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RESUMO 

 

Este estudo compara duas técnicas de agrupamento de dados, a Clusterização 

Hierárquica Aglomerativa (CHA), método mais tradicionalmente utilizado, 

desenvolvido no trabalho de SHIMIZU (2012), e os Self Organizing Maps (SOM) 

como suporte à técnica da difratometria de raios-X (DRX), um dos principais 

métodos de caracterização microestrutural de materiais. O número ideal de 

clusters também foi comparado com o método tradicional, que depende do 

conhecimento de um especialista, utilizando o Índice Davies-Bouldin (IDB). A 

interpretação dos difratogramas das amostras mais representativas de cada 

classe definida pelo IDB foi realizada e comparada com as características 

presentes nos corpos minerais de Sossego e de Sequeirinho, localizados na 

Mina do Sossego, no Pará. Os resultados obtidos foram satisfatórios, mostrando 

que ambos auxiliam positivamente a técnica de difratometria de raios-X, mas 

consideram critérios de agrupamentos diferentes, sendo o maior diferencial do 

novo método dos SOM, a determinação do número ideal de clusters por meio do 

IDB. 

Palavras-chave: mapas auto-organizáveis, difração de raios-X, análise 
exploratória de dados, aprendizado não supervisionado. 

 

 

 

 

 

 

 

 

 

 

  



 
 

ABSTRACT 

 

This work aims to compare two data analysis techniques: the hierarchical 

agglomerative clustering (HAC), more commonly and traditionally used, as 

presented on SHIMIZU (2012), and the Self Organizing Maps (SOM). Both can 

be used to support the X-ray diffraction method, one of the main techniques for 

microstructural characterization of materials. The ideal number of clusters were 

also compared with the traditional method, which depends on specific knowledge 

of the operator, using the Davies-Bouldin Index (DBI). The most representative 

sample of each group defined by the DBI were determined, its diffractograms 

interpreted and compared to the main characteristics of each ore body, Sossego 

and Sequeirinho, in Sossego Mine, located in Pará, Brazil. The obtained results 

were satisfactory, showing that both can positively support the X-ray diffraction 

method, but using different approaches to cluster the samples into each group, 

also having the main advantage of the SOM related to the determination of the 

ideal numbers of clusters using the DBI. 

Keyworks: Self-Organizing map (SOM), X-ray diffraction (XRD), exploratory 
data analysis, unsupervised learning.  
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1. INTRODUÇÃO 

 

A Mina do Sossego, localizada em Canaã dos Carajás, no Pará, iniciou suas 

operações em 2004 e ainda hoje corresponde a uma significativa produção de 

cobre no Brasil. De acordo com a Vale, empresa responsável pelas operações, 

o complexo de mineração dispõe de uma capacidade nominal de 93 mil 

toneladas por ano de cobre em concentrados (VALE, 2020). Apenas em 2019, a 

Mina do Sossego representou aproximadamente 15% do valor total de 

comercialização do cobre produzido no país (ANM, 2020). 

Durante a fase de exploração em um complexo de mineração, são realizadas 

análises para determinar alguns fatores fundamentais que auxiliarão na decisão 

da viabilidade da mina. Um desses fatores é o conhecimento da variabilidade 

mineralógica no complexo, sendo comumente determinado a partir do método 

de difração de raios X. 

No entanto, essa técnica amplamente utilizada na mineração possui alguns 

pontos de atenção. Cada difratograma leva um tempo considerável de análise, 

não sendo um método muito ágil, além de não apresentar uma análise precisa 

na determinação das fases mineralógicas, uma vez que cada profissional detém 

um certo conhecimento e realiza as interpretações de forma individual, podendo 

ocorrer um viés interpretativo nos dados obtidos.  

Os desenvolvimentos na área de Inteligência Artificial (IA), especialmente das 

suas ramificações em ciência de dados e aprendizado de máquina (machine 

learning), vêm trazendo uma maior eficiência e exatidão na obtenção de 

resultados, especialmente relacionados a protocolos analíticos repetitivos.   

O aprendizado de máquinas é amplamente empregado em tarefas de 

classificação, regressão e análise exploratória de dados.  Nesse contexto, os 

mapas auto-organizáveis são muito utilizados na exploração automatizada da 

estrutura interna dos dados, de forma não supervisionada, ou semi-

supervisionada. Além de permitir o emprego de técnicas de agrupamento de 

dados aos neurons treinados segundo as informações vetoriais e topológicas 

dos dados de entrada. 
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Tradicionamente, a análise exploratória e o agrupamento de dados dos 

difratogramas de raios-X é feita utilizando a Clusterização Hierárquica 

Aglomerativa (CHA). Esse método baseia-se na distância euclidiana como 

medida de dissimilaridade dos valores de 2θ entre as amostras. Entretanto, a 

definição do número ótimo de agrupamentos depende da definição do cutoff pelo 

usuário, ou seja, dependente do conhecimento de especialista e, 

consequentemente, pode apresentar um viés de interpretação. 

Este estudo de caso irá avaliar um novo modelo de agrupamento de dados 

associados à difratometria de raios-X. Os resultados obtidos serão comparados 

com a técnica tradicional, realizado no estudo de SHIMIZU (2012) e, 

posteriormente, os difratogramas das amostras mais representativas serão 

analisados. 

1.1. Objetivo 
 
Este estudo visa avaliar a aplicabilidade da ferramenta de agrupamento de 

mapas auto-organizáveis associada à técnica de difração de raios-X (DRX) na 

definição automatizada de agrupamentos ideais das amostras da Mina do 

Sossego e a sua interpretação.  

Como objetivos específicos, este trabalho se propõe a: 

1. Comparar agrupamentos não supervisionados com os agrupamentos 

definidos por um especialista 

2. Analisar a representatividade de amostras em relação aos dois métodos, 

Self-Organizing Maps (SOM) e a Clusterização Hierárquica Aglomerativa 

(CHA) 

3. Definir o número ótimo de clusters a partir do Índice Davies-Bouldin 

4. Interpretar os difratogramas mais representativos de cada grupo 

 

1.2. Relevância do Projeto / Justificativa 
 

A difratometria de raios X é uma das principais técnicas de caracterização 

microestrutural de materiais, sejam eles orgânicos ou inorgânicos, sendo 

amplamente aplicado em diversas áreas de conhecimento. O processo de 
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interpretação das fases mineralógicas nos difratogramas ainda é repetitivo e 

demorado a depender do volume de análises. Dessa forma, técnicas de 

agrupamento de dados podem ser empregadas com o objetivo de identificar 

similaridades entre conjuntos de amostras, permitindo a escolha criteriosa 

daquelas mais representativas para análise e interpretação, reduzindo, dessa 

forma, o tempo de trabalho. 

Alguns trabalhos como SHIMIZU (2012) e MACCHIAROLA et al. (2007) 

conduzem a análise de agrupamentos presente nos softwares comerciais, como 

o HighScore da Malvern Panalytical, que consiste no agrupamento se baseando 

no método de Clusterização Hierárquica Aglomerativa. Esse tipo de 

agrupamento de amostras se baseia em separações consecutivas das amostras 

em grupos de maior similaridade, utilizando a métrica euclidiana. 

Apesar de efetivo para muitos trabalhos, essa abordagem é dependente da 

decisão de um operador especializado para a definição do número ideal de 

grupos. Desse modo, tal abordagem é suscetível ao viés interpretativo e 

dependente da exploração a priori dos dados em situações em que se há pouco 

conhecimento sobre as amostras analisadas. 

Considerando esses pontos, uma abordagem matemática, baseada na 

maximização da similaridade intragrupos e na dissimilaridade entre grupos é 

importante na medida em que evita esse viés interpretativo e permite uma 

escolha criteriosa de um número ideal de grupos sem a necessidade de maior 

exploração dos dados. 

Portanto, ambas as técnicas facilitam a caracterização e a separação de fases 

minerais, reduzindo a quantidade de amostras que necessitam de uma análise 

individual e, consequentemente, o tempo de trabalho. Além da análise do SOM, 

o uso conjunto do Índice Davies-Bouldin pode trazer um maior benefício em 

comparação com a determinação do cutoff pelo próprio especialista na CHA, 

evitando vieses e uniformizando a definição do número ideal de clusters. 
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2. REVISÃO BIBLIOGRÁFICA 
 

2.1. Mina do Sossego 
 

2.1.1. História 
 
A Mina do Sossego, localizada no Canãa dos Carajás, no estado do Pará, foi a 

primeira operação de cobre da empresa Vale S.A. (antiga Companhia Vale do 

Rio Doce). A descoberta do depósito de cobre do Sossego ocorreu em 1997, 

juntamente com a empresa Phelps Dodge (atual Freeport), que vendeu suas 

participações na região em 2001 para a própria Vale. Em 2003, o Projeto 

Sossego foi implementado com a abertura da cava de Sequeirinho e apenas em 

2004 as operações da usina de beneficiamento mineral foram iniciadas. Neste 

mesmo ano, o primeiro embarque de concentrado de cobre foi realizado, com 

um total de 269 mil toneladas de concentrado vendidos, sendo 252 mil toneladas 

destinados ao mercado externo e 17 mil ao mercado interno (CARVALHEIRO, 

2019; VALE, 2012). 

A abertura da Mina do Sossego contribuiu consideravelmente no 

desenvolvimento da região, investindo um total de R$ 200 milhões até 2020 em 

obras de infraestrutura, principalmente via parcerias com a prefeitura de Canãa 

de Carajás, com obras relacionadas à segurança pública e ao saneamento 

básico, além de ações sociais e culturais no município (VALE, 2012).  

2.1.2. Geologia 
 
A Província Mineral de Carajás (PMC), território onde se encontra a Mina do 

Sossego, contém a maior concentração conhecida de depósitos de óxido-ferro-

cobre-ouro (comumente conhecida em inglês como IOCG) e são relevantes na 

exploração mineral devido ao seu grande potencial econômico associado 

(MARQUES, 2015).  

De acordo com Hitzman (1992), esse tipo de depósito é geralmente composto 

por grandes quantidades de óxidos de ferro e precipitados hidrotermais, 

contendo magnetita ou hematita, com sulfetos de cobre e ouro associados e 

podem conter concentrações significativas de carbonatos.  
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A mineralização da Mina do Sossego é composta por cinco corpos, sendo eles: 

Pista, Sequeirinho, Baiano, Curral e Sossego. A origem da rocha hospedeira, o 

tipo e a intensidade hidrotermal de cada depósito afetam as características 

minerais dos principais corpos, de Sequeirinho e de Sossego e, apesar da 

proximidade entre eles, diferem-se intensamente entre si (MONTEIRO et al., 

2008).  As principais diferenças dos corpos de Sequerinho-Pista-Baiano e 

Sossego-Curral encontram-se na Tabela 1. 

Tabela 1- Características dos corpos da Mina do Sossego (MARQUES, 2015) 

 

A seção transversal dos dois principais corpos minerais da Mina do Sossego 

pode ser observada na Figura 1, com destaque à presença de granito e rochas 

metavulcânicas félsicas em Sequeirinho e granito granofírico e gabro em 

Sossego.  

Sequeirinho-Pista-Baiano Sossego-Curral

Reserva
85% de 355 Mt com 1,1% Cu e 0,28 

g/t Au 
15% de 355 Mt com 1,1% Cu e 

0,28 g/t de Au

Rochas hospedeiras
Granito Sequeirinho, gabronoritos 

e rocha vulcânica félsica Pista
Granito granofírico Sossego e 

gabro

Alteração 
hidrotermal

Alteração sódica (albita-hematita), 
alteração sódio-cálcica (rica em 

actinolita) associada com 
formação de magnetita-apatita

Ateração potássica e clorítica bem 
desenvolvida e alteração 

hidrolítica tardia

Mineralogia do 
minério

Calcopirita, magnetita, pirrotita, 
pirita. Menores molibdenita, 
esfalerita, siegenita, millerita, 

ouro, Pd-melonita, galena, 
cassiterita e hessita.

Calcopirita, magnetita e pirita. 
Menores siegenita, millerita, 

hessita, Pd-melorita, molibdenita, 
ouro e cassiterita

Assinatura 
geoquímica do 

minério

Cu-Fe-Au-Ni-Co-Pd-Se-V-P-ETRL 
(elementos terras raras leves), 

baixo conteúdo de Ti e U e 
enriquecido em Co, Ni, Pd, C e Se 

comparando-se com Sossego-
Curral

Cu-Fe-Au-Ni-Co-Pd-Se-V-P-ETRL e 
relativamente enriquecido em Au, 
Pb, Sn, Rb, Y e Nb em comparação 

com Sequeirinho-Pista Baiano

Corpos
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Figura 1 - Seções transversais dos corpos de Sequeirinho e Sossego 
(MONTEIRO et al., 2008) 

 

 

2.1.3. Beneficiamento do minério de cobre 
 
A etapa de cominuição e classificação do minério é um processo determinante 

na qualidade do concentrado final, uma vez que a eficiência do processo afetará 

diretamente na recuperação do minério de interesse.  

O circuito da usina do Sossego foi testado em diversos projetos pilotos e 

sofreram algumas otimizações após o início de suas operações. Um ponto de 

destaque foi a implementação do moinho semi-autógeno (SAG) no 
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processamento de cobre e ouro, sendo a primeira operação da empresa Vale 

S.A. a operar com esse tipo de equipamento (MIRANDA et al., 2015). 

De acordo com o fluxograma de ROSA et al. (2007) ilustrado na Figura 2, o 

processo se inicia com o transporte do Run of Mine (ROM) por caminhões fora-

de-estrada até um britador primário do tipo giratório e seu produto britado é 

encaminhado por um transportador de correia de longa distância até uma pilha 

pulmão com capacidade útil de 41 mil toneladas. 

Figura 2 - Fluxograma do processo da usina do Sossego (ROSA et al., 2007) 

 

O minério é retomado da pilha pulmão e encaminhado até a alimentação do 

moinho semi-autógeno (SAG). A moagem do SAG opera em circuito fechado e 

alimentam duas peneiras vibratórias, sendo o material passante bombeado para 

o circuito de classificação, enquanto o material retido na peneira é levado a um 

britador cônico para rebritagem antes de retornar ao início desse circuito. 

O circuito de classificação também opera em circuito fechado reverso em 

conjunto com dois moinhos de bolas associados. O underflow da ciclonagem irá 

alimentar o moinho de bolas antes de retornar novamente ao ciclone, enquanto 

o overflow será encaminhado para o processo de flotação rougher. 

A flotação é composta basicamente por três etapas, o rougher, o scavenger-

cleaner e o cleaner, com o estéril encaminhado para barragem de rejeitos e o 
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material de interesse para uma etapa final de espessamento e filtragem antes de 

ser encaminhado até a pilha de concentrado.  

2.1.4. Produção de concentrado de cobre 
 
A produção de concentrado de cobre na Mina do Sossego representa 

aproximadamente 30% da produção total do concentrado pela Vale S.A., com 

exceção no ano de 2019, que houve uma queda considerável na produção 

devido à uma manutenção não programada na correia transportadora e no 

moinho de bolas, retomando a operação normalmente apenas no primeiro 

trimestre de 2020 (VALE, 2020).  

Os concentrados de cobre produzidos na Mina do Sossego são vendidos 

principalmente para refinadoras de cobre (smelters) localizados na Europa, Índia 

e Ásia via contratos de médio e logo prazo (VALE, 2020). O restante da produção 

de concentrado de cobre pela empresa no Brasil é proveniente da Mina do 

Salobo, também localizada no Estado do Pará (VALE, 2019). O histórico de 

produção da empresa desde 2016 pode ser visto na Tabela 2.  

 

Tabela 2 - Histórico de produção de cobre na Mina do Sossego (elaboração 
própria com dados da empresa) 

Produção de cobre (mil toneladas métricas) 
 2016 2017 2018 2019 2020 
 

Sossego 
 

92,6 
 

99,7 
 

92,2 
 

65,5 
 

87,7 

Total produzido 
pela Vale - Brasil 268,5 293,1 284,8 254,9 260,5 

% produção 
Sossego 34,5 34,0 32,4 25,7 33,7 

 

2.2. Difração de raios-X 
 

A difração de raios-X é um método analítico não destrutivo, que permite 

identificar e quantificar as fases cristalinas de uma amostra. A identificação das 

fases se dá por meio da comparação dos dados obtidos com uma base de dados 

de referência, gerida pelo International Center for Diffraction Data (ICDD), 

sediado nos Estados Unidos. Essa base de referência contém informações 
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cristalográficas básicas e propriedades físicas dos compostos cristalinos 

(MACCHIAROLA, 2007). 

A difração de raios-X possui outras aplicações menos utilizadas, podendo 

também determinar parâmetros de cela unitária, orientação preferencial e 

tamanho médio de cristalinos, tensão residual sobre estruturas cristalinas e até 

mesmo ser utilizada como um dispositivo de controle de temperatura (KAHN, 

2007). 

2.2.1. Raios-X e o fenômeno da difração de raios-X 
 
Os raios-X são ondas eletromagnéticas situadas no espectro eletromagnético 

entre as radiações gama e ultravioleta. O comprimento de onda dos raios-X se 

encontra entre 0,1 e 100 Å (Angström), mas são geralmente utilizados na técnica 

de difratometria de raios X entre 0,5 e 2,5 Å, por corresponderem a mesma 

ordem de grandeza dos menores espaçamentos atômicos analisados em 

materiais orgânicos e inorgânicos (MARTINI, 2015). 

De acordo com KAHN (2007) e ANTONIASSI (2010), os raios-X, quando atingem 

um material podem ser espalhados elasticamente, sem perda de energia pelos 

elétrons de um átomo (espalhamento coerente). O fóton de raios-X muda sua 

trajetória ao colidir com o elétron da amostra, no entanto, mantém o comprimento 

de onda da radiação incidente.  

Se os átomos que geraram esse espalhamento estiverem arranjados de maneira 

sistemática, como em uma estrutura cristalina, e ao mesmo tempo apresentarem 

distâncias próximas ao do comprimento de onda do fóton incidente, as relações 

de fase se tornam periódicas e o fenômeno da difração dos raios-X podem ser 

observados em vários ângulos de incidência do feixe, satisfazendo a Lei de 

Bragg, conforme a equação 1 abaixo. 

𝑛 𝜆 = 2 𝑑 𝑠𝑒𝑛𝜃                                                  (1) 

onde, “𝜆” corresponde ao comprimento de onda da radiação incidente, “n” a 

ordem de difração ou fase, “d” a distância entre os planos atômicos e “𝜃” o ângulo 

de incidência dos raios-X. A Figura 3 ilustra o fenômeno da difração de raios-X. 



20 
 

Figura 3 - Fenômeno de difração de raios-X - Lei de Bragg (ANTONIASSI, 
2010) 

 

2.2.2. Difratômetro de raios-X 
 

O difratômetro tradicional detecta o feixe difratado por meio da geometria Bragg-

Brentano, habilitando a obtenção do ângulo 2𝜃 (JENKINS, 1989). Conforme 

ilustrado na Figura 4, a fonte “L” emite os raios-X que atravessam as fendas e 

chegam até a superfície da amostra localizada em “C”. Os raios são difratados 

com um certo ângulo 2𝜃 e percorrem até a fenda de recepção “D”, responsável 

por captar a radiação proveniente da amostra e encaminhar até o detector de 

raios-X em “T”. 

Figura 4 - Geometria Bragg-Brentano (JENKINS, 1989) 

 

onde, “L” a fonte de raios-X, “G” e “E” as fendas soller, “B” a fenda divergente, 

“C” a amostra a ser analisada, “D” a fenda receptora, “F” a fenda de 

espalhamento e “T” o detector de raios-X. 

O resultado dessa técnica são os difratogramas, que são representados por 

picos difratados contendo as seguintes informações: o perfil, a intensidade, a 
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posição angular (2𝜃) ou a posição entre planos cristalinos (d). A Figura 5 ilustra 

um difratogramas com os dados obtidos em um cristal de NaCl. 

Figura 5 - Difratograma do cristal de NaCl (adaptado de SILVA, 2013) 

 

Como cada material cristalino apresenta um perfil difratométrico característico, é 

possível identificá-lo conforme as posições angulares e as intensidades dos 

picos obtidos (MARTINI, 2015). Com isso, as fases cristalinas resultantes da 

difratometria de raios-X podem ser determinadas a partir da comparação dos 

padrões difratométricos das fases individuais que ficam localizadas na base de 

dados ICDD. 

2.3. Mapas Auto-Organizáveis (SOM) 
 

Os mapas auto-organizáveis (SOM) representam uma rede neural com 

aprendizado não supervisionado, ou seja, buscam identificar padrões a partir dos 

dados fornecidos, sem a apresentação de rótulos de classificação fornecidos 

pelos dados de treinamento do algoritmo.  

Essa técnica foi desenvolvida por Teuvo Kohonen em 1982 e permite analisar, 

visualizar e interpretar dados multidimensionais a partir dos princípios do 

algoritmo de Quantização Vetorial (VQ – Vector Quantization), mapeando uma 

relação não linear entre o espaço de entrada e o espaço de saída (KOHONEN, 

2001). São amplamente utilizados em pesquisas geofísicas e geoquímicas, as 

quais envolvem uma ampla quantidade de dados complexos a serem analisados 

(KITANI, 2013; FRASER, 2007).  
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Na análise dos SOM, as amostras inseridas nos dados de entrada são tratadas 

como vetores n-dimensionais em um espaço n-dimensional definido pela 

quantidade de variáveis analisadas. Os dados de saída, são projetados em um 

mapa 2D que representa todos esses parâmetros complexos inseridos 

inicialmente.  

O tamanho e a tipologia do mapa são definidos a partir do número de variáveis 

consideradas e essa estrutura básica do mapa é um fator importante, uma vez 

que determina a quantidade de neurônios semeados, os quais são tipicamente 

gerados de modo aleatório (PERILLO, 2019). A geometria de vizinhança entre 

os neurônios forma uma representação de mapa e assume tipicamente uma 

grade quadrada ou hexagonal, conforme ilustrado na Figura 6. 

Figura 6- Estrutura dos SOM (quadrada e hexagonal) (BREARD, 2017) 

 

A análise dos SOM se inicia com um processo de treinamento dos neurônios, o 

qual consiste em duas etapas: a competitiva e a cooperativa. Na etapa 

competitiva, as amostras inseridas são comparadas com todos os neurônios 

semeados por meio de medidas de similaridade, normalmente utilizando-se a 

distância Euclidiana. A menor distância determinada entre os dois vetores é 

denominada como Best Matching Unit (BMU). Já na etapa de cooperação, os 

BMUs definidos anteriormente são considerados os centros de uma certa região 

e uma vizinhança é definida (FRASER, 2007).  

Após a fase de treinamento, os neurônios semeados que representam os dados 

de entrada podem ser visualizados em um mapa 2D por meio dos nós que 

agrupam os vetores com maior similaridade entre si, preservando a topologia 

entre eles. Os mapas que representam os dados de saída em um espaço 2D a 

partir dos dados de entrada em um espaço n-dimensional são denominados 

mapas Kohonen ou mapas auto-organizáveis (SOM). Uma visualização desse 

processo de redução dimensional pode ser vista na Figura 7. 
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Figura 7 - Etapa de treinamento dos mapas auto-organizáveis (BREARD, 2017) 

 

Outra forma de visualização dos mapas auto-organizáveis se dá por meio da 

Matriz-U, que foi criada no início dos anos 90 com o propósito de trabalhar em 

conjunto com os mapas 2D de Kohonen, visando auxiliar na visualização dos 

mapas representativos de um espaço de alta dimensão.  

A Matriz-U indica a proximidade entre as amostras representadas nos mapas 

2D. Essa distância entre as amostras, calculada pela distância Euclidiana, é 

definida e representada por cores em uma escala de valores. As cores mais frias, 

próximas da tonalidade de azul, representam uma menor distância entre os 

neurônios, possuindo uma maior similaridade entre si, e as cores mais quentes, 

próximas da tonalidade do vermelho, representam uma maior distância entre os 

neurônios, possuindo uma menor similaridade entre si (FRASER, 2007).  

Uma outra forma de visualização é a partir de hexágonos brancos contidos na 

Matriz-U, que indicam a quantidade de amostras representadas em cada nó, 

sendo o tamanho do hexágono proporcional à quantidade de amostras. As 

representações da Matriz-U podem ser vistas na Figura 8 abaixo. 
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Figura 8 - Matriz-U resultante de um mapa Kohonen (FRASER, 2007; KITANI, 
2013) 

 

 
2.4. Índice Davies e Bouldin (IDB) 

O Índice de Davies e Bouldin (IDB) é um indicador que considera as 

similaridades entre os dados, ajudando a separar e definir um valor de classes 

representativas. O propósito do uso desse índice é de determinar o número ótimo 

de clusters maximizando a distância intra-cluster (homogeneidade e 

compacidade), ou seja, a similaridade intra-cluster, e tentando reduzir a distância 

entre as amostras no cluster, ou seja, a dissimilaridade entre as classes (SINGH, 

2020).  

As principais determinações adotadas na formulação do índice, consideram a 

aplicação em bases hierárquicas, a compatibilidade com extensas bases de 

dados, o processamento de dados com dimensionalidade arbitrária e sem que 

haja a necessidade de interação do usuário na definição de parâmetros (Davies, 

1979). A definição do parâmetro pelo usuário é o número máximo de clusters e, 

caso não seja definido, o melhor Índice Davies-Bouldin será o de mesma ordem 

do número de amostras. 

2.5. Análise de agrupamento (cluster analysis) 
 

A seguir serão descritas as duas técnicas de análise por agrupamento que serão 

relevantes para esse trabalho, a Clusterização Hierárquica Aglomerativa e a 

clusterização por K-means. 



25 
 

2.5.1. Clusterização Hierárquica Aglomerativa (CHA) 
 
A Clusterização Hierárquica Aglomerativa é considerada uma técnica não 

supervisionada de aprendizagem de máquinas que visa dividir uma determinada 

população em diferentes classes a partir da similaridade entre cada amostra 

(KUMAR, 2020a). Esses algoritmos são amplamente utilizados em análises 

estatísticas a fim de determinar um número ideal de classes em relação aos 

dados analisados (MINGOTI, 2005). Na Figura 9, é possível visualizar a 

formação de 3 classes, mostrando uma maior similaridade entre as amostras 

dentro de cada classe. 

Figura 9 - Aglomeração dos dados com maior similaridade e formação de 
classes (clusters) (KUMAR, 2020a) 

 

Ao descrever o método, pode-se dizer que, inicialmente, cada dado é 

considerado uma única classe. Em seguida, esses dados começam a ser 

comparados entre si, dois a dois, a partir de uma medida de distância, 

geralmente por meio da distância Euclidiana. Outras formas de medidas podem 

ser utilizadas como a distância entre os pontos mais distantes entre duas 

classes, a distância entre os centróides entre duas classes ou pela distância 

média entre todos os pontos nas duas classes. As duas classes mais próximas 

entre si, ou seja, mais similares entre sim, são unidas formando uma única 

classe. Esse último processo descrito é repetido diversas vezes até se atingir o 

número ideal de classes, que será definido posteriormente pelo usuário. Apenas 

duas classes podem ser agrupadas em cada etapa, formando uma nova classe, 

e não podem se separar depois de aglomerados (KUMAR, 2020a; MINGOTI, 

2005). A Figura 10 abaixo ilustra as etapas do método. 
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Figura 10 - Etapa de junção entre classes mais próximas até a formação final 
de duas classes (adaptado de KUMAR, 2020a) 

 

Uma das grandes vantagens do uso desse método é a possibilidade de analisar 

visualmente a estrutura formada a partir da similaridade entre os dados e a 

formação de classes a partir de um dendrograma. O dendrograma é uma 

representação gráfica que mostra as etapas do método e onde pode ser definido 

o número ideal de classes a partir da análise da maior altura do retângulo 

formado, uma vez que a maior distância Euclidiana entre o número ótimo de 

classes, conforme ilustrado na Figura 11 (KUMAR, 2020a). Nesse caso, pode-

se afirmar que o número ideal seria de três classes. 

Figura 11 - Dendrograma e definição do número ótimo de classes (KUMAR, 
2020a) 

 

2.5.2. Clusterização por K-means 
 
A clusterização por K-means é um método não supervisionado, sendo um 

algoritmo bastante conhecido e utilizado em diversas áreas pela sua fácil 

implementação e habilidade de classificação. Essa técnica necessita de uma 

definição prévia de um número de grupos, k, para iniciar o processo. Em seguida, 

encontram-se os k-pontos, sendo esses os centroides de cada um dos grupos, 
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e as distâncias entre cada um dos pontos e os centroides são comparadas. 

Aquele que apresentar a menor distância Euclidiana calculada passa a pertencer 

à essa classe (BRENTAN, 2018; KUMAR, 2020b).  

Figura 12 - Definição da menor distância entre o ponto e os centróides de cada 
classe (adaptado de KUMAR, 2020b) 

 

 

A Figura 12 ilustra essa etapa de comparação entre as distâncias e, nesse caso, 

o d3 é a que representa a menor distância Euclidiana calculada a partir do ponto 

x_i. Portanto, esse ponto passará a pertencer à classe 3. 

Apesar de ser um método simples de ser empregado, existe uma dificuldade em 

determinar o número ideal de classes para ser inserido como dado de entrada, 

podendo afetar diretamente a performance da técnica de clusterização por K-

means. Com isso, é aconselhado o uso de outros algoritmos que possam auxiliar 

na definição do número ideal de clusters (MINGOTI, 2006; BRENTAN, 2018). 

Nesse trabalho, o Índice de Davies-Bouldin (IDB) foi utilizado para definir esse 

número e que será descrito ao longo do texto. 

3. MATERIAIS E MÉTODOS 
 

3.1. Materiais 

As amostras utilizadas neste trabalho são provenientes da Mina do Sossego, no 

Pará, e pertencem ao estudo de SHIMIZU (2012), que analisa a aplicabilidade 

do método de Clusterização Hierárquica Aglomerativa, visando classificar os 

diferentes tipos de minérios presentes nos corpos de Sequeirinho e de Sossego. 
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De acordo com BERGERMAN (2009), as amostras coletadas são provenientes 

de testemunhos de sondagem e referem-se aos planos de lavra dos anos de 

2007 e 2008.  

De acordo com SHIMIZU (2012), foram tratadas 110 amostras em laboratório e 

analisadas a partir dos resultados obtidos pelo método de difratometria de raios-

X. Os difratogramas mais representativos de cada grupo determinado por 

SHIMIZU (2012) podem ser visualizados na Figura 13. 

Figura 13 – Difratogramas mais representativos de cada cluster (SHIMIZU, 
2012) 

 

 

A partir dos difratogramas encontrados, foram determinadas as seguintes fases 

minerais em cada cluster, conforme descrito na Tabela 3. 

 

 

 

 



29 
 

Tabela 3 - Principais fases minerais identificadas no DRX 

 

 

3.2. Procedimentos Adotados 
 

3.2.1. Difratogramas 
 
De acordo com as especificações descritas no trabalho de SHIMIZU (2012), foi 

realizado inicialmente o processo de britagem e moagem das amostras tais quais 

e posteriormente foram pulverizadas. Em seguida, esse material foi preparado e 

encaminhado ao equipamento X’Pert Pro da marca PANalytical para a análise 

de difratometria de raios-X. 

3.2.2. Tratamento dos dados 
 

Foram coletados dados dos 110 difratogramas disponíveis e organizados em 

uma única base de dados utilizando linguagem Python e a interface do Jupyter 

Lab. Os arquivos de formato. xrdlm (Panalytical XPert X-ray diffraction) foram 

abertos utilizando a biblioteca Xrdtools (PARUCH, 2021) e foi criada uma base 

Cluster 1
Elevada presença de actinolita e menor quantidade de quartzo e 

feldspato. Presença de magnetita e hematita.

Cluster 2
Elevada presença de actinolita e menor quantidade de quartzo e 

feldspato. 

Cluster 3 Rico em quartzo e presença de feldspato e clorita.

Cluster 4 Rico em quartzo e presença de feldspato.

Cluster 5
Rico em quartzo e presença reduzida de feldspato em relação ao 

cluster 3 e 4. Presença de mica, clorita e calcita.

Cluster 6 Actinolita, quartzo e feldspato. Presença de mica.

Cluster 7 Actinolita, quartzo e feldspato. Presença de clorita.

Identificação de fases minerais - DRX
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dados única para o treinamento do algoritmo de mapas auto-organizáveis, onde 

cada linha represa uma análise de DRX e cada coluna descreve o valor do passo 

(2θ) conforme ilustrado no Anexo 4.  

3.2.3. Análise dos Mapas Auto-organizáveis (SOM) 
 

As análises dos Mapas Auto-organizáveis foram realizadas por meio do 

programa SiroSOM®. Inicialmente, foi desenvolvida uma etapa de inicialização, 

sendo gerada uma malha de 20x20 nós, dispostas em superfície toroidal e com 

células hexagonais.  

Posteriormente, foi realizada uma etapa de treinamento em todas as análises 

considerando os parâmetros dispostos na Tabela 4. 

Tabela 4 - Parâmetros de treinamento dos Mapas Auto-organizáveis 

 

Fonte: Elaboração Própria 

3.2.4. Índice Davies e Bouldin (IDB) 
  
Os resultados da etapa de treinamento, relacionados aos vetores quantizados 

pelos neurons treinados no algoritmo de Mapas Auto-Organizáveis, também 

chamados de Best Matching Units (BMUs), foram adquiridos e utilizados numa 

análise automatizada do Índice de Davies-Bouldin (IDB). 

Essa análise automatizada do IDB foi desenvolvida em script de Jupyter 

Notebook em ambiente Python utilizando as funções da biblioteca Sklearn 

(PEDREGOSA et al., 2011). A análise foi desenvolvida rodando o IDB em 500 

iterações de 2 a 30 grupos, calculando o índice para cada configuração de 

agrupamento utilizando o algoritmo K means para os agrupamentos analisados. 

Uma análise estatística foi então desenvolvida analisando os mínimos globais e 

segundos mínimos globais (menores valores do conjunto global de resultados) 

de cada uma das iterações de IDB de 2 a 30 grupos. O número ótimo de 
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agrupamentos foi definido pela moda dos valores de mínimos e segundos 

mínimos globais dessa análise. 

As repetições de iterações de IDB são importantes para garantir a estabilidade 

dos resultados uma vez que a inicialização do algoritmo K-Means é aleatória e 

alguns agrupamentos podem se coalescer devido a inicialização em algumas 

interações, mas não em outras. 

3.2.5. Algoritmo K-means 
 
Com a definição do valor ideal de clusters calculados a partir do Índice Davies e 

Bouldin, foi realizado um agrupamento dos vetores quantizados nos BMUs do 

mapa Kohonen segundo o algoritmo K-means para o número ótimo de clusters 

definidos pela análise modal dos IDB. Os vetores de entrada (amostras) 

relacionadas a esses BMUs foram então classificadas segundo esse 

agrupamento. Os conjuntos de amostras relacionadas a cada grupo foram então 

comparadas aos obtidos pelo método de agrupamento hierárquico aglomerativo 

do trabalho de Shimizu (2012). 

4. RESULTADOS E DISCUSSÃO 
 

4.1. Resultados 

A partir dos dados de entrada e os parâmetros inseridos, a Matriz-U de 

Treinamento e a Matriz-U com Hits foram obtidas. A Matriz-U ilustra a 

proximidade entre as amostras a partir das cores em escala de valores, sendo 

as cores mais quentes indicando uma maior distância entre elas e as cores frias 

indicando uma maior proximidade entre elas no espaço n-dimensional, onde n é 

o número de features treinados. 
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Figura 14 - Matriz-U de Treinamento 

 

Já a Matriz-U com Hits, ilustra tanto a proximidade entre os dados de entrada 

(amostras) a partir das cores em escala de valores, quanto a quantidade de 

amostras presentes conforme a variação do tamanho dos hexágonos brancos. 

Figura 15 - Matriz U com Hits 

 

Depois de realizada a análise do SOM, foram feitas 500 iterações, a fim de 

determinar o número ideal de classes a partir do Índice Davies-Bouldin. Na 
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Figura 16, a partir do mínimo global encontrado, determinou-se 5 como sendo o 

número ideal de classes. 

Figura 16 - Comparação Índices Davies-Bouldin 

 

 

Todas as contagens modais de mínimos e segundos mínimos globais 

determinados a partir da análise de comparação dos Índices Davies-Bouldin 

(IDB) podem ser visualizadas no gráfico (Figura 17).  

Figura 17 – Contagem dos mínimos e segundos mínimos globais 
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Com o número ideal de clusters identificado pela análise dos IDB como 5 e 7 

clusters, foi realizado um agrupamento dos vetores quantizados nos BMUs 

determinados no SOM por meio do algoritmo K-means. As análises foram 

realizadas com três valores distintos de classes, com quatro, cinco e sete grupos, 

com a finalidade de uma melhor discussão entre eles. 

Figura 18 - Divisão da matriz-U em 4 classes 

 

 

Figura 19 - Divisão da matriz-U em 5 classes 
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Figura 20 - Divisão da matriz-U em 7 classes  

 

 

A partir dos resultados coletados do SOM, foram comparados os conjuntos de 

amostras pertencentes a cada grupo com os obtidos pelo método de 

agrupamento hierárquico aglomerativo (CHA) no trabalho de SHIMIZU (2012).  

Tabela 5 - Porcentagem das amostras de SHIMIZU (2012) em cada cluster 
definido (4 grupos) 

SOM/CHA Cluster 1_CHA Cluster 2_CHA Cluster 3_CHA Cluster 4_CHA 
Cluster 1_SOM 0% 76,5% 0% 23,5% 
Cluster 2_SOM 9,4% 37,5% 6,3% 46,9% 
Cluster 3_SOM 91,7% 0% 8,3% 0% 
Cluster 4_SOM 22,2% 0% 44,4% 33,3% 

 

Tabela 6 - Porcentagem das amostras de SHIMIZU (2012) em cada cluster 
definido (7 grupos) 

 

SOM/CHA Cluster 
1_CHA 

Cluster 
2_CHA 

Cluster 
3_CHA 

Cluster 
4_CHA 

Cluster 
5_CHA 

Cluster 
6_CHA 

Cluster 
7_CHA 

Cluster 1_SOM 0% 0% 66,7% 16,7% 0% 16,7% 0% 
Cluster 2_SOM 54,5% 0% 0% 0% 9,1% 0% 36,4% 
Cluster 3_SOM 0% 0% 0% 11,1% 88,9% 0% 0% 
Cluster 4_SOM 0% 14,3% 0% 0% 0% 71,4% 14,3% 
Cluster 5_SOM 0% 0% 42,9% 47,6% 9,5% 0% 0% 
Cluster 6_SOM 12,5% 8,3% 0% 12,5% 0% 4,2% 62,5% 
Cluster 7_SOM 100% 0% 0% 0% 0% 0% 0% 

1 

2 

3 

4 

6 

7 

5 
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Com a definição do número ótimo de clusters por meio do Índice Davies-Bouldin, 

foi realizado um estudo mais aprofundado considerando este cenário, dispondo 

da quantidade de amostras presentes em cada cluster e a qual corpo pertencem.  

Tabela 7 - Amostras por cluster e corpos minerais 

Quantidade de Amostras 

  Sequeirinho Sossego Sem identificação Total 

Cluster 1_SOM 22 1 3 26 
Cluster 2_SOM 11 1 1 13 
Cluster 3_SOM 11 7 7 25 
Cluster 4_SOM 2 25 1 28 
Cluster 5_SOM 7 9 2 18 

Total 53 43 14 110 
 

 A amostra mais representativa de cada um dos clusters, ou seja, a amostra que 

se encontra mais próxima do centróide de cada grupo foi então calculada. Com 

isso, obteve-se o seguinte resultado conforme ilustrado na Tabela 8. 

Tabela 8 - Amostra mais representativa de cada classe (5 grupos) 

5 Classes Amostras mais 
representativas 

Cluster 1_SOM 1547 
Cluster 2_SOM 1483 
Cluster 3_SOM 1551 
Cluster 4_SOM 1512 
Cluster 5_SOM 1516 

 

A partir das amostras mais representativas de cada um dos 5 clusters, foi 

possível determinar os principais minerais contidos em cada um deles, conforme 

os difratogramas dispostos na Figura 21. 
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Figura 21 – Difratogramas das amostras mais representativas de cada cluster 

 

 

 

Os difratogramas e as posições 2θ em relação as amostras também podem ser 

vistos no ANEXO 04 e 05. 

Por fim, a fim de comparação com o estudo de SHIMIZU (2012), as amostras 

mais representativas para os 7 clusters nesse estudo foram determinadas, 

conforme Tabela 9. 

Tabela 9 - Amostra mais representativa de cada classe (7 grupos) 

7 Classes Amostras mais 
representativas 

Cluster 1_SOM 1463 
Cluster 2_SOM 1522 
Cluster 3_SOM 1516 
Cluster 4_SOM 1438 
Cluster 5_SOM 1512 
Cluster 6_SOM 1547 
Cluster 7_SOM 1483 

 

Legenda: Clt – Clorita; Ms – Muscovita; Act – Actinolita; Qtz – Quartzo; Alb – Albita; Cal – Calcita e Hem - Hematita 
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4.2. Discussão 

4.2.1. Comparação dos resultados entre classes 
 
As análises foram desenvolvidas em três cenários distintos, com as amostras 

aglomeradas em 4, 5 e 7 classes. O trabalho de SHIMIZU (2012) analisou dois 

cenários distintos, de 4 e 7 clusters, sendo esses valores definidos pelo próprio 

usuário baseado em seus conhecimentos na área. Assim, as divisões em 4 e 7 

clusters foram realizadas neste trabalho, a fim de comparar os resultados obtidos 

por um especialista por meio da Clusterização Hierárquica Aglomerativa e os 

resultados obtidos a partir da aglomeração dos vetores treinados pelos mapas 

auto-organizáveis. 

Ademais, a divisão em 5 clusters foi considerada neste estudo, uma vez que o 

resultado do Índice Davies-Bouldin, conforme ilustrado na Figura 16, indicou qual 

seria o número ideal de classes. Esse número ideal é determinado pela maior 

quantidade de mínimos globais presentes em cada classe e, conforme a Figura 

17, o número de clusters que apresentou o maior valor foi o de 5 classes, 

englobando 57% dos mínimos.  

A primeira parte das análises, contabilizam o percentual de amostras definidas 

pela Clusterização Hierárquica Aglomerativa (CHA) de SHIMIZU (2012) 

presentes em cada classe determinada neste trabalho. Como exemplo, 

conforme ilustrado na Tabela 6, no Cluster 1_SOM (cluster determinado neste 

estudo) contém 66,7% das amostras contidas no Cluster 3_CHA (cluster 

determinado por SHIMIZU), 17% no Cluster 4_CHA e 17% no Cluster 6_CHA.  

Cenário 1 - 7 Clusters 

O primeiro cenário considera as 7 classes. A partir dos resultados obtidos na 

Tabela 6, a classe que selecionou o total de amostras de um único cluster de 

SHIMIZU (2012) foi o Cluster 7_SOM, contendo 100% de amostras do Cluster 

1_CHA.  

Já o Cluster 1_SOM predomina a quantidade de amostras do Cluster 3_CHA, o 

Cluster 3_SOM predomina a quantidade de amostras do Cluster 5_CHA, o 

Cluster 4_SOM predomina a quantidade de amostras do Cluster 6_CHA e o 

Cluster 6_SOM predomina a quantidade de amostras do Cluster 7_CHA.  
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O Cluster 2_SOM e o Cluster 5_SOM apresentaram uma quantidade bem 

dividida entre as classes de SHIMIZU (2012), sendo o primeiro, a maioria das 

amostras pertencentes ao Cluster 1_CHA e ao Cluster 7_CHA e, o último, das 

amostras pertencentes ao Cluster 3_CHA e Cluster 4_CHA. Os dados 

comparados podem ser vistos no ANEXO 02.  

Portanto, percebe-se que há uma boa correlação entre os clusters comparados, 

mostrando uma certa semelhança no agrupamento por Clusterização 

Hierárquica Aglomerativa e pelos Self-Organizing Maps. No entanto, é possível 

notar que os critérios de seleção das amostras em cada grupo não são os 

mesmos, uma vez que a maioria dos grupos determinados pelo SOM possuem 

uma mistura entre dois grupos determinados pela CHA, exceto pelo Cluster 

7_SOM que contém 100% das amostras do Cluster 1_CHA. 

No estudo de SHIMIZU (2012), do método de CHA, foram determinadas as 

amostras mais representativas para cada um dos 7 clusters analisados, com o 

auxílio do programa Highscore da Malvern Panalytical, conforme ilustrado na 

Tabela 10. 

Tabela 10 - Amostras mais representativas de cada cluster determinado por 
SHIMIZU (2012) 

Estudo de SHIMIZU (2012) 

7 Classes Amostras mais 
representativas 

Cluster 1_CHA 1483 
Cluster 2_CHA 1495 
Cluster 3_CHA 1446 
Cluster 4_CHA 1512 
Cluster 5_CHA 1526 
Cluster 6_CHA 1551 
Cluster 7_CHA 1538 

 

Em comparação com as amostras mais representativas determinadas na Tabela 

9, pode-se notar que apenas duas amostras são iguais, a do Cluster 1_CHA e a 

do Cluster 4_CHA com a do Cluster 5_SOM e a do Cluster 7_CHA, 

respectivamente. Esse resultado pode estar relacionado com a correlação 

encontrada entre os clusters na Tabela 6, podendo inferir que os métodos 

realizam um agrupamento das amostras baseado em diferentes características.   
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Cenário 2 - 4 Clusters 

Com relação à divisão em 4 classes, a partir dos resultados obtidos na Tabela 5, 

pode-se observar que o Cluster 3_SOM foi o que mais apresentou uma 

quantidade de amostras de uma mesma classe que SHIMIZU (2012), neste caso, 

do Cluster 1_CHA. O Cluster 1_SOM teve a predominância de amostras do 

Cluster 2_CHA e, por outro lado, o Cluster 2_SOM e o Cluster 4_SOM 

apresentaram uma quantidade de amostras bem dividida em comparação com 

as classes de SHIMIZU (2012). No caso, o Cluster 2_SOM apresenta uma 

combinação de amostras do Cluster 1_CHA, do Cluster 2_CHA e do Cluster 

4_CHA e o Cluster 4_SOM apresenta uma combinação de amostras do Cluster 

1_CHA, do Cluster 3_CHA e do Cluster 4_CHA. Os dados comparados podem 

ser vistos no ANEXO 03. 

Portanto, percebe-se que há uma boa correlação entre os clusters comparados, 

mostrando uma certa semelhança no agrupamento por Clusterização 

Hierárquica Aglomerativa (CHA) e pelos Self-Organizing Maps, assim como no 

agrupamento em 7 classes. Também, é possível notar que os critérios de 

seleção das amostras em cada grupo não são os mesmos, uma vez que a 

maioria dos grupos determinados pelo SOM possuem uma mistura entre dois 

grupos determinados pela CHA. 

Cenário 3 - 5 Clusters 

A divisão das amostras em 5 grupos foi definida como o número ótimo de clusters 

por meio do Índice Davies-Bouldin e, a partir disso, foi realizado um estudo mais 

aprofundado considerando este cenário.  

Na Tabela 7, é possível observar a quantidade de amostras presentes em cada 

um dos grupos e sua respectiva localização, referente ao corpo de Sequerinho 

ou ao corpo de Sossego. Há uma predominância de amostras do corpo de 

Sossego no cluster 4 e do corpo de Sequeirinho nos clusters 1 e 2. Já os clusters 

3 e 5 apresentam amostras dos dois corpos, sem predominância de um deles, o 

que pode indicar que as amostras pertencem a uma zona de transição. 

Uma análise mais aprofundada foi realizada por meio da interpretação dos 

difratogramas das amostras mais representativas de cada um dos grupos, 
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conforme ilustrado na Figura 21. No grupo 1, pode ser observado um pico 

relevante para a presença de actinolita, hematita e albita. Já o grupo 2, apresenta 

intensidades dos picos semelhantes aos do grupo 1, contendo actinolita, albita e 

hematita, no entanto, com menor intensidade para o último. O cluster 4, 

diferentemente dos dois grupos previamente mencionados, apresenta picos de 

intensidade relevantes para clorita e quartzo. Por fim, os cluster 3 e 5 apresentam 

picos com uma maior intensidade para muscovita, actinolita e quartzo no primeiro 

e clorita, quartzo, calcita e hematita no último. 

Ao comparar esses resultados com os minerais presentes em cada um dos 

corpos, de Sossego e de Sequeirinho, a relação que foi analisada na Tabela 7 

se justifica, uma vez que o primeiro apresenta o quartzo e a clorita como minerais 

relevantes, assim como determinado no cluster 4, e o último apresenta actinolita, 

hematita e albita como minerais relevantes, assim como observado nos grupos 

1 e 2. Como o cluster 3 e 5 apresentam picos de intensidades de minerais 

presentes em ambos os corpos, é possível entender que essas amostras são, 

portanto, representativas de uma zona de transição. 

5. CONCLUSÃO 

A comparação entre os métodos de Clusterização Hierárquica Aglomerativa 

(CHA) dos Self Organizing Maps (SOM) mostra que ambos auxiliam 

positivamente a técnica de difratometria de raios X, mas consideram critérios de 

agrupamentos diferentes. Essa diferença também faz com que as amostras mais 

representativas não sejam as mesmas, a depender dos critérios considerados 

no momento do agrupamento. 

O maior diferencial entre os métodos foi a determinação do número ideal de 

clusters. O método do SOM em conjunto com o IDB possui alguns benefícios em 

comparação com o método de CHA, uma vez que evita viés de usuário no 

momento da determinação do cutoff e consegue garantir uma uniformidade ou 

padronização de escolha do número de classes. 

Os resultados das análises utilizando o número ideal de clusters, a partir do IDB, 

com 5 classes, mostrou um resultado satisfatório, demonstrando um bom 

agrupamento entre as amostras mais semelhantes entre si e sendo possível 
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classificar o grupo de amostras pertencentes a cada corpo mineral e as fases de 

transição entre eles.  
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ANEXO 01 
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ANEXO 02 
 

N LCT DRX Cluster Cluster SHIMIZU 
(7 grupos) 

N LCT DRX Cluster Cluster SHIMIZU 
(7 grupos) 

 

1434 1 3 1435 5 3 
1443 1 3 1436 5 3 
1444 1 3 1440 5 3 
1445 1 3 1470 5 3 
1446 1 3 1471 5 3 
1462 1 3 1472 5 3 
1469 1 3 1528 5 3 
1473 1 3 1529 5 3 
1475 1 3 1531 5 3 
1506 1 3 1442 5 4 
1507 1 3 1487 5 4 
1527 1 3 1498 5 4 
1463 1 4 1508 5 4 
1521 1 4 1510 5 4 
1523 1 4 1511 5 4 
1464 1 6 1512 5 4 
1549 1 6 1518 5 4 
1550 1 6 1519 5 4 
1448 2 1 1540 5 4 
1451 2 1 1497 5 5 
1465 2 1 1509 5 5 
1484 2 1 1479 6 1 
1533 2 1 1491 6 1 
1535 2 1 1546 6 1 
1541 2 5 1494 6 2 
1480 2 7 1504 6 2 
1490 2 7 1468 6 4 
1522 2 7 1539 6 4 
1538 2 7 1545 6 4 
1514 3 4 1481 6 6 
1441 3 5 1439 6 7 
1515 3 5 1450 6 7 
1516 3 5 1466 6 7 
1517 3 5 1467 6 7 
1525 3 5 1477 6 7 
1526 3 5 1478 6 7 
1530 3 5 1482 6 7 
1542 3 5 1488 6 7 
1493 4 2 1495 6 7 
1438 4 6 1496 6 7 
1489 4 6 1520 6 7 
1501 4 6 1524 6 7 
1551 4 6 1537 6 7 
1552 4 6 1543 6 7 
1486 4 7 1547 6 7 

1452 7 1 
1453 7 1 
1476 7 1 
1483 7 1 
1534 7 1 
1536 7 1 
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ANEXO 03 

 

N LCT DRX Cluster 
Cluster Viviane 

N LCT DRX Cluster 
Cluster Viviane 

 (4 grupos)   (4 grupos) 

1434 1 B 1439 2 D 
1435 1 B 1450 2 D 
1436 1 B 1466 2 D 
1440 1 B 1467 2 D 
1442 1 B 1478 2 D 
1443 1 B 1481 2 D 
1444 1 B 1482 2 D 
1445 1 B 1488 2 D 
1446 1 B 1495 2 D 
1462 1 B 1496 2 D 
1463 1 B 1520 2 D 
1469 1 B 1524 2 D 
1470 1 B 1537 2 D 
1471 1 B 1543 2 D 
1473 1 B 1550 2 D 
1475 1 B 1448 3 A 
1487 1 B 1451 3 A 
1498 1 B 1452 3 A 
1506 1 B 1453 3 A 
1507 1 B 1476 3 A 
1521 1 B 1483 3 A 
1523 1 B 1484 3 A 
1527 1 B 1533 3 A 
1528 1 B 1534 3 A 
1529 1 B 1535 3 A 
1531 1 B 1536 3 A 
1438 1 D 1541 3 C 
1464 1 D 1465 4 A 
1486 1 D 1491 4 A 
1489 1 D 1504 4 A 
1501 1 D 1546 4 A 
1549 1 D 1441 4 C 
1551 1 D 1515 4 C 
1552 1 D 1516 4 C 
1479 2 A 1517 4 C 
1493 2 A 1525 4 C 
1494 2 A 1526 4 C 
1468 2 B 1530 4 C 
1472 2 B 1542 4 C 
1508 2 B 1477 4 D 
1510 2 B 1480 4 D 
1511 2 B 1490 4 D 
1512 2 B 1522 4 D 
1514 2 B 1538 4 D 
1518 2 B 1547 4 D 
1519 2 B    

1539 2 B    

1540 2 B    

1545 2 B    

1497 2 C    

1509 2 C    
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ANEXO 04
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ANEXO 05 

 

 

 


