=
2
o
O
<L
v
L
o
L
)
<L
=
v
o
T
=
=
-

Instituto de Ciéncias Matematicas e de Computacao

ChatGPT na geracéo de artefatos de software: Um
experimento envolvendo a aplicacao de IA Generativa e as
técnicas de engenharia de prompt no contexto do
desenvolvimento de firmware.

Fernando Pereira Martines

Trabalho de Conclusao de Curso
MBA em Inteligéncia Artificial e Big Data

ICMC

SAO CARLOS 3%

UNIVERSIDADE DE SAO PAULO

Instituto de Ciéncias Matematicas e de Computacao

ChatGPT na geracao de artefatos de
software: Um experimento
envolvendo a aplicacao de IA
Generativa e as técnicas de
engenharia de prompt no contexto
do desenvolvimento de firmware.

Fernando Pereira Martines

USP — S3o Carlos
2024

Fernando Pereira Martines

ChatGPT para a geracéao de artefatos de software: Um
experimento envolvendo a aplicacdo de IA Generativa e as
técnicas de engenharia de prompt no contexto do

desenvolvimento de firmware.

Trabalho de conclusdo de curso apresentado ao
Departamento de Ciéncias de Computacdo do
Instituto de Ciéncias Matematicas e de
Computacdo, Universidade de S&do Paulo -
ICMC/USP, como parte dos requisitos para
obtencéo do titulo de Especialista em Inteligéncia
Artificial e Big Data.

Area de concentraco: Inteligéncia Artificial.

Orientador: Prof. Dr. Ricardo Cerri.

USP — Sao Carlos
2024

Ficha catalogréfica elaborada pela Biblioteca Prof. Achille Bassi
e Secao Técnica de Informatica, ICMC/USP,
com os dados inseridos pelo(a) autor(a)

Martines, Fernando Pereira

M385c¢ ChatGPT para a geracdo de artefatos de software:
Um experimento envolvendo a aplicacdo de IA
Generativa e as técnicas de engenharia de prompt no
contexto do desenvolvimento de firmware. / Fernando
Pereira Martines; orientador Ricardo Cerri. -- Sé&o
Carlos, 2024.

76 p.

Trabalho de conclusdo de curso (MBA em
Inteligéncia Artificial e Big Data) -- Instituto de
Ciéncias Matematicas e de Computacgdo, Universidade
de S&o Paulo, 2024.

1. IA generativa. 2. ChatGPT. 3. Desenvolvimento
de Firmware. 4. Geracdo de cédigo. I. Cerri, Ricardo,
orient. II. Titulo.

Bibliotecéarios responséaveis pela estrutura de catalogagéo da publica¢éo de acordo com a AACR2:
Glaucia Maria Saia Cristianini - CRB - 8/4938
Juliana de Souza Moraes - CRB - 8/6176

DEDICATORIA

A minha eterna esposa Sandra por
todo amor, carinho, compreensao e

apoio incansavel nessa jornada.

AGRADECIMENTOS

Ao Instituto de Pesquisas Eldorado, pelo apoio e constante incentivo aos colaboradores
pela busca por novos conhecimentos e pelo inspirador ambiente de inovagéo tecnolégica.

A Profa. Dra. Solange Rezende, pelas incontaveis palavras de motivagdo em suas aulas
e palestras, o que sempre nos trouxe confianca e vontade de aprender mais e mais.

Ao Prof. Dr. Ricardo Cerri, por todo apoio e orientacdo no processo de pesquisa e

elaboracdo deste trabalho.

EPIGRAFE

"Inteligéncia artificial ndo é a inimiga da
humanidade; é uma ferramenta para ampliar
as capacidades humanas."

John McCarthy (2007)

RESUMO

MARTINES, F. P. ChatGPT para a geracao de artefatos de software: Um experimento
envolvendo a aplicacdo de IA Generativa e as técnicas de engenharia de prompt no
contexto do desenvolvimento de firmware. 2024. 74 f. Trabalho de concluséo de curso
(MBA em Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de
Computacdo, Universidade de S&o Paulo, Séo Carlos, 2024.

O presente trabalho explora o uso de 1A generativa, com foco na ferramenta ChatGPT, no
processo de geracdo de artefatos de software, tais como cddigo-fonte, diagramas e casos de
teste. A motivacao principal é avaliar se essa tecnologia pode ser Util no desenvolvimento de
firmware, um tipo de software fortemente acoplado ao hardware. O trabalho considera o
potencial da 1A generativa para automatizar tarefas repetitivas, aumentando a eficiéncia dos
desenvolvedores, especialmente na criacdo de Idgicas bem definidas e de uso recorrente. O
experimento principal envolveu a geracdo de cddigo em linguagem C para controlar um
dispositivo eletrénico de monitoramento de temperatura. Para conduzir o experimento, foram
utilizados conceitos da Engenharia de Prompt, que guiam a interacdo do usuario com o
ChatGPT para otimizar a assertividade e a qualidade dos resultados gerados. O experimento foi
estruturado em varias etapas, comecando pela criacdo de estorias de usuario e especificaces
técnicas para orientar a | A na geracao do codigo-fonte e de outros artefatos relacionados. Essas
instrucdes foram enviadas ao ChatGPT através de prompts detalhados. Ao longo do processo,
0 cbdigo gerado foi analisado e diversas interagdes adicionais foram realizadas para corrigir
pequenos erros apresentados. O cadigo final foi considerado funcional e compativel com as
especificacbes fornecidas, destacando a utilidade pratica da ferramenta de IA. Os resultados
demonstraram que, embora 0 ChatGPT seja eficaz na geracdo de cddigo e outros artefatos, a
intervencdo humana continua sendo necessaria para ajustes finos e refinamentos. Assim, a
ferramenta ndo substitui completamente o papel do desenvolvedor, mas serve como um auxilio
que pode aumentar a produtividade ao automatizar certas partes do processo de
desenvolvimento. Conclui-se que ferramentas de IA generativa, como o ChatGPT, tém grande
potencial para serem incorporadas ao desenvolvimento de firmware, acelerando a prototipacao
e o desenvolvimento da solucédo final através do apoio na geracdo automatica dos principais
artefatos de software envolvidos no processo.

Palavras-chave: IA generativa; ChatGPT; Desenvolvimento de Firmware; Geracao de cédigo.

ABSTRACT

MARTINES, F. P. ChatGPT for the generation of software artifacts: An experiment
involving the application of Generative Al and prompt engineering techniques in the
context of firmware development. 2024. 74 f. Trabalho de conclusdo de curso (MBA em
Inteligéncia Artificial e Big Data) — Instituto de Ciéncias Matematicas e de Computago,
Universidade de S&o Paulo, Séo Carlos, 2024.

The present work explores the use of generative Al, with a focus on the ChatGPT tool, in the
process of generating software artifacts, such as source code, diagrams, and test cases. The main
motivation is to assess whether this technology can be useful in firmware development, a type
of software that is closely integrated with hardware. The work considers the potential of
generative Al to automate repetitive tasks, increasing developers' efficiency, especially in
creating well-defined and frequently used logic. The main experiment involved generating code
in C language to control an electronic temperature monitoring device. To conduct the
experiment, concepts from Prompt Engineering were used, guiding user interaction with
ChatGPT to optimize the accuracy and quality of the generated results. The experiment was
structured in several stages, starting with the creation of user stories and technical specifications
to guide the Al in generating source code and related artifacts. These instructions were sent to
ChatGPT through detailed prompts. Throughout the process, the generated code was analyzed,
and various additional interactions were made to correct small errors that appeared. The final
code was deemed functional and compliant with the provided specifications, highlighting the
practical usefulness of the Al tool. The results demonstrated that, although ChatGPT is effective
in generating code and other artifacts, human intervention remains necessary for fine-tuning
and refinements. Thus, the tool does not fully replace the role of the developer but serves as an
aid that can increase productivity by automating certain parts of the development process. It is
concluded that generative Al tools, such as ChatGPT, have great potential to be incorporated
into firmware development, accelerating prototyping and the final solution's development by
assisting in the automatic generation of key software artifacts involved in the process.

Keywords: Generative Al; ChatGPT; Firmware development; Code generation.

LISTA DE ILUSTRACOES

Figura 1 — Relacéo da IA e Aprendizado de MAQUING.cceoviiiieiiiieieeee e 12
Figura 2 — Firmware entre Hardware € SOftWare.ccccooveiiiie i 17
Figura 3 — Placa de Desenvolvimento (devkit) utilizada nos experimentos..........c..cccceeevennene 28
Figura 4 — Tela do Ambiente Integrado de Programagéo STM32CubelDE.ccccoevee. 28
Figura 5 — Tela principal do ChatGPT 40.cccciiiiiiiiiecciee e 29
Figura 6 — As etapas e o fluxo basico para realizacdo dos experimentos.........cccccevvvevvervenns 30
Figura 7 — Diagrama de blocos simplificado da solucdo pretendida............ccccovevveveiiieinennnne 31
Figura 8 — Diagrama de classes da UML gerado pelo ChatGPT...........ccccviiiienencnencienins 44

Figura 9 — Diagrama de sequéncia da UML gerado pelo ChatGPTccccceoeieienincniieninns 46

LISTA DE TABELAS

Tabela 1 — Comparativo das versdes do ChatGPTccooviieiiiii i 22
Tabela 2 — Estdrias de usuario utilizadas No eXperimento.cccovevvereeiiesieeseere e 32
Tabela 3 — Especificacdes gerais para operacao na placa de desenvolvimento. 32
Tabela 4 — Demonstragoes fornecidas ao ChatGPT com base em prompts few-shot............... 33

Tabela 5 — Preparacdo da interacdo com o ChatGPT com base dos artefatos da concepcao. .. 34
Tabela 6 — Interacdo com ChatGPT para a entrada das estdrias de USUArio.ccccverveenenn. 34
Tabela 7 — Interacdo com ChatGPT para a entrada das especificagcdes gerais.c.ceeuu.... 34
Tabela 8 — Interagdo com ChatGPT para a entrada das orientacdes e exemplos (few-shot). ...35
Tabela 9 — Solicitacdo e resposta para geracao de codigo-fonte em linguagem C................... 36
Tabela 10 — Descritivo da geracdo de codigo-fonte conforme a solicitagdo.ccccevvenneee. 36
Tabela 11 — 12 solicitacdo para resolucdo de defeito em cédigo-fonte gerado pelo ChatGPT. 37

Tabela 12 — 22 solicitacdo para resolucdo de defeito em codigo-fonte gerado pelo ChatGPT. 38

Tabela 13 — Solicitagdo para melhoria no codigo-fonte gerado pelo ChatGPT....................... 40
Tabela 14 — Atualizacdo das especificacBes gerais para melhoria da geracdo de codigo. 41
Tabela 15 — Solicitacdo para geracdo de codigo-fonte com a especificacdo atualizada........... 41
Tabela 16 — Descritivo da geracdo de codigo-fonte atualizada conforme a solicitacéo. 42

Tabela 17 — Solicitacéo e resposta para geracéo de diagrama de classes feita ao ChatGPT....43
Tabela 18 — Solicitacdo e resposta para geracao de diagrama de sequéncia feita ao ChatGPT45

Tabela 19 — Solicitacdo e resposta para geracao de casos de teste feita ao ChatGPT.............. 47

ADC
AIGC
BDD
BERT
CoT
DER
DFD
FW
GPT
GPU
GCC
GDB
GNU
HW

IAG
IDE
HAL
HCI
LED
LLM
LSTM
NLP
PCB
PLN
RNN
ROM
SysML
SW
TTCN-3
UML
USE

LISTA DE ABREVIATURAS E SIGLAS

Analog-Digital Conversion/Converter
Artificial Intelligence Generated Content
Behavior Driven Development
Bidirectional Encoder Representations from Transformers
Chain of Thoughts

Diagrama Entidade-Relacionamento
Diagrama de Fluxo de Dados
Firmware

Generative Pre-trained

Graphical Processing Unit

GNU Compiler Collection

GNU Debugger

GNU is Not Unix

Hardware

Inteligéncia Artificial

Inteligéncia Artificial Generativa
Integrated Development Environment
Hardware Abstraction Layer
Human-Computer Interface
Light-Emitting Diode

Large Language Model

Long Short-Term Memory

Natural Language Processing

Printed Circuit Board

Processamento de Linguagem Natural
Recurrent Neural Networks

Read Only Memory

System Modeling Language

Software

Testing and Test Control Notation
Unified Modeling Language
UML-based Specification Environment

SUMARIO

LINTRODUGAO ..ottt n e 12
1.1 CONEXIUANZAGADvveveeieeeie sttt e s e teene e re e ae e e nneennas 12
1.2 ODJEEIVOS. ..ttt b bbbt b bbb 14
IR IO L1 S U =L Y PSPPSR 15
A @ o T - or- ol [0 I (= [USSR 15

2 REVISAO BIBLIOGRAFICAooooeeeeeeeeeeteeeee et ses st 16
2.1 CONCEItOS FUNUAMENTAIS.vvevieiieiiieie ettt sne e 16

A N 111011 L USSP 16
2.1.2 PNL e os Modelos de Linguagem de Grande Escalac.cccccovevieiiiieineieennenn, 17
2.1.3 Transformers e o Surgimento dos Modelos de AteNGE0cceververeiencrenennen. 18
2.1.4 Engenharia de Prompt € SUas tECNICAS..........coverveiieieerie e e 20
2.2 Trabalhos relaCiona00Sc.eiviiiiiiiieieie ettt 22
2.2.1 ChatGPT na tarefa de geracdo de artefatos de software...........ccoceveieienciinnnnnn 23

SMETODOLOGIA..... et bbbt e ettt st benbenreenes 27
3.1 ESCOPO0 € DefiNIGOES GEIAIS.......ccviiveeieciieiieeie ettt ettt sre e 27
3.2 Etapas do DeSENVOIVIMENTOc.oiuiiiiiiiiiii it 29
3.3 Projeto do DispoSitivo EIETrONICOcceevveeiiiiiciieeic et 31
3.4 Estorias de Usuario e ESpecificacies GEralS..........ccoveveiieieiieieeie e 32

4 RESULTADOS ...ttt sttt st et beetaasa e s e e e et e stentesneareeneanes 34
4.1 Resultados da Geracdo de COdigo-fONtecccveviieiiiiciece e 35
4.2 Resultados da Geragao de DIagramascceevveiuierieiieieeie e sie e eree e sre e sre e 43
4.3 Resultados da Geragdo de Casos A8 TEeSIE.......viueiverveieiiee e 47

5 CONCLUSAO ...ttt 50

REFERENCIAS ...ttt 52

ANEXO A — Interagdo inicial com 0 ChatGPTcccooiiiiiiiie e 55

ANEXO B - Cddigo-fonte gerado inicialmente pelo ChatGPTccccccooveviie e, 57

ANEXO C - Codigo-fonte aprimorado pelo ChatGPTccccceoviiiiie i 62

ANEXO D - Caodigo-fonte corrigido pelo ChatGPT ... 63

ANEXO E - Cdadigo-fonte refeito pelo ChatGPT ..o 66

ANEXO F — Cddigo-fonte gerado pelo ChatGPT (especificacdo atualizada)................... 70

12

1 INTRODUCAO

1.1 Contextualizacéo

Nos Ultimos anos tem se presenciado uma verdadeira explosdo de solucGes tecnoldgicas
baseadas na aplicacdo de Inteligéncia Artificial (1A) nas mais diversas areas. A aplicacdo da 1A
no contexto das inovagoes tecnoldgicas ndo é atual e tais esfor¢os remontam meados do século
XX, momento em que as pesquisas sobre o tema produziram modelos matematicos e
computacionais cuja aplicacdo produziram resultados praticos satisfatérios para a época.

O salto tecnoldgico das solucGes atuais em relacdo as antigas se da pelo fato da evolugéo
das técnicas da IA, mais especificamente no &mbito do aprendizado de maquina e suas areas
mais especializadas, dentre elas, as técnicas de aprendizado profundo a partir da segunda década
do século XXI. A Figura 1 mostra a relacdo os dominios desses conceitos indicando a

especializacdo e localidade dentro dos temas da area de conhecimento da IA.

Figura 1 — Relacéo da IA e Aprendizado de Maquina.

INTELIGENCIA
ARTIFICAL
- APRENDIZADO
Euforia inicial DE MAQU|NA
com sistemas APRENDIZADO
especialistas e PROFUNDO

Técnicas de redes

légica dedutiva,
mas apresentaram
limitagbes
consideraveis

neurais artificiais
avancame
aprendizado de
maquina floresce

Redes neurais profundas
juntamente com aumento da
capacidade computacional,
comecga o novo boom da IA

1950's 1960's 1970's 1980's 1990's 2000's 2010's

Fonte: Adaptado de COPELAND (2016).

Associada a evolucdo das técnicas de aprendizado profundo, nota-se também a evolugéo
das plataformas computacionais especializadas para determinados tipos de aplicagcdo. Mais
especificamente, as unidades de processamento grafico (GPU’s) tiveram um crescimento
exponencial em performance e otimizagdo, permitindo que modelos computacionais e
algoritmos mais complexos operando sobre um maior volume de dados pudessem computados

em tempo aceitavel para a viabilizagdo pratica das solu¢fes comerciais envolvendo IA.

13

Com o avanco dos estudos dos modelos de linguagens de grande escala (LLM’s) — uma
area de pesquisas e tecnologias do processamento de linguagem natural (NLP) — e a sua
viabilizacdo comercial a partir do uso dessas plataformas computacionais modernas, como
GPU’s e servigos em nuvem, a sociedade atual se vé imersa em uma nova onda de inovacdes e
solucBes apoiadas por IA, que agora se destaca pela sua notavel capacidade de geracdo de
contetdo multimidia a partir de interagcdes conversacionais feitas pelo usuério.

Essa nova categoria de técnicas de IA — denominada IA Generativa (IAG) — tem
provocado na sociedade como um todo, vislumbres, ceticismos, discussdes e até
regulamentacdes por ter atingido consideravel destaque a partir do seu inegéavel potencial de
revolucionar as aplicacGes tecnoldgicas em qualquer &rea que se queira imaginar. A capacidade
de geracdo de conteldo das aplicacbes baseadas em IA Generativa pode potencializar e
aumentar a capacidade dos seres humanos nas mais diversas atividades.

Dentro do contexto da geragdo de textos, especialidade primaria das IA’s Generativas,
ha a possibilidade exploré-las para a criacdo de contetidos préprios para as mais diversas
categorias textuais, tais como producdo de resumos, roteirizacdo, textos analiticos, geracdo de
insights, analises explicativas, obras literarias etc. enfim, uma infinidade de possiblidades.

A interface humano-computador (HCI) mais comum para uso das IA’s Generativas em
computadores por usuarios em geral sdo baseadas em prompts, que sdo interfaces baseadas em
entrada de texto digitado pelo usuério da aplicacdo visando interagir com o sistema para seus
propdsitos. A partir dessa interacdo do usuario com o computador, ocorre o processamento dos
algoritmos sobre os dados textuais codificados e a producdo dos resultados normalmente na
forma de contetdo multimidia baseados na solicitacdo do usuario.

Dado o conhecimento que se tem sobre o funcionamento interno dos LLM’s, a interacao
do usuario com tais sistemas pode ser melhorada no intuito de tornarem mais assertivos os
resultados obtidos a partir do prompt informado a esses sistemas. Este uso mais sistematico do
mecanismo de prompts convencionou-se chamar de Engenharia de Prompt, que oferece
técnicas para a elaboracdo e estruturacdo de textos de entrada a fim de, digamos, instruir e
induzir a operagdo dos LLM’s a direcionarem melhor os resultados conforme o esperado.

Uma categoria particular de textos produzidos para propositos especificos sdo as
linguagens de programacdo de computadores, cujo conteudo é fortemente regulado pela
gramatica e combinagdo de simbolos dispostos em uma sintaxe formal e bem definida para
manipulacdo por maquinas. Tais linguagens de programacéo séo utilizadas por desenvolvedores

de software para criar programas com instrugdes (codigo-fonte) que serdo executadas por

14

computadores apos um processo de transformacao desse codigo-fonte em um programa descrito
em linguagem de maquina.

O uso da IA Generativa com 0 objetivo de apoiar a geracdo de cddigo-fonte tem sido
explorado recentemente devido as caracteristicas propicias desse tipo de conteudo textual. As
linguagens de programagéo, por serem compostas por palavras-chaves bem definidas, podem
também vir a ser de conhecimento dos modelos de linguagem de grande escala.

Este trabalho visa explorar, através de um experimento com prompts direcionados a uma
aplicacdo IA Generativa bastante conhecida — o ChatGPT —, quais sdo os resultados da geragédo
de cddigo-fonte em linguagem de programacéo C para a implementacdo de um firmware, um

tipo especializado de software bastante acoplado ao sistema de hardware.

1.2 Objetivos

1.2.1 Objetivo Geral

O objetivo geral deste trabalho é realizar um experimento utilizando as técnicas de
engenharia de prompt que permita se ter uma avaliag&o sobre a utilidade e potenciais aplicagdes
das ferramentas de A Generativa para 0 apoio na geracao de codigo-fonte e outros artefatos de

software auxiliares no contexto do desenvolvimento de firmware para dispositivos eletronicos.

1.2.2 Objetivos especificos

Dentre os objetivos especificos desse trabalho estdo:
e Determinar o problema-alvo a ser explorado no experimento;
e Conseguir descrever os requisitos do problema-alvo na forma de estérias de usuario;
e Criar prompts a partir de técnicas para guiar o processo de geracao de artefatos;
e Conseguir obter uma proposta de solucao factivel a partir dos prompts processados;
e Gerar os artefatos da solucéo proposta por meio de uma ferramenta de 1A Generativa;
e Analisar a assertividade das respostas refinando o contexto e solicitagdes fornecidos;
e Auvaliar os resultados com base na aplicabilidade e completude dos artefatos gerados;
e Levantar os eventuais problemas e limitagdes observadas durante o experimento;
e Levantar os aspectos mais importantes a serem considerados para a realizagéo de novos

experimentos com base na atualizagdo dos modelos e outras ferramentas.

15

1.3 Justificativa

A principal motivacéo para a realizacéo desse trabalho é a de se verificar a possibilidade
das ferramentas de 1A Generativa passarem a ser empregadas no processo de desenvolvimento
de software, mais especificamente no desenvolvimento de firmware, como um mecanismo
automatico para geracdo de codigo-fonte de l6gicas comuns, ou seja, aquelas as quais ja se tem
um conhecimento estabelecido mas cuja implementacdo em microcontroladores ainda varia
devido a variedade de fornecedores de chip e ao forte acoplamento deste tipo de software ao
hardware subjacente ao qual ird operar. Adicionalmente, serdo verificados os resultados da
geracdo de outros artefatos, tais como diagramas para documentacao da especificacdo e design

do firmware e casos de teste para apoio as atividades de verificacdo e validacdo de software.

1.4 Organizacao do texto

No capitulo 2 é apresentada a fundamentacéo tedrica sobre Firmware, A Generativa e
engenharia de prompt, apresentando os conceitos fundamentais, a revisdo das principais
técnicas, modelos e trabalhos atuais e mais relevantes na literatura.

No capitulo 3 é descrita a metodologia a ser aplicada, detalhando os passos a serem
considerados para o desenvolvimento do experimento e a discussao sobre quais das principais
técnicas de engenharia de prompt podem ser aplicadas dado o contexto do problema.

No capitulo 4 sdo apresentados os resultados obtidos na interacdo com uma ferramenta
da IA Generativa. Tais resultados sdo decorrentes do processamento dos prompts elaborados e
sdo avaliados conforme a sua aplicabilidade imediata em projetos, ou seja, o grau de prontiddo
dos resultados serem diretamente empregados da construcdo da solugdo ou se eventualmente
sdo necessarias modificacdes para que se obtenha a solucdo completa.

Por fim, no capitulo 5 s&o apresentadas as consideragdes finais e a conclusao sobre 0s
experimentos trazendo uma percep¢do sobre a efetividade de aplicar tais ferramentas como
apoio a geracdo de artefatos de software em relagdo a uma abordagem manual de construcéo
feita por desenvolvedores especializados, destacando seus potenciais e suas limitagdes, além de

possiveis indicacOes de trabalhos futuros.

16

2 REVISAO BIBLIOGRAFICA

2.1 Conceitos Fundamentais
2.1.1 Firmware

Firmware € uma combinacdo de hardware e software que reside em um chip ou em um
conjunto de chips dentro de um dispositivo (PRESSMAN, 2011). Ele é responsavel por
controlar fungdes essenciais e especificas do dispositivo, atuando como o software operacional
que interage diretamente com o hardware.

Na literatura, ha alguns autores que deixam explicita a relagcdo simbiética do firmware
com o hardware classificando-o como uma categoria distinta de software. Outros consideram o
firmware como um tipo especializado de software.

Tanenbaum (2009) descreve como sendo uma ponte entre o hardware e o software de
alto nivel, facilitando a comunicacdo e operacdo eficiente do dispositivo. Stallings (2013)
afirma que firmware é o software especializado embutido em dispositivos de hardware para
controlar suas fungbes basicas e permitir sua operacdo correta. Morimoto (2017) diz que
firmware é aquele geralmente armazenado em memdria ndo volétil, como ROM ou flash, para
garantir que o software permaneca no dispositivo mesmo quando ele é desligado. A Figura 2
mostra a localizacdo do firmware estando diretamente acoplado ao hardware e fazendo a
interface entre este e o software de alto nivel.

Pode-se afirmar que firmware é, portanto, um tipo de software especializado que esta
embutido em dispositivos de hardware para controlar suas fungdes basicas e opera-los
corretamente. Ele é projetado e construido para interagir diretamente com o hardware, servindo
como uma ponte entre o software de mais alto nivel (como o sistema operacional) e 0s
componentes fisicos do dispositivo.

Por essas caracteristicas, a geracao de codigo-fonte para desenvolvimento do firmware
deve levar em conta ndo apenas o conhecimento sobre a linguagem de programagcéo utilizada e
a estrutura e organizagdo de computadores de proposito geral, mas também sobre os detalhes
(definicOes e caracteristicas do circuito eletronico, temporizacOes e interfaces de periféricos e

outros chips do circuito eletronico) do hardware ao qual o firmware ira operar.

17

Figura 2 — Firmware entre Hardware e Software.

Programas e Aplicativos

Sistema Operacional

drivers

Fonte: Adaptado de HEKLER (2020).

2.1.2 PNL e os Modelos de Linguagem de Grande Escala

A evolugdo dos modelos de linguagem natural culminou na criacdo dos modelos de
linguagem de grande escala que revolucionaram diversas aplicacdes computacionais. Esses
modelos sdo baseados em arquiteturas de aprendizado profundo, como redes neurais, e
treinados com enormes quantidades de dados textuais.

O PNL comecou a ganhar relevancia na década de 1950 com a pesquisa em traducao
automatica e a ideia de usar computadores para compreender e comunicar em linguagem
humana. A criacdo do "Test Turing" na década de 50 (TURING, 1950) foi um marco que
destacou a possibilidade de uma maquina exibir comportamento considerado inteligente, capaz
de se comunicar em linguagem natural tdo bem que a ponto de ndo se tornar distinguivel de
outro ser humano fluente na lingua.

Nos anos seguintes, pesquisadores desenvolveram métodos baseados em regras e
gramaticas formais, como o0s sistemas baseados em regras de producdo, que eram
essencialmente conjuntos de regras predefinidas para manipular strings de texto, tais como o
sistema DENDRAL (FEIGENBAUM; BUCHANAN; LEDERBERG, 1971) e o0 MYCIN
(SHORTLIFFE, 1976). No entanto, esses sistemas tinham limitagdes severas ao lidar com a

variabilidade e ambiguidade da linguagem humana.

18

A solugdo veio com o avanco do aprendizado de maquina na década de 1990 e 2000,
com o uso mais amplo de modelos estatisticos e o0 advento das redes neurais artificiais.

Nos anos 90, a transi¢do para abordagens estatisticas marcou um ponto de virada. Os
modelos baseados em aprendizado supervisionado comecaram a ser usados para tarefas de
classificacdo de texto e anélise de sentimentos. Técnicas de Machine Learning (ML) permitiram
que os modelos fossem ajustados com base em grandes volumes de dados anotados, o que
aumentou significativamente a precisdo dos sistemas de PNL (JURAFSKY'; MARTIN, 2009).

Em paralelo, o desenvolvimento das redes neurais e 0 advento do aprendizado profundo
— Deep Learning — a partir da decada de 2010 elevaram o PNL a um novo patamar. Arquiteturas
como as redes neurais recorrentes (RNN’s) e, posteriormente, as redes de memoria de longo
prazo (LSTM) foram usadas para lidar com a sequéncia e a dependéncia contextual nas tarefas
de linguagem (GRAVES, 2012).

Os LLM’s continuaram a evoluir rapidamente e modelos como o GPT-4 e outros
competidores, como o PaLM da Google e o LLaMA da Meta, aumentaram ainda mais o nimero
de parametros, melhoraram a eficiéncia do treinamento e reduziram o viés. A exploracdo de
modelos multimodais, que integram dados de texto, imagem e audio, € um campo emergente
que promete ampliar ainda mais as capacidades desses sistemas para uso de propdsito geral.

No entanto, o avanco dos LLM’s levantou também desafios éticos e praticos, como o
consumo elevado de recursos computacionais e as implicacbes do viés nos dados de
treinamento. O futuro dos LLM’s provavelmente envolvera uma maior regulamentacdo e a

busca por modelos mais eficientes e sustentaveis (BENDER et al., 2021).

2.1.3 Transformers e o Surgimento dos Modelos de Atencao

A verdadeira revolugdo do uso dos LLM’s veio com a introdu¢do do mecanismo de
atencéo e, mais significativamente, com o modelo Transformer, apresentado por Vaswani et al.
em 2017. O Transformer permitiu que o processamento da linguagem natural fosse escalado de
maneira sem precedentes devido a sua capacidade de paralelizar o processamento e capturar
relacfes contextuais em grandes sequéncias de texto (VASWANI et al., 2017).

Ao contrario das RNN’s e LSTM’s, que processam a informacdo sequencialmente, o
Transformer utiliza um mecanismo de auto-atencéo para considerar todas as palavras de uma
frase simultaneamente, permitindo que o modelo construa uma compreensao mais rica e

profunda do contexto. Essa inovagao possibilitou posteriormente a criagdo de modelos muito

19

maiores e mais poderosos, como o BERT (Bidirectional Encoder Representations from
Transformers) e o GPT (Generative Pretrained Transformer).

O BERT, desenvolvido pelo Google em 2018, trouxe um novo paradigma para o NLP,
introduzindo o conceito de pré-treinamento bidirecional, em que o modelo aprende
representacdes contextuais a partir de todas as palavras de uma sequéncia em vez de processar
o texto de forma unidirecional. Isso permitiu que o BERT alcangasse um desempenho sem
precedentes em varias tarefas de NLP, como classificacdo de textos e resposta a perguntas
(DEVLIN et al., 2018).

Simultaneamente, o GPT, desenvolvido pela OpenAl, se destacou pelo uso de grandes
quantidades de dados e pela sua abordagem de pré-treinamento ndo supervisionado. A segunda
versdo, GPT-2, e a subsequente GPT-3, lancada em 2020, foram treinadas em bases de dados
massivas, contendo centenas de bilhGes de parametros, e mostraram uma capacidade
impressionante de gerar texto coeso e realista. O GPT-3, em particular, alcangou notoriedade
por sua habilidade de realizar uma ampla gama de tarefas linguisticas sem a necessidade de
treinamento adicional (BROWN et al., 2020).

Na base da operacdo de ambos os modelos estdo os Transformers. Eles, portanto,
revolucionaram o processamento de linguagem natural ao introduzir essa nova abordagem para
modelar sequéncias de texto utilizando um mecanismo de atengdo que permite ao modelo
considerar todas as palavras de uma sequéncia ao mesmo tempo, capturando melhor as relagdes
de longo alcance no texto, em vez de processar as entradas de maneira sequencial.

A base do Transformer é o mecanismo de auto-atencao, que permite que o modelo dé
"atencdo™ a diferentes partes de uma sequéncia de entrada ao calcular suas representacdes. O
Transformer é composto por duas partes principais: o codificador (encoder) e o decodificador
(decoder), embora em muitos casos de NLP (como no BERT), apenas o codificador seja
utilizado.

O codificador do Transformer é responsavel por transformar a sequéncia de entrada em
uma série de representacdes internas (conhecidos como vetores de embeddings). Ele é composto
por multiplas camadas idénticas que consistem em duas subcamadas principais:

1. Mecanismo de Auto-atencdo: O componente-chave que permite ao modelo considerar
todas as palavras da sequéncia de entrada de maneira simultanea. Esse mecanismo calcula uma
pontuacdo de importancia entre cada par de palavras na sequéncia, identificando quais palavras

s8o mais relevantes umas para as outras.

20

2. Feed-Forward Neural Network: Apos passar pelo mecanismo de auto-atencéo, a saida
passa por uma rede neural simples para transformar as representagdes contextuais em vetores
de dimensao fixa.

Cada uma dessas subcamadas € acompanhada por uma conexao residual, que ajuda a
mitigar problemas de gradientes durante o treinamento.

O decodificador, semelhante ao codificador, é composto de trés camadas que incluem:

1. Mecanismo de auto-atencdo: Focado na saida parcial gerada até o momento,
determinando quais palavras pré-geradas sdo mais relevantes.

2. Atencdo Cruzada (Cross-Attention): Este mecanismo observa as representacdes
produzidas pelo codificador para integrar informac@es sobre a entrada na geracao de saida.

3. Feed-Forward Neural Network: Assim como no codificador, esta etapa transforma
as representacOes intermediarias em vetores de dimensdo fixa.

O nucleo do Transformer é o mecanismo de atencdo, em especial, a atencdo escalada
por produto interno (Scaled Dot-Product Attention). Em uma visdo simplificada, cada palavra
da sequéncia de entrada € associada a trés vetores: Query (Q), que representa a palavra que esta
sendo considerada; Key (K), que captura as caracteristicas das palavras que servem como
possiveis "chaves" relevantes; e Value (V), que contém a informacdo real a ser propagada para
as representacoes finais.

A atencdo é calculada como o produto interno entre o vetor consulta (Q) de uma palavra
e o vetor chave (K) de outra palavra, escalado por uma constante para evitar que os valores
explodam. O resultado é passado por uma funcdo Softmax, que normaliza os pesos de atencéo.
Finalmente, os pesos de atencdo sdo usados para ponderar os valores (V) correspondentes e
gerar a saida ponderada (VASWANI et al., 2017).

Os Transformers mudaram drasticamente o campo do PNL ao introduzir um método
paralelo e altamente eficiente de processar texto, baseado em auto-atencdo. Ao permitir que o
modelo considere simultaneamente todas as palavras de uma sequéncia, ele consegue capturar
melhor as nuances da lingua e suas dependéncias de longo alcance durante o processamento.
Essa abordagem se provou eficaz em uma ampla variedade de tarefas de PNL, desde traducéo

automatica até a geracdo automatica de texto.

2.1.4 Engenharia de Prompt e suas técnicas

Engenharia de Prompt é o conjunto de técnicas utilizadas em LLM’s na qual as entradas

ou comandos fornecidos ao modelo sdo cuidadosamente formulados para direcionar suas

21

respostas de maneira mais eficiente e especifica. Essa pratica envolve a cria¢do de instrucdes
detalhadas e bem estruturadas, frequentemente utilizando exemplos e padrdes, a fim de otimizar
a precisao e a coeréncia das saidas geradas pelos modelos.

Segundo Liu et al. (2023), a Engenharia de Prompt € o processo de projetar e refinar
comandos ou perguntas apresentados a um modelo de linguagem com o objetivo de obter
respostas mais relevantes, precisas ou Uteis, explorando as capacidades implicitas do modelo.
Essa técnica tem se mostrado especialmente valiosa na adaptacdo de modelos de linguagem
para tarefas especificas, permitindo que os LLM’s executem fungdes complexas sem
necessidade de retreinamento extensivo.

Existem diversas técnicas de engenharia de prompt sendo estudadas e relatadas na
literatura atualmente. Dentre aquelas de maior destaque e de uso mais amplo, estdo as seguintes:

1. Zero-Shot Prompting (zero disparos): Nesta técnica, os LLM’s sdo guiados por
prompts sem que sejam fornecidos exemplos especificos de input-output, utilizando-se do
conhecimento pré-existente do modelo para completar tarefas sem treinamento adicional (WEI
et al., 2021). Essa técnica permite que os modelos realizem novas tarefas sem a necessidade de
grandes volumes de dados rotulados.

2. Few-Shot Prompting (poucos disparos): Ao contrério do zero-shot, a técnica few-shot
fornece ao modelo alguns exemplos, 0 que o ajuda a entender a tarefa. Essa abordagem tem se
mostrado eficaz em tarefas mais complexas, melhorando o desempenho dos modelos de
linguagem com base em poucos exemplos de alta qualidade (BROWN et al., 2020).

3. Chain-of-Thought (CoT) Prompting: CoT é uma técnica que orienta 0os LLM’s a
seguir cadeias logicas de raciocinio, estruturando melhor o processo de tomada de decisdo. WEI
et al. (2022) demonstraram que essa abordagem é eficaz em problemas de raciocinio complexo,
melhorando o desempenho dos modelos em benchmarks de raciocinio l6gico e matematico.

4. Auto-CoT Prompting: Desenvolvida por Zhang et al. (2022), essa técnica automatiza
a criacdo de cadeias de raciocinio, substituindo a construcdo manual por prompts como "vamos
pensar passo a passo”. Através da amostragem diversificada, o Auto-CoT melhora a robustez e
reduz os erros, melhorando o aprendizado com poucos exemplos.

5. Self-Consistency: Wang et al. (2022) introduziram a auto-consisténcia como uma
estratégia de decodificacdo que aumenta o desempenho do raciocinio em CoT. Essa técnica
gera multiplas cadeias de raciocinio diversificadas e escolhe a resposta final mais consistente,
resultando em melhorias significativas de precisdo em varios benchmarks.

6. MathPrompter: Desenvolvida para tarefas de resolucéo de problemas matematicos,

essa tecnica estrutura a solucdo de problemas em etapas verificaveis, aumentando a precisao

22

dos resultados, especialmente em problemas que exigem validagdo de passos intermediarios
(IMANI et al., 2023).

Essas técnicas, ao guiarem os LLM’s em tarefas complexas, mostram como a
engenharia de prompts pode moldar e melhorar a interacdo com modelos de linguagem de
maneira adaptada ao contexto da tarefa. Para a realizagdo do experimento desse trabalho, em
linha com as caracteristicas do uso de LLM’s para geragdo de texto especializado (linguagem
de programacéo ou linguagens especificas de dominio), sera explorada a técnica de few-shot
prompting, considerada mais adequada para entradas de texto e contexto complexo

representado na forma de estdrias de usuario e requisitos.

2.2 Trabalhos relacionados

Devido ao fato do langamento das principais ferramentas de IA Generativa terem
ocorrido ha aproximadamente dois ou trés anos, os trabalhos relacionados a aplicagcdo dessas
ferramentas no contexto da geracdo de cddigo-fonte sdo bastante recentes.

Esse trabalho é baseado exclusivamente no ChatGPT, a solucdo da IA Generativa da
OpenAl, lancado como solucdo comercial ao publico geral em 2022. Portanto, os trabalhos
oriundos da revisao bibliografica levam em conta apenas essa ferramenta.

Wu et al (2023) trouxeram em seu artigo os dados comparativos das diversas versdes
disponiveis do GPT, como pode ser visto na Tabela 1. A OpenAl transformou em solucéo

comercial as versdes 3 e 4 no formato de chat.

Tabela 1 — Comparativo das vers6es do ChatGPT

GPT-1 GPT-2 GPT-3 GPT-4
Data da liberagéo Junho/2018 Fevereiro/2019 Maio/2020 Margo/2023
Parimetros do 117 milhdes, 1,5 bilh&o, 175 bilhdes, N&o publicado
modelo 12 camadas, 48 camadas, 96 camadas,

768 dimensdes 1.600 dimensdes 12.888 dimensbes
Janela de contexto 512 tokens 1024 tokens 2048 tokens 8195 tokens
Tamanho dos dados ¢ 5 ~40GB ~ 4578 Nio publicado
pré-treinados
Oricem dos dados BooksCorpus, WebText Common Né&o publicado

g Wikipedia Crawl etc.

Técnica de N&o Aprendizado Aprendizado Aprendizado
aprendizado Supervisionado Multitarefa em Contexto Multimodal

Fonte: Wu et al. (2023)

23

Os dados mostram que o crescimento da capacidade do modelo GPT entre as versdes
teve um aumento exponencial, o que o tornou atualmente uma das maiores aplicagGes de 1A
Generativa em uso.

Wu et al. (2023) também listaram pontos positivos e negativos do ChatGPT baseados
em experiéncias de uso e em informacdes publicas divulgadas pela OpenAl. Como pontos fortes
e vantagens, o ChatGPT apresenta: (1) capacidade de geragcdo de textos e entendimento
multimodal, (2) forte habilidade de raciocinio e criatividade rica, e (3) planejamento e
modelagem do conhecimento. Como pontos fracos e desvantagens: (1) erros factuais e
alucinacdes, (2) modelagem insuficiente do conhecimento explicito, e (3) 0s custos da pesquisa
e desenvolvimento séo altos (WU et al., 2023). Embora a percepcao a partir do uso do ChatGPT
possa trazer a ideia de um sistema, de fato, inteligente, ele ainda ndo deixa de ser um tipo de

ferramenta de A para geracédo de contetdo (AIGC).

2.2.1 ChatGPT na tarefa de geracéo de artefatos de software

Nesses Ultimos anos, apds o lancamento das solucdes de 1A Generativa por grandes
corporac0es e acessiveis ao publico em geral por meio de servigos em nuvem, varios trabalhos
surgiram relatando as analises provenientes das suas experiéncias na tarefa de usar a 1A
Generativa e 0s LLM’s especificamente para a geracao de artefatos de software de alto nivel, o
tipo de software que é escrito usualmente em linguagens de programacdo de alto nivel e séo
executadas ou em maquina virtual ou em computadores contendo processadores de proposito
geral, como, por exemplo, as linguagens Java e Python, majoritariamente.

Previamente ao langcamento oficial do ChatGPT pela OpenAl como uma ferramenta de
software acessivel ao publico, a iniciativa mais relevante de treinar LLM’s e aplicar 1A
Generativa para a finalidade de geracdo de cddigo foi 0 CodeBERT (FENG et al., 2020), um
modelo pré-treinado e construido com base em conjuntos de dados de busca por codigo, tais
como CodeSearchNet (HUSAIN et al., 2019), que visou aprender representacdes textuais de
proposito geral baseado em uma abordagem bimodal, oriundas de linguagens de programacéo
e linguagem natural. O CodeBERT foi construido com base na arquitetura de rede neural
profunda dos Transformers (VASWANI et al., 2017) e treinado com codigos de varios
repositorios de codigo do Github. Ele suporta a geragdo de documentacdo a partir do codigo e
transcrigdo de codigo em até seis linguagens de programacdo (FENG et al., 2020).

No contexto do uso do ChatGPT, Guo (2024) realizou um experimento que explorou o

potencial de geracdo de cddigo do ChatGPT na tentativa de se criar uma aplicacdo Web em

24

linguagem Java a partir de requisitos descritos em linguagem natural. Seus resultados
demonstraram que o ChatGPT conseguiu produzir uma aplicagcdo web para o login (acesso a
um portal com base em credenciais de usuéario e senha informados em uma pagina web) a partir
da interacdo de prompts direcionados. Além da completa funcionalidade do codigo gerado, que
foi posto em execucgdo em um servidor de aplicacdes real, tal cddigo foi avaliado como de alta
legibilidade e qualidade, podendo ser aplicado, portanto, diretamente em projetos (GUO, 2024).
Esse resultado reforca o fato da possibilidade de uso do ChatGPT, ou mais amplamente até das
ferramentas de IA Generativa disponiveis, como assistentes efetivos dos desenvolvedores de
software.

Diversos outros trabalhos abordaram quantitativamente as habilidades da 1A
Generativa, e mais especificamente do ChatGPT, na geracdo de cddigo-fonte de programas de
computador. A maioria deles buscaram analisar a consisténcia e a qualidade do codigo gerado.
Clark et al. (2024), por exemplo, avaliaram 625 codigos em linguagem Python gerados a partir
de prompts indicando que o ChatGPT é capaz de gerar bons cddigos, embora contenham
defeitos — como sdo também aqueles feitos por humanos — necessitando de revisdes e correcdes
manuais.

Os trabalhos de Yan et al. (2023) e Moratis et al. (2024) trouxeram anlises sobre a
consisténcia e qualidade do cddigo gerado a partir de prompts. O segundo acrescentou ainda a
andlise sobre a aderéncia a padroes, estilo de codificacdo e melhoras praticas. Em ambos os
trabalhos foram feitas ressalvas sobre a importancia da qualidade do prompt dirigido ao
ChatGPT, que pode ter impacto direto na efetividade do cddigo gerado como resultado. Foi
nessa linha da qualidade dos prompts que Lui et al. (2024) elaboraram um construtor de prompts
que teve como objetivo melhorar a performance da geracdo de cddigo e demonstraram, com
uma série de experimentos, que a efetividade do cddigo realmente aumenta com prompts de
alta qualidade baseado em técnicas de engenharia de prompt.

Rahmaniar et al. (2024) confirmaram também o potencial do ChatGPT destacando que
a relagcdo simbidtica entre IA Generativa e desenvolvimento de software serd mais robusta,
complexa e transformativa. No entanto, trouxeram a tona a necessidade de reflexdo na
comunidade de software sobre implicagcdes éticas do uso massivo dos modelos da 1A
Generativa, uma vez que consideram que o desenvolvimento de software por si s nao trata
apenas da geracao de codigo em si — tarefa pela qual maquinas treinadas com volume gigantesco
de dados séo notoriamente capazes de fazer —, mas da cognicdo aplicada a solucao de problemas

reais por meio da concepc¢ao, construgéo e uso efetivo de sistemas computacionais.

25

N&o apenas na geracao de codigo-fonte as ferramentas de 1A Generativa podem auxiliar
no processo de desenvolvimento de software, elas podem também ser aplicadas na geracéo de
outros artefatos auxiliares provenientes das etapas de analise, projeto e verificacdo de software.

No ambito da andlise e projeto, a IA Generativa pode ser usada para elaboracdo de
diagramas visuais gerados a partir de notacao textual.

A UML (OMG, 2017) é uma linguagem padrdo utilizada para especificar, elaborar,
visualizar e documentar artefatos de sistemas de software. Ela fornece uma especificacdo para
se criar diagramas que representam a estrutura e o0 comportamento de um sistema de software,
permitindo que desenvolvedores e engenheiros de software comuniquem ideias e conceitos de
maneira clara e consistente. A UML é amplamente utilizada na industria de software como
padrdo de facto para a criacdo de diagramas. Assim como as linguagens de programacdo, ela
possui especificacdes formais e bem definidas que permitem a manipulacdo e interpretacao por
maquinas para a geracdo de diagramas a partir de texto.

Os trabalhos de Combemale et al. (2023) e Camara et al. (2023) exploraram as
capacidades do ChatGPT no contexto da modelagem de software. Camara et al. (2023) fizeram
experimentos para testar na pratica a geracdo de diagramas da UML pelo ChatGPT. Vale
destacar que a versdo 3.5 do ChatGPT ndo possui a capacidade de geracdo de contetido
imagético, tais como ilustracGes, figuras ou diagramas. Isso é possivel apenas na versdo 4 (paga)
da ferramenta. Portanto, a geragdo de diagramas pode ser feita em notacdo textual usando
composicdo de caracteres simples ou em formato legivel para outras ferramentas, tais como
PlantUML, USE, Yuml, Markdown UML, Mermaid e UMLet (Camara et al., 2023).

Essa capacidade de geracdo de diagramas UML a partir de notagéo textual permite que
0 ChatGPT seja também explorado para a elaboracdo desse tipo de artefato durante as etapas
de projeto e elaboracdo da solucdo de software, em apoio aos arquitetos, projetistas e
programadores de software. Esse trabalho explora a geracdo de diagramas para o problema
proposto no intuito de verificar os resultados da sua aplicacéo para o design do firmware.

Por fim, referindo-se a etapa inicial de levantamento de requisitos de qualquer sistema
ou produto — em que as necessidades e expectativas dos usuarios sdo capturadas e registradas
para darem origem a propostas de solucdo em artefatos de engenharia ou sistemas
computacionais —, tem-se que a IA Generativa pode também apresentar a capacidade de
interpretar texto contigo em estdrias de usuario e casos de uso para determinadas finalidades,
sejam essas de transformacéo para outras categorias de contetido textual, de anélise de aspectos

especificos ou mesmo de revisdo e geracdo de insights.

26

Nesse contexto, Aamana et al. (2024) demonstraram em experimentos o potencial de
avaliacdo da qualidade da escrita de estorias de usuario pelo ChatGPT com base nas técnicas
de engenharia de prompt. Como estdrias de usuario, no geral, sdo textos descritos em linguagem
natural usualmente baseado em convencdes bem estabelecidas acerca de capacidades e
restricdes desejadas para a solucéo, a técnica de engenharia de prompt few-shot mostrou-se a
mais promissora na tarefa de avaliar a qual categoria de requisitos de qualidade determinadas
estorias de usuario pertencem, indicam ou implicam (Aamana et al., 2024).

Os experimentos que serdo descritos no Capitulo 5 desse trabalho também exploram
estorias de usuario em entradas de texto para a IA Generativa. Porém, diferentemente de
Aamana et al. (2024), ele ndo visa extrair requisitos e aspectos de qualidade das estdrias de
usuario, mas de usa-las como contexto para solicitacdes de geracdo de codigo-fonte que
atendam a requisitos presentes nessas estdrias, assim como a geracao de outros artefatos no
ambito do desenvolvimento direcionado a firmware que, como dito, € uma categoria
especializada de software fortemente acoplada ao hardware.

Portanto, esse trabalho explora o potencial de geracdo de contetdo textual da IA
Generativa, mais especificamente do ChatGPT, na transformacdo de estorias de usuarios e
requisitos dados como entrada em outros artefatos de software baseados em texto, tais como
diagramas em notacdo textual, cddigo-fonte de programas descritos em linguagem de
programacado no dominio do firmware e roteiros de testes para verificacdo de software usando
a técnica de engenharia de prompt few-shot para avaliacdo de seus potenciais e limitacdes no

apoio ao desenvolvimento de firmware.

27

3 METODOLOGIA

3.1 Escopo e Defini¢des Gerais

O desenvolvimento dos experimentos desse trabalho baseou-se em um cenario
hipotético de projeto de um dispositivo eletronico considerando os artefatos de software
minimamente previstos para as etapas de concepcdo, elaboracdo, construcdo e testes. Tal
cenario é descrito em detalhes na se¢éo 3.3.

A proposigdo em analisar o potencial de utilidade de ferramentas de 1A Generativa se
apoiou na ideia de que os analistas de requisitos, donos de produtos (Product Owners) ou
mesmo desenvolvedores possam fornecer ao ChatGPT os textos elaborados relacionados a
atividade de levantamento e especificacdo de requisitos da solucdo a ser desenvolvida.

Devido a natureza intrinseca de tais requisitos serem usualmente descritos em
linguagem natural, viu-se a oportunidade imediata de aplicar ferramentas baseadas em LLM’s
na transformac&o desses textos de origem em textos produzidos em outras linguagens, tais como
a linguagem de notacdo grafica para diagramas, linguagem de programacao para geracdo de
codigo-fonte e novamente linguagem natural para descricao de casos de teste.

A versdo do ChatGPT utilizada nos experimentos foi a versdo 40, a mais recente
disponibilizada comercialmente pela OpenAl ao publico. Pelo que pode ser observado através
dos dados da Tabela 1, essa versdo apresenta performance e capacidade bem superiores em
relacdo as versdes anteriores. O que se esperou obter, portanto, de partida e como consequéncia,
foi 0 aumento do potencial e da assertividade dos resultados devido ao maior nimero de tokens
processados e ao maior nimero de parametros disponiveis.

Para a avaliacdo dos resultados dos artefatos produzidos nos experimentos foi utilizada
uma placa de desenvolvimento (devkit) disponivel para aquisicdo através da internet. Tal placa
de desenvolvimento foi projetada e disponibilizada ao pablico pelo proprio fabricante do chip
microcontrolador, podendo esta ser utilizada para acelerar o processo de desenvolvimento e
verificagGes prévias do firmware enquanto a placa de circuito impresso (PCB) do sistema
eletronico da solucéo final pretendida é projetada, fabricada e testada em paralelo, conforme
previsto em um ciclo convencional de desenvolvimento de um produto baseado em sistemas
microcontrolados.

A Figura 3 mostra a foto de uma das faces da placa de desenvolvimento cujo Part
Number é o NUCLEO-GO071RB, da fabricante ST Microelectronics. Ela possui um

28

microcontrolador baseado na microarquitetura da familia ARM® Cortex-M™ com n(cleo de

processamento de propdsito geral e diversos periféricos integrados em seu préprio chip.

Figura 3 — Placa de Desenvolvimento (devkit) utilizada nos experimentos.

« mB13e7c

Fonte: Site da ST Microelectronics.!

Como ambiente de desenvolvimento integrado (IDE) para a compilacdo do cddigo-fonte e
execucdo do firmware na placa de desenvolvimento foi utilizado o STM32CubelDE, que
permite a criacdo de projetos de firmware por desenvolvedores integrando o compilador de
cddigo aberto GNU GCC e G++, para codigo em linguagem C e C++, respectivamente, além
de suporte a depuracdo com 0 GNU GDB e Vvérias outras atividades previstas na programacao

de microcontroladores deste fabricante. A Figura 4 mostra a tela principal desta IDE.

Figura 4 — Tela do Ambiente Integrado de Programacdo STM32CubelDE.

e

Clock Configuration Project Manager
~ Softwar v Pinout

Fonte: Elaborado pelo autor.

! Disponivel em: < https://www.st.com/en/evaluation-tools/nucleo-g071rb.html>. Acessivel em: 07 set. 2024

29

3.2 Etapas do Desenvolvimento

As etapas do desenvolvimento dos experimentos foram baseadas na dindmica de
interagdo de usuarios e da interface humano-computador com as ferramentas de A Generativa
disponiveis. Todas elas sdo baseadas em aplicacBes online realizadas por paginas Web em estilo
conversacional apresentando um prompt ao usuario que permite fornecer ao sistema as entradas
com o conteudo da solicitacdo desejada. No caso do uso do ChatGPT e para os propésitos desse
trabalho, as entradas foram feitas através de textos informados na interface padréo da aplicacao.
A Figura 5 mostra a tela do ChatGPT com a caixa de texto associada ao prompt de entrada.

Figura 5 — Tela principal do ChatGPT 4o.

v ChatGPT x

€ C @ 2 chatgptcom

© ChatGPT

Explorar GPTs

Adicione um espaco de @ i. "sagem ChatGPT
@ trabalho de equipe

Fonte: Pégina do ChatGPT 402

A Figura 6 mostra as etapas realizadas para a producgéo dos resultados dos experimentos.
O processo geral foi dividido basicamente em trés etapas, cada qual com um propésito orientado
a interacdo do usuario com a ferramenta de 1A Generativa:

1. Concepcao: Nesta etapa foram elaborados: (a) os textos das estorias de usuario que
definiram os requisitos do produto; (b) os textos das especificagdes gerais, que consistiu no

descritivo das caracteristicas e restricdes da solucdo a ser projetada e construida; e (c) os textos

2 Disponivel em: < https://chatgpt.com>. Acesso em: 07 set. 2024.

30

das instrucGes e exemplos, quando aplicaveis, para melhorar a assertividade dos resultados
gerados a partir das solicitagdes.

2. Entrada de dados na ferramenta de 1A Generativa: Nesta etapa foi utilizado o
mecanismo padrdo de interacdo com o ChatGPT — a caixa de texto referente ao prompt da
aplicacdo — para introduzir os textos elaborados na etapa 1 na ferramenta com o proposito de
servirem como contexto para as solicitagdes posteriores. Importante destacar que, para
aumentar a assertividade dos resultados e diminuir os ciclos de refinamento, as instrugdes e
exemplos da etapa 1c foram baseados na técnica de engenharia de prompt few-shot.

3. Geragao dos Artefatos de Software: Nesta etapa foram realizadas as solicitaces
para 0 ChatGPT gerar o conteldo pretendido conforme o tipo de artefato de interesse: (a)
geracdo de cddigo-fonte na linguagem de programacdo desejada, (b) geracdo de diagramas
UML para visualizacdo da estrutura dos elementos e fluxos do codigo-fonte, e (c) geracédo de
casos de teste para verificacdo do codigo-fonte gerado quando colocado em operacdo. Apds a
solicitagOes serem inseridas para processamento pelo ChatGPT, os resultados produzidos por
ele foram avaliados quanto ao seu grau de corretude (compilar e funcionar corretamente) e

completude (atender a todas as funcionalidades especificadas).

Figura 6 — As etapas e o fluxo bésico para realizagdo dos experimentos.

-,

(‘con CEepGao

Elaborar as Elaborar as Instrucdes
Especificacdes Gerais e Exemplos conforme
da Solucio a ser tecnica de eng. de

proposta prompt few-shot

Elaborar as
Estorias de Usudrio

(Requisitos)

v

Entrar com o Contetdo Textual
no Prompt da ferramenta de
|A Generativa

ﬂaeragﬁu de Casos de Testes N
ﬁa‘eragéo de Diagramas h
Geragdo de Codigo
Gerar Solicitactes Avaliar os Resultados
o de Geracio de fornecidos pela
" Contelido |14 Generativa L/
L/
{refinamentao}

Fonte: Elaborado pelo autor.

31

3.3 Projeto do Dispositivo Eletronico

O projeto hipotético proposto para avaliacdo dos resultados dos artefatos gerados pelo
ChatGPT nesse trabalho foi um dispositivo eletrénico que monitora a temperatura de interesse
e dispara um alarme caso o valor da temperatura exceda um valor previamente definido.

A leitura do valor da temperatura é feita por um pino de entrada analdgico associado a
um conversor analogico-digital (ADC) interno ao microcontrolador com resolucao de 12 bits.
Isso significa que os valores lidos em um intervalo de tenséo de 0 a 3,3 volts sdo representados
por valores inteiros no intervalo de 0 a 2'2— 1, o que representa valores inteiros de 0 a 4095.

O disparo do alarme consiste na sinalizagdo luminosa por um LED piscando em
frequéncia fixa de 4 Hertz e o acionamento de uma saida digital cujo nivel I6gico O (zero) refere-
se a tensdo de 0 volts (auséncia de tensdo) e o nivel 16gico 1 (um) refere-se a tensao de 3,3 volts
presente na saida digital. Esse sinal pode ser utilizado para acionamento de outro sistema
eletronico acoplado ao dispositivo em desenvolvimento. A Figura 7 mostra o diagrama de
blocos contendo os elementos do dispositivo eletrénico de projeto hipotético do experimento.

Para fins de simplificacdo, ndo foram tratados nos experimentos a conversao da escala
de temperatura do sensor ao intervalo de tenséo do ADC para determinacdo da temperatura
efetiva a ser monitorada. Ao invés disso, optou-se por uma especificacdo de controle baseada
no valor de tensdo lido diretamente pelo ADC do microcontrolador. Assumiu-se que 0 escopo
do experimento trata exclusivamente do potencial de geracdo de codigo para da ldgica de

controle necessaria para o acionamento do LED e da saida de alarme.

Figura 7 — Diagrama de blocos simplificado da solucéo pretendida

PCE
Sensor de oo
Temperatura =
MCU
[
LED « o
o]
|| GPO
Botdo de
Liga/Desliga

Y

0 volis - Condic&o Normal
3,3 volis - Alarme Acionado

Fonte: Elaborado pelo autor.

32

3.4 Estorias de Usuario e Especificacdes Gerais

Para a especificacdo dos requisitos da solucdo pretendida foram criadas estorias de

usuario e especifica¢fes gerais com o objetivo de se determinar o funcionamento da logica de

controle do monitoramento de temperatura a ser realizado pelo dispositivo eletronico. Tais

artefatos, conforme o processo, foram elaborados nas etapas 1a e 1b para serem posteriormente

informados ao ChatGPT como contexto para as solicitacdes de geracdo de codigo. A Tabela 2

mostra as estdrias de usuério elaboradas e a Tabela 3 traz as especificacdes gerais para apoio a

geracgdo de cddigo direcionado a placa de desenvolvimento utilizada.

Tabela 2 — Estorias de usuario utilizadas no experimento.

Identificacdo

Descritivo

EU1

EU2

EU3

EU4

EUS

Como um usuério do dispositivo, eu quero definir um [valor limite de
temperatura] que deve ser armazenado no dispositivo para a realizacdo do
[monitoramento de temperatura].

Como um usuario do dispositivo, eu quero poder ligar o dispositivo e este
iniciar o [monitoramento da temperatura] realizando a leitura do [valor atual
da temperatura] de modo continuo e sem interrupcdo até que seja desligado.

Como um usuério do dispositivo, eu quero que o dispositivo mantenha a
[saida digital de alarme] no nivel logico zero caso o [valor limite de
temperatura] ndo tenha sido excedido.

Como um usuério do dispositivo, eu quero que o dispositivo mantenha a
[saida digital de alarme] no nivel l6gico um caso o [valor limite de
temperatura] tenha sido excedido.

Como um usuario do dispositivo, eu quero também que o dispositivo realize
uma sinalizacdo luminosa através da piscagem [LED de alarme] quando o
[valor limite da temperatura] exceder o [valor atual da temperatura].

Fonte: Elaborado pelo autor.

Tabela 3 — Especificagdes gerais para operacao na placa de desenvolvimento.

Identificacdo

Descritivo

EG1
EG2

EG3
EG4
EG5

O [valor limite de temperatura] deve ser um valor entre 0 e 250 graus Celsius.

O [valor atual da temperatura] deve ser lido através da conversao analdgico
digital utilizando o ADCO canal 0 definido no pino PAO.

O [LED de alarme] deve ser implementado através do pino PA5.
A [saida digital de alarme] deve ser implementado no pino PAG.
A piscagem do [LED de alarme] deve ocorrer a uma frequéncia de 4 Hertz.

Fonte: Elaborado pelo autor.

33

A técnica de engenharia de prompt de poucos disparos (few-shot) sugere que sejam
fornecidas demonstracGes no prompt para direcionar o modelo a ter um melhor desempenho e,
portanto, conseguir trazer resultados mais assertivos. 1sso porque, embora 0os modelos de
linguagem de grande escala demonstrem resultados notaveis quando usando zero disparo (zero-
shot), eles ainda ficam aquém em tarefas mais complexas.

As demonstragdes providas para o ChatGPT considerando os objetivos desse
experimento foram determinacgdes sobre como realizar a geracéo de codigo que é solicitada nas
interacdes. Tais demonstracdes visaram fornecer exemplos de como codificar variaveis,
funcdes e realizar a separacao de codigo para facilitar a avaliagdo, além de melhorar a qualidade
dos resultados de um modo geral. A Tabela 4 mostra as demonstragdes, orientagdes e exemplos

fornecidos ao ChatGPT para 0s experimentos realizados.

Tabela 4 — Demonstragdes fornecidas ao ChatGPT com base em prompts few-shot.

Identificagdo Descritivo

DE1 Nomes de variaveis globais de escopo de arquivo devem seguir o padrdo
PascalCase prefixadas com letra ‘m’ e precedidas com o operador ‘static’.

Exemplo de nomes de variaveis globais de escopo de arquivo:
- float mCurrentTemperature = 0;

-uint32 t mLedBlinkInterval = 125;

DE2 Nomes de variaveis locais devem seguir o padrdo camelCase.
Exemplo de nomes de variaveis locais:
- float currentTemperature = 50;
-uint32 t counter = 0;
DE3 Nomes de fungdes de escopo de arquivo devem seguir o padrdo camelCase

e precedidas com o operador ‘static’.
Exemplo de nomes de fungdes de escopo de arquivo:
-static float readTemperature (void);
-static void checkAlarmCondition (void) ;
DE4 Nomes de fungdes de escopo global devem seguir o padrdo PascalCase e

precedidas pelo substantivo separada por sublinhado pela agdo com a acao
seguindo o padréo camelCase.

Exemplo de nomes de fungdes de escopo global:
-void Led turnOn(void);
-void Alarm trigger (void);
DES Os nomes dos arquivos gerados devem seguir o padrdo snake_case.

Exemplos de nomes de arquivos no padréo snake_case:
-led.heled.c

-alarm monitor.healarm monitor.c

Fonte: Elaborado pelo autor.

34

4 RESULTADOS

Ap0s elaborados os artefatos previstos nas etapas 1a, 1b e 1c, todo esse contetido textual
foi submetido ao prompt do ChatGPT no formato de texto simples derivado das tabelas 2, 3 e
4 da secdo anterior. Esse contetdo textual prévio permitiu que 0 modelo do ChatGPT
entendesse 0 contexto da interagdo. Tal fato pode ser observado nas respostas que foram
geradas, nas Tabelas 5, 6, 7 e 8, a partir da entrada desses textos sem solicitagédo de acéo

explicita. O resultado na integra dessas interacGes iniciais pode ser consultado no Anexo A.

Tabela 5 — Preparagdo da interacdo com o ChatGPT com base dos artefatos da concepcao.

Interacao Conteudo

Solicitacdo Vamos elaborar uma solugdo de um dispositivo eletronico para controle de
temperatura e disparo de alarmes. Os requisitos serdo dados a seguir.

Respostado Otimo! Vamos detalhar a solucdo com base nos requisitos. Quais s&o 0s
ChatGPT requisitos para o dispositivo de controle de temperatura? Se ja tiver alguns
em mente, podemos comecar a partir dai.

Fonte: Elaborado pelo autor.

Tabela 6 — Interacdo com ChatGPT para a entrada das estorias de usuario.

Interacéo Conteado

Solicitagéo Estes sdo os requisitos:
(copiado o texto da Tabela 2 no prompt).

Aguarde que irei informa-lo sobre algumas especificacdes adicionais a
sequir.

Respostado Entendido! Temos os requisitos basicos para o controle de temperatura e

ChatGPT alarmes, incluindo o armazenamento de um valor limite de temperatura, a
leitura continua do valor atual da temperatura, controle de uma saida digital
de alarme e sinalizagdo por LED. Fico no aguardo das especificagoes
adicionais para que possamos elaborar a solugdo completa.

Fonte: Elaborado pelo autor.

Tabela 7 — Interacdo com ChatGPT para a entrada das especificacdes gerais.

Interagdo Contetdo

Solicitagéo Estas sdo as especificacdes adicionais:
(copiado o texto da Tabela 3 no prompt).

35

Aguarde que irei informa-lo sobre algumas orientacdes e exemplos de como
iremos gerar codigo-fonte para esta solucao.

Respostado Perfeito! Com essas especificacBes, ja podemos visualizar boa parte do
ChatGPT design do sistema. Ficarei aguardando as orientacdes e exemplos sobre o
cadigo-fonte para implementar essa solugao.

Fonte: Elaborado pelo autor.

Tabela 8 — Interacdo com ChatGPT para a entrada das orientacdes e exemplos (few-shot).

Interacéo Conteado

Solicitagéo Estas sdo as orientacdes e exemplos sobre o cddigo-fonte:
(copiado o texto da Tabela 4 no prompt).

Depois de entender essas orientacdes, irei realizar uma solicitacdo a seguir
para geracdo de codigo-fonte em uma linguagem especifica.

Respostado Otimo! As orientacdes e exemplos sobre os padrdes de nomenclatura e

ChatGPT estrutura de codigo estdo bem claras. Estou pronto para a préxima
solicitacdo de geracao de cddigo-fonte na linguagem especifica que vocé
escolher.

Fonte: Elaborado pelo autor.

A partir dai, na mesma janela de chat cujo conteudo textual das estorias de usuario, das
especificacOes gerais e das demonstracfes e exemplos previamente informados ao ChatGPT,

foram geradas solicitacdes de acdo no prompt para a geracéo dos contetdos gerais de interesse.

4.1 Resultados da Geracdo de Cddigo-fonte

A primeira solicitacdo de interesse, mostrada na Tabela 9, foi a geracéo de codigo-fonte
em linguagem C baseado na utilizagdo da biblioteca HAL fornecida pelo fabricante do
microcontrolador aos desenvolvedores. A utilizacdo dessa biblioteca é recomendada porque
abstrai dos desenvolvedores o controle e operacdo dos registradores internos do
microcontrolador e permite que a logica de firmware a ser desenvolvida seja totalmente focada
na aplicacéo final da solucéo. O amplo e profundo conhecimento dessa biblioteca é um desafio
para desenvolvedores menos experientes quando expostos a terem que interagir com todos 0s
detalhes dos sistemas internos, dos periféricos e das interfaces de comunicacdo do
microcontrolador. Aqui ja se esperou o apoio da IA Generativa no conhecimento sobre essas

bibliotecas especializadas visando aumentar a produtividade da produgéo de codigo.

36

Tabela 9 — Solicitacdo e resposta para geracdo de codigo-fonte em linguagem C.

Interacéo Conteudo

Solicitagédo Gere 0 cddigo-fonte baseado em boas préaticas de engenharia de software
para implementar os requisitos, funcionalidades e especificagfes adicionais
informados na linguagem de programacéo C utilizando a biblioteca HAL da
ST e considerando o microcontrolador STM32G071.

Respostado Aqui estd a implementacdo do cddigo-fonte em C para o controle de

ChatGPT temperatura e alarme, usando a biblioteca HAL da ST para o
microcontrolador STM32G071, considerando as boas préticas de
engenharia de software e os requisitos fornecidos:

(codigo-fonte completo pode ser consultado no Anexo B).

Explicagéo:
e Leitura da temperatura: A funcéo readTemperature() Ié o valor da

temperatura do sensor conectado ao ADC (PAO). A conversao de
ADC para temperatura é simplificada para 0-250°C.

o Verificacao de alarme: A funcéo checkAlarmCondition() compara o
valor atual da temperatura com o limite e aciona o alarme e 0 LED
Se necessario.

o Controle do LED e alarme: Funcdes especificas para ligar, desligar
e piscar o LED (PAD5) e ativar ou resetar o alarme na saida digital
(PAG).

o Estrutura e organizacdo: O cddigo estd modularizado, com
responsabilidades claras para cada funcéo e arquivo.

Caso precise de ajustes ou mais detalhes, estou a disposicao!

Fonte: Elaborado pelo autor.

A Tabela 10 mostra a lista dos arquivos de cddigo-fonte gerados com base na solicitacdo
realizada da Tabela 9. Foi possivel notar que a orientagdo DE5 da Tabela 4 foi devidamente

observada para a geracdo dos nomes de arquivos.

Tabela 10 — Descritivo da geragdo de codigo-fonte conforme a solicitacao.

Arquivos Conteudo
iej -h Arquivos contendo as definicGes e implementacdes das fungdes do LED
ed.cCc

documentadas no padrdo Doxygen.

void Led turnOn (void);

void Led turnOff (void);

void Led blink(uint32 t interval);

37

alarm monitor.h Arquivos contendo as defini¢es e implementacbes das fungdes do
alarm monitor.c monjtoramento do alarme documentadas no padrdo Doxygen.

main.h
main.c

void Alarm trigger (void) ;
void Alarm reset (void);

Arquivos contendo as definicdes e implementacdes das funcdes gerais
de inicializacdo e operagéo do laco principal (super loop) do firmware.
void SystemClock Config(void);

void MX GPIO Init(void);

void MX ADC1l Init(void);

Fonte: Elaborado pelo autor.

Analisando-se o resultado produzido sob a perspectiva do atendimento as orientacdes e

restricdes informadas previamente, foi possivel observar que o ChatGPT gerou os artefatos com

plena compatibilidade, atentando-se aos detalhes do padrao e estilo de codificacédo variados que

estavam associados aos nomes de arquivos, fungdes e varidveis a serem gerados.

Analisando-se o resultado produzido sob a perspectiva do funcionamento do codigo

guando executado na placa de desenvolvimento, foi possivel observar que atendeu quase que

na sua totalidade as estdrias de usuario especificadas, s6 deixando de considerar o requisito

particular referente a piscagem do LED (EG5). A primeira implementacdo resultante da

primeira interacdo, portanto, conteve um defeito no controle do periodo de piscagem do LED.

Para resolver esse defeito foi realizada uma nova solicitacdo ao ChatGPT conforme a

Tabela 11 informando-o do problema detectado para verificar a sua capacidade de resolucéo.

Tabela 11 — 12 solicitagdo para resolucgdo de defeito em codigo-fonte gerado pelo ChatGPT.

Interacéo

Conteudo

Solicitacdo

Resposta do
ChatGPT

Aprimore a funcdo Led_blink para contemplar a verificacdo do intervalo de
piscagem que foi definido pela variavel mLedBlinkInterval. Da forma como
foi gerado, a funcdo néo observa o intervalo de tempo e a implementagéo da
solucéo esta piscando a cada 100 ms, que é tempo da pequena espera que foi
inserido para suavizar. Nao é este tempo que deve ser observado. O tempo
que deve ser atendido ¢ o da varidvel mLedBlinkInterval.

Para aprimorar a fungdo Led_blink para que observe corretamente o
intervalo de tempo definido pela variavel mLedBlinkInterval, precisamos
garantir que a funcéo leve em consideragéo o tempo que se passou desde a
ultima alteracéo do estado do LED e somente execute a mudanca de estado
quando o tempo apropriado tiver transcorrido.

A abordagem é usar uma variavel estatica para armazenar o "timestamp"
da ultima vez que o LED foi alternado. O HAL_GetTick() da HAL pode ser

38

utilizado para obter o tempo decorrido desde o inicio do programa, em
milissegundos, o que permite controlar o intervalo corretamente.

Aqui esta o cddigo aprimorado para a funcéo Led_blink:
(codigo-fonte completo pode ser consultado no Anexo C).

Com essa alteracdo, o LED piscara corretamente conforme o intervalo
definido por mLedBlinkInterval, independentemente do tempo de execucéo
do loop principal, que possui um delay de 100 ms.

Essa implementacé@o garante que o LED pisque exatamente a cada 125 ms
(ou 4 Hz) quando necessario.

Caso tenha mais alguma solicitacéo, fico a disposi¢ao!

Fonte: Elaborado pelo autor.

Analisando-se o resultado elaborado ap6s a solicitacéo de correcao, notou-se que codigo
produzido agora continha a verificacdo do intervalo de tempo da piscagem do LED na ldgica
da funcdo de piscagem, mas ainda ndo fazia com que o LED piscasse na frequéncia desejada,
mesmo com a afirmacao do ChatGPT (no trecho final do didlogo) dizendo que a implementagéo
garantia a piscagem do LED no intervalo de tempo especificado.

O defeito foi o tempo de espera que ele gerou e incluiu no lago principal, ndo observando
o fato que esse tempo de espera define um ciclo de 100 milissegundos para execucao da légica
de verificagdo da condigédo de alarme. O LED deve perfazer um ciclo completo de intervalo de
250 milissegundos (4 Hertz), sendo um tempo de 125 milissegundos para cada inversdo do
estado do LED entre ligado e desligado. Esses intervalos de tempo ndo sdo maultiplos de 100
milissegundos do laco principal, o que faz com que a acdo de inversdo do estado do LED néo
seja realizada de modo a cumprir a frequéncia de 4 Hertz conforme era esperado.

Novamente o ChatGPT foi informado sobre o defeito e uma nova solicitacdo de correcéo

do defeito foi feita, conforme mostra a Tabela 12.

Tabela 12 — 22 solicitacdo para resolucdo de defeito em codigo-fonte gerado pelo ChatGPT.

Interacéo Conteado

Solicitagéo Ainda ndo é possivel ter o LED piscando corretamente porque o delay de
100 ms no loop principal ndo é divisor do intervalo de piscagem do LED.
Por favor, corrija.

Respostado Entendi! O problema ocorre porque o delay de 100 ms no loop principal
ChatGPT interfere no tempo de piscagem do LED, pois o valor de mLedBlinkiInterval
(125 ms) néo é um divisor exato de 100 ms. Para corrigir isso, precisamos

39

evitar que o delay do loop principal controle o tempo de piscagem do LED.
A solucéo é separar o controle do LED da lo6gica do loop principal.

Uma maneira eficaz de resolver esse problema é refinar a I6gica para que a
funcéo de piscagem do LED néo dependa de nenhum delay explicito no loop
principal. Em vez disso, podemos verificar constantemente o tempo usando
HAL_GetTick() para que a funcdo de piscagem atue de maneira
independente.

Aqui esta a solucéo corrigida:
(codigo-fonte completo pode ser consultado no Anexo D).

Com isso, a funcdo Led blink() agora garante que o LED piscara
exatamente a cada 125 ms, respeitando o intervalo de mLedBlinkInterval,
mesmo sem delays adicionais no loop principal.

Essa abordagem € mais precisa e evita qualquer interferéncia entre o
controle da piscagem do LED e o tempo de execucao do loop principal. Caso
tenha mais alguma duvida ou ajuste, estou a disposi¢ao!

Fonte: Elaborado pelo autor.

Dessa vez o cddigo produzido atendeu o requisito faltante preservando o funcionamento
da implementacdo que atendia aos demais requisitos. A resolucao foi anular o tempo de espera
do lago principal e manter a logica de contagem do intervalo de tempo na funcdo de piscagem
do LED, que agora passou a contabilizar o tempo corretamente dado que a chamada a essa
funcdo ocorre bem mais frequentemente (frequéncia de operacdo baseada no clock do
processador) que o tempo de intervalo definido para atender ao requisito dos 4 Hertz.

Essa abordagem, porém, poderia ser melhorada com uso de temporizadores internos
(timers) disponiveis no microcontrolador em questdo, que operam de modo independente da
I6gica principal executada pelo ndcleo do processador presente no microcontrolador. O uso de
temporizadores internos ndo estava previsto nos requisitos e, portanto, ndo foi considerada essa
possibilidade pelo ChatGPT.

Essa extrapolacdo de conhecimentos para sugerir melhoria de tal natureza ndo ocorreu
no ChatGPT e usualmente corrobora a ideia de que a IA Generativa, no geral, é mais uma
ferramenta para geracdo de conteldo e manipulacdo de simbolos de linguagens a ser realmente
uma superinteligéncia capaz de gerar insights ndo baseados exclusivamente em textos.

Dessa forma, para que o cdodigo-fonte final agora pudesse contemplar tal melhoria, foi
feita uma nova solicitacdo tendo o requisito explicito para o uso de temporizador presente no

microcontrolador. Essa interagdo pode ser vista na Tabela 13.

40

Tabela 13 — Solicitacdo para melhoria no codigo-fonte gerado pelo ChatGPT.

Interacéo Conteudo

Solicitagédo Vamos refatorar o codigo gerado anteriormente para que o controle de
piscagem do LED seja feito por um timer interno do microcontrolador que é
ativado quando o alarme é disparado e desativado caso contrario. Podemos
usar o TIM1 para este proposito. No laco principal insira uma nova variavel
para definir o tempo de espera o ciclo de verificacdo da condi¢édo de alarme
como sendo de 50 ms. Este tempo poderd ser redefinido posteriormente.

Respostado Aqui esté a refatoracéo do cddigo para utilizar o TIM1 para controlar a
ChatGPT piscagem do LED e a nova variavel que define o tempo de espera do ciclo
de verificacdo da condicéo de alarme:

(codigo-fonte completo pode ser consultado no Anexo E).

Com essa solucéo, o LED de alarme pisca a cada 125 ms (4 Hz) enquanto o
alarme esté ativo, controlado pelo TIM1, de forma independente do loop
principal. Caso precise de mais ajustes ou esclarecimentos, estou a
disposigao!

Fonte: Elaborado pelo autor.

O cdbdigo-fonte resultado da implementacdo da melhoria com a inclusdo de
temporizadores deu origem a dois novos arquivos de codigo-fonte: tim.h e tim.c, referentes
as funcbes dos temporizadores. Consultando tais arquivos, notou-se que observaram o
atendimento as orientacdes e demonstracGes previstas na Tabela 4.

Como pode ser visto, as etapas previstas no fluxo da Figura 6 preveem ciclos iterativos
de solicitacdo e avaliacdo dos resultados de modo a serem aplicados refinamentos até que o
resultado desejado seja produzido. Para o caso desse experimento de geracao de cédigo, foram
necessarias trés iteracGes adicionais posteriores a solicitacdo inicial, sendo duas delas para
correcédo de defeitos e uma para implementacdo de melhoria.

Como experimento final na geracdo de cédigo-fonte, considerou-se a possibilidade de
se refinar os requisitos adicionando uma nova especificagcdo (EG6) para indicar que a piscagem
do LED devia ser construida usando temporizador. O objetivo foi apurar se o codigo-fonte
gerado apresentava 0s mesmos defeitos ou eventualmente outros defeitos similares. A Tabela
14 mostra a atualizacdo da Tabela 3 adicionando-se a nova especificacéo para geracdo de codigo

considerando o temporizador interno.

41

Tabela 14 — Atualizacdo das especificacdes gerais para melhoria da geragéo de cddigo.

Identificagdo Descritivo

EG1 O [valor limite de temperatura] deve ser um valor entre 0 e 250 graus Celsius.

EG2 O [valor atual da temperatura] deve ser lido atraves da conversao analogico
digital utilizando o ADCO canal 0 definido no pino PAO.

EG3 O [LED de alarme] deve ser implementado através do pino PA5.

EG4 A [saida digital de alarme] deve ser implementado no pino PAG.

EG5 A piscagem do [LED de alarme] deve ocorrer a uma frequéncia de 4 Hertz.

EG6 A piscagem do [LED de alarme] deve ocorrer por meio do timer TIM1.

Fonte: Elaborado pelo autor.

Para a conducdo do experimento agora considerando EG6, foi iniciado um novo chat
no ChatGPT e refeitas as mesmas interacdes descritas nas Tabelas de 5 a 9, visando garantir
que as interacdes prévias ndo tivessem influéncia nos resultados dessa nova rodada.

Dessa vez, o ChatGPT produziu um cédigo-fonte funcional (verificado na placa de
desenvolvimento), livre de defeitos e que atendeu a todos os requisitos da especificacdo e as
funcionalidades previstas nas estorias de usuario. A Tabela 15 e a Tabela 16 mostram o

resultado da interacdo e a estrutura do novo codigo-fonte resultante, respectivamente.

Tabela 15 — Solicitacdo para geragédo de codigo-fonte com a especificacdo atualizada.

Interacéo Conteado

Solicitagéo Gere 0 codigo-fonte baseado em boas préaticas de engenharia de software
para implementar os requisitos, funcionalidades e especificacfes adicionais
informados na linguagem de programacéo C utilizando a biblioteca HAL da
ST e considerando o microcontrolador STM32G071.

Respostado Aqui estd a implementacdo em C usando a biblioteca HAL para o

ChatGPT microcontrolador STM32G071, baseada nos requisitos e especificacdes
fornecidas. Para organizagdo, 0s arquivos seguem o padréo snake_case,
conforme suas orientacgdes.

(codigo-fonte completo pode ser consultado no Anexo F).

Resumo
e Pinos utilizados:
o ADC para leitura de temperatura no PAO.
o LED no PA5.
o Saida de alarme no PAG.
e Funcionamento:

42

o O dispositivo Ié continuamente a temperatura.

o Se atemperatura ultrapassar o limite, o alarme é ativado e o
LED pisca a 4 Hz.

o A piscagem do LED é controlada por um timer interno
(TIM1).

Este cadigo foi desenvolvido com boas praticas de engenharia de software,
organizando as funcionalidades em mddulos e seguindo as convencdes
estabelecidas.

Fonte: Elaborado pelo autor.

Tabela 16 — Descritivo da geragdo de codigo-fonte atualizada conforme a solicitag&o.

Arquivos

led.h
led.c

temperature_ sensor.h

temperature sensor.c

alarm monitor.h
alarm monitor.c

main.c

Conteudo

Arquivos contendo as definicdes e implementacGes das fungdes
do LED documentadas no padréo Doxygen.

void Led init(void);

void Led startBlink(void);

void Led stopBlink(void) ;

Arquivos contendo as definicdes e implementacbes das fungdes
do sensor de temperatura documentadas no padréo Doxygen.
void TemperatureSensor init (void);

float TemperatureSensor read(void);

Arquivos contendo as definicdes e implementacbes das fungdes
do monitoramento do alarme documentadas no padréo Doxygen.

void Alarm init (void);
void Alarm checkCondition(float currentTemperature,
float temperaturelimit);

Arquivos contendo a implementacdo das funcBes gerais de
inicializacdo e operacdo do lagco principal (super loop) do
firmware.

void SystemClock Config(void);
int main (void) ;

Fonte: Elaborado pelo autor.

A partir desses resultados, ndo houve mais necessidade de refinamentos e a avaliagdo

foi a de que o codigo-fonte gerado atendeu aos requisitos e produziu a solucéo pretendida. E

importante salientar que os arquivos gerados foram necessarios, mas nao suficientes para se

produzir a solucdo completa. Para a compilacdo e execucdo desse cddigo na placa de

desenvolvimento foi necessario criar um projeto na ferramenta STM32CubelDE e informar o

namero (Part Number) da placa de desenvolvimento. A partir dai a ferramenta criou uma

estrutura de projeto com cddigo-fonte padrdo e, entdo, o cddigo gerado pelo ChatGPT foi

inserido para compor o firmware final que é executado na placa de desenvolvimento.

43

4.2 Resultados da Geracdo de Diagramas

Com asolucéo pretendida disponivel em cédigo-fonte gerado pelo ChatGPT, o proximo
experimento foi ter uma documentacdo adicional do firmware na forma de diagramas em
notacao de linguagem visual, seja para se ter uma visualizacdo gréfica da sua estrutura — o que
pode vir a implicar novos refinamentos para favorecer algum estilo arquitetural que se deseje —
, Seja para fins de arquivamento junto ao codigo-fonte do projeto para posterior manutencéo por
outros desenvolvedores.

Esse experimento teve como objetivo verificar as capacidades do ChatGPT em gerar
diagramas a partir do codigo-fonte gerado anteriormente. Para viabilizar o controle de verséo
em projetos também do diagrama além do proprio codigo-fonte, foi solicitado que o ChatGPT
gerasse a representacao grafica do codigo em um diagrama UML usando a notacdo textual
definida pela ferramenta PlantUML.

Como os LLM’s sdo especializadas em geragdo de contetido textual, a tarefa em questao
nesse experimento foi a transformacéo do codigo-fonte escrito em linguagem de programacao
C para a linguagem de notacao textual da ferramenta PlantUML. O que se observou foi que o
ChatGPT foi capaz de gerar o contedo de texto na notagdo solicitada. Este contetido pdde ser
usado para elaboracdo e visualizagdo do diagrama diretamente no site da ferramenta online
PlantUML.

A Tabela 17 mostra a solicitacdo feita ao ChatGPT para geracdo do diagrama em
notacao textual e a Figura 8 mostra o resultado da visualizagdo grafica do diagrama de classes
obtido através do processamento do resultado na ferramenta online PlantUML.

Tabela 17 — Solicitacao e resposta para geracao de diagrama de classes feita ao ChatGPT.

Interacéo Conteudo

Solicitagéo Vamos gerar uma representacdo grafica através de um diagrama de classes
da UML usando a notacdo para uso na ferramenta PlantUML.

Respostado Aqui estd a notacdo do diagrama de classes em PlantUML para que vocé
ChatGPT possa usa-la em qualquer ferramenta compativel com o PlantUML.:

@startuml

class main {
- TEMPERATURE LIMIT: float
+ main(): void

- SystemClock Config(): void

44

class

AlarmMonitor {

Alarm init(): void

Alarm checkCondition (currentTemperature:
float): void

temperaturelLimit:

alarmTrigger () : void

alarmReset () : void

Led {

Led init(): void

Led startBlink(): void
Led stopBlink(): void
ledBlinkConfig () : void

TemperatureSensor {

TemperatureSensor init():

TemperatureSensor read() :

main --> AlarmMonitor : uses

main --> Led : uses

main --> TemperatureSensor

@enduml

void
float

uses

float,

Basta copiar esse cddigo e cola-lo em um ambiente PlantUML para gerar o
diagrama.

Fonte: Elaborado pelo autor.

Figura 8 — Diagrama de classes da UML gerado pelo ChatGPT

@ main

o TEMPERATURE_LIMIT: float

@ main(): void
m SystemClock_Config(): void

uses

uses

@ AlarmMonitor

© Led

e Alarm_init(): void

m alarmTrigger(): void
m alarmReset(): void

e Alarm_checkCondition(currentTemperature: float, temperatureLimit: float): void

o Led_init(): void

o Led_startBlink(): void
o Led_stopBlink(): void
m ledBlinkConfig(): void

Fonte: Elaborado pelo autor®.

3 Elaborado com uso da ferramenta online PlantUML.
Disponivel em < https://www.plantuml.com/>. Acesso em 07 set. 2024.

uses

© TemperatureSensor

e TemperatureSensor_init(): void
o TemperatureSensor_read(): float

45

Assim como a estrutura do programa pode ser visualizada através de um diagrama, seu
fluxo de operacdo também pbde ser representado graficamente. A UML define alguns
diagramas para visualizacdo de fluxos, tais como o diagrama de atividades e o diagrama de
sequéncia. Como se pretendeu visualizar a operacao interna do cédigo, o diagrama de sequéncia
foi escolhido. A Tabela 18 mostra a solicitacao feita ao ChatGPT para geracdo do diagrama em
notacdo textual e a Figura 9 mostra o resultado da visualizagdo grafica do diagrama obtido

através do processamento do resultado na ferramenta online PlantUML.

Tabela 18 — Solicitacéo e resposta para geracao de diagrama de sequéncia feita ao ChatGPT

Interacao Conteudo

Solicitacdo Vamos gerar agora um diagrama de sequéncia da UML a partir do cddigo-
fonte gerado anteriormente para que seja possivel se visualizar o fluxo de
operacdo do programa.

Respostado Aqui estd a notacdo em PlantUML para o diagrama de sequéncia,
ChatGPT representando o fluxo de operacgdo do programa com base no codigo-fonte
gerado:

@startuml
@startuml

actor User

participant "main" as Main
participant "AlarmMonitor" as AlarmMonitor
participant "Led" as Led

participant "TemperatureSensor" as TemperatureSensor

User -> Main: Ligar o dispositivo
Main -> Led: Led init()
Main -> AlarmMonitor: Alarm init ()

Main -> TemperatureSensor: TemperatureSensor init ()

loop [Continuo]
Main -> TemperatureSensor: TemperatureSensor read()

TemperatureSensor —--> Main: currentTemperature

Main -> AlarmMonitor: Alarm checkCondition (
currentTemperature, TEMPERATURE LIMIT)

alt [Se temperatura excede o limite]
AlarmMonitor -> Led: Led startBlink()
AlarmMonitor -> Main: Aciona alarme

else [Se temperatura ndo excede o limite]
AlarmMonitor -> Led: Led stopBlink()
AlarmMonitor -> Main: Reseta alarme

end

46

Main -> Main: HAL Delay (50)
end
@enduml

Explicagéo:

1. User: O usuério inicia o dispositivo.

2. Main: Inicializa o LED, alarme e sensor de temperatura.

3. TemperatureSensor: Lé a temperatura atual continuamente.

4. AlarmMonitor: Verifica se a temperatura excede o limite e aciona

ou reseta o alarme.

5. Led: Pisca o LED de alarme quando a temperatura excede o limite.
Copie esse codigo para um ambiente compativel com PlantUML para gerar
o diagrama de sequéncia.

Fonte: Elaborado pelo autor.

Figura 9 — Diagrama de sequéncia da UML gerado pelo ChatGPT

Iy
User | main AlarmMonitor Led | TemperatureSensor
| Ligar o dispositivo i ' | |

| Led_init() | o

| Alarm init()

| TemperatureSensor_init() | | ‘:
i T T d

loo Continuo
' TemperatureSensor_read() | | |
= -

i
i _currentTemperature
€

' Alarm_checkCondition{currentTemperature, TEMPERATURE_LIMIT) i

alt temperatura excede o limite | |
! ! Led startBlink() '
—

|
' Aciona alarme

temperatura nao excede o limite | |
| | Led_stopBlink{) _ |
| >

|
|

| Reseta alarme
<

| HAL Delay(50)

U?_e\lr | main | |AIarmMonit0r| | Led | | TemperatureSensor

ﬁ;
2N

Fonte: Elaborado pelo autor®.
As visualizagOes gréaficas atraves de diagramas gerados foram satisfatorias. A vantagem
nessa abordagem € que a geracdo pode ser sempre realizada de forma automatica pela fermenta
nédo havendo trabalho adicional para se manter a documentacdo atualizada. A desatualizacao da

documentacdo € um aspecto de ocorréncia frequente em projetos de software.

4 Elaborado com uso da ferramenta online PlantUML.
Disponivel em < https://www.plantuml.com/>. Acesso em 07 set. 2024.

47

4.3 Resultados da Geracdo de Casos de Teste

Da mesma forma que a geracdo de diagramas a partir de cdodigo-fonte, foi possivel
explorar as capacidades do ChatGPT relacionadas a transformacg&o do codigo-fonte gerado em
outra categoria de contetdo textual bastante utilizada em projetos de desenvolvimento de
software, que sdo os casos de teste.

Uma nova solicitacdo em sequéncia ao contexto corrente do chat utilizado para geracéo
dos artefatos anteriores foi feita ao ChatGPT, agora para gerar cendrios de teste possiveis para

a solucdo que foi previamente desenvolvida. O resultado pode ser na Tabela 19.

Tabela 19 — Solicitacdo e resposta para geragao de casos de teste feita ao ChatGPT.

Interacéo Conteado

Solicitagéo Agora vamos explorar a geracdo de casos de teste para a solucdo que foi
desenvolvida. Gere os casos de teste em linguagem natural para execucdo
manual por usuarios interagindo com o dispositivo.

Respostado A Aqui estdo alguns casos de teste em linguagem natural para execucao

ChatGPT manual por usudrios interagindo com o dispositivo de controle de
temperatura. Esses testes visam verificar se o dispositivo esta funcionando
corretamente de acordo com 0s requisitos e especificacfes definidos.

Caso de Teste 1: Configuracao do valor limite de temperatura

Obijetivo: Verificar se o usuario consegue definir corretamente o valor limite
de temperatura no dispositivo.

o Pré-condicgbes: O dispositivo esta desligado.
e Passos:
1. Ligue o dispositivo.
2. Defina o valor limite de temperatura para 100°C (por
exemplo).
3. Observe se o dispositivo salva e armazena corretamente o
valor configurado.

e Resultado Esperado: O dispositivo aceita o valor limite de
temperatura, que fica armazenado até ser redefinido ou até que o
dispositivo seja desligado.

Caso de Teste 2: Monitoramento continuo da temperatura

Obijetivo: Verificar se o dispositivo realiza 0 monitoramento continuo da
temperatura.

e Pré-condigdes: O dispositivo estd ligado com um valor limite de
temperatura configurado.

e Passos:
1. Verifique se o dispositivo esta ligado.

48

2. Monitore o valor atual da temperatura exibido ou lido
através do canal ADC no pino PAO.

3. Aumente e diminua a temperatura ambiente ao redor do
sensor para verificar se ele esté registrando as mudangas de
temperatura.

e Resultado Esperado: O dispositivo Ié continuamente a temperatura
sem interrupgao.

Caso de Teste 3: Comportamento do alarme (temperatura abaixo do limite)

Obijetivo: Verificar o comportamento do alarme quando a temperatura esta
abaixo do limite configurado.

e Pré-condicgbes: O dispositivo esta ligado com o valor limite de 100°C
e a temperatura ambiente estd abaixo desse valor.

e Passos:
1. Mantenha a temperatura do sensor abaixo de 100°C.
2. Observe a saida digital de alarme no pino PAG.

« Resultado Esperado: A saida digital de alarme permanece em nivel
I6gico zero e 0 LED no pino PA5 permanece apagado.

Caso de Teste 4: Disparo do alarme (temperatura acima do limite)

Obijetivo: Verificar o comportamento do alarme quando a temperatura
excede o limite configurado.

o Pré-condigdes: O dispositivo esta ligado com o valor limite de 100°C
e a temperatura ambiente esta abaixo desse valor.

o Passos:

1. Aumente a temperatura ao redor do sensor para exceder
100°C.

2. Observe a saida digital de alarme no pino PA6 e o
comportamento do LED no pino PAS5.
» Resultado Esperado: A saida digital de alarme vai para nivel légico
um, e o LED de alarme pisca a uma frequéncia de 4 Hz.

Caso de Teste 5: Comportamento do alarme ao retornar para temperatura
abaixo do limite

Objetivo: Verificar o comportamento do alarme quando a temperatura
retorna para um valor abaixo do limite apds ter sido excedida.

e Pré-condigdes: O alarme foi disparado porque a temperatura
ultrapassou o limite.

e Passos:

1. Reduza a temperatura do sensor para um valor abaixo de
100°C.

2. Observe o comportamento do alarme e do LED.

o Resultado Esperado: A saida digital de alarme retorna para nivel
I6gico zero e o0 LED para de piscar.

49

Caso de Teste 6: Frequéncia de piscagem do LED

Objetivo: Verificar se o LED de alarme pisca na frequéncia correta quando
0 alarme é acionado.

e Pré-condicgtes: O dispositivo esta ligado e a temperatura excede 0
limite configurado.

e Passos:
1. Acione o alarme aumentando a temperatura acima de 100°C.
2. Cronometre o tempo entre as piscadas do LED de alarme.

e Resultado Esperado: O LED de alarme deve piscar com uma
frequéncia de 4 Hz (um ciclo de piscada a cada 250 ms).

Caso de Teste 7: Estabilidade do sistema ao longo do tempo

Obijetivo: Verificar a estabilidade do dispositivo e do alarme apés longos
periodos de operacao.

e Pré-condigdes: O dispositivo estd ligado com um valor limite de
temperatura configurado.

e Passos:
1. Deixe o dispositivo ligado por 12 horas.

2. Durante esse tempo, monitore o comportamento do alarme e
do LED a medida que a temperatura varia ao longo do tempo.

« Resultado Esperado: O dispositivo deve funcionar de forma estavel,
sem travamentos ou falhas, e deve acionar o alarme corretamente
quando necessario.

Esses casos de teste permitem ao usuario verificar se o dispositivo esta
cumprindo todos os requisitos funcionais e técnicos especificados, além de
assegurar que o comportamento do dispositivo seja consistente em
diferentes cenarios de operacéo.

Fonte: Elaborado pelo autor.

Foram gerados sete casos de teste no total sem fornecer nenhuma obrigatoriedade de
cobertura e nem critérios de teste especificos a serem atendidos. Seis deles visaram a verificagcdo
das funcionalidades diretamente especificadas nos requisitos e nas estérias de usuario. Um deles
especificamente referiu-se a um teste ndo-funcional de longa duragdo, sugerindo deixar o
dispositivo ligado por doze horas em funcionamento para verificar o seu comportamento.

Certamente a disciplina de teste pode ser bem mais vastamente explorada no ChatGPT
devido a sua caracteristica fundamental diretamente associada a especialidade das ferramentas
baseadas em LLM’s, que € a geragao de contetdo textual, e sendo os roteiros de casos de teste

um tipo desse contetdo. Os resultados com um Gnico prompt ao ChatGPT foram satisfatorios.

50

5 CONCLUSAO

Esse trabalho abordou a aplicagdo da IA Generativa, especificamente o ChatGPT, na
geracdo de artefatos de software no contexto do desenvolvimento de firmware, com o objetivo
principal de avaliar a eficacia dessas ferramentas no auxilio a criacdo de codigo-fonte e outros
artefatos de software. O principal propdsito foi verificar se a IA Generativa poderia ser utilizada
como uma ferramenta prética e produtiva no processo de desenvolvimento de firmware,
reduzindo a carga de trabalho e aumentando a eficiéncia dos desenvolvedores. Para atingir esse
objetivo, foi realizado um experimento utilizando técnicas de engenharia de prompt, que
guiaram a interacdo com o ChatGPT para a geragdo mais assertiva de cddigo estruturado e
compativel com as necessidades especificas do firmware.

A metodologia adotada consistiu em estruturar o problema em requisitos de software,
descritos por meio de estorias de usuario, especificacdes técnicas e orientacbes sobre boas
praticas de desenvolvimento. Esses artefatos foram inseridos no ChatGPT por meio de prompts
detalhados, que incluiram exemplos e demonstra¢@es para guiar a A na producéo de codigo de
alta qualidade. O experimento utilizou um cenério realista de desenvolvimento de firmware
para um dispositivo eletrdnico de monitoramento de temperatura, com o objetivo de gerar
codigo que controlasse um alarme e um LED de sinaliza¢do quando determinados limites de
temperatura fossem excedidos.

Os resultados obtidos demonstraram que o ChatGPT foi capaz de produzir codigo-fonte
funcional, organizado e apresentando aspectos de qualidade, atendendo a todos 0s requisitos
estabelecidos nos experimentos. Em varias intera¢fes, o codigo gerado necessitou de ajustes
para corrigir pequenos defeitos e adequar-se aos padrfes de qualidade esperados, como foi 0
caso da frequéncia de piscagem do LED, que néo foi inicialmente configurada corretamente.
Ao longo do processo, foram feitas solicitacdes para correcdo e refinamento da solucéo, e o
ChatGPT respondeu de forma eficaz, ajustando o cddigo conforme o necessario. No entanto,
ficou evidente que a IA Generativa, embora eficiente em varias tarefas, ndo prescinde
completamente da intervencdo humana, especialmente quando se trata de ajustes finos e
otimizacGes mais complexas.

A conclusdo geral é que o ChatGPT, e provavelmente outras ferramentas de IA
Generativa que estdo disponiveis, tem um grande potencial para auxiliar no desenvolvimento
de firmware e outras areas de software, aumentando a produtividade e automatizando tarefas

repetitivas. No entanto, ainda ha limitagbes no que diz respeito & sua capacidade de prever

o1

problemas e sugerir melhorias que ndo sejam explicitamente solicitadas. Isso reforca a
importancia da colaboragéo entre desenvolvedores e a IA, onde a expertise humana permanece
essencial para garantir a assertividade, robustez e a precisdo dos sistemas desenvolvidos.

Como sugestdes de trabalhos futuros, podem ser realizadas novas investigacfes e
aprimoramentos na integragao de ferramentas de |1A generativa no ciclo de desenvolvimento de
software explorando e incorporando mais técnicas de engenharia de prompt. No ambito da etapa
de concepcdo, podem ser realizados novos trabalhos que tragam experimentos baseados em
outras técnicas de captura e especificacdo de requisitos, tais como casos de uso, texto livre, e
até mesmo especificacdo formal. Na perspectiva da geracdo de codigo-fonte, além da linguagem
C, pode ser explorada a geracdo ou a transformacdo de cddigo para a linguagem C++, que
possui suporte a orientacdo a objetos, um importante paradigma de programacéo e sendo agora
tendéncia atual para o desenvolvimento de firmware. No ambito da geracéo de diagramas, pode
ser explorada a geracdo de outros diagramas também Uteis a depender do tipo de sistema a ser
desenvolvido ou mesmo outras notagdes visuais, tais como SysML, DFD, DER etc. No &mbito
da geracdo de casos de teste, podem ser exploradas outras técnicas de roteirizacao e estruturacdo
de casos de teste assim como notagdes e linguagens especificas para automacao, tais como
BDD, XUnit e TTCN-3. Além disso, seria possivel especificar critérios de teste, tais como
analise de valores limites, cobertura do fluxo de controle do programa para abordagens de teste
de caixa branca ou cinza etc. Por fim, esses mesmos experimentos podem ser explorados em
outras ferramentas de IA Generativa disponiveis ao publico, tais como o Gemini do Google,
Llama do Facebook e o Claude do Anthropic, para fins de comparacao.

Enfim, os resultados obtidos com a aplicacdo da IA Generativa nas mais diversas areas
tem sido notéveis. Percebe-se um relativo consenso na comunidade, com base nos trabalhos
consultados, de que esse tipo de sistema ndo apresenta ainda as capacidades de
superinteligéncia, mas pode, sim, ser usado para expandir as capacidades humanas em tarefas
de criacdo dos mais diversos de tipos conteldo. Embora a inteligéncia artificial amplie as
fronteiras do desenvolvimento de software, é na colaboracgdo entre a criatividade humana e o

poder da IA gue podera residir o verdadeiro potencial para transformar o futuro da tecnologia.

52

REFERENCIAS

AAMANA; AIN, Q. U.; NISA, S. U. Beyond Agile: NLP-Driven Quality Attributes Retrieval
Using ChatGPT in Software Development Strategies. 2024. In: International Conference on
Engineering & Computing Technologies (ICECT), p. 1-6, 2024.

BENDER, E. M.; GEBRU; T.; MCMILLAN-MAJOR, A.; SHMITCHELL, S. "On the Dangers
of Stochastic Parrots: Can Language Models Be Too Big?". In: Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency. New York, NY, USA:
Association for Computing Machinery, 2021.

BROWN, T. et al. Language Models are Few-Shot Learners. In: Advances in Neural
Information Processing Systems, v. 33, p. 1877-1901, 2020.

CAMARA, J.; TROYA, J.; BURGUENO, L.; VALLECILLO, A. On the assessment of
generative Al in modeling tasks: an experience report with ChatGPT and UML. Software and
Systems Modeling, v. 22, n. 3, p. 781-793, 2023.

CLARK, A.; IGBOKWE, D.; ROSS, S.; ZIBRAN, M. F. A Quantitative Analysis of Quality
and Consistency in Al-generated Code. In: International Conference on Software and
System Engineering (ICoSSE), 7., 2024, Los Alamitos, CA, USA. IEEE Computer Society,
2024. p. 37-41.

COMBEMALE, B.; GRAY, J.; RUMPE, B. ChatGPT in software modeling. Software and
Systems Modeling, v. 22, p. 777-779, 2023.

COPELAND, Michael. What’s the Difference Between Artificial Intelligence, Machine
Learning, and Deep Learning? NVIDIA Blog, 29 de julho de 2016. Disponivel em:
<https://blogs.nvidia.com/blog/whats-difference-artificial-intelligence-machine-learning-
deep-learning-ai/>. Acesso em: 10 ago. 2024.

DEVLIN, J.; CHANG, M-W.; LEE, K.; TOUTANOVA, K. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: Proceedings of NAACL-HLT,
2019, p. 4171-4186.

FENG, Z.; GUO, D.; TANG, D.; DUAN, N.; FENG, X.; GONG, M.; SHOU, L.; QIN, B.; LIU,
T.; JIANG, D.; ZHOU, M. CodeBERT: A Pre-Trained Model for Programming and Natural
Languages. In: COHN, Trevor; HE, Yulan; LIU, Yang (ed.). Findings of the Association for
Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, 2020.
p. 1536-1547. Disponivel em: https://aclanthology.org/2020.findings-emnlp.139. DOI:
10.18653/v1/2020.findings-emnlp.139. Acesso em: 10 ago. 2024.

FEIGENBAUM, E. A.; BUCHANAN, B. G.; LEDERBERG, J. On generality and problem
solving: A case study using the DENDRAL program. In: Machine Intelligence, Vol. 6, p. 165-
190, 1971.

GRAVES, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Studies in
Computational Intelligence, v. 385, Springer, 2012.

53

GUO, M. Java Web Programming with ChatGPT. In: 2024 5th International Conference on
Mechatronics Technology and Intelligent Manufacturing (ICMTIM). 2024. p. 834-838.
DOI: 10.1109/ICMTIM62047.2024.10629560.

HEKLER, Eric. Understanding the systems we exist in: computing machines as an analogy.
Medium, 5 de agosto de 2020. Disponivel em: https://erichekler.medium.com/understanding-
the-systems-we-exist-in-computing-machines-as-an-analogy-4480788f2674. Acesso em: 10
ago. 2024.

HUSAIN, H.; WU, H.; GAZIT, T.; ALLAMANIS, M.; BROCKSCHMIDT, M.
CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. 2020.
Disponivel em: <https://arxiv.org/abs/1909.09436>. Acesso em: 10 ago. 2024.

IMANI, S.; DU, L.; SHRIVASTAVA, H. MathPrompter: Mathematical Reasoning using Large
Language Models. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2023.

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. 2nd. ed.
Upper Saddle River, NJ: Prentice-Hall, 2009.

LI, Y.; SHI, J.; ZHANG, Z. An Approach for Rapid Source Code Development Based on
ChatGPT and Prompt Engineering. IEEE Access, v. 12, p. 53074-53087, 2024.

LIU, C.; BAO, X.; ZHANG, H.; ZHANG, N.; HU, H.; ZHANG, X.; YAN, M. Guiding
ChatGPT for Better Code Generation: An Empirical Study. IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2024. p. 102-113.

LIU, P., YU, X., & WANG, C. Prompt Engineering: An Overview. Journal of Artificial
Intelligence Research, v. 58, p. 56-70, 2023.

OMG (Object Management Group). Unified Modeling Language (UML) Version 2.5.1.
Needham, MA, USA: Object Management Group, 2017. Disponivel em:
<https://www.omg.org/spec/UML/>. Acesso em: 26 ago. 2024.

MORATIS, K.; DIAMANTOPOQULOS, T.; NASTOS, D-N.; SYMEONIDIS, A. Write me this
Code: An Analysis of ChatGPT Quality for Producing Source Code. In: International
Conference on Mining Software Repositories, 21., 2024, Lisboa, Portugal. Association for
Computing Machinery, 2024.

MORIMOTO, C. Guia Foca Linux. 8. ed. Sdo Paulo: Novatec, 2017.

RABBI, M. F.; CHAMPA, A. |.; ZIBRAN, M. F.; ISLAM, M. R. Al Writes, We Analyze: The
ChatGPT Python Code Saga. In: International Conference on Mining Software
Repositories, 21., 2024, Lisboa, Portugal. Association for Computing Machinery, 2024. p.
177-181.

RAHMANIAR, W. ChatGPT for Software Development: Opportunities and Challenges.
IT Professional, v. 26, n. 3, p. 80-86, 2024.

54

SHORTLIFFE, E. H. Computer-Based Medical Consultations: MYCIN. New York:
Elsevier, 1976.

STALLINGS, W. Arquitetura e organizacido de computadores. 8. ed. Sdo Paulo. Pearson
Prentice Hall, 2013.

TANENBAUM, A. S. Sistemas operacionais modernos. 3. ed. Sdo Paulo: Pearson, 20009.
TURING, A. M. "Computing Machinery and Intelligence". Mind, 1950.

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ, A. N.;
KAISER, L.; POLOSUKHIN, I. Attention Is All You Need. In: Advances in Neural
Information Processing Systems 30 (NeurlPS 2017). 2017, p. 6000-6008.

WANG, X. etal. Self-Consistency Improves Chain of Thought Reasoning in Language Models.
In: Proceedings of the 11th International Conference on Learning Representations, 2023.

WEI, J. et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In:
Proceedings of the 36th International Conference on Neural Information Processing
System, 2024. p. 24824-24837.

WEI, J.; BOSMA, M.; ZHAO, V. Y.; GUU, K,; YU, A.W.; LESTER, B.; DU, N.; DAI, A. M.;
LE, Q. V. Zero-shot learning with large pre-trained language models. In: Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.
p. 133-145.

WU, T.;HE, S.; LIU,J.; SUN, S.; LIU, K.; HAN, Q.; TANG, Y. A Brief Overview of ChatGPT:
The History, Status Quo and Potential Future Development. IEEE/CAA Journal of
Automatica Sinica, v. 10, n. 5, p. 1122-1136, 2023. DOI: 10.1109/JAS.2023.123618.

YAN, D.; GAO, Z.; LIU, Z. A Closer Look at Different Difficulty Levels Code Generation
Abilities of ChatGPT. In: IEEE/ACM International Conference on Automated Software
Engineering (ASE), 38., 2023, Los Alamitos, CA, USA. IEEE Computer Society, 2023. p.
1887-1898.

ZHANG, Y.; ZHANG, A.; LI, M. SMOLA, A. Automatic Chain of Thought Prompting in
Large Language Models. In: The 11h International Conference on Learning
Representations, 2023.

55

ANEXO A - Interacao inicial com o ChatGPT

Vocé disse:

Vamos elaborar uma solucdo de um dispositivo eletronico para controle de
temperatura e disparo de alarmes. Os requisitos serdo dados a seguir.

O ChatGPT disse:

Otimo! Vamos detalhar a solugio com base nos requisitos. Quais S&0 0s requisitos
para o dispositivo de controle de temperatura? Se ja tiver alguns em mente,
podemos comecar a partir dai.

Vocé disse:

Estes séo os requisitos:

1. Como um usuario do dispositivo, eu quero definir um [valor limite de temperatura] que
deve ser armazenado no dispositivo para a realizagdo do [monitoramento de temperatura].
2. Como um usuério do dispositivo, eu quero poder ligar o dispositivo e este iniciar o
[monitoramento da temperatura] realizando a leitura do [valor atual da temperatura] de modo
continuo e sem interrupgéo até que seja desligado.

3. Como um usudrio do dispositivo, eu quero que o dispositivo mantenha a [saida digital de
alarme] no nivel légico zero caso o [valor limite de temperatura] ndo tenha sido excedido.
4. Como um usuario do dispositivo, eu quero que o dispositivo mantenha a [saida digital de
alarme] no nivel I6gico um caso o [valor limite de temperatura] tenha sido excedido.

5. Como um usuério do dispositivo, eu quero também que o dispositivo realize uma
sinalizagé@o luminosa através da piscagem [LED de alarme] quando o [valor limite da
temperatura] exceder o [valor atual da temperatura). Aguarde que irei informa-lo sobre
algumas especificagfes adicionais a seguir.

O ChatGPT disse:

Entendido! Temos os requisitos basicos para o controle de temperatura e alarmes,
incluindo o armazenamento de um valor limite de temperatura, a leitura continua do
valor atual da temperatura, controle de uma saida digital de alarme e sinalizacao por
LED. Fico no aguardo das especificacfes adicionais para que possamos elaborar a
solugéao completa.

Vocé disse:

Estas séo as especificacdes adicionais:

1. O [valor limite de temperatura] deve ser um valor entre 0 e 250 graus Celsius.

2. O [valor atual da temperatura] deve ser lido através da conversdo analdgico digital
utilizando o ADCO canal 0 definido no pino PAO.

3. O [LED de alarme] deve ser implementado através do pino PAS.

4. A [saida digital de alarme] deve ser implementado no pino PA6.

5. A piscagem do [LED de alarme] deve ocorrer a uma frequéncia de 4 Hertz.

56

Aguarde que irei informa-lo sobre algumas orientacées e exemplos de como iremos
gerar codigo-fonte para esta solucéo.

O ChatGPT disse:

Perfeito! Com essas especificacdes, j& podemos visualizar boa parte do design do
sistema. Ficarei aguardando as orientacdes e exemplos sobre o cédigo-fonte para
implementar essa solucao.

Vocé disse:

Estas sé@o as orientacdes e exemplos sobre o codigo-fonte:

1. Nomes de variaveis globais de escopo de arquivo devem seguir o padrdo PascalCase
prefixadas com letra ‘m’ e precedidas com o operador ‘static’.

Exemplo de nomes de variaveis globais de escopo de arquivo:

- float mCurrentTemperature = 0;

- uint32_t mLedBlinkinterval = 125;

2. Nomes de variaveis locais devem seguir o padrao camelCase. Exemplo de nomes de
variaveis locais:

- float currentTemperature = 50;

- uint32_t counter = 0;

3. Nomes de funcdes de escopo de arquivo devem seguir o padrdo camelCase e precedidas
com o operador ‘static’. Exemplo de nomes de funcdes de escopo de arquivo:

- static float readTemperature(void);

- static void checkAlarmCondition(void);

4. Nomes de funcdes de escopo global devem seguir o padrdo PascalCase e precedidas
pelo substantivo separada por sublinhado pela agdo com a acao seguindo o padréo
camelCase. Exemplo de nomes de func¢des de escopo global:

- void Led_turnOn(void);

- void Alarm_trigger(void);

5. Os nomes dos arquivos gerados devem seguir o padréo snake_case. Exemplos de
nomes de arquivos no padréo snake_case:

-led.h e led.c

- alarm_monitor.h e alarm_monitor.c

Depois de entender essas orientacdes, irei realizar uma solicitacdo a seguir para
geracado de codigo-fonte em uma linguagem especifica.

O ChatGPT disse:

Otimo! As orientacbes e exemplos sobre os padrdes de nomenclatura e estrutura de
codigo estdo bem claras. Estou pronto para a préxima solicitacdo de geracéo de
codigo-fonte na linguagem especifica que vocé escolher.

57

ANEXO B — Cdadigo-fonte gerado inicialmente pelo ChatGPT

Arquivo: main.h

#ifndef MAIN_H
#define MAIN_H

#include "stm32glxx_hal.h"

void SystemClock_Config(void);
void MX_GPIO_Init(void);
void MX_ADC1_Init(void);

#tendif /* MAIN_H */
Arquivo: main.c

#include "main.h"
#include "led.h"
#include "alarm_monitor.h"

/* Varidveis globais de escopo
static float mCurrentTemperatu
static float mTemperatureLimit
configurado pelo usudrio

de arquivo */
re = 0.0;
= 100.0;

// Padréo inicial, pode ser

static uint32_t mLedBlinkInterval = 125; // Intervalo de tempo para 4 Hz (125

ms)
static uint8_t mAlarmTriggered

/* Fungbées de escopo de arquiv
static float readTemperature(v
static void checkAlarmConditio

int main(void) {
HAL_Init();
SystemClock_Config();

=e;

o */
oid);
n(void);

// Inicializacbes de GPIO e ADC

MX_GPIO_Init();
MX_ADC1_Init();

// Loop principal
while (1) {
mCurrentTemperature =
checkAlarmCondition();
HAL_Delay(100);
suavizar a leitura

readTemperature();

// Indicador de alarme

// Leitura da temperatura
// Checa condicoes de alarme
// Pequena espera para

58

/**
* @brief Fungdo para ler a temperatura do sensor no canal ADCO (PA®©)
* @return float Valor atual da temperatura
*/
static float readTemperature(void) {
uint32_t adcValue = 0;
float temperature = 0.0;

// Start ADC conversion

HAL_ADC_Start(&hadcl);

if (HAL_ADC_PollForConversion(&hadcl, HAL_MAX_DELAY) == HAL_OK) {
adcValue = HAL_ADC_GetValue(&hadcl); // Lé valor ADC

¥
HAL_ADC_Stop(&hadcl);

// Conversdo do valor ADC para temperatura (simplificado)
temperature = ((float)adcValue / 4095.9) * 250.9; // Faixa de 6 a 2560 °C

return temperature;

/**
* @brief Fung¢do para verificar se o Limite de temperatura fol excedido
* Aciona o LED e a saida de alarme se necessdrio.
*/
static void checkAlarmCondition(void) {
if (mCurrentTemperature > mTemperatureLimit) {
if (!mAlarmTriggered) {
mAlarmTriggered = 1;
Alarm_trigger(); // Aciona a saida de alarme
}
Led_blink(mLedBlinkInterval); // Piscagem do LED a 4 Hz
} else {
if (mAlarmTriggered) {
mAlarmTriggered = 0;
Alarm_reset(); // Reseta a saida de alarme

}
Led_turnOff();

// Configurag¢do do sistema de clock (omitir detalhes aqui para brevidade)
void SystemClock_Config(void) {
// Configurag¢do tipica de clock para STM32

59

// Inicializac¢cdo do GPIO
void MX_GPIO_Init(void) {
__HAL_RCC_GPIOA_CLK_ENABLE();

GPIO_InitTypeDef GPIO InitStruct = {0};

// Configura¢ées do LED (PA5) e saida de alarme (PA6)
GPIO _InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN 6;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

// Inicilalizag¢do do ADC (PA@ - Canal 0)
void MX_ADC1_Init(void) {
ADC_ChannelConfTypeDef sConfig = {0};

__HAL_RCC_ADC_CLK_ENABLE();

hadcl.Instance = ADC1;

hadcl.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadcl.Init.Resolution = ADC_RESOLUTION_12B;
hadcl.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadcl.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadcl.Init.ContinuousConvMode = DISABLE;
hadcl.Init.NbrOfConversion = 1;
hadcl.Init.DiscontinuousConvMode = DISABLE;
hadcl.Init.ExternalTrigConv = ADC_SOFTWARE_START;
HAL_ADC_Init(&hadcl);

sConfig.Channel = ADC_CHANNEL_O;
sConfig.Rank = ADC_REGULAR_RANK 1;

sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_S5;
HAL_ADC_ConfigChannel(&hadcl, &sConfig);

Arquivo: 1ed.h

#ifndef LED_H
#define LED_H

#include "main.h"
void Led_turnOn(void);
void Led_turnOff(void);

void Led_blink(uint32 t interval);

#endif /* LED H */

60

Arquivo: led.c

#include "led.h"

/**
* @brief Liga o LED de alarme (PA5).
*/
void Led_turnOn(void) {
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);

/**
* @brief Desliga o LED de alarme (PA5).
*/
void Led_turnOff(void) {
HAL_GPIO_WritePin(GPIOA, GPIO PIN 5, GPIO PIN RESET);

/**
* @brief Pisca o LED de alarme (PA5) com o intervalo especificado.
* @param interval Intervalo em milissegundos.
*/
void Led_blink(uint32_t interval) {
HAL_GPIO_TogglePin(GPIOA, GPIO PIN 5); // Inverte o estado do pino
HAL_Delay(interval);

Arquivo: alarm monitor.h

#ifndef ALARM_MONITOR_H
#define ALARM_MONITOR_H

#tinclude "main.h"

void Alarm_trigger(void);
void Alarm_reset(void);

#tendif /* ALARM MONITOR H */

Arquivo: alarm monitor.c

#include "alarm_monitor.h"

/**
* @brief Ativa a saida de alarme digital (PA6).
*/
void Alarm_trigger(void) {
HAL_GPIO_WritePin(GPIOA, GPIO PIN 6, GPIO PIN_SET); // Nivel Ldgico alto

/**
* @brief Reseta a saida de alarme digital (PA6).
*/
void Alarm_reset(void) {
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_ 6, GPIO_PIN_RESET);
baixo

}

// Nivel Logico

61

62

ANEXO C - Cadigo-fonte aprimorado pelo ChatGPT

Arquivo aprimorado: led.c
#include "led.h"

static uint32 t mLastBlinkTime = 9;

/**
* @brief Liga o LED de alarme (PA5).
*/
void Led_turnOn(void) {
HAL_GPIO WritePin(GPIOA, GPIO PIN 5, GPIO_PIN SET);

/**
* @brief Desliga o LED de alarme (PA5).
*/
void Led_turnOff(void) {
HAL_GPIO WritePin(GPIOA, GPIO PIN_ 5, GPIO PIN_RESET);

/**
* @brief Pisca o LED de alarme (PA5) de acordo com o intervalo especificado.
* @param interval Intervalo em milissegundos.
*/
void Led_blink(uint32_t interval) {
uint32_t currentTime = HAL_GetTick();

if ((currentTime - mLastBlinkTime) >= interval) {
HAL_GPIO_TogglePin(GPIOA, GPIO PIN_5);
mLastBlinkTime = currentTime;

63

ANEXO D - Codigo-fonte corrigido pelo ChatGPT

Arquivo corrigido: main.c

#include "main.h"
#include "led.h"
#include "alarm monitor.h"

/* Varidveis globais de escopo de arquivo */

static float mCurrentTemperature = 0.0;

static float mTemperatureLimit = 100.0; // Padrdo inicial, pode ser
configurado pelo usudrio

static uint32_t mLedBlinkInterval = 125; // Intervalo de tempo para 4 Hz (125
ms)

static uint8_t mAlarmTriggered = 0; // Indicador de alarme

/* Fungbes de escopo de arquivo */
static float readTemperature(void);
static void checkAlarmCondition(void);

int main(void) {
HAL_Init();
SystemClock_Config();

// Inicializacdes de GPIO e ADC
MX_GPIO_Init();
MX_ADC1_Init();

// Loop principal

while (1) {
mCurrentTemperature = readTemperature(); // Leitura da temperatura
checkAlarmCondition(); // Checa condi¢bes de alarme

// Ndo ha delay fixo aqui, garantindo que o tempo de piscagem seja
controlado pela fung¢do Led blink

}

/**
* @brief Fungdo para ler a temperatura do sensor no canal ADCO (PA®©)
* @return float Valor atual da temperatura
*/
static float readTemperature(void) {
uint32_t adcValue = 9;
float temperature = 0.0;

// Start ADC conversion

64

HAL_ADC_Start(&hadcl);
if (HAL_ADC_PollForConversion(&hadcl, HAL_MAX_DELAY) == HAL_OK) {
adcValue = HAL_ADC_GetValue(&hadcl); // Lé valor ADC

}
HAL_ADC_Stop(&hadcl);

// Conversdo do valor ADC para temperatura (simplificado)
temperature = ((float)adcValue / 4095.0) * 250.9; // Faixa de © a 250 °C

return temperature;

/**
* @brief Funcdo para verificar se o lLimite de temperatura foi excedido
* Aciona o LED e a satida de alarme se necessdrio.
*/
static void checkAlarmCondition(void) {
if (mCurrentTemperature > mTemperaturelLimit) {
if (!mAlarmTriggered) {
mAlarmTriggered = 1;
Alarm_trigger(); // Aciona a saida de alarme
}
Led_blink(mLedBlinkInterval); // Piscagem do LED a 4 Hz, controlada
pela fung¢do
} else {
if (mAlarmTriggered) {
mAlarmTriggered = 0;
Alarm_reset(); // Reseta a saida de alarme

}
Led_turnOff();

Arquivo aprimorado: led.c
#include "led.h"

static uint32_t mLastBlinkTime = @; // Armazena o ultimo momento em que o LED
piscou

/**
* @brief Liga o LED de alarme (PA5).
*/
void Led_turnOn(void) {
HAL_GPIO WritePin(GPIOA, GPIO PIN_5, GPIO PIN_SET);

/**
* @brief Desliga o LED de alarme (PA5).

65

*/
void Led_turnOff(void) {
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);

/**
* @brief Pisca o LED de alarme (PA5) de acordo com o intervalo especificado.
* @param interval Intervalo em milissegundos.
*/
void Led_blink(uint32_t interval) {
uint32 t currentTime = HAL_GetTick(); // Obtém o tempo atual em
milissegundos

// Verifica se o tempo decorrido desde a ultima piscada é maior que o
intervalo
if ((currentTime - mLastBlinkTime) >= interval) {
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); // Inverte o estado do LED
mLastBlinkTime = currentTime; // Atualiza o tempo da ultima piscada

66

ANEXO E — Cadigo-fonte refeito pelo ChatGPT

Arquivo refatorado: main.c

#include "main.h"
#include "led.h"
#include "alarm monitor.h"

/* Varidveis globais de escopo de arquivo */

static float mCurrentTemperature = 0.0;

static float mTemperatureLimit = 100.0; // Padrdo inicial, pode ser
configurado pelo usudrio

static uint32_t mAlarmCheckInterval = 50; // Tempo de espera para verificacdo
de alarme (em ms)

static uint8_t mAlarmTriggered = 0; // Indicador de alarme

/* Fungbes de escopo de arquivo */
static float readTemperature(void);
static void checkAlarmCondition(void);

int main(void) {
HAL_Init();
SystemClock_Config();

// Inicializacbées de GPIO, ADC e TIM
MX_GPIO Init();

MX_ADC1_Init();

MX_TIM1_Init(); // Inicializacdo do Timer 1

// Loop principal

while (1) {
mCurrentTemperature = readTemperature(); // Leitura da temperatura
checkAlarmCondition(); // Checa condi¢bes de alarme

HAL_Delay(mAlarmCheckInterval); // Espera configurdvel para ciclo de
verificag¢do

}

/**
* @brief Fungdo para ler a temperatura do sensor no canal ADCO (PA®@)
* @return float Valor atual da temperatura
*/
static float readTemperature(void) {
uint32_t adcValue = 9;
float temperature = 0.0;

67

// Start ADC conversion

HAL_ADC_Start(&hadcl);

if (HAL_ADC_PollForConversion(&hadcl, HAL_MAX_DELAY) == HAL_OK) {
adcvValue = HAL_ADC_GetValue(&hadcl); // Lé valor ADC

}
HAL_ADC_Stop(&hadcl);

// Conversdo do valor ADC para temperatura (simplificado)
temperature = ((float)adcValue / 4095.0) * 250.0; // Faixa de @ a 250 °C

return temperature;

/**
* @brief Fung¢do para verificar se o Limite de temperatura fol excedido
* Aciona o LED e a saida de alarme se necessdrio.
*/
static void checkAlarmCondition(void) {
if (mCurrentTemperature > mTemperatureLimit) {
if (!mAlarmTriggered) {
mAlarmTriggered = 1;
Alarm_trigger(); // Aciona a saida de alarme
HAL_TIM Base_Start_IT(&htiml); // Inicia o timer para controlar o

LED
}
} else {
if (mAlarmTriggered) {
mAlarmTriggered = 0;
Alarm_reset(); // Reseta a saida de alarme
HAL_TIM Base_Stop_IT(&htiml); // Para o timer de controle do LED
Led_turnOff(); // Certifica que o LED estd desligado
}
}
}

Arquivo refatorado: 1ed.h

#ifndef LED_H
#define LED_H

#include "main.h"
void Led_turnOn(void);
void Led_turnOff(void);

void Led_toggle(void);

#endif /* LED H */

68

Arquivo refatorado: 1ed.c

#include "led.h"

/**
* @brief Liga o LED de alarme (PA5).
*/
void Led_turnOn(void) {
HAL_GPIO WritePin(GPIOA, GPIO PIN_5, GPIO PIN_SET);

/**
* @brief Desliga o LED de alarme (PA5).
*/
void Led_turnOff(void) {
HAL_GPIO_WritePin(GPIOA, GPIO PIN 5, GPIO PIN RESET);

/**
* @brief Alterna o estado do LED de alarme (PA5).
*/
void Led_toggle(void) {
HAL_GPIO_TogglePin(GPIOA, GPIO PIN_5);

Arquivo refatorado: tim.h

#ifndef TIM_H
#define TIM_H

#include "main.h"
extern TIM HandleTypeDef htimi;
void MX_TIM1_Init(void);

#endif /* TIM H */

Arquivo refatorado: tim.c
#include "tim.h"
TIM HandleTypeDef htimi;

/**
* @brief Inicializag¢do do Timer 1 para controle do LED de alarme.
*/

void MX_TIM1_Init(void) {

__HAL_

htiml.
htiml.

MHz /64000

htiml.
htiml.
htiml.
htiml.

RCC_TIM1_CLK_ENABLE();

Instance = TIM1;

Init.Prescaler = 64000 - 1; // Prescaler para 1 ms por tick (64
= 1 RHz)

Init.CounterMode = TIM_COUNTERMODE_UP;

Init.Period = 125 - 1; // Periodo para 125 ms (4 Hz)
Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
Init.AutoReloadPreload = TIM AUTORELOAD_PRELOAD_DISABLE;

HAL_TIM Base_Init(&htiml);

// Ativar interrup¢do do TIM1
HAL_NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 9, 0);
HAL_NVIC_EnableIRQ(TIM1 BRK_UP_TRG_COM _IRQn);

/**

* @brief Interrupcdo de Timer 1. Piscagem do LED ocorre aqui.
p g q

*/

void TIM1_

BRK_UP_TRG_COM_IRQHandler(void) {

HAL_TIM_IRQHandler (&htiml);

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim->Instance == TIM1) {
Led_toggle(); // Alterna o estado do LED quando o timer atinge o

periodo

¥

69

70

ANEXO F - Codigo-fonte gerado pelo ChatGPT (especificacéo

atualizada)

Arquivo refatorado: main.c
#include "stm32g0Oxx_hal.h"
#include "temperature_sensor.h"

#include "led.h"
#include "alarm_monitor.h"

#define TEMPERATURE_LIMIT 100.0f
static void SystemClock_Config(void);
int main(void)

{
HAL_Init();

SystemClock_Config();

Led_init();
Alarm_init();
TemperatureSensor_init();

while (1)
{

float currentTemperature = TemperatureSensor_read();
Alarm_checkCondition(currentTemperature, TEMPERATURE_LIMIT);

HAL_Delay(50);

static void SystemClock_Config(void)
{

}

Arquivo refatorado: alarm monitor.h

71

#ifndef ALARM_MONITOR_H
#define ALARM_MONITOR_H

void Alarm_init(void);
void Alarm_checkCondition(float currentTemperature, float temperaturelLimit);

#tendif // ALARM_MONITOR_H

Arquivo refatorado: alarm monitor.c
#include "alarm monitor.h"

#include "led.h"

#include "stm32g0Oxx_hal.h"

// Pino para a saida digital de alarme
#define ALARM_PIN GPIO_PIN_6

#define ALARM_GPIO_PORT GPIOA

static void alarmTrigger(void)

{
HAL_GPIO_WritePin(ALARM_GPIO_PORT, ALARM_PIN, GPIO_PIN_SET);
Led_startBlink();

}

static void alarmReset(void)

{
HAL_GPIO_WritePin(ALARM_GPIO_PORT, ALARM PIN, GPIO_PIN_RESET);
Led_stopBlink();

}

void Alarm_init(void)

{
// Configurag¢do do pino de saida do alarme
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO InitTypeDef GPIO InitStruct = {0};
GPIO_InitStruct.Pin = ALARM_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(ALARM_GPIO_PORT, &GPIO_InitStruct);
// Inicialmente, o alarme estad desligado
alarmReset();

}

void Alarm_checkCondition(float currentTemperature, float temperaturelLimit)

{

if (currentTemperature > temperatureLimit)

72

{
alarmTrigger();
}
else
{
alarmReset();
}

Arquivo refatorado: 1ed.h

#ifndef LED_H
#define LED_H

void Led_init(void);
void Led_startBlink(void);
void Led_stopBlink(void);

#endif // LED H

Arquivo refatorado: led.c

#tinclude "led.h"
#include "stm32goxx_hal.h"

// Pino para o LED de alarme

#tdefine LED_PIN GPIO PIN 5

#define LED_GPIO_PORT GPIOA

#define LED_BLINK_FREQUENCY 250 // Periodo de piscagem de 2560 ms (4 Hz)

// Timer utilizado para controle do piscar
TIM HandleTypeDef htimi;

static void ledBlinkConfig(void)

{
// Configuracdo bdsica do Timerl para controlar a piscagem
__HAL_RCC_TIM1_CLK_ENABLE();
htiml.Instance = TIM1;
htiml.Init.Prescaler = 8000 - 1;
htiml.Init.CounterMode = TIM_COUNTERMODE_UP;
htiml.Init.Period = LED_BLINK_FREQUENCY - 1;
htiml.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
HAL_TIM Base_Init(&htiml);

}

void Led_init(void)

{
__HAL_RCC_GPIOA_CLK_ENABLE();

73

GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = LED_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO PORT, &GPIO InitStruct);

ledBlinkConfig();
}
void Led_startBlink(void)
{
HAL_TIM Base_Start_IT(&htiml);
}
void Led_stopBlink(void)
{
HAL_TIM_Base_Stop_IT(&htiml);
HAL_GPIO_WritePin(LED_GPIO_PORT, LED_PIN, GPIO _PIN_RESET);
}

// Callback do Timer para alternar o estado do LED
void HAL_TIM_PeriodElapsedCallback(TIM HandleTypeDef *htim)

{ if (htim->Instance == TIM1)
{
HAL_GPIO_TogglePin(LED_GPIO PORT, LED_PIN);
}
}

Arquivo refatorado: temperature sensor.h

#ifndef TEMPERATURE_SENSOR_H
#define TEMPERATURE_SENSOR_H

void TemperatureSensor_init(void);
float TemperatureSensor_read(void);

#endif // TEMPERATURE_SENSOR_H

Arquivo refatorado: temperature sensor.c

#include "temperature_sensor.h"
#include "stm32goOxx_hal.h"

// Canal ADC para leitura da temperatura
ADC_HandleTypeDef hadcl;

74

void TemperatureSensor_init(void)

{
__HAL_RCC_ADC1_CLK_ENABLE();

ADC_ChannelConfTypeDef sConfig = {0};

hadcl.Instance = ADC1;

hadcl.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadcl.Init.Resolution = ADC_RESOLUTION_12B;
hadcl.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadcl.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadcl.Init.ContinuousConvMode = ENABLE;
hadcl.Init.DiscontinuousConvMode = DISABLE;
hadcl.Init.ExternalTrigConv = ADC_SOFTWARE_START;
HAL_ADC_Init(&hadc1l);

// Configurag¢do do canal ©

sConfig.Channel = ADC_CHANNEL_O;

sConfig.Rank = ADC_REGULAR_RANK 1;
sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES;
HAL_ADC_ConfigChannel(&hadcl, &sConfig);

HAL_ADC_Start(&hadcl);

float TemperatureSensor_read(void)

{
HAL_ADC_PollForConversion(&hadcl, HAL_MAX_DELAY);

uint32_t adcValue = HAL_ADC_GetValue(&hadcl);
// Converter o valor ADC para a temperatura (exemplo: escala de ©-250
graus)

float temperature = (adcValue / 4096.0f) * 250.0f;

return temperature;

