONITOR_H

void Alarm_init(void);

void Alarm_checkCondition(float currentTemperature, float temperatureLimit);

#endif // ALARM_MONITOR_H

Arquivo refatorado: alarm_monitor.c

#include "alarm_monitor.h"

#include "led.h"

#include "stm32g0xx_hal.h"

// Pino para a saída digital de alarme

#define ALARM_PIN GPIO_PIN_6

#define ALARM_GPIO_PORT GPIOA

static void alarmTrigger(void)

{

 HAL_GPIO_WritePin(ALARM_GPIO_PORT, ALARM_PIN, GPIO_PIN_SET);

 Led_startBlink();

}

static void alarmReset(void)

{

 HAL_GPIO_WritePin(ALARM_GPIO_PORT, ALARM_PIN, GPIO_PIN_RESET);

 Led_stopBlink();

}

void Alarm_init(void)

{

 // Configuração do pino de saída do alarme

 __HAL_RCC_GPIOA_CLK_ENABLE();

 GPIO_InitTypeDef GPIO_InitStruct = {0};

 GPIO_InitStruct.Pin = ALARM_PIN;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(ALARM_GPIO_PORT, &GPIO_InitStruct);

 // Inicialmente, o alarme está desligado

 alarmReset();

}

void Alarm_checkCondition(float currentTemperature, float temperatureLimit)

{

 if (currentTemperature > temperatureLimit)

72

 {

 alarmTrigger();

 }

 else

 {

 alarmReset();

 }

}

Arquivo refatorado: led.h

#ifndef LED_H

#define LED_H

void Led_init(void);

void Led_startBlink(void);

void Led_stopBlink(void);

#endif // LED_H

Arquivo refatorado: led.c

#include "led.h"

#include "stm32g0xx_hal.h"

// Pino para o LED de alarme

#define LED_PIN GPIO_PIN_5

#define LED_GPIO_PORT GPIOA

#define LED_BLINK_FREQUENCY 250 // Período de piscagem de 250 ms (4 Hz)

// Timer utilizado para controle do piscar

TIM_HandleTypeDef htim1;

static void ledBlinkConfig(void)

{

 // Configuração básica do Timer1 para controlar a piscagem

 __HAL_RCC_TIM1_CLK_ENABLE();

 htim1.Instance = TIM1;

 htim1.Init.Prescaler = 8000 - 1;

 htim1.Init.CounterMode = TIM_COUNTERMODE_UP;

 htim1.Init.Period = LED_BLINK_FREQUENCY - 1;

 htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

 HAL_TIM_Base_Init(&htim1);

}

void Led_init(void)

{

 __HAL_RCC_GPIOA_CLK_ENABLE();

73

 GPIO_InitTypeDef GPIO_InitStruct = {0};

 GPIO_InitStruct.Pin = LED_PIN;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(LED_GPIO_PORT, &GPIO_InitStruct);

 ledBlinkConfig();

}

void Led_startBlink(void)

{

 HAL_TIM_Base_Start_IT(&htim1);

}

void Led_stopBlink(void)

{

 HAL_TIM_Base_Stop_IT(&htim1);

 HAL_GPIO_WritePin(LED_GPIO_PORT, LED_PIN, GPIO_PIN_RESET);

}

// Callback do Timer para alternar o estado do LED

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

{

 if (htim->Instance == TIM1)

 {

 HAL_GPIO_TogglePin(LED_GPIO_PORT, LED_PIN);

 }

}

Arquivo refatorado: temperature_sensor.h

#ifndef TEMPERATURE_SENSOR_H

#define TEMPERATURE_SENSOR_H

void TemperatureSensor_init(void);

float TemperatureSensor_read(void);

#endif // TEMPERATURE_SENSOR_H

Arquivo refatorado: temperature_sensor.c

#include "temperature_sensor.h"

#include "stm32g0xx_hal.h"

// Canal ADC para leitura da temperatura

ADC_HandleTypeDef hadc1;

74

void TemperatureSensor_init(void)

{

 __HAL_RCC_ADC1_CLK_ENABLE();

 ADC_ChannelConfTypeDef sConfig = {0};

 hadc1.Instance = ADC1;

 hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;

 hadc1.Init.Resolution = ADC_RESOLUTION_12B;

 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

 hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

 hadc1.Init.ContinuousConvMode = ENABLE;

 hadc1.Init.DiscontinuousConvMode = DISABLE;

 hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;

 HAL_ADC_Init(&hadc1);

 // Configuração do canal 0

 sConfig.Channel = ADC_CHANNEL_0;

 sConfig.Rank = ADC_REGULAR_RANK_1;

 sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES;

 HAL_ADC_ConfigChannel(&hadc1, &sConfig);

 HAL_ADC_Start(&hadc1);

}

float TemperatureSensor_read(void)

{

 HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);

 uint32_t adcValue = HAL_ADC_GetValue(&hadc1);

 // Converter o valor ADC para a temperatura (exemplo: escala de 0-250

graus)

 float temperature = (adcValue / 4096.0f) * 250.0f;

 return temperature;

}

