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RESUMO

OLIVEIRA, D. B.. Estimativa de Sobrevida de Pacientes com Glioblastoma por meio de
Algoritmos Baseados em Random Forests. 2020. 53 f. Monografia (Graduagao) — Instituto
de Ciéncias Mateméticas e de Computagdo (ICMC/USP), Sao Carlos — SP.

O cancer cerebral do tipo Glioblastoma € um dos mais agressivos na atualidade, com alta taxa
de mortalidade e expectativa média de sobrevivéncia de 15 meses apds diagndstico. Ao mesmo
tempo, novos algoritmos especializados em andlise de sobrevida foram descritos nos ultimos
anos, possibilitando trabalhar com os principais desafios encontrados em bases de dados médicos:
grande nimero de varidveis com baixa quantidade de amostras e censura de dados. Esse trabalho
tem o objetivo de avaliar o desempenho do Random Survival Forests (RSF) e de sua modificagdao
mais recente, o Maximally Selected Rank Statistics Random Forests (MSR-RF), aplicados numa
base de dados com informacdo genética (mRNA) de pacientes de Glioblastoma, considerando
dois aspectos: capacidade de distingd@o de risco de pacientes (C-index) e precisdo das curvas de
sobrevivéncia estimadas (Brier Score). Ambos podem ser considerados adapta¢des do famoso
algoritmo de aprendizado de maquina Random Forests, mas procuram maximizar a diferenca de
sobrevivéncia ao fazer um split num né. Foi desenvolvida também uma biblioteca que encapsula
diversas fun¢des da andlise de sobrevivéncia, além de métodos de avaliar a importancia de
varidveis e selecao de preditores, chamada de SurvivalLib. O MSR-RF apresentou melhor
resultado para o C-index, 0,869, contra 0,727 do RSF. Para o Brier Score, ambos foram muito
parecidos, com pontuagao de 0,128 para o RSF e 0,123 para o MSR-RF. Grificos das curvas
de sobrevivéncia estimadas ao longo do tempo sdo apresentados, para todos os pacientes da
base de testes. Neste caso, 0 RSF demonstrou maior separacdo entre pacientes de alto risco em
comparacao com os de baixo risco. Este estudo permitiu a comparacdo dos dois algoritmos,
mostrando que o método adotado pelo MSR-RF apresentou melhor resultado em classificar o
risco dos pacientes, mas o RSF mostra mais eficiéncia na precisdo da estimativa da probabilidade
de sobrevivéncia ao longo do tempo. Além disso, a criacdo da biblioteca SurvivalLib, utilizada

neste trabalho, poderd facilitar novas pesquisas na drea de andlise de sobrevida.

Palavras-chave: Aprendizado de maquina, Random Survival Forests, Glioblastoma, Andlise de

sobrevida.






ABSTRACT

OLIVEIRA, D. B.. Estimativa de Sobrevida de Pacientes com Glioblastoma por meio de
Algoritmos Baseados em Random Forests. 2020. 53 f. Monografia (Graduagao) — Instituto
de Ciéncias Mateméticas e de Computagdo (ICMC/USP), Sao Carlos — SP.

Glioblastoma is one of the most aggressive brain cancer, showing a high mortality rate. The
life expectancy after diagnosis is only 15 months. At the same time, new algorithms focused
on survival analysis were described in the last years, which can handle the main problems
encountered on medical databases: high number of columns with a low number of samples and
censored data. This study aims to evaluate the performance of Random Survival Forests (RSF)
and its recent modification: Maximally Selected Rank Statistics Random Forests (MSR-RF),
applied to a database of glioblastoma patients containing genetic data (mRNA), considering
two aspects: ability to separate patients risk (C-index) and survival functions estimations (Brier
Score). Both can be assorted as modifications of the well known machine learning algorithm
Random Forests, while trying to maximize survival difference at node splits. A new tool was
implemented to wrap survival analysis functions, on top of common operations like variable
importance processing and feature selection. The MSR-RF showed a better score for the C-index
metric, with 0.869, while RSF got only 0.727. On the other hand, for the Brier Score metric, both
performed alike, with a 0.123 score for the RSF and 0.128 for MSR-RF. The survival function
was plotted for all cases, on all available time-frames, for all patients on the test set. In this case,
the RSF demonstrated a better separation between high and low risk cases. This work allowed
for a comparison of the two algorithms, indicating a better performance of MSR-RF on ranking
patients risk, but RSF was more precise on estimating the survival function. The development of

the SurvivalLib will help new research on survival analysis field.

Key-words: Machine Learning, Random Survival Forests, Glioblastoma, Survival Analysis.
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Capitulo 1

INTRODUCAO

1.1 Motivacao e Contextualizacao

1.1.1 Cancer

O cancer ainda € um dos maiores desafios que a humanidade enfrenta. Todo ano sdo
contabilizados milhdes de novos casos, que infelizmente levam a milhares de mortes, devido
a alta taxa de mortalidade. Segundo a GLOBOCAN (Global Cancer Observatory), em 2018,
foi estimado um total de 18,1 milhdes de casos, com 9,6 milhdes de mortes (BRAY et al.,
2018). Além disso, a doenga ocorre em diversas partes do corpo humano, cada uma com suas
particularidades. O tipo mais comum em diagndsticos depende bastante do estilo de vida da
populacdo, variando entre paises. Cancer de pulmao, em termos globais, soma o maior nimero
de casos, com cerca de 2 milhdes em 2018, levando a 1,7 milhdes de mortes (BRAY et al., 2018).
Outro exemplo que se destaca € o cancer cerebral e de sistema nervoso central, que estd entre os
mais agressivos. A maioria desses casos concentram-se na categoria Glioblastoma, um tipo de
tumor que apresenta alta resisténcia aos tratamentos e apresenta uma taxa média de sobrevivéncia
de 15 meses (STUPP et al., 2005).

O tratamento padrdao para o Glioblastoma € severo. A primeira op¢do € a cirurgia
de remoc¢do do tumor, seguida de radioterapia (ou radioncologia). Porém, nos ultimos anos,
pesquisas estdo sendo realizadas para analisar o efeito da interacdo da temozolomida (TMZ),
uma droga bastante usada contra o Glioblastoma, no tratamento dos pacientes, em conjunto com
as técnicas ja conhecidas. Este método apresenta bons resultados e conclusdes estatisticas de
sua eficacia (STUPP et al., 2005). Nao s6, recentes estudos visam entender também a interacao
genética na prevencao e novos alvos terapéuticos para a doenga (BLEEKER; MOLENAAR;
LEENSTRA, 2012).

Uma abordagem para o estudo dessas interagdes de tratamento, bem como o impacto
no tempo de sobrevida apds o diagnodstico € pela informagdo genética do individuo (LOPEZ
et al., 2018). Essa andlise € uma tarefa bastante complexa, por envolver milhares de agentes
simultaneamente. Além isso, usar esse conhecimento para obter discernimento a respeito de
estratégias de tratamento € ainda mais dificil, ja que o estado de satide de uma pessoa envolve seu
estilo de vida, alimentagdo, frequéncia de exercicios fisicos e mais inimeros outros fatores. Dessa

forma, métodos muito eficazes e robustos sdo necessdrios para analisar grandes quantidades de



20 Capitulo 1. Introdugdo

dados, a fim de extrair informacdes tteis.

1.1.2 Analise de Sobrevida

O estudo de novos métodos de andlise de sobrevida, campo que foca no estudo do tempo
decorrido até um evento de interesse (KLEIN, 2003), é amplamente aplicado em diversas areas
do conhecimento, mas principalmente medicina e engenharia. Na primeira, o foco é voltado para
andlise da influéncia de novos tratamentos e drogas em pacientes, € na segunda, a importancia
de agentes internos e externos na durabilidade de equipamentos, como na preveng¢ao de falhas
em equipamentos (ALI et al., 2015). Dessa forma, esses estudos sdo de extrema importancia na
evolucdo e aprimoramentos das técnicas e métodos utilizados dentro de cada area. Levando em
conta o campo médico, observamos uma grande quantidade de trabalhos de aquisi¢do de dados,
em que, durante um periodo de tempo, pesquisadores coletam medidas clinicas e genéticas
de pacientes, que sdo compiladas e publicadas em grandes veiculos, como a plataforma cBio
(CERAMI et al., 2012) e (GAO et al., 2013). Assim, é clara a facilidade de obten¢ao de bases de
dados para realizac¢do de estudos de sobrevida de pacientes e, assim, contribuir com o progresso

de solugdes nessa drea.

O aprendizado de méquina evoluiu consideravelmente nos dltimos anos, nos quais
diversas novas técnicas sdo apresentadas regularmente. Com algoritmos cada vez mais poderosos,
apresentando boa acurécia em diversas aplicagcdes, o poder de predi¢cdo tem potencial de se tornar
preciso, quando aplicada uma metodologia consistente e iterativa, observando, nos dados, as
caracteristicas que contribuem e atrapalham o aprendizado. Historicamente, foram desenvolvidos
diversos métodos estatisticos que abordam o problema, separados em trés grupos: métodos

nao-paramétricos, semi-paramétricos e paramétricos (WANG; LI; REDDY, 2019).

Apesar de muito eficientes em alguns casos, principalmente quando sdo observadas dis-
tribuicdes definidas nas varidveis analisadas, as técnicas de Machine Learning podem apresentar
vantagens significativas em comparacao aos métodos estatisticos mais tradicionais, como Cox,
quando exploradas suas vantagens e controladas as desvantagens (DELEN; WALKER; KADAM,
2005). Dessa maneira, sao publicados trabalhos com o objetivo de avaliar o desempenhos dessas
novas técnicas e algoritmos em dados médicos (DATEMA et al., 2011) e (KOUROU et al.,
2015), visando entender os fatores que mais influenciam, positivo quanto negativamente, no

tratamento de pacientes com cancer.

Além de analisar as influéncias, € possivel estimar a probalidade de sobrevivéncia
de um paciente até um determinado tempo ¢, com uma abordagem de regressao (OMURLU;
TURE; TOKATLI, 2009). Contudo, os algoritmos classicos de regressao ndo se demonstram
tao eficientes quando os dados apresentam censoring (censura), que ocorre quando ndo hd uma
conclusdo nos dados de um paciente especifico, como por exemplo sua desisténcia do estudo.
Esse problema se deve ao fato de ser necessdrio excluir as amostras que apresentam censura, fato

que serd detalhado na Revisao Bibliografica.
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1.2 Objetivos

1.2.1 Objetivo Geral

Este trabalho tem como objetivo geral avaliar o desempenho de algoritmos recentes de
aprendizado de mdquina, aplicados a base de dados com informacgdes de pacientes portadores de
cancer cerebral do tipo Glioblastoma, considerando a situagao problema da andlise de sobrevida,

considerando o problema de censoring.

1.2.2 Objetivos especificos

Dentro dos objetivos podem ser elencados os seguintes topicos:

* Revisdo da literatura recente envolvendo andlise de sobrevida e aprendizado de méquina.

* Elaboracdo de uma metodologia abordando principais conceitos revisados para tratamento

de bases de dados com poucas amostras € muitas colunas.

* Treinamento dos modelos e validacdo das predi¢des das curvas de sobrevivéncia.

1.3 Organizacao

Este trabalho esta organizado em 4 capitulos, dos quais este é o primeiro. Em seguida,
no CAPITULO 2: REVISAO BIBLIOGRAFICA, seri apresentada a fundamentacio tedrica
dos tépicos trabalhados nesta pesquisa. Depois, no CAPITULO 3: DESENVOLVIMENTO,
¢é apresentada a metodologia e a implementacdo do projeto € detalhada, além dos resultados
encontrados. Por fim, no CAPITULO 4: CONCLUSAO, sio apresentadas as conclusdes e sao
elencadas propostas para trabalhos futuros, além de consideracdes sobre o curso ao qual o autor

esta matriculado.
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Capitulo 2

REVISAO BIBLIOGRAFICA

2.1 Consideracoes iniciais

Neste capitulo sdo apresentados os principais conceitos e terminologia trabalhados na
literatura relacionada a andlise de sobrevivéncia, com foco em soluc¢des de aprendizado de
maquina. Sdo discutidos de forma mais profunda os métodos baseados em Arvore de Decisdo
(AD), como Random Forests (RF) e Random Survival Forest (RSF), que sdo a base desse
trabalho.

2.2 Analise de Sobrevivéncia

Os estudos que visam analisar ¢ modelar um determinado tempo T, em que espera-se
que um evento de interesse ocorra, sao classificados dentro do campo da estatistica, como anélise
de sobrevivéncia (WANG; LI; REDDY, 2019). Em termos gerais, os métodos se distribuem em
dois principais grupos: estatisticos ou aprendizado de maquina. Ambos tem o mesmo objetivo de
estimar as curvas de sobrevivéncia para o fenomeno analisado, mas o primeiro foca no estudo
das distribui¢Ges e parametros que o caracterizam, e o segundo foca na predi¢do do evento
de interesse. As andlises, a primeira vista, assemelham-se a uma regressdo comum, onde é
pretendido obter um modelo capaz de prever um resultado numérico, a partir das varidveis de
entrada. Porém, observa-se que em diversas dreas de estudo, a compilacdo de uma base de dados
completa para andlise posterior € uma atividade complexa, e muitas vezes, ndo € possivel obter a
informacao do tempo total do fendmeno. Amostras sdo coletadas quando conveniente, durante
a existéncia do fendmeno, mas nem sempre corresponde ao tempo de ocorréncia do evento de
interesse. Esse problema é denominado censoring (KLEIN, 2003). Esse problema € ilustrado na
Figura 1 amostras de um fendmeno em estudo sdo coletadas ao longo do tempo, e em dois casos
sabe-se o tempo exato que o evento de interesse ocorreu. Ja no caso marcado em vermelho, a

amostragem foi interrompida e nio se sabe a duracgdo total do fendmeno.
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Figura 1 — Exemplo de ocorréncia de censura nos dados.

@ Evento
% Censura

X

Fenémeno de estudo
()

Tempo

Fonte: Elaborada pelo autor.

Segundo (LEE, 2003), existem trés tipos de censoring :

1. Right censoring: Ocorre quando hd informacao sobre o inicio do fendmeno, mas ndo se

sabe quando o evento de interesse ocorre.

2. Left censoring: Ocorre quando hd informacdo sobre o evento, mas nao se sabe o inicio do

periodo de observacao.

3. Interval censoring: Nao se sabe o tempo exato do evento, somente que este ocorreu durante

um intervalo.

De acordo com os objetivos desse trabalho, o foco se d4 em métodos que solucionam
o problema de right censoring, levando em conta que ao decorrer de um estudo com muitos
pacientes, observamos que, por diversas razdes, ndo se obteve o tempo de sobrevida para alguns
individuos. Assim, ao utilizar um algoritmo de aprendizado de maquina supervisionado, seria
necessdria a exclusdo de boa parte das bases de dados, na tentativa de possuir tuplas suficientes
para treinamento e teste dos modelos. Essa é uma vantagem do uso de algoritmos que incorporam
esse dado censurado no modelo, pois ainda que ndo ha a informag¢do conclusiva do tempo total
de sobrevida, essa amostra pode contribuir com o aprendizado do modelo (DELEN; WALKER;
KADAM, 2005).
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2.3 Aprendizado de maquina

Dentro da grande area de aprendizado de mdaquina existem dois principais tipos de

algoritmos utilizados na anédlise de dados:

» Aprendizado supervisionado: a varidvel dependente (alvo) esta presente nos dados, € o
modelo € treinado para estimar uma fun¢do que mapeia as varidveis de entrada para a

varidvel alvo. Alguns exemplos: classificacdo, regressao e arvores de decisao.

* Aprendizado ndo supervisionado: a varidvel alvo ndo estd presente nos dados, e a principal
ideia nesse caso € a construcdo de agrupamentos que facam segmentacdo de classes

diferentes dos dados. Alguns exemplos: Clusterizacao, K-NN.

A andlise de sobrevivéncia caracteriza-se como aprendizado supervisionado, ja que
¢ utilizado um conjunto de dados de treino, composto por varidveis independentes (entrada) e
uma varidvel dependente (saida), o qual o algoritmo escolhido usa para aproximar a funcdo que
mapeia essa relacdo (RUSSELL, 2010).

Portanto, como o objetivo desse trabalho € a elaboracao de modelos preditivos, para
estimar a sobrevida dos pacientes apds o diagndstico de cancer, € importante a utilizacao de
uma base de dados com quantidade significativa de amostras contendo a informagdo do tempo
de sobrevida. Entretanto, nos casos de pacientes que apresentam censoring, essa informacao
estd ausente, prejudicando a quantidade de amostras uteis para treinamento e teste do modelo
(WANG; LI; REDDY, 2019), ao passo que ndo € possivel executar um modelo de aprendizado de
maquina com dados faltantes, sem adicionar ruido ao sistema. A soluc¢do trivial de simplesmente
retirar as amostras censuradas da base resulta em um modelo ndo 6timo (DELEN; WALKER;
KADAM, 2005).

Em outro contexto, se as bases de dados com estudos de cancer estivessem disponiveis
com grande quantidade de pacientes sem censoring, seria possivel construir e testar modelos
com algoritmos cldssicos de regressao, removendo da base as amostras sem o evento de interesse.
Porém, ao realizar essa operacdo, bastante informacado € retirada sem contribuicdo para o

entendimento do fendmeno.

Estudos de regressao para prever o tempo de evento em andlise de sobrevivéncia podem
ser feitos com diversas técnicas. Entretanto, quando o assunto do estudo se relaciona com a
area médica, muitos algoritmos classicos do aprendizado de maquina podem perder eficécia,
principalmente pelos dois seguintes problemas: Curse of dimentionality (DONOHO, 2000) e
Dados censurados. A primeira esta relacionada com a natureza dos estudos médicos, com focos
nos que possuem dados genéticos. A dificuldade (operacional e financeira) de realizar um estudo
que envolva muitos pacientes em estados critico de satde € grande, além da complicagdo de

tempo do estudo, que precisa se prolongar por anos. Assim, o comum das bases de dados que
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disponibilizam dados genéticos € possuir poucas amostras. Ao passo que muitos algoritmos
apoiam-se na premissa de um minimo de exemplos para garantir aprendizado, ou seja, as
distribuicdes das covaridveis abrangem um amplo espectro, apresentando ao algoritmo uma

relacdo com a varidvel independente (se é que existe).

Além disso, o problema se torna ainda maior quando é considerado a dimensao da
informacao genética disponivel. Existem diversas formas de se obter ciéncia da atuacdo de
determinado gene. Uma delas € a observacio da expressdo de proteinas, que indicam a ativagao
genética produtora dessa molécula. A variedade da expressao proteica € muito grande, o que
resulta em tabelas com milhares de colunas. Este € um problema bastante complexo na area de
aprendizado de mdquina, como descreve Mirza et al. (2019). Com os dois pontos apresentados,
por fim, trabalha-se com um banco de dados de muitas covaridveis e poucas amostras (p grande

e n pequeno), o que constitui o problema de curse of dimentionality (DONOHO, 2000).

O segundo problema € o dos dados censurados, nos quais ndo hd informac¢ao de quando o
evento ocorreu. A amostra foi recolhida enquanto o paciente estava em tratamento, € ndo houve
uma conclusdo, por qualquer razdo. Como ndo existe a medida do tempo total de sobrevida,
do diagnostico até o falecimento, a amostra ndo poderia ser utilizada nos algoritmos cldssicos
de aprendizado supervisionado por ndo possuir rétulo. Por consequéncia, a censura dos dados

agravaria ainda mais o problema de dimensionalidade descrito acima.

O tratamento de bases de dados desse tipo € uma tarefa complexa, quando se considera
todos os aspectos mencionados acima. E comum a presenca de covaridveis com amostras
ausentes, mas que ndo tém importancia significativa para prever a varidvel alvo. Nessa situacdo,
€ importante avaliar os impactos da adicao ou remocao dessa feature no desempenho do modelo
final. Neste caso, a decisdo envolve, por um lado, incorporar no modelo a informacao do problema
que a varidvel entrega quando computada, mas por outro lado, perder as amostras que seriao

retiradas do modelo nos casos em que ha valores faltantes.

A tecnologia utilizada na leitura da informacao genética empregada neste trabalho € cha-
mada de RNA-Seq (GOLDMAN; DOMSCHKE, 2014). Desenvolvida recentemente, apresenta
grandes vantagens como grande precisao nas leituras de pares transcritos, boa qualidade da quan-
tificacdo das amostras, quando comparada a técnica muito utilizada anteriormente, Microarray
(WANG; GERSTEIN; SNYDER, 2009). Dessa forma, a RNA-Seq fornece um 6timo método

para incorporar informacdo genética dos pacientes nos modelos preditivos.

2.4 Random Forests

Um antigo método de aprendizado de miquina € a construc¢io de arvores de decisdao
(BREIMAN, 1993). Neste algoritmo, o objetivo € criar uma estrutura de decisdo (4rvore bindria)
que executa uma tarefa, como separar um banco de dados em duas classes diferentes. A decisdao

envolve a escolha de uma varidvel para separar os dados, a partir de um certo valor. A escolha
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da melhor varidvel para fazer essa separacao (split) é feita medindo a qualidade dos dois nés
filhos, utilizando uma métrica pré-definida. A mais comum € a pureza dos nos filhos, calculada

por exemplo pelo método Gini.

O Random Forests consiste em um ensemble (conjunto) de arvores de decisdo. O primeiro
passo € a mecanica de splits, na qual o algoritmo seleciona uma varidvel para segmentar a base
de maneira que a separacdo promove similaridade entre os blocos resultantes. Esta divisao
tem por objetivo aumentar a homogeneidade dos noés filhos, em comparacdo com o né pai. A
maximizag¢do da homogeneidade, originalmente proposta por (BREIMAN, 2001), refere-se a
pureza dos nés filhos, que pode ser calculada, por exemplo, pela quantidade de amostras da
mesma classe dentro do mesmo né. Assim, nés com classes semelhantes apresentam maior

pureza.

Um ponto inovador do RF € a introducio de aleatoriedades por dois processos: boostrap
(EFRON, 1994) e dentro de cada nd, na selecdo da varidvel para split. O boostrap consiste em
fazer uma amostragem dos dados ao construir cada arvore, de modo que cada amostra retirada
é reposta na base. O processo € repetido para 0 mesmo nimero de amostras na base de dados.
Denotando a probabilidade de uma amostra x; ser escolhida, dentro de um conjunto de n amostras

por 1/n, a probabilidade de x; ndo ser escolhido é:

1
m=1-- 2.1)
n

Expandindo essa probabilidade p;(n) para a enésima amostra retirada no processo:

p,.(n>:f11:(1_%) (1_%)..(1_;):(1_%)" 22)

Considerando 7 grande, é ficil observar que p;(n) tende para e !, que é aproximadamente
0,368. Essa fragao dos dados nédo € usada na construcao de cada drvore, provendo assim uma
parcela de amostras para teste. Esse conjunto de amostras é chamado de amostra Out of Bag
(OOB).

O segundo processo de introdugdo de aleatoriedade envolve a selecdo de um subconjunto
de covaridveis para fazer o split, ao invés de testar todas as possibilidades. A vantagem € o
desacoplamento entre as drvores, diminuindo a variancia do ensemble construido. Esta estratégia
€ conhecida como bagging (BREIMAN, 1996), e pode aumentar consideravelmente a acuricia

do algoritmo base que foi replicado.

O procedimento completo do RF € descrito nos seguintes passos (ISHWARAN et al.,
2008):

1. Realizar n amostragens nos dados originais com boostrap.
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2. Para cada novo conjunto, construir uma drvore de decisdo, realizando uma selecdo aleatéria

de covaridveis em cada no.
3. A escolha da covaridvel € feita maximizando a homogeneidade em cada né.

4. Construir a arvore repetindo esse processo recursivamente, até que cada né folha nao tenha

menos de my ocorréncias.

5. Agregar a contribuicdo de cada drvore, calculando a média entre os resultados, no caso de

um ensemble regressivo.

6. Calcular o erro com as amostras OOB.

2.5 Random Survival Forests

Visando atacar o problema de right censoring, foram desenvolvidas diversas técnicas,
como a adapta¢do do RF proposta por Ishwaran et al. (2008), o Random Survival Forest (RSF).
Esse algoritmo apresenta uma mudanc¢a na maximiza¢cdo da homogeneidade no momento do
split, medindo a eficdcia ndo mais por pureza, mas sim por diferenca de sobrevida. Dessa forma,
situagdes diferentes sdo separadas em nds distintos. Esse processo € realizado recursivamente,

populando a drvore durante o crescimento com casos similares de sobrevida.

Além de operar diretamente sobre o tempo de sobrevida, uma outra grande vantagem do
RSF € a possibilidade de incorporacgdo de varidveis censuradas. Este algoritmo ndo usa o classico
padrdo de entrada X e saida y. Nele, sdo consideradas trés varidveis: X, contendo as varidveis de
entrada, T, contendo o tempo de sobrevida e E, varidavel booleana informando se a amostra é

censurada ou nio.

O uso da informagao de censura € aplicado principalmente no momento do cédlculo do
split, cuja decisdo da varidvel x e valor do split em x é dado pela funcdo log-rank Equagdo 2.3
(ISHWARAN et al., 2008):

YA <di,1 _Yi,1d7§>
L(x,c) = (2.3)

N Yo (Y (Yiedi) g
=17, v ) \¥1 )4

As varidveis assumem o0s seguintes significados:

Jj: N6 filho.

Y;: Nuimero de amostras sem censura ou em risco, em 7.

Y; j: Nimero de amostras sem censura ou em risco, para o no filho, em .

d;: Numero de eventos, em t.
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* d; j: Numero de eventos, para o no filho, em 7.

Dessa forma, € possivel utilizar a informag¢do censurada para construir aprendizado ao
modelo, o que pode melhorar o desempenho do mesmo. E importante mencionar que a saida
produzida com o RSF € a Survival Funcion, fungdo que mostra a probabilidade do paciente

sobreviver apds um tempo ¢ de teste.

Um outro método recente proposto por Wright, Dankowski e Ziegler (2016) envolve
uma outra forma de realizar o processamento de bases com tempo de sobrevida. A estrutura do
algoritmo, no geral, ¢ mesma do RSF. Serdo usadas as mesmas trés varidveis para o treinamento,
X, T e E. Porém, a constru¢do do modelo é baseada em inferéncia estatistica condicional,
utilizando um teste de hipétese para selecionar as varidveis no momento do split. O objetivo é
remover ou diminuir o viés ao escolher a varidvel, que ocorre ao utilizar o método anterior com
a formulacao de log-rank, pois este tende a favorecer varidveis com muitas pontos para o split.
A formulagdo e construc¢ao do algoritmo pode ser encontrada com mais detalhes em Wright,
Dankowski e Ziegler (2016). Esse método é denominado maximally selected rank statistics
random forests (MSR-RF).

Outro quesito importante € a forma de calculo do risco dos pacientes, que também pode
ser gerada pelos dois modelos. A medida de risco € calculada segundo a equagao Equacao 2.4,
em que H corresponde a hazard function, que € a funcdo que mede a probabilidade do evento

ocorrer logo depois do tempo 7 testado, € J € o total de pontos temporais usado pelo modelo:

J
r(x) =Y H(j,x) (2.4)
=1

J

2.6 Consideracoes Finais

Os dois modelos apresentados, RSF e MSR-RF, apresentam aplicacdo direta para o
problema de andlise de sobrevida com dados de cancer, com o objetivo de estimar a funcio de
sobrevivéncia para cada paciente, bem como analisar a situagc@o de risco que estes se encontram.
Estudos envolvendo aprendizado de maquina com informacdo genética e predi¢do de sobrevida
sdo encontrados na literatura, porém em baixissima quantidade, além de ndo apresentar a
comparac¢do com o mais recente MSR-RF (OMURLU; TURE; TOKATLI, 2009), (LOPEZ et al.,
2018), (DELEN; WALKER; KADAM, 2005). Ao incorporar os dados censurados no aprendizado
do modelo, € natural a ocasido para observar o comportamento desses algoritmos com bases de
dados relacionadas ao Glioblastoma. O Préximo Capitulo detalhard a implementacio e uso de

ambos algoritmos para andlise de sobrevida.
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Capitulo 3

DESENVOLVIMENTO

3.1 Consideracoes Iniciais

O presente Capitulo discorrerd a respeito do desenvolvimento do projeto elaborado.
Inicialmente, os passos da metodologia adotada serdo descritos detalhadamente. Em seguida, a
ferramenta concebida serd apresentada, bem como todos os seus médulos e como estes atuam

em conjunto para a solucao do problema. Por fim, serdo apresentados os resultados.

3.2 Metodologia

3.2.1 Aquisicao de dados

O primeiro passo realizado no desenvolvimento do projeto foi a obtencao das bases de
dados com informagdes clinicas e genéticas. A fonte escolhida foi a plataforma cBio (CERAMI
et al.,2012), que disponibiliza gratuitamente diversas pesquisas realizadas na drea oncoldgica.
Além disso, o sistema conta com uma ferramenta de consulta genética, na qual é possivel
buscar, em vdarios estudos ao mesmo tempo, diversos genes de interesse. Ainda, a plataforma
disponibiliza vérias formas de visualizacdo de dados, com diversos artificios graficos para
cada tipo de varidvel analisada. Usualmente, os estudos sdo divididos em diversas tabelas, com
medicoes de diferentes propriedades clinicas dos pacientes. As duas principais que sdo utilizadas
nesse trabalho s@o a tabela de dados clinicos, que contém informagdes gerais sobre o individuo,
como idade no momento do diagnodstico e género. A segunda refere-se a informacao genética
do paciente, apresentando, para cara gene, um valor de mutacdo em relagdo a um baseline.
Inimeras métricas sdo oferecidas, mas a escolhida para o projeto foi a de mRNA Z-scores (escore
padrdo), que exibe a métrica estatistica da quantidade de desvios padrdes que a amostra estd em
comparagdo com a média das leituras por RNA-Seq. Dessa forma, os dados sdo normalizados
pela média, pratica que facilita a manipulacdo das bases e facilita a identificagdo de casos
extremos (CHEADLE et al., 2003).

A base de dados escolhida € a referente ao cancer do tipo Glioblastoma, que atua
no cérebro. E considerado o mais comum, porém mais agressivo cincer cerebral, no qual
0 paciente tem uma expectativa mediana de vida de 15 meses (BLEEKER; MOLENAAR;
LEENSTRA, 2012). A plataforma cBio disponibiliza seis estudos referentes ao Glioblastoma.
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A base selecionada € a do programa de pesquisas TCGA (The Cancer Genome Atlas), de
2013 (BRENNAN, 2013). Este estudo € interessante pois, dentre as features disponiveis, esta
o tratamento com a droga temozolomide, ou TMZ, que consiste no tratamento mais recente e €
considerada tratamento padrio para pacientes recém diagnosticados (BLEEKER; MOLENAAR;
LEENSTRA, 2012). A base possui um total de 543 pacientes, dos quais 152 dispdem de

informacao genética.

3.2.2 Pré-processamento de dados

Ap6s feito o download das bases de dados, é necessario fazer uma limpeza inicial,
removendo covariaveis ruidosas, com muitas amostras faltantes. Este € o caso da tabela de dados
clinicos, na qual pode ser observadas lacunas de tamanho significativo nas amostras. A fim
de automatizar esse processo, é tomada a decisdo de empregar a biblioteca Pandas Profiling ',

disponibilizada para as versdes mais recentes de Python.

Esta ferramenta possibilita o processamento automatizado de bases de dados, oferencendo

informacdes referentes a diversos pontos importantes dentro de cada varidvel, como:

1. Contagem de itens distintos: utilizado para identificar varidveis indice na base;

2. Porcentagem de amostras tnicas: util na observagdo da distribuicao de varidveis categori-

cas;
3. Porcentagem de amostras faltantes: andlise de varidveis problemadticas;

4. Distribuicdo em histograma de varidveis numéricas: comportamento de varidveis numéri-

cas;
5. Avisos de varidveis problemaéticas: identificacdo de varidveis com lacunas;
6. Correlacdo de varidveis: analisar possiveis exclusoes;

7. Gréficos de dispersdo de varidveis: identificar interagdes;

Dessa forma, é possivel, rapidamente, observar o comportamento geral dos dados e o
comportamento das varidveis, bem como suas interacdes. Tendo em vista os itens elencados
acima, 0 mais interessante para essa fase € o item 5, possibilitando a rdpida eliminacdo de
varidveis que possuem lacunas maiores que 5%. E claro que, antes de eliminar, é vantajosa
a analise do impacto da varidvel no modelo final. Porém, nesse caso, como a quantidade de
amostras € bem reduzido (152 amostras possuem dados genéticos), perdas pequenas resultarao
em alto impacto negativo no modelo, devido a curse of dimentionality (DONOHO, 2000).

' <https://github.com/pandas-profiling/pandas-profiling>
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Em posse das bases clinica e genética, ambas identificadas por uma varidvel Unica
sample_id, € necessdria a remocao das features explicativas indicadas pelo pandas profiling, de

acordo com o threshold indicado acima. Sao elas:

1. G-CIMP_METHYLATION;

2. GENE_EXPRESSION_SUBTYPE;
3. IDH1_MUTATION;

4. METHYLATION_STATUS;

5. MGMT_STATUS;

6. FRACTION_GENOME_ALTERED;
7. MUTATION_COUNT;

8. DISEASE_FREE_(MONTHS);

9. DISEASE_FREE_STATUS;

Os itens 1-7 acima sofrem de lacunas excessivas e devem ser removidas da base de dados
clinicos. Essa decisao deve-se ao fato de ser necessario possuir os dados completos ao treinar e
testar o modelo. J4 os itens 8 e 9 sdo removidos pois diretamente relacionado a varidvel alvo, o
tempo de sobrevida dos pacientes, identificada por OVERALL_SURVIVAL_(MONTHS). Desse
modo, sdo removidas para ndo causar ruido desnecessdrio no modelo e prejudicar o efeito de

outras features.

Podem haver casos em que um mesmo paciente foi analisado duas vezes, em tempos
diferentes. Nesse caso, sdo expostas duas amostras com o mesmo identificador de paciente. Em

particular, para a TCGA 2013, esse fato ndo ocorre.

A base de dados com as referéncias para 0o mRNA Z-scores precisa de mais alguns passos
de pré-processamento, como o ajuste na nomenclatura dos genes (€ apresentada tanto o padrao
por Hugo Symbols quando por Entrez Gene ID (MAGLOTT et al., 2010)), removendo espagos €
alterando os caracteres para maidscula. Todas as manipulagdes sdo feitas utilizando a biblioteca

Pandas* em ambiente de desenvolvimento Python.

Um ponto importante que também precisa ser feito durante a fase de pré-processamento
¢ aplicar um limite superior de tempo que serd considerado para o estudo. A distribui¢do natural
dessa base apresenta um nimero consideravel de individuos com tempo de sobrevida acima
do normal para o Glioblastoma. Esses casos, embora de excelente natureza para os pacientes

e o campo da oncologia, distorcem o conjunto de dados. A metodologia empregada envolve a

2 <https://pandas.pydata.org/>
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observagdo da distribui¢ao do tempo de sobrevida, comparando o desvio padrdo com a média.
Serdo excluidos todas as amostras que exibirem tempo de sobrevida maior que um desvio padrao

mais a média. Ap6s aplicar esse filtro, a quantidade de amostras resultante € 132.

3.2.3 Random Survival Forests

Na abordagem de um problema de aprendizado de mdquina envolvendo poucas amostras,
como € o presente caso, a presen¢a de dados com censura levaria a perda de diversas amostras,
se adotado os algoritmos cldssicos, como foi apontado no capitulo anterior. No caso comum de
regressao do aprendizado supervisionado, todas as amostras precisam de um rétulo para haver
aprendizado. Como as amostras censuradas carecem de rétulo, deveriam ser excluidas na fase de
pré-processamento. Porém, ao analisar a quantidade de amostras classificadas com evento € 99,
contra 53 sem rétulo. Em outras palavras, cerca de 35% das amostras seriam retiradas caso fosse

necessdria a exclusdo por falta de rétulo.

Embora ndo seja conhecida a causa da censura para cada uma das amostras, ainda existe
informacao nas mesmas, principalmente pela presenca do tempo. O periodo do diagndstico até
a realizacdo da coleta de exames e posterior inser¢cao na base é conhecido. Esse dado agrega
valor ao modelo e pode ser usado para melhorar os resultados (WANG; LI; REDDY, 2019).
Dessa forma, a construcio do algoritmo Random Survival Forests é especialmente focada nesse

problema, e consegue utilizar as amostras censuradas no treinamento, otimizacao e testes.

O conceito da adaptacdo do Random Forests para andlise de sobrevivéncia, o Random
Survival Forests, envolve o uso de ndo somente dois conjuntos de valores - entrada e saida -
mas sim trés: Conjunto de features, tempos de sobrevida e um vetor indicador do evento. O
primeiro, usualmente chamado de varidveis independentes, ndo tem diferenca quando comparado
ao comum do aprendizado de maquina. O segundo pode ser comparado ao vetor rétulo num
caso trivial de regressdo: é o vetor com as medidas, esperando-se que a modelagem consiga
maped-las com através das features. Ja o terceiro corresponde ao aspecto menos usual: € o vetor
que indica se a amostra indica o evento, ou seja, que o tempo de sobrevida € final e conclusivo.
Nos casos em que o evento nao € indicado, observa-se o caso de censura do dado (ISHWARAN
et al., 2008). A implementacdo utilizada nesse trabalho foi feita em Python, pela PySurvival, e é
apresentada em (FOTSO et al., 2019).

Levando em conta a necessidade da nova estrutura, a base de dados foi divida em trés
novos componentes: X, para indicar o conjunto de varidveis independentes, T, para a varidvel alvo,
copiada de OVERALL_SURVIVAL_(MONTHS) e, por fim, E, que indica a presenca de evento
ou censura no dado, sendo atribuido o valor 1 para evento e 0 para censura. Essa informacao é
retirada da variavel OVERALL_SURVIVAL_STATUS.

Dessa forma, agora o conjunto de dados que € utilizado para todas as funcdes de treina-

mento, otimizagao e teste, refere-se ao conjunto de dados formado pelas trés novas varidveis X,
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TeE.

3.2.4 Variable Importance

O proximo passo da metodologia € reduzir a dimencionalidade da base de dados. Usual-
mente os dados clinicos nao apresentam mais de 100 features. Por outro lado, a base de mRNA
Z-scores pode conter uma quantidade bem maior de varidveis independentes, como no caso da
TCGA 2013, 19979. O custo computacional é muito alto para processar essa quantidade de
features, além do fato que a contribuicdo de cada uma para o aprendizado do modelo diminui
(DONOHO, 2000).

A metodologia escolhida para abordar esse problema foi reduzir o nimero de varidveis
de acordo com um ranking de importancia, calculado de acordo com o CSF ou o RSF. Por serem
algoritmos baseados em Random Forests, ambos podem calcular a métrica VIMP (Variable
Importance) ao calcular os efeitos no erro de predi¢do, com a adi¢ao de ruido nas varidveis
(BREIMAN, 2001). Esse método permite que seja processada uma tabela com as varidveis da
base, ordenadas de forma descendente por ordem de importancia. Assim, a primeira serd a mais

influente na previsdo da varidvel alvo, e a ultima serd a menos influente.

Dessa forma, a primeira tarefa € o processamento da base, com todas as varidveis
independentes. E um processamento custoso, pois mesmo com poucas amostras, o algoritmo
possui vdrias etapas que levam mais tempo para completar em fun¢do do nimero de colunas e
da quantidade de arvores construidas. Além disso, para determinar a importancia das varidveis,
podemos usar a base inteira, j4 que ndo € um processo que serd usado futuramente para predicao.
Assim, garantimos o maior uso possivel da informac¢do para determinar os melhores preditores
da varidvel dependente. Ademais, o RF apresenta um 6timo resultado em situagdes problema
com p grande e n pequeno, ao passo que impde regularizacdo das arvores, possibilitando uma
inferéncia adaptativa mais robusta (CHEN; ISHWARAN, 2012).

E viélido comentar que existem diversos métodos de célculo da importancia das varidveis
em um algoritmo de RF. Considerando a implementacdo utilizada nesse projeto, foi escolhido o
método descrito por (SANDRI; ZUCCOLOTTO, 2008), que pode ser selecionado colocando

impurity como valor do pardmetro importance_mode presente no momento de treinar o modelo.

3.2.5 Feature Selection

Em posse da tabela com o ranking de importancia das varidveis, € preciso estabelecer um
método para selecionar um conjunto alvo pequeno com o menor nimero possivel de preditores,
mas que ainda mantenha um bom resultado. O racional dessa fase € iniciar com um pequeno
grupo, com as melhores varidveis, testando o desempenho do modelo com uma validacao
cruzada de 5 folds. Feito o primeiro teste, o resultado € guardado e gradativamente o conjunto é

diminuido de cerca de 20% das varidveis. Dessa forma, a cada nova iteracdo, € esperado um dos
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dois cenarios:

1. A capacidade preditiva do modelo € aumentada, com o diminui¢do de ruido.

2. A capacidade preditiva do modelo € diminuida, pela falta de informacao preditiva.

A metodologia inicia a partir de computada a primeira tabela com a importancia das
varidveis. Em posse do ranking geral com todas os 19979 preditores, é empregada a técnica de

selecdo de varidveis descrita por (CHEN; ISHWARAN, 2012), com os seguintes passos:

1. Remover uma porg¢ao das varidveis menos influentes (cerca de 20%)
2. Processar novamente a nova base com menos varidveis e repetir o passo 1.

3. Continuar processo até obtencdo do menor erro com o conjunto de amostras OOB.

Esse modo de operacdo é considerado um método guloso, mas como aqui o nimero de
testes serd baixo, ndo ha um impacto significativo em desempenho. O algoritmo pode testar
algumas centenas de possibilidades de conjuntos dentro de alguns minutos. Terminada essa
fase, a dimensionalidade do problema serd drasticamente reduzida, ja que, no inicio, o conjunto

contava com quase 20.000 varidveis, e, ao fim, € otimizado com menos de 50.

Nesta fase também foi considerada a possibilidade de utilizar um métodos de reducdo de
dimensionalidade como Principal Component Analysis (PCA) (WOLD; ESBENSEN; GELADI,
1987). Esse método estima uma nova base ortogonal para o conjunto de dados, diminuindo a
correlacdo. A nova base é chamada de componentes principais. Porém, um aspecto importante é
a interpretabilidade do modelo, ou seja, quao simples € o entendimento das varidveis e de sua
influéncia no resultado preditivo. Ao processar as varidveis com o PCA, nio se trabalha mais
com as varidveis originais, mas com seus componentes gerados. Nao € trivial a interpretacdo do

resultado do PCA, portanto o uso desse algoritmo nao foi adotado.

3.2.6 Medidas de Desempenho

Levando em consideracdo o caso especifico do aprendizado de maquina em que o
presente problema se encontra, as cldssicas métricas de avaliacdo de desempenho ndo funcionam,
devido ao problema da censura dos dados. Numa amostra sem a informacgdo de resultado nao
€ possivel checar a distincia entra a previsao do modelo e o valor esperado (HEAGERTY;
ZHENG, 2005). Por esse motivo, outras métricas foram desenvolvidas a fim de solucionar esse
problema, possibilitando avaliar de modo mais robusto o comportamento dos modelos de andlise
de sobrevivéncia. Considerando tais fatos, foram selecionadas as seguintes métricas para a

analise deste estudo:
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1. C-index (UNO et al., 2011).

2. Brier Score (GRAF et al., 1999).

Chamado também de estatistica C, o C-Index mede a capacidade do modelo em discernir,
entre duas instancias, qual tem maior risco. Na aplicacdo em andlise de sobrevivéncia, esse
conceito se encaixa muito bem, ao proporcionar uma forma de media a qualidade de segmentagao
do modelo. E muito interessante essa categorizagio de pacientes entre baixo e alto risco, podendo

levar a decisdes de tratamentos mais focados em cada um dos casos.

O algoritmo de cédlculo do C-Index funciona da seguinte forma: sdo formados pares entre
todas as amostras que serdo testadas. Depois, o0 modelo gera as estimativas de risco para cada
amostra. Por fim, as estimativas sdo comparadas entre os pares formados anteriormente. Porém,
sao deficidas regras para tratamento das censuras: uma amostra censurada s6 pode ser comparada
com outra sem censura, com menor duragdo, pois como ndo se sabe o tempo total antes do evento
para a amostra censurada, ndo ha conclusdes depois da censura (UNO et al., 2011). Um modelo

que obteve algum aprendizado apresenta um valor para a métrica C-Index maior que 0, 5.

Ja a segunda métrica, Brier Score, mede, de forma similar ao erro quadratico médio,
a distancia entre a probabilidade de sobrevivéncia (saida do modelo) e o status atual (real) do
paciente, para um tempo 7 de teste (GRAF et al., 1999). E uma forma de analisar as curvas de
sobrevivéncia que o modelo produz em relacdo a realidade, ou seja, comparar a qualidade da
previsado individual do modelo para cada paciente. Para o Brier Score, um modelo util tem um

valor nessa métrica menor que 0, 25.

Ambas s@o usadas para comparar a eficicia dos modelos, em todos os cendrios testados.

3.3 Atividades Realizadas

3.3.1 Survival Library

A partir desse ponto no desenvolvimento do projeto, todas as func¢des e processamentos
necessarios foram incorporados na SurvivalLib®, uma biblioteca para Python que encapsula todas
as fun¢des necessdrias da metodologia aqui apresentada. Fornecida uma base completa, com a
informacdo genética e também dados clinicos, a ferramenta possibilita ao usudrio experimentar e

testar configuracdes diversas, treinar diferentes modelos e avaliar os resultados.

Elencados todos os fatores para filtragem da base, além da selecdo das varidveis que
serdo utilizadas na modelagem, é o momento de fazer o treino propriamente dito. Primeiramente,
ao instanciar um objetivo da classe SurvivalLib, sdo apresentadas algumas opc¢des de argumento

para o usudrio. Sao elas:

3 <https://github.com/danilobso/tcc_cancer_survival>
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1. Base de dados que serd utilizada (pandas DataFrame).

2. Coluna para ser utilizada como alvo do modelo (estd e a varidvel com os tempos de

sobrevida).
3. Coluna para gerar o vetor de censura. Deve informar se o evento ocorreu ou nao.
4. Lista com as colunas que ndo serdo utilizadas como features, como 1D, coluna alvo.

5. Tabela com o ranking de varidveis importantes (opcional, se o processamento ja foi

realizado).
6. Melhor ndmero de varidveis para uso no modelo (tamanho do conjunto).

7. Modelo que serd usado: RSF para Random Survival Forests, ou MSR-RF para Maximally
Selected Rank Statistics Random Forest.

Assim, que o objeto € criado, a biblioteca gera também a coluna de censura, a partir
do item 3 acima. Dessa forma, serd guardada uma variavel contendo 1 ou 0, em que 1 indica
ocorréncia do evento e 0 indica censura. Além disso, na inicializagdo, ja é computada uma
sugestdo de miximo de tempo para ser filtrado a coluna alvo. Esse limite € importante ao passo
que muitas amostras outliers nesta variavel pode prejudicar o performance do modelo. A sugestdo
€ calculada de acordo com a metodologia apresentada previamente. Por fim, a inicializacio
atribui um valor para o percentual dos dados que serdo usados como amostra de testes. Essa

por¢ao da base nao serd utilizada em nenhum momento para treinamento, somente validacao.

Criado o objeto da biblioteca, o segundo passo € processar a limpeza da base. Aqui,

também sdo aceitos novos argumentos, que informam os seguintes aspectos:

1. Minimo de tempo para filtro do tempo de sobrevida. Util se existem outliers no inicio do

eixo temporal;

2. Miéximo de tempo para filtro de tempo de sobrevida. E sugerido utilizar o resultado

anterior;

3. Colunas que nao serdo utilizadas na andlise. Aqui, € importante experimentar, pois algumas

colunas ndo acionam informacao suficiente para justificar a exclusdo de algumas amostras.

Em posse dessas informacdes, as colunas passadas como pardmetro sdo excluidas, e é
executado uma exclusio de amostras restantes que tém alguma entrada faltante. E também execu-
tado o filtro de tempo, tanto para o filtro minimo quanto o méximo. Ambos sdo executados como
maior igual ou menor igual. Por fim, € processada a divisdo da base de dados em treinamento e
teste. A separacao € feita com o parametro de porcentagem dos dados totais usado para teste,

guardado no momento da inicializac@o da biblioteca.
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Antes da divis@o em treinamento e testes, o algoritmo verifica a necessidade de realizar o
encoding em variaveis categoricas, processo conhecido como a geracio de dummies, no qual
cada categoria diferente é transformada em uma coluna e as amostras pertencentes a cada uma
recebem o ndmero 1 para a categoria correta. Assim, € possivel trabalhar com as varidveis
categéricas nos algoritmos de aprendizado de maquina (RUSSELL, 2010). E importante fazer
esse procedimento antes da separacdo dos dois conjunto, pois pode haver o problema das colunas

ficarem diferentes caso haja discrepancia entre as amostras de cada um.

O processamento do ranking de importancia de varidveis € feito com a base inteira,
pois nesse caso ndo ha prejuizo para as métricas de avaliacdo, ja que € um processo prévio
ao treinamento. E executada a metodologia acima, em que é realizado um fir (treinamento) do
algoritmo desejado, e removidas 20% das que tém menos influéncia no modelo, através da
métrica de Variable Importance (VIMP) do préprio modelo, calculada inserindo ruido em cada
uma das varidveis e analisando o resultado na varidvel dependente. E o processo mais custoso,

ao passo que trabalha com quase 20.000 preditores a0 mesmo tempo.

Depois desse passo, ja € possivel fazer o primeiro treinamento do modelo com possibili-
dade de teste. O padrdo € a utilizagdo de 3.000 drvores, nimero que apresenta um bom balango

entre qualidade do resultado e tempo de processamento.

Os dois modelos apresentados no Capitulo 2 estdo disponiveis para teste, € funcionam
do mesmo modo, ndo é necessario nenhuma modificagdo por parte do usudrio, apds escolher o

modelo desejado ao inicializar a biblioteca.

Para otimizar o treinamento e evitar problemas de minimo local da fun¢ao de perda, é
feito também o processamento de uma Grid Search, na qual os hiperparadmetros do modelo sdo

arranjados de forma que todas as combinagdes sdo testadas. Sao eles:
Para o RSF:
1. max_features: Nimero minimo de amostras em um no6 folha.
2. min_node_size: Maximo de covaridveis testadas para fazer o split de um no.
3. sample_size_pct: Porcentagem das amostras originais usadas em cada arvore.
4. max_depth: Profundidade maxima da arvore. Controla overfitting no algoritmo.

5. num_trees: Numero de arvores que fardo parte do ensemble.

No caso do MSR-REF, sdo adicionados dois novos parametros, além dos trés anteriores:

1. alpha: Nivel de significancia minimo para fazer o split dos nos.

2. minprop: Menor quantil que serd considerado para o split.
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Outro ponto que € calculado pelo modelo é uma pontuagdo de risco para cada paciente.
Esse niimero € calculado com base na hazard function, a fungdo que mede a probabilidade de
ocorréncia do evento dentro de T + dt, ou seja, imediatamente depois de T. O equacionamento

dessa métrica pode ser conferida na Equacdo 2.4.

3.4 Resultados

Primeiramente, os resultados foram gerados utilizando a metodologia apresentada neste
Capitulo, com a biblioteca SurvivalLib. Além disso, as duas métricas escolhidas: C-Index e
Brier Score sao computadas, para medir duas caracteristicas diferentes dos modelos, que € a
capacidade do modelo em discernir entre pacientes de alto e baixo risco, e o erro do modelo em

estimar a curva de sobrevivéncia para cada paciente, respectivamente.

Dessa modo, foram organizados 4 experimentos, considerando os dois algoritmos e as
duas métricas. Para cada modelo, foi gerada uma tabela de importancia de varidveis, que foi
usada para cdlculo das duas medidas de desempenho. Os hiperparametros do modelo e o nimero
otimo de varidveis explicativas sdo computados individualmente para cada caso. Vale lembrar

que o conjunto de dados utilizado em todos os casos € exatamente 0 mesmo.

A tabela Tabela 1 apresenta os resultados comentados acima:

Tabela 1 — Desempenho dos modelos por métrica.

Meétrica RSF | MSR-RF
C-Index 0,727 0,869
Brier Score | 0,128 0,123

Fonte: Dados da pesquisa.

Aqui, pode-se observar que o MSR-RF apresentou um resultado consideravelmente
melhor para o C-index, demonstrando um bom desempenho para escolher entre pacientes de
baixo e alto risco. Como a principal diferenca entre os dois modelos ¢ o método de selecdo
de varidveis, a influéncia dessa operacao com menor bias do MSR-RF parece contribuir com
o aprendizado para o problema de previsdo de sobrevivéncia para o Glioblastoma. Um ponto
importante € também a observacdo das varidveis mais importantes. Nos dois casos, a terapia
utilizada é determinante para o aprendizado do modelo e também para a extensdao do tempo de
sobrevida. Para 0o MSR-RF, a terapia com TMZ foi o preditor mais influente. Este resultado é
relevante ao passo que, na literatura médica, esse é o tratamento de melhor eficicia para esse
tipo de cancer (STUPP er al., 2005).

Para o caso do C-index, um modelo ttil precisa ter uma pontuacdo maior que 0,5. Em
ambos 0s casos, o resultado foi maior do que esse threshold esperado, e a par com outros estudos
médicos como Omurlu, Ture e Tokatli (2009), em que foi feito um estudo de modelagem e

predicao para dados de cancer de mama. Na pesquisa, sdo apresentados os resultados para um
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modelo de RSF, com o C-index préximo de 0,7. Dessa forma, os resultados obtidos com a

utilizacdo da SurvivalLib estdo de acordo com a literatura da drea.

Sao apresentados os parametros apds todas as etapas de otimizacao dos dois modelos,

para o C-index, na Tabela 2:

Tabela 2 — Pardmetros otimizados dos modelos para métrica C-Index.

Parametro RSF | MSR-RF
max_features sqrt sqrt
min_node_size 7 10

max_depth 5 6

min_survival_months 0 0
max_survival_months | 21 21
sample_size_pct 0,63 0,63
alpha - 0,5

minprop - 0,12

num_trees 3000 3000
num_features 8 41

Fonte: Dados da pesquisa.

Tabela 3 — ParAmetros otimizados dos modelos para métrica Brier Score.

Parametro RSF | MSR-RF
max_features sqrt sqrt
min_node_size 7 8
max_depth 5 5
min_survival_months 0 0
max_survival_months | 21 21
sample_size_pct 0,63 0,63
alpha - 0,5
minprop - 0,08
num_trees 5000 5000
num_features 11 28

Fonte: Dados da pesquisa.

Destaca-se o fato do niimero reduzido de varidveis que a biblioteca otimizou para o RSF,
que parece ser mais vulnerdvel ao ruido na adi¢do de novas varidveis, para essa aplicacao, ja que

as otimizacdes chegaram em um nimero menor de preditores.

Além da visualizagdo dos resultados e parametros utilizados, € interessante a visualizacao
da previsao em si. Trata-se da curva de probabilidade de sobrevivéncia dos pacientes, testado
em cada ponto temporal guardado pelo modelo. Os graficos apresentados a seguir mostram as
curvas para cada caso otimizado apresentado acima: dois modelos e duas métricas. Cada curva
corresponde a um paciente do grupo de teste, sendo as de cor verde os pacientes considerados de

baixo risco e as vermelhas os de alto risco. A medida do risco também € calculado pelo modelo,
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resulta em um nimero tnico que classifica o paciente. A separagdo dos grupos foi feita pela
mediana dos riscos observados nas amostras de teste. Além disso, a curva Kaplan-Meier, com a
porcentagem de pacientes sobreviventes ao longo do tempo, também € colocada no grafico, a fim

de comparagdo com o dado real dessa base.

E interessante observar a diferenca entre as curvas verdes e vermelhas, e a separacio
dessas da curva central estimada pelo método Kaplan-Meier. Isso mostra que o modelo consegue,
a partir da separag@o da pontuagdo de riscos de cada paciente, prever a curva de probabilidade de
sobrevivéncia ajustada para os diferentes riscos. Para pacientes que tém alto risco, € esperado que
a curva decresc¢a rapidamente, e para pacientes de baixo risco, € esperado que a curva decrescga

lentamente.

Figura 2 — Curvas de sobrevivéncia estimadas pelo RSF para pacientes do conjunto de teste, com pardmetros
otimizados para métrica C-Index.
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Figura 3 — Curvas de sobrevivéncia estimadas pelo RSF para pacientes do conjunto de teste, com parametros
otimizados para métrica Brier Score.
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Figura 4 — Curvas de sobrevivéncia estimadas pelo MSR-RF para pacientes do conjunto de teste, com pardmetros
otimizados para métrica Brier Score.
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Figura 5 — Curvas de sobrevivéncia estimadas pelo MSR-RF para pacientes do conjunto de teste, com pardmetros
otimizados para métrica C-index.
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Analisando os graficos, € observavel que o RSF demonstra uma maior separacao das
curvas de sobrevivéncia entre os pacientes, em comparagdo com o MSR-RF, apesar da diferenca
ndo ser de grande natureza. Esse resultado € interessante pois apesar do MSR-RF apresentar
uma pontuagdo consideravelmente maior para C-index, ou seja, ele consegue discernir entre dois
casos o de maior risco, as curvas de sobrevivéncia estimadas ndo se mostram com uma separagao
tdo grande quanto as geradas pelo RSF. Isso significa que um paciente de baixo risco nao terda
uma probabilidade de sobrevivéncia muito diferente do que um paciente em alto risco, para o
mesmo tempo 7 de teste.

3.5 Consideracoes Finais

Os resultados obtidos se mostraram consideravelmente diferentes entre o algoritmo
RSF e sua adaptacdo MSR-RF. Apesar da andlise das métricas ser importante na avaliacdao da
performance dos modelos, a visualizaciao das probabilidades ao longo do tempo promove um
outro angulo para entendimento do aprendizado de cada um. O préximo capitulo discorrerd sobre
os desafios e aprendizados ao desenvolver esse trabalho, além da importancia de estudos para a

evolucdo do entendimento do Glioblastoma.
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CONCLUSAO

4.1 Contribuicoes

O aprendizado ao desenvolver esse trabalho foi muito grande. Desde novas leituras
no campo médico, até leituras aprofundadas nas mais recentes pesquisas em aprendizado de
maquina. O processo de desenvolvimento da pesquisa é muito enriquecedor, ao trabalhar com
a revisdo da literatura, proposicao da hipétese e andlise de um experimento. A disponibilidade
de bases de dados de pesquisas tdo importantes no ramo da oncologia € muito interessante
para a insercdo de profissionais da drea técnica de ciéncia de dados e aprendizado de maquina
em pesquisas multidisciplinares, pois os métodos trabalhados facilitam drasticamente o exame
minucioso de uma grande quantidade de pacientes, feito que teria um custo de tempo muito alto

se feito manualmente.

E claro que essas bases apresentam o dado de forma bruta, e precisam de diversos
tratamentos para serem utilizadas com modelos de aprendizado de maquina. Caso ndo haja
uma concentracdo de informacdo suficiente nas varidveis dependentes, é realmente muito dificil
construir um modelo que aprenda. Dessa forma, é fundamental uma metodologia que facilite
esse procedimento, principalmente para profissionais que desejam usufruir das vantagens de
realizar uma andlise automatica, mas carecem de conhecimento técnico estatistico e de manuseio

de bibliotecas recheadas de modelos para testar.

Primeiramente, é de suma importancia o entendimento dos dados. O filtro de tempo
maximo adotado nesse trabalho foi fundamental para ditar um bom desempenho dos modelos,
pois grande parte das amostras apds certo tempo podem ser consideradas outliers, e introduzem
ruido no aprendizado da fun¢do de sobrevivéncia que se deseja estimar. Decerto, esse tipo de
modelo preditivo nunca terd uma taxa de acerto perfeita, mas € interessante poder prever as

probabilidades ao longo do tempo da maioria das amostras.

Diversas técnicas descritas por inimeros autores foram unidas na construgdo da Sur-
vivalLib, que funciona como um wrapper para efetuar analises de sobrevida. Ao juntar tantas
fases dos procedimentos necessérios para uma boa solucao de aprendizado de maquina, como
pré-processamento, variable importance, feature selection, treinamento e validagdao dos modelos,
com métricas sugeridas na literatura para essa aplicacdo especifica, a biblioteca funciona como

um possibilitador para pesquisas futuras na drea de anélise de sobrevida, como previsdo de falhas



48 Capitulo 4. Conclusdo

em maquina, na drea de engenharia, mas principalmente na pesquisa oncoldgica e médica que

foca em predicdo a partir de informacao genética.

O desempenho dos modelo em prever a funcdo de sobrevivéncia foi, de certa forma,
surpreendente, ao passo que a base de dados continha uma pequena quantidade de amostras.
Houve uma significativa diferenca entre os pacientes, em comparagcao com a curva de Kaplan-
Meier, que funciona como um baseline nesse tipo de andlise. O MSR-RF apresentou um 6timo
resultado para o C-index, indicando que conseguiu aprender o que distingue os pacientes quanto
ao risco. Isso abre oportunidade para pesquisas futuras que tenham foco na predi¢ao do risco
do paciente, pois esse algoritmo, ao diminuir o viés na selecdo das varidveis para split, parece
estimar de forma mais precisa os individuos que se encontram em estado mais grave quando

comparados com os que estdo em condi¢des mais amenas.

Por outro lado, o RSF apresentou uma melhor separagdo dos pacientes ao estimar a
funcao de sobrevida ao longo do tempo. Esse resultado € interessante ao passo que, mesmo com
a métrica C-index ligeiramente menor em comparagdo com o MSR-RF, apresenta maior precisao
da previsdo da probabilidade de sobrevida. Neste caso, pesquisas futuras seriam atraentes para
entender o comportamento desse resultado em outras bases de dados, como por exemplo em

outros casos de cancer. Esse estudo pode ser facilmente conduzido com uso da SurvivalLib.

Outro ponto que podem ser levado como tema para pesquisas futuras € a forma como a
selecdo das varidveis € feita. Apesar de bons resultados empiricos da técnica utilizada, descrita por
Chen e Ishwaran (2012), uma outra opg¢ao promissora € descrita por Ishwaran et al. (2011), que
também foi o idealizador do RSF. A proposta envolve a utiliza¢do de caracteristicas intrinsecas
as arvores de decisdo para fazer a selecdo de variaveis, como a frequéncia de utilizacdo em
splits. Além disso, outra alternativa para a etapa do feature selection esta na identificacio de
profundidade minima de sub-arvores, que € empregada em casos de alta dimensionalidade
(ISHWARAN et al., 2010).

Considerando as métricas de avaliacdo de desempenho, € também sugerida a andlise
da utilizagdo da adaptacdo do conhecido R?, com extensdes de sensitividade e especificidade,
propostas por Heagerty e Zheng (2005). O uso de dependéncia no tempo e interacdo com risco
pode ter efeitos interessantes nas bases estudadas.

4.2 Relacao entre o Projeto e o Curso de Engenharia de

Computacao

O curso de graduacdo em Engenharia de Computacgdo intensificou meu interesse em
tecnologia no geral, mas com uma visdo muito mais técnica, ao abranger tanto o aspecto da
elétrica e eletronica, quanto do desenvolvimento de software. No inicio, com as disciplinas de

Introducdo a Ciéncia de Computacdo, minha capacidade de projeto de software foi instigada e
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promovida, ao serem propostos trabalhos que foram desenvolvidos ao longo do semestre. Esse
tipo de projeto é muito interessante ao passo que promove uma linha de crescimento do software

por varios meses, desde a concepcao e até o relatério final.

Acredito que grande parte do foco do curso € em microeletronica, o que € muito inte-
ressante por fazer parte do seleto grupo de universidades brasileiras que oferecem esse tipo de
conhecimento. A constru¢ao do aprendizado é gradual e l6gica, o que julgo importante para o
sucesso do aluno. Porém, ao longo do curso me vi em diferentes dreas e, por fim, me encontrei na
ciéncia de dados, drea que ndo recebe muito foco na Engenharia de Computacdo. Apesar disso, a
possibilidade de construir a grade horaria com certa liberdade me permitiu cursar disciplinas
da drea, sendo a principal Introducdo a Ciéncia de Dados foi de suma importancia na minha

formacao.

Este trabalho permitiu a aplicagcdo dos conhecimentos construidos ao longo de anos, bem
como adquirir novas habilidades, aprendizados e superacdo desafios. A experiéncia da elaboragdo
de uma pesquisa cientifica € muito importante para o Engenheiro, e claro muito enriquecedora

para mim.
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