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RESUMO

OLIVEIRA, D. B.. Estimativa de Sobrevida de Pacientes com Glioblastoma por meio de
Algoritmos Baseados em Random Forests. 2020. 53 f. Monografia (Graduação) – Instituto
de Ciências Matemáticas e de Computação (ICMC/USP), São Carlos – SP.

O câncer cerebral do tipo Glioblastoma é um dos mais agressivos na atualidade, com alta taxa
de mortalidade e expectativa média de sobrevivência de 15 meses após diagnóstico. Ao mesmo
tempo, novos algoritmos especializados em análise de sobrevida foram descritos nos últimos
anos, possibilitando trabalhar com os principais desafios encontrados em bases de dados médicos:
grande número de variáveis com baixa quantidade de amostras e censura de dados. Esse trabalho
tem o objetivo de avaliar o desempenho do Random Survival Forests (RSF) e de sua modificação
mais recente, o Maximally Selected Rank Statistics Random Forests (MSR-RF), aplicados numa
base de dados com informação genética (mRNA) de pacientes de Glioblastoma, considerando
dois aspectos: capacidade de distinção de risco de pacientes (C-index) e precisão das curvas de
sobrevivência estimadas (Brier Score). Ambos podem ser considerados adaptações do famoso
algoritmo de aprendizado de máquina Random Forests, mas procuram maximizar a diferença de
sobrevivência ao fazer um split num nó. Foi desenvolvida também uma biblioteca que encapsula
diversas funções da análise de sobrevivência, além de métodos de avaliar a importância de
variáveis e seleção de preditores, chamada de SurvivalLib. O MSR-RF apresentou melhor
resultado para o C-index, 0,869, contra 0,727 do RSF. Para o Brier Score, ambos foram muito
parecidos, com pontuação de 0,128 para o RSF e 0,123 para o MSR-RF. Gráficos das curvas
de sobrevivência estimadas ao longo do tempo são apresentados, para todos os pacientes da
base de testes. Neste caso, o RSF demonstrou maior separação entre pacientes de alto risco em
comparação com os de baixo risco. Este estudo permitiu a comparação dos dois algoritmos,
mostrando que o método adotado pelo MSR-RF apresentou melhor resultado em classificar o
risco dos pacientes, mas o RSF mostra mais eficiência na precisão da estimativa da probabilidade
de sobrevivência ao longo do tempo. Além disso, a criação da biblioteca SurvivalLib, utilizada
neste trabalho, poderá facilitar novas pesquisas na área de análise de sobrevida.

Palavras-chave: Aprendizado de máquina, Random Survival Forests, Glioblastoma, Análise de
sobrevida.





ABSTRACT

OLIVEIRA, D. B.. Estimativa de Sobrevida de Pacientes com Glioblastoma por meio de
Algoritmos Baseados em Random Forests. 2020. 53 f. Monografia (Graduação) – Instituto
de Ciências Matemáticas e de Computação (ICMC/USP), São Carlos – SP.

Glioblastoma is one of the most aggressive brain cancer, showing a high mortality rate. The
life expectancy after diagnosis is only 15 months. At the same time, new algorithms focused
on survival analysis were described in the last years, which can handle the main problems
encountered on medical databases: high number of columns with a low number of samples and
censored data. This study aims to evaluate the performance of Random Survival Forests (RSF)
and its recent modification: Maximally Selected Rank Statistics Random Forests (MSR-RF),
applied to a database of glioblastoma patients containing genetic data (mRNA), considering
two aspects: ability to separate patients risk (C-index) and survival functions estimations (Brier
Score). Both can be assorted as modifications of the well known machine learning algorithm
Random Forests, while trying to maximize survival difference at node splits. A new tool was
implemented to wrap survival analysis functions, on top of common operations like variable
importance processing and feature selection. The MSR-RF showed a better score for the C-index
metric, with 0.869, while RSF got only 0.727. On the other hand, for the Brier Score metric, both
performed alike, with a 0.123 score for the RSF and 0.128 for MSR-RF. The survival function
was plotted for all cases, on all available time-frames, for all patients on the test set. In this case,
the RSF demonstrated a better separation between high and low risk cases. This work allowed
for a comparison of the two algorithms, indicating a better performance of MSR-RF on ranking
patients risk, but RSF was more precise on estimating the survival function. The development of
the SurvivalLib will help new research on survival analysis field.

Key-words: Machine Learning, Random Survival Forests, Glioblastoma, Survival Analysis.
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Capítulo 1

INTRODUÇÃO

1.1 Motivação e Contextualização

1.1.1 Câncer

O câncer ainda é um dos maiores desafios que a humanidade enfrenta. Todo ano são
contabilizados milhões de novos casos, que infelizmente levam à milhares de mortes, devido
à alta taxa de mortalidade. Segundo a GLOBOCAN (Global Cancer Observatory), em 2018,
foi estimado um total de 18,1 milhões de casos, com 9,6 milhões de mortes (BRAY et al.,
2018). Além disso, a doença ocorre em diversas partes do corpo humano, cada uma com suas
particularidades. O tipo mais comum em diagnósticos depende bastante do estilo de vida da
população, variando entre países. Câncer de pulmão, em termos globais, soma o maior número
de casos, com cerca de 2 milhões em 2018, levando à 1,7 milhões de mortes (BRAY et al., 2018).
Outro exemplo que se destaca é o câncer cerebral e de sistema nervoso central, que está entre os
mais agressivos. A maioria desses casos concentram-se na categoria Glioblastoma, um tipo de
tumor que apresenta alta resistência aos tratamentos e apresenta uma taxa média de sobrevivência
de 15 meses (STUPP et al., 2005).

O tratamento padrão para o Glioblastoma é severo. A primeira opção é a cirurgia
de remoção do tumor, seguida de radioterapia (ou radioncologia). Porém, nos últimos anos,
pesquisas estão sendo realizadas para analisar o efeito da interação da temozolomida (TMZ),
uma droga bastante usada contra o Glioblastoma, no tratamento dos pacientes, em conjunto com
as técnicas já conhecidas. Este método apresenta bons resultados e conclusões estatísticas de
sua eficácia (STUPP et al., 2005). Não só, recentes estudos visam entender também a interação
genética na prevenção e novos alvos terapêuticos para a doença (BLEEKER; MOLENAAR;
LEENSTRA, 2012).

Uma abordagem para o estudo dessas interações de tratamento, bem como o impacto
no tempo de sobrevida após o diagnóstico é pela informação genética do indivíduo (LOPEZ
et al., 2018). Essa análise é uma tarefa bastante complexa, por envolver milhares de agentes
simultaneamente. Além isso, usar esse conhecimento para obter discernimento à respeito de
estratégias de tratamento é ainda mais difícil, já que o estado de saúde de uma pessoa envolve seu
estilo de vida, alimentação, frequência de exercícios físicos e mais inúmeros outros fatores. Dessa
forma, métodos muito eficazes e robustos são necessários para analisar grandes quantidades de
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dados, a fim de extrair informações úteis.

1.1.2 Análise de Sobrevida

O estudo de novos métodos de análise de sobrevida, campo que foca no estudo do tempo
decorrido até um evento de interesse (KLEIN, 2003), é amplamente aplicado em diversas áreas
do conhecimento, mas principalmente medicina e engenharia. Na primeira, o foco é voltado para
análise da influência de novos tratamentos e drogas em pacientes, e na segunda, a importância
de agentes internos e externos na durabilidade de equipamentos, como na prevenção de falhas
em equipamentos (ALI et al., 2015). Dessa forma, esses estudos são de extrema importância na
evolução e aprimoramentos das técnicas e métodos utilizados dentro de cada área. Levando em
conta o campo médico, observamos uma grande quantidade de trabalhos de aquisição de dados,
em que, durante um período de tempo, pesquisadores coletam medidas clínicas e genéticas
de pacientes, que são compiladas e publicadas em grandes veículos, como a plataforma cBio
(CERAMI et al., 2012) e (GAO et al., 2013). Assim, é clara a facilidade de obtenção de bases de
dados para realização de estudos de sobrevida de pacientes e, assim, contribuir com o progresso
de soluções nessa área.

O aprendizado de máquina evoluiu consideravelmente nos últimos anos, nos quais
diversas novas técnicas são apresentadas regularmente. Com algoritmos cada vez mais poderosos,
apresentando boa acurácia em diversas aplicações, o poder de predição tem potencial de se tornar
preciso, quando aplicada uma metodologia consistente e iterativa, observando, nos dados, as
características que contribuem e atrapalham o aprendizado. Historicamente, foram desenvolvidos
diversos métodos estatísticos que abordam o problema, separados em três grupos: métodos
não-paramétricos, semi-paramétricos e paramétricos (WANG; LI; REDDY, 2019).

Apesar de muito eficientes em alguns casos, principalmente quando são observadas dis-
tribuições definidas nas variáveis analisadas, as técnicas de Machine Learning podem apresentar
vantagens significativas em comparação aos métodos estatísticos mais tradicionais, como Cox,
quando exploradas suas vantagens e controladas as desvantagens (DELEN; WALKER; KADAM,
2005). Dessa maneira, são publicados trabalhos com o objetivo de avaliar o desempenhos dessas
novas técnicas e algoritmos em dados médicos (DATEMA et al., 2011) e (KOUROU et al.,
2015), visando entender os fatores que mais influenciam, positivo quanto negativamente, no
tratamento de pacientes com câncer.

Além de analisar as influências, é possível estimar a probalidade de sobrevivência
de um paciente até um determinado tempo t, com uma abordagem de regressão (OMURLU;
TURE; TOKATLI, 2009). Contudo, os algoritmos clássicos de regressão não se demonstram
tão eficientes quando os dados apresentam censoring (censura), que ocorre quando não há uma
conclusão nos dados de um paciente específico, como por exemplo sua desistência do estudo.
Esse problema se deve ao fato de ser necessário excluir as amostras que apresentam censura, fato
que será detalhado na Revisão Bibliográfica.
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1.2 Objetivos

1.2.1 Objetivo Geral

Este trabalho tem como objetivo geral avaliar o desempenho de algoritmos recentes de
aprendizado de máquina, aplicados à base de dados com informações de pacientes portadores de
câncer cerebral do tipo Glioblastoma, considerando a situação problema da análise de sobrevida,
considerando o problema de censoring.

1.2.2 Objetivos específicos

Dentro dos objetivos podem ser elencados os seguintes tópicos:

• Revisão da literatura recente envolvendo análise de sobrevida e aprendizado de máquina.

• Elaboração de uma metodologia abordando principais conceitos revisados para tratamento
de bases de dados com poucas amostras e muitas colunas.

• Treinamento dos modelos e validação das predições das curvas de sobrevivência.

1.3 Organização
Este trabalho está organizado em 4 capítulos, dos quais este é o primeiro. Em seguida,

no CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA, será apresentada a fundamentação teórica
dos tópicos trabalhados nesta pesquisa. Depois, no CAPÍTULO 3: DESENVOLVIMENTO,
é apresentada a metodologia e a implementação do projeto é detalhada, além dos resultados
encontrados. Por fim, no CAPÍTULO 4: CONCLUSÃO, são apresentadas as conclusões e são
elencadas propostas para trabalhos futuros, além de considerações sobre o curso ao qual o autor
está matriculado.
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Capítulo 2

REVISÃO BIBLIOGRÁFICA

2.1 Considerações iniciais
Neste capítulo são apresentados os principais conceitos e terminologia trabalhados na

literatura relacionada à análise de sobrevivência, com foco em soluções de aprendizado de
máquina. São discutidos de forma mais profunda os métodos baseados em Árvore de Decisão
(AD), como Random Forests (RF) e Random Survival Forest (RSF), que são a base desse
trabalho.

2.2 Análise de Sobrevivência
Os estudos que visam analisar e modelar um determinado tempo T, em que espera-se

que um evento de interesse ocorra, são classificados dentro do campo da estatística, como análise
de sobrevivência (WANG; LI; REDDY, 2019). Em termos gerais, os métodos se distribuem em
dois principais grupos: estatísticos ou aprendizado de máquina. Ambos tem o mesmo objetivo de
estimar as curvas de sobrevivência para o fenômeno analisado, mas o primeiro foca no estudo
das distribuições e parâmetros que o caracterizam, e o segundo foca na predição do evento
de interesse. As análises, à primeira vista, assemelham-se à uma regressão comum, onde é
pretendido obter um modelo capaz de prever um resultado numérico, à partir das variáveis de
entrada. Porém, observa-se que em diversas áreas de estudo, a compilação de uma base de dados
completa para análise posterior é uma atividade complexa, e muitas vezes, não é possível obter a
informação do tempo total do fenômeno. Amostras são coletadas quando conveniente, durante
a existência do fenômeno, mas nem sempre corresponde ao tempo de ocorrência do evento de
interesse. Esse problema é denominado censoring (KLEIN, 2003). Esse problema é ilustrado na
Figura 1 amostras de um fenômeno em estudo são coletadas ao longo do tempo, e em dois casos
sabe-se o tempo exato que o evento de interesse ocorreu. Já no caso marcado em vermelho, a
amostragem foi interrompida e não se sabe a duração total do fenômeno.
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Figura 1 – Exemplo de ocorrência de censura nos dados.

Fonte: Elaborada pelo autor.

Segundo (LEE, 2003), existem três tipos de censoring :

1. Right censoring: Ocorre quando há informação sobre o início do fenômeno, mas não se
sabe quando o evento de interesse ocorre.

2. Left censoring: Ocorre quando há informação sobre o evento, mas não se sabe o início do
período de observação.

3. Interval censoring: Não se sabe o tempo exato do evento, somente que este ocorreu durante
um intervalo.

De acordo com os objetivos desse trabalho, o foco se dá em métodos que solucionam
o problema de right censoring, levando em conta que ao decorrer de um estudo com muitos
pacientes, observamos que, por diversas razões, não se obteve o tempo de sobrevida para alguns
indivíduos. Assim, ao utilizar um algoritmo de aprendizado de máquina supervisionado, seria
necessária a exclusão de boa parte das bases de dados, na tentativa de possuir tuplas suficientes
para treinamento e teste dos modelos. Essa é uma vantagem do uso de algoritmos que incorporam
esse dado censurado no modelo, pois ainda que não há a informação conclusiva do tempo total
de sobrevida, essa amostra pode contribuir com o aprendizado do modelo (DELEN; WALKER;
KADAM, 2005).
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2.3 Aprendizado de máquina

Dentro da grande área de aprendizado de máquina existem dois principais tipos de
algoritmos utilizados na análise de dados:

• Aprendizado supervisionado: a variável dependente (alvo) está presente nos dados, e o
modelo é treinado para estimar uma função que mapeia as variáveis de entrada para a
variável alvo. Alguns exemplos: classificação, regressão e árvores de decisão.

• Aprendizado não supervisionado: a variável alvo não está presente nos dados, e a principal
ideia nesse caso é a construção de agrupamentos que façam segmentação de classes
diferentes dos dados. Alguns exemplos: Clusterização, K-NN.

A análise de sobrevivência caracteriza-se como aprendizado supervisionado, já que
é utilizado um conjunto de dados de treino, composto por variáveis independentes (entrada) e
uma variável dependente (saída), o qual o algoritmo escolhido usa para aproximar a função que
mapeia essa relação (RUSSELL, 2010).

Portanto, como o objetivo desse trabalho é a elaboração de modelos preditivos, para
estimar a sobrevida dos pacientes após o diagnóstico de câncer, é importante a utilização de
uma base de dados com quantidade significativa de amostras contendo a informação do tempo
de sobrevida. Entretanto, nos casos de pacientes que apresentam censoring, essa informação
está ausente, prejudicando a quantidade de amostras úteis para treinamento e teste do modelo
(WANG; LI; REDDY, 2019), ao passo que não é possível executar um modelo de aprendizado de
máquina com dados faltantes, sem adicionar ruído ao sistema. A solução trivial de simplesmente
retirar as amostras censuradas da base resulta em um modelo não ótimo (DELEN; WALKER;
KADAM, 2005).

Em outro contexto, se as bases de dados com estudos de câncer estivessem disponíveis
com grande quantidade de pacientes sem censoring, seria possível construir e testar modelos
com algoritmos clássicos de regressão, removendo da base as amostras sem o evento de interesse.
Porém, ao realizar essa operação, bastante informação é retirada sem contribuição para o
entendimento do fenômeno.

Estudos de regressão para prever o tempo de evento em análise de sobrevivência podem
ser feitos com diversas técnicas. Entretanto, quando o assunto do estudo se relaciona com a
área médica, muitos algoritmos clássicos do aprendizado de máquina podem perder eficácia,
principalmente pelos dois seguintes problemas: Curse of dimentionality (DONOHO, 2000) e
Dados censurados. A primeira está relacionada com a natureza dos estudos médicos, com focos
nos que possuem dados genéticos. A dificuldade (operacional e financeira) de realizar um estudo
que envolva muitos pacientes em estados crítico de saúde é grande, além da complicação de
tempo do estudo, que precisa se prolongar por anos. Assim, o comum das bases de dados que
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disponibilizam dados genéticos é possuir poucas amostras. Ao passo que muitos algoritmos
apoiam-se na premissa de um mínimo de exemplos para garantir aprendizado, ou seja, as
distribuições das covariáveis abrangem um amplo espectro, apresentando ao algoritmo uma
relação com a variável independente (se é que existe).

Além disso, o problema se torna ainda maior quando é considerado a dimensão da
informação genética disponível. Existem diversas formas de se obter ciência da atuação de
determinado gene. Uma delas é a observação da expressão de proteínas, que indicam a ativação
genética produtora dessa molécula. A variedade da expressão proteica é muito grande, o que
resulta em tabelas com milhares de colunas. Este é um problema bastante complexo na área de
aprendizado de máquina, como descreve Mirza et al. (2019). Com os dois pontos apresentados,
por fim, trabalha-se com um banco de dados de muitas covariáveis e poucas amostras (p grande
e n pequeno), o que constitui o problema de curse of dimentionality (DONOHO, 2000).

O segundo problema é o dos dados censurados, nos quais não há informação de quando o
evento ocorreu. A amostra foi recolhida enquanto o paciente estava em tratamento, e não houve
uma conclusão, por qualquer razão. Como não existe a medida do tempo total de sobrevida,
do diagnóstico até o falecimento, a amostra não poderia ser utilizada nos algoritmos clássicos
de aprendizado supervisionado por não possuir rótulo. Por consequência, a censura dos dados
agravaria ainda mais o problema de dimensionalidade descrito acima.

O tratamento de bases de dados desse tipo é uma tarefa complexa, quando se considera
todos os aspectos mencionados acima. É comum a presença de covariáveis com amostras
ausentes, mas que não têm importância significativa para prever a variável alvo. Nessa situação,
é importante avaliar os impactos da adição ou remoção dessa feature no desempenho do modelo
final. Neste caso, a decisão envolve, por um lado, incorporar no modelo a informação do problema
que a variável entrega quando computada, mas por outro lado, perder as amostras que serão
retiradas do modelo nos casos em que há valores faltantes.

A tecnologia utilizada na leitura da informação genética empregada neste trabalho é cha-
mada de RNA-Seq (GOLDMAN; DOMSCHKE, 2014). Desenvolvida recentemente, apresenta
grandes vantagens como grande precisão nas leituras de pares transcritos, boa qualidade da quan-
tificação das amostras, quando comparada à técnica muito utilizada anteriormente, Microarray

(WANG; GERSTEIN; SNYDER, 2009). Dessa forma, a RNA-Seq fornece um ótimo método
para incorporar informação genética dos pacientes nos modelos preditivos.

2.4 Random Forests

Um antigo método de aprendizado de máquina é a construção de árvores de decisão
(BREIMAN, 1993). Neste algoritmo, o objetivo é criar uma estrutura de decisão (árvore binária)
que executa uma tarefa, como separar um banco de dados em duas classes diferentes. A decisão
envolve a escolha de uma variável para separar os dados, a partir de um certo valor. A escolha
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da melhor variável para fazer essa separação (split) é feita medindo a qualidade dos dois nós
filhos, utilizando uma métrica pré-definida. A mais comum é a pureza dos nós filhos, calculada
por exemplo pelo método Gini.

O Random Forests consiste em um ensemble (conjunto) de árvores de decisão. O primeiro
passo é a mecânica de splits, na qual o algoritmo seleciona uma variável para segmentar a base
de maneira que a separação promove similaridade entre os blocos resultantes. Esta divisão
tem por objetivo aumentar a homogeneidade dos nós filhos, em comparação com o nó pai. A
maximização da homogeneidade, originalmente proposta por (BREIMAN, 2001), refere-se à
pureza dos nós filhos, que pode ser calculada, por exemplo, pela quantidade de amostras da
mesma classe dentro do mesmo nó. Assim, nós com classes semelhantes apresentam maior
pureza.

Um ponto inovador do RF é a introdução de aleatoriedades por dois processos: boostrap

(EFRON, 1994) e dentro de cada nó, na seleção da variável para split. O boostrap consiste em
fazer uma amostragem dos dados ao construir cada árvore, de modo que cada amostra retirada
é reposta na base. O processo é repetido para o mesmo número de amostras na base de dados.
Denotando a probabilidade de uma amostra xi ser escolhida, dentro de um conjunto de n amostras
por 1/n, a probabilidade de xi não ser escolhido é:

πi = 1− 1
n

(2.1)

Expandindo essa probabilidade pi(n) para a enésima amostra retirada no processo:

pi(n) =
n

∏
j=1

=

(
1− 1

n

)(
1− 1

n

)
. . .

(
1− 1

n

)
=

(
1− 1

n

)n

(2.2)

Considerando n grande, é fácil observar que pi(n) tende para e−1, que é aproximadamente
0,368. Essa fração dos dados não é usada na construção de cada árvore, provendo assim uma
parcela de amostras para teste. Esse conjunto de amostras é chamado de amostra Out of Bag

(OOB).

O segundo processo de introdução de aleatoriedade envolve a seleção de um subconjunto
de covariáveis para fazer o split, ao invés de testar todas as possibilidades. A vantagem é o
desacoplamento entre as árvores, diminuindo a variância do ensemble construído. Esta estratégia
é conhecida como bagging (BREIMAN, 1996), e pode aumentar consideravelmente a acurácia
do algoritmo base que foi replicado.

O procedimento completo do RF é descrito nos seguintes passos (ISHWARAN et al.,
2008):

1. Realizar n amostragens nos dados originais com boostrap.



28 Capítulo 2. Revisão Bibliográfica

2. Para cada novo conjunto, construir uma árvore de decisão, realizando uma seleção aleatória
de covariáveis em cada nó.

3. A escolha da covariável é feita maximizando a homogeneidade em cada nó.

4. Construir a árvore repetindo esse processo recursivamente, até que cada nó folha não tenha
menos de m0 ocorrências.

5. Agregar a contribuição de cada árvore, calculando a média entre os resultados, no caso de
um ensemble regressivo.

6. Calcular o erro com as amostras OOB.

2.5 Random Survival Forests
Visando atacar o problema de right censoring, foram desenvolvidas diversas técnicas,

como a adaptação do RF proposta por Ishwaran et al. (2008), o Random Survival Forest (RSF).
Esse algoritmo apresenta uma mudança na maximização da homogeneidade no momento do
split, medindo a eficácia não mais por pureza, mas sim por diferença de sobrevida. Dessa forma,
situações diferentes são separadas em nós distintos. Esse processo é realizado recursivamente,
populando a árvore durante o crescimento com casos similares de sobrevida.

Além de operar diretamente sobre o tempo de sobrevida, uma outra grande vantagem do
RSF é a possibilidade de incorporação de variáveis censuradas. Este algoritmo não usa o clássico
padrão de entrada X e saída y. Nele, são consideradas três variáveis: X , contendo as variáveis de
entrada, T , contendo o tempo de sobrevida e E, variável booleana informando se a amostra é
censurada ou não.

O uso da informação de censura é aplicado principalmente no momento do cálculo do
split, cuja decisão da variável x e valor do split em x é dado pela função log-rank Equação 2.3
(ISHWARAN et al., 2008):

L(x,c) =
∑

N
i=1

(
di,1 −Yi,1

di
Yi

)
√

∑
N
i=1

Yi,1
Yi

(
1− Yi,1

Yi

)(
Yi−di
Yi−1

)
di

(2.3)

As variáveis assumem os seguintes significados:

• j: Nó filho.

• Yi: Número de amostras sem censura ou em risco, em t.

• Yi, j: Número de amostras sem censura ou em risco, para o nó filho, em t.

• di: Número de eventos, em t.
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• di, j: Número de eventos, para o nó filho, em t.

Dessa forma, é possível utilizar a informação censurada para construir aprendizado ao
modelo, o que pode melhorar o desempenho do mesmo. É importante mencionar que a saída
produzida com o RSF é a Survival Funcion, função que mostra a probabilidade do paciente
sobreviver após um tempo t de teste.

Um outro método recente proposto por Wright, Dankowski e Ziegler (2016) envolve
uma outra forma de realizar o processamento de bases com tempo de sobrevida. A estrutura do
algoritmo, no geral, é mesma do RSF. Serão usadas as mesmas três variáveis para o treinamento,
X , T e E. Porém, a construção do modelo é baseada em inferência estatística condicional,
utilizando um teste de hipótese para selecionar as variáveis no momento do split. O objetivo é
remover ou diminuir o viés ao escolher a variável, que ocorre ao utilizar o método anterior com
a formulação de log-rank, pois este tende a favorecer variáveis com muitas pontos para o split.
A formulação e construção do algoritmo pode ser encontrada com mais detalhes em Wright,
Dankowski e Ziegler (2016). Esse método é denominado maximally selected rank statistics

random forests (MSR-RF).

Outro quesito importante é a forma de cálculo do risco dos pacientes, que também pode
ser gerada pelos dois modelos. A medida de risco é calculada segundo a equação Equação 2.4,
em que H corresponde à hazard function, que é a função que mede a probabilidade do evento
ocorrer logo depois do tempo T testado, e J é o total de pontos temporais usado pelo modelo:

r(x) =
J

∑
j=1

H(t j,x) (2.4)

2.6 Considerações Finais
Os dois modelos apresentados, RSF e MSR-RF, apresentam aplicação direta para o

problema de análise de sobrevida com dados de câncer, com o objetivo de estimar a função de
sobrevivência para cada paciente, bem como analisar a situação de risco que estes se encontram.
Estudos envolvendo aprendizado de máquina com informação genética e predição de sobrevida
são encontrados na literatura, porém em baixíssima quantidade, além de não apresentar a
comparação com o mais recente MSR-RF (OMURLU; TURE; TOKATLI, 2009), (LOPEZ et al.,
2018), (DELEN; WALKER; KADAM, 2005). Ao incorporar os dados censurados no aprendizado
do modelo, é natural a ocasião para observar o comportamento desses algoritmos com bases de
dados relacionadas ao Glioblastoma. O Próximo Capítulo detalhará a implementação e uso de
ambos algoritmos para análise de sobrevida.
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Capítulo 3

DESENVOLVIMENTO

3.1 Considerações Iniciais

O presente Capítulo discorrerá à respeito do desenvolvimento do projeto elaborado.
Inicialmente, os passos da metodologia adotada serão descritos detalhadamente. Em seguida, a
ferramenta concebida será apresentada, bem como todos os seus módulos e como estes atuam
em conjunto para a solução do problema. Por fim, serão apresentados os resultados.

3.2 Metodologia

3.2.1 Aquisição de dados

O primeiro passo realizado no desenvolvimento do projeto foi a obtenção das bases de
dados com informações clínicas e genéticas. A fonte escolhida foi a plataforma cBio (CERAMI
et al., 2012), que disponibiliza gratuitamente diversas pesquisas realizadas na área oncológica.
Além disso, o sistema conta com uma ferramenta de consulta genética, na qual é possível
buscar, em vários estudos ao mesmo tempo, diversos genes de interesse. Ainda, a plataforma
disponibiliza várias formas de visualização de dados, com diversos artifícios gráficos para
cada tipo de variável analisada. Usualmente, os estudos são divididos em diversas tabelas, com
medições de diferentes propriedades clínicas dos pacientes. As duas principais que são utilizadas
nesse trabalho são a tabela de dados clínicos, que contém informações gerais sobre o indivíduo,
como idade no momento do diagnóstico e gênero. A segunda refere-se à informação genética
do paciente, apresentando, para cara gene, um valor de mutação em relação à um baseline.
Inúmeras métricas são oferecidas, mas a escolhida para o projeto foi a de mRNA Z-scores (escore
padrão), que exibe a métrica estatística da quantidade de desvios padrões que a amostra está em
comparação com a média das leituras por RNA-Seq. Dessa forma, os dados são normalizados
pela média, prática que facilita a manipulação das bases e facilita a identificação de casos
extremos (CHEADLE et al., 2003).

A base de dados escolhida é a referente ao câncer do tipo Glioblastoma, que atua
no cérebro. É considerado o mais comum, porém mais agressivo câncer cerebral, no qual
o paciente tem uma expectativa mediana de vida de 15 meses (BLEEKER; MOLENAAR;
LEENSTRA, 2012). A plataforma cBio disponibiliza seis estudos referentes ao Glioblastoma.
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A base selecionada é a do programa de pesquisas TCGA (The Cancer Genome Atlas), de
2013 (BRENNAN, 2013). Este estudo é interessante pois, dentre as features disponíveis, está
o tratamento com a droga temozolomide, ou TMZ, que consiste no tratamento mais recente e é
considerada tratamento padrão para pacientes recém diagnosticados (BLEEKER; MOLENAAR;
LEENSTRA, 2012). A base possui um total de 543 pacientes, dos quais 152 dispõem de
informação genética.

3.2.2 Pré-processamento de dados

Após feito o download das bases de dados, é necessário fazer uma limpeza inicial,
removendo covariáveis ruidosas, com muitas amostras faltantes. Este é o caso da tabela de dados
clínicos, na qual pode ser observadas lacunas de tamanho significativo nas amostras. A fim
de automatizar esse processo, é tomada a decisão de empregar a biblioteca Pandas Profiling 1,
disponibilizada para as versões mais recentes de Python.

Esta ferramenta possibilita o processamento automatizado de bases de dados, oferencendo
informações referentes à diversos pontos importantes dentro de cada variável, como:

1. Contagem de itens distintos: utilizado para identificar variáveis índice na base;

2. Porcentagem de amostras únicas: útil na observação da distribuição de variáveis categóri-
cas;

3. Porcentagem de amostras faltantes: análise de variáveis problemáticas;

4. Distribuição em histograma de variáveis numéricas: comportamento de variáveis numéri-
cas;

5. Avisos de variáveis problemáticas: identificação de variáveis com lacunas;

6. Correlação de variáveis: analisar possíveis exclusões;

7. Gráficos de dispersão de variáveis: identificar interações;

Dessa forma, é possível, rapidamente, observar o comportamento geral dos dados e o
comportamento das variáveis, bem como suas interações. Tendo em vista os itens elencados
acima, o mais interessante para essa fase é o item 5, possibilitando a rápida eliminação de
variáveis que possuem lacunas maiores que 5%. É claro que, antes de eliminar, é vantajosa
a analise do impacto da variável no modelo final. Porém, nesse caso, como a quantidade de
amostras é bem reduzido (152 amostras possuem dados genéticos), perdas pequenas resultarão
em alto impacto negativo no modelo, devido à curse of dimentionality (DONOHO, 2000).

1 <https://github.com/pandas-profiling/pandas-profiling>

https://github.com/pandas-profiling/pandas-profiling


3.2. Metodologia 33

Em posse das bases clínica e genética, ambas identificadas por uma variável única
sample_id, é necessária a remoção das features explicativas indicadas pelo pandas profiling, de
acordo com o threshold indicado acima. São elas:

1. G-CIMP_METHYLATION;

2. GENE_EXPRESSION_SUBTYPE;

3. IDH1_MUTATION;

4. METHYLATION_STATUS;

5. MGMT_STATUS;

6. FRACTION_GENOME_ALTERED;

7. MUTATION_COUNT;

8. DISEASE_FREE_(MONTHS);

9. DISEASE_FREE_STATUS;

Os itens 1-7 acima sofrem de lacunas excessivas e devem ser removidas da base de dados
clínicos. Essa decisão deve-se ao fato de ser necessário possuir os dados completos ao treinar e
testar o modelo. Já os itens 8 e 9 são removidos pois diretamente relacionado à variável alvo, o
tempo de sobrevida dos pacientes, identificada por OVERALL_SURVIVAL_(MONTHS). Desse
modo, são removidas para não causar ruído desnecessário no modelo e prejudicar o efeito de
outras features.

Podem haver casos em que um mesmo paciente foi analisado duas vezes, em tempos
diferentes. Nesse caso, são expostas duas amostras com o mesmo identificador de paciente. Em
particular, para a TCGA 2013, esse fato não ocorre.

A base de dados com as referências para o mRNA Z-scores precisa de mais alguns passos
de pré-processamento, como o ajuste na nomenclatura dos genes (é apresentada tanto o padrão
por Hugo Symbols quando por Entrez Gene ID (MAGLOTT et al., 2010)), removendo espaços e
alterando os caracteres para maiúscula. Todas as manipulações são feitas utilizando a biblioteca
Pandas2 em ambiente de desenvolvimento Python.

Um ponto importante que também precisa ser feito durante a fase de pré-processamento
é aplicar um limite superior de tempo que será considerado para o estudo. A distribuição natural
dessa base apresenta um número considerável de indivíduos com tempo de sobrevida acima
do normal para o Glioblastoma. Esses casos, embora de excelente natureza para os pacientes
e o campo da oncologia, distorcem o conjunto de dados. A metodologia empregada envolve a
2 <https://pandas.pydata.org/>

https://pandas.pydata.org/
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observação da distribuição do tempo de sobrevida, comparando o desvio padrão com a média.
Serão excluídos todas as amostras que exibirem tempo de sobrevida maior que um desvio padrão
mais a média. Após aplicar esse filtro, a quantidade de amostras resultante é 132.

3.2.3 Random Survival Forests

Na abordagem de um problema de aprendizado de máquina envolvendo poucas amostras,
como é o presente caso, a presença de dados com censura levaria à perda de diversas amostras,
se adotado os algoritmos clássicos, como foi apontado no capítulo anterior. No caso comum de
regressão do aprendizado supervisionado, todas as amostras precisam de um rótulo para haver
aprendizado. Como as amostras censuradas carecem de rótulo, deveriam ser excluídas na fase de
pré-processamento. Porém, ao analisar a quantidade de amostras classificadas com evento é 99,
contra 53 sem rótulo. Em outras palavras, cerca de 35% das amostras seriam retiradas caso fosse
necessária a exclusão por falta de rótulo.

Embora não seja conhecida a causa da censura para cada uma das amostras, ainda existe
informação nas mesmas, principalmente pela presença do tempo. O período do diagnóstico até
a realização da coleta de exames e posterior inserção na base é conhecido. Esse dado agrega
valor ao modelo e pode ser usado para melhorar os resultados (WANG; LI; REDDY, 2019).
Dessa forma, a construção do algoritmo Random Survival Forests é especialmente focada nesse
problema, e consegue utilizar as amostras censuradas no treinamento, otimização e testes.

O conceito da adaptação do Random Forests para análise de sobrevivência, o Random

Survival Forests, envolve o uso de não somente dois conjuntos de valores - entrada e saída -
mas sim três: Conjunto de features, tempos de sobrevida e um vetor indicador do evento. O
primeiro, usualmente chamado de variáveis independentes, não tem diferença quando comparado
ao comum do aprendizado de máquina. O segundo pode ser comparado ao vetor rótulo num
caso trivial de regressão: é o vetor com as medidas, esperando-se que a modelagem consiga
mapeá-las com através das features. Já o terceiro corresponde ao aspecto menos usual: é o vetor
que indica se a amostra indica o evento, ou seja, que o tempo de sobrevida é final e conclusivo.
Nos casos em que o evento não é indicado, observa-se o caso de censura do dado (ISHWARAN
et al., 2008). A implementação utilizada nesse trabalho foi feita em Python, pela PySurvival, e é
apresentada em (FOTSO et al., 2019).

Levando em conta a necessidade da nova estrutura, a base de dados foi divida em três
novos componentes: X, para indicar o conjunto de variáveis independentes, T, para a variável alvo,
copiada de OVERALL_SURVIVAL_(MONTHS) e, por fim, E, que indica a presença de evento
ou censura no dado, sendo atribuído o valor 1 para evento e 0 para censura. Essa informação é
retirada da variável OVERALL_SURVIVAL_STATUS.

Dessa forma, agora o conjunto de dados que é utilizado para todas as funções de treina-
mento, otimização e teste, refere-se ao conjunto de dados formado pelas três novas variáveis X,
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T e E.

3.2.4 Variable Importance

O próximo passo da metodologia é reduzir a dimencionalidade da base de dados. Usual-
mente os dados clínicos não apresentam mais de 100 features. Por outro lado, a base de mRNA

Z-scores pode conter uma quantidade bem maior de variáveis independentes, como no caso da
TCGA 2013, 19979. O custo computacional é muito alto para processar essa quantidade de
features, além do fato que a contribuição de cada uma para o aprendizado do modelo diminui
(DONOHO, 2000).

A metodologia escolhida para abordar esse problema foi reduzir o número de variáveis
de acordo com um ranking de importância, calculado de acordo com o CSF ou o RSF. Por serem
algoritmos baseados em Random Forests, ambos podem calcular a métrica VIMP (Variable

Importance) ao calcular os efeitos no erro de predição, com a adição de ruído nas variáveis
(BREIMAN, 2001). Esse método permite que seja processada uma tabela com as variáveis da
base, ordenadas de forma descendente por ordem de importância. Assim, a primeira será a mais
influente na previsão da variável alvo, e a última será a menos influente.

Dessa forma, a primeira tarefa é o processamento da base, com todas as variáveis
independentes. É um processamento custoso, pois mesmo com poucas amostras, o algoritmo
possui várias etapas que levam mais tempo para completar em função do número de colunas e
da quantidade de árvores construídas. Além disso, para determinar a importância das variáveis,
podemos usar a base inteira, já que não é um processo que será usado futuramente para predição.
Assim, garantimos o maior uso possível da informação para determinar os melhores preditores
da variável dependente. Ademais, o RF apresenta um ótimo resultado em situações problema
com p grande e n pequeno, ao passo que impõe regularização das árvores, possibilitando uma
inferência adaptativa mais robusta (CHEN; ISHWARAN, 2012).

É válido comentar que existem diversos métodos de cálculo da importância das variáveis
em um algoritmo de RF. Considerando a implementação utilizada nesse projeto, foi escolhido o
método descrito por (SANDRI; ZUCCOLOTTO, 2008), que pode ser selecionado colocando
impurity como valor do parâmetro importance_mode presente no momento de treinar o modelo.

3.2.5 Feature Selection

Em posse da tabela com o ranking de importância das variáveis, é preciso estabelecer um
método para selecionar um conjunto alvo pequeno com o menor número possível de preditores,
mas que ainda mantenha um bom resultado. O racional dessa fase é iniciar com um pequeno
grupo, com as melhores variáveis, testando o desempenho do modelo com uma validação
cruzada de 5 folds. Feito o primeiro teste, o resultado é guardado e gradativamente o conjunto é
diminuído de cerca de 20% das variáveis. Dessa forma, a cada nova iteração, é esperado um dos
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dois cenários:

1. A capacidade preditiva do modelo é aumentada, com o diminuição de ruído.

2. A capacidade preditiva do modelo é diminuída, pela falta de informação preditiva.

A metodologia inicia a partir de computada a primeira tabela com a importância das
variáveis. Em posse do ranking geral com todas os 19979 preditores, é empregada a técnica de
seleção de variáveis descrita por (CHEN; ISHWARAN, 2012), com os seguintes passos:

1. Remover uma porção das variáveis menos influentes (cerca de 20%)

2. Processar novamente a nova base com menos variáveis e repetir o passo 1.

3. Continuar processo até obtenção do menor erro com o conjunto de amostras OOB.

Esse modo de operação é considerado um método guloso, mas como aqui o número de
testes será baixo, não há um impacto significativo em desempenho. O algoritmo pode testar
algumas centenas de possibilidades de conjuntos dentro de alguns minutos. Terminada essa
fase, a dimensionalidade do problema será drasticamente reduzida, já que, no início, o conjunto
contava com quase 20.000 variáveis, e, ao fim, é otimizado com menos de 50.

Nesta fase também foi considerada a possibilidade de utilizar um métodos de redução de
dimensionalidade como Principal Component Analysis (PCA) (WOLD; ESBENSEN; GELADI,
1987). Esse método estima uma nova base ortogonal para o conjunto de dados, diminuindo a
correlação. A nova base é chamada de componentes principais. Porém, um aspecto importante é
a interpretabilidade do modelo, ou seja, quão simples é o entendimento das variáveis e de sua
influência no resultado preditivo. Ao processar as variáveis com o PCA, não se trabalha mais
com as variáveis originais, mas com seus componentes gerados. Não é trivial a interpretação do
resultado do PCA, portanto o uso desse algoritmo não foi adotado.

3.2.6 Medidas de Desempenho

Levando em consideração o caso específico do aprendizado de máquina em que o
presente problema se encontra, as clássicas métricas de avaliação de desempenho não funcionam,
devido ao problema da censura dos dados. Numa amostra sem a informação de resultado não
é possível checar a distância entra a previsão do modelo e o valor esperado (HEAGERTY;
ZHENG, 2005). Por esse motivo, outras métricas foram desenvolvidas a fim de solucionar esse
problema, possibilitando avaliar de modo mais robusto o comportamento dos modelos de análise
de sobrevivência. Considerando tais fatos, foram selecionadas as seguintes métricas para a
análise deste estudo:
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1. C-index (UNO et al., 2011).

2. Brier Score (GRAF et al., 1999).

Chamado também de estatística C, o C-Index mede a capacidade do modelo em discernir,
entre duas instâncias, qual tem maior risco. Na aplicação em análise de sobrevivência, esse
conceito se encaixa muito bem, ao proporcionar uma forma de media a qualidade de segmentação
do modelo. É muito interessante essa categorização de pacientes entre baixo e alto risco, podendo
levar à decisões de tratamentos mais focados em cada um dos casos.

O algoritmo de cálculo do C-Index funciona da seguinte forma: são formados pares entre
todas as amostras que serão testadas. Depois, o modelo gera as estimativas de risco para cada
amostra. Por fim, as estimativas são comparadas entre os pares formados anteriormente. Porém,
são deficidas regras para tratamento das censuras: uma amostra censurada só pode ser comparada
com outra sem censura, com menor duração, pois como não se sabe o tempo total antes do evento
para a amostra censurada, não há conclusões depois da censura (UNO et al., 2011). Um modelo
que obteve algum aprendizado apresenta um valor para a métrica C-Index maior que 0,5.

Já a segunda métrica, Brier Score, mede, de forma similar ao erro quadrático médio,
a distância entre a probabilidade de sobrevivência (saída do modelo) e o status atual (real) do
paciente, para um tempo T de teste (GRAF et al., 1999). É uma forma de analisar as curvas de
sobrevivência que o modelo produz em relação a realidade, ou seja, comparar a qualidade da
previsão individual do modelo para cada paciente. Para o Brier Score, um modelo útil tem um
valor nessa métrica menor que 0,25.

Ambas são usadas para comparar a eficácia dos modelos, em todos os cenários testados.

3.3 Atividades Realizadas

3.3.1 Survival Library

A partir desse ponto no desenvolvimento do projeto, todas as funções e processamentos
necessários foram incorporados na SurvivalLib3, uma biblioteca para Python que encapsula todas
as funções necessárias da metodologia aqui apresentada. Fornecida uma base completa, com a
informação genética e também dados clínicos, a ferramenta possibilita ao usuário experimentar e
testar configurações diversas, treinar diferentes modelos e avaliar os resultados.

Elencados todos os fatores para filtragem da base, além da seleção das variáveis que
serão utilizadas na modelagem, é o momento de fazer o treino propriamente dito. Primeiramente,
ao instanciar um objetivo da classe SurvivalLib, são apresentadas algumas opções de argumento
para o usuário. São elas:

3 <https://github.com/danilobso/tcc_cancer_survival>

https://github.com/danilobso/tcc_cancer_survival
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1. Base de dados que será utilizada (pandas DataFrame).

2. Coluna para ser utilizada como alvo do modelo (está e a variável com os tempos de
sobrevida).

3. Coluna para gerar o vetor de censura. Deve informar se o evento ocorreu ou não.

4. Lista com as colunas que não serão utilizadas como features, como ID, coluna alvo.

5. Tabela com o ranking de variáveis importantes (opcional, se o processamento já foi
realizado).

6. Melhor número de variáveis para uso no modelo (tamanho do conjunto).

7. Modelo que será usado: RSF para Random Survival Forests, ou MSR-RF para Maximally

Selected Rank Statistics Random Forest.

Assim, que o objeto é criado, a biblioteca gera também a coluna de censura, a partir
do item 3 acima. Dessa forma, será guardada uma variável contendo 1 ou 0, em que 1 indica
ocorrência do evento e 0 indica censura. Além disso, na inicialização, já é computada uma
sugestão de máximo de tempo para ser filtrado a coluna alvo. Esse limite é importante ao passo
que muitas amostras outliers nesta variável pode prejudicar o performance do modelo. A sugestão
é calculada de acordo com a metodologia apresentada previamente. Por fim, a inicialização
atribui um valor para o percentual dos dados que serão usados como amostra de testes. Essa
porção da base não será utilizada em nenhum momento para treinamento, somente validação.

Criado o objeto da biblioteca, o segundo passo é processar a limpeza da base. Aqui,
também são aceitos novos argumentos, que informam os seguintes aspectos:

1. Mínimo de tempo para filtro do tempo de sobrevida. Útil se existem outliers no início do
eixo temporal;

2. Máximo de tempo para filtro de tempo de sobrevida. É sugerido utilizar o resultado
anterior;

3. Colunas que não serão utilizadas na análise. Aqui, é importante experimentar, pois algumas
colunas não acionam informação suficiente para justificar a exclusão de algumas amostras.

Em posse dessas informações, as colunas passadas como parâmetro são excluídas, e é
executado uma exclusão de amostras restantes que têm alguma entrada faltante. É também execu-
tado o filtro de tempo, tanto para o filtro mínimo quanto o máximo. Ambos são executados como
maior igual ou menor igual. Por fim, é processada a divisão da base de dados em treinamento e
teste. A separação é feita com o parâmetro de porcentagem dos dados totais usado para teste,
guardado no momento da inicialização da biblioteca.
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Antes da divisão em treinamento e testes, o algoritmo verifica a necessidade de realizar o
encoding em variáveis categóricas, processo conhecido como a geração de dummies, no qual
cada categoria diferente é transformada em uma coluna e as amostras pertencentes à cada uma
recebem o número 1 para a categoria correta. Assim, é possível trabalhar com as variáveis
categóricas nos algoritmos de aprendizado de máquina (RUSSELL, 2010). É importante fazer
esse procedimento antes da separação dos dois conjunto, pois pode haver o problema das colunas
ficarem diferentes caso haja discrepância entre as amostras de cada um.

O processamento do ranking de importância de variáveis é feito com a base inteira,
pois nesse caso não há prejuízo para as métricas de avaliação, já que é um processo prévio
ao treinamento. É executada a metodologia acima, em que é realizado um fit (treinamento) do
algoritmo desejado, e removidas 20% das que têm menos influência no modelo, através da
métrica de Variable Importance (VIMP) do próprio modelo, calculada inserindo ruído em cada
uma das variáveis e analisando o resultado na variável dependente. É o processo mais custoso,
ao passo que trabalha com quase 20.000 preditores ao mesmo tempo.

Depois desse passo, já é possível fazer o primeiro treinamento do modelo com possibili-
dade de teste. O padrão é a utilização de 3.000 árvores, número que apresenta um bom balanço
entre qualidade do resultado e tempo de processamento.

Os dois modelos apresentados no Capítulo 2 estão disponíveis para teste, e funcionam
do mesmo modo, não é necessário nenhuma modificação por parte do usuário, após escolher o
modelo desejado ao inicializar a biblioteca.

Para otimizar o treinamento e evitar problemas de mínimo local da função de perda, é
feito também o processamento de uma Grid Search, na qual os hiperparâmetros do modelo são
arranjados de forma que todas as combinações são testadas. São eles:

Para o RSF:

1. max_features: Número mínimo de amostras em um nó folha.

2. min_node_size: Máximo de covariáveis testadas para fazer o split de um nó.

3. sample_size_pct: Porcentagem das amostras originais usadas em cada árvore.

4. max_depth: Profundidade máxima da árvore. Controla overfitting no algoritmo.

5. num_trees: Número de árvores que farão parte do ensemble.

No caso do MSR-RF, são adicionados dois novos parâmetros, além dos três anteriores:

1. alpha: Nível de significância mínimo para fazer o split dos nós.

2. minprop: Menor quantil que será considerado para o split.
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Outro ponto que é calculado pelo modelo é uma pontuação de risco para cada paciente.
Esse número é calculado com base na hazard function, a função que mede a probabilidade de
ocorrência do evento dentro de T +dt, ou seja, imediatamente depois de T. O equacionamento
dessa métrica pode ser conferida na Equação 2.4.

3.4 Resultados
Primeiramente, os resultados foram gerados utilizando a metodologia apresentada neste

Capítulo, com a biblioteca SurvivalLib. Além disso, as duas métricas escolhidas: C-Index e
Brier Score são computadas, para medir duas características diferentes dos modelos, que é a
capacidade do modelo em discernir entre pacientes de alto e baixo risco, e o erro do modelo em
estimar a curva de sobrevivência para cada paciente, respectivamente.

Dessa modo, foram organizados 4 experimentos, considerando os dois algoritmos e as
duas métricas. Para cada modelo, foi gerada uma tabela de importância de variáveis, que foi
usada para cálculo das duas medidas de desempenho. Os hiperparâmetros do modelo e o número
ótimo de variáveis explicativas são computados individualmente para cada caso. Vale lembrar
que o conjunto de dados utilizado em todos os casos é exatamente o mesmo.

A tabela Tabela 1 apresenta os resultados comentados acima:

Tabela 1 – Desempenho dos modelos por métrica.

Métrica RSF MSR-RF
C-Index 0,727 0,869

Brier Score 0,128 0,123
Fonte: Dados da pesquisa.

Aqui, pode-se observar que o MSR-RF apresentou um resultado consideravelmente
melhor para o C-index, demonstrando um bom desempenho para escolher entre pacientes de
baixo e alto risco. Como a principal diferença entre os dois modelos é o método de seleção
de variáveis, a influência dessa operação com menor bias do MSR-RF parece contribuir com
o aprendizado para o problema de previsão de sobrevivência para o Glioblastoma. Um ponto
importante é também a observação das variáveis mais importantes. Nos dois casos, a terapia
utilizada é determinante para o aprendizado do modelo e também para a extensão do tempo de
sobrevida. Para o MSR-RF, a terapia com TMZ foi o preditor mais influente. Este resultado é
relevante ao passo que, na literatura médica, esse é o tratamento de melhor eficácia para esse
tipo de câncer (STUPP et al., 2005).

Para o caso do C-index, um modelo útil precisa ter uma pontuação maior que 0,5. Em
ambos os casos, o resultado foi maior do que esse threshold esperado, e a par com outros estudos
médicos como Omurlu, Ture e Tokatli (2009), em que foi feito um estudo de modelagem e
predição para dados de câncer de mama. Na pesquisa, são apresentados os resultados para um
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modelo de RSF, com o C-index próximo de 0,7. Dessa forma, os resultados obtidos com a
utilização da SurvivalLib estão de acordo com a literatura da área.

São apresentados os parâmetros após todas as etapas de otimização dos dois modelos,
para o C-index, na Tabela 2:

Tabela 2 – Parâmetros otimizados dos modelos para métrica C-Index.

Parâmetro RSF MSR-RF
max_features sqrt sqrt

min_node_size 7 10
max_depth 5 6

min_survival_months 0 0
max_survival_months 21 21

sample_size_pct 0,63 0,63
alpha - 0,5

minprop - 0,12
num_trees 3000 3000

num_features 8 41
Fonte: Dados da pesquisa.

Tabela 3 – Parâmetros otimizados dos modelos para métrica Brier Score.

Parâmetro RSF MSR-RF
max_features sqrt sqrt

min_node_size 7 8
max_depth 5 5

min_survival_months 0 0
max_survival_months 21 21

sample_size_pct 0,63 0,63
alpha - 0,5

minprop - 0,08
num_trees 5000 5000

num_features 11 28
Fonte: Dados da pesquisa.

Destaca-se o fato do número reduzido de variáveis que a biblioteca otimizou para o RSF,
que parece ser mais vulnerável ao ruído na adição de novas variáveis, para essa aplicação, já que
as otimizações chegaram em um número menor de preditores.

Além da visualização dos resultados e parâmetros utilizados, é interessante a visualização
da previsão em si. Trata-se da curva de probabilidade de sobrevivência dos pacientes, testado
em cada ponto temporal guardado pelo modelo. Os gráficos apresentados a seguir mostram as
curvas para cada caso otimizado apresentado acima: dois modelos e duas métricas. Cada curva
corresponde à um paciente do grupo de teste, sendo as de cor verde os pacientes considerados de
baixo risco e as vermelhas os de alto risco. A medida do risco também é calculado pelo modelo,
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resulta em um número único que classifica o paciente. A separação dos grupos foi feita pela
mediana dos riscos observados nas amostras de teste. Além disso, a curva Kaplan-Meier, com a
porcentagem de pacientes sobreviventes ao longo do tempo, também é colocada no gráfico, a fim
de comparação com o dado real dessa base.

É interessante observar a diferença entre as curvas verdes e vermelhas, e a separação
dessas da curva central estimada pelo método Kaplan-Meier. Isso mostra que o modelo consegue,
a partir da separação da pontuação de riscos de cada paciente, prever a curva de probabilidade de
sobrevivência ajustada para os diferentes riscos. Para pacientes que têm alto risco, é esperado que
a curva decresça rapidamente, e para pacientes de baixo risco, é esperado que a curva decresça
lentamente.

Figura 2 – Curvas de sobrevivência estimadas pelo RSF para pacientes do conjunto de teste, com parâmetros
otimizados para métrica C-Index.

Fonte: Elaborada pelo autor.
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Figura 3 – Curvas de sobrevivência estimadas pelo RSF para pacientes do conjunto de teste, com parâmetros
otimizados para métrica Brier Score.

Fonte: Elaborada pelo autor.
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Figura 4 – Curvas de sobrevivência estimadas pelo MSR-RF para pacientes do conjunto de teste, com parâmetros
otimizados para métrica Brier Score.

Fonte: Elaborada pelo autor.
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Figura 5 – Curvas de sobrevivência estimadas pelo MSR-RF para pacientes do conjunto de teste, com parâmetros
otimizados para métrica C-index.

Fonte: Elaborada pelo autor.
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Analisando os gráficos, é observável que o RSF demonstra uma maior separação das
curvas de sobrevivência entre os pacientes, em comparação com o MSR-RF, apesar da diferença
não ser de grande natureza. Esse resultado é interessante pois apesar do MSR-RF apresentar
uma pontuação consideravelmente maior para C-index, ou seja, ele consegue discernir entre dois
casos o de maior risco, as curvas de sobrevivência estimadas não se mostram com uma separação
tão grande quanto as geradas pelo RSF. Isso significa que um paciente de baixo risco não terá
uma probabilidade de sobrevivência muito diferente do que um paciente em alto risco, para o
mesmo tempo T de teste.

3.5 Considerações Finais
Os resultados obtidos se mostraram consideravelmente diferentes entre o algoritmo

RSF e sua adaptação MSR-RF. Apesar da análise das métricas ser importante na avaliação da
performance dos modelos, a visualização das probabilidades ao longo do tempo promove um
outro ângulo para entendimento do aprendizado de cada um. O próximo capítulo discorrerá sobre
os desafios e aprendizados ao desenvolver esse trabalho, além da importância de estudos para a
evolução do entendimento do Glioblastoma.
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CONCLUSÃO

4.1 Contribuições

O aprendizado ao desenvolver esse trabalho foi muito grande. Desde novas leituras
no campo médico, até leituras aprofundadas nas mais recentes pesquisas em aprendizado de
máquina. O processo de desenvolvimento da pesquisa é muito enriquecedor, ao trabalhar com
a revisão da literatura, proposição da hipótese e análise de um experimento. A disponibilidade
de bases de dados de pesquisas tão importantes no ramo da oncologia é muito interessante
para a inserção de profissionais da área técnica de ciência de dados e aprendizado de máquina
em pesquisas multidisciplinares, pois os métodos trabalhados facilitam drasticamente o exame
minucioso de uma grande quantidade de pacientes, feito que teria um custo de tempo muito alto
se feito manualmente.

É claro que essas bases apresentam o dado de forma bruta, e precisam de diversos
tratamentos para serem utilizadas com modelos de aprendizado de máquina. Caso não haja
uma concentração de informação suficiente nas variáveis dependentes, é realmente muito difícil
construir um modelo que aprenda. Dessa forma, é fundamental uma metodologia que facilite
esse procedimento, principalmente para profissionais que desejam usufruir das vantagens de
realizar uma análise automática, mas carecem de conhecimento técnico estatístico e de manuseio
de bibliotecas recheadas de modelos para testar.

Primeiramente, é de suma importância o entendimento dos dados. O filtro de tempo
máximo adotado nesse trabalho foi fundamental para ditar um bom desempenho dos modelos,
pois grande parte das amostras após certo tempo podem ser consideradas outliers, e introduzem
ruído no aprendizado da função de sobrevivência que se deseja estimar. Decerto, esse tipo de
modelo preditivo nunca terá uma taxa de acerto perfeita, mas é interessante poder prever as
probabilidades ao longo do tempo da maioria das amostras.

Diversas técnicas descritas por inúmeros autores foram unidas na construção da Sur-

vivalLib, que funciona como um wrapper para efetuar análises de sobrevida. Ao juntar tantas
fases dos procedimentos necessários para uma boa solução de aprendizado de máquina, como
pré-processamento, variable importance, feature selection, treinamento e validação dos modelos,
com métricas sugeridas na literatura para essa aplicação específica, a biblioteca funciona como
um possibilitador para pesquisas futuras na área de análise de sobrevida, como previsão de falhas
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em máquina, na área de engenharia, mas principalmente na pesquisa oncológica e médica que
foca em predição a partir de informação genética.

O desempenho dos modelo em prever a função de sobrevivência foi, de certa forma,
surpreendente, ao passo que a base de dados continha uma pequena quantidade de amostras.
Houve uma significativa diferença entre os pacientes, em comparação com a curva de Kaplan-
Meier, que funciona como um baseline nesse tipo de análise. O MSR-RF apresentou um ótimo
resultado para o C-index, indicando que conseguiu aprender o que distingue os pacientes quanto
ao risco. Isso abre oportunidade para pesquisas futuras que tenham foco na predição do risco
do paciente, pois esse algoritmo, ao diminuir o viés na seleção das variáveis para split, parece
estimar de forma mais precisa os indivíduos que se encontram em estado mais grave quando
comparados com os que estão em condições mais amenas.

Por outro lado, o RSF apresentou uma melhor separação dos pacientes ao estimar a
função de sobrevida ao longo do tempo. Esse resultado é interessante ao passo que, mesmo com
a métrica C-index ligeiramente menor em comparação com o MSR-RF, apresenta maior precisão
da previsão da probabilidade de sobrevida. Neste caso, pesquisas futuras seriam atraentes para
entender o comportamento desse resultado em outras bases de dados, como por exemplo em
outros casos de câncer. Esse estudo pode ser facilmente conduzido com uso da SurvivalLib.

Outro ponto que podem ser levado como tema para pesquisas futuras é a forma como a
seleção das variáveis é feita. Apesar de bons resultados empíricos da técnica utilizada, descrita por
Chen e Ishwaran (2012), uma outra opção promissora é descrita por Ishwaran et al. (2011), que
também foi o idealizador do RSF. A proposta envolve a utilização de características intrínsecas
às árvores de decisão para fazer a seleção de variáveis, como a frequência de utilização em
splits. Além disso, outra alternativa para a etapa do feature selection está na identificação de
profundidade mínima de sub-árvores, que é empregada em casos de alta dimensionalidade
(ISHWARAN et al., 2010).

Considerando as métricas de avaliação de desempenho, é também sugerida a análise
da utilização da adaptação do conhecido R2, com extensões de sensitividade e especificidade,
propostas por Heagerty e Zheng (2005). O uso de dependência no tempo e interação com risco
pode ter efeitos interessantes nas bases estudadas.

4.2 Relação entre o Projeto e o Curso de Engenharia de
Computação

O curso de graduação em Engenharia de Computação intensificou meu interesse em
tecnologia no geral, mas com uma visão muito mais técnica, ao abranger tanto o aspecto da
elétrica e eletrônica, quanto do desenvolvimento de software. No início, com as disciplinas de
Introdução à Ciência de Computação, minha capacidade de projeto de software foi instigada e
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promovida, ao serem propostos trabalhos que foram desenvolvidos ao longo do semestre. Esse
tipo de projeto é muito interessante ao passo que promove uma linha de crescimento do software
por vários meses, desde a concepção e até o relatório final.

Acredito que grande parte do foco do curso é em microeletrônica, o que é muito inte-
ressante por fazer parte do seleto grupo de universidades brasileiras que oferecem esse tipo de
conhecimento. A construção do aprendizado é gradual e lógica, o que julgo importante para o
sucesso do aluno. Porém, ao longo do curso me vi em diferentes áreas e, por fim, me encontrei na
ciência de dados, área que não recebe muito foco na Engenharia de Computação. Apesar disso, a
possibilidade de construir a grade horária com certa liberdade me permitiu cursar disciplinas
da área, sendo a principal Introdução à Ciência de Dados foi de suma importância na minha
formação.

Este trabalho permitiu a aplicação dos conhecimentos construídos ao longo de anos, bem
como adquirir novas habilidades, aprendizados e superação desafios. A experiência da elaboração
de uma pesquisa científica é muito importante para o Engenheiro, e claro muito enriquecedora
para mim.
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